Springer Theses Recognizing Outstanding Ph.D. Research

Thorsten Wuest

Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning

Springer Theses

Recognizing Outstanding Ph.D. Research

Aims and Scope

The series "Springer Theses" brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student's supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today's younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

Thorsten Wuest

Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning

Doctoral Thesis accepted by University of Bremen, Germany

Author Dr.-Ing. Thorsten Wuest Department of ICT Applications for Production BIBA—Bremer Institut für Produktion und Logistik GmbH Bremen Germany

and

Department of Production Engineering University of Bremen Bremen Germany Supervisor Prof. Dr.-Ing. habil. Klaus-Dieter Thoben Department of ICT Applications for Production BIBA—Bremer Institut für Produktion und Logistik GmbH Bremen Germany and Department of Production Engineering Institute for Integrated Product Development University of Bremen Bremen

Germany

ISSN 2190-5053 ISSN 2190-5061 (electronic) Springer Theses ISBN 978-3-319-17610-9 ISBN 978-3-319-17611-6 (eBook) DOI 10.1007/978-3-319-17611-6

Library of Congress Control Number: 2015932070

Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

Parts of this thesis have been published in the following documents

Journals

Wuest, T., Tinscher, R., Porzel, R. & Thoben, K.-D. (2014). Experimental research data quality in materials science. *International Journal of Advanced Information Technology*, 4(6), 1–18. doi: 10.5121/ijait.2014.4601.

Wuest, T., Hribernik, K. & Thoben, K.-D. (2015). Accessing servitization potential of PLM data by applying the product avatar concept. *Production Planning and Control.* (accepted)

Wuest, T., Irgens, C. & Thoben, K.-D. (2014). An approach to quality monitoring in manufacturing using supervised machine learning on product state data. *Journal of Intelligent Manufacturing*, 25(5), 1167–1180. doi: 10.1007/s10845-013-0761-y.

Wuest, T., Dittmer, P., Veigt, M. & Thoben, K.-D. (2013). Ressourceneffiziente Fertigungssteuerung - Qualitätsbasierte Auftragszuordnung durch Produktzustandsbetrachtung. *wt-online*, 2(103), 100–103.

Wuest, T., Klein, D., Seifert, M. & Thoben, K.-D. (2012). Method to Describe Interdependencies of State Characteristics Related to Distortion. *Mat.-wiss. u. Werkstofftech.*, *1*-2(43), 186–191.

Wuest, T. & Thoben, K.-D. (2012). Exploitation of Material Property Potentials to Reduce Rare Raw Material Waste - A Product State Based Concept for Manufacturing Process Improvement. *Journal of Mining World Express (MWE)*, 1(1), 13–20.

Wuest, T., Klein, D., Seifert, M. & Thoben, K.-D. (2011). Der Werkstückzustand im Informationsmanagement. *PRODUCTIVITY Management*, 2(2011), 26–28.

International Conferences and Workshops

Wuest, T., Knoke, B. & Thoben, K.-D. (2014). Applying graph theory and the product state concept in manufacturing. *Procedia Technology* 15(2014), 349–358. doi: 10.1016/j.protcy.2014.09.089.

Wuest, T., Liu, A., Lu, S. C.-Y. & Thoben, K.-D. (2014). Application of the stage gate model in production supporting quality management. *Procedia CIRP*, *17*, 32–37. doi: 10.1016/j.procir.2014.01.071.

Wuest, T., Werthmann, D. & Thoben, K.-D. (2013). *Towards an approach to identify the optimal instant of time for information capturing in supply chains*. Prabhu, V., Taisch, M. & Kiritsis, D. (Eds.): APMS 2013, Part I, IFIP AICT 414, Heidelberg Berlin: Springer, 3–12. doi: 10.1007/978-3-642-41266-0_1.

Knoke, B., Wuest, T. & Thoben, K.-D. (2013). Understanding Product State Relations within Manufacturing Processes. In: Emmanouilidis, C., Taisch, M., & Kiritsis, D. (Eds.): APMS 2012, Part I, IFIP AICT 397, Heidelberg Berlin: Springer, 437–444. doi: 10.1007/978-3-642-40352-1_55.

Wuest, T., Irgens, C. & Thoben, K.-D. (2013). Analysis of Manufacturing Process Sequences, using Machine Learning on Intermediate Product States (as Process Proxy Data). In: Emmanouilidis, C., Taisch, M., & Kiritsis, D. (Eds.): APMS 2012, Part II, IFIP AICT 398, Heidelberg Berlin: Springer, 1–8. doi: 10.1007/978-3-642-40361-3_1.

Wuest, T., Thoben, K.-D. (2012). *Information Management for Manufacturing SMEs*. In: Frick, J. & Laugen, B. (Eds.): APMS 2011, IFIP AICT 384, Heidelberg Berlin: Springer, 481–488. doi: 10.1007/978-3-642-33980-6_53.

Irgens, C., Wuest, T. & Thoben, K.-D. (2012). *Product state based view and machine learning: A suitable approach to increase quality?* In: Borangiu, T., Dolgui, A., Dumitrache, I., Pereira, C.E. & Vrba, P. (Eds.) (2012) Information control for smarter manufacturing. Proc. of the 14th IFAC Symposium on Information Control Problems in Manufacturing, 23–25. May, 2012, Bucharest, Romania, 190–195.

Wuest, T. (2011). Tool to identify relevant product state characteristics for improved information management along distributed production process chains. In: Frick, J. (Eds.) (2011). Value Networks: Innovation, Technologies and Management. Proceedings of the APMS 2011 International Conference of Advances in Production Management Systems – Doctoral Workshop, 24. September, 2011, Stavanger, Norway, 11–24 (ISBN 978-82-7644-461-2).

