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Preface

The emerging problem of data fusion offers plenty of opportunities, also raises
lots of interdisciplinary challenges in computational biology. Currently, devel-
opments in high-throughput technologies generate Terabytes of genomic data
at awesome rate. How to combine and leverage the mass amount of data sources
to obtain significant and complementary high-level knowledge is a state-of-art
interest in statistics, machine learning and bioinformatics communities.

To incorporate various learning methods with multiple data sources is a
rather recent topic. In the first part of the book, we theoretically investigate
a set of learning algorithms in statistics and machine learning. We find that
many of these algorithms can be formulated as a unified mathematical model
as the Rayleigh quotient and can be extended as dual representations on the
basis of Kernel methods. Using the dual representations, the task of learning
with multiple data sources is related to the kernel based data fusion, which
has been actively studied in the recent five years.

In the second part of the book, we create several novel algorithms for su-
pervised learning and unsupervised learning. We center our discussion on the
feasibility and the efficiency of multi-source learning on large scale heteroge-
neous data sources. These new algorithms are encouraging to solve a wide
range of emerging problems in bioinformatics and text mining.

In the third part of the book, we substantiate the values of the proposed al-
gorithms in several real bioinformatics and journal scientometrics applications.
These applications are algorithmically categorized as ranking problem and
clustering problem. In ranking, we develop a multi-view text mining method-
ology to combine different text mining models for disease relevant gene pri-
oritization. Moreover, we solidify our data sources and algorithms in a gene
prioritization software, which is characterized as a novel kernel-based approach
to combine text mining data with heterogeneous genomic data sources using
phylogenetic evidence across multiple species. In clustering, we combine mul-
tiple text mining models and multiple genomic data sources to identify the dis-
ease relevant partitions of genes. We also apply our methods in scientometric
field to reveal the topic patterns of scientific publications. Using text mining
technique, we create multiple lexical models for more than 8000 journals re-
trieved from Web of Science database. We also construct multiple interaction
graphs by investigating the citations among these journals. These two types
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of information (lexical /citation) are combined together to automatically con-
struct the structural clustering of journals. According to a systematic bench-
mark study, in both ranking and clustering problems, the machine learning
performance is significantly improved by the thorough combination of hetero-
geneous data sources and data representations.

The topics presented in this book are meant for the researcher, scientist
or engineer who uses Support Vector Machines, or more generally, statistical
learning methods. Several topics addressed in the book may also be interest-
ing to computational biologist or bioinformatician who wants to tackle data
fusion challenges in real applications. This book can also be used as refer-
ence material for graduate courses such as machine learning and data mining.
The background required of the reader is a good knowledge of data mining,
machine learning and linear algebra.

This book is the product of our years of work in the Bioinformatics group,
the Electrical Engineering department of the Katholieke Universiteit Leu-
ven. It has been an exciting journey full of learning and growth, in a relaxing
and quite Gothic town. We have been accompanied by many interesting col-
leagues and friends. This will go down as a memorable experience, as well
as one that we treasure. We would like to express our heartfelt gratitude to
Johan Suykens for his introduction of kernel methods in the early days. The
mathematical expressions and the structure of the book were significantly
improved due to his concrete and rigorous suggestions. We were inspired by
the interesting work presented by Tijl De Bie on kernel fusion. Since then,
we have been attracted to the topic and Tijl had many insightful discussions
with us on various topics, the communication has continued even after he
moved to Bristol. Next, we would like to convey our gratitude and respect
to some of our colleagues. We wish to particularly thank S. Van Vooren, B.
Coessen, F. Janssens, C. Alzate, K. Pelckmans, F. Ojeda, S. Leach, T. Falck,
A. Daemen, X. H. Liu, T. Adefioye, E. Iacucci for their insightful contribu-
tions on various topics and applications. We are grateful to W. Glänzel for
his contribution of Web of Science data set in several of our publications.

This research was supported by the Research Council KUL (ProMeta, GOA
Ambiorics, GOA MaNet, CoE EF/05/007 SymBioSys, KUL PFV/10/016),
FWO (G.0318.05, G.0553.06, G.0302.07, G.0733.09, G.082409), IWT (Silicos,
SBO-BioFrame, SBO-MoKa, TBM-IOTA3), FOD (Cancer plans), the Belgian
Federal Science Policy Office (IUAP P6/25 BioMaGNet, Bioinformatics and
Modeling: from Genomes to Networks), and the EU-RTD (ERNSI: European
Research Network on System Identification, FP7-HEALTH CHeartED).

Chicago, Shi Yu
Leuven, Léon-Charles Tranchevent
Leuven, Bart De Moor
Leuven, Yves Moreau

November 2010
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Chapter 1
Introduction

When I have presented one point of a subject and the student cannot from it,
learn the other three, I do not repeat my lesson, until one is able to.

– “The Analects, VII.”, Confucius (551 BC - 479 BC) –

1.1 General Background

The history of learning has been accompanied by the pace of evolution and the
progress of civilization. Some modern ideas of learning (e.g., pattern analysis and
machine intelligence) can be traced back thousands of years in the analects of
oriental philosophers [16] and Greek mythologies (e.g., The Antikythera Mecha-
nism [83]). Machine learning, a contemporary topic rooted in computer science and
engineering, has always being inspired and enriched by the unremitting efforts of
biologists and psychologists in their investigation and understanding of the nature.
The Baldwin effect [4], proposed by James Mark Baldwin 110 years ago, concerns
the the costs and benefits of learning in the context of evolution, which has greatly
influenced the development of evolutionary computation. The introduction of per-
ceptron and the backpropagation algorithm have aroused the curiosity and passion
of mathematicians, scientists and engineers to replicate the biological intelligence
by artificial means. About 15 years ago, Vapnik [81] introduced the support vector
method on the basis of kernel functions [1], which has offered plenty of opportuni-
ties to solve complicated problems. However, it has also brought lots of interdisci-
plinary challenges in statistics, optimization theory and applications therein. Though
the scientific fields have witnessed many powerful methods proposed for various
complicated problems, to compare these methods or problems with the primitive
biochemical intelligence exhibited in a unicellular organism, one has to concede
that the expedition of human beings to imitate the adaptability and the exquisiteness
of learning, has just begun.

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 1–26.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

Learning from Multiple Sources

Our brains are amazingly adept at learning from multiple sources. As shown in
Figure 1.1, information travels from multiple senses is integrated and prioritized by
complex calculations using biochemical energy at the brain. These types of inte-
gration and prioritization are extraordinarily adapted to environment and stimulus.
For example, a student in the auditorium is listening to a talk of a lecturer, the most
important information comes from the visual and auditory senses. Though at the
very moment the brain is also receiving inputs from the other senses (e.g., the tem-
perature, the smell, the taste), it exquisitely suppresses these less relevant senses
and keeps the concentration on the most important information. This prioritization
also occurs in the senses of the same category. For instance, some sensitive parts of
the body (e.g., fingertips, toes, lips) have much stronger representations than other
less sensitive areas. For human, some abilities of multiple-source learning are given
by birth, whereas some others are established by professional training. Figure 1.2
illustrates a mechanical drawing of a simple component in a telescope, which is
composed of projections in several perspectives. Before manufacturing it, an expe-
rienced operator of the machine tool investigates all the perspectives in this drawing
and combines these multiple 2-D perspectives into a 3-D reconstruction of the com-
ponent in his/her mind. These kinds of abilities are more advanced and professional
than the body senses. In the past two centuries, the communications between the
designers and the manufactories in the mechanical industry have been relying on
this type of multi-perspective representation and learning. Whatever products either
tiny components or giant mega-structures are all designed and manufactured in this

EyesNose
EarsTongue

Skin
Visual input

Auditory input

Gustatory  input

Olfactory input

Touch input

Somatosensory
cortex

Prefrontal 
Lobe

Sensory integration, 
Complex Calculations, 
Cognition

Fig. 1.1 The decision of human beings relies on the integration of multiple senses. Informa-
tion travels from the eyes is forwarded to the occipital lobes of the brain. Sound information
is analyzed by the auditory cortex in the temporal lobes. Smell and taste are analyzed in
the olfactory bulb contained in prefrontal lobes. Touch information passes to the somatosen-
sory cortex laying out along the brain surface. Information comes from different senses is
integrated and analyzed at the frontal and prefrontal lobes of the brain, where the most com-
plex calculations and cognitions occur. The figure of human body is adapted courtesy of The
Widen Clinic (http://www.widenclinic.com/). Brain figure reproduced courtesy of Barking,
Havering & Redbridge University Hospitals NHS Trust (http://www.bhrhospitals.nhs.uk).
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manner. Currently, some specialized computer softwares (e.g., AutoCAD, Turbo-
CAD) are capable to resemble the human-like representation and reconstruction
process using advanced images and graphics techniques, visualization methods, and
geometry algorithms. However, even with these automatic softwares, the human ex-
perts are still the most reliable sources thus human intervention is still indispensable
in any production line.

Fig. 1.2 The method of multiview orthographic projection applied in modern mechani-
cal drawing origins from the applied geometry method developed by Gaspard Monge in
1780s [77]. To visualize a 3-D structure, the component is projected on three orthogonal
planes and different 2-D views are obtained. These views are known as the right side view,
the front view, and the top view in the inverse clockwise order. The drawing of the telescope
component is reproduced courtesy of Barry [5].

In machine learning, we are motivated to imitate the amazing functions of the
brain to incorporate multiple data sources. Human brains are powerful in learning
abstractive knowledge but computers are good at detecting statistical significance
and numerical patterns. In the era of information overflow, data mining and ma-
chine learning are indispensable tools to extract useful information and knowledge
from the immense amount of data. To achieve this, many efforts have been spent
on inventing sophisticated methods and constructing huge scale database. Beside
these efforts, an important strategy is to investigate the dimension of information
and data, which may enable us to coordinate the data ocean into homogeneous
threads thus more comprehensive insights could be gained. For example, a lot of
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data is observed continuously on a same subject at different time slots such as the
stock market data, the weather monitoring data, the medical records of a patient,
and so on. In research of biology, the amount of data is ever increasing due to the
advances in high throughput biotechnologies. These data sets are often represen-
tations of a same group of genomic entities projected in various facets. Thus, the
idea of incorporating more facets of genomic data in analysis may be beneficial, by
reducing the noise, as well as improving statistical significance and leveraging the
interactions and correlations between the genomic entities to obtain more refined
and higher-level information [79], which is known as data fusion.

1.2 Historical Background of Multi-source Learning and Data
Fusion

1.2.1 Canonical Correlation and Its Probabilistic Interpretation

The early approaches of multi-source learning can be dated back to the statistical
methods extracting a set of features for each data source by optimizing a dependency
criterion, such as Canonical correlation Analysis (CCA) [38] and other methods that
optimize mutual information between extracted features [6]. CCA is known to be
solved analytically as a generalized eigenvalue problem. It can also be interpreted as
a probabilistic model [2, 43]. For example, as proposed by Bach and Jordan [2], the
maximum likelihood estimates of the parameters W1,W2,Ψ1,Ψ2,μ1,μ2 of the model
illustrated in Figure 1.3:

z∼N (0, Id), min{m1,m2} ≥ d ≥ 1

x1|z∼N (W1z+ μ1,Ψ1), W1 ∈ R
m1×d , Ψ1 � 0

x2|z∼N (W2z+ μ2,Ψ2), W2 ∈ R
m2×d , Ψ2 � 0

are

̂W1 = Σ̃11U1dM1

̂W2 = Σ̃22U2dM2

̂Ψ1 = Σ̃11− ̂W1 ̂W
T
1

̂Ψ2 = Σ̃22− ̂W2 ̂W
T
2

μ̂1 = μ̃1

μ̂2 = μ̃2,

where M1,M2 ∈ R
d×d are arbitrary matrices such that M1MT

2 = Pd and the spectral
norms of M1 and M2 are smaller than one. The i-th columns of U1d and U2d are the
first d canonical directions, and Pd is the diagonal matrix of the first d canonical
correlations.
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z

x1

x2
Fig. 1.3 Graphical model for canonical correlation analysis.

The analytical model and the probabilistic interpretation of CCA enable the use
of local CCA models to identify common underlying patterns or same distributions
from data consist of independent pairs of related data points. The kernel variants of
CCA [35, 46] and multiple CCA are also presented so the common patterns can be
identified in the high dimensional space and more than two data sources.

1.2.2 Inductive Logic Programming and the Multi-source
Learning Search Space

Inductive logic programming(ILP) [53] is a supervised machine learning method
which combines automatic learning and first order logic programming [50]. The
automatic solving and deduction machinery requires three main sets of information
[65]:

1. a set of known vocabulary, rules, axioms or predicates, describing the domain
knowledge base K ;
2. a set of positive examples E + that the system is supposed to describe or char-
acterize with the set of predicates of K ;
3. a set of negative examples E − that should be excluded from the deducted
description or characterization.

Given these data, an ILP solver then finds a set of hypotheses H expressed with
the predicates and terminal vocabulary of K such that the largest possible subset
of E + verifies H , and such that the largest possible subset of E − does not verify
H . The hypotheses in H are searched in a so-called hypothesis space. Different
strategies can be used to explore the hypothesis search space (e.g., the Inductive
constraint logic (ICL) proposed by De Raedt & Van Laer [23]). The search stops
when it reaches a clause that covers no negative example but covers some positive
examples. At each step, the best clause is refined by adding new literals to its body
or applying variable substitutions. The search space can be restricted by a so-called
language bias (e.g., a declarative bias used by ICL [22]).

In ILP, data points indexed by the same identifier are represented in various data
sources and then merged by an aggregation operation, which can be simply a set



6 1 Introduction

union function associated to the inconsistency elimination. However, the aggrega-
tion may result in searching a huge space, which in many situations is too compu-
tational demanding [32]. Fromont et al. thus propose a solution to learn rules inde-
pendently from each sources; then the learned rules are used to bias a new learning
process from the aggregated data [32].

1.2.3 Additive Models

The idea of using multiple classifiers has received increasing attentions as it has
been realized that such approaches can be more robust (e.g., less sensitive to the
tuning of their internal parameters, to inaccuracies and other defects in the data)
and be more accurate than a single classifier alone. These approaches are charac-
terized as to learn multiple models independently or dependently and then to learn
a unified “powerful” model using the aggregation of learned models, known as the
additive models. Bagging and boosting are probably the most well known learning
techniques based on additive models.

Bootstrap aggregation, or bagging, is a technique proposed by Breiman [11] that
can be used with many classification methods and regression methods to reduce the
variance associated with prediction, and thereby improve the prediction process. It is
a relatively simple idea: many bootstrap samples are drawn from the available data,
some prediction method is applied to each bootstrap sample, and then the results are
combined, by averaging for regression and simple voting for classification, to obtain
the overall prediction, with the variance being reduced due to the averaging [74].

Boosting, like bagging, is a committee-based approach that can be used to im-
prove the accuracy of classification or regression methods. Unlike bagging, which
uses a simple averaging of results to obtain an overall prediction, boosting uses a
weighted average of results obtained from applying a prediction method to various
samples [74]. The motivation for boosting is a procedure that combines the outputs
of many “weak” classifiers to produce a powerful “committee”. The most popu-
lar boosting framework is proposed by Freund and Schapire called “AdaBoost.M1”
[29]. The “weak classifier” in boosting can be assigned as any classifier (e.g., when
applying the classification tree as the “base learner” the improvements are often dra-
matic [10]). Though boosting is originally proposed to combine “weak classifiers”,
some approaches also involve “strong classifiers” in the boosting framework (e.g.,
the ensemble of Feed-forward neural networks [26][45]).

In boosting, the elementary objective function is extended from a single source
to multiple sources through additive expansion. More generally, the basis function
expansions take the form

f (x) =
p

∑
j=1

θ jb(x;γ j), (1.1)

where θ j is the expansion coefficient, j = 1, ..., p is the number of models, and
b(x;γ) ∈ R are usually simple functions of the multivariate input x, characterized
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by a set of parameters γ [36]. The notion of additive expansions in mono-source can
be straightforwardly extended to multi-source learning as

f (x j) =
p

∑
j=1

θ jb(x j;γ j), (1.2)

where the input x j as multiple representations of a data point. The prediction func-
tion is therefore given by

P(x) = sign

(

p

∑
j=1

θ jPj(x j)

)

, (1.3)

where Pj(x j) is the prediction function of each single data source. The additive
expansions in this form are the essence of many machine learning techniques pro-
posed for enhanced mono-source learning or multi-source learning.

1.2.4 Bayesian Networks for Data Fusion

Bayesian networks [59] are probabilistic models that graphically encode probabilis-
tic dependencies between random variables [59]. The graphical structure of the
model imposes qualitative dependence constraints. A simple example of Bayesian
network is shown in Figure 1.4. A directed arc between variables z and x1 denotes
conditional dependency of x1 on z, as determined by the direction of the arc. The
dependencies in Bayesian networks are measured quantitatively. For each variable
and its parents this measure is defined using a conditional probability function or a
table (e.g., the Conditional Probability Tables). In Figure 1.4, the measure of depen-
dency of x1 on z is the probability p(x1|z). The graphical dependency structure and

z

x1 x2 x3

( ) 0.2p z

1

1

( | ) 0.25
( | ) 0.05
p x z
p x z

2

2

( | ) 0.003
( | ) 0.8
p x z
p x z

3

3

( | ) 0.95
( | ) 0.0005
p x z
p x z

Fig. 1.4 A simple Bayesian network
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the local probability models completely specify a Bayesian network probabilistic
model. Hence, Figure 1.4 defines p(z,x1,x2,x3) to be

p(z,x1,x2,x3) = p(x1|z)p(x2|z)p(x3|z)p(z). (1.4)

To determine a Bayesian network from the data, one need to learn its structure
(structural learning) and its conditional probability distributions (parameter learn-
ing) [34]. To determine the structure, the sampling methods based on Markov Chain
Monte Carlo (MCMC) or the variational methods are often adopted. The two key
components of a structure learning algorithm are searching for “good” structures
and scoring these structures. Since the number of model structures is large (super-
exponential), a search method is required to decide which structures to score. Even
with few nodes, there are too many possible networks to exhaustively score each
one. When the number of nodes is large, the task becomes very challenging. Effi-
cient structure learning algorithm design is an active research area. For example, the
K2 greedy search algorithm [17] starts with an initial network (possibly with no (or
full) connectivity) and iteratively adding, deleting, or reversing an edge, measuring
the accuracy of the resulting network at each stage, until a local maxima is found.
Alternatively, a method such as simulated annealing guides the search to the global
maximum [34, 55]. There are two common approaches used to decide on a “good”
structure. The first is to test whether the conditional independence assertions im-
plied by the network structure are satisfied by the data. The second approach is to
assess the degree to which the resulting structure explains the data. This is done us-
ing a score function which is typically based on approximations of the full posterior
distribution of the parameters for the model structure is computed. In real appli-
cations, it is often required to learn the structure from incomplete data containing
missing values. Several specific algorithms are proposed for structural learning with
incomplete data, for instance, the AMS-EM greedy search algorithm proposed by
Friedman [30], the combination of evolutionary algorithms and MCMC proposed
by Myers [54], the Robust Bayesian Estimation proposed by Ramoni and Sebas-
tiani [62], the Hybrid Independence Test proposed by Dash and Druzdzel [21], and
so on.

The second step of Bayesian network building consists of estimating the pa-
rameters that maximize the likelihood that the observed data came from the given
dependency structure. To consider the uncertainty about parameters θ in a prior dis-
tribution p(θ ), one uses data d to update this distribution, and hereby obtains the
posterior distribution p(θ |d) using Bayes’ theorem as

p(θ |d) =
p(d|θ)p(θ)

p(d)
, θ ∈Θ , (1.5)

whereΘ is the parameter space, d is a random sample from the distribution p(d) and
p(d|θ) is likelihood of θ . To maximize the posterior, the Expectation-Maximization
(EM) algorithm [25] is often used. The prior distribution describes one’s state of
knowledge (or lack of it) about the parameter values before examining the data. The
prior can also be incorporated in structural learning. Obviously, the choice of the
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prior is a critical issue in Bayesian network learning, in practice, it rarely happens
that the available prior information is precise enough to lead to an exact determina-
tion of the prior distribution. If the prior distribution is too narrow it will dominate
the posterior and can be used only to express the precise knowledge. Thus, if one
has no knowledge at all about the value of a parameter prior to observing the data,
the chosen prior probability function should be very broad (non-informative prior)
and at relatively to the expected likelihood function.

By far we have very briefly introduced the Bayesian networks. As probabilistic
models, Bayesian networks provide a convenient framework for the combination
of evidences from multiple sources. The data can be integrated as full integration,
partial integration and decision integration [34], which are briefly concluded as
follows.

Full Integration

In full integration, the multiple data sources are combined at the data level as one
data set. In this manner the developed model can contain any type of relationship
among the variables in different data sources [34].

Partial Integration

In partial integration, the structure learning of Bayesian network is performed sep-
arately on each data, which results in multiple dependency structures have only one
variable (the outcome) in common. The outcome variable allows joining the separate
structures into one structure. In the parameter learning step, the parameter learning
proceeds as usual because this step is independent of how the structure was built.
Partial integration forbids link among variables of multiple sources, which is simi-
lar to imposing additional restrictions in full integration where no links are allowed
among variables across data sources [34].

Decision Integration

The decision integration method learns a sperate model for each data source and the
probabilities predicted for the outcome variable are combined using the weighted
coefficients. The weighted coefficients are trained using the model building data set
with randomizations [34].

1.2.5 Kernel-based Data Fusion

In the learning phase of Bayesian networks, a set of training data is used either to
obtain the point estimate of the parameter vector or to determine a posterior dis-
tribution over this vector. The training data is then discarded, and predictions for
new inputs are based purely on the learned structure and parameter vector [7]. This
approach is also used in nonlinear parametric models such as neural networks [7].
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However, there is a set of machine learning techniques keep the training data
points during the prediction phase. For example, the Parzen probability model [58],
the nearest-neighbor classifier [18], the Support Vector Machines [8, 81], etc. These
classifiers typically require a metric to be defined that measures the similarity of any
two vectors in input space, as known as the dual representation.

Dural Representation, Kernel Trick and Hilbert Space

Many linear parametric models can be re-casted into an equivalent dual represen-
tation in which the predictions are also based on linear combinations of a kernel
function evaluated at the training data points [7]. To achieve this, the data represen-
tations are embedded into a vector space F called the feature space (the Hilbert
space) [19, 66, 81, 80]. A key characteristic of this approach is that the embedding
in Hilbert space is generally defined implicitly, by specifying an inner product in
it. Thus, for a pair of data items, x1 and x2, denoting their embeddings as φ(x1)
and φ(x2), the inner product of the embedded data 〈φ(x1),φ(x2)〉 is specified via a
kernel function K (x1,x2), known as the kernel trick or the kernel substitution [1],
given by

K (x1,x2) = φ(x1)T φ(x2). (1.6)

From this definition, one of the most significant advantages is to handle symbolic
objects (e.g., categorical data, string data), thereby greatly expanding the ranges
of problems that can be addressed. Another important advantage is brought by the
nonlinear high-dimensional feature mapping φ(x) from the original space R to the
Hilbert space F . By this mapping, the problems that are not separable by a linear
boundary in R may become separable in F because according to the VC dimension
theory [82], the capacity of a linear classifier is enhanced in the high dimensional
space. The dual representation enables us to build interesting extensions of many
well-known algorithms by making use of the kernel trick. For example, the nonlin-
ear extension of principal component analysis [67]. Other examples of algorithms
extend by kernel trick include kernel nearest-neighbor classifiers [85] and the kernel
Fisher Discriminant [51, 52].

Support Vector Classifiers

The problem of finding linear separating hyperplane on training data consists of N
pairs (x1,y1), ...,(xN ,yN), with xk ∈ R

m and yk ∈ {−1,+1}, the optimal separating
hyperplane is formulated as

minimize
w,b

1
2

wT w (1.7)

subject to yk(wT xk +b)≥ 1, k = 1, ...,N,
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where w is the norm vector of the hyperplane, b is the bias term. The geometry
meaning of the hyperplane is shown in Figure 1.5. Hence we are looking for the
hyperplane that creates the biggest margin M between the training points for class 1
and -1. Note that M = 2/||w||. This is a convex optimization problem (quadratic
objective, linear inequality constraints) and the solution can be obtained as via
quadratic programming [9].

x

+

x

+

x

x

+

x

x

+

+

+

+

x

x

x1

x2

Class C1

Class C2

wTx + b = +1

wTx + b = 0

wTx + b = −1

margin 2/‖w‖2

Fig. 1.5 The geometry interpretation of a support vector classifier. Figure reproduced cour-
tesy of Suykens et al. [75].

In most cases, the training data represented by the two classes is not perfectly
separable, so the classifier needs to tolerate some errors (allows some points to be
on the wrong side of the margin). We define the slack variables ξ = [ξ1, ...,ξN ]T and
modify the constraints in (1.7) as

minimize
w,b

1
2

wT w (1.8)

subject to yk(wT xk + b)≥M(1− ξk), k = 1, ...,N

ξk ≥ 0,
N

∑
k=1

ξk = C, k = 1, ...,N,

where C ≥ 0 is the constant bounding the total misclassifications. The problem in
(1.8) is also convex (quadratic objective, linear inequality constraints) and it corre-
sponds to the well known support vector classifier [8, 19, 66, 81, 80] if we replace
xi with the embeddings φ(xi), given by
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minimize
w,b,ξ

1
2

wT w+C
N

∑
k=1

ξk (1.9)

subject to yk[wTφ(xk)+ b]≥ 1−ξk, k = 1, ...,N

ξk ≥ 0, k = 1, ...,N.

The Lagrange (primal) function is

P: minimize
w,b,ξ

1
2

wT w+λ
N

∑
k=1

−
N

∑
k=1

αk

{

yk
[

wTφ(xT
k )+ b

]− (1− ξk)
}

−
N

∑
i=1

βkξk,

(1.10)

subject to αk ≥ 0, βk ≥ 0, k = 1, ...,N,

where αk, βk are Lagrangian multipliers. The conditions of optimality are given by

⎧

⎪

⎨

⎪

⎩

∂
∂w = 0→w = ∑N

k=1αkykφ(xk)
∂
∂ξ = 0→ 0≤ αk ≤C, k = 1, ...,N
∂
∂b = 0→ ∑N

k=1αkyk = 0.

(1.11)

By substituting (1.11) in (1.10), we obtain the Lagrange dual objective function as

D: maximize
α

− 1
2

N

∑
k,l=1

αkαlykylφ(xk)Tφ(xl)+
N

∑
k=1

αk (1.12)

subject to 0≤ αk ≤C, k = 1, ...,N
N

∑
k=1

αkyk = 0.

To maximize the dual problem in (1.12) is a simpler convex quadratic programming
problem than the primal (1.10). Especially, the Karush-Kuhn-Tucker conditions in-
cluding the constraints

αk

{

yk
[

wTφ(xk)+ b
]− (1−ξk)

}

= 0,

βkξk = 0,

yk
[

wTφ(xk)+ b
]− (1− ξk)≥ 0,

for k = 1, ...,N characterize the unique solution to the primal and dual problem.

Support Vector Classifier for Multiple Sources and Kernel Fusion

As discussed before, the additive expansions play a fundamental role in extending
mono-source learning algorithms to multi-source learning cases. Analogously, to
extend the support vector classifiers on multiple feature mappings, suppose we want
to combine p number of SVM models, the output function can be rewritten as
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f (x) =
p

∑
j=1

(√

θ jwT
j φ j(xk)

)

+ b, (1.13)

where
√

θ j , j = 1, ..., p are the coefficients assigned to each individual SVM mod-
els, φ j(xk) are multiple embeddings applied to the data sample xk. We denote

η = {w j} j=1,...,p, and ψ(xk) = {√θ jφ j(xk)} j=1,...,p, (1.14)

and a pseudo inner product operation of η and ψ(xk) is thus defined as

ηT 
ψ(xk) =
p

∑
j=1

√

θ jwT
j φ j(xk), (1.15)

thus (1.13) is equivalently rewritten as

f (x) = ηT 
ψ(xk)+ b, (1.16)

Suppose θ j satisfy the constraint ∑p
j=1θ j = 1, the new primal problem of SVM is

then expressed analogously as

minimize
η ,b,θ ,ξ

1
2
ηTη +C

N

∑
k=1

ξk (1.17)

subject to yk
[

p

∑
j=1

√

θ jwT
j φ j(xk)+ b

]≥ 1−ξk, k = 1, ...,N

ξk ≥ 0, k = 1, ...,N

θ j ≥ 0,
p

∑
j=1

θ j = 1, j = 1, ..., p.

Therefore, the primal problem of the additive expansion of multiple SVM models
in (1.17) is still a primal problem of SVM. However, as pointed out by Kloft et al.
[44], the inner product

√

θ jw j makes the objective (1.17) non-convex so it needs to
be replaced as a variable substitution η̂ j =

√

θ jw j, thus the objective is rewritten as

P: minimize
η̂,b,θ ,ξ

1
2

p

∑
j=1

η̂T
j η̂ j +C

N

∑
k=1

ξk (1.18)

subject to yk

[ p

∑
j=1

(

η̂T
j φ j(xk)

)

+b

]

≥ 1−ξk, k = 1, ...,N

ξk ≥ 0, k = 1, ...,N

θ j ≥ 0,
p

∑
j=1

θ j = 1, j = 1, ..., p,
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where η̂ j are the scaled norm vectors w (multiplied by
√

θ j) of the separating
hyperplanes for the additive model of multiple feature mappings. In the formula-
tions mentioned above we assume that multiple feature mappings are created on a
mono-source problem. It is analogous and straightforward to extend the same objec-
tive for multi-source problems. The investigation of this problem has been pioneered
by Lanckriet et al. [47] and Bach et al. [3] and the solution is established in the dual
representations as a min-max problem, given by

D: minimize
θ

maximize
α

− 1
2

N

∑
k,l=1

αkαlykyl

p

∑
j=1

(

θ jKj(xk,xl)
)

+
N

∑
k=1

αk (1.19)

subject to 0≥ αk ≥C, k = 1, ...,N
N

∑
k=1

αkyk = 0,

θ j ≥ 0,
p

∑
j=1

θ j = 1, j = 1, ..., p,

where Kj(xk,xl) represents the kernel matrices, K j(xk,xl) = φ j(xk)T φ j(xl), j =
1, ..., p are the kernel tricks applied on multiple feature mappings. The symmetric,
positive semidefinite kernel matrices Kj resolve the heterogeneities of genomic data
sources (e.g., vectors, strings, trees, graphs) such that they can be merged additively
as a single kernel. Moreover, the non-uniform coefficients of kernels θ j leverage the
information of multiple sources adaptively. The technique of combining multiple
support vector classifiers in the dual representations is also called kernel fusion.

Loss Functions for Support Vector Classifiers

In Support Vector Classifiers, there are many criteria to assess the quality of the
target estimation based on observations during the learning. These criteria are rep-
resented as different loss functions in the primal problem of Support Vector Classi-
fiers, given by

minimize
w

1
2

wT w+λ
N

∑
k=1

L[yk, f (xk)], (1.20)

where L[yk, f (xk)] is the loss function of class label and prediction value penaliz-
ing the objective of the classifier. The examples shown above are all based on a
specific loss function called hinge loss as L[yk, f (xk)] = |1− yk f (xk)|+, where the
subscript “+” indicates the positive part of the numerical value. The loss function
is also related to the risk or generalization error, which is an important measure of
the goodness of the classifier. The choice of the loss function is a non-trivial issue
relevant to estimating the joint probability distribution p(x,y) on the data x and its
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label y, which is general unknown because the training data only gives us an in-
complete knowledge of p(x,y). Table 1.1 presents several popular loss functions
adopted in Support Vector Classifiers.

Table 1.1 Some popular loss functions for Support Vector Classifiers

Loss Function L[y, f (x)] Classifier name
Binomial Deviance log[1+ e−y f (x)] logistic regression
Hinge Loss |1−y f (x)|+ SVM
Squared Error [1−y f (x)]2 (equality constraints) LS-SVM
L2 norm [1−y f (x)]2 (inequality constraints) 2-norm SVM

Huber’s Loss

{

−4y f (x), y f (x) <−1

[1−y f (x)]2, otherwise

Kernel-based Data Fusion: A Systems Biology Perspective

The kernel fusion framework has been originally proposed to solve the classifica-
tion problems in computational biology [48]. As shown in Figure 1.6, this frame-
work provides a global view to reuse and integrate information in biological science
at the systems level. Our understanding of biological systems has improved dra-
matically due to decades of exploration. This process has been accelerated even
further during the past ten years, mainly due to the genome projects, new tech-
nologies such as microarray, and developments in proteomics. These advances have
generated huge amounts of data describing biological systems from different as-
pects [92]. Many centralized and distributed databases have been developed to cap-
ture information about sequences and functions, signaling and metabolic pathways,
and protein structure information [33]. To capture, organize and communicate this
information, markup languages have also been developed [40, 69, 78]. At the knowl-
edge level, successful biological knowledge integration has been achieved at in on-
tological commitments thus the specifications of conceptualizations are explicitly
defined and reused to the broad audience in the field. Though the bio-ontologies
have been proved very useful, currently their inductions and constructions are still
relied heavily on human curations and the automatic annotation and evaluation of
bio-ontolgoies is still a challenge [31]. On one hand, the past decade has seen the
emergent text mining technique filling many gaps between data exploration and
knowledge acquisition and helping biologists in their explorative reasonings and
predictions. On the other hand, the adventure to propose and evaluate hypothesis
automatically in machine science [28] is still ongoing, the expansion of the human
knowledge now still relies on the justification of hypothesis in new data with ex-
isting knowledge. On the boundary to accept or to reject the hypothesis, biologists
often rely on statistical models integrating biological information to capture both
the static and dynamic information of a biological system. However, modeling and
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integrating this information together systematically poses a significant challenge, as
the size and the complexity of the data grow exponentially [92]. The topics to be
discussed in this book belong to the algorithmic modeling culture (the opposite one
is the data modeling culture, named by Leo Breiman [12]). All the effort in this
book starts with an algorithmic objective; there is few hypothesis and assumption
about the data; the generalization from training data to test data relies on the i.i.d.
assumption in machine learning. We consider the data being generated by a complex
and unknown black box modeled by Support Vector Machines with an input x and
an output y. Our goal is then to find a function f (x) —- an algorithm that operates
on x to predict the response y. The black box is then validated and adjusted in terms
of the predictive accuracy.

Integrating data using Support Vector Machines (kernel fusion) is featured by
several obvious advantages. As shown in Figure 1.6, biological data has diverse
structures, for example, the high dimensional expression data, the sparse protein-
protein-interaction data, the sequence data, the annotation data, the text mining data,
and so on. The main advantage is that the data heterogeneity is rescued by the use
of kernel trick [1], where data who has diverse data structures is all transformed
into kernel matrices with the same size. To integrate them, one could follow the
classical additive expansion strategy of machine learning to combine them linearly,
moreover, to leverage the effect of information sources with different weights. Apart
from the simple linear integration, one could also integrate the kernels geometrically
or combine them in some specific subspaces. These nonlinear integration methods
of kernels have attracted many interests and have been discussed actively in recent
machine learning conferences and workshops. The second advantage of kernel fu-
sion lies in its open and extendable framework. As known, Support Vector Machine
is compatible to many classical statistical modeling algorithms therefore these algo-
rithms can all be straightforwardly extended by kernel fusion. In this book we will
address some machine learning problems and show several real applications based
on kernel fusion, for example, novelty detection, clustering, classification, canon-
ical correlation analysis, and so on. But this framework is never restricted to the
examples presented in the book, it is applicable to many other problems as well.
The third main advantage of the kernel fusion framework is rooted in convex op-
timization theory, which is a field full of revolutions and progresses. For example,
in the past two decades, the convex optimization problems have witnessed contem-
porary breakthroughs such as interior point methods [56, 72] and thus have being
solved more and more efficiently. The challenge to solve very large scale optimiza-
tion problems using parallel computing and could computing have intrigued people
many years. As an open framework, kernel fusion based statistical modeling can
benefit from the new advances in the joint field of mathematics, super-computing
and operational researches in a very near future.
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Fig. 1.6 Conceptual map of kernel-based data fusion in Systems Biology. The DNA the
molecule of life figure is reproduced from the genome programs of the U.S. Department of
Energy Office of Science. The Gene Ontology icon adapted from the Gene Ontology Project.
The text mining figure is used courtesy of Dashboard Insight (www.dashboardinsight.com).
The optimization figure is taken from Wikimedia commons courtesy of the artist. The SVM
classification figure is reproduced from the work of Looy et al. [49] with permission. The
clustering figure is reproduced from the work of Cao [13] with permission.
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1.3 Topics of This Book

In this book, we introduce several novel kernel fusion techniques in the context of
supervised learning and unsupervised learning. At the same time, we apply the pro-
posed techniques and algorithms to some real world applications. The main topics
discussed in this book can be briefly highlighted as follows.

Non-sparse Kernel Fusion Optimized for Different Norms

Current kernel fusion methods introduced by Lanckriet et al. [48] and Bach et al. [3]
mostly optimize the L∞-norm of multiple kernels in the dual problem. This method
is characterized as the sparse solution, which assigns dominant coefficients on one
or two kernels. The sparse solution is useful to distinguish the relevant sources
from irrelevant ones. However, in real biomedical applications, most of the data
sources are well selected and processed, so they often have high relevance to the
problem. In these cases, sparse solution may be too selective to thoroughly com-
bine the complementary information in the data. In real biomedical applications,
with a small number of sources that are believed to be truly informative, we would
usually prefer a nonsparse set of coefficients because we would want to avoid that
the dominant source (like the existing knowledge contained in Text Mining data
and Gene Ontology) gets a dominant coefficient. The reason to avoid sparse co-
efficients is that there is a discrepancy between the experimental setup for per-
formance evaluation and real world performance. The dominant source will work
well on a benchmark because this is a controlled situation with known outcomes.
In these cases, a sparse solution may be too selective to thoroughly combine the
complementary information in the data sources. While the performance on bench-
mark data may be good, the selected sources may not be as strong on truly novel
problems where the quality of the information is much lower. We may thus ex-
pect the performance of such solutions to degrade significantly on actual real-world
applications.

To address this problem, we propose a new kernel fusion scheme to optimize
the L2-norm and the Ln-norm in the dual representations of kernel fusion mod-
els. The L2-norm often leads to an non-sparse solution, which distributes the co-
efficients evenly on multiple kernels, and at the same time, leverages the effects
of kernels in the objective optimization. Empirical results show that the L2-norm
kernel fusion may lead to better performance in biomedical applications. We also
show that the strategy of optimizing different norms in the dual problem can be
straightforwardly extended to any real number n between 1 and 2, known as the
Ln-norm kernel fusion. We found there is a simple mathematical relationship be-
tween the norm m applied as the coefficient regularization in the primal problem
with the norm n of multiple kernels optimized in the dual problem. On this basis,
we propose a set of convex solutions for the kernel fusion problem with arbitrary
norms.
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Kernel Fusion in Unsupervised Learning

Kernel fusion is originally proposed for supervised learning and the problem is
solved as a convex quadratic problem [9]. For unsupervised learning problem where
the data samples are usually labeled or partially labeled, the optimization is often
difficult and usually results in a non-convex solution where the global optimality is
hard to determine. For example, the k-means clustering [7, 27] is solved as a non-
convex stochastic process and it has lots of local minima. In this book, we present
approaches to incorporate a non-convex unsupervised learning problem with the
convex kernel fusion method, and the issues of convexity and convergence are tack-
led in an alternative minimization framework [20].

When kernel fusion is applied to unsupervised learning, the model selection prob-
lem becomes more challenging. For instance, in clustering problem the model eval-
uation usually relies on the statistical validation, which is often measured as various
internal indices, such as Silhouette index [64], Jaccard index [41], Modularity [57],
and so on. However, most of the internal indices are data dependent thus are not con-
sistent with each other among heterogeneous data sources, which makes the model
selection problem more difficult. In contrast, external indices evaluate models us-
ing the ground truth labels (e.g., Rand Index [39], Normalized Mutual Information
[73]), which are more reliable to be used for optimal model selection. Unfortu-
nately, the ground truth labels may not always be available for real world clustering
problem. Therefore, how to select unsupervised learning model in data fusion ap-
plications is also one of the main challenges. In machine learning, most existing
benchmark data sets are proposed for single source learning thus to validate data
fusion approaches, people usually generate multiple data sources artificially using
different distance measures on the same data set. In this way, the combined infor-
mation is more likely to be redundant, which makes the approach less meaningful
and less significant. Therefore, the true merit of data fusion should be demonstrated
and evaluated in real applications using genuine heterogeneous data sources.

Kernel Fusion in Real Applications

Kernel methods have been proved as powerful statistical learning techniques and
they are widely applied to various learning scenarios due to their flexibility and
good performance [60]. In recent years, many useful softwares and toolboxes of
kernel methods have been developed. In particular, the kernel fusion toolbox is also
recently proposed in Shogun software [71]. However, there is still a limit number
of open source biomedical applications which are truly based on kernel methods or
kernel fusion techniques. The gap between the algorithmic innovations and the real
applications of kernel fusion methods is probably because of the following reasons.
Firstly, the data preprocessing and data cleaning tasks in real applications often
vary from problems to problems. Secondly, to tune the optimal kernel parameters
and the hyper-parameters of the model on unseen data is a non-trivial task. Thirdly,
most kernel fusion problems are solved by nonlinear optimization, which turns to
be computational demanding when the data sets have very large scales.
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In this book, we present a real bioinformatics software MerKator, whose main
feature is the cross-species prioritization through kernel based genomic data fusion
over multiple data sources and multiple species. To our knowledge, MerKator is one
of the first real bioinformatics softwares powered by kernel methods. It is also one of
the first cross-species prioritization softwares freely accessible online. To improve
the efficiency of Merkator, we tackle the kernel computational challenges of full ge-
nomic data from multiple aspects. First, most of the kernels are pre-computed and
preprocessed offline and performed only once, restricting the case specific online
computation to a strict minimum. Second, the prioritization of the full genome uti-
lizes some approximation techniques such as incomplete Cholesky decomposition,
kernel centering in the subsets of genome, and missing value processing to improve
its feasibility and efficiency.

Large Scale Data and Computational Complexity

Unsupervised learning usually deals with large amount of data thus the computa-
tional burden of kernel fusion task is also large. In the supervised case, the model
is often trained on a small number of labeled data and then generalized on the test
data. Therefore, the main computational burden is determined by the training pro-
cess whereas the complexity of model generalization on the test data is often linear.
For example, given N training data and M test data, the computational complexity of
the SVM training using a single kernel ranges from O(N2) to O(N3); the complex-
ity of predicting labels on the test data is O(M). In contrast, in unsupervised case
one cannot split the data as training and test parts. The popular k-means clustering
has the complexity of O(k(N + M)dl), where k is the number of clusters, d is the
complexity to compute the distance, and l is the number of iterations. The kernel fu-
sion procedure involving both training and test data has much larger computational
burden than the supervised case. For instance, the semi-definite programming (SDP)
solution of kernel fusion proposed by Lanckriet et al. [48] has the complexity up to
O((p + N + M)2(k + N + M)2.5) [84]. When both N and M are big, kernel fusion is
almost infeasible to be solved on a single node. This critical computational burden
of kernel fusion can be tackled by various solutions from different aspects. In this
book, we mainly focus on comparing various formulations of convex optimization
and see how the selection of loss function in SVM could improve the efficiency
of kernel fusion. Our main finding is, when the SVM objective is modeled on the
basis of Least squares support vector machines (LSSVM) [76, 75] and the kernel
fusion objective is modeled by Semi-infinite programming (SIP) [37, 42, 63, 70],
the computational burden of kernel fusion can be significantly reduced as a limited
iterations of linear problems. Of course, the efficiency of SVM kernel fusion can
be further improved by various techniques, such as the active set method [14, 68],
the gradient descent in the primal problem [61], the parallelization technique [70],
and more recently the potential avenue explored in the Map/Reduce framework [24]
for machine learning [15]. Fortunately, in a fast developing field, most of these ap-
proaches could be combined together to tackle the kernel fusion problem on very
large scale dataset.
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1.4 Chapter by Chapter Overview

Chapter 2 investigates several unsupervised learning problems and summarizes their
objectives as a common (generalized) Rayleigh quotient form. In particular, it shows
the relationship between the Rayleigh quotient and the Fisher Discriminant Analy-
sis (FDA), which serves as the basis of many machine learning methodologies. The
FDA is also related to the kernel fusion approach formulated in least squares Sup-
port Vector Machines (LSSVM) [76, 75]. Clarifying this connection provides the
theoretical grounding for us to incorporate kernel fusion methods in several con-
crete unsupervised algorithms.