Wuest, T., Klein D., Seifert, M. & Thoben, K.-D. (2011). *Challenges for grown engineering SMEs with a diverse product portfolio on information management and product tracking and tracing*. In: Frick, J. (Eds.) (2011). Value Networks: Innovation, Technologies and Management. Proceedings of the APMS 2011 International Conference of Advances in Production Management Systems, 26–28. September 2011, Stavanger, Norway (ISBN 978-82-7644-461-2).

Wuest, T., Sitek, P., Seifert, M. & Thoben, K.-D. (2011). *Organisational and Technical Interdependencies in Collaborative Production*. Proceedings 17th International Conference on Concurrent Engineering, 20–22. June 2011, Aachen, Germany, 343–349.

Wuest, T., Klein, D. & Thoben, K.-D. (2011). State of steel products in industrial production processes. *Procedia Engineering*, *10*(2011), 2220–2225.

To my wife Irene and my parents Antonie and Peter.

Supervisor's Foreword

It is my great pleasure to introduce Dr.-Ing. Thorsten Wuest's Ph.D. research, accepted for publication within the prestigious Springer Theses series. Dr. Wuest joined my Department of ICT Applications in Production at BIBA-Bremer Institut für Produktion und Logistik GmbH, as a research scientist in 2009. Simultaneously, he pursued his Ph.D. research at the Faculty of Production Engineering at the University of Bremen under my guidance. Besides his Ph.D. work, Dr. Wuest worked on several collaborative research projects, among them the CRC 570 Distortion Engineering and the project InfoSys, both funded by the German Research Foundation (DFG), and was very involved in matters of teaching, service, as well as project and grant acquisitions. Additionally, he is an active member of several professional societies, e.g., being recently accepted as a Research Affiliate of CIRP, and acts as a reviewer for various journals and conferences. Furthermore, Dr. Wuest conducted parts of his research as a research scholar at the Viterbi School of Engineering, University of Southern California, USA, being awarded a full research scholarship of the German Academic Exchange Service (DAAD). He completed his Ph.D. research with an oral defense in November 2014. Dr. Wuest's thesis includes significant original contributions to the field and represents a considerable advancement in the way of handling steadily increasing data streams within multistage manufacturing systems. He successfully published selected parts of his research work in highly ranked, refereed archival journals and prominent, internationally recognized conferences.

The global manufacturing domain faces major challenges which may be summarized by increasing complexity and dynamics of products and processes as well as increasing requirements toward quality. The research problem of Dr. Wuest's thesis is set in multistage manufacturing programs and focuses on the holistic handling of data and information with the goal of improving the product and process quality. Existing solutions focus mostly on individual processes instead of the whole manufacturing system and do not incorporate product and process inter- and intrarelations. It was found that these process inter- and intrarelations have a significant and varying impact on the quality outcome of successive processes and thus on the whole manufacturing program. In his dissertation, Dr. Wuest developed a concept to describe comprehensively a product by its states along a manufacturing process sequence. For this concept, it is of fundamental importance to identify a set of state characteristics allowing a comprehensive description of the product's state. A major aspect within the work was found to be process intra- and interrelations between states and state characteristics. Today, most manufacturing programs lack sufficient knowledge and transparency with regard to process intra- and interrelations rendering a complete modeling of the system unrealistic. In order to incorporate this crucial element in the analysis, supervised machine learning was employed in the form of SVMbased feature ranking to incorporate successfully implicit process intra- and interrelations of the manufacturing program.

Dr. Wuest evaluated the conducted research using three different scenarios from distinctive manufacturing domains (aviation, chemical, and semiconductor) based on "real world" datasets. The purpose of choosing three different scenarios was to highlight the general applicability of the developed concept. The evaluation confirmed that it is possible to incorporate implicit process intra- and interrelations on process as well as program level as required through applying SVM-based feature ranking.

Dr. Wuest's work addresses highly relevant and complex challenges which have been, and are emerging in modern manufacturing, taking current research streams like smart and advanced manufacturing, cyber-physical-production-systems, Industrial Internet, Industry 4.0 and Big Data approaches, and the resultant increase of data streams into consideration. A major asset of the concept is the possibility to identify currently unknown relations which may provide a basis for further in-depth research and experimentation.

The strength of Dr. Wuest's dissertation is its relevance and simplicity as well as its applicability in actual and realistic manufacturing situations. The selected approach and methodology is such that it is neither a constraint to specific products, manufacturing processes, or systems nor is it constraint to specific quality concepts. In this way it is a notable addition to knowledge. The work and its results are well projected into "real-life" applications and as such provide an important contribution to the application domain of analysis and management of product and process quality in the manufacturing domain.

Bremen, February 2015

Prof. Dr.-Ing. habil. Klaus-Dieter Thoben

Acknowledgments

Many people have contributed to my success in completing this dissertation. I was fortunate to have been supported by my advisors, colleagues, friends, and family.

First of all, I want to thank Prof. Klaus-Dieter Thoben, my doctoral advisor, for his continuous support over the last years and his genuine interest in my work and development. Without the countless critical discussions and his outstanding mentorship, I would not be who I am today. I cannot thank Prof. Christopher Irgens, my second advisor, enough (even though he will insist that it is not necessary). He not only introduced me to a new research field, but more importantly, showed me that looking "beyond one's own nose" is exciting and stimulating. Together, these two mentors did spark my academic curiosity and encouraged me to develop my own research interest. Furthermore, I want to thank Prof. Dr.-Ing. Hans-Werner Zoch, Dr.-Ing. Jan Ohlendorf, Stefan Wellsandt, and Jakub Mak-Dadanski for their willingness to serve in my thesis committee and their constructive feedback.

I would like to thank Prof. Stephen Lu, my CIRP mentor, who invited me to his Lab at USC. He and his team, especially Dr. Ang Liu, made me feel at home from the beginning and opened my world to many fascinating new impressions. In this regard, I would like to thank the DAAD for the support of my research through the generous doctoral scholarship that allowed me to continue my research in the USA.

I want to thank the many inspiring researchers I met over the years and who always took the time to discuss ideas and provide critical feedback. There are too many to mention them all so instead I would like to highlight the great spirit of research communities and events like APMS, IFIP, and CIRP. Of course, I want to thank my colleagues at BIBA for their continuous support, professionally and privately. They were never too busy for a challenging discussion or a reassuring pep talk. Furthermore, I want to thank the many students, whose projects and Bachelor, Master, and Diploma theses, I had the opportunity to supervise. They all contributed with their work toward the completion of this research. My friends and fellow ruggers, thank you for always being there for me and distracting me from continuously thinking of my research. This allowed the most creative ideas to surface. Most importantly, I would like to thank my beloved wife Irene. Her support, encouragement, quiet patience, and unwavering love despite the hardships of a long-distance relationship are the foundation this work was built upon. Many thanks also to her parents and brother, Tere, Gabriel, and Javier, who selflessly took me in during my research stay in LA and welcomed me as a son and brother.

Finally, I thank my loving parents, Antonie and Peter, who always encouraged me and taught me not to give up. Since I can remember, I felt safe knowing whatever happens they will always be there for me. Of course, I could always count on my brother Dennis, for needed distraction as well as professional input. Thank you all!

Bremen, February 2015

Thorsten Wuest

Contents

Intr	oductio)n	1
1.1			2
1.2	Proble	em Statement	5
1.3	Resear	rch Goal and Research Methodology	7
1.4			8
Refe			11
Dev	elopme	nts of Manufacturing Systems with a Focus	
			15
2.1			15
	2.1.1	Manufacturing Processes	17
	2.1.2	Process Monitoring	21
	2.1.3	Product in Manufacturing.	22
	2.1.4	Quality in Manufacturing	24
	2.1.5	Example of a Manufacturing Programme	26
2.2	Devel	opments of Manufacturing System	27
	2.2.1		28
	2.2.2	Intelligent Manufacturing Systems	29
	2.2.3	Holonic Manufacturing Systems	31
2.3	Devel		
	in Ma	nufacturing	32
	2.3.1	Information Management (Systems) in Manufacturing	35
	2.3.2	Data and Information Quality.	37
2.4	Challe	enges of MS from a Product and Process Information	
	Perspe	ective	40
Refe	erences.		42
	 1.1 1.2 1.3 1.4 Refe Dev on H 2.1 2.2 2.3 2.4 	 1.1 Motiv 1.2 Problet 1.3 Resea 1.4 Struct References Developme on Product 2.1 Manut 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.2 Developme 2.2.1 2.2.2 2.2.3 2.3 Developme in Mar 2.3.1 2.3.2 2.4 Challee Perspector 	 1.2 Problem Statement 1.3 Research Goal and Research Methodology 1.4 Structure of the Dissertation. References Developments of Manufacturing Systems with a Focus on Product and Process Quality. 2.1 Manufacturing Terms, Definitions and Developments. 2.1.1 Manufacturing Processes 2.1.2 Process Monitoring 2.1.3 Product in Manufacturing. 2.1.4 Quality in Manufacturing. 2.1.5 Example of a Manufacturing Programme 2.2 Developments of Manufacturing Systems 2.2.1 System View on Manufacturing. 2.2.3 Holonic Manufacturing Systems 2.3 Developments in Information and Data Management in Manufacturing. 2.3.1 Information Management (Systems) in Manufacturing. 2.3.2 Data and Information Quality.

3	Cur	ent Approaches with a Focus on Holistic Information	
	Mai	gement in Manufacturing	51
	3.1	Product Lifecycle Management in Manufacturing	51
		3.1.1 Product Data Management	52
		3.1.2 Product Lifecycle Management	54
		3.1.3 Closed-Loop and Item-Level PLM	56
	3.2	Quality Monitoring in Manufacturing	59
		3.2.1 Quality Management in the Manufacturing Domain	59
		3.2.2 Quality Monitoring in Manufacturing Programmes	61
	3.3	Limitations of Current Approaches for Holistic Information	
		Management in Manufacturing Systems	62
	Refe	ences	64
4	Dev	opment of the Product State Concept	69
-	4.1	Rationale for the Product State Concept	70
	4.2	Product State	74
	4.3	Relevant State Characteristics	79
	т.5	4.3.1 Product State Characteristics	79
		4.3.2 Product State Transformation	85
		4.3.3 Categorization of Product State Transformation	88
		4.3.4 Relevant State Characteristics	92
		4.3.5 Identification of Relevant State Characteristics	94
	4.4	Process Intra- and Inter-relations Among State Characteristics	97
		4.4.1 Describing Process Intra- and Inter-relations	71
		of State Characteristics.	98
		4.4.2 Visualization of Relations	
		4.4.3 Limitations of Describing Process	101
		Intra- and Inter-relations.	109
	4.5	Requirements of State Driver Identification	112
	1.0	4.5.1 NP Complete Nature of Product State Concept	113
		4.5.2 Suitability of Machine Learning Methods	
	4.6	Derived Research Hypothesis of the Application	
		of ML Within the Product State Concept	117
	Refe	ences	
_			105
5		cation of Machine Learning to Identify State Drivers	
	5.1	Machine Learning in Manufacturing	
		5.1.1 Machine Learning.	126
	5 2	5.1.2 Supervised Machine Learning	127
	5.2	Selection of Suitable Machine Learning Technique	129
		5.2.1 Support Vector Machines (SVM)	131
		5.2.2 Rationale of SVM Application for Identification	4.8-
		of State Drivers in Manufacturing Systems	138
	5.3	Application of SVM for Identification of State Drivers	142
	Refe	ences	149