Chapter 3 extends kernel fusion, also known as Multiple Kernel Learning (MKL),
to various machine learning problems. It proposes several novel results: Firstly, it
generalizes the L∞ MKL formulation proposed by Lanckriet et al. and Bach et al.
to a novel L2 formulation, and further extends it to the arbitrary Ln-norm. The L∞-
norm and L2-norm differ at the norms optimized in terms of multiple kernels in
the dual problem. Secondly, the chapter introduces the notion of MKL in LSSVM,
which yields an efficient kernel fusion solution for large scale data. The connection
between LSSVM MKL with FDA in the kernel space is also clarified, which serves
as the core component in unsupervised algorithms and some relevant applications
to be discussed in the remaining chapters.

Chapter 4 extends kernel fusion to unsupervised learning and proposes a novel
Optimized kernel k-means Clustering (OKKC) algorithm [91]. The algorithm tack-
les the non-convex optimization of multiple unlabeled data sources in a local alter-
native minimization framework [20]. The proposed algorithm is compared to some
relevant work and its advantage is demonstrated as a simple objective and iterations
of linear computations.

Chapter 5 presents a real biomedical literature mining application using kernel
fusion techniques of novelty detection and clustering proposed in Chapter 3 and
Chapter 4. This approach combines several Controlled Vocabularies (CVs) using
ensemble methods and kernel fusion methods to improve the accuracy of identifying
disease relevant genes. Experimental result shows that the combination of multiple
CVs in text mining can outperform the approaches using individual CVs alone. Thus
it provides an interesting approach to exploit information combined by the myriad
of different bio-ontologies.

Chapter 6 proceeds the topic of Chapter 4 and considers the integration of kernel
matrices with Laplacian matrices in clustering. We propose a novel algorithm, called
Optimized k-means Laplacian Clustering (OKLC) [88], to combine the attribute
representations based on kernels with the graph representation based on Laplacians
in clustering analysis. Two real applications were investigated in this Chapter. The
first one is improved from the literature mining results obtained from multiple CVs
introduced in Chapter 5. Besides the relationship of disease relevant genes in terms
of lexical similarities, we consider the spectral properties among them and com-
bine the lexical similarities with spectral properties to further improve the accuracy
of disease relevant clustering. In the second experiment, a Scientometrics applica-
tion is demonstrated to combine attribute based lexical similarities with graph based
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citation links for journal mapping. The attribute information is transformed as ker-
nels and the citations are represented as Laplacian matrices, then are all combined
by OKLC to construct journal mapping by clustering. The merit of this approach
is illustrated in a systematic evaluation with many comparing approaches and the
proposed algorithm is shown outperforming over all other methods.

Chapter 7 discusses Canonical Correlation Analysis, a different unsupervised
learning problem than clustering. A new method called Weighted Multiple Kernel
Canonical Correlation Analysis (WMKCCA) is proposed to leverage the impor-
tance of different data sources in the CCA objective [86]. Beside the derivation of
mathematical models, we present some preliminary results of using the mappings
obtained by WMKCCA as the common information extracted from multiple data
sources.

Chapter 8 continues to discuss the gene prioritization problem started in
Chapter 5. To further exploits the information among genomic data sources and
the phylogenetic evidences among different species, we design and develop an open
software, MerKator [90], to perform cross-species gene prioritization by genomic
data fusion. To our knowledge, it is one of the first real bioinformatics softwares
powered by kernel fusion methods.

Chapter 9 summarizes the book and highlights several topics that worth further
investigation.
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Chapter 2
Rayleigh Quotient-Type Problems in Machine
Learning

2.1 Optimization of Rayleigh Quotient

2.1.1 Rayleigh Quotient and Its Optimization

For real matrices and vectors, given a positive definite matrix Q and a nonzero vector
w, a Rayleigh quotient (also known as Rayleigh-Ritz ratio) is defined as

ρ = ρ(w;Q) =
wT Qw
wT w

. (2.1)

It was originally proposed in the theorem to approximate eigenvalues of a Hermitian
matrix. The theorem is mentioned as as follows:

Theorem 2.1. (Rayleigh-Ritz) Let Q ∈Mn be Hermitian, and let the eigenvalues of
Q be ordered as λmin = λ1 ≤ λ2 ≤ ·· · ≤ λn−1 ≤ λn = λmax. Then

λ1wT w≤ wT Qw≤ λnwT w for all w ∈ C
n,

λmax = λn = max
w�=0

wT Qw
wT w

= max
wT w=1

wT Qw,

λmin = λ1 = min
w�=0

wT Qw
wT w

= min
wT w=1

wT Qw.

Proof. See Theorem 4.2.2 in [4].

In machine learning, many problems can be simplified as the minimization or max-
imization of the Rayleigh quotient, given by

maximize
w

wT Qw
wT w

, or minimize
w

wT Qw
wT w

. (2.2)

Notice that the quotient is invariant to the magnitude of w, one can reformulate the
problem in terms of quadratic programming, given by

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 27–37.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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maximize
w

wT Qw (2.3)

subject to wT w = 1.

The Lagrangian L (w,λ ) is

L (w,λ ) = maximize
w,λ

(

wT Qw−λ (wT w−1)
)

, (2.4)

where λ ∈ R is the Lagrangian multipliers (dual variable). Taking the conditions
for optimality from the Lagrangian ∂L /∂w = 0, ∂L /∂λ = 0, (2.4) leads to the
eigenvalue problem as

Qw = λw. (2.5)

Obviously, the optimal solution of the maximization problem in (2.2) is obtained by
wmax in the maximal eigenvalue pair (λmax,wmax) of Q. Similarly, the solution of
minimization is corresponding to wmin in the minimal eigenvalue pair (λmin,wmin).

2.1.2 Generalized Rayleigh Quotient

The Generalized Rayleigh quotient involves two quadratic forms, given by

ρ(w;Q,P) =
wT Qw
wT Pw

, (2.6)

where Q and P are positive definite matrices, w �= 0. The problem is to maximize or
minimize the Generalized Rayleigh quotient as follows:

maximize
w

wT Qw
wT Pw

, or minimize
w

wT Qw
wT Pw

. (2.7)

Taking the conditions for optimality from the Lagrangian, one obtains

Qw = λPw. (2.8)

Thus the optimum of (2.7) can be obtained by exploiting the eigenvalue pair of the
generalized eigenvalue problem in (2.8).

2.1.3 Trace Optimization of Generalized Rayleigh Quotient-Type
Problems

We now consider a more general problem than (2.7) by replacing w with a matrix
W = [w1, ...,wk]. Firstly, we quote the Ky-Fan theorem as

Theorem 2.2. (Ky Fan) Let Q∈R
n×n be a positive definite matrix, and let the eigen-

values of Q be ordered as λmin = λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λn = λmax and the corre-
sponding eigenvectors as u1, ...,un. Then
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λ1 + · · ·+λk = maximize
W T W=I

trace(W T QW ). (2.9)

Moreover, the optimal W ∗ is given by W ∗ = [u1, ...,uk]U, where U is an arbitrary
orthogonal matrix.

Proof. See [1, 12].

To consider two positive definite matrices Q and P, one generalizes the Ky-Fan
theorem as follows:

Theorem 2.3. Given a real value matrix W = [w1, ...,wk] ∈ R
n×k, and two posi-

tive definite matrices Q,P ∈ R
n×n, the optimal solution of the trace maximization

problem as

maximize
W

trace(W T QW )−1(W T PW ) (2.10)

subject to W TW = I,

is obtained by the k vectors corresponding to the largest k eigenvalue pairs solved
from the generalized eigenvalue problem

Qξ = λPξ . (2.11)

Proof. Denote

F = P
1
2 W, (2.12)

then

FT F = W T PW. (2.13)

Denote

P = UΛUT (2.14)

as the eigenvalue decomposition of P where Λ is the diagonal matrix of the eigen-
values, given by

(FT F)−
1
2 = UΛ−

1
2 UT . (2.15)

Since W T PW is symmetric, the quotient term in (2.10) can be equivalently rewritten
as

(W T PW)−1(W T QW ) = (W T PW)−
1
2 (W T QW )(W T PW)−

1
2

= (FT F)−
1
2 (W T QW )(FT F)−

1
2

= (FT F)−
1
2 FT P−

1
2 QP−

1
2 F(FT F)−

1
2 . (2.16)
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Let us denote that B = F(FT F)−
1
2 and replace (2.15) in (2.16), moreover, since

BT B = I, thus (2.16) is equal to

(W T PW)−1(W T QW ) = BT P−
1
2 QP−

1
2 B. (2.17)

According to the Ky-Fan, the optimal of maximizing (2.17) is given by the eigen-
vectors corresponding to the largest eigenvalues of P−

1
2 QP−

1
2 , which is equivalent

to the solution of the generalized eigenvalue problem in (2.9). �

The formal proof of Theorem 2.3 is given in [6, 10].
We have now introduced the basic formulations of Rayleigh quotient-type prob-

lems and their optimal solutions. Next, we will show that many unsupervised learn-
ing problems can be simplified to the Rayleigh quotient-type forms.

2.2 Rayleigh Quotient-Type Problems in Machine Learning

2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) considers a given set of zero mean data X ∈
R

N×d , where X = {xi}N
i=1, xi ∈ R

d . The objective is to find a direction vector w
on which the variance of the projection wT xi is maximized. Since the variance is
invariant to the magnitude of w, the objective of PCA is equivalently formulated as

maximize
w

wTCxxw (2.18)

subject to wT w = 1,

where Cxx is the sample covariance matrix of X . Obviously, (2.18) is a Rayleigh
quotient optimization and the optimal w is given by the eigenvector from the largest
eigenvalue pair of Cxx.

2.2.2 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) finds linear relations between two sets of
variables [5]. For two zero mean data sets X ∈R

N×d1 and Y ∈ R
N×d2 , the objective

is to identify vectors w1 and w2 such that the correlation between the projected
variables wT

1 X and wT
2 Y is maximized, given by

maximize
w1,w2

wT
1 Cxyw2

√

wT
1 Cxxw1

√

wT
2 Cyyw2

, (2.19)

where Cxx = E [XXT ],Cyy = E [YY T ],Cxy = E [XY T ]. The problem in (2.19) is usu-
ally formulated as the optimization problem, given by
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maximize
w1,w2

wT
1 Cxyw2 (2.20)

subject to wT
1 Cxxw1 = 1,

wT
2 Cyyw2 = 1.

Taking the conditions for optimality from the Lagrangian

L (w1,w2;λ1,λ2) = wT
1 Cxyw2−λ1(wT

1 Cxxw1−1)−λ2(wT
2 Cyyw2−1), (2.21)

one has
{

Cxyw2 = λ1Cxxw1

Cyxw1 = λ2Cyyw2
. (2.22)

Since we have
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wT
1 Cxyw2 = λ1wT

1 Cxxw1

wT
2 Cyxw1 = λ2wT

2 Cyyw2

wT
1 Cxyw2 = wT

2 Cyxw1

wT
1 Cxxw1 = wT

2 Cyyw2

, (2.23)

we find that λ1 = λ2 = λ , thus we obtain a generalized eigenvalue problem, given
by

[

0 Cxy
Cyx 0

][

w1

w2

]

= λ
[

Cxx 0
0 Cyy

][

w1

w2

]

. (2.24)

Analogously, the objective function of CCA can be also rewritten in a generalized
Rayleigh quotient form as

maximize
w1,w2

[

w1

w2

]T [ 0 Cxy
Cyx 0

][

w1

w2

]

[

w1

w2

]T [
Cxx 0
0 Cyy

][

w1

w2

]
. (2.25)

2.2.3 Fisher Discriminant Analysis

Fisher Discriminant Analysis (FDA) optimizes the discriminating direction for clas-
sification, which is also expressed as a form similar to the Generalized Rayleigh
quotient, where SB is the measure of the separability of class (between class scatter)
and SW is the measure of within class scatter, given by

maximize
w

wT SBw
wT SW w

, (2.26)
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where

SB = (μ2−μ1)(μ2− μ1)T ,

SW = ∑
i=1,2

∑
x∈Xi

(x−μi)(x−μi)T ,

and μ i denotes the sample mean for class i [9].

2.2.4 k-means Clustering

It has been shown that (e.g., [3]) the principal components in PCA are equivalent
to the continuous solutions of the cluster membership indicators in the k-means
clustering method. k-means uses k number of prototypes to characterize the data
and the partitions are determined by minimizing the variance

Jk−means =
k

∑
a=1

∑
i∈Xi

(xi− μa)(xi− μa)T . (2.27)

For a given data set X and a cluster number k, the summation of all the pairwise
distances is a constant value hence minimizing the distortion is equivalent to maxi-
mizing the between clusters variance, given by

Jk−means =
k

∑
a=1

(μa− μ̂)(μa− μ̂)T . (2.28)

where μ̂ is the global sample mean of X .
Denote P as the weighted cluster indicator matrix for k classes, given by

A = F(FT F)−
1
2 , (2.29)

where F is the N× k binary cluster indicator matrix as

F = fi, jN×k,where fi, j =

{

1 if xi ∈ l j

0 if xi /∈ l j
. (2.30)

Assume X has zero mean, without losing generality, (2.28) can be re-written in the
matrix form as

Jk−means = maximize
A

trace
(

AT XT XA
)

. (2.31)

Because the construction of A in (2.29) and (2.30) ensures that AT A = I, the objec-
tive of k-means is exactly the maximization of a Rayleigh quotient. When k = 2,
A reduces to vector a, and leads to a PCA problem. When k > 2, the cluster indi-
cators F can be recovered by exploiting the k− 1 principal components of XT X ,
for instance, by QR decomposition proposed in [15]. This PCA based approach of
k-means clustering is also known as the spectral relaxation of k-means.



2.2 Rayleigh Quotient-Type Problems in Machine Learning 33

2.2.5 Spectral Clustering

Spectral clustering models the data as graphs where the data samples are represented
as vertices connected by non-negative weighted undirected edges. The clustering
problem is then restated as to find a partition of the graph that the edges between
different groups have a very low weight [7]. Different criteria have been applied to
model the objective of cut for example, the RatioCut [2], the normalized cut [11],
Markov Random Walks [8], the min-cut [13] and so on. In this book, the discussions
about spectral clustering are all based on the normalized cut objective.

Let us denote G = (V,E) as an undirected graph with vertex set V = {v1, ...,vn},
W as the weighted adjacency matrix of the graph W = {wi j}i, j=1,...,n, di = ∑n

j=1 wi j

as the degree of a vertex vi ∈ V , and D as the diagonal matrix with the degrees
d1, ...,dn on the diagonal. Given a subset of vertices X ⊂V , we denote its comple-
ment V \X as X̄ . For two disjoint subsets M,N ⊂V , the cut is defined as

cut(M,N) = ∑
i∈M, j∈N

wi j . (2.32)

The size of a subset is defined as

vol(M) = ∑
i∈M

di. (2.33)

The normalized cut criterion optimizes the partition X1, . . . ,Xk to minimize the
objective as

Ncut(X1, . . . ,Xk) =
k

∑
i=1

cut(Xi,X̄i)
vol(Xi)

. (2.34)

Unfortunately, to obtain the exact solution of (2.34) is NP hard [13]. To solve it, the
discrete constraint of clustering indicators is usually relaxed to real values thus the
approximated solution of spectral clustering can be obtained from the eigenspectrum
of the graph Laplacian matrix. For k-way clustering (k > 2), the weighted cluster
indicator matrix P is defined in the same way as (2.29) and (2.30), the problem of
minimizing the normalized cut is equivalently expressed as

minimize
A

trace(AT D−
1
2 LD−

1
2 A), (2.35)

subject to AT A = I.

This is again the optimization of a Rayleigh quotient problem which can be solved
by eigenvalue decomposition. The optimal A∗ corresponds to the first k eigenvectors
of the normalized Laplacian L̃ = D−

1
2 LD−

1
2 .

2.2.6 Kernel-Laplacian Clustering

Let us assume that the attribute based data X and the graph affinity matrix W are rep-
resentations of the same sets of samples, the objective function of Kernel-Laplacian
(KL) clustering can be defined as
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JKL = κJNcut +(1−κ)Jk−means (2.36)

where κ is the weight adjusting the effect of k-means and spectral clustering objec-
tives. A is the weighted cluster indicator matrix as defined before. Replace (2.31)
and (2.35) in (2.36), the objective of KL clustering becomes

JKL = κmin
A

trace
(

AT L̃A
)

+(1−κ)max
A

trace
(

AT XT XA
)

(2.37)

s.t. AT A = I.

To solve the optimization problem without tuning the hyperparameterκ , Wang et al.
propose a solution to optimize the trace quotient of the two sub-objectives [14]. The
trace quotient formulation is then further relaxed as a maximization of the quotient
trace, given by

JKL = maximize
A

trace
{

(AT L̃A)−1(AT XT XA)
}

(2.38)

subject to AT A = I.

The objective in (2.38) is again a generalized Rayleigh quotient problem and the
optimal solution A∗ is obtained by solving the generalized eigenvalue problem. To
maximize the objective with k clusters, A∗ is approximated as the largest k eigen-
vectors of L̃+ (XT X

)

, where L̃+ is the pseudo inverse of L̃ [14].

2.2.7 One Class Support Vector Machine

The One class support vector machine (1-SVM) method transforms the binary SVM
classification task as one class learning problem. The method transforms the training
data of one class into a high dimensional Hilbert space by the feature map, and
iteratively finds the maximal margin hyper-plane that best separates the training data
from the origin. The solution for the hyper-plane is found by solving the objective
as follows:

minimize
w,ξ ,ρ

(

1
2

wT w− 1
νN

N

∑
i=1

ξi−ρ

)

(2.39)

subject to wTφ(xi)≥ ρ−ξi, i = 1, ...,N

ξi ≥ 0,

where w is the vector perpendicular to the separating hyper-plane (norm vector), N
is the number of training data, ρ is the bias value parameterizes the hyper-plane,
ν is a regularization variable penalizing the outliers in the training data, ξi are the
slack variables. Taking the conditions for optimality from the Lagrangian as
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L(w,ξ ,ρ;α,β ) =
1
2

wT w+
1
νN

N

∑
i=1

ξi−ρ−
N

∑
i=1

αT
i

(

wTφ(xi)−ρ +ξi
)−

n

∑
i=1

β T
i ξi.

(2.40)

one obtains the dual problem as

minimize
α

αT Kα (2.41)

subject to 0≤ αi ≤ 1
νN

,

N

∑
i=1

αi = 1,

where K is the kernel matrix which elements are obtained by applying the kernel
trick K (x,y) = φ(x)Tφ(y), the dual problem of 1-SVM is again a problem similar
to the Rayleigh quotient-type form. However, the optimal α cannot be solved as the
eigenvalue problem because the constraintαTα = 1 does not hold in (2.41). Instead,
α is solved via convex optimization.

2.3 Summary

In this chapter we made a survey of several popular machine learning algorithms.
The main finding was that these problems can all be simplified as the Generalized
Rayleigh quotient form, given by

minimize
W

(W T PW)−1(W T QW ) or maximize
W

(W T PW)−1(W T QW ). (2.42)

In Table 2.1 we summarize the objectives, the mappings and the constraints corre-
sponding of these algorithms in terms of Generalized Rayleigh quotient.
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Chapter 3
Ln-norm Multiple Kernel Learning and Least
Squares Support Vector Machines

3.1 Background

In the era of information overflow, data mining and machine learning are indispens-
able tools to retrieve information and knowledge from data. The idea of incorpo-
rating several data sources in analysis may be beneficial by reducing the noise, as
well as by improving statistical significance and leveraging the interactions and cor-
relations between data sources to obtain more refined and higher-level information
[50], which is known as data fusion. In bioinformatics, considerable effort has been
devoted to genomic data fusion, which is an emerging topic pertaining to a lot of
applications. At present, terabytes of data are generated by high-throughput tech-
niques at an increasing rate. In data fusion, these terabytes are further multiplied by
the number of data sources or the number of species. A statistical model describing
this data is therefore not an easy matter. To tackle this challenge, it is rather effective
to consider the data as being generated by a complex and unknown black box with
the goal of finding a function or an algorithm that operates on an input to predict the
output. About 15 years ago, Boser [8] and Vapnik [51] introduced the support vector
method which makes use of kernel functions. This method has offered plenty of op-
portunities to solve complicated problems but also brought lots of interdisciplinary
challenges in statistics, optimization theory, and the applications therein [40].

Multiple kernel learning (MKL) has been pioneered by Lanckriet et al. [29] and
Bach et al. [6] as an additive extension of single kernel SVM to incorporate multiple
kernels in classification. It has also been applied as a statistical learning framework
for genomic data fusion [30] and many other applications [15]. The essence of MKL,
which is the additive extension of the dual problem, relies only on the kernel rep-
resentation (kernel trick) [3] while the heterogeneities of data sources are resolved
by transforming different data structures (e.g., vectors, strings, trees, graphs) into
kernel matrices. In the dual problem, these kernels are combined into a single ker-
nel, moreover, the coefficients of the kernels are leveraged adaptively to optimize
the algorithmic objective, known as kernel fusion. The notion of kernel fusion was
originally proposed to solve classification problems in computational biology, but
recent efforts have lead to analogous solutions for one class [15] and unsupervised

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 39–88.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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learning problems [58]. Currently, most of the existing MKL methods are based on
the formulation proposed by Lanckriet et al. [29], which is clarified in our paper
as the optimization of the infinity norm (L∞) of kernel fusion. Optimizing L∞ MKL
in the dual problem corresponds to posing L1 regularization on the kernel coeffi-
cients in the primal problem. As known, L1 regularization is characterized by the
sparseness of the kernel coefficients [35]. Thus, the solution obtained by L∞ MKL
is also sparse, which assigns dominant coefficients to only one or two kernels. The
sparseness is useful to distinguish relevant sources from a large number of irrelevant
data sources. However, in biomedical applications, there are usually a small number
of sources and most of these data sources are carefully selected and preprocessed.
They thus often are directly relevant to the problem. In these cases, a sparse solution
may be too selective to thoroughly combine the complementary information in the
data sources. While the performance on benchmark data may be good, the selected
sources may not be as strong on truly novel problems where the quality of the in-
formation is much lower. We may thus expect the performance of such solutions to
degrade significantly on actual real-world applications. To address this problem, we
propose a new kernel fusion scheme by optimizing the L2-norm of multiple kernels.
The L2 MKL yields a non-sparse solution, which smoothly distributes the coeffi-
cients on multiple kernels and, at the same time, leverages the effects of kernels in
the objective optimization. Empirical results show that the L2-norm kernel fusion
can lead to a better performance in biomedical data fusion.

3.2 Acronyms

The symbols and notations used in this Chapter are defined in Table 1 (in the order
of appearance).
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Table 3.1 Symbols used in Chapter 3

α R
N the dual variable of SVM

Q R
N×N a semi-positive definite matrix

C R
N a convex set

Ω R
N×N a combination of multiple semi-positive definite matrices

j N the index of kernel matrices
p N the number of kernel matrices
θ [0,1] coefficients of kernel matrices
t [0,+∞) dummy variable in optimization problem
s R

p s = {αT Q1α, ...,αT Qpα}T
v R

p v = {αT K1α , ...,αT Kpα}T
w R

D or R
Φ the norm vector of the separating hyperplane

φ(·) R
D→R

Φ the feature map
i N the index of training samples
xi R

D the vector of the i-th training sample
ρ R bias term in 1-SVM
ν R

+ regularization term of 1-SVM
ξi R slack variable for the i-th training sample
K R

N×N kernel matrix
K (xi,x j) R

Φ ×R
Φ → R kernel function, K (xi,x j) = φ(xi)T φ(x j)

z R
D the vector of a test data sample

yi -1 or +1 the class label of the i−th training sample
Y R

N×N the diagonal matrix of class labels Y = diag(y1, ...,yN)
C R

+ the box constraint on dual variables of SVM
b R

+ the bias term in SVM and LSSVM
γ R

p γ = {αTY K1Yα, ...,αTY KpYα}T
k N the number of classes
η R

p η = {∑k
q=1(α

T
q YqK1Yqαq), ...,∑k

q=1(α
T
q YqKpYqαq)}T

δ R
p variable vector in SIP problem

u R dummy variable in SIP problem
q N the index of class number in classification problem, q = 1, ...,k
A R

N×N A j =∑k
q=1

(

αT
q YqKjYqαq

)

λ R
+ the regularization parameter in LSSVM

ei R the error term of the i-th sample in LSSVM
β R

N the dual variable of LSSVM, β = Yα
ε R

+ precision value as the stopping criterion of SIP iteration
τ N index parameter of SIP iterations
g R

p g = {βT K1β , ...,βT Kpβ}T

C+,C− R
+ box constraints for weighted SVM

ω R
N vector of weights for weighted LSSVM

W R
N×N diagonal matrix of weights for weighted LSSVM
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3.3 The Norms of Multiple Kernel Learning

3.3.1 L∞-norm MKL

We consider the problem of minimizing a quadratic cost of a real vector in function
of α and a real positive semi-definite (PSD) matrix Q, given by

minimize
α

αT Qα (3.1)

subject to α ∈ C ,

where C denotes a convex set. Also, PSD implies that ∀α , αT Qα ≥ 0. We will
show that many machine learning problems can be cast as the form in (3.1) with
additional constraints on α . In particular, if we restrict αTα = 1, the problem in
(3.1) becomes a Rayleigh quotient and leads to a eigenvalue problem.

Now we consider a convex parametric linear combination of a set of p PSD
matrices Q j , given by

Ω =

{

p

∑
j=1

θ jQ j

∣

∣

∣

∣

∀ j, θ j ≥ 0, Q j � 0

}

. (3.2)

To bound the coefficients θ j , we restrict that, for example, ||θ j||1 = 1, thus (3.1) can
be equivalently rewritten as a min-max problem, given by

minimize
α

maximize
θ

αT

(

p

∑
j=1

θ jQ j

)

α (3.3)

subject to Qj � 0, j = 1, ..., p

α ∈ C ,

θ j ≥ 0, j = 1, ..., p
p

∑
j=1

θ j = 1.

To solve (3.3), we denote t = αT
(

∑p
j=1θ jQ j

)

α , then the min-max problem can

be formulated in a form of quadratically constrained linear programming (QCLP)
[10], given by

minimize
α ,t

t (3.4)

subject to Qj � 0, j = 1, ..., p

α ∈ C ,

t ≥ αT Qjα , j = 1, ..., p .
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The optimal solution θ ∗ in (3.3) is obtained from the dual variable corresponding to
the quadratic constraints in (3.4). The optimal t∗ is equivalent to the Chebyshev or
L∞-norm of the vector of quadratic terms, given by

t∗ = ||αT Q jα||∞ = max{αT Q1α, ...,αT Qpα}. (3.5)

The L∞-norm is the upper bound w.r.t. the constraint ∑p
j=1 θ j = 1 because

αT

(

p

∑
j=1

θ jQ j

)

α ≤ t∗. (3.6)

3.3.2 L2-norm MKL

Apparently, suppose the optimal α∗ is given, optimizing the L∞-norm in (3.5) will
pick the single term with the maximal value, and the optimal solution of the coef-
ficients is more likely to be sparse. An alternative solution to (3.3) is to introduce a
different constraint on the coefficients, for example, ||θ j||2 = 1. We thus propose a
new extension of the problem in (3.1), given by

minimize
α

maximize
θ

αT

(

p

∑
j=1

θ jQ j

)

α (3.7)

subject to Qj � 0, j = 1, ..., p

α ∈ C ,

θ j ≥ 0, j = 1, ..., p

||θ j||2 = 1.

This new extension is analogously solved as a QCLP problem with modified con-
straints, given by

minimize
α ,η

η (3.8)

subject to Qj � 0, j = 1, ..., p

α ∈ C ,

η ≥ ||s||2, j = 1, ..., p,

where s = {αT Q1α, ...,αT Qpα}T . The proof that (3.8) is the solution of (3.7) is
given in the following theorem.

Theorem 3.1. The QCLP problem in (3.8) is the solution of the problem in (3.7).

Proof. Given two vectors{x1, ...,xp},{y1, ...,yp}, x j,y j ∈R, j = 1, ..., p, the Cauchy-
Schwarz inequality states that



44 3 Ln-norm Multiple Kernel Learning and Least Squares Support Vector Machines

0≤
(

p

∑
j=1

x jy j

)2

≤
p

∑
j=1

x2
j

p

∑
j=1

y2
j , (3.9)

with as equivalent form:

0≤
⎡

⎣

(

p

∑
j=1

x jy j

)2
⎤

⎦

1
2

≤
[

p

∑
j=1

x2
j

p

∑
j=1

y2
j

] 1
2

. (3.10)

Let us denote x j = θ j and y j = αT Q jα , (3.10) becomes

0≤
p

∑
j=1

(

θ jαT Q jα
)≤

[

p

∑
j=1

θ 2
j

p

∑
j=1

(

αT Qjα
)2

] 1
2

. (3.11)

Since ||θ j||2 = 1, (3.11) is equivalent to

0≤
p

∑
j=1

(

θ jαT Q jα
)≤

[

p

∑
j=1

(

αT Q jα
)2

] 1
2

. (3.12)

Therefore, given s = {αT Q1α, ...,αT Qpα}T , the additive term ∑p
j=1

(

θ jαT Q jα
)

is
bounded by the L2-norm ||s||2. �
Moreover, it is easy to prove that when θ ∗j =αT Q jα/||s||2, the parametric combina-
tion reaches the upperbound and the equality holds. Optimizing this L2-norm yields
a non-sparse solution in θ j . In order to distinguish this from the solution obtained
by (3.3) and (3.4), we denote it as the L2-norm approach. It can also easily be seen
(not shown here) that the L1-norm approach is simply averaging the quadratic terms
with uniform coefficients.

3.3.3 Ln-norm MKL

The L2-norm bound is also generalizable to any positive real number n≥ 1, defined
as Ln-norm MKL. Recently, the similar topic is also investigated by Kloft et al. [27]
and a solution is proposed to solve the primal MKL problem. We will show that our
primal-dual interpretation of MKL is also extendable to the Ln-norm. Let us assume
that θ is regularized by the Lm-norm as ||θ ||m = 1, then the Lm-norm extension of
equation (3.7) is given by

minimize
α

maximize
θ

αT

(

p

∑
j=1

θ jQ j

)

α (3.13)

subject to Q j � 0, j = 1, ..., p

α ∈ C ,

θ j ≥ 0, j = 1, ..., p

||θ ||m = 1.
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In the following theorem, we prove that (3.13) can be equivalently solved as a QCLP
problem, given by

minimize
α ,η

η (3.14)

subject to Q j � 0, j = 1, ..., p

α ∈ C ,

η ≥ ||s||n,

where s = {αT Q1α, ...,αT Qpα}T and the constraint is in Ln-norm, moreover, n =
m

m−1 . The problem in (3.14) is convex and can be solved by cvx toolbox [19, 20].

Theorem 3.2. If the coefficient vector θ is regularized by a Lm-norm in (3.13), the
problem can be solved as a convex programming problem in (3.14) with Ln-norm
constraint. Moreover, n = m

m−1 .

Proof. We generalize the Cauchy-Schwarz inequality to Hölder’s inequality. Let
m,n > 1 be two numbers that satisfy 1

m + 1
n = 1. Then

0≤
p

∑
j=1

x jy j ≤
(

p

∑
j=1

xm
j

) 1
m
(

p

∑
j=1

yn
j

) 1
n

. (3.15)

Let us denote x j = θ j and y j = αT Q jα , (3.15) becomes

0≤
p

∑
j=1

(

θ jαT Q jα
) ≤

(

p

∑
j=1

θm
j

) 1
m
[

p

∑
j=1

(

αT Q jα
)n

] 1
n

. (3.16)

Since ||θ ||m = 1, therefore the term
(

∑p
j=1θ

m
j

) 1
m

can be omitted in the equation, so

(3.16) is equivalent to

0≤
p

∑
j=1

(

θ jαT Q jα
)≤

[

p

∑
j=1

(

αT Q jα
)n

] 1
n

. (3.17)

Due to the condition that 1
m + 1

n = 1, so n = m
m−1 , we prove that with the Lm-

norm constraint posed on θ , the additive multiple kernel term ∑p
j=1

(

θ jαT Q jα
)

is

bounded by the Ln-norm of the vector {αT Q1α, ...,αT Qnα}T . Moreover, we have
n = m

m−1 . �

In this section, we have explained the L∞, L1, L2, and Ln-norm approaches to
extend the basic problem in (3.1) to multiple matrices Q j . These approaches dif-
fered mainly on the constraints applied on the coefficients. To clarify the difference
of notations used in this paper with the common interpretations of L1 and L2 regular-
ization on θ , we illustrate the mapping of our L∞, L1, L2, and Ln notations between
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the common interpretations of coefficient regularization. As shown in Table 3.2, the
notations used in this section are interpreted in the dual space and are equivalent
to regularization of kernel coefficients in the primal space. The advantage of dual
space interpretation is that we can easily extend the analogue solution to various
machine learning algorithms, which have been shown in the previous chapter as the
similar Rayleigh quotient problem.

Table 3.2 This relationship between the norm of regularization constrained in the primal
problem with the norm of kernels optimized in the dual problem

primal problem dual problem
norm θ j αT Kjα
L∞ |θ |= 1 max ||{αT K1α, ...,αT Kjα}||∞
L1 θ j = θ̄ max ||{αT K1α, ...,αT Kjα}||1
L2 ||θ ||2 = 1 max ||{αT K1α, ...,αT Kjα}||2
L1.5 ||θ ||3 = 1 max ||{αT K1α, ...,αT Kjα}||1.5
L1.3333 ||θ ||4 = 1 max ||{αT K1α, ...,αT Kjα}||1.3333
L1.25 ||θ ||5 = 1 max ||{αT K1α, ...,αT Kjα}||1.25
L1.2 ||θ ||6 = 1 max ||{αT K1α, ...,αT Kjα}||1.2
L1.1667 ||θ ||7 = 1 max ||{αT K1α, ...,αT Kjα}||1.1667

Next, we will investigate several concrete MKL algorithms and will propose the
corresponding L2-norm and Ln-norm solutions.

3.4 One Class SVM MKL

The primal problem of one class SVM (1-SVM) is defined by Tax and Duin [48]
and Schölkopf et al. [38] as

P: minimize
w,ξ ,ρ

1
2

wT w− 1
νN

l

∑
i=1

ξi−ρ (3.18)

subject to wTφ(xi)≥ ρ− ξi, i = 1, . . . ,N

ξi ≥ 0, i = 1, ...,N

where w is the norm vector of the separating hyperplane, xi are the training samples,
ν is the regularization constant penalizing outliers in the training samples, φ(·) de-
notes the feature map, ρ is a bias term, ξi are slack variables, and N is the number
of training samples. Taking the conditions for optimality from the Lagrangian, one
obtains the dual problem, given by:
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D: minimize
α

αT Kα (3.19)

subject to 0≤ αi ≤ 1
νN

, i = 1, ...,N,

N

∑
i=1

αi = 1,

where αi are the dual variables, K represents the kernel matrix obtained by the inner
product between any pair of samples specified by a kernel function K (xi,x j) =
φ(xi)Tφ(x j), i, j = 1, ...,N. To incorporate multiple kernels in (3.19), De Bie et al.
proposed a solution [15] with the dual problem formulated as

D: minimize
α

t (3.20)

subject to t ≥ αT Kjα, j = 1, ..., p

0≤ αi ≤ 1
νN

, i = 1, ...,N

N

∑
i=1

αi = 1,

where p is the number of data sources and Kj is the j-th kernel matrix. The formu-
lation exactly corresponds to the L∞ solution of the problem defined in the previous
section (the PSD constraint is implied in the kernel matrix) with additional con-
straints imposed on α. The optimal coefficients θ j are used to combine multiple
kernels as

Ω =

{

p

∑
j=1

θ jKj

∣

∣

∣

∣

p

∑
j=1

θ j = 1, ∀ j, θ j ≥ 0

}

, (3.21)

and the ranking function is given by

f (z) =
1

√

αTΩNα

N

∑
i=1

αiΩ(z,xi), (3.22)

where ΩN is the combined kernel of training data xi, i = 1, ...,N, z is the test data
point to be ranked, Ω(z,xi) is the combined kernel function applied on test data
and training data, α is the dual variable solved as (3.20). De Bie et al. applied the
method in the application of disease gene prioritization, where multiple genomic
data sources are combined to rank a large set of test genes using the 1-SVM model
trained from a small set of training genes which are known to be relevant for cer-
tain diseases. The L∞ formulation in their approach yields a sparse solution when
integrating genomic data sources (see Figure two of [15]). To avoid this disadvan-
tage, they proposed a regularization method by restricting the minimal boundary on
the kernel coefficients, notated as θmin, to ensure the minimal contribution of each
genomic data source to be θmin/p. According to their experiments, the regularized
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solution performed best, being significantly better than the sparse integration and
the average combination of kernels.

Instead of setting the ad hoc parameter θmin, one can also straightforwardly pro-
pose an L2-norm approach to solve the identical problem, given by

D: minimize
α

t (3.23)

subject to t ≥ ||v||2,
0≤ αi ≤ 1

νN
, i = 1, ...,N

N

∑
i=1

αi = 1,

where v = {αT K1α, ...,αT Kpα}T , v ∈ R
p. The problem above is a QCLP problem

and can be solved by conic optimization solvers such as Sedumi [39]. In (3.23), the
first constraint represents a Lorentz cone and the second constraint corresponds to
p number of rotated Lorentz cones (R cones). The optimal kernel coefficients θ j

correspond to the dual variables of the R cones with ||θ j||2 = 1. In this L2-norm
approach, the integrated kernel Ω is combined by different θ ∗j and the same scoring
function as in (3.22) is applied on the different solutions of α and Ω .

3.5 Support Vector Machine MKL for Classification

3.5.1 The Conic Formulation

The notion of MKL is originally proposed in a binary SVM classification, where the
primal objective is given by

P: minimize
w,b,ξ

1
2

wT w+C
N

∑
i=1

ξi (3.24)

subject to yi[wTφ(xi)+ b]≥ 1− ξi,

i = 1, ...,N

ξi ≥ 0, i = 1, ...,N,

where xi are data samples, φ(·) is the feature map, yi are class labels, C > 0 is a
positive regularization parameter, ξi are slack variables, w is the norm vector of the
separating hyperplane, and b is the bias. This problem is convex and can be solved
as a dual problem, given by

D: minimize
α

1
2
αTY KYα−αT 1 (3.25)

subject to (Yα)T 1 = 0

0≤ αi ≤C, i = 1, ...,N,
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where α are the dual variables, Y = diag(y1, ...,yN), K is the kernel matrix, and C is
the upperbound of the box constraint on the dual variables. To incorporate multiple
kernels in (3.25), Lanckriet et al. [29, 30] and Bach et al. [6] proposed a multiple
kernel learning (MKL) problem as follows:

D: minimize
t,α

1
2

t−αT 1 (3.26)

subject to (Yα)T 1 = 0

0≤ αi ≤C, i = 1, ...,N

t ≥ αTYKjYα, j = 1, ..., p,

where p is the number of kernels. The equation in (3.26) optimizes the L∞-norm
of the set of kernel quadratic terms. Based on the previous discussions, its L2-norm
solution is analogously given by

D: minimize
t,α

1
2

t−αT 1 (3.27)

subject to (Yα)T 1 = 0

0≤ αi ≤C, i = 1, ...,N

t ≥ ||γ||2,

where γ = {αTY K1Yα , ...,αT YKpYα}T , γ ∈ R
p. Both formulations in (3.26) and

(3.27) can be efficiently solved as second order cone programming (SOCP) prob-
lems by a conic optimization solver (e.g., Sedumi [39]) or as Quadratically con-
strained quadratic programming (QCQP) problems by a general QP solver (e.g.,
MOSEK [4]). It is also known that a binary MKL problem can also be formulated
as Semi-definite Programming (SDP), as proposed by Lanckriet et al. [29] and Kim
et al. [25]. However, in a multi-class problem, SDP problems are computationally
prohibitive due to the presence of PSD constraints and can only be solved approx-
imately by relaxation [54]. On the contrary, the QCLP and QCQP formulations of
binary classification problems can be easily extended to a multi-class setting using
the one-versus-all (1vsA) coding, i.e., solving the problem of k classes as k number
of binary problems. Therefore, the L∞ multi-class SVM MKL is then formulated as

D: minimize
t,α

1
2

t−
k

∑
q=1

αT
q 1 (3.28)

subject to (Yqαq)T 1 = 0, q = 1, ...,k

0≤ αiq ≤C, i = 1, ...,N,

q = 1, ...,k

t ≥
k

∑
q=1

(αT
q YqKjYqαq),

j = 1, ..., p.
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The L2 multi-class SVM MKL is given by

D: minimize
t,α

1
2

t−
k

∑
q=1

αT
q 1 (3.29)

subject to (Yqαq)T 1 = 0, q = 1, ...,k,

0≤ αiq ≤C, i = 1, ...,N,

q = 1, ...,k

t ≥ ||η||2,

where
η = {∑k

q=1(αT
q YqK1Yqαq), ...,∑k

q=1(αT
q YqKpYqαq)}T , η ∈ R

p.

3.5.2 The Semi Infinite Programming Formulation

Unfortunately, the kernel fusion problem becomes challenging on large scale data
because it may scale up in three dimensions: the number of data points, the number
of classes, and the number of kernels. When these dimensions are all large, memory
issues may arise as the kernel matrices need to be stored in memory. Though it is
feasible to approximate the kernel matrices by a low rank decomposition (e.g., in-
complete Cholesky decomposition) and to reduce the computational burden of conic
optimization using these low rank matrices, conic problems involve a large amount
of variables and constraints and it is usually less efficient than QCQP. Moreover,
the precision of the low rank approximation relies on the assumption that the eigen-
values of kernel matrices decay rapidly, which may not always be true when the
intrinsic dimensions of the kernels are large. To tackle the computational burden of
MKL, Sonnenburg et al. reformulated the QP problem as semi-infinite programming
(SIP) and approximated the QP solution using a bi-level strategy (wrapper method)
[42]. The standard form of SIP is given by

maximize
δ

cTδ (3.30)

subject to ft(δ )≤ 0, ∀t ∈ϒ ,

where the constraint functions in ft (δ ) can be either linear or quadratic and there
are infinite number of them in ∀t ∈ϒ . To solve it, a discretization method is usually
applied, which is briefly summarized as follows [23, 22, 37]:

1. Choose a finite subset N ⊂ϒ .
2. Solve the convex programming problem

maximize
δ

cTδ (3.31)

subject to ft(δ )≤ 0, t ∈N . (3.32)

3. If the solution of 2 is not satisfactorily close to the original problem then
choose a larger, but still finite subset N and repeat from Step 2.
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The convergence of SIP and the accuracy of the discretization method have been
extensively described (e.g., see [22, 23, 37]). As proposed by Sonnenburg et al. [42],
the multi-class SVM MKL objective in (3.26) can be formulated as a SIP problem,
given by

maximize
θ

u (3.33)

subject to θ j ≥ 0, j = 1, ..., p
p

∑
j=1

θ j = 1,

p

∑
j=1

θ j f j(αq)≥ u, ∀αq, q = 1, ...,k

f j(αq) =
k

∑
q=1

(

1
2
αT

q YqKjYqαq−αT
q 1
)

,

0≤ αiq ≤C, i = 1, ...,N, q = 1, ...,k

(Yqαq)T 1 = 0, q = 1, ...,k .

The SIP problem above is solved as a bi-level algorithm for which the pseudo code
is presented in Algorithm 3.5.1.

Algorithm 3.5.1. SIP-SVM-MKL(Kj,Yq,C,ε)

Obtain the initial guess α(0) = [α1, ...,αk]
while (Δu > ε)

do

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

step1 : Fix α , solve θ (τ)then obtain u(τ)

step2 : Compute kernel combination Ω (τ)

step3 : Solve single SVM by minimizing f j(αq) and obtain the optimalα(τ)
q

step4 : Compute f1(α(τ)), ..., fp(α(τ))

step5 : Δu = |1− ∑p
j=1 θ

(τ−1)
i f j(α(τ))

u(τ−1) |
comment: τ is the indicator of the current loop

return (θ ∗,α∗)

In each loop τ , Step 1 optimizes θ (τ) and u(τ) for a restricted subset of constraints
as a linear programming. Step 3 is an SVM problem with a single kernel and gener-
ates a new α (τ). If α(τ) is not satisfied by the current θ (τ) and u(τ), it will be added

successively to step 1 until all constraints are satisfied. The starting points α(0)
q are

randomly initialized and SIP always converges to a identical result.
Algorithm 3.5.1 is also applicable to the L2-norm situation of SVM MKL,

whereas the non-convex constraint ||θ ||2 = 1 in Step 1 needs to be relaxed as
||θ ||2 ≤ 1, and the f j(α) term in (3.32) is modified as only containing the quadratic
term. The SIP formulation for L2-norm SVM MKL is given by
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maximize
θ ,u

u (3.34)

subject to θ j ≥ 0, j = 1, ..., p,

||θ ||2 ≤ 1,

p

∑
j=1

θ j f j(αq)−
k

∑
q=1

αT
q 1≥ u,

∀αq, q = 1, ...,k

f j(αq) =
1
2

k

∑
q=1

(

αT
q YqKjYqαq

)

, j = 1, ..., p

0≤ αiq ≤C, i = 1, ...,N, q = 1, ...,k

(Yqαq)T 1 = 0, q = 1, ...,k.

With these modifications, Step 1 of Algorithm 3.5.1 becomes a QCLP problem given
by

maximize
θ ,u

u (3.35)

subject to
1
2

p

∑
j=1

θ jA j−αT 1≥ u,

1≥ θ 2
1 + ...+θ 2

p,

where A j = ∑k
q=1

(

αT
q YqKjYqαq

)

and α is a given value. Moreover, the PSD prop-
erty of kernel matrices ensures that A j ≥ 0, thus the optimal solution always satisfies
||θ ||2 = 1. The extensions to the Ln-norm are also similar to this manner.

In the SIP formulation, the SVM MKL is solved iteratively as two components.
The first component is a single kernel SVM, which is solved more efficiently when
the data scale is larger then thousands of data points (and smaller than ten thousands)
and, requires much less memory than the QP formulation. The second component
is a small scale problem, which is a linear problem in L∞ case and a QCLP prob-
lem in the L2 approach. As shown, the complexity of the SIP based SVM MKL is
mainly determined by the burden of a single kernel SVM multiplied by the num-
ber of iterations. This has inspired us to adopt more efficient single SVM learning
algorithms to further improve the efficiency. The least squares support vector ma-
chines (LSSVM) [45, 46, 47] is known for its simple differentiable cost function,
the equality constraints in the separating hyperplane and its solution based on linear
equations, which is preferable for large scaler problems. Next, we will investigate
the MKL solutions issue using LSSVM formulations.
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3.6 Least Squares Support Vector Machines MKL for
Classification

3.6.1 The Conic Formulation

In LSSVM [45, 46, 47], the primal problem is

P: minimize
w,b,e

1
2

wT w+
1
2
λeT e (3.36)

subject to yi[wTφ(xi)+ b] = 1− ei,

i = 1, ...,N,

where most of the variables are defined in a similar way as in (3.24). The main dif-
ference is that the nonnegative slack variable ξ is replaced by a squared error term
eT e and the inequality constraints are modified as equality ones. Taking the condi-
tions for optimality from the Lagrangian, eliminating w,e, defining y = [y1, ...,yN ]T

and Y = diag(y1, ...,yN), one obtains the following linear system [45]:

D:

[

0 yT

y YKY + I/λ

] [

b
α

]

=
[

0
1

]

, (3.37)

where α are unconstrained dual variables. Without the loss of generality, we denote
β = Yα and rewrite (3.37) as

D:

[

0 1T

1 K +Y−2/λ

] [

b
β

]

=
[

0
Y−11

]

. (3.38)

In (3.38), we add an additional constraint as Y−2 = I then the coefficient becomes a
static value in the multi-class case. In 1vsA coding, (3.37) requires to solve k number
of linear problems whereas in (3.38), the coefficient matrix is only factorized once
such that the solution of β q w.r.t. the multi-class label vectors yq is very efficient to
obtain. The constraint Y−2 = I can be simply satisfied by assuming the class labels
to be -1 and +1. Thus, from now on, we assume Y−2 = I in the following discussion.

To incorporate multiple kernels in LSSVM classification, the L∞-norm approach
is a QP problem, given by (assuming Y−2 = I)

minimize
α,t

1
2

t +
1

2λ
β Tβ −βTY−11 (3.39)

subject to
N

∑
i=1

βi = 0,

t ≥ β T Kjβ , j = 1, ..., p.

The L2-norm approach is analogously formulated as
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minimize
α,t

1
2

t +
1

2λ
β Tβ −βTY−11 (3.40)

subject to
N

∑
i=1

βi = 0,

t ≥ ||g||2, j = 1, ..., p,

where g = {β T K1β , ...,β T Kpβ}T , g∈R
p. The λ parameter regularizes the squared

error term in the primal objective in (3.36) and the quadratic term β Tβ in the
dual problem. Usually, the optimal λ needs to be selected empirically by cross-
validation. In the kernel fusion of LSSVM, we can alternatively transform the effect

of regularization as an identity kernel matrix in 1
2β

T
(

∑p
j=1 Kj +θp+1I

)

β , where

θp+1 = 1/λ . Then the MKL problem of combining p kernels is equivalent to com-
bining p+1 kernels where the last kernel is an identity matrix with the optimal coef-
ficient corresponding to the λ value. This method has been mentioned by Lanckriet
et al. to tackle the estimation of the regularization parameter in the soft margin SVM
[29]. It has also been used by Ye et al. to jointly estimate the optimal kernel for dis-
criminant analysis [54]. Saving the effort of validating λ may significantly reduce
the model selection cost in complicated learning problems. By this transformation,
the objective of LSSVM MKL becomes similar to that of SVM MKL with the main
difference that the dual variables are unconstrained. Though (3.39) and (3.40) can
in principle both be solved as QP problems by a conic solver or a QP solver, the
efficiency of a linear solution of the LSSVM is lost. Fortunately, in an SIP formu-
lation, the LSSVM MKL can be decomposed into iterations of the master problem
of single kernel LSSVM learning, which is an unconstrained QP problem, and a
coefficient optimization problem with very small scale.

3.6.2 The Semi Infinite Programming Formulation

The L∞-norm approach of multi-class LSSVM MKL is formulated as

maximize
θ ,u

u (3.41)

subject to θ j ≥ 0, j = 1, ..., p +1
p+1

∑
j=1

θ j = 1,

p+1

∑
j=1

θ j f j(β q)≥ u, ∀β q, q = 1, ...,k

f j(β q) =
k

∑
q=1

(

1
2
βT

q Kjβ q−βT
q Y−1

q 1
)

,

j = 1, ..., p +1, q = 1, ...,k.
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In the formulation above, Kj represents the j-th kernel matrix in a set of p + 1
kernels with the (p + 1)-th kernel being the identity matrix. The L2-norm LSSVM
MKL is formulated as

maximize
θ ,u

u (3.42)

subject to θ j ≥ 0, j = 1, ..., p +1
p+1

∑
j=1

θ 2
j ≤ 1,

p+1

∑
j=1

θ j f j(β q)−
k

∑
q=1

βT
q Y−1

q 1≥ u,

∀β q, q = 1, ...,k

f j(β q) =
k

∑
q=1

(

1
2
β T

q Kjβ q

)

,

j = 1, ..., p +1, q = 1, ...,k.

The pseudocode of L∞-norm and L2-norm LSSVM MKL is presented in Algorithm
3.6.1.

Algorithm 3.6.1. SIP-LSSVM-MKL(Kj,Yq,ε)

Obtain the initial guess β (0) = [β 1, ...,β k]
while (Δu > ε)

do

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

step1 : Fix β , solve θ (τ)then obtain u(τ)

step2 : Compute kernel combination Ω (τ)

step3 : Solve single LSSVM and obtain the optimal β (τ)

step4 : Compute f1(β (τ)), ..., fp+1(β (τ))

step5 : Δu = |1− ∑p+1
j=1 θ (τ−1)

i f j(β (τ))

u(τ−1) |
comment: τ is the indicator of the current loop

return (θ ∗,β ∗)

In L∞ approach, Step 1 optimizes θ as a linear programming. In L2 approach,
Step 1 optimizes θ as a QCLP problem. Since the regularization coefficient is auto-
matically estimated as θp+1, Step 3 simplifies to a linear problem as

[

0 1T

1 Ω (τ)

] [

b(τ)

β (τ)

]

=
[

0
Y−11

]

, (3.43)

where Ω (τ) = ∑p+1
j=1 θ

(τ)
j Kj .
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3.7 Weighted SVM MKL and Weighted LSSVM MKL

3.7.1 Weighted SVM

The conventional SVM does not perform well in the presence of imbalanced data.
Weighted SVM was proposed to cope with this problem [36, 52, 59]. As an exten-
sion from conventional SVM two different penalty constraints were introduced for
the positive and negative classes. The optimization problem becomes,

P: minimize
w,b,ξ

1
2

wT w+C+ ∑
{i|yi=+1}

ξ k+
i +C− ∑

{i|yi=−1}
ξ k−

i (3.44)

subject to yi[wTφ(xi)+ b]≥ 1−ξi, i = 1, ...,N

ξi ≥ 0, i = 1, ...,N,

where xi are data samples, φ(·) is the feature map, yi are class labels, C+ and C− are
respectively the penalty coefficients for positive class samples and negative class
samples, ξi are slack variables, k+ and k− are respectively the numbers of slack
variables for positive and negative class samples, w is the norm vector of the sepa-
rating hyperplane, and b is the bias. This problem is also convex and can be solved
as a dual problem, given by

D: minimize
α

1
2
αTYKYα−αT 1 (3.45)

subject to (Yα)T 1 = 0

0≤ αi ≤C+, {∀i|yi = +1}
0≤ αi ≤C−, {∀i|yi =−1},

where α are the dual variables, Y = diag(y1, ...,yN), K is the kernel matrix, and
C+ and C− are two different upperbounds of the box constraints on dual variables
correspond to different classes. The value of C+ and C− should be predetermined. In
practical, one can fix C− and optimize the performance on training data by varying
C+ [59]. Suppose the dominant class is +, then its penalty value C+ should be
smaller than the value of rare class samples. In this chapter, the reported results on
pregnancy data are obtained by 2C+ = C− = 2.

3.7.2 Weighted SVM MKL

The MKL extension of Weighted SVM is analogous to the MKL extension of the
unweighted SVM. The L∞ MKL for binary class SVM is given by
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D: minimize
γ,α

1
2
γ−αT 1 (3.46)

subject to (Yα)T 1 = 0

0≤ αi ≤C+, {∀i|yi = +1}
0≤ αi ≤C−, {∀i|yi =−1}
γ ≥ αTYKjYα, j = 1, ..., p,

where p is the number of kernels.
The L2-norm MKL is analogously given by

D: minimize
η,α

1
2
η−αT 1 (3.47)

subject to (Yα)T 1 = 0

0≤ αi ≤C+, {∀i|yi = +1}
0≤ αi ≤C−, {∀i|yi =−1}
η ≥ ||γ j||2, j = 1, ..., p

γ j ≥ αTY KjYα . j = 1, ..., p.

3.7.3 Weighted LSSVM

In LSSVM, the cost function can be extended to cope with imbalanced data, given
by

minimize
w,b,e

1
2

wT w+
1
2
λ

N

∑
i=1

vie
2
i (3.48)

subject to yi[wTφ(xi)+ b] = 1− ei, i = 1, ...,N,

where the main difference with unweighted LSSVM is that the least squares terms
are weighted for different samples. Suppose ω = {ω1,ω2, ...,ωN} is a vector of
weights associated with each sample, taking the conditions for optimality from
the Lagrangian, eliminating w,e, defining y = [y1, ...,yN ]T , Y = diag(y1, ...,yN) and
W = diag(ω−1

1 , ...,ω−1
N ), the weighted LSSVM can be solved as the following lin-

ear system [44]:
[

0 yT

y YKY +W/λ

] [

b
α

]

=
[

0
1

]

. (3.49)

To improve the robustness of LSSVM when coping with the imbalanced data, a
simple way to choose the weighting factors is [11]

ωi =

{

N/2N+ if yi = +1

N/2N− if yi =−1
, (3.50)
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where N+ and N− represent the number of positive and negative samples respec-
tively. In this chapter, the reported results on pregnancy data are obtained by
weighted LSSVM using the setting described above.

3.7.4 Weighted LSSVM MKL

To incorporate multiple kernels in Weighted LSSVM, the QCQP based L∞ solution
is given by (assuming Y−2 = I)

minimize
α ,t

1
2

t +
1

2λ
β TWβ −βT Y−11 (3.51)

subject to
N

∑
i=1

βi = 0,

t ≥ β T Kjβ , j = 1, ..., p.

where most of the variables are defined the same as in the unweighted version.
The weight factor matrix W is defined as same in (3.49). The L2-norm approach is
analogously formulated as

minimize
α ,η

1
2
η +

1
2λ

β TWβ −βTY−11 (3.52)

subject to
N

∑
i=1

βi = 0,

s j ≥ β T Kjβ , j = 1, ..., p,

η ≥ ||s j||2, j = 1, ..., p.

The SIP based formulations for Weighted LSSVM MKL are analogous to the un-
weighted version, with the only difference that the single kernel weighted LSSVM
is solved as the linear system defined in (3.49).

3.8 Summary of Algorithms

As discussed, the dual L2 MKL solution can be extended to many machine learning
problems. In principle, all MKL algorithms can be formulated in L∞, L1, L2, and
Ln forms and lead to different solutions. To validate the proposed approach, we
implemented and compared 20 algorithms on various data sets. The summary of all
implemented algorithms is presented in Table 3.3. These algorithms combine L∞, L1,
and L2 MKL with 1-SVM, SVM, LSSVM, Weighted SVM and Weighted LSSVM.
Though we mainly focus on L∞, L1, and L2 MKL methods, we also implement the
Ln-norm MKL for 1-SVM, SVM, LS-SVM and Weighted SVM. These algorithms
are applied on the four biomedical experimental data sets and the performance is
systematically compared.
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Table 3.3 Summary of the implemented MKL algorithms

Algorithm Nr. Formulation Nr. Name References Formulation Equations
1 1-A 1-SVM L∞ MKL [15] SOCP (3.20)
1 1-B 1-SVM L∞ MKL [15] QCQP (3.20)
2 2-A 1-SVM L∞ (0.5) MKL [15] SOCP (3.20)
2 2-B 1-SVM L∞ (0.5) MKL [15] QCQP (3.20)
3 3-A 1-SVM L1 MKL [38, 48] SOCP (3.19)
3 3-B 1-SVM L1 MKL [38, 48] QCQP (3.19)
4 4-A 1-SVM L2 MKL novel SOCP (3.23)
5 5-B SVM L∞ MKL [6, 29, 30] QCQP (3.26)
5 5-C SVM L∞ MKL [42] SIP (3.33)
6 6-B SVM L∞ (0.5) MKL novel QCQP (3.26)
7 7-A SVM L1 MKL [51] SOCP (3.25)
7 7-B SVM L1 MKL [29] QCQP (3.25)
8 8-A SVM L2 MKL novel SOCP (3.27)
8 8-C SVM L2 MKL [26] SIP (3.34)
9 9-B Weighted SVM L∞ MKL novel QCQP (3.46)
10 10-B Weighted SVM L∞ (0.5) MKL novel QCQP (3.46)
11 11-B Weighted SVM L1 MKL [36, 52, 59] QCQP (3.45)
12 12-A Weighted SVM L2 MKL novel SOCP (3.47)
13 13-B LSSVM L∞ MKL [54] QCQP (3.39)
13 13-C LSSVM L∞ MKL [54] SIP (3.41)
14 14-B LSSVM L∞ (0.5) MKL novel QCQP (3.39)
15 15-D LSSVM L1 MKL [45] linear (3.38)
16 16-B LSSVM L2 MKL novel SOCP (3.40)
16 16-C LSSVM L2 MKL novel SIP (3.42)
17 17-B Weighted LSSVM L∞ MKL novel QCQP (3.51)
18 18-B Weighted LSSVM L∞ (0.5) MKL novel QCQP (3.51)
19 19-D Weighted LSSVM L1 MKL [44] linear (3.49)
20 20-A Weighted LSSVM L2 MKL novel SOCP (3.52)

3.9 Numerical Experiments

3.9.1 Overview of the Convexity and Complexity

We concluded the convexity and the time complexity of all proposed methods in
Table 3.4. All problems proposed in this chapter are convex or can be transformed
to a convex formulation by relaxation. The LSSVM SIP formulation has the lowest
time complexity thus it is more preferable for large scale problems. We verified the
efficiency in numerical experiment, which adopts two UCI digit recognition data
sets (pen-digit and optical digit) to compare the computational time of the proposed
algorithms.

3.9.2 QP Formulation Is More Efficient than SOCP

We investigated the efficiency of various formulations to solve the 1-SVM MKL.
As mentioned, the problems presented in (15) can be solved either as QCLP or as
SOCP. We applied Sedumi [39] to solve it as SOCP and MOSEK to solve it as
QCLP and SOCP. We found that solving the QP by MOSEK was most efficient
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Table 3.4 Convexity and complexity of MKL methods. n is the number of samples, p is
the number of kernels, k is the number of classes, τ is the number of iterations in SIP. The
complexity of LSSVM SIP depends on the algorithms used to solve the linear system. For
the conjugate gradient method, the complexity is between O(n1.5) and O(n2) [45].

Method convexity complexity
1-SVM SOCP L∞,L2 convex O((p+n)2n2.5)
1-SVM QCQP L∞ convex O(pn3)
(weighted) SVM SOCP L∞,L2 convex O((p+n)2(k +n)2.5)
(weighted) SVM QCQP L∞ convex O(pk2n2 +k3n3)
(weighted) SVM SIP L∞ convex O(τ(kn3 + p3))
(weighted) SVM SIP L2 relaxation O(τ(kn3 + p3))
(weighted) LSSVM SOCP L∞,L2 convex O((p+n)2(k +n)2.5)
(weighted) LSSVM QCQP L∞,L2 convex O(pk2n2 +k3n3)
(weighted) LSSVM SIP L∞ convex O(τ(n2 + p3))
(weighted) LSSVM SIP L2 relaxation O(τ(n2 + p3))

(142 seconds). In contrast, the MOSEK-SOCP method costed 2608 seconds and the
Sedumi-SOCP method took 4500 seconds, shown in Figure 3.1. This is probably
because when transforming a QP to a SOCP, a large number of additional variables
and constraints are involved, thus becoming more expensive to solve.

3.9.3 SIP Formulation Is More Efficient than QCQP

To compare the computational time of solving MKL classifiers based on QP and
SIP formulations, we scaled up the kernel fusion problem in three dimensions: the
number of kernels, the number of classes and the number of samples. As shown in
Figure 3.2 and 3.3, the SIP formulation of LSSVM MKL increases linearly with the
number of samples and kernels, and is barely influenced by the number of classes
(Figure 3.4). Solving the SIP based LSSVM MKL is significantly faster than solv-
ing SVM MKL because the former optimizes through iterations on a linear systems
whereas the latter iterates over quadratic systems. For LSSVM MKL, the SIP for-
mulation is also more preferable than the quadratic formulation. A quadratic system
is a memory intensive problem and its complexity increases exponentially with the
number of kernels and the number of samples in MKL. In contrast, the SIP formula-
tion separates the problem into a series of linear systems, whose complexity is only
determined by the number of samples and less affected by the number of kernels or
classes. As shown in step 3 of Algorithm 3.6.1, the coefficient matrix of the linear
system is a combined single kernel matrix and is constant with respect to multiple
classes, thus it can be solved very efficiently. We have also compared the CPU time
of L∞ and L2 LSSVM MKL on large data sets and their efficiency is very similar to
each other.
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Fig. 3.1 Comparison of SOCP and QCQP formulations to solve 1-SVM MKL using two
kernels. To simulate the ranking problem in 1-SVM, 3000 digit samples were retrieved as
training data. Two kernels were constructed respectively for each data source using RBF
kernel functions. The computational time was thus evaluated by combining the two 3000 ×
3000 kernel matrices.
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Fig. 3.2 Comparison of the QCQP and the SIP formulations to solve the SVM MKL and the
LSSVM MKL using different numbers of kernels. The benchmark data set was constructed
by 2000 samples labeled in 2 classes. We used different kernel widths to construct the RBF
kernel matrices and increase the number of kernel matrices from 2 to 200. The QCQP formu-
lations had memory issues when the number of kernels was larger than 60. The experiment
was carried on a dual Opteron 250 Unix system with 16Gb memory.
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Fig. 3.3 Comparison of the QCQP and SIP formulations to solve the SVM MKL and the
LSSVM MKL using different sizes of samples. The benchmark data set was made up of two
linear kernels and labels in 10 digit classes. The number of data points was increased from
1000 to 3000. The experiment was carried on a dual Opteron 250 Unix system with 16Gb
memory.
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Fig. 3.4 Comparison of the QCQP and SIP formulations to solve the SVM MKL and the
LSSVM MKL data sets containing different numbers of classes. The benchmark data was
made up of two linear kernel matrices and 2000 samples. The samples were equally and
randomly divided into various number of classes. The class number gradually increased from
2 to 20. The experiment was carried on a dual Opteron 250 Unix system with 16Gb memory.
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3.10 MKL Applied to Real Applications

The performance of the proposed L2-norm MKL and Ln-norm method was sys-
tematically evaluated and compared on six real benchmark data sets. On each data
set, we compared the L2 and Ln method with the L∞, L1 and regularized L∞ MKL
method. In the regularized L∞, we set the minimal boundary of kernel coefficients
θmin to 0.5, denoted as L∞(0.5). The experiments were categorized in four groups as
summarized in Table 3.5.

Table 3.5 Summary of data sets and algorithms used in five experiments

Nr. Data Set Problem Samples Classes Algorihtms Evaluation
1 disease relevant genes ranking 620 1 1-4 LOO AUC
2 prostate cancer genes ranking 9 1 1-4 AUC
3 rectal cancer patients classification 36 2 5-8,13-16 LOO AUC
4 endometrial disease classification 339 2 5-8,13-16 3-fold AUC

miscarriage classification 2356 2 5-8,13-16 3-fold AUC
pregnancy classification 856 2 9-12,17-20 3-fold AUC

3.10.1 Experimental Setup and Data Sets

Experiment 1: Disease Relevant Gene Prioritization by Genomic Data Fusion

In the first experiment, we demonstrated a disease gene prioritization application
to compare the performance of optimizing different norms in MKL. The computa-
tional definition of gene prioritization is mentioned in our earlier work [1, 15, 57].
We applied four 1-SVM MKL algorithms to combine kernels derived from 9 hetero-
geneous genomic sources (shown in section 1 of Additional file 1) to prioritize 620
genes that are annotated to be relevant for 29 diseases in OMIM. The performance
was evaluated by leave-one-out (LOO) validation: for each disease which contains
K relevant genes, one gene, termed the “defector” gene, was removed from the set
of training genes and added to 99 randomly selected test genes (test set). We used
the remaining K−1 genes (training set) to build our prioritization model. Then, we
prioritized the test set of 100 genes with the trained model and determined the rank
of that defector gene in test data. The prioritization function in (22) scored the rel-
evant genes higher and others lower, thus, by labeling the “defector” gene as class
“+1” and the random candidate genes as class “-1”, we plotted the Receiver Oper-
ating Characteristic (ROC) curves to compare different models using the error of
AUC (one minus the area under the ROC curve).

The kernels of data sources were all constructed using linear functions except
the sequence data that was transformed into a kernel using a 2-mer string kernel
function [31] (details shown in Table 3.6).

In total 9 kernels were combined in this experiment. The regularization param-
eter ν in 1-SVM was set to 0.5 for all comparing algorithms. Since there was no
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Table 3.6 Genomic data sources used in experiment 1 and 2

data source reference type features kernel function
EST [17] expressed sequence tagging annotations 167 linear
GO [5] GO annotations 8643 linear
Interpro [34] annotations 4708 linear
KEGG pathways [24] interactions 314 linear
Motif [2, 32] motif findings 674 linear
Sequence [53] amino acid sequences 20 2-mer string
Microarray Son et al. [41] expression array 158 linear
Microarray Su et al. [43] expression array 158 linear
Text [55, 57] gene by term vectors using GO vocabulary 7403 linear

hyper-parameter needed to be tuned in LOO validation, we reported the LOO re-
sults as the performance of generalization. For each disease relevant gene, the 99
test genes were randomly selected in each LOO validation run from the whole hu-
man protein-coding genome. We repeated the experiment 20 times and the mean
value and standard deviation were used for comparison.

Experiment 2: Prioritization of Recently Discovered Prostate Cancer Genes
by Genomic Data Fusion

In the second experiment we used the same data sources and kernel matrices as in
the previous experiment to prioritize 9 prostate cancer genes recently discovered
by Eeles et al. [16], Thomas et al. [49] and Gudmundsson et al. [21]. A training
set of 14 known prostate cancer genes was compiled from the reference database
OMIM including only the discoveries prior to January 2008. This training set was
then used to train the prioritization model. For each novel prostate cancer gene, the
test set contained the newly discovered gene plus its 99 closest neighbors on the
chromosome. Besides the error of AUC, we also compared the ranking position of
the novel prostate cancer gene among its 99 closet neighboring genes. Moreover, we
compared the MKL results with the ones obtained via the Endeavour application[1].

Experiment 3: Clinical Decision Support by Integrating Microarray and
Proteomics Data

The third experiment is taken from the work of Daemen et al. about the kernel-
based integration of genome-wide data for clinical decision support in cancer di-
agnosis [14]. Thirty-six patients with rectal cancer were treated by combination of
cetuximab, capecitabine and external beam radiotherapy and their tissue and plasma
samples were gathered at three time points: before treatment (T0); at the early ther-
apy treatment (T1) and at the moment of surgery (T2). The tissue samples were hy-
bridized to gene chip arrays and after processing, the expression was reduced to
6,913 genes. Ninety-six proteins known to be involved in cancer were measured
in the plasma samples, and the ones that had absolute values above the detection
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limit in less than 20% of the samples were excluded for each time point separately.
This resulted in the exclusion of six proteins at T0 and four at T1. “responders” were
distinguished from “non-responders” according to the pathologic lymph node stage
at surgery (pN-STAGE). The “responder” class contains 22 patients with no lymph
node found at surgery whereas the “non-responder” class contains 14 patients with
at least 1 regional lymph node. Only the two array-expression data sets (MA) mea-
sured at T0 and T1 and the two proteomics data sets (PT) measured at T0 and T1 were
used to predict the outcome of cancer at surgery.

Similar to the original method applied on the data [14], we used R BioConductor
DEDS as feature selection techniques for microarray data and the Wilcoxon rank
sum test for proteomics data. The statistical feature selection procedure was in-
dependent to the classification procedure, however, the performance varied widely
with the number of selected genes and proteins. We considered the relevance of
features (genes and proteins) as prior knowledge and systematically evaluated the
performance using multiple numbers of genes and proteins. According to the rank-
ing of statistical feature selection, we gradually increased the number of genes and
proteins from 11 to 36, and combined the linear kernels constructed by these fea-
tures. The performance was evaluated by LOO method, where the reason was two
folded: Firstly, the number of samples was small (36 patients); secondly, the ker-
nels were all constructed with a linear function. Moreover, in LSSVM classification
we proposed the strategy to estimate the regularization parameter λ in kernel fu-
sion. Therefore, no hyperparameter was needed to be tuned so we reported the LOO
validation result as the performance of generalization.

Experiment 4: Clinical Decision Support by Integrating Multiple Kernels

Our fourth experiment considered three clinical data sets. These three data sets were
derived from different clinical studies and were used by Daemen and De Moor [13]
as validation data for clinical kernel function development. Data set I contains clin-
ical information on 402 patients with an endometrial disease who underwent an
echographic examination and color Droppler [7]. The patients are divided into two
groups according to their histology: malignant (hyperplasia, polyp, myoma, and
carcinoma) versus benign (proliferative endometrium, secretory endometrium, at-
rophia). After excluding patients with incomplete data, the data contains 339 pa-
tients of which 163 malignant and 176 benign. Data set II comes from a prospective
observational study of 1828 women undergoing transvaginal sonography before 12
weeks gestation, resulting in data for 2356 pregnancies of which 1458 normal at
week 12 and 898 miscarriages during the first trimester [9]. Data set III contains
data on 1003 pregnancies of unknown location (PUL) [18]. Within the PUL group,
there are four clinical outcomes: a failing PUL, an intrauterine pregnancy (IUP), an
ectopic pregnancy (EP) or a persisting PUL. Because persisting PULs are rare (18
cases in the data set), they were excluded, as well as pregnancies with missing data.
The final data set consists of 856 PULs among which 460 failing PULs, 330 IUPs,
and 66 EPs. As the most important diagnostic problem is the correct classification
of the EPs versus non-EPs [12], the data was divided as 790 non-EPs and 66 EPs.
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To simulate a problem of combining multiple sources, for each data we created
eight kernels and combined them using MKL algorithms for classification. The eight
kernels included one linear kernel, three RBF kernels, three polynomial kernels and
a clinical kernel. The kernel width of the first RBF kernel is selected by empirical
rules as four times the average covariance of all the samples, the second and the
third kernel widths were respectively six and eight times the average covariance.
The degrees of the three polynomial kernels were set to 2, 3, and 4 respectively. The
bias term of polynomial kernels was set to 1. The clinical kernels were constructed
as proposed by Daemen and De Moor [14]. Let Kv(i, j) denotes the kernel function
for variable v between patients i and j, K (i, j) represents the global, heterogeneous
kernel matrix:

• Continuous and ordinal clinical variables: The same kernel function is proposed
for these variable types:

Kv(i, j) =
C−|vi− v j|

C
, (3.53)

where the constant value C is usually defined as the range between maximal value
between minimal value of variable v on the training set, given by

C = max−min. (3.54)

• Nominal clinical variables: For nominal variables, the kernel function between
patients i and j is defined as

Kv(i, j) =

{

1 if vi = v j

0 if vi �= v j
. (3.55)

• Final kernel for clinical data: Because each individual kernel matrix has been
normalized to the interval [0,1], the global, heterogeneous kernel matrix can be
defined as the sum of the individual kernel matrices, divided by the total num-
ber of clinical variables. This matrix then describes the similarity for a class of
patients based on a set of variables of different type.

For example, in the endometrial data set, we would like to calculate the kernel
function between two patients i and j for the variables age, number of miscar-
riages/abortions, and menopausal status, which are respectively continuous, ordinal
and nominal variables. Suppose that patient i is 23 years old, has 1 miscarriage and
the nominal menopausal status value is 2; patient j is 28 years old, has 2 miscarriage
and the menopausal status value is 3. Suppose that, based on the training data, the
minimal age is 20 and the maximal age is 100. The minimal miscarriage number is 0
and the maximal number is 5. Then for each variable, the kernel functions between
i and j are:
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Kage(i, j) = ((100−20)−|23−28|)/(100−20)= 0.9375 ,

Kmiscarriage(i, j) = ((5− 0)−|1−2|)/(5−0)= 0.8 ,

Kmenopausal(i, j) = 0 .

The overall kernel function between patient i and j is given by

K (i, j) =
1
3
(Kage +Kmiscarriage +Kmenopausal) = 0.5792 .

We noticed that the class labels of the pregnancy data were quite imbalanced (790
non-EPs and 66 EPs). In literature, the class imbalanced problem can be tackled by
modifying the cost of different classes in the objective function of SVM. Therefore,
we applied weighted SVM MKL and weighted LSSVM MKL on the imbalanced
pregnancy data. For the other two data sets, we compared the performance of SVM
MKL and LSSVM MKL with different norms.

The performance of classification was benchmarked using 3-fold cross valida-
tion. Each data set was randomly and equally divided into 3 parts. As introduced
in previous sections, when combining multiple pre-constructed kernels in LSSVM
based algorithms, the regularization parameter λ can be jointly estimated as the
coefficient of an identity matrix. In this case we don’t need to optimize any hyper-
parameter in the LSSVM. In the estimation approach of LSSVM and all approaches
of SVM, we therefore could use both training and validation data to train the clas-
sifier, and test data to evaluate the performance. The evaluation was repeated three
times, so each part was used once as test data. The average performance was re-
ported as the evaluation of one repetition. In the standard validation approach of
LSSVM, each dataset was partitioned randomly into three parts for training, val-
idation and testing. The classifier was trained on the training data and the hyper-
parameter λ was tuned on the validation data. When tuning the λ , its values were
sampled uniformly on the log scale from 2−10 to 210. Then, at optimal λ , the clas-
sifier was retrained on the combined training and validation set and the resulting
model is tested on the testing set. Obviously, the estimation approach is more effi-
cient than the validation approach because the former approach only requires one
training process whereas the latter needs to perform 22 times an additional training
(21 λ values plus the model retraining). The performance of these two approaches
was also investigated in this experiment.

3.10.2 Results

Experiment 1: Disease Relevant Gene Prioritization by Genomic Data Fusion

In the first experiment, the L2 1-SVM MKL algorithm performed the best (Error
0.0780). As shown in Table 3.7, the L∞ and L1 approaches all performed signifi-
cantly worse than the L2 approach. For example, in the current experiment, when
setting the minimal boundary of the kernel coefficients to 0.5, each data source was
ensured to have a minimal contribution in integration, thereby improving the L∞
performance from 0.0923 to 0.0806, although still lower than L2.
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Table 3.7 Results of experiment 1: prioritization of 620 disease relevant genes by genomic
data fusion. The error of AUC values is evaluated by LOO validation in 20 random repeti-
tions. The best performance (L2) is shown in bold. The p-values are compared with the best
performance using a paired t-test. As shown, the L2 method is significantly better than other
methods.

Error of AUC (mean) Error of AUC (std.) p-value
L∞ 0.0923 0.0035 2.98 ·10−17

L∞(0.5) 0.0806 0.0033 2.66 ·10−06

L1 0.0908 0.0042 1.92 ·10−16

L2 0.0780 0.0034 -
L1.5 0.0865 0.0046 3.54 ·10−07

L1.3333 0.0889 0.0047 7.83 ·10−09

L1.25 0.0903 0.0047 3.41 ·10−12

L1.2 0.0912 0.0048 6.49 ·10−14

L1.1667 0.0919 0.0048 2.63 ·10−17

In Figure 3.5 we illustrate the optimal kernel coefficients of different approaches.
As shown, the L∞ method assigned dominant coefficients to Text mining and Gene
Ontology data, whereas other data sources were almost discarded from integration.
In contrast, the L2 approach evenly distributed the coefficients over all data sources
and thoroughly combined them in integration. When combining multiple kernels,
sparse coefficients combine the model only with one or two kernels, making the
combined model fragile with respect to the uncertainty and novelty. In real prob-
lems, the relevance of a new gene to a certain disease may not have been investi-
gated thus a model solely based on Text and GO annotation is less reliable. L2 based
integration evenly combines multiple genomic data sources. In this experiment, the
L2 approach showed the same effect as the regularized L∞ by setting some mini-
mal boundaries on kernel coefficients. However, in the regularized L∞, the minimal
boundary θmin usually is predefined according to the “rule of thumb”. The main
advantage of the L2 approach is that the θmin values are determined automatically
for different kernels and the performance is shown to be better with the manually
selected values.
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Fig. 3.5 Optimal kernel coefficients assigned on genomic data sources in disease gene pri-
oritization. For each method, the average coefficients of 20 repetitions are shown. The three
most important data sources ranked by L∞ are Text, GO, and Motif. The coefficients on other
six sources are almost zero. The L2 method shows the same ranking on these three best data
sources as L∞, moreover, it also shows ranking for other six sources. Thus, as another advan-
tage of L2 method, it provides more refined ranking of data sources than L∞ method in data
integration. The coefficients optimized by some Ln-norm MKL are also illustrated. As shown,
when n approaches to 1, the coefficients become more evenly distributed on data sources.
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Experiment 2: Prioritization of Recently Discovered Prostate Cancer Genes
by Genomic Data Fusion

In the second experiment, recently discovered prostate cancer genes were prioritized
using the same data sources and algorithms as in the first experiment. As shown in
Table 3.6, the L2 method significantly outperformed other methods on prioritization
of gene CDH23 [49], and JAZF1 [49]. For 5 other genes (CPNE [49], EHBP1 [21],
MSMB [16], KLK3 [16], IL16 [49]), the performance of the L2 method was compa-
rable to the best result. In Table 3.8, we also presented the optimal kernel coefficients
and the prioritization results for individual sources. As shown, the L∞ algorithm as-
signed most of the coefficients to Text and Microarray data. Text data performs well
in the prioritization of known disease genes, however, does not always work the
best for newly discovered genes. This experiment demonstrates that when prioritiz-
ing novel prostate cancer relevant genes, the L2 MKL approach evenly optimized the
kernel coefficients to combine heterogeneous genomic sources and its performance
was significantly better than the L∞ method. Moreover, we also compared the kernel
based data fusion approach with the Endeavour gene prioritization software: for 6
genes the MKL approach performed significantly better than Endeavour.

Table 3.8 Results of experiment 2 with other norms: prioritization of prostate cancer genes
by genomic data fusion. For each novel prostate cancer gene, the first row shows the error of
AUC values and the second row lists the ranking position of the prostate cancer gene among
its 99 closet neighboring genes.

Name L∞ L∞(0.5) L1 L2 L1.5 L1.3333 L1.25 L1.2 L1.1667 Endeavour

CPNE
0.3030 0.2323 0.1010 0.1212 0.1111 0.1111 0.1111 0.1111 0.1212 -
31/100 24/100 11/100 13/100 12/10 12/10 12/10 12/10 13/10 70/100

CDH23
0.0606 0.0303 0.0202 0.0101 0.0202 0.0202 0.0202 0.0202 0.0202 -
7/100 4/100 3/100 2/100 3/10 3/10 3/10 3/10 3/10 78/100

EHBP1
0.5354 0.5152 0.3434 0.3939 0.3737 0.3636 0.3535 0.3535 0.3535 -
54/100 52/100 35/100 40/100 38/100 37/100 36/100 36/100 36/100 57/100

MSMB
0.0202 0.0202 0.0505 0.0303 0.0404 0.0505 0.0505 0.0505 0.0505 -
3/100 3/100 6/100 4/100 5/100 6/100 6/100 6/100 6/100 69/100

KLK3
0.3434 0.3535 0.2929 0.2929 0.3030 0.3030 0.3030 0.3030 0.3030 -
35/100 36/100 30/100 30/100 31/100 31/100 31/100 31/100 31/100 28/100

JAZF1
0.0505 0.0202 0.0202 0.0202 0.0202 0.0202 0.0202 0.0202 0.0202 -
6/100 3/100 3/100 3/100 3/100 3/100 3/100 3/100 3/100 7/100

LMTK2
0.3131 0.4646 0.8081 0.7677 0.7879 0.8081 0.8081 0.8081 0.8081 -
32/100 47/100 81/100 77/100 78/100 79/100 81/100 81/100 81/100 81/100

IL16
0 0.0101 0.0303 0.0101 0.0202 0.0303 0.0303 0.0303 0.0303 -
1/100 2/100 4/100 2/100 3/100 4/100 4/100 4/100 4/100 72/100

CTBP2
0.8283 0.5758 0.6364 0.6869 0.6667 0.6566 0.6465 0.6465 0.6465 -
83/100 58/100 64/100 69/100 67/100 66/100 65/100 65/100 65/100 38/100
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Experiment 3: Clinical Decision Support by Integrating Microarray and
Proteomics Data

The L2 MKL notion can be applied on various machine learning problems. The
first two experiments demonstrated a ranking problem using 1-SVM MKL to pri-
oritize disease relevant genes. In the third experiment we optimized the L∞, L1, L2,
and Ln-norm in SVM MKL and LSSVM MKL classifiers to support the diagnosis
of patients according to their lymph node stage in rectal cancer development. The
performance of the classifiers greatly depended on the selected features, therefore,
for each classifier we compared 25 feature selection results (as a grid of 5 numbers
of genes multiplied by 5 numbers of proteins). As shown in Table 3.10, the best
performance was obtained with LSSVM L1 (error of AUC=0.0325) using 25 genes
and 15 proteins. The L2 LSSVM MKL classifier was also promising because its
performance was comparable to the best result. In particular, for the two compared
classifiers (LSSVM and SVM), the L1 and L2 approaches significantly outperformed
the L∞ approach.

In LSSVM, the regularization parameter λ was estimated jointly as the kernel co-
efficient of an identity matrix. In LSSVM L1, λ was set to 1. In all SVM approaches,
the C parameter of the box constraint was set to 1. In the table, the row and column
labels represent the numbers of genes (g) and proteins (p) used to construct the ker-
nels. The genes and proteins were ranked by feature selection techniques (see text).
The AUC of LOO validation was evaluated without the bias term b (as the implicit
bias approach) because its value varied by each left out sample. In this problem,
considering the bias term decreased the AUC performance. The performance was
compared among eight algorithms for the same number of genes and proteins, where
the best values (the smallest Error of AUC) are represented in bold, the second best
ones in italic. The best performance of all the feature selection results is underlined.
The table presents the 25 best feature selection results of each method.

We also tried other Ln-norms in the same experimental settings and the results
are shown in Table 3.11. We found on some norms some specific results are further
improved (e.g., the combination of 15 proteins with 28 genes) but generally their
performance is similar to the L2 approach.