6	Арр	lication	n of SVM to Identify Relevant State Drivers	153
	6.1	Introd	ucing Scenarios I, II and III	153
	6.2	Scenar	rio I—Rolls-Royce	155
		6.2.1	SVM Kernel and Parameters for Hyperplane	
			by X-Validation	155
		6.2.2	Feature Ranking Using SVM Classifier	157
		6.2.3	Classification on Previously Unknown Data	161
	6.3	Scenar	rio II—Chemical Manufacturing Process	162
		6.3.1	SVM Kernel and Parameters for Hyperplane	
			by X-Validation	163
		6.3.2	Classification on Previously Unknown Data	167
		6.3.3	Compilation of SVM Operation and Output Data	169
		6.3.4	Feature Ranking Using SVM Classifier	171
	6.4	Scenar	rio III—SECOM	177
		6.4.1	SVM Kernel and Parameters for Hyperplane	
			by X-Validation	177
	Refe	erences.	· · · · · · · · · · · · · · · · · · ·	187
7	Eva	luation	of the Developed Approach	189
	7.1	Evalua	ation Results	189
		7.1.1	Data Pre-processing	189
		7.1.2	Cross-validation Performance of SVM Classifier	191
		7.1.3	Unbalanced Data	193
		7.1.4	Feature Selection and Feature Ranking	193
		7.1.5	Classification Performance on Previously	
			Unknown Data	198
	7.2	Discus	ssion of Evaluation Results	200
	7.3	Limita	ations	205
	Refe	erences.		210
8	Rec	apitula	tion	211
	8.1	Concl	usion	211
	8.2	Outloo	ok and Future Work	212
	Refe	erences		214
				015
Aı	nnex .			215
Ат	oprec	iation c	of Student Contribution	265
- * }	pice	ianon (200
Al	oout t	he Aut	hor	271

Abbreviations

AI	Artificial Intelligence			
ANN	Artificial Neural Networks			
APS	Advanced Planning Systems			
BN	Bayesian Networks			
BOL	Beginning of Life			
С	Soft margin parameter of SVM			
CAD	Computer-aided Design			
CAE	Computer-aided Engineering			
CAPP	Computer-aided Process Planning			
CAQ	Computer-aided Quality			
CBR	Case-based Reasoning			
CHEM	Chemical Manufacturing			
CIM	Computer Integrated Manufacturing			
CSV	Comma-Separated Values			
DM	Data Mining			
DT	Decision Trees			
EC	European Commission			
EOL	End of Life			
ERP	Enterprise Resource Planning			
FDC	Fault Detection and Classification			
FMEA	Failure Mode and Effects Analysis			
FPR	False Positive Rate			
FS	Feature Selection			
GA	Genetic Algorithm			
HMS	Holonic Manufacturing System			
IBL	Instance-Based Learning			
IM	Information Management			
IMS	Intelligent Manufacturing System			
KD	Knowledge Discovery			
KDD	Knowledge Discovery from Databases			
KM	Knowledge Management			

KSF	Key Success Factor				
MAR	Missing at Random				
MBR	Memory-Based Reasoning				
MCAR	Missing Completely At Random				
MES	Manufacturing Execution System				
MI	Multiple Imputation				
ML Multiple Imputation ML Machine Learning					
MLH	Maximum Likelihood				
MNAR	Missing Not At Random				
MOL	Middle of Life				
MRP	Manufacturing Resource Planning				
MS	Manufacturing System				
NaN	Not a Number				
NB	Naïve Bayesian Networks				
NN	Neural Networks				
NP	Nondeterministic Polynomial (time)				
PCA	Principal Component Analysis				
PDM	Product Data Management				
PEID	Product Embedded Information Device				
PLM	Product Lifecycle Management				
PLS	Partial Least Squares				
PR	Pattern Recognition				
QM	Quality Management				
RFE	Recursive Feature Elimination				
RFID	Radio Frequency Identification				
RL	Reinforcement Learning				
RR	Rolls-Royce				
SCM	Supply Chain Management				
SECOM	Semiconductor Manufacturing				
SLT	Statistical Learning Theory				
SME	Small- and Medium-sized Enterprise				
SMOTE	Synthetic Minority Oversampling TEchnique				
SQC	Statistical Quality Control				
STEP	Standard for the Exchange of Product model data				
SVM	Support Vector Machine				
TPR	True Positive Rate				
TQC	Total Quality Control				
TQM	Total Quality Management				
UPnP	Universal Plug and Play				

Chapter 1 Introduction

Manufacturing creates wealth (Prof. Ronald G. Askin, Arizona State University (USA) during the INCOM 2012 Keynote speech Wednesday, May 23, 2012 in Bucharest, Romania).