We also tried to regularize the kernel coefficients in L∞ MKL using different θmin

values. Nine different θmin were tried uniformly from 0.1 to 0.9 and the changes in
performance is shown in Figure 3.6. As shown, increasing the θmin value steadily
improves the performance of LSSVM MKL and SVM MKL on the rectal cancer
data sets. However, determining the optimal θmin was a non-trivial issue. When θmin

was smaller than 0.6, the performance of LSSVM MKL L∞ remained unchanged,
meaning that the “rule of thumb” value 0.5 used in experiment 1 is not valid here. In
comparison, when using the L2 based MKL classifiers, there is no need to specify
θmin and the performance is still comparable to the best performance obtained with
regularized L∞ MKL.
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Table 3.10 Results of experiment 3 using L∞, L1, and L2 MKL: classification of patients in
rectal cancer clinical decision using microarray and proteomics data sets

LSSVM L∞ SVM L∞
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0584 0.0519 0.0747 0.0812 0.0812 0.1331 0.1331 0.1331 0.1331 0.1364
25g 0.0390 0.0390 0.0519 0.0617 0.0649 0.1136 0.1104 0.1234 0.1201 0.1234
26g 0.0487 0.0487 0.0812 0.0844 0.0877 0.1266 0.1136 0.1234 0.1299 0.1364
27g 0.0617 0.0649 0.0812 0.0877 0.0942 0.1429 0.1364 0.1364 0.1331 0.1461
28g 0.0552 0.0487 0.0617 0.0747 0.0714 0.1429 0.1331 0.1331 0.1364 0.1396

LSSVM L∞(0.5) SVM L∞(0.5)
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0584 0.0519 0.0747 0.0812 0.0812 0.1266 0.1006 0.1266 0.1299 0.1331
25g 0.0390 0.0390 0.0519 0.0617 0.0649 0.1136 0.1071 0.1234 0.1201 0.1234
26g 0.0487 0.0487 0.0812 0.0844 0.0877 0.1136 0.1136 0.1201 0.1266 0.1331
27g 0.0617 0.0649 0.0812 0.0877 0.0942 0.1364 0.1364 0.1364 0.1331 0.1461
28g 0.0552 0.0487 0.0617 0.0747 0.0714 0.1299 0.1299 0.1299 0.1331 0.1364

LSSVM L1 SVM L1
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0487 0.0487 0.0682 0.0682 0.0747 0.0747 0.0584 0.0714 0.0682 0.0747
25g 0.0357 0.0325 0.0422 0.0455 0.0455 0.0584 0.0519 0.0649 0.0714 0.0714
26g 0.0357 0.0357 0.0455 0.0455 0.0455 0.0584 0.0519 0.0682 0.0682 0.0682
27g 0.0357 0.0357 0.0455 0.0487 0.0519 0.0617 0.0584 0.0714 0.0682 0.0682
28g 0.0422 0.0325 0.0487 0.0487 0.0519 0.0584 0.0584 0.0649 0.0649 0.0682

LSSVM L2 SVM L2
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0552 0.0487 0.0747 0.0779 0.0714 0.0909 0.0877 0.0974 0.0942 0.1006
25g 0.0390 0.0390 0.0487 0.0552 0.0552 0.0747 0.0649 0.0812 0.0844 0.0844
26g 0.0390 0.0455 0.0552 0.0649 0.0649 0.0747 0.0584 0.0812 0.0779 0.0779
27g 0.0422 0.0487 0.0552 0.0584 0.0649 0.0779 0.0812 0.0844 0.0812 0.0812
28g 0.0455 0.0325 0.0487 0.0584 0.0552 0.0812 0.0714 0.0812 0.0779 0.0812
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Table 3.11 Results of experiment 3 with other norms: classification of patients in rectal can-
cer clinical decision using microarray and proteomics data sets

LSSVM L1.5 SVM L1.5
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0552 0.0487 0.0649 0.0779 0.0714 0.0877 0.0747 0.0909 0.0909 0.0942
25g 0.0422 0.0325 0.0487 0.0519 0.0552 0.0682 0.0617 0.0779 0.0747 0.0779
26g 0.0422 0.0357 0.0519 0.0617 0.0617 0.0682 0.0552 0.0714 0.0682 0.0682
27g 0.0390 0.0455 0.0552 0.0552 0.0617 0.0714 0.0617 0.0747 0.0682 0.0682
28g 0.0390 0.0292 0.0455 0.0552 0.0519 0.0682 0.0649 0.0714 0.0682 0.0682

LSSVM L1.3333 SVM L1.3333
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0519 0.0487 0.0649 0.0779 0.0714 0.0812 0.0747 0.0812 0.0844 0.0844
25g 0.0422 0.0325 0.0422 0.0519 0.0552 0.0649 0.0617 0.0747 0.0714 0.0714
26g 0.0390 0.0357 0.0487 0.0584 0.0584 0.0649 0.0552 0.0714 0.0682 0.0682
27g 0.0422 0.0422 0.0552 0.0552 0.0617 0.0682 0.0584 0.0714 0.0682 0.0682
28g 0.0390 0.0292 0.0422 0.0552 0.0487 0.0617 0.0584 0.0682 0.0682 0.0682

LSSVM L1.25 SVM L1.25
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0519 0.0487 0.0649 0.0779 0.0682 0.0779 0.0649 0.0747 0.0779 0.0812
25g 0.0357 0.0325 0.0390 0.0487 0.0552 0.0649 0.0552 0.0682 0.0714 0.0714
26g 0.0357 0.0357 0.0455 0.0455 0.0455 0.0584 0.0519 0.0682 0.0682 0.0682
27g 0.0357 0.0390 0.0519 0.0552 0.0617 0.0682 0.0584 0.0714 0.0682 0.0682
28g 0.0390 0.0292 0.0422 0.0519 0.0487 0.0617 0.0584 0.0682 0.0682 0.0682

LSSVM L1.2 SVM L1.2
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0519 0.0487 0.0617 0.0779 0.0682 0.0779 0.0649 0.0747 0.0779 0.0812
25g 0.0357 0.0325 0.0390 0.0487 0.0552 0.0649 0.0552 0.0682 0.0714 0.0714
26g 0.0357 0.0357 0.0455 0.0552 0.0584 0.0649 0.0519 0.0714 0.0682 0.0682
27g 0.0357 0.0390 0.0487 0.0552 0.0617 0.0682 0.0584 0.0714 0.0682 0.0682
28g 0.0390 0.0292 0.0422 0.0519 0.0487 0.0617 0.0584 0.0682 0.0682 0.0682

LSSVM L1.1667 SVM L1.1667
14p 15p 16p 17p 18p 14p 15p 16p 17p 18p

24g 0.0519 0.0487 0.0617 0.0779 0.0682 0.0779 0.0617 0.0747 0.0779 0.0812
25g 0.0357 0.0325 0.0390 0.0487 0.0519 0.0649 0.0519 0.0682 0.0714 0.0714
26g 0.0357 0.0357 0.0422 0.0519 0.0584 0.0649 0.0519 0.0714 0.0682 0.0682
27g 0.0357 0.0390 0.0455 0.0519 0.0617 0.0682 0.0584 0.0714 0.0682 0.0682
28g 0.0390 0.0292 0.0422 0.0519 0.0487 0.0617 0.0584 0.0682 0.0682 0.0682
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Fig. 3.6 The effect of θmin on LSSVM MKL and SVM MKL classifier in rectal cancer diag-
nosis
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In LSSVM kernel fusion, we estimated the λ jointly as a coefficient assigned
to an identity matrix. Since the number of samples is small in this experiment, the
standard cross-validation approach to select the optimal λ on validation data was
not tried. To investigate whether the estimated λ value is optimal, we set λ to 51
different values uniformly sampled on the log2 scale from -10 to 40. We compared
the joint estimation result with the optimal classification performance among the
sampled λ values. The joint estimation results were found as optimal for most of
the results. An example is illustrated in Figure 3.7 as the integration of four kernels
constructed by 27 gene features and 17 protein features. The coefficients estimated
by the L∞-norm were almost 0 thus the λ values were very big. In contrast, the λ
values estimated by the non-sparse L2 method were at reasonable scales.
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Fig. 3.7 Benchmark of various λ values in LSSVM MKL classifiers on the rectal cancer
diagnosis problem

Experiment 4: Clinical Decision Support by Integrating Multiple Kernels

In the fourth experiment we validated the proposed approach on three clinical data
sets containing more samples. On the endometrial and miscarriage data sets, we
compared eight MKL algorithms with various norms. For the imbalanced pregnancy
data set, we applied eight weighted MKL algorithms. The results are shown in Ta-
ble 3.12, 3.13, and 3.14. On endometrial data, the difference of performance was
rather small. Though the two L2 methods were not optimal, they were comparable
to the best result. On miscarriage data, the L2 methods performed significantly bet-
ter than comparing algorithms. On pregnancy data, the weighted L2 LSSVM MKL
and weighted L1 LSSVM MKL performed significantly better than others.
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Table 3.12 Results of experiment 4 data set I: classification of endometrial disease patients
using multiple kernels derived from clinical data. The classifier with the best performance is
shown in bold. The p-values are compared with the best performance using a paired t-test.
The performance of L∞, L1, and L2 MKL classifiers is sorted from high to low according to
the p-values.

Classifier Mean - error of AUC Std. - error of AUC pvalue
LSSVM L∞ (0.5) MKL 0.2353 0.0133 -
SVM L∞ (0.5) MKL 0.2388 0.0178 0.4369
SVM L∞ MKL 0.2417 0.0165 0.2483
LSSVM L2 MKL 0.2456 0.0124 0.0363
SVM L2 MKL 0.2489 0.0178 0.0130
SVM L1 MKL 0.2513 0.0144 0.0057
LSSVM L1 MKL 0.2574 0.0189 9.98 ·10−5

LSSVM L∞ MKL 0.2678 0.0130 1.53 ·10−6

LSSVM L1.5 MKL 0.2427 0.0107
LSSVM L1.3333 MKL 0.2446 0.0100
LSSVM L1.25 MKL 0.2466 0.0114
LSSVM L1.2 MKL 0.2475 0.0115
LSSVM L1.1667 MKL 0.2477 0.0142

SVM L1.5 MKL 0.2360 0.0082
SVM L1.3333 MKL 0.2375 0.0081
SVM L1.25 MKL 0.2373 0.0085
SVM L1.2 MKL 0.2368 0.0086
SVM L1.1667 MKL 0.2369 0.0089
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Table 3.13 Results of experiment 4 data set II: classification of miscarriage patients using
multiple kernels derived from clinical data. The classifier with the best performance is shown
in bold. The p-values are compared with the best performance using a paired t-test. The
performance of L∞, L1, and L2 MKL classifiers is sorted from high to low according to the
p-values.

Classifier Mean - error of AUC Std. - error of AUC pvalue
SVM L2 MKL 0.1975 0.0037 -
LSSVM L2 MKL 0.2002 0.0049 0.0712
LSSVM L∞ (0.5) MKL 0.2027 0.0045 9.77 ·10−4

SVM L∞ MKL 0.2109 0.0040 9.55 ·10−12

SVM L∞ (0.5) MKL 0.2168 0.0040 1.79 ·10−12

LSSVM L1 MKL 0.2132 0.0029 1.11 ·10−13

SVM L1 MKL 0.2297 0.0038 1.10 ·10−15

LSSVM L∞ MKL 0.2319 0.0015 3.42 ·10−21

LSSVM L1.5 MKL 0.1892 0.0081
LSSVM L1.3333 MKL 0.1921 0.0096
LSSVM L1.25 MKL 0.1906 0.0074
LSSVM L1.2 MKL 0.1927 0.0080
LSSVM L1.1667 MKL 0.1882 0.0064

SVM L1.5 MKL 0.2116 0.0050
SVM L1.3333 MKL 0.2102 0.0042
SVM L1.25 MKL 0.2091 0.0056
SVM L1.2 MKL 0.2077 0.0038
SVM L1.1667 MKL 0.2093 0.0040
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Table 3.14 Results of experiment 4 data set III: classification of PUL patients using multiple
kernels derived from clinical data. The classifier with the best performance is shown in bold.
The p-values are compared with the best performance using a paired t-test. The performance
of classifiers is sorted from high to low according to the p-values.

Classifier Mean - error of AUC Std. - error of AUC pvalue
Weighted LSSVM L2 MKL 0.1165 0.0100 -
Weighted LSSVM L1 MKL 0.1243 0.0171 0.0519
Weighted LSSVM L∞ (0.5) MKL 0.1290 0.0206 0.0169
Weighted SVM L2 MKL 0.1499 0.0248 4.79 ·10−5

Weighted SVM L∞ MKL 0.1552 0.0210 1.02 ·10−6

Weighted SVM L∞ (0.5) 0.1551 0.0153 3.87 ·10−6

Weighted SVM L1 MKL 0.1594 0.0162 2.29 ·10−9

Weighted LSSVM L∞ MKL 0.1651 0.0174 4.41 ·10−10

Weighted LSSVM L1.5 MKL 0.1086 0.0067
Weighted LSSVM L1.3333 MKL 0.1076 0.0069
Weighted LSSVM L1.25 MKL 0.1068 0.0070
Weighted LSSVM L1.2 MKL 0.1112 0.0129
Weighted LSSVM L1.1667 MKL 0.1099 0.0100

Weighted SVM L1.5 MKL 0.1244 0.0152
Weighted SVM L1.3333 MKL 0.1213 0.0107
Weighted SVM L1.25 MKL 0.1234 0.0109
Weighted SVM L1.2 MKL 0.1228 0.0141
Weighted SVM L1.1667 MKL 0.1199 0.0137

To investigate whether the combination of multiple kernels performs as well as
the best individual kernel, we evaluated the performance of all the individual kernels
in Table 3.15. As shown, the clinical kernel proposed by Daemen and De Moor
[14] has better quality than linear, RBF and polynomial kernels on endometrial and
pregnancy data sets. For the miscarriage data set, the first RBF kernel has better
quality than the other seven kernels. Despite the difference in individual kernels,
the performance of MKL is comparable to the best individual kernel, demonstrating
that MKL is also useful to combine candidate kernels derived from a single data set.
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Table 3.15 Performance of individual kernels in Experiment 4. For each combination of
data set and algorithm, the best individual kernels are shown in bold. For each data set across
different single kernel algorithms, the best results are underlined. The best MKL performance
is also shown for comparison. Obviously, MKL performance is comparable to the results of
best individual kernels.

Data Set Classifier Kernel Error of AUC (mean) Error of AUC (std.)

endometrial

LSSVM

linear 0.2820 0.0175
RBF1 0.2923 0.0131
RBF2 0.2844 0.0118
RBF3 0.2915 0.0119
POLY1 0.3223 0.0088
POLY2 0.3226 0.0109
POLY3 0.3183 0.0128
Clinical 0.2126 0.0098

SVM

linear 0.2816 0.0192
RBF1 0.2971 0.0112
RBF2 0.2817 0.0098
RBF3 0.2877 0.0133
POLY1 0.3271 0.0141
POLY2 0.3214 0.0130
POLY3 0.3225 0.0135
Clinical 0.2021 0.0084

best MKL classifier 0.2353 0.0133

miscarriage

LSSVM

linear 0.2410 0.0022
RBF1 0.1993 0.0042
RBF2 0.2114 0.0029
RBF3 0.2182 0.0030
POLY1 0.2637 0.0020
POLY2 0.2607 0.0023
POLY3 0.2593 0.0019
Clinical 0.2301 0.0026

SVM

linear 0.2781 0.0065
RBF1 0.2098 0.0029
RBF2 0.2272 0.0042
RBF3 0.2352 0.0037
POLY1 0.2771 0.0013
POLY2 0.2741 0.0023
POLY3 0.2713 0.0016
Clinical 0.2441 0.0035

best MKL classifier 0.1892 0.0081

pregnancy

Weighted LSSVM

linear 0.1666 0.0118
RBF1 0.1763 0.0142
RBF2 0.1990 0.0146
RBF3 0.2137 0.0170
POLY1 0.2836 0.0154
POLY2 0.2639 0.0169
POLY3 0.2382 0.0180
Clinical 0.1160 0.0092

Weighted SVM

linear 0.1461 0.0074
RBF1 0.2127 0.0187
RBF2 0.2017 0.0254
RBF3 0.1906 0.0221
POLY1 0.1478 0.0184
POLY2 0.1541 0.0204
POLY3 0.1594 0.0179
Clinical 0.1601 0.0188

best MKL classifier 0.1068 0.0070
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In the results presented before, the regularization parameter λ in LSSVM classi-
fiers was jointly estimated in MKL. Since the clinical data sets contain a sufficient
number of samples to select the λ by cross validation, we systematically compared
the estimation approach with the standard validation approach to determine the λ
values. As shown in Table 3.16, the estimation approach based on L∞ performed
worse than the validation approach. This is probably because the estimated λ val-
ues are either very big or very small when the kernel coefficients were sparse. In
contrast, the L2 based estimation approach yielded comparable performance as the
validation approach. We also benchmarked the performance of LSSVM MKL clas-
sifiers using 21 different static λ values on the data sets and the results are shown in
Figure 3.8. In real problems, to select the optimal λ value in LSSVM is a non-trivial
issue and it is often optimized as a hyper-parameter on validation data. The main
advantage of L2 and Ln MKL is that the estimation approach is more computational
efficient than cross validation and yields a comparable performance.

Table 3.16 Comparison of the performance obtained by joint estimation of λ and standard
cross-validation in LSSVM MKL

Data Set Norm Validation Approach Estimation Approach

endometrial disease
L∞ 0.2625 ± 0.0146 0.2678 ± 0.0130
L2 0.2584 ± 0.0188 0.2456 ± 0.0124

miscarriage
L∞ 0.1873 ± 0.0100 0.2319 ± 0.0015
L2 0.1912 ± 0.0089 0.2002 ± 0.0049

pregnancy
L∞ 0.1321 ± 0.0243 0.1651 ± 0.0173
L2 0.1299 ± 0.0172 0.1165 ± 0.0100



82 3 Ln-norm Multiple Kernel Learning and Least Squares Support Vector Machines

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

λ value

E
rr

or
 o

f A
U

C

LSSVM Linf MKL
LSSVM L2 MKL

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

λ value

E
rr

or
 o

f A
U

C

LSSVM Linf MKL
LSSVM L2 MKL

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

λ value

E
rr

or
 o

f A
U

C

LSSVM Linf MKL fixed λ
LSSVM L2 MKL fixed λ

Fig. 3.8 The performance of LSSVM MKL classifiers varied by various λ values on en-
dometrial (top), miscarriage (middle), and pregnancy (bottom) disease data set
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3.11 Discussions

In this chapter we proposed a new L2 MKL framework as the complement to the ex-
isting L∞ MKL method proposed by Lanckriet et al.. The L2 MKL is characterized
by the non-sparse integration of multiple kernels to optimize the objective function
of machine learning problems. On four real bioinformatics and biomedical applica-
tions, we systematically validated the performance through extensive analysis. The
motivation for L2 MKL is as follows. In real biomedical applications, with a small
number of sources that are believed to be truly informative, we would usually prefer
a nonsparse set of coefficients because we would want to avoid that the dominant
source (like text mining or Gene Ontology) gets a coefficient close to 1. The reason
to avoid sparse coefficients is that there is a discrepancy between the experimen-
tal setup for performance evaluation and “real world” performance. The dominant
source will work well on a benchmark because this is a controlled situation with
known outcomes. We for example set up a set of already known genes for a given
disease and want to demonstrate that our model can capture the available informa-
tion to discriminate between a gene from this set and randomly selected genes (for
example, in a cross-validation setup). Given that these genes are already known to
be associated with the disease, this information will be present in sources like text
mining or Gene Ontology in the gene prioritization problem. These sources can then
identify these known genes with high confidence and should therefore be assigned
a high weight. However, when trying to identify truly novel genes for the same dis-
ease, the relevance of the information available through such data sources will be
much lower and we would like to avoid anyone data source to complete dominate
the other. Given that setting up a benchmark requires knowledge of the association
between a gene and a disease, this effect is hard to avoid. We can therefore expect
that if we have a smoother solution that performs as well as the sparse solution on
benchmark data, it is likely to perform better on real discoveries.

For the specific problem of gene prioritization, an effective way to address this
problem is to setup a benchmark where information is “rolled back” a number of years
(e.g., two years) prior to the discovery of the association between a gene and a disease
(i.e., older information is used so that the information about the association between
the gene and the disease is not yet contained in data sources like text mining or Gene
Ontology). Given that the date at which the association was discovered is different for
each gene, the setup of such benchmarks is notoriously difficult. In future work, we
plan to address this problem by freezing available knowledge at a given data and then
collecting novel discoveries and benchmarking against such discoveries in a fashion
reminiscent of CASP (Critical Assessment of protein Structure Prediction) [33].

The technical merit of the proposed L2 MKL lies in the dual forms of various ob-
jective functions. Though in the literature the issue of using different norms in MKL
is recently investigated by Kloft et al. [26, 27] and Kowalski et al. [28], their formu-
lations are based on the primal problems. We have theoretically proven that optimiz-
ing the L2 regularization of kernel coefficients in the primal problem corresponds to
solving the L2-norm of kernel components in the dual problem. Clarifying this dual
solution enabled us to directly solve the L2 problem as a convex SOCP. Moreover,
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the dual solution can be extended to various other machine learning problems. In
this paper we have shown the extensions of 1-SVM, SVM and LSSVM. As a matter
of fact, the L2 dual solution can also be applied in kernel based clustering analysis
and regression analysis for a wide range of applications.

Another main contribution of our paper is the novel LSSVM L2 MKL proposed
for classification problems. As known, when applying various machine learning
techniques to solve real computational biological problems, the performance may
depend on the data set and the experimental settings. When the performance evalu-
ations of various methods are comparable, but with one method showing significant
computational efficiency over other methods, this would be a “solid” advantage of
this method. In this paper, we have shown that the LSSVM MKL classifier based
on SIP formulation can be solved more efficiently than SVM MKL. Moreover, the
performance of LSSVM L2 MKL is always comparable to the best performance.
The SIP based LSSVM L2 MKL classifier has two main “solid advantages”: the
inherent time complexity is small and the regularization parameter λ can be jointly
estimated in the experimental setup. Due to these merits, LSSVM L2 MKL is a very
promising technique for problems pertaining to large scale data fusion.

3.12 Summary

In this chapter, we compared the effect of optimizing different norms in multiple ker-
nel learning in a systematic framework. The obtained results extend and enrich the
statistical framework of genomic data fusion proposed by Lanckriet et al. [29, 30]
and Bach et al. [6]. According to the optimization of different norms in the dual
problem of SVM, we proposed L∞, L1, L2, and Ln MKL, which are respectively cor-
responding to the L1 regularization, average combination, L2, and Lm regularization
of kernel coefficients addressed in the primal problem. We have proved that n = m

m−1 .
Six real biomedical data sets were investigated in this paper, where L2 MKL ap-

proach was shown advantageous over the L∞ method. We also proposed a novel
and efficient LSSVM L2 MKL classifier to learn the optimal combination of mul-
tiple large scale data sets. All the algorithms implemented in this paper are freely
accessible on http://homes.esat.kuleuven.be/∼sistawww/bioi/syu/l2lssvm.html.
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Banet, J., Gräf, S., Haider, S., Hammond, R., Holland, R., Howe, K.L., Howe, K., John-
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Chapter 4
Optimized Data Fusion for Kernel k-means
Clustering

4.1 Introduction

In this chapter, we will present a novel optimized kernel k-means clustering (OKKC)
algorithm to combine multiple data sources. The objective of k-means clustering
is formulated as a Rayleigh quotient function of the between-cluster scatter and
the cluster membership matrix. To incorporate multiple data sources, the between-
cluster matrix is calculated in the high dimensional Hilbert space where the hetero-
geneous data sources can be easily combined as kernel matrices. The objective to
optimize the kernel combination and the cluster memberships on unlabeled data is
non-convex. To solve it, we apply an alternating minimization [6] method to opti-
mize the cluster memberships and the kernel coefficients iteratively to convergence.
When the cluster membership is given, we optimize the kernel coefficients as ker-
nel Fisher Discriminant (KFD) and solve it as least squares support vector machine
(LSSVM). The objectives of KFD and k-means are combined in a unified model thus
the two components optimize towards the same objective, therefore, the proposed
alternating algorithm converges locally.

Our algorithm is based on the same motivation as Lange and Buhmann’s ap-
proach [17] to combine multiple information sources as similarity matrices (ker-
nel matrices). However, the two algorithmic approaches are different. Lange and
Buhmann’s algorithm uses non-negative matrix factorization to maximize posteriori
estimates to obtain the assignment of data points to partitions. To fuse the similar-
ity matrices, they minimize the cross-entropy to seek a good factorization and the
optimal weights assigned on similarity matrices. In our approach, the objective is
extended from k-means clustering and extended as dual representations to combine
multiple data sources. The cluster assignments of data points are relaxed as nu-
merical values and optimized as the eigenspectrum of the combined kernel matrix.
The coefficients of kernel matrices are optimized as a dual problem of the objective
function.

The proposed algorithm is related to the Nonlinear Adaptive Metric Learn-
ing (NAML) algorithm proposed for clustering [5], however, it has much simpler
structure. Though NAML is also based on multiple kernel extension of k-means

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 89–107.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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clustering, the mathematical objective and the solution are different from OKKC.
In NAML, the metric of k-means is constructed based on the Mahalanobis distance
and then extended to Hilbert space using the Representer Theorem [22]. NAML op-
timizes the objective iteratively at three levels: the cluster assignments, the kernel
coefficients and the projection in the Representer Theorem. In contrast, our pro-
posed method only optimizes the cluster assignments and kernel coefficients in
a bi-level procedure, which is simpler and more efficient than NAML. Moreover,
we formulate the least squares dual problem of kernel coefficient learning as semi-
infinite programming (SIP) [28], which is much more efficient and scalable than the
quadratically constrained quadratic programming (QCQP) [4] formulation adopted
in NAML.

This chapter is organized as follows. Section 4.2 introduces the objective of k-
means clustering. Section 4.3 presents the problem of k-means clustering in Hilbert
space and the extension to combine multiple data sources. In Section 4.4, we intro-
duce the proposed algorithm to solve the objective. The description of experimental
data and analysis of results are presented in Section 4.5. The final summary and
conclusion can be found in Section 4.6.

4.2 Objective of k-means Clustering

In k-means clustering, a number of k prototypes are used to characterize the data
and the partitions {C j} j=1,...,k are determined by minimizing the distortion as

minimize
k

∑
j=1

∑
xi∈C j

||xi− μ j||2, (4.1)

where xi is the i-th data sample, μ j is the prototype (mean) of the j-th partition C j,
k is the number of partitions (usually predefined). It is known that (4.1) is equal to
the trace maximization of the between-cluster scatter Sb [15, 29], given by

maximize
ai j

trace Sb, (4.2)

where ai j is the hard cluster assignment as ai j ∈ {0,1},∑k
j=1 ai j = 1 and

Sb =
k

∑
j=1

n j(μ j− μ0)(μ j− μ0)T , (4.3)

where μ0 is the global mean, n j = ∑N
i=1 ai j is the number of samples in C j . More-

over, the within-cluster scatter Sw and the total scatter St are respectively given by

Sw =
k

∑
j=1

∑
xi∈C|

(xi− μ j)(xi− μ j)T , (4.4)
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St =
N

∑
i=1

(xi−μ0)(xi− μ0)T , (4.5)

and

St = Sw +Sb . (4.6)

Without loss of generality, we assume that the data X ∈ R
M×N has been centered

such that the global mean is μ0 = 0. To express μ j in terms of X , we denote a scalar
cluster membership matrix A ∈ R

N×K as

Ai j =

{

1√n j
if xi ∈Cj

0 if xi /∈Cj,
(4.7)

then AT A = Ik and the objective of k-means in (4.2) can be equivalently written as

maximize
A

trace
(

AT XT XA
)

, (4.8)

subject to AT A = Ik, Ai j ∈ {0,
1√
n j
}.

It is known that the discrete constraint in (4.8) makes the problem NP-hard to solve
[10]. In literature, various methods have been proposed to the problem, such as the
iterative descent method [12], the expectation-maximization method [3], the spec-
tral relaxation method [7], and many others. In particular, the spectral relaxation
method relaxes the discrete cluster memberships of A to numerical values, thus (4.8)
is relaxed to

maximize
A

trace
(

AT XT XA
)

, (4.9)

subject to AT A = Ik, Ai j ∈R.

If A reduces to a one column vector, the problem in (4.9) is exactly a Rayleigh quo-
tient and the optimal A∗ is given by the eigenvector umax in the largest eigenvalue
pair {λmax,umax} of XT X . If A represents the relaxed assignment of multi-cluster
memberships, according to the Ky Fan introduced in chapter 2, let the eigenval-
ues of XT X be ordered as λmax = λ1 ≥, ...,≥ λN = λmin and the corresponding
eigenvectors as u1, ...,uN , then the optimal A∗ subject to A∗T A∗ = Ik is given by
A∗ = UkV , where Uk = [u1, ...,uk], and V is an arbitrary k× k orthogonal matrix,
and maxtrace

(

UT XT XU
)

= λ1 + .. + λk. Thus, for a given cluster number k, the
k-means can be solved as an eigenvalue problem and the discrete cluster member-
ships of the original A can be recovered using the iterative descend k-means method
on Uk or using the spectral ordering proposed by Ding and He [8].
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4.3 Optimizing Multiple Kernels for k-means

We further generalize the objective in (4.9) by applying the feature map φ(·) : R→
F on X , then the centered data in Hilbert space F is denoted as XΦ , given by

XΦ = [φ(x1)− μΦ
0 ,φ(x2)−μΦ

0 , ...,φ(xN)− μΦ
0 ], (4.10)

where φ(xi) is the feature map applied on the column vector of the i-th data point in
F , μΦ

0 is the global mean in F . The inner product XT X corresponds to XΦT XΦ in
Hilbert space and can be combined using the kernel trick K (xu,xv) = φ(xu)Tφ(xv),
where K (·, ·) is a Mercer kernel and K is the corresponding kernel matrix. We
denote G as the centered kernel matrix as G = PKP, where P is the centering matrix
P = IN − (1/N)1N1T

N , IN is the N×N identity matrix, 1N is a column vector of N
ones. Note that the trace of between-cluster scatter trace(SΦ

b ) takes the form of a
series of dot products in the centered Hilbert space, therefore the between-cluster
scatter is equivalent to

trace
(

SΦb
)

= trace
(

AT GA
)

. (4.11)

Now let’s assume that X1, ...,Xp are p different representations of the same N
objects. We are motivated to extend the clustering problem of a single data set
to multiple data sets, thus we can easily combine the centered kernel matrices
Gr, (r = 1, ..., p) in a parametric linear additive manner as

Ω =

{

p

∑
r=1

θrGr

∣

∣

∣

∣

∀θr ≥ 0,
p

∑
r=1

θr = 1

}

, (4.12)

where θr are coefficients of the kernel matrices, Gr are normalized kernel matrices
[23] centered in the Hilbert space. Kernel normalization ensures that φ(xi)Tφ(xi) =
1 thus makes the kernels comparable to each other. The k-means objective in (4.9)
is thus extended to F and multiple data sets are incorporated, given by

Q1: maximize
A,θ

trace
(

ATΩA
)

, (4.13)

subject to AT A = Ik, Ai j ∈ R,

Ω =
p

∑
r=1

θrGr,

θr ≥ 0, r = 1, ..., p
p

∑
r=1

θr = 1.

The idea of combining multiple kernels in k-means clustering is also mentioned in
some related work, for instance, the NAML algorithm proposed by Chen et al. [5].
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In their approach, the objective of k-means is formulated as the trace of Sw using
the Mahalanobis distance. Following their mathematical derivations, the k-means
objective on a single data source is given by

maximize
A

trace
(

AT XΦT (XΦXΦT +λ Iin f
)−1

XΦA
)

, (4.14)

subject to AT A = Ik, Ai j ∈ R,

where A is also a relaxed cluster assignment matrix, λ is a regularization parameter
on the covariance matrix, XΦ is the centered data defined identically as our paper.
Unfortunately, the objective in (4.14) is not explicitly computable because φ(x) may
be infinite dimensional, thus the covariance matrix XΦXΦT is an infinite size matrix.
To tackle this flaw, NAML algorithm involves linear discriminant analysis (LDA) to
find a linear projection J ∈R

m×d that maps φ(x) from the infinite dimensional space
in F to a d-dimensional space D . According to the Representer Theorem [22], the
optimal projection J is in the span of the images of data points in F as P = XΦQ,
where Q ∈R

N×d . Incorporating J in the objective of k-means, (4.14) is extended as

maximize
A,Q

trace
(

AT GQ
(

QT (GG+λG)Q
)−1

QT GA
)

(4.15)

subject to AT A = Ik, Ai j ∈ R,

which now becomes explicitly computable because XΦ is transformed as G on the
basis of kernel trick. However, to solve (4.15) one needs to optimize A and Q itera-
tively. To incorporate multiple centered kernels G1, ...,Gp, in NAML, the objective
in (4.15) is further extended as

maximize
A,Q,θ

trace
(

ATΩQ
(

QT (ΩΩ +λΩ)Q
)−1

QTΩA
)

(4.16)

subject to AT A = Ik, Ai j ∈ R,

Ω =
p

∑
r=1

θrGr,

θr ≥ 0,
p

∑
r=1

θr = 1, r = 1, ..., p,

which is a non-convex objective to optimize A, Q, and θ simultaneously. To solve
this, Chen et al. optimize A, Q, and θ iteratively in a tri-level optimization proce-
dure. Comparing with NAML, our proposed objective in (4.13) only optimizes A
and θ , which is also a non-convex problem to solve A and θ simultaneously. To
solve this, we propose a simple alternative minimization technique [6] to solve A
and θ iteratively as a bi-level optimization procedure.
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4.4 Bi-level Optimization of k-means on Multiple Kernels

To solve the objective in the problem Q1 (4.13), in the first phase we maximize
JQ1 with respect to A, keeping θ fixed. In the second phase we maximize JQ1

with respect to θ , keeping A fixed. The two-stage optimization is then repeated
until convergence (the proof will be shown later). When θ is fixed, the problem
is exactly the relaxed k-means clustering problem as discussed before. When A is
fixed, the problem of maximizing JQ1 reduces to the optimization of the coeffi-
cients θr assigned on kernels with the given cluster memberships. We will show
that when the memberships are given, the problem in Q1 can be formulated as KFD
in F .

4.4.1 The Role of Cluster Assignment

In problem Q1, when we maximize JQ1 with respect to A using the fixed θ , the ob-
tained N×k weighted cluster indicator matrix A can also be regarded as the one-vs-
others (1vsA) coding of the cluster assignments because each column of A actually
distinguishes one cluster from the other clusters. When A is given, the between-
cluster scatter matrix SΦb is fixed, thus the problem of optimizing the coefficients
of multiple kernel matrices is equivalent to optimizing the KFD [21] using multiple
kernel matrices. The scatter matrix of KFD is determined by the cluster assignments
of the data points, which can be obtained via an affinity function using A as the input,
given by

Fi j =

{

+1 if Ai j > 0, i = 1, ...,N, j = 1, ...,k

−1 if Ai j = 0, i = 1, ...,N, j = 1, ...,k ,
(4.17)

where F is an affinity matrix using {+1,−1} to discriminate the cluster assign-
ments. In the second iteration of our algorithm, to maximize JQ1 with respect to
θ using the fixed A, we formulate it as the optimization of KFD on multiple kernel
matrices using the affinity matrix F as input.

4.4.2 Optimizing the Kernel Coefficients as KFD

As known, for a single data set X , given labels of two classes, to find the linear
discriminant in F we need to maximize

maximize
w

wT SΦ
b w

wT (SΦ
w +ρI)w

, (4.18)

where w is the norm vector of the separating hyperplane in F , SΦ
b and SΦ

w are
respectively the between-class and the within-cluster scatters in F , ρ is the
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regularization term to ensure the positive definiteness of the denominator. For k mul-
tiple classes, denote W = [w1, ...,wk] as the matrix where each column corresponds
to the discriminative direction of 1vsA classes. An important property to notice
about the KFD objective is that it is invariant w.r.t. rescalings of w [9]. Hence,
we can always choose w (W ) such that the denominator is simply wT Sww = 1
(W T SwW = Ik) [12]. In other words, if the within-class scatter is isotropic, the norm
vectors of discriminant projections are merely the eigenvectors of the between-class
scatter [9]. Thus the objective of KFD can be simplified as a Rayleigh quotient for-
mulation. Moreover, the vectors in W are orthogonal to each other, therefore, for
convenience we can further rescale W to have W TW = Ik (it can be proved that
rescaling W does not change the clustering result). Thus, the KFD objective can be
expressed as

maximize
W

trace
(

W T SΦb W
)

, (4.19)

subject to W TW = Ik.

Based on the observations above, we formulate the objective of k-means using mul-
tiple kernels as

Q2: maximize
A,W,θ

trace
(

W T ATΩAW
)

, (4.20)

subject to AT A = Ik,

W TW = Ik,

Ω =
p

∑
r=1

θrGr,

θr ≥ 0, r = 1, ..., p
p

∑
r=1

θr = 1.

In the k-means step, we set W = Ik and optimize A (it can be easily proved that fixing
W as Ik does not change the clustering result). In the KFD step, we fix A and opti-
mize W and θ . Therefore, the two components optimize towards the same objective
as a Rayleigh quotient in F , which also guarantee that the iterative optimization of
these two steps will necessary converge to a local optimum. Moreover, in the KFD
step of the present problem, we are not interested in W which determines the sep-
arating hyperplane, instead, we only need the optimal coefficients θr assigned on
the multiple kernels. In particular, it is known that Fisher Discriminant Analysis is
related to the least squares approach [9], and the KFD is related to the least squares
support vector machines (LSSVM) proposed by Suykens et al. [26, 27]. Therefore
we can solve the KFD problem as LSSVM using multiple kernels.
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4.4.3 Solving KFD as LSSVM Using Multiple Kernels

In LSSVM, the cost function of the classification error is replaced by a least squares
term [27] and the inequalities in the constraint are replaced by equalities, given by

minimize
w,b,e

1
2

wT w+
1
2
λeT e (4.21)

subject to yi[wTφ(xi)+ b] = 1− ei, i = 1, ...,N,

where w is the norm vector of separating hyper-plane, xi are data samples, φ(·) is
the feature map, yi are the cluster assignments represented in the affinity function
F , λ > 0 is a positive regularization parameter, e are the least squares error terms.
Taking the conditions for optimality from the Lagrangian, eliminating w,e, defining
y = [y1, ...,yN ]T and Y = diag(y1, ...,yN), one obtains the following linear system
[26, 27]:

[

0 yT

y Y KY + I/λ

] [

b
α

]

=
[

0
1

]

, (4.22)

where α are unconstrained dual variables, K is the kernel matrix obtained by kernel
trick as K (xi,x j) = φ(xi)Tφ(x j). Without loss of generality, we denote β = Yα
such that (4.22) becomes

[

0 1T

1 K +Y−2/λ

] [

b
β

]

=
[

0
Y−11

]

. (4.23)

In (4.17), the elements of F are {−1,+1} such that we have Y−2 = IN , the coeffi-
cient matrix of the linear system in (23) then becomes a static value in the multi-class
case. In 1vsA coding, solving (4.22) requires to solve k number of linear problems
whereas in (4.22), the coefficient matrix is only factorized once such that the so-
lution of β q w.r.t. the multi-class assignments yq is very efficient to obtain. To in-
corporate multiple kernels, we follow the multiple kernel learning (MKL) approach
proposed by Lanckriet et al. [16] and formulate the LSSVM MKL as a QCQP prob-
lem, given by

minimize
β ,t

1
2

t +
1

2λ
βTβ −βTY−11 (4.24)

subject to
N

∑
i=1

βi = 0,

t ≥ β T Krβ , r = 1, ..., p.

In our problem, we use the normalized and centered kernel matrices of all samples
thus Kr is equal to Gr, the kernel coefficients θr correspond to the dual variables
bounded by the quadratic constraints in (4.24). The column vector of F, denoted
as Fj, j = 1, ...,k correspond to the k number of Y1, ...,Yk in (4.23), where Yj =
diag(Fj), j = 1, ...,k. The bias term b can be solved independently using the optimal
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β ∗ and the optimal θ∗, thus can be dropped out from (4.24). Concluding the previous
discussion, the SIP formulation of the LSSVM MKL is given by

max
θ ,u

u (4.25)

s.t. θr ≥ 0, r = 1, ..., p +1
p+1

∑
r=1

θr = 1,

p+1

∑
r=1

θr fr(β )≥ u, ∀β

fr(β ) =
k

∑
q=1

(

1
2
β T

q Grβ q−βT
q Y−1

q 1
)

, r = 1, ..., p +1.

The pseudocode to solve the LSSVM MKL in (4.25) is presented as follows:

Algorithm 4.4.1. SIP-LS-SVM-MKL(G1, ...,Gp,F)

Obtain the initial guess β (0) = [β (0)
1 , ...,β (0)

k ]
τ = 0
while (Δu > ε)

do

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

step1 : Fix β , solve θ (τ)then obtain u(τ)

step2 : Compute the kernel combination Ω (τ)

step3 : Solve the single LS-SVM for the optimal β (τ)

step4 : Compute f1(β (τ)), ..., fp+1(β (τ))

step5 : Δu = |1− ∑p+1
j=1 θ (τ)

j f j(β (τ))

u(τ) |
step6 : τ := τ +1

comment: τ is the indicator of the current loop

return (θ (τ),β (τ))

In Algorithm 4.4.1 G1, ...,Gp are centered kernel matrices of multiple sources, an
identity matrix is set as Gp+1 to estimate the regularization parameter, Y1, ...,Yk are
the N×N diagonal matrices constructed from F . The ε is a fixed constant as the
stopping rule of SIP iterations and is set empirically as 0.0001 in our implementa-
tion. Normally the SIP takes about ten iterations to converge. In Algorithm 4.1, Step
1 optimizes θ as a linear programming and Step 3 is simply a linear problem as

[

0 1T

1 Ω (τ)

] [

b(τ)

β (τ)

]

=
[

0
Y−11

]

, (4.26)

where Ω (τ) = ∑p+1
r=1 θ

(τ)
j Gr.
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4.4.4 Optimized Data Fusion for Kernel k-means Clustering
(OKKC)

Now we have clarified the two algorithmic components to optimize the objective Q2
as defined in (4.20). The main characteristic is that the cluster assignments and the
coefficients of kernels are optimized iteratively and adaptively until convergence.
The coefficients assigned on multiple kernel matrices leverage the effect of different
kernels in data integration to optimize the objective of clustering. Comparing to the
average combination of kernel matrices, the optimized combination approach may
be more robust to noisy and irrelevant data sources. We name the proposed algorithm
optimized kernel k-means clustering (OKKC) and its pseudocode is presented in
Algorithm 4.4.2 as follows:

Algorithm 4.4.2. OKKC(G1,G2, ...,Gp,k)

comment: Obtain the Ω (0) by the initial guess of θ (0)
1 , ...,θ (0)

p

A(0)← KERNEL K-MEANS (Ω (0),k)
γ = 0
while (ΔA > ε)

do

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

step1 : F (γ)← A(γ)

step2 : Ω (γ+1)← SIP-LS-SVM-MKL(G1,G2, ...,Gp,F (γ))
step3 : A(γ+1)← KERNEL K-MEANS(Ω (γ+1),k)
step4 : ΔA = ||A(γ+1)−A(γ)||2/||A(γ+1)||2
step5 : γ := γ +1

return (A(γ),θ (γ)
1 , ...,θ (γ)

p )

The iteration in Algorithm 4.4.2 terminates when the relaxed cluster membership
matrix A stops changing. The tolerance value ε is constant value as the stopping
rule of OKKC and in our implementation it is set to 0.05. In our implementation,
the final cluster assignment is obtained using the kernel k-means algorithm [11] on
the optimally combined kernel matrix Ω (τ).

4.4.5 Computational Complexity

The proposed OKKC algorithm has several advantages over some similar algo-
rithms proposed in the literature. The optimization procedure of OKKC is bi-
level, which is simpler than the tri-level architecture of the NAML algorithm.
The kernel coefficients in OKKC is optimized as LS-SVM MKL, which can be
solved efficiently as a convex SIP problem. The kernel coefficients are obtained
as iterations of two linear systems: a single kernel LSSVM problem and a lin-
ear problem to optimize the kernel coefficients. The time complexity of OKKC is
O{γ[N3 + τ(N2 + p3)]+ lkN2}, where γ is the number of OKKC iterations, O(N3)
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is the complexity of eigenvalue decomposition, τ is the number of SIP iterations,
the complexity of LS-SVM based on conjugate gradient method is O(N2), the com-
plexity of optimizing kernel coefficients is O(p3), l is the fixed iteration of k-means
clustering, p is the number of kernels, and O(lkN2) is the complexity of k-means
to finally obtain the cluster assignment. In contrast, the complexity of NAML al-
gorithm is O{γ(N3 + N3 + pk2N2 + pk3N3)}, where the complexities of obtaining
cluster assignment and projection are all O(N3), the complexity of solving QCQP
based problem is O(pk2N2 + pk3N3), and k is the number of clusters. Obviously,
the complexity of OKKC is much smaller than NAML.

4.5 Experimental Results

The proposed algorithm is evaluated on public data sets and real application data to
study the empirical performance. In particular, we systematically compare it with
the NAML algorithm on clustering performance, computational efficiency and the
effect of data fusion.

Table 4.1 Summary of the data sets

Data set Dimension Instance Class Kernel function Nr. of kernels

iris 4 150 3 RBF 10
wine 13 178 3 RBF 10
yeast 17 384 5 RBF 10
satimage 36 480 6 RBF 10
pen digit 16 800 10 RBF 10
disease - 620 2 - 9
GO 7403 620 2 linear
MeSH 15569 620 2 linear
OMIM 3402 620 2 linear
LDDB 890 620 2 linear
eVOC 1659 620 2 linear
KO 554 620 2 linear
MPO 3446 620 2 linear
Uniprot 520 620 2 linear

journal 669860 1424 7 linear 4

4.5.1 Data Sets and Experimental Settings

We adopt five data sets from the UCI machine learning repository and two data sets
from real-life bioinformatics and scientometrics applications. The five UCI data sets
are: Iris, Wine, Yeast, Satimage and Pen digit recognition. The original Satimage
and Pen digit data contain a large amount of data points, so we sample 80 data
points from each class and construct the data sets. For each data set, we generate ten
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RBF kernel matrices using different kernel widths σ in the RBF function κ(xi,x j) =
exp(−||xi− x j||2/2σ2). We denote the average sample covariance of data set as c,
then the σ values of the RBF kernels are respectively equal to { 1

4 c, 1
2 c,c, ...,7c,8c}.

These ten kernel matrices are combined to simulate a kernel fusion problem for
clustering analysis.

We also apply the proposed algorithm on data sets of two real applications. The
first data set is taken from a bioinformatics application using biomedical text min-
ing to cluster disease relevant genes [33]. The details will be presented in the next
chapter. We select controlled vocabularies (CVs) from nine bio-ontologies for text
mining and store the terms as bag-of-words respectively. The nine CVocs are used
to index the title and abstract of around 290,000 human gene-related publications
in MEDLINE to construct the doc-by-term vectors. According to the mapping of
genes and publications in Entrez GeneRIF, the doc-by-term vectors are averagely
combined as gene-by-term vectors, which are denoted as the term profiles of genes
and proteins. The term profiles are distinguished by the bio-ontologies where the
CVocs are selected and labeled as GO, MeSH, OMIM, LDDB, eVOC, KO, MPO,
SNOMED and UniProtKB. Using these term profiles, we evaluate the performance
of clustering a benchmark data set consisting of 620 disease relevant genes catego-
rized in 29 genetic diseases. The numbers of genes categorized in the diseases are
very imbalanced, moreover, some genes are simultaneously related to several dis-
eases. To obtain meaningful clusters and evaluations, we enumerate all the pairwise
combinations of the 29 diseases (406 combinations). In each run, the related genes
of each paired diseases combination are selected and clustered into two groups,
then the performance is evaluated using the disease labels. The genes related to both
diseases in the paired combination are removed before clustering (totally there are
less than 5% genes being removed). Finally, the average performance of all the 406
paired combinations is used as the overall clustering performance.

The second real-life data set is taken from a scientometrics application [18]. The
raw experimental data contains more than six million published papers from 2002
to 2006 (e.g., articles, letters, notes, reviews) indexed in the Web of Science (WoS)
data based provided by Thomson Scientific. In our preliminary study of clustering
of journal sets, the titles, abstracts and keywords of the journal publications are in-
dexed by text mining program using no controlled vocabulary. The index contains
9,473,601 terms and we cut the Zipf curve [34] of the indexed terms at the head and
the tail to remove the rare terms, stopwords and common words, which are known as
usually irrelevant, also noisy for the clustering purpose. After the Zipf cut, 669,860
terms are used to represent the journal publications in vector space models where
the terms are attributes and the weights are calculated by four weighting schemes:
TF-IDF, IDF, TF and binary. The publication-by-term vectors are then aggregated
to journal-by-term vectors as the representations of journal data. From the WoS
database, we refer to the Essential Science Index (ESI) labels and select 1424 jour-
nals as the experimental data in this paper. The distributions of ESI labels of these
journals are balanced because we want to avoid the affect of skewed distributions in
cluster evaluation. In experiment, we cluster the 1424 journals simultaneously into
7 clusters and evaluate the results with the ESI labels.
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We summarize the number of samples, classes, dimensions and the number of
combined kernels in Table 4.1. The disease and journal data sets have very high di-
mensionality so the kernel matrices are constructed using the linear kernel functions.
The kernel matrices are normalized and centered. The data sets used in experiments
are provided with labels, therefore the performance is evaluated as comparing the
automatic partitions with the labels using Adjusted Rand Index (ARI) [14] and Nor-
malized Mutual Information (NMI) [25].

4.5.2 Results

The overall clustering results are shown in Table 4.2. For each data set, we present
the best and the worst performance of clustering obtained on single kernel ma-
trix. We compared three different approaches to combine multiple kernel matrices:
the average combination of all kernel matrices in kernel k-means clustering, the
proposed OKKC algorithm and the NAML algorithm. As shown, the performance
obtained by OKKC is comparable to the results of the best individual kernel matri-
ces. OKKC is also comparable to NAML on all the data sets, moreover, on Wine,
Pen, Disease, and Journal data, OKKC performs significantly better than NAML
(as shown in Table 4.3). The computational time used by OKKC is also smaller
than NAML. Since OKKC and NAML use almost the same number of iterations to
converge, the efficiency of OKKC is mainly brought by its bi-level optimization pro-
cedure and the linear system solution based on SIP formulation. In contrast, NAML
optimizes three variables in a tri-level procedure and involves many inverse compu-
tation and eigenvalue decompositions on kernel matrices. Furthermore, in NAML,
the kernel coefficients are optimized as a QCQP problem. When the number of data
points and the number of classes are large, QCQP problem may have memory is-
sues. In our experiment, when clustering Pen digit data and Journal data, the QCQP
problem causes memory overflow on a laptop computer. Thus we had to solve them
on a Unix system with larger amount of memory. On the contrary, the SIP formula-
tion used in OKKC significantly reduces the computational burden of optimization
and the clustering problem usually takes 25 to 35 minutes on an ordinary laptop.

We also compared the kernel coefficients optimized by OKKC and NAML on all
the data sets. As shown in Figure 4.1, NAML algorithm often selects a single ker-
nel for clustering (a sparse solution for data fusion). In contrast, OKKC algorithm
often combines two or three kernel matrices in clustering. When combining p ker-
nel matrices, the regularization parameters λ estimated in OKKC are shown as the
coefficients of an additional (p+1)-th identity matrix (the last bar in the figures, ex-
cept on disease data because λ is also pre-selected), moreover, in OKKC it is easy
to see that λ = (∑p

r=1 θr)/θp+1. The λ values of NAML are selected empirically
according to the clustering performance. Practically, to determine the optimal regu-
larization parameter in clustering analysis is hard because the data is unlabeled thus
the model cannot be validated. Therefore, the automatic estimation of λ in OKKC
is useful and reliable in clustering.
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Table 4.2 Significance test of clustering performance

data OKKC vs. single OKKC vs. NAML OKKC vs. average
ARI NMI ARI NMI ARI NMI

iris 0.2213 0.8828 0.7131 0.5754 0.2282 0.9825
wine 0.2616 0.1029 0.0085(+) 0.0048(+) 0.0507 0.0262(+)
yeast 0.1648 0.0325(-) 0.1085 0.0342(-) 0.2913 0.0186(-)
satimage 0.1780 0.4845 0.6075 0.8284 0.5555 0.9635
pen 0.0154(+) 0.2534 3.9e-11(+) 3.7e-04(+) 0.4277 0.0035(+)
disease 1.3e-05(+) 1.9e-05(+) 4.6e-11(+) 3.0e-13(+) 7.8e-11(+) 1.6e-12(+)
journal 0.4963 0.2107 0.0114(+) 0.0096(+) 0.8375 0.7626

The presented numbers are p values evaluated by paired t-tests on 20 random repetitions.
The experimental settings are mentioned in Table II. The null hypothesis (the average
performance of the comparing approaches is the same) is rejected at the significance level
of 0.05. “+” represents that the performance of OKKC is higher than the comparing ap-
proaches. “-” means that the performance of OKKC is lower.

When using spectral relaxation, the optimal cluster number of k-means can be
estimated by checking the plot of eigenvalues [30]. We can also use the same tech-
nique to find the optimal cluster number of data fusion using OKKC. To demonstrate
this, we clustered all the data sets using different k values and plot the eigenvalues
in Figure 4.2. As shown, the obtained eigenvalues with various k are slightly differ-
ent with each other because a different k yields a different set of optimized kernel
coefficients. However, we also find that even the kernel fusion results are different,
the plots of eigenvalues obtained from the combined kernel matrix are quite similar
to each other. In practical explorative analysis, one may be able to determine the op-
timal and consistent cluster number using OKKC with various k values. The results
show that OKKC can also be applied to find the clusters using the eigenvalues.

4.6 Summary

This chapter presented OKKC, a data fusion algorithm for kernel k-means clus-
tering, where the coefficients of kernel matrices in the combination are optimized
automatically. The proposed algorithm extends the classical k-means clustering al-
gorithm in Hilbert space, where multiple heterogeneous data sats are represented as
kernel matrices and combined for data fusion. The objective of OKKC is formu-
lated as a Rayleigh quotient function of two variables, the cluster assignment A and
the kernel coefficients θ , which are optimized iteratively towards the same objec-
tive. The proposed algorithm is shown to converge locally and implemented as an
integration of kernel k-means clustering and LSSVM MKL.

The experimental results on UCI data sets and real application data sets vali-
dated the proposed method. The proposed OKKC algorithm obtained comparable
result with the best individual kernel matrix and the NAML algorithm. Moreover, in
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Fig. 4.1 Kernel coefficients learned by OKKC and NAML. For OKKC applied on iris, wine,
yeast, satimage, pen and journal data, the last coefficients correspond to the inverse values of
the regularization parameters

several data sets it performs significantly better. Because of its simple optimization
procedure and low computational complexity, the computational time of OKKC is
always smaller than the NAML. The proposed algorithm also scales up well on large
data sets thus it is more easy to run on ordinary machines.

In future work, the proposed algorithm is also possible to incorporate OKKC
with overlapping cluster membership, known as “soft clustering”. In many appli-
cations such as bioinformatics, a gene or protein may be simultaneously related to
several biomedical concepts so it is necessary to have a “soft clustering” algorithm
to combine multiple data sources.
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Fig. 4.2 Eigenvalues of optimally combined kernels of data sets obtained by OKKC. For
each data set we try four to six k values including the one suggested by the reference labels,
which is shown as a bold dark line, other values are shown as grey lines. The eigenvalues in
disease gene clustering are not shown because there are 406 different clustering tasks.
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Chapter 5
Multi-view Text Mining for Disease Gene
Prioritization and Clustering

So oft in theologic wars,
The disputants, I ween,

Rail on in utter ignorance
Of what each other mean,

And prate about an Elephant
Not one of them has seen!

– “The Blind Men and the Elephant”,
John Godfrey Saxe (1816-1887) –

5.1 Introduction

Text mining helps biologists to collect disease-gene associations automatically from
large volumes of biological literature. During the past ten years, there was a surge
of interests in automatic exploration of the biomedical literature, ranging from the
modest approach of annotating and extracting keywords from text to more ambi-
tious attempts such as Natural Language Processing, text-mining based network
construction and inference. In particular, these efforts effectively help biologists to
identify the most likely disease candidates for further experimental validation. The
most important resource for text mining applications now is the MEDLINE database
developed by the National Center for Biotechnology Information (NCBI) at the Na-
tional Library of Medicine (NLM). MEDLINE covers all aspects of biology, chem-
istry, and medicine, there is almost no limit to the types of information that may
be recovered through careful and exhaustive mining [45]. Therefore, a successful
text mining approach relies much on an appropriate model. To create a text mining
model, the selection of Controlled Vocabulary (CV) and the representation schemes
of terms occupy a central role and the efficiency of biomedical knowledge discovery
varies greatly between different text mining models. To address these challenges,
we propose a multi-view text mining approach to retrieve information from different
biomedical domain levels and combine them to identify the disease relevant genes

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 109–144.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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through prioritization. The view represents a text mining result retrieved by a spe-
cific CV, so the concept of multi-view text mining is featured as applying multiple
controlled vocabularies to retrieve the gene-centric perspectives from free text pub-
lications. Since all the information is retrieved from the same MEDLINE database
but only varied by the CV, the term view also indicates that the data consists of
multiple domain-based perspectives of the same corpus. We expect that the corre-
lated and complementary information contained in the multi-view textual data can
facilitate the understanding about the roles of genes in genetic diseases.

5.2 Background: Computational Gene Prioritization

Genome-wide experimental methods to identify disease causing genes, such as
linkage analysis and association studies, are often overwhelmed by large sets of can-
didate genes produced by the high throughput techniques [43]. In contrast, the low-
throughput validation of candidate disease genes is time-consuming and expensive.
Computational prioritization methods can rank candidate disease genes from these
gene sets according their likeliness of being involved in a certain disease. More-
over, a systematic gene prioritization approach that integrates multiple genomic data
sets provides a comprehensive in silico analysis on the basis of multiple knowl-
edge sources. Several computational gene prioritization applications have been pre-
viously described. GeneSeeker [17] provides a web interface that filters candidate
disease genes on the basis of cytogenetic location, phenotypes, and expression pat-
terns. DGP (Disease Gene Prediction) [33] assigns probabilities to genes based on
sequence properties that indicate their likelihood to the patterns of pathogenic muta-
tions of certain monogenetic hereditary disease. PROSPECTR [2] also classifies dis-
ease genes by sequence information but uses a decision tree model. SUSPECTS [1]
integrates the results of PROSPECTR with annotation data from Gene Ontology
(GO), InterPro, and expression libraries to rank genes according to the likelihood
that they are involved in a particular disorder. G2D (Candidate Genes to Inherited
Diseases) [40] scores all concepts in GO according to their relevance to each disease
via text mining. Then, candidate genes are scored through a BLASTX search on ref-
erence sequence. POCUS [56] exploits the tendency for genes to be involved in the
same disease by identifiable similarities, such as shared GO annotation, shared In-
terPro domains or a similar expression profile. eVOC annotation [53] is a text min-
ing approach that performs candidate gene selection using the eVOC ontology as
a controlled vocabulary. It first associates eVOC terms and disease names accord-
ing to co-occurrence in MEDLINE abstracts, and then ranks the identified terms
and selects the genes annotated with the top-ranking terms. In the work of Franke
et al. [20], a functional human genetic network was developed that integrates in-
formation from KEGG, BIND, Reactome, human protein reference database, Gene
Ontology, predicted-protein interaction, human yeast two-hybrid interactions, and
microrray coexpressions. Gene prioritization is performed by assessing whether
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genes are close together within the connected gene network. Endeavour [3] takes a
machine learning approach by building a model on a training set, then that model is
used to rank the test set of candidate genes according to the similarity to the model.
The similarity is computed as the correlation for vector space data and BLAST score
for sequence data. Endeavour incorporates multiple genomic data sources (microar-
ray, InterPro, BIND, sequence, GO annotation, Motif, Kegg, EST, and text mining)
and builds a model on each source of individual prioritization results. Finally, these
results are combined through order statistics to a final score that offers an insight on
how related a candidate gene to the training genes on the basis of information from
multiple knowledge sources. More recently, CAESAR [22] has been developed as a
text mining based gene prioritization tool for complex traits. CAESAR ranks genes
by comparing the standard correlation of term-frequency vectors (TF profiles) of an-
notated terms in different ontological descriptions and integrates multiple ranking
results by arithmetical (min, max, and average) and parametric integrations.

To evaluate the prioritization model, genes that are known relevant to the same
disease are constructed as a disease-specific training set. A prioritization model is
first built on this training set, then that model is used to rank a test set of candidate
genes according to their similarity to the model. The performance is evaluated by
checking the positions of the real relevant genes in the ranking of a test set. A perfect
prioritization should rank the gene with the highest relevance to the biomedical con-
cept, represented by the training set, at the highest position (at the top). The interval
between the real position of that gene with the top is similar to the error. For a pri-
oritization model, minimizing this error is equal to improving the ranking position
of the most relevant gene and in turn it reduces the number of irrelevant genes to be
investigated in biological experimental validation. So a model with smaller error is
more efficient and accurate to find disease relevant genes and that error is also used
as a performance indicator for model comparison [63]. The ranking of candidate
genes is usually based on scores. Assuming larger score represents higher similarity
towards the prioritization model, in benchmark study, one can label the real relevant
genes as class “+1” and other irrelevant genes as class “-1” and plot the Receiver
operating characteristic (ROC) curves to compare different models by the values of
area under the ROC curve (AUC). The error of prioritization is thus equivalent to 1
minus the AUC value.

5.3 Background: Clustering by Heterogeneous Data Sources

Clustering by multiple (heterogeneous) data sources is an ongoing topic with many
interests. Recently, Wolf et al. [60] have investigated the memory persistence
(long term or short term memory) of bacteria by observing a strain of Bacillus
subtilis at different experimental conditions and developmental times. These mul-
tiple observations are then analyzed by clustering to quantify the mutual informa-
tion the bacterium “remembers” at different stages. Some other approaches address
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consensus clustering to combine multiple partitions generated on a single dataset,
for instance, the analysis of microarray data by Monti et al. [37] and Yu et al. [65].
Asur et al. [4] adopt consensus clustering methods to combine matrices generated by
3 different types of measurements (topological measure, mutual information mea-
sure and GO annotations) to cluster Protein-Protein Interaction networks. Lange
and Buhmann [30] merge similarity matrices and phrase multi-source clustering as
a non-negative matrix factorization problem. The kernel fusion problem for clus-
tering is connected to many active works in machine learning and optimization, for
instance, the framework of linear kernel fusion for binary supervised learning task
proposed by Lanckriet et al. [29] and Bach et al. [7] and its extension to multi-
classes problem proposed by Ye et al. [62]. Sonnenburg et al. simplify the compu-
tational burden of kernel fusion by Semi-infinite programming (SIP) [47]. On the
basis of kernel fusion, Chen et al. [11] propose a clustering algorithm called nonlin-
ear adaptive distance metric learning as an analogue of Lanckriet et al.’s statistical
framework for clustering. Yu et al. [64] propose a clustering algorithm, OKKC,
for heterogeneous data fusion and combine text mining data and bibliometrics data
to explore the structure mapping of journal sets [32]. In this Chapter, we systemati-
cally evaluate and compare 12 representative algorithms from two main approaches,
ensemble clustering and kernel fusion, to combine the multi-view data. Our exper-
imental result shows that Ward linkage, OKKC, and EACAL perform better than
other methods. The number of disease genes in our benchmark data is imbalanced,
which may partially affect the evaluation of clustering results.

5.4 Single View Gene Prioritization: A Fragile Model with
Respect to the Uncertainty

In our previous work [63], we found the configuration of text mining model has
a strong impact on the quality of prioritization model. The term configuration de-
notes the triplet choice of domain vocabulary, representation scheme, and ranking
algorithm in text mining based gene prioritization. According to the result of full
benchmark experiments shown in Table 5.1, the improperly selected configuration
could lead to a large error (no-voc, single max, TFIDF, 0.3757) on prioritization,
which is more than 7 times larger than the error of a carefully selected configuration
(eVOC, 1-SVM, IDF, 0.0477). If the prioritization result is used as the reference
list in biological validation, the difference of efficiency gained from a good config-
uration and a bad configuration will be remarkable. However, how to determine the
good configuration for prioritization is a non-trivial issue.

5.5 Data Fusion for Gene Prioritization: Distribution Free
Method

In Endeavour [3, 55], the combination of multi-source prioritization is based on
a generic model named order statistics. A Q statistics is calculated from all rank
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ratios using the joint cumulative distribution of an N-dimensional order statistics as
previously done by Stuart et al. [51]:

Q(r1,r2, ...,rN) = N!
∫ r1

0

∫ r2

s1

...

∫ rN

rN−1

dsNdsN−1...ds1 (5.1)

To reduce the complexity, Aerts et al. implement a much faster alternative formula
[3], given by

Vk =
k

∑
i=1

(−1)i−1 Vk−i

i!
ri

N−k+1 (5.2)

with Q(r1,r2, ...,rN) = N!VN , V0 = 1, and ri is the rank ratio for data source i. The
Q statistics for randomly and uniformly drawn rank ratios is found approximately
distributed as a beta distribution when N ≤ 5, and a gamma distribution for N > 5.
According to the cumulative distribution, we obtain P-value for every Q statistic
from the order statistics [3]. In this way, the original N rankings are combined to a
ranking of p-values, as shown in Figure 5.1. The main problem for the generic model
based integration is that the performance highly relies on the distribution estimation
of the gene prioritization scores. In text mining, the genes are often expressed as
sparse vectors spanned in very high dimensional space, therefore, to estimate the
distribution of the scores (“distances”) among these genes is not always reliable,
e.g., “the Pearson variation of the corresponding distance distribution degrades to
0 with increasing dimensionality”[8]. To tackle this problem, one may refine the
estimation by designing new distance functions taking the high dimensionality af-
fect into account, such as the work presented by Hsu and Chen [25]. Alternatively,
one may adopt the algorithms based on statistical learning theory [58] where the er-
ror bound is distribution-free. De Bie et al. [15] propose a kernel novelty detection
method on the basis of statistical learning theory and prove the error bound of false
negative genes in prioritization. Given that bound, the number of false positives is
controlled by the total number of positives [15]. To control the number of the false
positive, the kernel matrix is centered for the whole genome. In practical, it is cen-
tered for the union set of the training genes and the test genes. The algorithm of
kernel novelty detection is similar to the L∞ 1-SVM MKL introduced in (3.15) but
involves more statistical learning considerations, given by [15]

min
α

t (5.3)

s.t. t ≥ αT Kj

υ j
α , j = 1, ..., p

0≤ αi ≤ 1
νN

, i = 1, ...,N

N

∑
i=1

αi = 1,
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Fig. 5.1 The conceptual framework of gene prioritization by data fusion [3, 55]. The unified
prioritization is obtained by the generic integration of individual prioritization results based
on order statistics.

and the prioritization function is given by

f (x) =
1√

αTΩα

N

∑
i=1

αi

[

p

∑
j=1

θ j
Kj(x,xi)

υ j

]

, (5.4)

where

Ω =

{

p

∑
j=1

θ j
Kj

υ j

∣

∣

∣

∣

p

∑
j=1

θ j = 1, ∀ j, θ j ≥ 0

}

. (5.5)

In (5.3), (5.4), and (5.5), N is the number of training genes, p is the number of
kernels, ν is the regularization parameter, υ j is a positive constant controlling the
complexity measured from each kernel Kj [29]. Empirically, υ j is often equated as
the trace of the j-th centred genome-wide kernel matrix divided by the total number
of genes in the genome (practically the sum of training plus test genes), thus, the
trace of the combined kernel matrix Ω of the whole genome is equivalent to the
number of genes in the whole genome and the norm K(x,x) of a gene is equal to 1
on average [15]. The conceptual framework of the 1-SVM MKL approach for gene
prioritization is illustrated in Figure 5.2. This approach is empirically compared
with the generic model adopted in Endeavour. When using the same genomic data
sources, the distribution-free kernel method outperforms the generic model.
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Fig. 5.2 The conceptual framework of kernel gene prioritization by data fusion proposed
in [15]. The unified prioritization is obtained by the scoring function based on the optimal
combination of kernel matrices in equation (5.4).

5.6 Multi-view Text Mining for Gene Prioritization

5.6.1 Construction of Controlled Vocabularies from Multiple
Bio-ontologies

We select vocabularies from nine bio-ontologies for text mining, among which
five of them (GO, MeSH, eVOC, OMIM and LDDB) have proven their merit in
our earlier work of text based gene prioritization [63] and text based cytogenetic
bands mapping [57]. Besides these five, we select four additional ontologies (KO,
MPO, SNOMED CT, and UniprotKB) because they are also frequently adopted
in the identification of genetic diseases and signaling pathways, for instance, in
the works of Gaulton et al. [22], Bodenreider [10], Mao et al. [34], Smith et
al. [49], and Melton et al. [36]. The nine bio-ontlogies are briefly introduced as
follows.

The Gene Ontology

GO [14] provides consistent descriptions of gene and gene-product attributes in the
form of three structured controlled vocabularies that each provide a specific angle
of view (biological processes, cellular components and molecular functions). GO
is built and maintained with the explicit goal of applications in text mining and
semantic matching in mind [57]. Hence, it is an ideal source as domain-specific
views in our approach. We extract all the terms in GO (due to the version released
in December, 2008) as the CV of GO.
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Medical Subject Headings

MeSH is a controlled vocabulary produced by NLM for indexing, cataloging, and
searching biomedical and health-related information and documents. The descrip-
tors or subject headings of MeSH are arranged in a hierarchy. MeSH covers a broad
ranges of topics and its current version consists of 16 top level categories. Though
most of the articles in MEDLINE are already annotated with MeSH terms, our text
mining process does not rely on these annotations but indexes the MEDLINE repos-
itory automatically with the MeSH descriptors (version 2008).

Online Mendelian Inheritance in Man’s Morbid Map

OMIM [35] is a database that catalogues all the known diseases with genetic compo-
nents. It contains available links between diseases and relevant genes in the human
genome and provides references for further research and tools for genomic analysis
of a catalogued gene. OMIM is composed of two mappings: the OMIM Gene Map,
which presents the cytogenetic locations of genes that are described in OMIM; the
OMIM Morbid Map, which is an alphabetical list of diseases described in OMIM
and their corresponding cytogenetic locations. Our approach retrieves the disease
descriptions from the OMIM Morbid Map (version due to December, 2008) as the
CV.

London Dysmorphology Database

LDDB is a database containing information over 3000 dysmorphic and neuroge-
netic syndromes, which is initially developed to help experienced dysmorphologists
to arrive at the correct diagnosis in difficult cases with multiple congenital anoma-
lies [59]. Information in the database is constantly updated and over 1000 jour-
nals are regularly reviewed to ascertain appropriate reports. The London Neurology
Database (LNDB) is a database of genetic neurological disorders based on the same
data structure and software as the LDDB [6]. We extract the dysmorphology tax-
onomies from LNDB (version 1.0.11) and select the vocabulary terms.

eVOC

eVOC [28] is a set of vocabularies that unifies gene expression data by facilitat-
ing a link between the genome sequence and expression phenotype information.
It was originally categorized as four orthogonal controlled vocabularies (anatomi-
cal system, cell type, pathology, and developmental stage) and now extended into
14 orthogonal subsets subsuming the domain of human gene expression data. Our
approach selects the vocabulary from the eVOC version 2.9.
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KEGG Orthology

KO is a part of the KEGG suite [27] of resources. KEGG is known as a large path-
way database and KO is developed to integrate pathway and genomic information
in KEGG. KO is structured as a directed acyclic graph (DAG) hierarchy of four
flat levels [34]. The top level consists of the following five categories: metabolism,
genetic information processing, environmental information processing, cellular pro-
cesses and human diseases. The second level divides the five functional categories
into finer sub-categories. The third level corresponds directly to the KEGG path-
ways, and the fourth level consists of the leaf nodes, which are the functional terms.
In literature, KO has been used as an alternative controlled vocabulary of GO for
automated annotation and pathway identification [34]. The KO based controlled vo-
cabulary in our approach is selected on the version due to December 2008.

Mammalian Phenotype Ontology

MPO [49] contains annotations of mammalian phenotypes in the context of muta-
tions, quantitative trait loci and strains which was initially used in Mouse Genome
Database and Rat Genome Database to represent phenotypic data. Because mouse
is the premier model organism for the study of human biology and disease, in the
CAESAR [22] system, MPO has also been used as a controlled vocabulary for text
mining based gene prioritization of human diseases. The MPO based controlled vo-
cabulary in our approach is selected on the version due to December 2008.

Systematized Nomenclature of Medicine–Clinical Terms

SNOMED is a huge and comprehensive clinical terminology, originally created
by the College of American Pathologists and, now owned, maintained, and dis-
tributed by the International Health Terminology Standards Development Orga-
nization (IHTSDO). SNOMED is a very ”fine-grained” collection of descriptions
about care and treatment of patients, covering areas like diseases, operations, treat-
ments, drugs, and healthcare administration. SNOMED has been investigated as an
ontological resource for biomedical text mining [10] and also has been used in
patient-based similarity metric construction [36]. We select the CV on the SNOMED
(version due to December, 2008) obtained from the Unified Medical Language Sys-
tem (UMLS) of NLM.

Universal Protein Knowledgebase

UniProtKB [18] is a repository for the collection of functional information on pro-
teins with annotations developed by European Bioinformatics Institute (EBI). An-
notations in UniProtKB are manually created and combined with non-redundant
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protein sequence database, which brings together experimental results, computed
features and scientific conclusions. Mottaz et al. [38] design a mapping procedure
to link the UniProt human protein entries and corresponding OMIM entries to the
MeSH disease terminology. The vocabulary applied in our approach is selected on
UniProt release 14.5 (due to December, 2008).

The terms extracted from these bio-ontologies are stored as bag-of-words and
preprocessed for text mining. The preprocessing includes transformation to lower
case, segmentation of long phrases, and stemming. After preprocessing, these vo-
cabularies are fed into a Java program based on Apache Java Lucene API to index
the titles and abstracts of MEDLINE publications relevant to human genes.

5.6.2 Vocabularies Selected from Subsets of Ontologies

As mentioned, in some “fine-grained” bio-ontologies the concepts and terminolo-
gies are labeled in multiple hierarchies, denoted as sub-ontologies, to represent do-
main concepts at various levels of specificity. For instance, GO consists of three sub-
ontologies: biological process, cellular component and molecular function. MeSH
descriptors are arranged in 16 hierarchical trees at the top level. In SNOMED, the
medical terminologies are composed of 19 higher level hierarchies. eVOC ontology
contains 14 orthogonal vocabulary subsets, in which the terms contained are strictly
non-overlapping. To investigate whether more specific vocabularies can improve the
effectiveness of the text mining model, we select terms from the sub-ontologies of
GO, MeSH, SNOMED, and eVOC and compose the corresponding subset CVs.
Considering the main objective as disease-associated gene identification, only the
most relevant sub-ontologies (6 from eVOC, 7 from MeSH and 14 from SNOMED)
are selected. To distinguish the gene-by-term profiles obtained from subset CVs
with those obtained from complete CVs, we denote the former one as subset CV
profile and latter one as complete CV profile.

5.6.3 Merging and Mapping of Controlled Vocabularies

The strategy of incorporating multiple CVs may be alternatively achieved by merg-
ing terms of several vocabularies together. To investigate this, we merge the terms
of all 9 complete CVs as a union of vocabulary and denote the corresponding gene-
by-term text mining result as “merge-9 profile”. Furthermore, we notice the lexi-
cal variants across multiple ontologies: a concept may be represented as different
terms due to the diversities of professional expressions. For example, the MeSH
term “denticles” is expressed as “dental pulp stones” in OMIM and as “pulp stone”
in SNOMED. To resolve these variants, we refer the UMLS Metathesaurus to map
terminological variants as unified concepts. We download the concept names and
sources file (MRCONSO.RRF) from UMLS Metathesaurus, which provides the
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mapping of atoms (each occurrence of unique string or concept name within each
source vocabulary) to unified concepts. In text mining, we build a synonym vocab-
ulary to map and aggregate the occurrences of various synonym terms are mapped
and aggregated as the indices of the unified concept. The obtained results are gene-
by-concept profile which the features are the unique and permanent concept iden-
tifiers defined by UMLS Metathesaurus. Among the nine vocabularies adopted in
our approach, only four of them (GO, MeSH, OMIM and SNOMED) are included
in UMLS and resolved in the MRCONSO.RRF file. Therefore, to fairly compare
the effect of concept mapping, we also create “merge-4” gene-by-term profile using
the union of the four vocabularies in indexing. Then, we map the lexical variants
as concepts and the result is denoted as “concept-4” profile. Moreover, to create a
naive baseline, we also index the MEDLINE corpus without using any controlled
vocabulary. All the terms appeared in the corpus are segmented as single words1

and the results are expressed by these vast amount of words, denoted as “no-voc
profile”.

1 We didn’t consider the phrases of multiple words because there would be immense amount
of combinations.
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Table 5.2 Overview of the controlled vocabularies applied in the multi-view approach. The
Number of indexed terms of controlled vocabularies reported in this table are counted on
indexing results of human related publications only so their numbers are smaller than those
in our earlier work [63], which were counted on all species appeared in GeneRIF. The Number
of terms in CV are counted on the vocabularies independent to the indexing process.

No. CV Nr. terms CV Nr. indexed terms
1 eVOC 1659 1286
2 eVOC anatomical system 518 401
3 eVOC cell type 191 82
4 eVOC human development 658 469
5 eVOC mouse development 369 298
6 eVOC pathology 199 166
7 eVOC treatment 62 46
8 GO 37069 7403
9 GO biological process 20470 4400
10 GO cellular component 3724 1571
11 GO molecular function 15282 3323
12 KO 1514 554
13 LDDB 935 890
14 MeSH 29709 15569
15 MeSH analytical 3967 2404
16 MeSH anatomy 2467 1884
17 MeSH biological 2781 2079
18 MeSH chemical 11824 6401
19 MeSH disease 6717 4001
20 MeSH organisms 4586 1575
21 MeSH psychiatry 1463 907
22 MPO 9232 3446
23 OMIM 5021 3402
24 SNOMED 311839 27381
25 SNOMED assessment scale 1881 810
26 SNOMED body structure 30156 2865
27 SNOMED cell 1224 346
28 SNOMED cell structure 890 498
29 SNOMED disorder 97956 13059
30 SNOMED finding 51159 3967
31 SNOMED morphologic abnormality 6903 2806
32 SNOMED observable entity 11927 3119
33 SNOMED procedure 69976 9575
34 SNOMED product 23054 1542
35 SNOMED regime therapy 5362 1814
36 SNOMED situation 9303 2833
37 SNOMED specimen 1948 742
38 SNOMED substance 33065 8948
39 Uniprot 1618 520
40 Merge-9 3725272 50687
41 Merge-4 363321 48326
42 Concept-4 1420118 44714
43 No-voc - 259815



122 5 Multi-view Text Mining for Disease Gene Prioritization and Clustering

Table 5.3 The number of overlapping terms in different vocabularies and indexed terms. The
upper triangle matrix shows the numbers of overlapping terms among vocabularies indepen-
dent to indexing. The lower triangle matrix shows the numbers of overlapping indexed terms.
The second horizontal row (from the top) are the numbers of the terms in vocabularies in-
dependent to indexing. The second vertical column (from the left) are the numbers of the
indexed terms.

eVOC GO KO LDDB MeSH MPO OMIM SNOMED Uniprot
1659 37069 1514 935 29709 9232 5021 311839 1618

eVOC 1286 - 370 16 118 827 566 325 876 46
GO 7403 358 - 404 74 3380 1234 659 4772 325
KO 554 16 344 - 1 383 72 120 489 44
LDDB 890 118 74 1 - 346 275 205 498 16
MeSH 15569 784 2875 344 343 - 2118 1683 12483 373
MPO 3446 554 1177 72 271 2007 - 823 2729 146
OMIM 3402 322 655 119 205 1644 816 - 2275 161
SNOMED 27381 814 3144 380 492 8900 2508 2170 - 593
Uniprot 520 46 301 42 16 361 146 157 371 -

5.6.4 Text Mining

We refer the mapping of genes and publications in Entrez GeneRIF and index a
subset of MEDLINE literature repository (as of 10 December, 2008) that consists of
290,000 human gene-related publications. In the first step the MEDLINE documents
are indexed and the doc-by-term (or doc-by-concept) vectors are constructed. In the
second step, we averagely combine the document-by-term (document-by-concept)
vectors as gene-by-term (gene-by-concept) vectors according to the GeneRIF map-
ping. The detail of the text mining process is presented in our earlier work [23, 63].
Table 5.2 lists all the CVs applied in our approach. Table 5.3 illustrates the overlap-
ping terms among the nine complete CVs.

Preliminary result shows that the weighting scheme of terms also influences the
performance of gene-by-term data in biological validation [63]. When the same vo-
cabulary and the ranking algorithm are applied in prioritization, the IDF represen-
tation generally outperforms the TF-IDF and the binary representations. Therefore,
in this article all the term profiles are represented in the IDF weighting scheme.

5.6.5 Dimensionality Reduction of Gene-By-Term Data by Latent
Semantic Indexing

We have introduced the subset CVs method to reduce the number of terms express-
ing the genes. Alternatively, we also apply Latent semantic indexing (LSI) to reduce
the number of term features. On the one hand, the information expressed on vast
numbers of terms is mapped to a smaller number of latent factors so the irrelevant
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information is reduced. On the other hand, we expect that LSI does not compromise
the information required for prioritization and clustering. In implementation, we
use the Matlab function svds to solve the eigenvalue problem of the sparse gene-
by-term matrix of the whole human genome (22,743 human genes). To calculate
the total variance on this huge matrix is very computational expensive, so we sort
the eigenvalues obtained by the sparse eigenvalue decomposition. To determine the
number of latent factors, we select the dimension where the corresponding smallest
eigenvalue is less than 0.05% of the sum of all eigenvalues.

5.6.6 Algorithms and Evaluation of Gene Prioritization Task

The methods to combine models for prioritization are roughly classified as two ap-
proaches: ensemble of rankings and fusion of sources (kernels).

5.6.6.1 Ensemble Ranking

In ensemble ranking, the prioritization is first carried on each individual model and
then multiple ranking results are combined. Since our main objective is to integrate
the models, we use the same algorithm, standard correlation, as the base method
to obtain ranking results on individual models. Using other algorithms, the results
after model integration may not be significantly different and the computational
complexity is more likely to be higher than the standard correlation algorithm.

The ranking results is integrated either as ranking orders (ratios) or as ranking
scores. To compare them, we implement three integration algorithms. Two of them
are basic operators to calculate the average or maximal value of multiple ranking
scores. The third one is based on order statistics as defined in equation (5.1).

5.6.6.2 Kernel Fusion for Prioritization

The kernel fusion method for gene prioritization is based on the 1-SVM MKL prob-
lem defined in (5.3). We apply this 1-SVM method to combine kernels derived from
the multi-view data for gene prioritization. Because the dimensionality of gene-by-
term profile is high, we only use linear function to construct the kernel matrices.
One of the main features of the 1-SVM is the sparsity of its solutions, which the
dominant coefficient may be assigned on one or two kernel matrices. This property
is useful to distinguish a small amount of relevant sources from large amount of ir-
relevant sources in data fusion. However, in biomedical application, the data sources
are usually preprocessed and have high relevances w.r.t. the problem. Sparse solu-
tion may be too selective, in this case, to thoroughly combine the redundant and
complementary information in these data sources. To balance the effect of sparse
coefficients (most of θ j are equal to 0) and non-sparse coefficients in model gener-
alization, we try 3 different values of the regularization parameter θmin to restrict the
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optimization process as a lowerbound of coefficient assigned on each kernel. When
θmin = 0, there is no lowerbound and the optimization procedure will probably result
in the sparse coefficients. When θmin = 0.5/N, each kernel is insured to have a
minimum contribution in data fusion. When θmin = 1/N, the kernel matrices are
averagely combined. We also try the L2 1-SVM MKL introduced in chapter 3. In
our implementation, the QCLP problem in (5.3) is solved by SeDuMi 1.2 [48].

5.6.6.3 Evaluation of Prioritization

The prioritization result is evaluated by leave-one-out (LOO) method [63]. In each
experiment, given a disease gene set which contains K genes, one gene, termed the
“defector” gene, is deleted from the set of training genes and added to 99 randomly
selected test genes (test set). We use the remained K−1 genes (training set) to build
our prioritization model. Then, we prioritize the test set which contains 100 genes
by the trained model and determine the ranking of that defector gene in test data.
The prioritization performance is thus equivalent to the error (1 minus the AUC
value).

5.6.7 Benchmark Data Set of Disease Genes

We validate the clustering results with the human disease benchmark data set of En-
deavour [3], which consists of 620 relevant genes from 29 diseases. Genes from the
same disease are constructed as a disease-specific training set used to evaluate the
prioritization and clustering performance. For prioritization, we perform 620 rank-
ings (with each gene left out once) on 99 candidate human genes randomly selected
from the human genomic. The prioritization is repeated 20 times (with randomly
permuted 99 random genes each time for each left out gene) and the average Error
value is reported as the final result.

5.7 Results of Multi-view Prioritization

5.7.1 Multi-view Performs Better than Single View

According to the experimental result, integration of the multi-view data obtains sig-
nificantly better performance than the best individual data. Among the different
approaches we tried, the best performance is obtained by combining 9 CV pro-
files as kernels in the LSI reduced dimensionality (1-SVM+LSI, Error of AUC =
0.0335). This error is only a half of the best single CV profile (LDDB, 0.0792). The
ROC curves of leave-one-out performance of different approaches are presented
in Figure 5.3. Without LSI, 1-SVM data fusion reduces the error from 0.0792 to
0.0453. By coupling LSI with 1-SVM, the error is further reduced from 0.0453
to 0.0335. Considering the cost and effort of validating the false positive genes in
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lab experiments, the improvement from 0.0792 to 0.0335 is quite meaningful be-
cause it means that when prioritizing 100 candidate genes, our proposed method
can save the effort of validating 4 false positive genes. The obtained result is also
comparable to the performance of the existing systems. In the Endeavour system [3],
the same disease gene benchmark dataset and the same evaluation method is imple-
mented. Endeavour is different from our approach mainly in two aspects. Firstly,
Endeavour combines one textual data (GO-IDF profile obtained from free literature
text mining) with nine other biological data sources. Also, there is no dimension-
ality reduction used in it. Secondly, Endeavour applies order statics to integrate the
models. The performance obtained in our paper is much better than Endeavour (Er-
ror=0.0833). Moreover, the performance is also better than the result obtained by
De Bie et al. [15]. In their approach, they use the same data sources as Endeavour
and apply the 1-SVM MKL algorithm for model integration (best performance Er-
ror=0.0477, θmin = 0.5/k). Since the methods and the disease gene benchmark data
are exactly the same, the improvement can only be attributed to the multi-view text
mining and the LSI dimensionality reduction. It is also notice that the L2-norm 1-
SVM MKL performs better than the L∞ (θmin = 0) approach. When optimizing the
L2-norm, the integration of 9 CVs has the error of 0.0587, and the integration of 9
LSI profiles has the error of 0.0392. This result is consistent with our hypothesis that
non-sparse kernel fusion may perform better than sparse kernel fusion. However,
the best result in the multi-view prioritization is obtained by L1 (θmin = 1)
approach.
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Fig. 5.3 Prioritization results obtained by complete CV profiles and LSI profiles
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Fig. 5.4 Prioritization results obtained by complete CV profiles and subset CV profiles

5.7.2 Effectiveness of Multi-view Demonstrated on Various
Number of Views

To further demonstrate the effectiveness of multi-view text mining, we evaluated the
performance on various number of views. The number was increased from 2 to 9
and three different strategies were adopted to add the views. Firstly, we simulated
a random strategy by enumerating all the combinations of views from the number
of 2 to 9. The combinations of 2 out of 9 views is C2

9 , 3 out of 9 is C3
9 , and so

on. We calculated the average performance of all combinations for each number of
views. In the second and the third experiment, the views were added by two different
heuristic rules. We ranked the performance of the nine views from high to low was
LDDB, eVOC, MPO, GO, MeSH, SNOMED, OMIM, Uniprot, and KO. The second
strategy combined best views first and increases the number from 2 to 9. In the third
strategy, the irrelevant views were integrated first. The results obtained by these
three strategies are presented in Figure 5.6. The performance of the random strategy
increases steadily with the number of views involved in integration. In the best view
first strategy, the performance increased and reached the ideal performance, then
started to decrease when more irrelevant views are involved. The ideal performance
of prioritization was obtained by combining the five best views (Error of AUC =
0.0431) by the 1-SVM method applied on averagely combined kernel. The generic
integration method (order statistic) did not perform well on high dimensional gene-
by-term data. The performance of integrating all CVs was comparable to the ideal
performance, which shows that the proposed multi-view approach is quite robust to
the irrelevant views. Furthermore, the merit in practical explorative analysis is that
the near-optimal result can be obtained without evaluating each individual model. In
the third strategy, because the combination starts from the irrelevant views first, the
performance was not comparable to the random or the ideal case. Nevertheless, as
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Fig. 5.5 ROC curves of prioritization obtained by various integration methods. The light grey
curves represent individual textual data. The near-diagonal curve is obtained by prioritization
of random genes.

shown, the performance of the multi-view approach was always better than the best
single view involved in integration. Collectively, this experiment clearly illustrated
that the multi-view approach is a promising and reliable strategy for disease gene
prioritization.

5.7.3 Effectiveness of Multi-view Demonstrated on Disease
Examples

To explain why the improvements take place when combining multiple views, we
show an example taken from prioritization of MTM1, a gene relevant to the dis-
ease Myopathy. In the disease benchmark data set, Myopathy contains 41 relevant
genes so we build the disease model by using the other 40 genes and leave MTM1
out with 99 random selected genes for validation. In order to compare the rankings,



128 5 Multi-view Text Mining for Disease Gene Prioritization and Clustering

A
U
C
er
ro
r
on

pr
io
ri
ti
za
ti
on

number of views (random)

A
U
C
er
ro
r
on

pr
io
ri
ti
za
ti
on

number of views (best first)

A
U
C
er
ro
r
on

pr
io
ri
ti
za
ti
on

number of views (irrelevant first)

Fig. 5.6 Multi-view prioritization with various number of views

only in the experiment for this example, the 99 random candidate genes are kept
identical for different views. In Table 5.4, we list the ranking positions of MTM1
and the false positive genes in all 9 CVs. When using LDDB vocabulary, 3 “false
positive genes” (C3orf1, HDAC4, and CNTFR) are ranked higher than MTM1. To
investigate the terms causing this, we sort the correlation score of each term be-
tween the disease model and the candidate genes. It seems that C3orf1 is ranked
at the top mainly because of the high correlation with terms “skeletal, muscle, and
heart”. HDAC4 is ranked at the second position because of terms “muscle, heart,
calcium, and growth”. CTNFR is ranked at the third position due to the terms like
“muscle, heart, muscle weak, and growth”. As for the real disease relevant gene
MTM1, the high correlated terms are “muscle, muscle weak, skeletal, hypotonia,
growth, and lipid”. However, according to our knowledge, none of these three genes
(C3orf1, HDAC4, and CNTFR) is actually known to cause any disease. Escarceller
et al. [19] show that C3orf1 seems to be enhanced in heart and skeletal muscle, but
there is no clue that it has directly relation with the disease. HDAC4 is found in the
work of Little et al. “as a specific downstream sbstrate of CaMKIIdeltaB in cardiac
cells and have broad applications for the signaling pathways leading to cardiac hy-
pertrophy and heart failure” [31]. In the papers of Glenisson et al. [24] and Cohen et
al. [13], HDAC4 is found to have a role in muscle, which means it might be a good
candidate but has not yet been proved directly related to the disease. For CNTFR,
it has been found that in heterozygotic mice inactivation of the CNTFR leads to
a slight muscle weakness [41]. In the papers of Roth et al. [44] and De Mars et
al. [16], CNTFR is shown related to muscular strength in human. Collectively, al-
though these 3 genes found by LDDB vocabulary have not yet been reported as
direct disease causing factors, the prioritization result is still meaningful because in
literature they have many similar correlated terms with the disease model as the real
disease causing gene does. Especially, according to literature, HDAC4 and CNFR
seem to be nice candidates to muscular disorder. Though LDDB ranks 3 “false pos-
itive” genes higher than the real disease relevant gene, eVOC and GO rank the left
out gene MTM1 as the top candidate gene. In eVOC, the most important correlated
terms are “muscle, sever, disorder, ...”. In GO, the terms are “muscle, mutation,
family, sever, ...”. When combining multi-view data for prioritization, the ranking
of LDDB is complemented by eVOC and GO thus MTM1 is ranked as the top gene.
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Table 5.4 Prioritization results of MTM1 by different CV profiles

CV Rank Gene correlated terms

LDDB 1 C3orf1 muscle, heart, skeletal
2 HDAC4 muscle, heart, calcium, growth
3 CNTFR muscle, heart, muscle weak, growth
4 MTM1 muscle, muscle weak, skeletal, hypotonia, growth, lipid

eVOC 1 MTM1 muscle, sever, disorder, affect, human, recess

MPO 1 HDAC4 muscle, interact, protein, domain, complex
2 HYAL1 sequence, human, protein, gener
3 WTAP protein, human, sequence, specif
4 FUT3 sequence, alpha, human
...
15 MTM1 myopathy, muscle, link, sequence, disease, sever

GO 1 MTM1 muscle, mutate, family, gene, link, seqeuence, sever

MeSH 1 HYAL1 human, protein, clone, sequence
2 LUC7L2 protein, large, human, function
3 MTM1 myopathy, muscle, mutate, family, gene, missens

SNOMED 1 S100A8 protein, large, human, function
2 LUC7L2 protein, large, human, function
3 LGALS3 human, protein, express, bind
...
23 MTM1 muscle, mutate, family, gene, link

OMIM 1 HDAC4 muscle, interact, protein, bind
2 MAFK sequence, protein, gene, asthma relat trait
3 LUC7L2 protein, large, function, sequence
4 SRP9L1 sequence, protein, length, function
...
50 MTM1 muscle, family, gene, link, sequence, disease, sever, weak

Uniprot 1 MTM1 gene, protein, function

KO 1 S100A8 protein, bind, complex, specif, associ, relat
2 PRF1 specif, protein, contain, activ
...
56 MTM1 protein, large, specif, contain

Multi-view 1 MTM1
2 HDAC4
3 CNTFR
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5.8 Multi-view Text Mining for Gene Clustering

We investigate two fundamental tasks in disease associated gene research: prioritiza-
tion and clustering. Both tasks have attracted lots of efforts in the literature, whereas
their definitions and interpretations may vary by approach. On one hand, computa-
tional gene prioritization methods rank the large amount of candidate disease genes
according to their likeliness of being involved in a certain disease. On the other hand,
clustering analysis explores the disease-gene associations by partitioning the genes
based on the experimental findings described in the scientific literature. These two
tasks basically share a similar assumption: In prioritization, the similarity among
genes associated to the same disease is assumed to be higher than the similarity
with random genes. In the case of multiple diseases, the problem can also be formu-
lated as a clustering problem. The assumption is that the similarity of genes relevant
to the same disease (within-disease-cluster similarity) is higher than the similarity
of genes relevant to different diseases (between-disease-cluster similarity). Thus, we
expect these genes to demonstrate some “natural partitions” according to the type
of diseases. Therefore, we are able to evaluate the performance of prioritization task
and the clustering task using the same disease benchmark data.