The German economy evolved into an engine of growth within the European Union (Thesing et al. 2010). A large part of this success is built on the industrial base, especially the showcase sector of manufacturing. German engineering products are exported worldwide and have the reputation of advanced technology and premium quality (N.N. 2006). In other parts of the world, even in the United States the manufacturing industry is growing again (Puzzanghera 2013). The reputation of high quality products is a key factor of success in the fierce global competition (Enderwick 2005; Levitt 1993). The backbone of the German engineering success relies on its manufacturing companies, often being Small and Medium sized Enterprises (SME) (Schiersch 2009). However, being successful does not necessarily mean that there is no potential for further improvements (Schiersch 2009). At the same time, companies are constantly challenged to improve to meet the steadily increasing customer's requirements towards the quality of products and services (Kovačič and Šarler 2009) in order to survive in the competitive global business environment (Porter 2008). This stands especially true for manufacturing companies (Ellram and Krause 1994). Product quality in this research is understood as the degree of fulfilment of the (quality) requirements by the characteristics of the final product (see Sect. 2.1.4.1) (Yul and Wang 2009).

Many companies focus on their core competencies and work together in collaborations and production networks to satisfy the increasing customer requirements and gain sustained competitive advantage (Hamel and Prahalad 1990; Porter 1998; Porter 2008; Thomas et al. 2012). All these developments lead to an increasing complexity that companies must deal with in order to remain competitive. Taking

T. Wuest, *Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning*, Springer Theses,

DOI 10.1007/978-3-319-17611-6_1

into consideration that business success of every company is based on the quality of its business processes (Linß 2002), it can be said that business success of a collaborative network is based on the quality of business processes of every collaboration partner. Looking at industrial companies, manufacturing processes play an important role through the direct value adding to products and the determination of product quality.

1.1 Motivation¹

The purpose of every process step during the production process is to add value to the product and therefore, at least in the manufacturing industry, change the products state (Kumar 2002; Kalpakjian and Schmid 2009). This change of state typically happens in a progression of successive states until its final state. The final state is generally defined by the requirements towards the product from the customers' side and specific to the individual manufacturing programme. Once the final state is reached, the product is considered ready for delivery to customers. In the end, the quality of a product is directly influenced by the quality of the production processes (Brinksmeier 1991; Jacob and Petrick 2007). Finally, the product state has to meet the customers' requirements in terms of product quality. But nowadays, this is not the only customer requirement the companies have to meet. Additionally, customers increasingly insist on transparent manufacturing processes and demand comprehensive information about a purchased product over the different stages of the manufacturing programme as part of the product lifecycle (Terzi et al. 2007; Cassina et al. 2009). This sometimes even includes parameter settings of the machines used and source of raw materials (e.g., iron ore). In Fig. 1.1, an example of a manufacturing programme with three processes is illustrated. Ideally, the product increases its value in each process step and the next process gets the product (input) with the expected parameters (internal customer). Practically, the process can never reproduce a process step (output) 100 % due to different factors like: external influence (e.g., temperature, 'Mondays'); process variations (e.g., lubricant, tools); input deviations (e.g., different supplier of steel: even so the steel delivered has the same ISO Number, it can vary due to e.g., tolerance levels within the norm), etc. Therefore, it is also necessary to exchange information about the individual product. In this case, this means not just between stakeholders with a direct interface but along the whole manufacturing process sequence.

The trend of today's products becoming more and more optimized leads to a consistent exploitation of all achievable product properties (Denton et al. 2003; Deja and Siemiatkowski 2012). Considering the limited availability of resources (Specht and Braunisch 2008), limited not only by their global presence but also

¹The content of this section has been partly published in accordance with (Universität Bremen 2007) in (Wuest and Thoben 2012; Wuest et al. 2014).

Fig. 1.1 Connection of product, process and information towards customer requirements

political regulations (Maull 1988; Frey 2007; Lange 2007), and the increasing demand e.g., by emerging economies, like the 'BRIC' countries (Buhr et al. 2005; Specht and Braunisch 2008), the aspect of efficient use of these resources grows in importance. If processes can be optimized in a way to, on the one hand, reduce scrap and rework and, on the other hand, to exploit all possible product properties as said before, the waste of valuable resources may be reduced and the customer requirements towards quality and information can still be fulfilled. For example, if through an optimized process, e.g., final heat treatment, it is made possible to build a certain product from a widely available resource, e.g., steel, instead of a relatively rare resource, like e.g., titanium alloys, the rare resource of titanium will be preserved and can be put to use where it is absolutely necessary. For a company this practice may be beneficial regarding aspects of resource availability (e.g., widen the range of suppliers).

To do so, it has to be confirmed that these desired product properties can be achieved through the production process (Mohanty 2004). Therefore, a detailed understanding of the manufacturing programme, its processes/operations and their influence on products and in the end, their product state, becomes progressively more important. Continuous improvement of the manufacturing programme can be a way to stay ahead of competition. One important factor of the increasing overall complexity in the global business environment has on manufacturing engineering companies is the rapidly increasing need for information and information exchange. This includes many pitfalls, which among other things include: data acquisition, low data and information quality, data analysis, communication problems, security issues, interface problems of Information and Communication Technology (ICT) systems and, of course, the sheer amount of information to process (Choudhary et al. 2009).

Today's complex manufacturing programmes, processes and operations have the goal of adding value to the product. A manufacturing programme consists of a process chain with each process having a number of operations. In the chain, processes may be linked one-to-one, disjunctively or conjunctively to preceding or subsequent processes. Each process may have a chain of operations similarly linked within the process (see Sect. 2.1 and Fig. 2.6). Adding value to the product can be done in various ways, e.g., by changing the physical form, hardness or extending the usability by adding services. Each manufacturing processes or operation, their planning and design, depends on information pertaining to the input state of a product. It is very important to distinguish between the planed input state and the real input state. This distinction is explained further in the following paragraphs. Basically, there are two ways how this can be achieved.