5.8.1 Algorithms and Evaluation of Gene Clustering Task

Ensemble clustering

In ensemble clustering, we apply k-means clustering using Euclidean distance as
the “base clustering algorithm” on a single data source to obtain the partition;
then we combine the multiple partitions as a consolidate partition via consensus
functions. We also tried other candidate algorithms (e.g., hierarchical clustering,
self-organizing maps) and other distance measures (e.g., Mahalanobis distance,
Minkowski distance), although we observe some discrepancies of performance on
individual gene-by-term data, the difference after multi-view integration is not sig-
nificant. In literature, various consensus functions have been proposed for ensemble
clustering. We select 6 popular ones and compare them in our approach.

CSPA, HGPA, and MCLA: Strehl and Ghosh [50] formulate the optimal con-
sensus as the partition that shares the most information with the partitions to
combine, as measured by the Average Normalized Mutual Information. They use
three heuristic consensus algorithms based on graph partitioning, called Cluster
based Similarity Partition Algorithm (CSPA), Hyper Graph Partitioning Algo-
rithm (HGPA) and Meta Clustering Algorithm (MCLA) to obtain the combined
partition.

QMI: Topchy et al. [54] formulate the combination of partitions as a categorical
clustering problem. In their approach, a category utility function is adopted to
evaluate the quality of a “median partition” as a summary of the ensemble. They
prove that maximizing this category utility function implies the same clustering
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ensemble criterion as maximizing the generalized mutual information based on
quadratic entropy (QMI). Furthermore, the maximization of the category util-
ity function is equivalent to the square error based clustering criterion when the
number of clusters is fixed. The final consensus partition is obtained by applying
the k-means algorithm on the feature space transformed by the category utility
function.

EACAL: Fred and Jain [21] introduce the concept of Evidence Accumulation
Clustering (EAC) that maps the individual data partitions as a clustering ensem-
ble by constructing a co-association matrix. The entries of the co-association
matrix are interpreted as votes on the pairwise co-occurrences of objects, which
is computed as the number of occurrences each pair of objects appears in the
same cluster of an individual partition. Then the final consensus partition is ob-
tained by applying single linkage (SL) and average linkage (AL) algorithms on
the co-association matrix. According to their experiments, average linkage per-
forms better than single linkage so in this paper we apply Evidence Accumula-
tion Clustering with average linkage (EACAL) as the representative algorithm
for comparison.

AdacVote: Ayad and Kamel [5] propose an Adaptive cumulative Voting
(AdacVote) method to compute an empirical probability distribution summariz-
ing the ensemble. The goal of this ensemble is to minimize the average squared
distance between the mapped partitions and the combined partition. The cumu-
lative voting method seeks an adaptive reference partition and incrementally up-
dates it by averaging other partitions to relax the dependence of the combined
partition on the selected reference. In the AdacVote they proposed, the partitions
are combined in the decreasing order of their entropies.

Kernel fusion for clustering

An alternative approach to combine multi-view data for clustering is achieved by
fusing the similarity matrices [30], as known as the kernel fusion approach. Ker-
nel fusion integrates data before clustering (early integration), whereas ensemble
clustering aggregates partitions after clustering (late integration). We implement 5
kernel fusion algorithms and cross-compare their performance. In the present paper,
the kernel matrices are all constructed by linear functions because the text mining
data is in very high dimension.

Hierarchical clustering: We average the kernels of multi-view data and trans-
form it into a distance matrix in Hilbert space, given by [46]:

dφ (x,z) = 〈φ(x),φ(x)〉−2〈φ(x),φ(z)〉+ 〈φ(z),φ(z)〉. (5.6)

When the kernel mapping φ(·) is based on a linear function and x and z are data
vectors normalized by the norm, dφ(x,z) boils down to the Euclidean distance
between x and z. When φ(·) is based on nonlinear mapping (e.g., RBF functions,
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Polynomial functions), the distance dφ (x,z) does not have direct interpretation
in the original space of x and z. Given the distance matrix, we can apply linkage
methods (i.e., single linkage, complete linkage, average linkage, and ward link-
age) and obtain the hierarchical clustering result in Hilbert space.

OKKC: The optimized data fusion for kernel k-means clustering (OKKC) is
proposed in the previous chapter.

Evaluation of clustering

As explained before, we assess the clustering performance biologically by labeled
disease benchmark data. Two external validations, Rand Index (RI) [42] and Nor-
malized Mutual Information (NMI) [50], are applied and their definitions are given
as follows. Given a set of N genes X = {x1, ...,xN} and two partitions to compare,
C = {c1, ...,cN} and L = {l1, ..., lN}. In our problem, C and L are respectively
the cluster indicators and the disease labels of the set of genes X . We refer that (1)
a, the number of pairs of genes in X that are in the same set in C and in the same
set in P ; (2) b, the number of pairs of genes in X that are in different sets in C and
in different sets in P ; (3) c, the number of pairs of genes in X that are in the same
set in C and in different sets in P ; (4) d, the number of pairs of genes in X that are
in different sets in C and in the same set in P .

RI is defined as

RI =
a +b

a +b + c+ d
. (5.7)

For binary class problem, the RI value ranges from 0 to 1 and the value of random

partitions is 0.5.
NMI is defined as

NMI =
2×M(C ,P)
E(C )E(P)

, (5.8)

where M(P,C ) is the mutual information between the indicators, E(C ) and E(P)
are the entropies of the indicators and the labels. For a balanced clustering problem,
if the indicators and the labels are independent, the NMI value approaches 0.

5.8.2 Benchmark Data Set of Disease Genes

We validate the clustering results using the same benchmark data set we use
in prioritization. The schema of the clustering evaluation is depicted in Figure
5.7. For each time, the relevant genes of each paired diseases combination are
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selected and clustered into two groups, then the performance is evaluated using the
disease labels. The genes which are relevant to both diseases in the paired combina-
tion are removed before clustering (totally less then 5% genes have been removed).
Finally, the average performance of all the 406 paired combinations is used as the
overall clustering performance. The tasks on all 406 paired combinations are re-
peated 20 times and the mean value of RI and NMI of all tasks in all repetitions is
reported as the final result.

genes of disease 1

genes of disease 29

genes of disease 2

genes of disease 
i

genes of disease 
j

unlabeled
genes

clustering
K=2

label of diseases partition of genes

evaluation

i =1

i =29

j =1 j =29

overall performance = Sum / 406

Fig. 5.7 Conceptual scheme of clustering disease relevant genes

5.9 Results of Multi-view Clustering

5.9.1 Multi-view Performs Better than Single View

In clustering, as shown in Table 5.5, three algorithms obtained significant perfor-
mance. Ward linkage applied on average combination of kernels showed the best
performance (RI=0.8236, NMI=0.6015). EACAL (RI=0.7741, NMI=0.5542) and
OKKC without regularization (μmin=0, RI=0.7641, NMI=0.5395) also performed
better than the best single view data (LDDB, RI=0.7586, NMI=0.5290).
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We apply paired t-test to evaluate the statistical significance of the data fusion
performance. As shown in Table 5.6, the three presented data fusion approaches
significantly improve the performance over the best individual data.

Table 5.6 Statistical analysis of the performance obtained on disease relevant genes cluster-
ing. Performance of WL, EACAL, and OKKC is compared with the best single data source.
The p values are obtained by paired t-test on 20 random repetitions.

RI NMI
mean std. p value mean std. p value

Best single data 0.7586 0.0032 - 0.5290 0.0032 -
WL 0.8236 0 7.97 ×10−47 0.6015 0 6.45 ×10−46

EACAL 0.7741 0.0041 3.39 ×10−31 0.5542 0.0068 1.69 ×10−33

OKKC 0.7641 0.0078 1.32 ×10−5 0.5395 0.0147 1.89 ×10−5

5.9.2 Dimensionality Reduction of Gene-By-Term Profiles for
Clustering

The same LSI profiles and subset CV profiles for prioritization are also used in clus-
tering task. As shown in Figure 5.8 and Figure 5.9, some LSI profiles were slightly
better, others were slightly worse than the the complete profiles. Some subset CVs
performed better than the complete CV. In particular, SNOMED situation and MeSH
diseases outperformed significantly the complete CVs.
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Fig. 5.8 Clustering results obtained by complete CV and LSI profiles
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Fig. 5.9 Clustering results obtained by complete CV and subset CV profiles

Analogue to the prioritization task, we integrated 9 complete CVs, 9 LSI profiles,
and 35 subset CVs for clustering and evaluated the performance. As shown in Table
5.6 and Figure 5.10, the best result was obtained by combing 9 complete CVs with
Ward linkage, OKKC (μmin=0), and EACAL. Other comparing methods did not
obtain better results than the best single CV.
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Fig. 5.10 Clustering results obtained by multi-view data integration
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5.9.3 Multi-view Approach Is Better than Merging Vocabularies

The multi-view approach also performed than merging vocabularies. As shown in
Table 5.7, the best performance of merging vocabularies (RI=0.6333, NMI=0.2867)
was significantly lower than the multi-view result obtained by Ward linkage
(RI=0.8236, 0.6015).

Table 5.7 Clustering performance obtained by merging controlled vocabularies, concept
mapping and no vocabulary indexing. The merge-9, merge-4 and concept-4 profiles were
clustered by k-means in 20 random repetitions and the mean values and deviations of evalua-
tions are shown in the table. The novoc profile was only evaluated once by k-means because
of the extremely high dimension and the computational burden.

Merging vocabulary RI NMI
merge-9 0.6321 ± 0.0038 0.2830 ± 0.0079
merge-4 0.6333 ± 0.0053 0.2867 ± 0.0085
concept-4 0.6241 ± 0.0056 0.2644 ± 0.0111
novoc 0.5630 0.0892

5.9.4 Effectiveness of Multi-view Demonstrated on Various
Numbers of Views

We also evaluated the performance of clustering on various numbers of views. The
ideal performance of clustering was obtained by combining the four best views
(RI=0.8540, NMI=0.6644) using the ward linkage method. As shown in Figure 5.11,
the general trends were similar to our discussion in the prioritization task.

5.9.5 Effectiveness of Multi-view Demonstrated on Disease
Examples

We present an example of clustering genes relevant to two diseases: breast cancer
and muscular dystrophy. Each disease contains 24 relevant genes and there is no
overlapping gene among them. We list the confusion tables and the mis-partitioned
genes of each individual view in Table 5.8. As it is shown, all individual views pro-
duce several mis-partitioned genes. When these views are combined and clustered
by the ward linkage method, all the genes are correctly partitioned by their disease
labels.
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Fig. 5.11 Multi-view clustering with various number of views

Table 5.8 Clustering breast cancer and muscular dystrophy relevant genes by different CVs
and the multi-view approach

CV B. Cancer M. Dystrophy mis-partitioned genes

LDDB 22 2 RP11-49G10.8, FKTN
0 24

eVOC 23 1 RP11-49G10.8, FKTN
7 17 LMNA, COL6A1, MYF6, CHEK2, SGCD, FKRP, DMD

MPO 23 1 RP11-49G10.8
1 23 SGCD

GO 23 1 RP11-49G10.8
7 17 LMNA, COL6A1, MYF6, CHEK2, SGCD, FKRP, DMD

MeSH 23 1 RP11-49G10.8
2 22 SGCD,COL6A3

SNOMED 24 0
6 18 LMNA,COL6A1,MYF6,TRIM32,SGCD,DMD

OMIM 24 0
1 23 SGCD

Uniprot 24 0
4 20 MYF6,CHEK2,SGCD,FKRP

KO 19 5 SLC22A18, RP11-49G10.8, FKTN, PABPN1, CAPN3
6 18 PPM1D, MYF6, SGCD, FKRP, COL6A3, DYSF

Multi-view 24 0
(WL) 0 24



5.10 Discussions 139

5.10 Discussions

The strategy of model integration has already been used in several text mining ap-
plications. The concept of multi-view is proposed by Bickel and Scheffer [9] in web
document clustering analysis to combine intrinsic view of web pages (text based
similarity) and extrinsic view (citation link based similarity). In our paper, we bor-
row the term multi-view in the text mining context as gene profiles
represented by different CVs. Neveol et al. [39] combine three different methods
(dictionary lookup, post-processing rules and NLP rules) to identify MeSH main
head-ing/subheading pairs from medical text. Chun et al. [12] develop an integra-
tive system to extract disease-gene relations from MEDLINE. Jimeno et al. [26]
combine three methods (dictionary look-up, statistical scoring, and MetaMap) to
recognize disease names on a corpus of annotated sentences. Gaulton et al. [22]
adopt 3 different ontologies and 8 data sources in the CAESAR system to anno-
tate human genes as disease associated candidates. When annotating multiple data
sources with different relevant terms from ontologies, each gene may get multiple
scores of relevance with the input text query. CAESAR combines the scores using
4 basic methods: maximum, sum, normalized average, and a transformed score pe-
nalized by the number of genes annotated in a given data source. Our approach is
different from CAESAR by exploiting all the relevant MEDLINE abstracts for in-
dexing so the gene textual profiles are retrieved from vast amounts of gene-based
free-text information available in the literature. Yamakawa et al. [61] combine 3
different sources (GO, Locuslink and HomoloGene) to create gene list annotated
by GO terms. Then, a decomposition method (ETMIC situation decomposition) is
applied to extract the multi-aspect information from the target gene list, resulting in
several bipartite graphs describing the relationships between small subset of genes
and GO terms. Their approach shares the same motivation as ours in obtaining more
refined characteristics of genes separated in different aspects (views). However, their
approach has not shown how multi-aspect gene annotations can improve the process
of biomedical knowledge discovery. The main limitation of combining the LSI with
data fusion is that the latent factors cannot be easily interpreted so it is hard to in-
vestigate the important terms in prioritization. The idea of multi-view text mining
is not restricted to the selection of CVs. For example, instead of using the curated
GeneRIF as the mapping of genes to publications, one can detect gene names ex-
pressed in the text automatically by natural language processing (NLP) and create
new gene profiles according to this new mapping. One can also retrieve the literature
co-occurences of genes and produce new view about the gene-to-gene interactions.
Combining these views will probably lead to new insight about the relationship be-
tween diseases and genes.

The interpretation of text based prioritization is limited by LSI, whose latent
factors cannot be easily attributed to the terms affecting the prioritization. When
combining multi-view data by k-means and ensemble algorithms (individual par-
tition created by k-means), to estimate the optimal cluster numbers is also dif-
ficult because the number of clusters is predefined. The statistical evaluations of
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clustering quality which is used to indicate the optimal cluster number on single data
set are not always reliable for data fusion because they may differ in heterogeneous
data sources. To circumvent this problem, one may relax the k-means clustering as a
spectral clustering [66] thus the optimal cluster number can be investigated from the
eigenspectrum. To estimate the optimal cluster number in hierarchical clustering is
easier, because it can be estimated by checking the dendrogram. Another limitation
in our clustering approach is the ignorance of overlapping genes despite of the fact
that a gene may be biologically relevant to several topics (e.g., diseases, functions,
processes). Therefore, how to apply “soft clustering” techniques to obtain partitions
containing overlapping genes will be the main topic of our future work. The notion
of multi-view text mining has the potential of incorporating models varied by other
parameter. For example, instead of using curated GeneRIF as the mapping of genes
to publications, one can detect gene names expressed in the text automatically by
natural language processing (NLP) and create new gene profiles according to this
mapping. One can also retrieve the relationships of genes from literature, or refer to
interaction networks and produce new view specified about relationships of genes.
Combining these views will undoubtedly lead to significant and thorough insight
about the associations between diseases and genes.

5.11 Summary

We have presented the approach of combining multi-view text mining models to
obtain precise identification of disease relevant genes. These views were specified
by multiple controlled vocabularies derived from different bio-ontologies. Using
these vocabularies, we have indexed the MEDLINE titles and abstracts relevant to
GeneRIF and have obtained a series of gene-by-term profiles. To demonstrate the ef-
fectiveness of our approach, we have combined these profiles and evaluated them on
two fundamental problems: gene prioritization and clustering. Experimental results
have shown that the performance obtained on the multi-view approach is signifi-
cantly better than the single-view data. Nonetheless, the selection of the appropriate
integration algorithm was nontrivial. We have cross-compared 4 algorithms in prior-
itization and 12 algorithms in clustering on a disease benchmark data set containing
29 diseases. In prioritization, the combination of the 1-SVM with LSI performed the
best; in clustering, the ward linkage applied on the uniform combination of kernels
performed better than other methods.

Second, we have integrated dimensionality reduction of individual data source in
the data fusion framework. To tackle the very high dimensionality of text mining
data, we have applied LSI, a popular reduction technique in information retrieval,
on gene-by-term profiles. Alternatively, we have also pruned the vocabularies ac-
cording to the hierarchical structures of the bio-ontologies where they were derived.
In this way, the gene-by-term profiles specified by a complete CV have been further
separated as several subset CV profiles. In some experiments, the LSI and the subset
CV profiles have obtained better performance than the complete CV.
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Third, we have substantiated the rationale of the proposed “integration after
splitting” by comparing three other methods such as vocabulary integration, con-
cept mapping, and no vocabulary indexing. Experiments and validation results have
clearly indicated that the proposed multi-view approach is a promising strategy.
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Guillet, C., Hermann, J., Gauchat, J.F., Gascan, H., Chevalier, S.: The ciliary neu-
rotrophic factor receptor α component induces the secretion of and is required for func-
tional responses to cardiotrophin-like cytokine. EMBO Journal 20, 1692–1703 (2001)

42. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association (American Statistical Association) 66, 846–850 (1971)

43. Risch, N.J.: Searching for genetic determinants in the new millennium. Nature 405,
847–856 (2000)

44. Roth, S.M., Metter, E.J., Lee, M.R., Hurley, B.F., Ferrell, R.E.: C174T polymorphism in
the CNTF receptor gene is associated with fat-free mass in men and women. Journal of
Applied Physiology 95, 1425–1430 (2003)

45. Shatkay, H., Feldman, R.: Mining the biomedical literature in the genomic era: An
overview. Journal of Computational Biology 10, 821–855 (2003)

46. Shawe-Taylor, J., Cristianin, N.: Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, Cambridge (2004)
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Chapter 6
Optimized Data Fusion for k-means Laplacian
Clustering

6.1 Introduction

Clustering is a fundamental problem in unsupervised learning and a number of dif-
ferent algorithms and methods have emerged over the years. k-means and spectral
clustering are two popular methods for clustering analysis. k-means (KM) is pro-
posed to cluster attribute-based data into k numbers of clusters with the minimal
distortion [4, 8]. Another well known method, spectral clustering (SC) [18, 20], is
also widely adopted in many applications. Unlike KM, SC is specifically developed
for graphs, where the data samples are represented as vertices connected by non-
negatively weighted undirected edges. The problem of clustering on graphs belongs
to another paradigm than the algorithms based on the distortion measure. The goal of
graph clustering is to find partitions on the graph such that the edges between differ-
ent groups have a very low weight [31]. To model this, different objective functions
are adopted and the typical criteria include the RatioCut [11], the normalized cut
[20], and many others. To solve these objectives, the discrete constraint of the clus-
tering indicators is usually relaxed to real values; thus, the approximated solution of
spectral clustering can be obtained from the eigenspectrum of the graph Laplacian
matrix. Many investigations (e.g., [6]) have shown the connection between KM and
SC. Moreover, in practical applications, the weighted similarity matrix is often used
interchangeably as the kernel matrix in KM or the adjacency matrix in SC.

Recently, a new algorithm, kernel Laplacian clustering (KL), is proposed to com-
bine a kernel and a Laplacian simultaneously in clustering analysis [25]. This
method combines the objectives of KM and SC in a quotient trace maximization
form and solves the problem by eigen-decomposition. KL is shown to empirically
outperforming KM and SC on real data sets. This straightforward idea is useful
to solve many practical problems, especially those pertaining to combine attribute-
based data with interaction-based networks. For example, in web analysis and
scientometrics, the combination of text mining and bibliometrics has become a stan-
dard approach in clustering science or technology fields towards the detection of
emerging fields or hot topics ([16]). In bioinformatics, protein-protein interaction
network and expression data are two of the most important sources used to reveal the

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 145–172.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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relevance of genes and proteins with complex diseases. Conventionally, the data is
often transformed into similarity matrices or interaction graphs, then consequently
clustered by KM or SC. In KL, the similarity based kernel matrix and the interaction
based Laplacian matrix are combined, which provides a novel approach to combine
heterogeneous data structures in clustering analysis.

Our preliminary experiments show that when using KL to combine a single ker-
nel and a single Laplacian, its performance strongly depends on the quality of the
kernel and the Laplacian, which results in a model selection problem to determine
the optimal settings of the kernel and the Laplacian. To perform model selection on
unlabeled data is non-trivial because it is difficult to evaluate the models. To tackle
the new problem, we propose a novel algorithm to incorporate multiple kernels and
Laplacians in KL clustering. In chapter 4, we propose a method to integrate multiple
kernel matrices in kernel k-means clustering. The main idea of this chapter lies in the
additive combination of multiple kernels and Laplacians, moreover, the coefficients
assigned to the kernels and the Laplacians are optimized automatically. This chap-
ter presents the mathematical derivations of the additive integration form of kernels
and Laplacians. The optimization of coefficients and clustering are achieved via a
solution based on bi-level alternating minimization [5]. We validate the proposed
algorithm on heterogeneous data sets taken from two real applications, where the
advantage and reliability of the proposed method are systematically compared and
demonstrated.

6.2 Acronyms

The symbols and notations used in this Chapter are defined in Table 6.1 to Table 6.4
(in the order of appearance).
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Table 6.1 Matrices

X ∈ R
N×D Data matrix with zero sample mean

H ∈ R
N×N Graph

A ∈ R
N×k Weighted scalar cluster membership matrix

Ik ∈ R
k×k Identity matrix

IN ∈ R
N×N Identity matrix

W ∈ R
N×N Weighted adjacency matrix

D ∈ R
N×N Diagonal matrix whose (a,a) entry is the

sum of the entries of row a in W
L̃ ∈ R

N×N Normalized Laplacian Matrix
L̂ ∈ R

N×N Normalized Laplacian Matrix
G ∈ R

N×N Kernel Matrix
Gc ∈ R

N×N Centered kernel Matrix
P ∈ R

N×N Centering Matrix
Ł̂ ∈ R

N×N The combined Laplacian matrix of multiple L̂
G ∈ R

N×N The combined matrix of multiple G
Ω ∈ R

N×N The combined matrix of kernels and Laplacians
W ∈ R

N×k The projection matrix determining the
directions of discriminant hyperplanes

F ∈ R
N×k An affinity function matrix using +1 and -1 to

discriminant pairwise clustering assignment
Y ∈ R

N×N Diagonal matrix where the (a,a) entry using -1
or +1 to represent the cluster label of the
a−th sample

Sb ∈ R
k×k The between cluster scatter matrix

St ∈ R
k×k The total scatter matrix

Sφ
b ∈ R

k×k The between cluster scatter matrix in F

Sφ
t ∈ R

k×k The total scatter matrix in F

Table 6.2 Vectors

θ ∈ R
r+s Coefficient vector of Laplacians and kernels

μ ∈ R
D The global sample mean vector of X

μΦ ∈ R
F The global sample mean vector of XΦ

w ∈ R
N Norm vector of the separating hyperplane

in discriminant analysis
β ∈ R

N Dual variables in convex optimization problems
1 ∈ R

N Vector of all ones
s ∈ R

r or R
s Dummy vector in optimization problem
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Table 6.3 Scalars

N ∈ N Number of data samples
k ∈ N Number of clusters in k-means clustering
a ∈ {1, ...,N} Index of the data samples
b ∈ {1, ...,k} Index of the clusters
i ∈ {1, ...,r} Index of the Graphs or Laplacians
j ∈ {1, ...,s} Index of the kernels
r ∈ N Number of Laplacians
s ∈ N Number of kernels
l ∈ {1, ...,r + s} Index of all sources (kernels and Laplacians)
nb ∈ N Number of samples belonging to cluster b
κ ∈ [0,1] The parameter adjusting the effect of k-means

and Spectral Clustering in the objective function
δ ∈ {1,2} Sparseness control parameter
t ∈ R Dummy variable in optimization problem
λ ∈ R

+ Regularization parameter in LSSVM
γ ∈ Z

+ Iteration index of OKLC algorithm
ΔA ∈ [0,1] Error of clustering assignment matrix
ε ∈ R

+ Stopping criterion for OKLC
ρ ∈ R

+ Regularization parameter

Table 6.4 Others

φ(·) A feature map
K (·, ·) kernel trick
C A set of samples in a cluster
F Feature space
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6.3 Combine Kernel and Laplacian for Clustering

6.3.1 Combine Kernel and Laplacian as Generalized Rayleigh
Quotient for Clustering

We first briefly review the KL algorithm proposed by [25]. Let us denote X as an
attribute data set and W as a graph affinity matrix, both of them are representations
of the same sets of samples. The objective of the KL integration to combine X and
W for clustering can be defined as

JKL = κJSC +(1−κ)JKM, (6.1)

where JSC and JKM are respectively the objectives of SC and KM clustering, κ ∈
[0,1] is a coefficient adjusting the effect of the two objectives. Let us denote A ∈
R

N×k as the weighted scalar cluster membership matrix, given by

Aab =

{

1√
nb

if xa ∈Cb

0 if xa /∈Cb,
(6.2)

where nb is the number of data points belonging to cluster Cb and AT A = Ik, where Ik

denotes a k× k identity matrix. Let’s denote D as the diagonal matrix whose (a,a)
entry is the sum of the entries of row a in the affinity matrix W. The normalized
Laplacian matrix [31] is given by

L̃ = I−D−
1
2 W D−

1
2 . (6.3)

The objective of normalized cut based SC is formulated as

minimize
A

trace
(

AT L̃A
)

. (6.4)

As discussed in the literature [4, 8, 12], if the data X has zero sample means, the
objective of the KM is given by

maximize
A

trace(AT XT XA). (6.5)

We further generalize (6.5) by applying the feature map φ(·) : R→F on X , then
the centered data in F is denoted as XΦ , given by

XΦ = [φ(x1)− μΦ ,φ(x2)−μΦ , ...,φ(xN)− μΦ ], (6.6)

where φ(xi) is the feature map applied on the column vector of the a-th data point
in F , μΦ is the global mean in F . The inner product XT X in (6.5) can be com-
bined using the kernel trick K (xu,xv) = φ(xu)Tφ(xv) and G(·, ·) is a Mercer ker-
nel constructed by the kernel trick. We denote Gc as the centered kernel matrix
as Gc = PGP, where P is the centering matrix P = IN − (1/N)1T

N , G is the kernel
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matrix, IN is the N×N identity matrix, 1N is a column vector of N ones. Without
loss of generality, the k-means objective in (6.5) can be equivalently written as

maximize
A

trace(AT GcA). (6.7)

Then the objective of KL integration becomes

minimize
A

trace
(

AT L̃A
)− (1−κ) trace

(

AT GcA
)

(6.8)

subject to AT A = Ik,

0≤ κ ≤ 1.

To solve the optimization problem without tuning the ad hoc parameter κ , Wang
et al. formulate it as a trace quotient of the two components [25]. The trace quotient
is then further relaxed as a maximization of quotient trace, given by

maximize
A

trace (AT L̃A)−1(AT GcA) (6.9)

subject to AT A = Ik.

The problem in (6.9) is a generalized Rayleigh quotient and the optimal solution A∗
is obtained in the generalized eigenvalue problem. To maximize this objective, A∗ is
approximated as the largest k eigenvectors of L̃+Gc, where L̃+ is the pseudo inverse
of L̃ [25].

6.3.2 Combine Kernel and Laplacian as Additive Models for
Clustering

As discussed, the original KL algorithm is proposed to optimize the generalized
Rayleigh quotient objective. In this chapter, we propose an alternative integration
method using a different notation of Laplacian [31], L̂, given by

L̂ = D−1/2WD−1/2, (6.10)

where D and W are defined the same as in (6.3). The objective of spectral clustering
is equivalent to maximizing the term as

maximize
A

trace(AT L̂A). (6.11)

Therefore, the objective of the KL integration can be rewritten in an additive form,
given by

maximize
A

trace
{

κAT L̂A +(1−κ)ATGcA
}

(6.12)

subject to AT A = Ik,

0≤ κ ≤ 1,
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where A, Gc are defined the same as in (6.8), κ is the free parameter to adjust the
effect of kernel and Laplacian in KL integration. If κ is pre-defined, (6.12) is a
Rayleigh quotient problem and the optimal A∗ can be obtained from eigenvalue
decomposition, known as the spectral relaxation [7]. Therefore, to maximize this
objective, we denote Ω = κ L̂+(1−κ)Gc thus A∗ is solved as the dominant k eigen-
vectors of Ω .

We have shown two different methods to integrate a single Laplacian matrix with
a single kernel matrix for clustering, where the main difference is to either optimize
the cluster assignment affinity matrix A as a generalized Rayleigh quotient (ratio
model) or as a Rayleigh quotient (additive model). The main advantage of the ratio
based solution is to avoid tuning the parameter κ . However, since our main interest
is to optimize the combination of multiple kernels and Laplacians, the coefficients
assigned on each kernel and Laplacian still need to be optimized. Moreover, the
optimization of the additive integration model is computationally simpler than opti-
mizing the ratio based model. Therefore, in the following sections we will focus on
extending the additive KL integration to multiple sources.

6.4 Clustering by Multiple Kernels and Laplacians

Let us denote a set of graphs as Hi, i ∈ {1, ...,r}, all having N vertices, and a set of
Laplacians L̂i constructed from Hi as (6.10). Let us also denote a set of centered ker-
nel matrices as Gc j, j ∈ {1, ...,s} with N samples. To extend (6.12) by incorporating
multiple kernels and Laplacians for clustering, we propose a strategy to learn their
optimal weighted convex linear combinations. The extended objective function is
then given by

Q1: maximize
A,θ

= trace
(

AT (Ł̂+ G)A
)

(6.13)

subject to Ł̃ =
r

∑
i=1

θiL̃i,

G =
s

∑
j=1

θ j+rGc j,

r

∑
i=1

θδ
i = 1,

s

∑
j=1

θδ
j+r = 1,

θl ≥ 0, l = 1, ...,(r + s),

AT A = Ik,

where θ1, ...,θr and θr+1, ...,θr+s are respectively the optimal coefficients assigned
to the Laplacians and the kernels. G and Ł̃ are respectively the combined kernel
matrix and the combined Laplacian matrix. The κ parameter in (6.12) is replaced
by the coefficients assigned on each individual data sources.
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To solve Q1, in the first phase we maximize JQ1 with respect to A, keeping
θ fixed (initialized by random guess). In the second phase we maximize JQ1 with
respect to θ , keeping A fixed. The two phases optimize the same objective and repeat
until convergence locally. When θ is fixed, denoting Ω = Ł̃ + G̃, Q1 is exactly a
Rayleigh quotient problem and the optimal A∗ can be solved as a eigenvalue problem
of Ω . When A is fixed, the problem reduces to the optimization of the coefficients
θl with given cluster memberships. In Chapter 4, we have shown that when the A
is given, Q1 can be formulated as Kernel Fisher Discriminant (KFD) in the high
dimensional feature space F . We introduce W = [w1, ...,wk], a projection matrix
determining the pairwise discriminating hyperplane. Since the discriminant analysis
is invariant to the magnitude of w, we assume that W TW = Ik, thus Q1 can be
equivalently formulated as

Q2: maximize
A,W,θ

trace
(

W T AT AW
)−1 (

W T AT (G + Ł̂)AW
)

, (6.14)

subject to AT A = Ik,

W TW = Ik,

Ł̂ =
r

∑
i=1

θiL̂i,

G =
s

∑
j=1

θ j+rGc j,

θl ≥ 0, l = 1, ...,(r + s),
r

∑
i=1

θδ
i = 1,

s

∑
j=1

θδ
j+r = 1.

The bi-level optimization to solve Q1 correspond to two steps to solve Q2. In the
first step (clustering), we set W = Ik and optimize A, which is exactly the addi-
tive kernel Laplacian integration as (6.12); In the second step (KFD), we fix A and
optimize W and θ . Therefore, the two components optimize towards the same ob-
jective as a Rayleigh quotient in F so the iterative optimization converges to a local
optimum. Moreover, in the second step, we are not interested in the separating hy-
perplane defined in W , instead, we only need the optimal coefficients θl assigned on
the Laplacians and the kernels. In Chapter 4, we have known that Fisher Discrim-
inant Analysis is related to the least squares approach [8], and the Kernel Fisher
discriminant (KFD) ([17]) is related to and can be solved as a least squares support
vector machine (LS-SVM), proposed by Suykens et al. [23]. The problem of opti-
mizing multiple kernels for supervised learning (MKL) has been studied by [2, 15].
In our recent work [30], we derive the MKL extension for LSSVM and propose
some efficient solutions to solve the problem. In this paper, the KFD problems are
formulated as LSSVM MKL and solved by Semi-infinite programming (SIP) [21].
The concrete solutions and algorithms are presented in Chapter 3.
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6.4.1 Optimize A with Given θ

When θ are given, the kernel-Laplacian combined matrix Ω is also fixed, therefore,
the optimal A can be found as the dominant k number of eigenvectors of Ω .

6.4.2 Optimize θ with Given A

When A is given, the optimal θ assigned on Laplacians can be solved via the fol-
lowing KFD problem:

Q3: maximize
W,θ

trace
(

W T AT AW
)−1 (

W T AT Ł̂AW
)

(6.15)

subject to W TW = Ik,

Ł̂ =
r

∑
i=1

θiL̂i,

θi ≥ 0, i = 1, ...,r,
r

∑
i=1

θδ
i = 1.

In Chapter 3, we have found that the δ parameter controls the sparseness of source
coefficients θ1, ...,θr. The issue of sparseness in MKL is also addressed by Kloft et
al. ([14]) When δ is set to 1, the optimized solution is sparse, which assigns dom-
inant values to only one or two Laplacians (kernels) and zero values to the others.
The sparseness is useful to distinguish relevant sources from a large number of irrel-
evant data sources. However, in many applications, there are usually a small number
of sources and most of these data sources are carefully selected and preprocessed.
They thus often are directly relevant to the problem. In these cases, a sparse solution
may be too selective to thoroughly combine the complementary information in the
data sources. We may thus expect a non-sparse integration method which smoothly
distributes the coefficients on multiple kernels and Laplacians and, at the same time,
leverages their effects in the objective optimization. We have proved that when δ is
set to 2, the KFD step in (6.15) optimizes the L2-norm of multiple kernels, which
yields a non-sparse solution. If we set δ to 0, the cluster objective is simplified as to
averagely combine multiple kernels and Laplacians. In this chapter, we set δ to three
different vales (0,1,2) to respectively optimize the sparse, average, and non-sparse
coefficients on kernels and Laplacians.

When δ is set to 1, the KFD problem in Q3 is solved as LSSVM MKL [30],
given by

Q4: minimize
β ,t

1
2

t +
1

2λ

k

∑
b=1

β T
b β b−

k

∑
b=1

β T
b Y−1

b 1 (6.16)
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subject to
N

∑
a=1

βab = 0, b = 1, ...,k,

t ≥
k

∑
b=1

β T
b L̂iβ b, i = 1, ...,r, b = 1, ...,k,

where β is the vector of dual variables, t is a dummy variable in optimization, a is
the index of data samples, b is the cluster label index of the discriminating problem
in KFD, Yb is the diagonal matrix representing the binary cluster assignment, the
vector on the diagonal of Yb is equivalent to the b-th column of a affinity matrix Fab

using {+1,−1} to discriminate the cluster assignments, given by

Fab =

{

+1 if Aab > 0, a = 1, ...,N, b = 1, ...,k

−1 if Aab = 0, a = 1, ...,N, b = 1, ...,k .
(6.17)

As mentioned in Chapter 3, the problem presented in Q4 has an efficient solution
based on SIP formulation. The optimal coefficients θi correspond to the dual vari-
ables bounded by the quadratic constraint t ≥∑k

b=1β T
b L̂iβ b in (6.16). When δ is set

to 2, the solution to Q3 is given by

Q5: minimize
β ,t

1
2

t +
1

2λ

k

∑
j=1

β T
b β b−

k

∑
b=1

β T
b Y−1

b 1 (6.18)

s.t.
N

∑
a=1

βab = 0, b = 1, ...,k,

t ≥ ||s||2,

where s = {∑k
b=1β T

b L̂1β b, ...,∑k
b=1β T

b L̂rβ b}T , other variables are defined the same
as (6.16). The main difference between Q4 and Q5 is that Q4 optimizes the L∞ norm
of multiple kernels whereas Q5 optimizes the L2 norm. The optimal coefficients
solved by Q4 are more likely to be sparse, in contrast, the ones obtained by Q5 are
nonsparse. The algorithm to solve Q4 and Q5 is concretely explained in Algorithm
3.6.1 in Chapter 3.

Analogously, the coefficients assigned on kernels can also be obtained in the
similar formulation, given by

Q6: maximize
W,θ

trace
(

W T AT AW
)−1 (

W T AT GAW
)

(6.19)

subject to W TW = Ik,

G =
s

∑
j=1

θ j+rGc j,

θ j+r ≥ 0, j = 1, ...,s,
s

∑
j=1

θδ
j+r = 1,
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where most of the variables are defined in the similar way as Q3 in (6.15). The main
difference is that the Laplacian matrices L̂ and L̂i are replaced by the centered kernel
matrices G and Gc j. The solution of Q6 is exactly the same as Q3, depending on the
δ value, it can be solved either as Q4 or Q5.

6.4.3 Algorithm: Optimized Kernel Laplacian Clustering

As discussed, the proposed algorithm optimizes A and θ iteratively to convergence.
The coefficients assigned to the Laplacians and the kernels are optimized in paral-
lel. Putting all the steps together, the pseudocode of the proposed optimized kernel
Laplacian clustering (OKLC) is presented in Algorithm 6.4.1.

The iterations in Algorithm 6.4.1 terminate when the cluster membership matrix
A stops changing. The tolerance value ε is a constant value as the stopping rule of
OKLC and in our implementation it is set to 0.05. In our implementation, the fi-
nal cluster assignment is obtained using k-means algorithm on A(γ). In Algorithm
6.4.1, we consider the δ as predefined values. When δ is set to 1 or 2, the SIP-
LSSVM-MKL function optimizes the coefficients as the formulation in (6.16) or
(6.18) respectively. It is also possible to combine Laplacians and kernels in an av-
erage manner. In this paper, we compare all these approaches and implement three
different OKLC models. These three models are denoted as OKLC model 1, OKLC
model 2, and OKLC model 3 which respectively correspond to the objective Q2 in
(6.14) when δ = 1, average combination, δ = 2.

Algorithm 6.4.1. OKLC(Gc1, ...,Gcs, L̂1, ..., L̂r,k)

comment: Obtain the Ω (0) using the initial guess of θ (0)
1 , ...,θ (0)

r+s

A(0)← EIGENVALUE DECOMPOSITION(Ω (0),k)
γ = 0
while (ΔA > ε)

do

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

step1 : F (γ)← A(γ)

step2 : θ (γ)
1 , ...,θ (γ)

r ← SIP-LSSVM-MKL(L̂1, ..., L̂r,F(γ))
step3 : θ (γ)

r+1, ...,θ
(γ)
r+s← SIP-LSSVM-MKL(Gc1, ...,Gcs,F (γ))

step4 : Ω (r+1)← θ (γ)
1 L̂(γ)

1 + ...+θ (γ)
r L̂(γ)

r +θ (γ)
r+1G(γ)

c1 + ...+θ (γ)
r+sG

(γ)
cs

step5 : A(γ+1)← EIGENVALUE DECOMPOSITION(Ω (γ+1),k)
step6 : ΔA = ||A(γ+1)−A(γ)||2/||A(γ+1)||2
step7 : γ := γ +1

return (A(γ),θ (γ)
1 , ...,θ (γ)

r ,θ (γ)
r+1, ...,θ

(γ)
r+s)
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6.5 Data Sets and Experimental Setup

The proposed OKLC models are validated in two real applications to combine het-
erogeneous data sets in clustering analysis. The data sets in the first experiment is
taken from the work of multi-view text mining for disease gene identification men-
tioned in Chapter 5. The data sets contain nine different gene-by-term text profiles
indexed by nine controlled vocabularies. The original disease relevant gene data
set contains 620 genes which are known to be relevant to 29 diseases. To avoid
the effect of imbalanced clusters which may affect the evaluation, we only keep
the diseases who have 11 to 40 relevant genes (presented in Table 6.5). This re-
sults in 14 genetic diseases and 278 genes. Because the present paper is focused on
non-overlapping “hard” clustering, we further remove 16 genes which are relevant
to multiple diseases. The remaining 262 disease relevant genes are clustered into
14 clusters and evaluated biologically by their disease labels. For each vocabulary
based gene-by-term data source, we create a kernel matrix using the linear kernel
function and the kernel normalization method proposed by (Chapter 5, [19]). An
element in the kernel matrix is then equivalent to the value of cosine similarity of
two vectors [3]. This kernel is then regarded as the weighted adjacency matrix to
create the Laplacian matrix. In total, nine kernels and nine Laplacian matrices are
combined in clustering.

Table 6.5 14 genetic diseases in disease data and the number of genes relevant to each dis-
ease. The numbers in parentheses are the removed overlapping genes in each disease.

Number Disease Number of genes

1 breast cancer 24 (4)
2 cardiomyopathy 22 (5)
3 cataract 20 (0)
4 charcot marie tooth disease 14 (4)
5 colorectal cancer 21 (4)
6 diabetes 26 (1)
7 emolytic anemia 13 (0)
8 epilepsy 15 (1)
9 lymphoma 31 (4)
10 mental retardation 24 (1)
11 muscular dystrophy 24 (5)
12 neuropathy 18 (3)
13 obesity 13 (1)
14 retinitis pigmentosa 30 (0)

The data sets in the second experiment are taken from Web of Science (WOS)
database provided by Thomson Scientific [16]. The original WOS data contains
more than six million papers published from 2002 to 2006 (e.g.,articles, letters,
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notes, reviews) provided by Thomson Scientific. Citations received by these papers
have been determined for a variable citation window beginning with the publication
year, up to 2006. An item-by-item procedure was used with special identification-
keys made up of bibliographic data elements, which were extracted from the first-
author names, journal title, publication year, volume and the first page. To resolve
ambiguities, journals were checked for the name changes and the papers were
checked for name changes and merged accordingly. Journals not covered in the
entire period (from 2002 to 2006) have been omitted. Two criteria were applied to
select journals for clustering: at first, only the journals with at least 50 publications
from 2002 to 2006 were investigated, and others were removed from the data set;
then only those journals with more than 30 citations from 2002 to 2006 were kept.
With these selection criteria, we obtained 8305 journals as the data set. We referred
the ESI (Essential Science Index) labels of these journals and selected 7 balanced
categories (1424 journals) as the journal set data in this paper. Table 6.6 shows these
7 ESI categorizations and the number of relevant journals.