On the one side, the information can be provided from the design phase of the product. In this case, the information used is based on the state that the product is expected to inherit at a certain stage, e.g., the final state. This means everything, e.g., every process is going exactly according to plan. This is however unlikely in an industrial environment due to various factors, e.g., wear and tear of tools or quality deviations of raw materials. In this scenario, deviations of the different products will not be taken into account, as the possibility is not included in the system. A slight variation of this way is to include comprehensive quality control of the input states so just products passing the test, as they comply with the assumed "planned state", will be allowed to go through the process step (Garvin 1984). The downside is that this is expensive (through e.g., extra staff, measurement technology, etc.) and time-consuming.

On the other side, the input information can be generated based on the individual product state at the time of the beginning of the processes or operation. Today, many companies already store operation data from factories and product property data from inspection (Kano and Nakagawa 2008). The information here is more likely to be accurate as it takes into account the variations that can influence the process quality. Process quality is understood as the ability of the process to comply with certain criteria and to achieve the desired output (see Sect. 2.1.4.2) (Kreutzberg 2000). In order to provide each step with the individually necessary information, it is essential to be able to describe a product effectively. This can be done in various ways. Most likely the manner of describing an industrial product, e.g., gear made of steel, will be different from the description-style of a product designed to fulfill an aesthetic purpose (in addition to the functional purpose) in mind, e.g., a plastic rear mirror. At the same time, the individual describing a product influences the description based on, among other things, his or her own background, knowledge and experience. Therefore, the approach of describing a product through its product state (Kumar 2002; Wuest et al. 2011) will help to align the descriptions in a commonly understood manner as well as increase transferability and usability of accompanying information by the addressees.

1.2 Problem Statement

Along a manufacturing programme, physical products as well as information are exchanged between the partners (Hicks et al. 2006) (see Fig. 1.1). The availability of information is a precondition to adjust each manufacturing process/operation in such a way that the outcome reflects the set quality requirements to a satisfactory degree. Quality, as stated before, constantly gains importance for the customer and for a sustainable use of resources. Sustainable in this sense is understood as not just focused on the environmental and social perspective but mainly focusing on the economical perspective. In addition, distributed production brings forth new challenges for managing quality (Sitek et al. 2010).

One way to improve manufacturing processes is to look at the data and information involved and how this information is put to use (Hicks et al. 2006). As stated by Albinoet al. (2002), the successful coordination of a manufacturing process is mostly based on a successful handling of information to support process management and other tasks involved. With today's advanced ICT it becomes possible to process, transfer and store large amounts of data and information for a reasonable price (Krcmar 2005). But too much information can be a threat for improved process quality as it can e.g., distract from the main issues/causalities or lead to delayed or wrong conclusions about appropriate actions (Lang 2007). Jansen-Vullers et al. (2003) emphasize the importance of the availability of the right information for quality during manufacturing processes. Hence the question is: What is the right and relevant information in the case of distributed manufacturing process chains and high tech industrial products?

In manufacturing companies, many processes and operations operate automated. Every process needs information about the product at the beginning of treatment to adjust the machine parameters. In an automated manufacturing programme, the information of the product is often not individual for the specific product at a specific time but derived of planning and design as described before. To assure an optimized handling of the individual product at a specific process during the manufacturing programme, information of the current product state (input product state) is necessary. The more precise and the more complete the information relevant for adjusting the process parameters is available, the better the machines can be adjusted and the more the quality of the product will be enhanced.

The complex relationship of information and quality in manufacturing as described in the previous paragraphs represents an important area when it comes to the development of new approaches with the goal of contributing to quality improvements in manufacturing programmes. Next, the chosen approach of this research is detailed, highlighting how the relationship of information and quality in manufacturing is addressed and what more focused and detailed measures to improve the transparency are proposed.

Currently, this dissertation is focused on manufacturing companies producing complex, highly stressed products, e.g., gear wheels or turbine blades. This is reflected within the three evaluation scenario, especially scenario I which is supplied by Rolls-Royce (see Sect. 6.2). Highly stressed products are understood as products which are exposed to higher force and power density than the average product and thus have different requirements, e.g., strength, hardness and wear resistance (Tönshoff and Denkena 2013). Tönshoff and Denkena (2013) state "in addition to the strength and hardness the quality requirements for highly-stressed components have grown significantly at the same time". This does not however mean the concept cannot be extended or adjusted to other organizations with different product portfolios. The reasons for the current focus on this group of products is, that highly stressed products have high requirements towards product and process quality (Tönshoff and Denkena 2013), often use expensive materials, and the manufacturing programme itself is rather complex. This situation represents to a large extent the environment for the research problem. These complex manufacturing programmes are characterized by high quality requirements, highdimensional and multi-variate data, etc. which directly influenced the development of the *product state concept*. Furthermore, manufacturing companies producing highly stressed products will most likely be among the first who consider adopting new methods and concepts to address these issues as their customers expect premium quality and their competitive advantage depends on constant improvements, e.g., reducing scrap and rework as much as possible (e.g., Garvin 1984; Zoch and Lübben 2011).

Looking at the product information from a holistic manufacturing and quality perspective, the previously introduced relevant information becomes more important. The set of relevant information contains all information that is in one way or another relevant for the manufacturing programme as a whole and occurring transformational activities. In theory, when such a set of relevant information is available for a manufacturing programme and individual product, all information necessary to achieve the desired process and subsequently product quality is available to the stakeholders. However, the question remains how such a set of relevant information may be obtained in theory and practice. In order to determine what information subsets have to be included, in depth knowledge not only of the product itself but of all stages of the manufacturing programme, transformational activities and environmental influences and their inter-relations is required. Even for relatively simple manufacturing programmes and products, the required knowledge is currently not completely available. Given the ongoing trend that manufacturing programmes (e.g., automation) and products (e.g., materials) are becoming more complex, the theoretically required knowledge allowing to identify a relevant set of product information is increasing as well. This lack of case specific knowledge represents a major challenge for an information system and highlights the need for innovative approaches to identify relevant information in a manufacturing system in a comprehensive way even though total transparency cannot be achieved and not all necessary knowledge items are available.

1.2 Problem Statement

In summary, the problem statement of this dissertation reads as follows: In an increasingly complex manufacturing environment with high quality requirements and an enlarged focus on information, there is a need for a holistic concept that incorporates the relevant information describing individual artifacts (products) comprehensively along the whole manufacturing programme and organizes them logically. Such a holistic concept has to incorporate recent developments from various manufacturing related domains such as Product Data Management (PDM), item-level Product Lifecycle Management (PLM) (see Sect. 3.1), quality monitoring (see Sect. 3.2) and basics from intelligent manufacturing systems (see Sect. 2.2) and information and data management (see Sect. 2.3). A major challenge within the development of such a holistic concept is how to identify relevant information given the incomplete knowledge base and high complexity of the task.

1.3 Research Goal and Research Methodology

The research goal of this dissertation is to develop a holistic concept that describes a manufacturing system by utilizing the product's changing state and the relations and information that entails. The focus of this concept is on identification of relevant information, data and knowledge of both, the product and the manufacturing programme (incl. processes and operations), and how this can be utilized.

Within this concept, a methodology is established (Löhr-Richter 1993) to identify the relevant set of information a manufacturing programme and subsequent sets of relevant information for individual processes (operations) in order to provide a comprehensive basis for a holistic information management (IM) that may contribute to increase process quality and the final product quality. Identification in this aspect meaning to provide users or customers with the knowledge of what information they need and why they need it (context & application) (Devadason and Lingam 1997; Tilson 1998). Within this concept and integrated methodology, inter- and intra-relations (incl. hidden ones) between different product states over the whole manufacturing programme are also considered. This dissertation will contribute further to connect the product and the process perspectives in manufacturing systems through the handling of attached information as both have to be considered to reach the quality goal (Brinksmeier 1991; Jacob and Petrick 2007; Yul and Wang 2009; Köksal et al. 2011). This will in turn support the transparency of IM in manufacturing systems.

The final result will be a holistic concept that describes a product by its states along a distributed manufacturing programme and organizes the relevant information in a logical way. It will incorporate knowledge, information and data about the product and process (e.g., process intra- and inter-relations and influential state drivers). Through this enhanced content, the stakeholders may gain access to information and knowledge, which may be utilized to increase the overall quality, decrease rework and scrap and thus reduce the waste of resources. An important aspect of developing the *product state concept* is the identification of relevant information for a manufacturing programme. Within this aspect, the existing correlations between product states and different processes along the manufacturing programme are important to consider. As those correlations are just partly known, this presents a specific challenge for the research goal. In order to include hidden and unknown correlations and identify relevant state drivers (relevant information) along the manufacturing programme, an approach based on supervised Machine Learning (ML) is being developed which can indicate hidden cause effect relations by showing unknown correlations. This allows to identify relevant information of complex manufacturing programmes dynamically and to utilize implicit knowledge available on data level. Through a continuous application of this approach, the set of relevant information for the manufacturing programme is continuously becoming more complete and new relations may be discovered.

However, it is not the goal to generate new knowledge about not yet discovered characteristics of products. The concept will represent primarily a framework to organize all available and connected information and help to provide it to the selected addressee in need. The research will use existing knowledge of characteristics and process intra- and inter-relations and support practitioners handling and using the information efficiently.

1.4 Structure of the Dissertation

In this subsection, the structure of the dissertation (see Fig. 1.2) and the motivation behind it is elaborated.

Before the various sections and their content are presented, a general remark concerning the overall structuring of this specific work is necessary. As specified in the previous sections and detailed thereafter, the goal of this dissertation is to develop a holistic concept to describe a product comprehensively along a manufacturing programme through relevant information. During the development of the concept, a major constraint surfaced which is the lack of knowledge concerning the mapping of process inter- and intra-relations between states. This leads directly to it being necessary to investigate an additional field, ML, in order to bring the developed concept to life despite the identified limitations. Therefore, the dissertation contains an additional, brief reflection of the state of the art in the ML domain and a further specified problem analysis and research question. Overall, this necessity to include an additional approach from a different domain yields the slightly deviated structuring of the manuscript compared to average dissertations within the field. Furthermore, this added complexity and additional descriptions lead to an extended page count.

The introduction section (*section one*) of this work illustrates the general motivation behind the conducted research, outlines the research problem statement, research goal and chosen research methodology (see Fig. 1.2).

	tructure of Work					
	I. Intro	duction	Motivation (Section 1.1)	Problem statement (Section 1.2)		Research goal (Section 1.3)
	II. Research foundation III. Concept development IV. Evaluation and discussions		Development of manufacturing systems (Section 2)		State of the art (Section 3)	
			Rationale for concept development (Section 4.1)	theoretic state c	pment of cal product concept m 4.2-4.6)Application of suitable ML algorithm (SVM) (Section 5)	
			Evaluation of developed solution in three scenarios (Section 6)		Critical discussion of evaluation results and limitation (Section 7)	
	V. Con	clusion	Conclusion and Outlook (Section 8)			

Fig. 1.2 Structure of dissertation

The *second section* the domain and the challenges to be tackled with the dissertation are presented in greater detail. Initially, it offers a general understanding of important background knowledge and definitions on which the developed concept is based upon. This is framed by recent developments in the domain of Manufacturing Systems (MS) from an information perspective. At first a general understanding of the manufacturing domain is presented, focusing in more detail on manufacturing processes, products and quality in manufacturing (Sect. 2.1). Widening the view on manufacturing, manufacturing systems, including holonic and intelligent manufacturing systems are described thereafter (Sect. 2.2). Additionally, being omnipresent throughout the previous sections, the role of information and data management in manufacturing is discussed in more detail in Sect. 2.3. Concluding section two, identified challenges of MS from a product and process information perspective are summarized, highlighting the research problem fundamentals as a basis for the next sections (Sect. 2.4).