Table 6.6 7 journal categorizations in journal data

Number ESI labels Number of journals

1 Agriculture Science 183
2 Computer Science 242
3 Environment Ecology 217
4 Materials Science 258
5 Molecular Biology and Genetics 195
6 Neuroscience and Behavior 194
7 Pharmacology and Toxicology 135

The titles, abstracts and keywords of the journal publications are indexed by a
Jakarta Lucene based text mining program using no controlled vocabulary. The in-
dex contains 9,473,061 terms and we cut the Zipf curve of the indexed terms at the
head and the tail to remove the rare term, stopwords and common words. These
words are known as usually irrelevant, also noisy for the clustering purpose. After
the Zipf cut, 669,860 meaningful terms are used to represent the journal in a vector
space model where the terms are attributes and the weights are calculated as four
weighting schemes: TF-IDF, IDF, TF and binary. The paper-by-term vectors are
then aggregated to journal-by-term vectors as the representations of the lexical data.
Therefore, we have obtained 4 data sources as the lexical information of journals.

The citations among the journals were analyzed in four different aspects.

• Cross-citation: Two papers are defined as cross-citation if one cites another,
where the value is equivalent to the frequency of citations. We ignore the direc-
tion of citations by symmetrizing the cross-citation matrix.
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• Binary cross-citation: To avoid the large amount of cross-citation in the journals
with a lot of publications, we use binary values (1 or 0) to represent whether there
is (or no) citation between two journals, termed as binary cross-citation metric.

• Co-citation: Two papers from different journals are defined as co-citation if they
are cited simultaneously by a paper from the third journal. The co-citation fre-
quency of the two papers equals to the number of other papers that cite them
simultaneously.

• Bibliographic coupling: Two papers from different journals are considered as
bibliographic coupling when they cite the same paper from a third journal. The
coupling frequency equals to the number of papers they simultaneously cite to-
gether. The citations among papers are also aggregated to journal level.

Thus, we obtain different information sources about the journals. Four of them are
text mining based attribute data and we construct the corresponding kernel matrices
using linear kernel function, denoted as TFIDF, IDF, TF, Binary kernels. Four ci-
tation sources represent graph-based relationships among journals and we construct
corresponding Laplacians, denoted as Cross-citation, co-citation, bibliograph cou-
pling and binary cross citation Laplacians. The lexical similarities are represented
as normalized linear kernel matrices (using the same methods applied on the disease
data) and the citation metrics are regarded as weighted adjacency matrices to create
the Laplacians. Totally four kernels and four Laplacians are combined on journal
data.

The data sets used in our experiments are provided with labels, therefore the
clustering performance is evaluated as comparing the automatic partitions with the
labels using Adjusted Rand Index (ARI) ([13]) and Normalized Mutual Information
(NMI) ([22]). To evaluate the ARI and NMI performance, we set k = 14 on disease
data and k = 7 on journal data. We also tune the OKLC model using different k
values.

6.6 Results

We implemented the proposed OKLC models to integrate multiple kernels and
Laplacians on disease data and journal set data. To compare the performance, we
also applied the six popular ensemble clustering methods mentioned in Chapter 5
to combine the partitions of individual kernels and Laplacians as a consolidate par-
tition. They are CSPA [22], HGPA [22], MCLA [22], QMI [24], EACAL [9], and
AdacVote [1]. As shown in Table 6.7 and Table 6.8, the performance of OKLC algo-
rithms is better than all the compared methods and the improvement is significant.
On disease data, the best performance is obtained by OKLC model 1, which uses
sparse coefficients to combine 9 text mining kernels and 9 Laplacians to identify dis-
ease relevant clusters (ARI: 0.5859, NMI: 0.7451). On journal data, all three OKLC
models perform comparably well. The best one seems coming from OKLC model 3
(ARI: 0.7336, NMI: 0.7758), which optimizes the non-sparse coefficients on the 4
kernels and 4 Laplacians.
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Table 6.7 Performance on disease data set. All the comparing methods combine nine kernels
and nine Laplacians. The mean values and the standard deviations are observed from 20
random repetitions. The best performance is shown in bold. The P-values are statistically
evaluated with the best performance using paired t-test.

Algorithm ARI P-value NMI P-value

OKLC 1 0.5859±0.0390 - 0.7451±0.0194 -
OKLC 2 0.5369±0.0493 2.97E-04 0.7106±0.0283 9.85E-05
OKLC 3 0.5469±0.0485 1.10E-03 0.7268±0.0360 2.61E-02
CSPA 0.4367±0.0266 5.66E-11 0.6362±0.0222 4.23E-12
HGPA 0.5040±0.0363 8.47E-07 0.6872±0.0307 7.42E-07
MCLA 0.4731±0.0320 2.26E-10 0.6519±0.0210 5.26E-14
QMI 0.4656±0.0425 7.70E-11 0.6607±0.0255 8.49E-11
EACAL 0.4817±0.0263 2.50E-09 0.6686±0.0144 5.54E-12
AdacVote 0.1394±0.0649 1.47E-16 0.4093±0.0740 6.98E-14

Table 6.8 Performance on journal data set. All the comparing methods combine four kernels
and four Laplacians. The mean values and the standard deviations are observed from 20
random repetitions. The best performance is shown in bold. The P-values are statistically
evaluated with the best performance using paired t-test.

Algorithm ARI P-value NMI P-value

OKLC 1 0.7346±0.0584 0.3585 0.7688±0.0364 0.1472
OKLC 2 0.7235±0.0660 0.0944 0.7532±0.0358 0.0794
OKLC 3 0.7336±0.0499 - 0.7758±0.0362 -
CSPA 0.6703±0.0485 8.84E-05 0.7173±0.0291 1.25E-05
HGPA 0.6673±0.0419 4.74E-06 0.7141±0.0269 5.19E-06
MCLA 0.6571±0.0746 6.55E-05 0.7128±0.0463 2.31E-05
QMI 0.6592±0.0593 5.32E-06 0.7250±0.0326 1.30E-05
EACAL 0.5808±0.0178 3.85E-11 0.7003±0.0153 6.88E-09
AdacVote 0.5899±0.0556 1.02E-07 0.6785±0.0325 6.51E-09

To evaluate whether the combination of kernel and Laplacian indeed improve
the clustering performance, we first systematically compared the performance of all
the individual data sources using KM and SC. As shown in Table 6.9, on disease
data, the best KM performance (ARI 0.5441, NMI 0.7099) and SC (ARI 0.5199,
NMI 0.6858) performance is obtained on LDDB text mining profile. Next, we enu-
merated all the paired combinations of a single kernel and a single Laplacian for
clustering. The integration is based on equation (6.12) and the κ value is set to
0.5 so the objectives of KM and SC are combined averagely. The performance
of all 45 paired combinations is presented in Table 6.10. As shown, the best KL
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clustering performance is obtained by integrating the LDDB kernel with KO Lapla-
cian (ARI 0.5298, NMI 0.6949). Moreover, we also found that the integration per-
formance varies significantly by the choice of kernel and Laplacian, which proves
our previous point that the KL performance is highly dependent on the quality of
kernel and Laplacian. Using the proposed OKLC algorithm, there is no need to enu-
merate all the possible paired combinations. OKLC combines all the kernels and
Laplacians and optimizes their coefficients in parallel, yielding a comparable per-
formance with the best paired combination of a single kernel and a single Laplacian.

Table 6.9 Clustering performance of individual disease data source. The mean values and
the standard deviations observed from 20 random repetitions are reported in the table. The
KM clustering is implemented as the kernel k-means algorithm proposed by Girolami [10].
The SC is solved as equation (6.11). The bold numbers represent the best performance of
kernels and Laplacians respectively.

Source ARI NMI

kernels

eVOC 0.3880 ± 0.0469 0.6122 ± 0.0404

GO 0.2801 ± 0.0282 0.4870 ± 0.0218

KO 0.1233 ± 0.0186 0.3312 ± 0.0186

LDDB 0.5441 ± 0.0374 0.7099 ± 0.0208

MeSH 0.3288 ± 0.0471 0.5432 ± 0.0318

MP 0.4234 ± 0.0481 0.6259 ± 0.0362

OMIM 0.4185 ± 0.0454 0.6340 ± 0.0289

SNOMED 0.3065 ± 0.0426 0.5357 ± 0.0340

Uniprot 0.3684 ± 0.0352 0.5736 ± 0.0152

Laplacians

eVOC 0.4153 ± 0.0435 0.6106 ± 0.0312

GO 0.3423 ± 0.0359 0.5440 ± 0.0266

KO 0.1327 ± 0.0167 0.3323 ± 0.0169

LDDB 0.5199 ± 0.0488 0.6858 ± 0.0269

MeSH 0.4333 ± 0.0492 0.6403 ± 0.0360

MP 0.4741 ± 0.0347 0.6561 ± 0.0237

OMIM 0.4814 ± 0.0612 0.6806 ± 0.0312

SNOMED 0.4240 ± 0.0420 0.6253 ± 0.0293

Uniprot 0.3222 ± 0.0286 0.5374 ± 0.0234
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Fig. 6.1 Confusion matrices of disease data obtained by kernel k-means on LDDB (figure
on the left) and OKLC model 1 integration (figure on the right). The numbers of cluster
labels are consistent with the numbers of diseases presented in Table 6.5. In each row of the
confusion matrix, the diagonal element represents the fraction of correctly clustered genes
and the off-diagonal non-zero element represents the fraction of mis-clustered genes.

In Figure 6.1 two confusion matrices of disease data for a single run are de-
picted. The values on the matrices are normalized according to Ri j = Cj/Ti, where
Ti is the total number of genes belonging in disease i and Cj is the number of
these Ti genes that were clustered to belong to class j. First, it is worth noting
that OKLC reduces the number of mis-clustered genes on breast cancer (Nr.1),
cardiomyopathy (Nr.2), and muscular dystrophy (Nr.11). Among the mis-clustered
genes in LDDB, five genes (TSG101, DBC1, CTTN, SLC22A18, AR) in breast
cancer, two genes in cardiomyopathy (COX15, CSRP3), and two genes in muscular
dystrophy (SEPN1, COL6A3) are correctly clustered in OKLC model 1. Second,
there are several diseases where consistent misclustering occurs in both methods,
such as diabetes (Nr.6) and neuropathy (Nr.12). The intuitive confusion matrices
correspond to the numerical evaluation results, as shown, the quality of clustering
obtained by OKLC model 1 (ARI=0.5898, NMI=0.7429) is higher than LDDB, the
best individual data.

The performance of individual data sources of journal data is shown in Table 6.11.
The best KM (ARI 0.6482, NMI 0.7104) is obtained on the IDF kernel and the best
SC (ARI 0.5667, NMI 0.6807) is obtained on the cross-citation Laplacian. To com-
bine the 4 kernels with 4 Laplacians, we evaluate all the 10 paired combinations and
show the performance in Table 6.12. The best performance is obtained by integrat-
ing the IDF kernel with the cross-citation Laplacian (ARI 0.7566, NMI 0.7702). As
shown, the integration of lexical similarity information and citation based Laplacian
indeed improves the performance.

In Figure 6.2 the confusion matrices (also normalized) of journal data for a sin-
gle run are illustrated. We compare the best individual data source (IDF with kernel
k-means, figure on the left) with the OKLC model 1. In the confusion matrix of
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Table 6.11 Clustering performance of individual journal data source. The mean values and
the standard deviations observed from 20 random repetitions are reported in the table. The
KM clustering is implemented as the kernel k-means algorithm proposed by Girolami [10].
The SC is solved as equation (6.11). The bold numbers represent the best performance of
kernels and Laplacians respectively.

Source ARI NMI

Text kernels

IDF 0.6482±0.0506 0.7104±0.0375

TFIDF 0.5540±0.0760 0.6547±0.0446

TF 0.5832±0.0643 0.6740±0.0413

Binary 0.6458±0.0382 0.6949±0.0246

Laplacians

Cross citation 0.5667 ±0.0355 0.6870±0.0192

Co-citation 0.3239±0.0211 0.4941±0.0154

Bibliograph coupling 0.5721±0.0295 0.6534±0.0162

Binary cross citation 0.5037±0.0191 0.6221±0.0090

Table 6.12 KL performance of journal data. The mean values and the standard deviations
observed from 20 random repetitions are reported in the table. The KL clustering is solved as
equation (6.12). The κ value is set to 0.5. The best performance among the 10 paired kernel-
Laplacian integrations is represented in bold. Comparing the best KL result with the best KM
and SC results in the previous table, it is obvious that KL integration does indeed improve
the quality of clustering.

ARI L-crs-citation L-co-citation L-biblio L-binary-crs-citation

K-IDF 0.7566±0.09

K-TFIDF 0.6830±0.04 0.7090±0.04

K-TF 0.7086±0.03 0.6819±0.05 0.6948±0.05

K-Binary 0.6326±0.05 0.6597±0.05 0.6350±0.06 0.6494±0.07

NMI L-crs-citation L-co-citation L-biblio L-binary-crs-citation

K-IDF 0.7702±0.07

K-TFIDF 0.7347±0.03 0.7482±0.03

K-TF 0.7448±0.03 0.7237±0.03 0.7346±0.03

K-Binary 0.6731±0.03 0.6852±0.03 0.6741±0.04 0.6802±0.04
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Fig. 6.2 Confusion matrices of journal data obtained by kernel k-means on IDF (figure on the
left) and OKLC model 1 integration (figure on the right). The numbers of cluster labels are
consistent with the numbers of ESI journal categories presented in Table 6.6. In each row, the
diagonal element represents the fraction of correctly clustered journals and the off-diagonal
non-zero element represents the fraction of mis-clustered journals.

IDF k-means, 79 journals belonging to agriculture science (Nr.1) are mis-clustered
to environment ecology (Nr.3), 9 journals are mis-clustered to pharmacology and
toxicology (Nr.7). In OKLC, the number of agriculture journals mis-clustered to
environment ecology is reduced to 45, and the number to pharmacology and toxi-
cology is reduced to 5. On other journal clusters, the performance of the two models
is almost equivalent.

We also investigated the performance of only combining multiple kernels or mul-
tiple Laplacians. On the disease data set, we respectively combined the 9 kernels and
the 9 Laplacians for clustering, using all the compared methods in Table 6.7 and Ta-
ble 6.8. On the journal data set, we combined the 4 text mining kernels and the 4
citation Laplacians. The proposed OKLC method is simplified as only optimizing
coefficients on Laplacians (step 2 in Algorithm 6.4.1) or kernels (step 3). As shown
in Table 6.13 and Table 6.14, the performance of OKLC is also comparable to the
best performance obtained either by kernel combination or Laplacian combination.
In particular, of all the methods we compared, the best performance is all obtained
on OKLC models or its simplified forms.
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Table 6.13 Clustering results on disease data set. The table presents the clustering per-
formance using a variety of methods. The performance of clustering by multiple kernels
integration, multiple Laplacians integration and multiple kernels Laplacians integration is
compared. The best performance of each approach is represented in Bold. As shown, two
approaches lead to the best performance: One is the average combination of 9 Laplacian ma-
trices (OKLC model 2). Another approach is the integration of multiple kernels and Lapla-
cians using OKLC model 1.

Algorithm ARI NMI

kernels only

OKLC 1 0.4906±0.0356 0.6837±0.0267

OKLC 2 0.5362±0.0546 0.7014±0.0243

OKLC 3 0.4029±0.0353 0.6485±0.0194

CSPA 0.4040±0.0197 0.6123±0.0204

HGPA 0.4312±0.0451 0.6387±0.0401

MCLA 0.4377±0.0331 0.6323±0.0223

QMI 0.4309±0.0291 0.6328±0.0209

EACAL 0.4563±0.0240 0.6606±0.0206

AdacVote 0.2361±0.0805 0.5262±0.0702

Laplacians only

OKLC 1 0.4603±0.0356 0.6881±0.0104

OKLC 2 0.6187±0.0497 0.7665±0.0226

OKLC 3 0.4857±0.0198 0.7137±0.0093

CSPA 0.4348±0.0249 0.6368±0.0213

HGPA 0.4323±0.0300 0.6326±0.0211

MCLA 0.4916±0.0265 0.6609±0.0187

QMI 0.4638±0.0416 0.6491±0.0248

EACAL 0.5080±0.0217 0.6823±0.0167

AdacVote 0.3933±0.1148 0.6019±0.1520

kernels + Laplacians

OKLC 1 0.5859±0.0390 0.7451±0.0194

OKLC 2 0.5369±0.0493 0.7106±0.0283

OKLC 3 0.5469±0.0485 0.7268±0.0360

CSPA 0.4367±0.0266 0.6362±0.0222

HGPA 0.5040±0.0363 0.6872±0.0307

MCLA 0.4731±0.0320 0.6519±0.0210

QMI 0.4656±0.0425 0.6607±0.0255

EACAL 0.4817±0.0263 0.6686±0.0144

AdacVote 0.1394±0.0649 0.4093±0.0740

It is interesting to observe that the average combination model (OKLC model 2)
performs quite well on the journal data set but not on the disease data set. This is
probably because most of the sources in journal data set are relevant to the problem
whereas in disease data set some data sources are noisy, thus the integration of dis-
ease data sources is a non-trivial task. We expect that the other two OKLC models
(model 1 and model 3) optimize the coefficients assigned on the kernels and the
Laplacians to leverage multiple sources in integration, at the same time, to increase
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Table 6.14 Clustering results on journal data set. The settings is the same as in Table 6.14.

Algorithm ARI NMI

kernels only

OKLC 1 0.7328±0.0561 0.7756±0.0408

OKLC 2 0.6428±0.0861 0.7014±0.0567

OKLC 3 0.6968±0.0953 0.7509±0.0531

CSPA 0.6523±0.0475 0.7038±0.0283

HGPA 0.6668±0.0621 0.7098±0.0334

MCLA 0.6507±0.0639 0.7007±0.0343

QMI 0.6363±0.0683 0.7058±0.0481

EACAL 0.6670±0.0586 0.7231±0.0328

AdacVote 0.6617±0.0542 0.7183±0.0340

Laplacians only

OKLC 1 0.4390±0.0185 0.5818±0.0101

OKLC 2 0.7235±0.0521 0.7630±0.0280

OKLC 3 0.4934±0.0116 0.6351±0.0085

CSPA 0.4797±0.0632 0.5852±0.0380

HGPA 0.4674±0.0570 0.5772±0.0370

MCLA 0.4870±0.0530 0.5865±0.0267

QMI 0.5691±0.0430 0.6542±0.0301

EACAL 0.5529±0.0265 0.6813±0.0122

AdacVote 0.5197±0.0783 0.6537±0.0336

kernels + Laplacians

OKLC 1 0.7346±0.0584 0.7688±0.0364

OKLC 2 0.7235±0.0660 0.7532±0.0358

OKLC 3 0.7336±0.0499 0.7758±0.0362

CSPA 0.6703±0.0485 0.7173±0.0291

HGPA 0.6673±0.0419 0.7141±0.0269

MCLA 0.6571±0.0746 0.7128±0.0463

QMI 0.6592±0.0593 0.7250±0.0326

EACAL 0.5808±0.0178 0.7003±0.0153

AdacVote 0.5899±0.0556 0.6785±0.0325

the robustness of the combined model on combining relevant and irrelevant data
sources. To evaluate whether the optimized weights assigned on individual sources
have correlation with the performance, we compare the rank of coefficients with
the rank of performance from Table 6.15 to Table 6.18. As shown, the largest co-
efficients correctly indicate the best individual data sources. It is worth noting that
in multiple kernel learning, the rank of coefficients are only moderately correlated
with the rank of individual performance. In our experiments, the MeSH kernel gets
the 2nd largest weights though its performance in evaluation is low. In MKL, it
is usual that the best individual kernel found by cross-validation may not lead to
a large weight when used in combination [27]. Kernel fusion combines multiple
sources at a refined granularity, where the “moderate” kernels containing weak and
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Table 6.15 The average values of coefficients of kernels and Laplacians in disease data set
optimized by OKLC model 1. The sources assigned with 0 coefficient are not presented. The
performance is ranked by the average values of ARI and NMI evaluated on each individual
sources presented in Table 6.9.

Rank of θ Source θ value Performance rank

1 LDDB kernel 0.6113 1
2 MESH kernel 0.3742 6
3 Uniprot kernel 0.0095 5
4 Omim kernel 0.0050 2

1 LDDB Laplacian 1 1

Table 6.16 The average values of coefficients of kernels and Laplacians in journal data set
optimized by OKLC model 1. The sources assigned with 0 coefficient are not presented. The
performance is ranked by the average values of ARI and NMI evaluated on each individual
sources presented in Table 6.11.

Rank of θ Source θ value Performance rank

1 IDF kernel 0.7574 1
2 TF kernel 0.2011 3
3 Binary kernel 0.0255 2
4 TF-IDF kernel 0.0025 4

1 Bibliographic Laplacian 1 1

insignificant information could complement to other kernels to compose a “good”
kernel containing strong and significant information. Though such complementary
information cannot be incorporated when cross-validation is used to choose a sin-
gle best kernel, these “moderate” kernels are still useful when combined with other
kernels [27]. Based on the ranks presented in Table 6.17 and Table 6.18, we cal-
culated the spearman correlations between the ranks of weights and the ranks of
performance on both data sets. The correlations of disease kernels, disease Lapla-
cians, journal kernels and journal Laplacians are respectively 0.5657, 0.6, 0.8, and
0.4. In some relevant work, the average spearman correlations are mostly around 0.4
[15, 27]. Therefore, the optimal weights obtained in our experiments are generally
consistent with the rank of performance.
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Table 6.17 The average values of coefficients of kernels and Laplacians in disease data set
optimized by OKLC model 3

Rank of θ Source θ value Performance rank

1 LDDB kernel 0.4578 1
2 MESH kernel 0.3495 6
3 OMIM kernel 0.3376 2
4 SNOMED kernel 0.3309 7
5 MPO kernel 0.3178 3
6 GO kernel 0.3175 8
7 eVOC kernel 0.3180 4
8 Uniprot kernel 0.3089 5
9 KO kernel 0.2143 9

1 LDDB Laplacian 0.6861 1
2 MESH Laplacian 0.2799 4
3 OMIM Laplacian 0.2680 2
4 GO Laplacian 0.2645 7
5 eVOC Laplacian 0.2615 6
6 Uniprot Laplacian 0.2572 8
7 SNOMED Laplacian 0.2559 5
8 MPO Laplacian 0.2476 3
9 KO Laplacian 0.2163 9

Table 6.18 The average values of coefficients of kernels and Laplacians in journal data set
optimized by OKLC model 3

Rank of θ Source θ value Performance rank

1 IDF kernel 0.5389 1
2 Binary kernel 0.4520 2
3 TF kernel 0.2876 4
4 TF-IDF kernel 0.2376 3

1 Bibliographic Laplacian 0.7106 1
2 Cocitation Laplacian 0.5134 4
3 Crosscitation Laplacian 0.4450 2
4 Binarycitation Laplacian 0.1819 3

We also investigated the dominant eigenvalues of the optimized combination of
kernels and Laplacians. In Figure 6.3, we compare the difference of three OKLC
models with the pre-defined k (set as equal to the number of class labels). In practical
research, one can predict the optimal cluster number by checking the “elbow” of
the eigenvalue plot. As shown, the “elbow” in disease data is quite obvious at the
number of 14. In journal data, the “elbow” is more likely to range from 6 to 12. All
the three OKLC models show a similar trend on the eigenvalue plot. Moreover, in
Figure 6.4 and Figure 6.5, we also compare the eigenvalue curves using different
k values as input. As shown, the eigenvalue plot is quite stable w.r.t. the different
inputs of k, which means the optimized kernel and Laplacian coefficients are quite
independent with the k value. This advantage enables a reliable prediction about the
optimal cluster number by integrating multiple data sources.
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Fig. 6.3 The plot of eigenvalues (disease data on the left, journal data on the right) of the
optimal kernel-Laplacian combination obtained by all OKLC models. The parameter k is set
as equivalent as the reference label numbers.
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Fig. 6.4 The plot of eigenvalues of the optimal kernel-Laplacian combination obtained by
OKLC model 1 (left) and OKLC model 3 (right). We tried 19 different k inputs from 2 to 20.
For each k, the dominant 20 eigenvalues are shown as a curve. The figure on the top shows
the curves of OKLC model 1. The figure on the bottom shows the curves of OKLC model 3.
As shown, the eigenvlaue curves are insensitive to the input of k. No matter what k value is
used as the input, the resulted eigenvalue curves all show some obvious “elbows”. It is also
obvoious that the number of labeled diseases (14) is an “elbow”.

To investigate the computational time, we benchmarked OKLC algorithms with
other clustering methods on the two data sets. As shown in Table 6.19, when opti-
mizing the coefficients, OKLC algorithm (model 1 and model 3) spends longer time
than the other methods to optimize the coefficients on the Laplacians and the ker-
nels. However, the proposed algorithm is still efficient. Considering the fact that the
proposed algorithm yields much better performance and more enriched information
(the ranking of the individual sources) than other methods, it is worth spending extra
computational complexity on a promising algorithm.
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Fig. 6.5 Similarly, this figure shows the eigenvalue curves obtained by OKLC model 1 (left)
and OKLC model 3 (right) on journal data. Comparing with disease data, the optimal cluster
number of journal data is not so obvious. If there is no ESI label information, one may predict
the optimal cluster number from 6 to 8.

Table 6.19 Comparison of CPU time of all algorithms. The reported values are averaged
from 20 repetitions. The CPU time is evaluated on Matlab v7.6.0 + Windows XP2 installed
on a Laptop computer with Intel Core 2 Duo 2.26G Hz and 2G memory.

Algorithm disease data (seconds) journal data (seconds)

OKLC model 1 42.39 1011.4
OKLC model 2 0.19 13.27
OKLC model 3 37.74 577.51
CSPA 9.49 177.22
HGPA 10.13 182.51
MCLA 9.95 320.93
QMI 9.36 186.25
EACAL 9.74 205.59
AdacVote 9.22 172.12

6.7 Summary

We proposed a new clustering approach, OKLC, to optimize the combination of
multiple kernels and Laplacians in clustering analysis. The objective of OKLC is
formulated as a Rayleigh quotient function and is solved iteratively as a bi-level
optimization procedure. In the simplest interface, the proposed algorithm only re-
quires one input parameter, the cluster number k, from the user. Moreover, depend-
ing on user’s expectation to select the most relevant sources or to evenly combine all
sources, the sparseness of coefficient vector θ can be controlled via the parameter
δ . We proposed three variants of the OKLC algorithm and validated them on two
real applications. The performance of clustering was systematically compared with
a variety of algorithms and different experimental settings. The proposed OKLC
algorithms performed significantly better than other methods. Moreover, the coef-
ficients of kernels and Laplacians optimized by OKLC showed strong correlation
with the rank of performance of individual data source. Though in our evaluation
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the k values were predefined, in practical studies, the optimal cluster number can
be consistently estimated from the eigenspectrum of the combined kernel Laplacian
matrix.

The proposed OKLC algorithm demonstrates the advantage of combining and
leveraging information from heterogeneous data structures and sources. It is po-
tentially useful in bioinformatics and many other application areas, where there is
a surge of interest to integrate similarity based information and interaction based
relationships in statistical analysis and machine learning.
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Chapter 7
Weighted Multiple Kernel Canonical
Correlation

7.1 Introduction

In the preceding chapters we have presented several supervised and unsupervised
algorithms using kernel fusion to combine multi-source and multi-representation of
data. In this chapter we will investigate a different unsupervised learning
problem Canonical Correlation Analysis (CCA), and its extension in kernel fu-
sion techniques. The goal of CCA (taking two data sets for example) is to identify
the canonical variables that minimize or maximize the linear correlations between
the transformed variables [8]. The conventional CCA is employed on two data sets
in the observation space (original space). The extension of CCA on multiple data
sets is also proposed by Kettenring and it leads to different criteria of selecting the
canonical variables, which are summarized as 5 different models: sum of correlation
model, sum of squared correlation model, maximum variance model, minimal vari-
ance model and generalized variance model [9]. Akaho generalizes CCA by kernel
methods to find the canonical variables of data sets in the Hilbert space [1]. Bach
and Jordan further propose a kernel version of CCA on multiple data sets [2], which
is known as Multiple Kernel Canonical Correlation Analysis (MKCCA). MKCCA
is also useful as a independence measure to find uncorrelated variables in the Hilbert
space [2]. In this chapter, we will show that MKCCA is also useful to extract com-
mon information through maximization of the pairwise correlations among multiple
data sources. A weighted extension of MKCCA can be easily derived through mod-
ifications of the objective of MKCCA [12]. The weighted MKCCA method can also
be extended to out-of-sample points, which becomes important for model selection.
Another important issue for MKCCA is that the problem scales up exponentially
with the number of incorporated data sets and the number of samples. To make
this method applicable on machines with standard CPU and memory, low rank ap-
proximation techniques based on Incomplete Cholesky Decomposition (ICD) and
Singular Value Decomposition (SVD) are introduced. Moreover, for the weighted
extension of MKCCA, a incremental SVD algorithm is proposed to avoid recomput-
ing eigenvalue decomposition each time from scratch when the weights of MKCCA
are updated.

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 173–190.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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7.2 Acronyms

The symbols and notations used in this Chapter are defined in Table 1 (in the order
of appearance).

Table 7.1 Symbols used in Chapter 7

x R
N the input data variables

w R
N the canonical variables

C R
N the covariance matrix

u,v N the index parameter of data sets
O R

N×N the correlation among multiple sets
j N the index of multiple sets
p N the number of multiple sets
ρ R

+ the correlation coefficient
k N the index of data points in each data set
N N the number of data points
φ (·) R

Φ feature map
K (·, ·) R

Φ ×R
Φ → R kernel trick

G R
N×N centered kernel matrix

b R
N projection of data

κ R
+ regularization parameter

ξ R
+ weights assigned to paired correlations

θ R
+ the decomposed weights assigned to each data sources

W R
pN×pN the block diagonal matrix of weights

Ω R
pN×pN the block matrix of paired correlations

Ψ R
pN×pN the regularized block matrix of centered kernels

ψ R
+ the normalization parameter

λ R the generalized eigenvalues
D R

pN×pN the Cholesky decomposition matrix of Ψ
C R

pN×pM the incomplete Cholesky decomposition matrix of Ψ , M < N
α ,β R

N eigenvectors of generalized eigenvalue problems
U , Λ , V R

N×N the singular value decomposition of C , we have C = UΛV T

E R
N×M the orthogonal component of U , M < N

Λ̂ R
M×M the block component of Λ , a diagonal matrix

R R
M×M the transformed diagonal matrix

U R
pM×pM the combined matrix of U from multiple sets

R R
pM×pM the combined matrix of R from multiple sets

η R
+ the precision parameter of incomplete Cholesky decomposition

ε R
+ the precision parameter of singular value decomposition to select Λ̂

Δ R
pM×pM the weights update matrix of WMKCCA

δ R
+ the update ratio of weights θ

A R
pM×pM the approximation matrix in generalized eigenvalue problem

γ R
pM the eigenvectors of A

Γ R
pM×pM the diagonal matrix of eigenvalues of A

τ N the index parameter in incremental EVD update of WMKCCA
T R

pM×pM the additive update matrix in incremental EVD update of WMKCCA
t R the elements in matrix T
B R

pM×pM the updated new matrix in the generalized eigenvalue problem
σ R

+ the kernel width of RBF kernel function
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7.3 Weighted Multiple Kernel Canonical Correlation

7.3.1 Linear CCA on Multiple Data Sets

The problem of CCA consists in finding linear relations between two sets of vari-
ables [8]. For the problem of two variables x1 and x2 with zero means, the objective
is to identify vectors w1 and w2 such that the correlation between the projected
variables wT

1 x1 and wT
2 x2 is maximized, given by

max
w1,w2

ρ =
wT

1 Cx1x2 w2
√

wT
1 Cx1x1 w1

√

wT
2 Cx2x2 w2

, (7.1)

where Cx1x1 = E [x1xT
1 ],Cx2x2 = E [x2xT

2 ],Cx1x2 = E [x1xT
2 ]. Extending this objective

function to multiple sets of variables x1, . . . ,xp, one obtains the form of multiple
CCA, given by

max
w1,...,wp

ρ =
O[x1, . . . ,xp]

∏p
j=1

√

wT
j Cx jx j w j

, (7.2)

where O[x1, . . . ,xp] represents the correlations among multiple sets. To keep the
problem analogous as the two-set one, we use the sum of correlation criterion and
rewrite (7.2) as

max
w j ,1≤u<v≤m

ρ =
∑u,v wT

u Cxuxvwv

∏p
j=1

√

wT
j Cx jx j w j

. (7.3)

As discussed in Chapter 2, the solution is found in the generalized eigenvalue prob-
lem, given by

⎡

⎢

⎣

0 Cx1x2 . . . Cx1xp

...
...

. . .
...

Cxpx1 Cxp−1x1 . . . 0

⎤

⎥

⎦

⎡

⎢

⎣

w1
...

wp

⎤

⎥

⎦= ρ

⎡

⎢

⎣

Cx1x1 . . . 0
...

. . .
...

0 . . . Cxpxp

⎤

⎥

⎦

⎡

⎢

⎣

w1
...

wp

⎤

⎥

⎦ , (7.4)

where ρ is the correlation coefficient.

7.3.2 Multiple Kernel CCA

Kernel Canonical Correlation Analysis (KCCA) is a nonlinear extension of CCA
using kernel methods. The data is first mapped into a high dimensional Hilbert space
induced by a kernel and then the linear CCA is applied. In this way, a linear correla-
tion discovered in the Hilbert space corresponds to a nonlinear correlation concealed
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in the observation space. Let us denote {x(k)
1 , . . . ,x(k)

m }N
k=1 as N data points, respec-

tively, obtained on p data sets x1, . . . ,xp and φ1(·), . . . ,φp(·) as the feature maps from
input spaces to the high dimensional Hilbert spaces. The centered kernel matrices
of the p data sets becomes

G1 = [φ1(x
(1)
1 )T − μ̂φ1; . . . ;φ1(x

(N)
1 )T − μ̂φ1 ],

. . .

Gp = [φp(x
(1)
p )T − μ̂φp; . . . ;φp(x

(N)
p )T − μ̂φp ]. (7.5)

The projection vectors w1, . . . ,wp lie in the span of the mapped data

b1 = Φ1w1,

. . .

bm = Φpwp. (7.6)

The resulting problem of KCCA can be deduced as the analogue of the linear CCA
problem on the projected data sets b1, . . . ,bp in Hilbert space:

max
w j ,1≤u<v≤p

ρ =
∑u,v wT

u CΦuΦvwv

∏p
j=1

√

wT
j CΦ jΦ j w j

, (7.7)

which leads to the generalized eigenvalue problem, given by
⎡

⎢

⎣

0 G1G2 . . . G1Gp
...

...
. . .

...
GpG1 Gp−1G1 . . . 0

⎤

⎥

⎦

⎡

⎢

⎣

w1
...

wp

⎤

⎥

⎦= ρ

⎡

⎢

⎣

G1G1 . . . 0
...

. . .
...

0 . . . GpGp

⎤

⎥

⎦

⎡

⎢

⎣

w1
...

wp

⎤

⎥

⎦ , (7.8)

where G j denotes the centered kernel matrix of the j-th data set which the elements
G j(k, l) are obtained using the kernel trick:

K j(xk,xl) = φ j(xk)Tφ j(xl). (7.9)

However, the problem in (7.8) is trivial and the non-zero solutions of generalized
eigenvalue problem are ρ =±1. To obtain meaningful estimations of canonical cor-
relation, it needs to be regularized [2, 5, 6]. The regularization, e.g., is done by the
method proposed by Hardoon et al. [6] which results in the following regularized
general eigenvalue problem:

⎡

⎢

⎣

0 G1G2 . . . G1Gp
...

...
. . .

...
GpG1 . . . . . . 0

⎤

⎥

⎦

⎡

⎢

⎣

w1
...

wp

⎤

⎥

⎦= ρ

⎡

⎢

⎣

(G1 +κI)2 . . . 0
...

. . .
...

0 . . . (Gp +κI)2

⎤

⎥

⎦

⎡

⎢

⎣

w1
...

wp

⎤

⎥

⎦ (7.10)

where κ is a small positive regularization constant.
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7.3.3 Weighted Multiple Kernel CCA

Based on the objective function in (7.7), the weighted extension of MKCCA can be
formulated by employing additional weights ξu,v on the pairwise correlations as

max
w j ,1≤u<v≤p

ρ =
∑u,v ξu,vwT

u CΦuΦvwv

∏p
j=1

√

wT
j CΦ jΦ j w j

(7.11)

where ξu,v is the scalar weight of the correlation between xu and xv. Let us denote the
generalized eigenvalue problem in (7.10) as the form of Ωα = λΨα , the weights
of KCCA is decomposed as an additional positive definite matrix W multiplying at
the left and right side of the matrix Ω , given by

W ΩW α = λΨα (7.12)

where

W =

⎡

⎢

⎢

⎢

⎣

θ1I 0 . . . 0
0 θ2I . . . 0
...

... . . .
...

0 0 . . . θpI

⎤

⎥

⎥

⎥

⎦

,

Ω =

⎡

⎢

⎢

⎢

⎣

0 G1G2 . . . G1Gp

G2G1 0 . . . G2Gp
...

...
. . .

...
GpG1 Gp−1G1 . . . 0

⎤

⎥

⎥

⎥

⎦

,

Ψ =

⎡

⎢

⎢

⎢

⎣

(G1 +κI)2 0 . . . 0
0 (G2 +κI)2 . . . 0
...

...
. . .

...
0 0 . . . (Gp +κI)2

⎤

⎥

⎥

⎥

⎦

,

p

∑
j=1

θ j =p, ξu,v = ψθuθv, ψ =
1

∑1≤u<v≤pθuθv
.

In the formulation above, the weights of pairwise correlation ξ in the objective
function (7.11) are decomposed as the weights θ assigned on each data set. The
sum of θ is constrained to keep the mean value as 1. ψ is a normalization parameter
to make the sum of ξ equal to 1. This normalization constant ψ only affects the
solution of eigenvalue but does not affect the eigenvector solution.
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7.4 Computational Issue

7.4.1 Standard Eigenvalue Problem for WMKCCA

To solve the computational burden, we follow the transformation presented in [2] to
rewrite the generalized eigenvalue problem in (7.12) as

[W ΩW +Ψ ]α = (λ + 1)Ψα. (7.13)

The problem of finding the maximal generalized eigenvalues in (7.12) is equivalent
to finding the minimal generalized eigenvalues in (7.13) because if the generalized
eigenvalues in (7.12) are given by

λ1,−λ1, . . . ,λa,λa,0, . . . ,0,

then the corresponding generalized eigenvalues in (7.13) are

1 +λ1,1−λ1, . . . ,1 +λa,1−λa,1, . . . ,1.

Since Ψ is already regularized thus it can be decomposed as Ψ = DT D , defin-
ing β = Dα , and Kκ = W ΩW +Ψ , the problem in (7.13) can be transformed as
follows:

Kλα = λ �Ψα

Kλα = λ �C T Cα

D−T KκD
−1β = λ �β (7.14)

Notice thatΨ is a positive definite matrix in a block diagonal form, thus we have

DT = D =Ψ1/2 =

⎡

⎢

⎣

G1 +κI . . . 0
...

. . .
...

0 . . . Gp +κI

⎤

⎥

⎦
. (7.15)

Replace (7.15) in (7.14), the problem is written in the form of a standard eigenvalue
problem, given by

⎡

⎢

⎣

I . . . θ1θpIrκ(G1)rκ (Gp)
...

. . .
...

θ1θpIrκ(Gp)rκ(G1) . . . I

⎤

⎥

⎦β = λ �β , (7.16)

where

rκ(Gj) = Gj(Gj +κI)−1, j = 1, ..., p.
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If eigenvalues λ � and eigenvectors β are solved from (7.16), the eigenvalues and
eigenvectors of problem (7.12) is λ � and C−1β . More formally, the eigenvectorsα j

of problem (7.10) are equivalent to

α j = (G j +κI)−1β j, j = 1, ..., p. (7.17)

7.4.2 Incomplete Cholesky Decomposition

As introduced in [2], the full rank N×N centered kernel matrix Gj can be factorized
as G j ≈ CC T by ICD, where C j is in low rank N×Mj (Mj ≤ N) matrix. Applying
SVD on C j one obtains N×Mj matrix Ui with orthogonal columns and Mj ×Mj

diagonal matrix Λ j , given by

Gj ≈ C jC
T
j = UjΛ jV

T
j (UjΛ jV

T
j )T = UjΛ2

j UT
j . (7.18)

Denote E j as the orthogonal complement of Uj , (UjE j) is then a full rank N×N
matrix, G j is given by

Gj ≈UjΛ2
j UT

j = [UjE j]
[

Λ̂ j 0
0 0

]

[UjE j]T . (7.19)

For regularized matrices in (7.10), one obtains:

rκ(Gj)≈ [UjE j]
[

R j 0
0 0

]

[UjE j]T = UjR jU
T
j , (7.20)

where R j is the diagonal matrix obtained from the diagonal matrix Λ̂ j by transfor-

mation r(k)
j = (λ̂ (k)

j )/(λ̂ (k)
j + κ) to its elements, where r(k)

j are elements in R j and

λ̂ (k)
j are the diagonal elements in Λ̂ j. Replacing (7.16) with (7.20), decomposing

(7.16) as

U RU Tβ = λ �β , (7.21)

where

U =

⎡

⎢

⎣

U1 . . . 0
...

. . .
...

0 . . . Up

⎤

⎥

⎦
,

R =

⎡

⎢

⎣

I . . . ζ1ζpIR1UT
1 UpRp

...
. . .

...
ζ1ζpIRpUT

p U1R1 . . . I

⎤

⎥

⎦
. (7.22)

Since R is derived from a similar matrix transformation, the eigenvalues in (7.21)
are equivalent to (7.16), moreover, the eigenvectors of the low rank approximation
is related to the full rank problem by the following transformation:
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U RU Tβ = λ �β

RU Tβ = λ �U Tβ

Rγ = λ �γ (7.23)

Once we obtained the eigenvector γ j in low rank approximation problem (7.23), we
can recover the full rank solution in (7.16) by β j = Uiγ j . Furthermore, the general-
ized eigenvector α i of the original problem is computed as (7.17), so we have:

α j ≈ (G j +κI)−1Ujγ j (7.24)

We have several parameters involved in WMKCCA computation: κ as the regu-
larization parameter, η as the precision parameter for ICD, ε as the cut value of
eigenvalues determining the size of Ui and λi in SVD of Gi. Among these parame-
ters, η and ε are easy to select by numerical experiments because they monotoni-
cally control the precision of ICD and SVD. The regularization parameter κ is often
determined empirically.

7.4.3 Incremental Eigenvalue Solution for WMKCCA

Based on the weighted problem in (7.12), the update of weights in WMKCCA
is equivalent to multiplying an update matrix Δ at the left and right sides of the
WMKCCA formulation, given by

ΔW ΩW Δα = λΨα (7.25)

where

Δ =

⎡

⎢

⎢

⎢

⎢

⎣

δ1 0 . . . 0

0
. . .

. . .
...

...
. . . 0

0 . . . 0 δp

⎤

⎥

⎥

⎥

⎥

⎦

, (7.26)

and δ1, . . . ,δp are the update ratios of weights corresponding to θ1, . . . ,θp. Follow-
ing the analog steps from (7.13) to (7.16), the standard eigenvalue decomposition
(EVD) problem with updated weights is in the form:

A γ = λ �γ, (7.27)

where

A =

⎡

⎢

⎣

I . . . δ1δpθ1θpIR1UT
1 UpRp

...
. . .

...
δ1δpθ1θpIRpUT

p U1R1 . . . I

⎤

⎥

⎦ . (7.28)
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For simplicity let us denote the matrix in (7.28) before weight updating as Aold ,
and the one after updating as Anew. We denote E = Anew−Aold . For the weights
updated problem, we are interested in solving Anewγ = λ �γ by reusing the solution
obtained on Aold . Thus, during weight update we could avoid redoing the EVD each
time from scratch. Suppose we already have solution as

γτΓτγT
τ = Aτ , (7.29)

where τ is the index parameter for the iteration. Then the updated problem is equiv-
alent to adding T on both sides of equation, given by

γτΓτγT
τ +T =Aτ +T

γτ (Γτ + γT
τ T γτ)γT

τ =Aτ+1

γτBγT
τ =Aτ+1 (7.30)

In (7.28) the weight updating only affects the off-diagonal elements of the matrix.
Moreover, the constraints of weights matrix in (7.12) bounds the update weights
δ1, ...,δp within a certain scope. Especially, for small scale updates, these values are
close to 1. Thus the matrix T is by

T =

⎡

⎢

⎣

0 t1,2 . . . t1,p
...

. . .
...

tp,1 tp,2 . . . 0

⎤

⎥

⎦ , (7.31)

where

tu,v = (δuδv−1)θuθvIRuUT
u UvRv. (7.32)

As shown, T only has non-zero values at off-diagonal positions and most of the
elements are close to 0. Because γτ is a unitary matrix, and γT

τ T γτ is also a sparse
matrix with most of the off diagonal elements are close to 0, therefore, the matrix
B in (7.30) is a nearly diagonal matrix which can be solved efficiently by iterative
EVD algorithms. Through this transformation, we can have a “warm start” solution
of weights by storing the previous EVD solution and computing the EVD solution
of the new problem incrementally.

7.5 Learning from Heterogeneous Data Sources by WMKCCA

WMKCCA extracts common information among multiple heterogeneous data sets.
Given a group of objects represented in different sources, the inter-relationships
among these objects may contain some intrinsic patterns. Through WMKCCA,
the correlations are calculated in the Hilbert space thus complex intrinsic patterns
among multiple sources may be revealed. When multiple sources are combined,
WMKCCA has the flexibility to leverage the importance of correlations among
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several data sources. The projections obtained in canonical spaces are also useful
for machine learning applications. To illustrate this, we propose an learning frame-
work based on WMKCCA. As illustrated in Figure 7.1, the proposed framework
integrates WMKCCA with supervised learning where the validation data and test
data are projected to the embedding of the training data by out-of-sample projec-
tion [3]. In this thesis, the model for WMKCCA is selected by cross-validating the
machine learning performance on the validation set so that the parameters of kernel
function and the weights assigned on correlations are optimized.

Valid Train Test

Kva×tr Ktr×tr Kte×tr

Proj. 
Train

Proj. 
Valid

Proj. 
Test

Machine Learning

Evaluation

Canonical Vectors

Out of Sample 
Projection

Out of Sample 
Projection

Model 
Update

Performance of 
Generalization

Data 1 Data 2 Data N

Align and Preprocessing

Fig. 7.1 A framework of learning by WMKCCA on heterogeneous data sources. The num-
bers in the circle represent the sequence of the workflow.
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7.6 Experiment

7.6.1 Classification in the Canonical Spaces

We adopted the two UCI pattern recognition data sets, pen-based recognition of
handwritten digits and optical recognition of handwritten digits, as mentioned in
Chapter 3. As abbreviation, we denote them as PenData and OptData respectively.
Both data sets have 10 digit labels from 0 to 9. PenData has 16 input attributes
measured from 0 to 100 and OptData has 64 attributes measured from 0 to 16. We
extracted 3750 samples (375 samples for each digit) from the training part of both
data sets, 80% of them were used for training and 20% were used for validation.
We used their original test data as test set (3498 in PenData, 1797 in OptData). We
applied RBF functions on both data sets and the kernel widths are selected as the
mean of the sample covariance (for PenData σ = 97, for OptData σ = 13). We cre-
ated a third data set by transforming the label information of data as a kernel matrix.
Firstly, the vector of class labels was coded as N× 10 matrix L where the i-th col-
umn represents the label of the i−1-th digit. Then, the label matrix was transformed
into a kernel matrix by linear function LLT . Therefore, in our training step we used
three 3000×3000 kernel matrices, denoted as Kpen,Kopt ,Klabel respectively.

We applied a centroid classification approach on the projected data in the canon-
ical spaces which treats each set of digits as a cluster and calculates the centroid as
the mean prototype in canonical space. When a new sample is presented for classi-
fication, the Euclidean distances from the new point to all the cluster centroids are
calculated and the label is assigned to the new data as the cluster with the shortest
distance. To obtain the validation performance and test performance, the validation
data and test data are firstly projected to the canonical spaces of the training data
with out-of-sample projection [3], then classified by the centroid method. The accu-
racy of the classification is evaluated by calculating the percentage of the correctly
classified data in all digit labels.

We benchmarked the performance in the validation sets with different weights,
using the incremental EVD method presented in Section 7.4.3. The weights on
Kpen,Kopt ,Klabel are denoted as θpen,θopt ,θlabel and they are optimized in a grid
search from 0.1 to 2.9 with the step 0.1. We also benchmarked the dimensionality
of the canonical space by evaluating the performance of classification. For each val-
idation, the data is projected to the subspace spanned by 10, 100 and 500 canonical
vectors respectively. The weights and the size of the canonical space are selected
by the average classification accuracies on the two validation data sets. Then the
test data is projected to the WMKCCA model parameterized by the optimal weights
and the optimal canonical space. The performance of the test set is evaluated by
comparing the classification labels and the true labels. Furthermore, we compared
the performance obtained by WMKCCA learning with the results reported by other
methods in the literature. The results obtained by KCCA, MKCCA are also com-
pared. As shown in Table 7.2, the performance obtained by the simple classification
method applied in the canonical space is comparable to the best results reported in
the literature.
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Table 7.2 Classification accuracy obtained on the test data. By 10-fold cross-validation, the
weights in WMKCCA are set as θpen = 1.3,θopt = 1.3,θlabel = 0.4 and the dimensionality of
the canonical space is set to 500. As shown, the results of WMKCCA, MKCCA and KCCA
are comparable to the performance obtained by some complicated classification methods.
However, the performance of WMKCCA, MKCCA and KCCA is not significantly different
from each other. The performance of other algorithms is mean values reported in the litera-
ture. According to the comparison of the mean values, the proposed CCA approaches might
perform better than the linear SVM. As mentioned, the kernel matrices in CCA approaches
are all constructed by linear function, so the improvements should ascribe to the effects of
canonical projections obtained from data fusion.

METHODS PenData OptData Notes
WMKCCA 0.9794 0.9716 See text
MKCCA 0.9766 0.9688 Equal weights
KCCA 0.9783 0.9711 3750 training
Linear SVM 0.9494 0.9602
RBF DDA SVM [11] 0.9708 0.9722
SVM Ensemble [10] N/A 0.9783 45 SVMs
MLP [11] 0.9703 0.9517
kNN [11] 0.9771 0.9649 k=3
Bayes+PCA [7] 0.9763 0.9694
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Fig. 7.2 Comparison of CPU time used by direct EVD method and incremental EVD method
in WMKCCA computation
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7.6.2 Efficiency of the Incremental EVD Solution

We also compared the direct EVD approach and the incremental EVD algorithm
in the WMKCCA experiments with different matrix sizes and update scales. The
benchmark did not take into account the ICD and SVD processes but only com-
pared the CPU time of solving the eigenvalue problem in (7.23) between the direct
method and the incremental method. For the incremental method, the CPU time of
calculating E , T , the EVD of T and the multiplication process of calculating the
canonical vectors were all taken into account. We modified the scale of the problem
by increasing the size of training set as 100, 500, 1000, 1500 and 2000 data sam-
ples. The linear kernels were constructed on two data sets and fed to the WMKCCA
algorithm parameterized as (η = 0.9, κ = 0.1, ε = 0.9). After ICD and SVD, the
matrix A in (7.27) had the size of 160, 701, 1323, 1911 and 2483 respectively.
We also adjusted the scale of the weight update parameter v, which is denoted as
the ratio between the new weight and the old weight in Δ as (7.26). As discussed,
when δ is close to 1, the off-diagonal elements in matrix E become sparse. When
δ is much larger than 1, E is not necessarily a sparse off-diagonal matrix, thus the
assumption of incremental EVD does not hold. To demonstrate this, we compared
three δ values: 1.1, 2, and 10 which respectively represents a weak update, a mod-
erate update and a strong update of weights in WMKCCA model. For the problem
of 3 data sets, when the update scale is set to 2 and 10, the mean value of θ does not
necessarily equal to 1 hence the constraint in (7.12) does not hold. The experiment
is conducted on a desktop PC with Intel Core 2 1.86GHz CPU and 2G memory. The
software package for simulation is MATLAB 2006a. The EVD algorithm is imple-
mented by the eig function in MATLAB, which is based on QR method. As shown
in Figure 7.2, the incremental EVD algorithm significantly reduces the CPU time
when the weight update is small and moderate. However, when the update is too
large, the matrix B is not close to diagonal thus the effect of incremental algorithm
is overwhelmed by the additional cost paid on matrix multiplication.

7.6.3 Visualization of Data in the Canonical Spaces

Similar to the kernel CCA visualization method presented in [4] on single data sets,
we could also visualize the PenData and OptData in the canonical spaces learned
by WMKCCA. We present a series of figures visualizing all 300 training points in
the space spanned by the 1st and 2nd canonical variate. By adjusting the weights
assigned to different data sources, we are able to change the patterns of data pro-
jected in the canonical spaces. Notice that in Figure 7.3 and Figure 7.4, when the
weights assigned to all sources are set to 1, WMKCCA reduces to MKCCA and
the projections of PenData and OptData become very similar. The similarity can
be judged by the relative positions of different digits. It is also can be noticed that
the grouping of digits in PenData is more tight than the OptData. The also explains
why in the previously mentioned classification results that the performance of model
built on PenData is better than the one built on Optdata. On PenData (Figure 7.3), if
we increase the weight assigned to PenData (the v1 value) and decrease the weight
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assigned to OptData (the v2 value), the WMKCCA projection becomes very simi-
lar to the KCCA projections of PenData illustrated in Figure 7.5, which is obtained
by applying KCCA on the PenData alone. Notice that the relative positions among
digit groups and their shapes are almost exactly the same. Analogously, as shown
in Figure 7.4, if we increase the weighted assigned to OptData (the v2 value) and
decrease the PenData weight (v1), the WMKCCA projection of OptData becomes
similar to the KCCA projection of OptData presented in Figure 7.4.

By analyzing the visualization of projections in canonical spaces, we find that the
weights in WMKCCA leverage the effect data sources during the construction of the
canonical spaces. In other words, WMKCCA provides a flexible model to determine
the canonical relationships among multiple data sources and this flexibility could be
utilized in machine learning and data visualization.
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Fig. 7.3 Visualization of Pendata in the canonical spaces obtained by WMKCCA. The v1,
v2, v3 values in the figures are respectively the weights assigned to pen data, optical data,
and the label data.
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Fig. 7.5 Visualization of PenData (top) and Optdata (bottom) independently in the canonical
spaces obtained by KCCA

7.7 Summary

In this chapter we proposed a new weighted formulation of kernel CCA on multiple
sets. Using low rank approximation and incremental EVD algorithm, the WMKCCA
is applicable in machine learning problems as a flexible model to extract common
information among multiple data sources. We tried some preliminary experiments
to demonstrate the effect. The CCA based data fusion is in a different paradigm
than the MKL method introduced in previous chapters. The multiple data sources
are not merged, whereas the merit of data fusion relies in the subspace spanned by
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the canonical vectors. In machine learning, the projections of data in these canonical
spaces may be useful and more significant to detect the common underlying patterns
reside in multiple sources.
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Chapter 8
Cross-Species Candidate Gene Prioritization
with MerKator

8.1 Introduction

In modern biology, the use of high-throughput technologies allows researchers and
practicians to quickly and efficiently screen the genome in order to identify the ge-
netic factors of a given disorder. However these techniques are often generating large
lists of candidate genes among which only one or a few are really associated to the
biological process of interest. Since the individual validation of all these candidate
genes is often too costly and time consuming, only the most promising genes are
experimentally assayed. In the past, the selection of the most promising genes relied
on the expertise of the researcher, and its a priori opinion about the candidate genes.
However, in silico methods have been developed to deal with the massive amount of
complex data generated in the post-sequence era. In the last decade, several methods
have been developed to tackle the gene prioritization problem (recently reviewed in
[13]). An early solution was proposed by Turner et al. who proposed POCUS in
2003 [14]. POCUS relies on Gene Ontology annotations, InterPro domains, and ex-
pression profiles to identify the genes potentially related to the biological function
of interest. The predictions are made by matching the Gene Ontology annotations,
InterPro domains and expression profile of the candidate genes to the ones of the
genes known to be involved in the biological function of interest. The system favors
the candidate genes that exhibit similarities with the already known genes. Most of
the proposed prioritization methods also rely on this ‘guilt-by-association’ concept.
Several methods rely solely on text-mining but nowadays most of the novel methods
combine textual information with experimental data to leverage the effect between
reliability and novelty.

Most of the existing approaches are restricted to integrating information in a sin-
gle species. Recently, people have started to collect phylogenetic evidences among
multiple species to facilitate the prioritization of candidate genes. Chen et al. pro-
posed ‘ToppGene’ that performs prioritization for human based on human data (e.g.,
functional annotations, proteins domains) as well as mouse data (i.e., phenotype

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 191–205.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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data) [3]. Through an extensive validation, they showed the utility of mouse pheno-
type data in human disease gene prioritization. Hutz et al. [5] have developed CAN-
DID, an algorithm that combines cross-species conservation measures and other
genomic data sources to rank candidate genes that are relevant to complex human
diseases. In their approach, they adopted the NCBI’s HomoloGene database that
analyzes genes from 18 organisms and collects homologs using amino acid and
DNA sequences. Liu et al. have investigated the effect of adjusting gene prioritiza-
tion results by cross-species comparison. They identified the ortholog pairs between
Drosophila melanogaster and Drosophila pseudoobscura by BLASTP and used this
cross-species information to adjust the rankings of the annotated candidate genes in
D. melanogaster. They report that a candidate gene with a lower score in the main
species (D. melanogaster) may be re-ranked higher if it exhibits strong similarity
to orthologs in coding sequence, splice site location, or signal peptide occurrence
[6]. According to the evaluation on the test set of 7777 loci of D. melanogaster,
the cross-species model outperforms other single species models in sensitivity and
specificity measures. Another related method is String developed by von Mering
et al. [15]. String is a database that integrates multiple data sources from multiple
species into a global network representation.

In this paper, we present MerKator, whose main feature is the cross-species pri-
oritization through genomic data fusion over multiple data sources and multiple
species. This software is developed on the Endeavour data sources [1, 12] and
a kernel fusion novelty detection methodology [4]. To our knowledge, MerKa-
tor is one of the first real bioinformatics softwares powered by kernel methods.
It is also one of the first cross-species prioritization softwares freely accessible
online. In this chapter, we present and discuss the computational challenges in-
herent to such implementation. We also present a benchmark analysis, through
leave-one-out cross-validation, that shows the efficiency of the cross-species
approach.

8.2 Data Sources

The goal of MerKator is to facilitate the understandings of human genetic
disorders using genomic information across organisms. MerKator identifies the
homologs of Homo sapiens, denoted as the main organism, in four reference organ-
isms: Mus musculus, Rattus norvegicus, Drosophila melanogaster, and Caenorhab-
ditis elegans. The identification is based on NCBI’s HomoloGene [8, 16, 17], which
provides the mapping of homologs among the genes of 18 completely sequenced
eukaryotic genomes. For each gene in each organism, MerKator stores the homolog
pair with the lowest ratio of amino acid differences (the Stats-prot-change field in
HomoloGene database). MerKator incorporates 14 genomic data sources in multi-
ple species for gene prioritization. The complete list of the data sources adopted in
the current version is presented in Table 8.1.
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Cross-species
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Fig. 8.1 Conceptual overview of Endeavour MerKator software. The clip arts of species ob-
tained from Clker.com by Brain Waves LLC.

Table 8.1 Genomic data sources adopted in Endeavour MerKator

data source H.sapiens M.musculus R.norvegicus D.melanogaster C.elegans
Annotation GO

√ √ √ √ √
Annotation-Interpro

√ √ √ √ √
Annotation-EST

√ √
Sequence-BLAST

√ √ √ √ √
Annotation-KEGG

√ √ √ √ √
Expression-Microarray

√ √ √ √ √
Annotation-Swissprot

√ √ √ √
Text

√
Annotation-Phenotype

√
Annotation-Insitu

√
Motif

√
Interaction-Bind

√
Interaction-Biogrid

√ √ √
Interaction-Mint

√ √
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8.3 Kernel Workflow

MerKator applies 1-SVM method [4, 9, 11] to obtain prioritization scores within a
single organism. Then the prioritization scores obtained from multiple species are
integrated using a Noisy-Or model. As mentioned, MerKator is a real bioinformat-
ics software powered by kernel methods therefore many challenges are tackled in
its design and implementation. Considering the efficiency of kernel methods imple-
mented in real full-genomic scale application, MerKator separates the program into
the offline process and the online process to improve its efficiency.

8.3.1 Approximation of Kernel Matrices Using Incomplete
Cholesky Decomposition

The main computational burden is the kernel computation of various data sources
in the full genomic scale, especially for the data that is represented in high dimen-
sional space, such as Gene Ontology annotations, gene sequences, and text-mining
among others. To tackle this difficulty, MerKator manages all the kernel matrices in
an offline process using a Matlab-Java data exchange tool. In Matlab, the tool re-
trieves the genomic data from the databases and construct the kernel matrices. The
kernel matrices of the full genomic data may be very large so it is not practical to
handle them directly in the software. To solve this, we decompose all the kernel ma-
trices with ICD (Incomplete Cholesky Decomposition), thus the dimensions of the
decomposed kernel matrices are often smaller than the original data. In MerKator,
the precision of the ICD is set as 95% of the matrix norm, given by

||K−K′||2
||K||2 ≤ 0.05, (8.1)

where K is the original kernel matrix, K′ is the approximated kernel matrix as the
inner product of the ICD matrix. In this way the computational burden of kernel
calculation is significantly reduced as the computation of the inner product of the
decomposed matrices. The Matlab-Java tool creates Java objects on the basis of de-
composed kernel matrices in Matlab and stores them as serialized Java objects. The
kernel computation, its decomposition and the Java object transformation are com-
putationally intensive processes, and so they are all executed offline. For the online
process, MerKator loads the decomposed kernel matrices from the serialized java
objects, reconstructs the kernel matrices and solve the 1-SVM MKL optimization
problem to prioritize the genes as already described in De Bie et al. [4]. Then the
prioritization results are displayed on the web interface. In contrast with the offline
process, the online process is less computational demanding and the complexity is
mainly determined by the d number of training genes (O(d3)). In our implemen-
tation, the optimization solver is based on the Java API of MOSEK[2] that shows
satisfying performance.
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Fig. 8.2 Separation of offline and online processes in MerKator

8.3.2 Kernel Centering

In MerKator, when the prioritization task involves data set of the full genomic size,
some trivial operations become quite inefficient. To control the number of false pos-
itive genes in 1-SVM, De Bie et al. suggest a strategy to center the kernel matri-
ces that contain both the training genes and the test genes on the basis of the iid
assumption. As mentioned in the work of Shawe-Taylor and Cristianini [10], the
kernel centering operation expressed on the kernel matrix can be written as

K̂ = K− 1
l

11T K− 1
l

K11T +
1
l2 (1T K1)11T , (8.2)

where l is the dimension of K, 1 is the all 1s vector, T is the vector transpose. Un-
fortunately, when the task is to prioritize the full genomic data, centering the full
genome kernel matrices becomes very inefficient. For MerKator, we use a strategy
based on the split of the full genomic data into smaller subsets. Let us assume that
the full genome data contains N genes, and is split into several subsets containing
M genes. Instead of centering the kernel matrix sizes of N ×N , we center the
kernel matrix of size A ×A , where A is the number of genes in the union of the
M candidate genes with the training genes. Because M is smaller than N , for
each centered kernel matrix MerKator obtains the prioritization score of M candi-
date genes, so it need to iterate multiple times (denoted as k, which is the smallest
integer larger than N

M ) to calculate the scores of all the N candidate genes. Ac-
cording to the iid assumption, if M is large enough then centering the kernel matrix
of size A ×A is statistically equivalent to centering the kernel matrix of the full
genome, thus the prioritization scores obtained from the k iterations can precisely
approximate the values obtained when centering the full genome data. Therefore,
we may compare the prioritization scores of the N genes even if they are obtained
from different centered matrices, and thus we can prioritize the full genome. All
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these assumptions come to one non-trivial question: how to select the appropri-
ate M to trade off between the reliability of iid assumption and the computational
efficiency? In MerKator, M is determined via experiments conducted on the text
mining data source with a set of 20 human training genes. First, a prioritization
model is built and the 22743 human genes are scored by centering the linear kernel
matrix of the full genome. The obtained values are regarded as the true prioritiza-
tion scores, denoted as f . We also calculate the overall computation time, denoted
as t. To benchmark the effect of M , we try 10 different values from 1000 to 10000.
In each iteration, the 20 training genes are mixed with M randomly selected can-
didate genes and the prioritization scores of the candidate genes are computed by
centering the small kernel matrix. In the next iteration, we select M new candidate
genes until all the 22743 genes are prioritized. The prioritization scores obtained by
centering this small kernel matrix are denoted as f ′, and the computation time is
also compared. The difference (error) between the prioritization scores obtained in
these two approaches represents how well the M candidate genes approximates the
iid assumption of the full genome, and is given by

e =
|| f − f ′||2
|| f ||2 . (8.3)

We use this difference to find the optimal M . According to the benchmark result
presented in Table 8.2, large M values lead to small error but take much longer time
for the program to center the kernel matrix. In MerKator, we set the M to 4000,
which represents a balance between a low error (e < 0.05) and a fast computing
time (16 times faster than centering the full genome).

Table 8.2 The approximation error and the computational time of using M randomly se-
lected genes in kernel matrix centering

M e time(seconds)
22,743 0 11969
10000 0.015323701440092 4819.2
9000 0.022324135658694 3226.3
8000 0.028125449554702 2742.0
7000 0.048005271001603 2135.2
6000 0.041416998355952 1638.2
5000 0.048196878290559 1117.0
4000 0.045700854755551 745.40
3000 0.087474107488752 432.76
2000 0.098294618397952 191.95
1000 0.136241837096454 72.34
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8.3.3 Missing Values

In bioinformatics applications, clinical and genomic datasets are often incomplete
and contain missing values. This is also true for the genomic data sources that un-
derly MerKator, for which a significant number of genes are missing. In MerKator,
the missing gene profiles are represented as zeros in the kernel matrices mainly for
computational convenience. However, zeros still contain strong information so that
they may lead to imprecise prioritization scores. In MerKator, kernel matrices are
linearly combined to create the global kernel that is used to derive the prioritization
scores. In order to avoid relying on missing data for this calculation (and therefore
to favor the well studied genes), we use a strategy illustrated in Supplementary Fig-
ure 8.2 to combine kernel matrices with missing values. This strategy is similar to
what is done within Endeavour. For a given candidate gene, only the non-missing
based scores are combined to calculate the overall score. The combined kernel ma-
trix obtained by this strategy is still a valid positive semi-definite kernel and thus the
obtained prioritization scores only rely on the non-missing information.

1 +  2 =

K1 K2 K2(a,yj)
K1(b,yj)
c is missing

1K1(xi,yj)+ 2K2(xi,yj)gene a
gene b

gene c

Fig. 8.3 Kernel fusion with missing values. Suppose gene a and gene c are missing in the
first kernel K1; gene b and gene c are missing in the second kernel K2; θ1, θ2 are the kernel
coefficients. In the combined kernel Ω , we fill the missing values of gene a by the non-
missing information in K2 and gene b by the non-missing information in K1. The gene c
is missing in all data sources so it will not be prioritized in MerKator. For the case with
more than 2 data sources, the coefficients of missing values are recalculated by considering
non-missing sources only.

8.4 Cross-Species Integration of Prioritization Scores

MerKator first uses the 1-SVM algorithm to prioritize genes in a single species, and
then adopts a Noisy-Or model [7] to integrate prioritization scores from multiple
species. We assume the scenario of cross-species prioritization as depicted in Figure
8.1. Similar to Endeavour, MerKator takes a machine learning approach by build-
ing a disease-specific model on a set of disease relevant genes, denoted as training
set, then that model is used to rank the candidate genes, denoted as candidate set,
according to their similarities to the model.
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Fig. 8.4 Integration of cross-species prioritization scores

Some fundamental notions in cross-species gene prioritization are illustrated in
Figure 8.4. Suppose in the main organism we specify N1 number of human genes
as {H1, ...,HN1} and MerKator obtains the corresponding training sets in reference
species rat and mouse. The training set of rat contains N2 genes as {R1, ...,RN2}
and the training set of mouse has N3 genes as {M1, ...,MN3}. Note that MerKator
always selects the homolog with the highest similarity ratio of sequence, so it is a
many-to-one mapping thus N2, N3 are always smaller or equal to N1. We define the
homolog scores between the training sets of human and rat as a1, ...,aN2; Similarly,
the homolog scores between human and mouse training sets are b1, ...,bN3. For the
candidate set, each candidate gene of human is mapped to at most one rat gene and
one mouse gene, where the homolog score is respectively denoted as c0 and d0. The
homolog genes and the associated scores are all obtained from the NCBI Homolo-
Gene database (release 63). To calculate the cross-species prioritization score, we
introduce a set of utility parameters as follows.

We denote h1 and h2 as the parameters describing the quality of the homology,
given by:

h1 = min{c0,median(a1,a2, ...,aN2)},
h2 = min{d0,median(b1,b2, ...,bN3)}.
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z1 and z2 are denoted as the parameters describing the ratio of the number of ho-
mologs in the reference organism with the number of genes in the main organism,
given by

z1 =
N2

N1
, z2 =

N3

N1
. (8.4)

Next, we denote f0 as the prioritization score of candidate gene H0 ranked by the
training set {H1, ...,HN1}; denote f1 as the score of reference candidate gene R0 pri-
oritized by the reference training set {R1, ...,RN2} and f2 as the score of M0 ranked
by the set {M1, ...,MN3}. The raw prioritization scores obtained by 1-SVM are in
the range of [−1,+1], thus we scale them into [0,+1]. The adjustment coefficient
ad j is defined as:

ad j = 1− ∏
organism i

(1−hizi fi) . (8.5)

The ad j coefficient combines information from multiple species by the Noisy-Or
model. A larger ad j means there is strong evidence from the homologs that the can-
didate gene is relevant to the model. Considering the case one may want to eliminate
the homolog bias, we further correct the ad j parameter, denoted as ad j+, given by

ad j+ =

{

median({ad j}), if j has no homolog

1−{∏organism i (1−hizi fi)} 1
k if j has homolog(s).

(8.6)

The first case of equation (8.6) means that when gene j has no homolog related, its
ad j+ score equals to the median value of the set {ad j} that contains the adjustment
values of the genes that have at least one homolog gene. In the second case, when
there are k number of homologs mapped to gene j, we use the k-th exponential
root removes the additional bias of the prioritization score caused by the multiple
homologs.

This coefficient ad j+ is used to adjust f0, the prioritization score of the main
organism, and we have tried two different versions as follows:

human non-special: fcross-species = 1− (1− f0)(1−ad j+), (8.7)

and

human special: fcross-species = 1− (1− f0)(2− ad j+)
2

. (8.8)

The human non-special version considers the human prioritization score as equiva-
lent to the homology evidence and combines them again using the Noisy-Or func-
tion. In contrast, the human special version only adjusts the human prioritization
score with the homology evidence by average. In the Noisy-Or integration, the
cross-species score is boosted up if either the main species or the homology
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evidence shows good prioritization score. In the average score integration, the cross-
species score compromises between the homology evidence and the main species
score, and is only boosted up if both of them are good.

8.5 Software Structure and Interface

This section presents the interface of the software and explains how MerKator
works. Using MerKator, a prioritization can be prepared in 4 steps (see Figure 8.5).
In the first step, the user has to define the main organism, it will be the reference
organism and will be used to input the training and candidate genes. In addition,
the user can select other organisms to use, the corresponding species specific data
sources will then be included further in the analysis. If no other organism is selected,
the results are only based on the main organism data sources. In a second step, the
training genes are inputed. Genes from the main organism can be input using var-
ious gene identifiers (e.g., EnsEMBL, gene name, EntrezGene) or even pathway
identifiers from KEGG or Gene Ontology. In addition, for human, an OMIM entry
number can be inputted. Genes are loaded into the system using the ‘Add’ button. In
the third step, the data sources to be used are selected by checking the correspond-
ing boxes. By default, only the data sources of the main organism are displayed and
the program is automatically selecting the corresponding data sources in the refer-
ence organisms when available. To have a full control on the data sources, the user
must enter the advanced mode by clicking the dedicated button. Using the advanced
mode, data sources from other organisms can be selected individually. In the fourth
step, the candidate genes to prioritize are inputted. The user has two possibilities,

Fig. 8.5 Typical MerKator workflow. This includes the species selection step (first step - top
left), the input of the training genes (second step - top right), the selection of the data sources
(third step - bottom left) and the selection of the candidate genes (fourth step - bottom right).
Screenshots were taken from our online web server.
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either use the whole genome (in case the results are returned by e-mail) or input a
subset of the genome (in case results are displayed in the web interface). For the
latter, the method is similar to the second step, but genomic regions can also be in-
putted (e.g., band q11 on chromosome 22, or region 100k - 900k on chromosome
19). The prioritization can be launched from this panel.

8.6 Results and Discussion

The chapter introduces MerKator, a novel gene prioritization software based on ker-
nel methods that can perform cross-species prioritization in five organisms (human,
rat, mouse, fruit fly and worm). Compared to the previous approaches, our method
differs by the number of organisms combined (current prioritization approaches fo-
cus either on mouse or fruit fly as well as by the information that is combined (cur-
rent prioritization approaches focus on conservation or expression data). The String
approach of von Mering et al. is, to some respect, similar to our approach. The main
differences with our method are, first, that String predicts novel interactions but does
not perform prioritization, and, second, that String relies mostly on its text-mining
component while we aim at integrating several genomic data sources (including but
not restricted to text-mining).

To improve the efficiency of MerKator, we tackle the kernel computational chal-
lenges of full genomic data from multiple aspects. First, most of the computation
was done offline and performed only once, restricting the case specific online com-
putation to a strict minimum. Second, the prioritization of the full genome utilizes
some approximation techniques such as incomplete Cholesky decomposition, ker-
nel centering in the subsets of genome, and missing value processing to improve
its feasibility and efficiency. Based on these efforts, MerKator is able to integrate
all the adopted data sources from five species and prioritize the full human genome
within 15 minutes.

We have developed a Noisy-Or based method to integrate the scores from multi-
ple species into a global score. This Noisy-Or based method integrates the species
specific scores by taking into account the strength of the homology between the cor-
responding species. The use of a Noisy-Or based method is motivated by the fact
that an excellent prioritization score obtained in one species should be enough to ob-
tain an overall excellent score, which other measures such as the average would not
allow. We have developed two scoring schemes termed human special and human
non-special. The first one assumes that the source species (human in our case) is the
main organism and that the other species are only used to adapt the score obtained
in the main organism. The contribution of the other species is a half in total (the
other half is the main organism score). The second solution is however relying on
the hypothesis that all the species can contribute evenly, the main organism is not
distinguished from the others. We have implemented and analyzed the two methods.
In addition, we have implemented and tested two formula for the adjustment coef-
ficient, ad j and ad j+, to account for the differences in number of homolog genes.
We have observed that the adj coefficient can introduce a bias towards the genes that
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have multiple homologs as compared to the genes that do not have any homologs.
Either the homolog genes are still unknown or there is no homolog in any of the
other species and therefore the gene is a human specific gene. In both cases, there is
no rationale behind the bias and the gene should get the same chance to rank high
than the other genes.

As a proof of concept, we have benchmarked MerKator with five biological path-
ways using a leave-one-out cross-validation procedure. The four pathways were
derived from Gene Ontology and contain a total of 37 genes. The validation was
performed using all data sources except Gene Ontology and all five species. In this
case, we have used the both formulas human special and human non special. The
Area Under the ROC Curve (AUC) is used as an indicator of the performance. We
obtained a global AUC of 89.38% for the cross-species model (human non-special),
while the model based on human data alone obtains a smaller AUC of 82.64% (see
Figure 8.6). For four out of the five pathways, the cross-species model performs
better than the human specific model although significance is not reached given the
low number of genes per pathways (between 6 and 9). For the remaining pathway
(GO:0008199), the two models achieve similar performance. This is because the
human only performance is already too high to allow any significant improvement
(AUC >99.9%). These results indicate that our cross-species model is conceptually
valid and that reference organism genomic data can enhance the performance of
human gene prioritization.

GO:0005104 GO:0007435 GO:0008199 GO:0009791 GO:0008143 Total
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

GO validation set

A
U

C
 v

al
ue

Human only
Cross−species (HNS)
Cross−species (HS)

Fig. 8.6 Benchmark results on five GO pathways using human only data sources (grey bars)
and our cross-species data integration model (black bars)
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8.7 Summary

We present MerKator, a software that combines cross-species information and mul-
tiple genomic data sources to prioritize candidate genes. The software is developed
using the same databases adopted in Endeavour, but is equipped with a kernel fusion
technique and a cross-species integration model. To embed kernel methods in a real
and large scale bioinformatics application, we have tackled several computational
challenges that are mentioned and discussed in this paper. Our approach may be
concluded with the following three aspects:

• Combining evidences from multiple species. We proposed a Noisy-Or model to
combine prioritization scores from multiple organisms. The issue of multiple
species prioritization is complicated, which may involve many factors such as
the size of training set, the selection of data sources, the number of relevant ho-
mologies, and so on. Considering so many factors, it is difficult to make statistical
hypothesis, or estimate the data model for the final prioritization score. Thus our
approach alternatively avoids the assumption about the data model of prioriti-
zation scores and calculates it using support vector machines. The integration
methods are adjusted in the blackbox and the outputs are validated with bench-
mark data until satisfying performance is obtained.

• User friendly interface. Gene prioritization softwares are oriented to a specific
group of computational biologists and medical researchers, therefore we de-
signed an user friendly interface that is similar to Endeavour’s web interface,
and that does not require advanced mathematical skills to be used (configuration
of the 1-SVM and the integration models are transparent to the end users). The
results of full genomic cross-species prioritization are either directly returned or
stored on the server and delivered to the end-user by e-mail messages depending
on the number of candidate genes. When receiving the email notice, the users can
either upload the prioritization results and display them in MerKator or download
the results in XML format to extract the relevant information by themselves.

• Near optimal solution. The performance of kernel-based algorithms is strongly
affected by the selection of hyper-parameters, such as the parameter of ker-
nel function, or the regularization parameter. The optimal parameters should be
selected by cross-validation, which may not be always feasible for a software ori-
ented for biologists and medical researchers. Kernel fusion techniques allow de-
velopers to preselect the kernel parameters empirically. The overall performance
does not rely on a single kernel parameter, so even when the optimal parameter
is not involved, the fusion procedure still can leverage among several near opti-
mal parameters and provides a near optimal result. For real applications, the 1%
difference of performance is not so critical to the end users. In most cases, a suc-
cessful application prefers much the speed of solution than the very optimality
of the parameter or the model.

Future work includes, but is not restricted to, the inclusion of more species and
more data sources, the development of new modules to enhance even further the
performance of our kernel based prioritization algorithm, the parallelization of
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computational methods to incorporate more data sources and more species, and
the application to real biological problems, for instance through the integration of
MerKator into research workflows.
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Chapter 9
Conclusion

The exquisite nature of combining various senses in human cognition motivated our
approach to incorporate multiple sources in data mining. The research described
in this book covers a number of topics which are relevant to supervised and unsu-
pervised learning by kernel-based data fusion. The discussion of these topics were
distinguished in four different aspects: theory, algorithm, application and software.

In the theoretical part, we reviewed the mathematical objectives of several pop-
ular supervised and unsupervised techniques in machine learning. The Rayleigh
quotient objective was shown as equivalent as the objective of the kernel fusion
method based on LS-SVM MKL. The equivalence of the objectives enabled us to
plug the LS-SVM MKL in unsupervised learning problems to develop various new
algorithms. To tackle the computational burden of large scale problems, we investi-
gated several optimization techniques to simplify the problem. One of the main find-
ings was that the SIP formulation of LS-SVM MKL is very efficient, being much
faster than, while showing identical solution as other formulations on the benchmark
data. We also investigated the optimization of different norms in the dual problem
of Multiple Kernel Learning (kernel fusion). The selection of norms in kernel fu-
sion yields different characteristics of optimal weights assigned to multiple sources.
In particular, the L2-norm yields non-sparse weights, which were shown empiri-
cally better than the sparse weights obtained from L∞-norm in some real biomedical
applications.

In the algorithmic part, we presented three unsupervised kernel fusion algo-
rithms. The first two were proposed for clustering analysis: the OKKC method
combines multiple kernels for clustering, which is suitable for attribute-based data
integration; the OKLC method combines kernels and Laplacian in clustering, which
was proposed for fusing attribute-based data and interaction-based data. The third
algorithm, WMKCCA, extends the conventional unweighted canonical correlation
method to a weighted version.

As one of the main characteristics of the book, we applied all the proposed algo-
rithms in real applications. We applied the 1-SVM MKL algorithm to combine mul-
tiple text mining views and multiple genomic data sources in disease candidate gene
prioritization. We also proposed a framework, including the OKKC, the OKLC, and

S. Yu et al.: Kernel-based Data Fusion for Machine Learning, SCI 345, pp. 207–208.
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a set of other popular algorithms, to combine heterogeneous data sources in clus-
tering analysis. This clustering framework was applied to partition disease relevant
genes using multi-view text mining data. It was also applied in a scientometrics ap-
plication to combine text mining and bibliometric data to obtain mapping fields of
science and technology.

Finally, we solidified our efforts in kernel-based gene prioritization as the En-
deavour MerKator software. MerKator is a real kernel-based software designed to
prioritize candidate genes in terms of combining evidence from multiple species and
multiple genomic data sources. It handles large amount of data at the full genome
scale. Many challenges were encountered in the design and development stage of
MerKator and some of our strategies are presented. The software will be freely ac-
cessible online for biologists and bioinformaticians.

The theories, algorithms, applications and softwares presented in this book pro-
vide an interesting perspective for kernel-based data fusion especially in Bioinfor-
matics and text mining. Moreover, the obtained results are promising to be applied
and extended to many other relevant fields as well.
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Dual representation, 10

EACAL, 131, 158
Eigenspectrum, 145
Eigenvalue, 4, 27, 123, 181
Endeavour, 64, 111, 192
Endometrial disease, 65
Ensemble ranking, 123
Entrez GeneRIF, 122
EntrezGene, 200
Essential Science Index, 100, 157
Euclidean distance, 130, 183
eVOC, 110, 116
Evolutionary computation, 1, 8
Expectation Maximization, EM, 8, 91
Explorative analysis, 103
External index, 19

Feature space, 10
Fisher Discriminant Analysis, 21, 31, 152
Full genomic data, 195
Full integration, of Bayesian network, 9
Full posterior distribution, 8

G2D, 110
Gene Ontology, GO, 18, 110, 116
Gene prioritization, 47
Gene prioritization, cross-species, 20
Generalization, 20

Generalization error, 14
Generalized eigenvalue problem, 175
Generalized Rayleigh quotient, 28, 149
GeneRIF, 139
GeneSeeker, 110
Gradient descent, 20
Graphical structure, 7

Hölder’s inequality, 45
Hermitian matrix, 27
Heterogeneous data, 19
Hierarchical clustering, 131
High-throughput techniques, 39
Hilbert space, 10, 34, 92
Hinge loss function, 14
HomoloGene, 139
Homologs, 199
Hybrid independence test, 8
Hyper Graph Partitioning Algorithm,

HGPA, 130, 158
Hyper-parameter, 19
Hypothesis, 5

IDF, 158
Imbalanced data, 56
Incomplete Cholesky decomposition, 20,

50, 173, 194
Incomplete data, 8
Inner product, 10
Integration, senses, 2
Internal index, 19
InterPro, 110

Jaccard index, 19
Joint probability distribution, 14

K2, 8
Karush-Kuhn-Tucker, 12
KEGG, 110, 200
KEGG Orthology, KO, 116
Kernel centering, 20, 92, 149, 151, 195
Kernel Fisher Discriminant, KFD, 10, 89,

152
Kernel fusion, 12, 207
Kernel fusion, of bioinformatics, 15
Kernel normalization, 92, 156
Kernel novelty detection, 114
Kernel substitution, 10
Kernel trick, 10, 35, 93
Kernel-Laplacian clustering, 33
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Kernels, clinical, 66
Kernels, linear, 66, 101
Kernels, polynomial, 66
Kernels, RBF, 66, 183
KL, 146
Ky Fan, 91
Ky-Fan, 28

Lagrange, 12
Lagrangian multipliers, 12, 28
Laplacians, 21, 145
Latent semantic indexing, LSI, 122, 139
Leave-one-out validation, 63, 113
Likelihood, 8
Linear discriminant analysis, LDA, 93
Linkage analysis, 110
Local minima, 19
Locuslink, 139
Logic programming, 5
Logic programming, inductive, 5
London Dysmorphology Database, LDDB,

116, 162
Lorentz cones, 48
Loss functions, of SVM, 14
Low rank approximation, 50

Machine learning, 3, 20
Mammalian Phenotype Ontology, MPO,

116
Map/Reduce, 20
Margin, 11
Markov Chain Monte Carlo, 8
Markov random walks, 33
Medical Subject Headings, MeSH, 116
MEDLINE, 117
MerKator, 20, 192
Meta Clustering Algorithm, MCLA, 130,

158
MetaMap, 139
Min-cut, 33
Min-max problem, 42
Missing values, 8, 20
Model selection, 19
Models, nonlinear parametric, 9
Modularity, 19
MOSEK, 194
Multi-source learning, 2
Multi-view, 139
Multiple Kernel Learning, MKL, 21, 39,

152, 207

NAML, 89
National library of Medicine, NLM, 117
Natural language processing, 109
Nearest neighbor methods, 10
Neural networks, feed-foward, 6
Noisy-Or model, 197
Normalized cut, 33, 145
Normalized Laplacian matrix, 149
Normalized mutual information, NMI, 19,

101, 130, 132, 158
Novelty detection, 16
NP-hard, 91

OKKC, 21, 89, 132
OKLC, 21, 155
OMIM, 63, 116, 200
Order statistics, 114
Out-of-sample projection, 183

Paired t-test, 77
Parallelization, 20
Parameter learning, of Bayesian network, 8
Partial integration, of Bayesian network, 9
Parzen window, 10
Phylogenetic evidences, 22, 191
POCUS, 110
Positive semi-definite, 14, 42
Posterior distribution, 8
Primal problem, 12
Principal Component Analysis, PCA, 10, 30
Prior distribution, 8
Prior, non-informative, 9
Probabilistic model, 4
PROSPECTR, 110
Protein-protein interaction, PPI, 110, 146
Pseudo inverse, 150

Q statistics, 112
QMI, 131, 158
QR decomposition, 32
Quadratic programming, 11, 27
Quadratically constrained linear program-

ming, QCLP, 42
Quadratically constrained quadratic

programming, QCQP, 49, 90

Rand index, 19, 132
Ratio cut, 33, 145
Rayleigh quotient, 21, 27, 42, 91
Rayleigh-Ritz ratio, 27
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Reactome, 110
Real applications, 146
Receiver operating characteristic, ROC, 63,

111
Rectal cancer, 64
Regularization variables, 34
Regularization, of coefficients, 18
Representer theorem, 90
Risk, 14
Robust Bayesian estimation, 8
Rotated Lorentz cones, 48

Scientometrics, 21, 99, 146
Second order cone programming, SOCP, 49
Sedumi, 48
Semi-definite programming, SDP, 20, 49
Semi-infinite programming, SIP, 20, 50, 90,

152
Separating hyperplane, 48
Silhouette index, 19
Simulated annealing, 8
Single linkage, 131
Singular value decomposition, 173
Slack variables, 11, 34
Soft clustering, 104
Solutions, non-convex, 19
Solutions, non-sparse, 18
Solutions, sparse, 18
Spearman correlation, 167
Spectral clustering, 33, 145
Spectral relaxation, 32, 91, 103, 151
Standard correlation, 123
Statistical validation, 19
Stochastic process, 19
String kernel, 63
Structural learning, of Bayesian network, 8

Support Vector Machine, 10
Support Vector Machines, least squares, 20,

21, 52
Support Vector Machines, one class, 34, 47,

194
Support Vector Machines, soft margin, 54
Support Vector Machines, weighted, 56
Support Vector Machines, weighted least

squares, 57
Support vector method, 1
Systematized Nomenclature of Medicine,

SNOMED, 116

Text mining, 21, 109
Text mining, multi-view, 109
TF, 158
TFIDF, 158
Trace maximization, 90
Training data, 9

UCI Machine Learning Repository, 183
Undirected graph, 33
Universal Protein Knowledgebase,

UniprotKB, 116
Unsupervised learning, 21, 145

Variational methods, 8
VC dimension, 10
Vector space model, 100

Ward linkage, 132
Web of Science, 100, 156
Weighted adjacency matrix, 33
Wilcoxon rank sum test, 65
Within class scatter, 31

Zipf curve, 100, 157
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