The following *section three* introduces existing methods and approaches that are dealing with the sketched research problem domain of IM in dynamic and complex MS. The identified approaches are clustered within two main areas. PLM on the one side, including PDM and closed-loop and item-level PLM in manufacturing (Sect. 3.1). These concepts share many overlaps with the later developed *product state concept*. On the other side are approaches from the quality monitoring domain that focus on the previously identified challenges which are described in Sect. 3.2. Based on the analysis of these current methods and concepts, their limitations towards a holistic IM in manufacturing systems are identified. In this concluding sub-section the gaps the product state concept intends to fill are highlighted (Sect. 3.3).

Section four presents first the rationale for the product state concept development (Sect. 4.1), highlighting the fit with the identified requirements and challenges of manufacturing systems by picking up the key findings of the previous sections. Describing the structure of section four in greater detail, firstly, the term product state, its origin and definition is described (Sect. 4.2). Next, the topic of relevant state characteristics is discussed on a theoretical level, playing a major role in the following argumentation (Sect. 4.3). Directly related to that, the process intra- and inter-relations of the aforementioned state characteristics are presented in Sect. 4.4. In Sect. 4.4.2, visualization approaches of the product state concept are illustrated directly followed by a discussion of the limitations and challenges within this concept (Sect. 4.4.3). In this sub-section an additional research question, which is essential for the successful application of the product state concept is identified for the first time. This is expanded on by deriving requirements of state driver identification from the previous findings, describing the NP complete status of the problem at hand and arguing the suitability of applying supervised ML techniques for the identification of state drivers (Sect. 4.5) as a promising way to handle the challenges identified. Concluding, a first basic research hypothesis, specific for the derived research problem is presented (Sect. 4.6).

Based on previous findings, *section five* investigates the application of ML algorithms within the product state concept. First, ML in manufacturing is investigated briefly in order to provide a foundation for the selection of a suitable algorithm for the presented research problem (Sect. 5.1). Based on the previous findings, Sect. 5.2 presents Support Vector Machines (SVM) as the ML algorithm of choice and provides details background information on its development, functions and application areas in manufacturing. Furthermore, a solid argumentation for the choice is presented in this sub-section. The final sub-section focuses on the theoretical application of SVM within the *product state concept* by highlighting the application and evaluation approach and giving an outlook on the outcome to be expected.

In order to evaluate the proposed approach, *section six* presents the application of the SVM algorithm within the *product state concept* on three scenarios resembling differently structured 'real world' manufacturing programmes and different challenges from the available manufacturing data structure. The first scenario consists of a data set from a manufacturing process of a highly stressed product from the available manufacturing programme. Both scenarios are supplemented by synthetic data adding additional process steps. The third scenario resembles a complex semiconductor manufacturing process. Before applying the proposed approach within the scenarios, the data sets are introduced (Sect. 6.1). The following sub-Sects. 6.2 (scenario I), 6.3 (scenario II) and 6.4 (scenario III) illustrate the application process in depth documenting all executed steps for each scenario.

The evaluation results of the conducted research are critically discussed in *section seven*. First the results are elaborated in detail (Sect. 7.1) before the interpretation and critical discussion (Sect. 7.2) structured around the developed

research hypotheses is presented. Finally, the limitations of the conducted research and the evaluation results are identified and discussed (Sect. 7.3).

The last and *eighth section* critically questions and reviews the achieved results and knowledge gained of this work and puts it in the greater context. Furthermore, an outlook is presented identifying further research areas related to the findings.

References

- Albino, V., Pontrandolfo, P., & Scozzi, B. (2002). Analysis of information flows to enhance the coordination of production processes. *International Journal of Production Economics*, 75(2002), 7–19.
- Brinksmeier, E. (1991). Prozeß-und Werkstückqualität in der Feinbearbeitung. Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik (p. 256). Düsseldorf: VDI-Verlag.
- Buhr, A., Graf, W., Power, L. M. & Amthauer, K. (2005). Almatis global product concept for the refractory industry. Retrieved September 27, 2008, from http://www.almatis.com/download/ technical-papers/UNITECR05-180.pdf.
- Cassina, J., Cannata, A. & Taisch, M. (2009). Development of an extended product lifecycle management through service oriented architecture. In *Proceedings of the 1st CIRP Industrial Product-Service Systems (IPS2) Conference* (pp. 118–124). Cranfield.
- Choudhary, A. K., Harding, J. A., & Tiwari, M. K. (2009). Data mining in manufacturing: a review based on the kind of knowledge. *Journal of Intelligent Manufacturing*, 20(5), 501– 521. doi:10.1007/s10845-008-0145-x.
- Deja, M., & Siemiatkowski, M. S. (2012). Feature-based generation of machining process plans for optimised parts manufacture. *Journal of Intelligent Manufacturing*. doi:10.1007/ s10845-012-0633-x.
- Denton, B., Gupta, D., & Jawahir, K. (2003). Managing increasing product variety at integrated steel mills. *Interfaces*, 33(2), 41–53.
- Devadason, F. J., & Lingam, P. P. (1997). A methodology for indentification of information needs of users. *IFLA Journal*, 23(1), 41–51.
- Ellram, L., & Krause, D. (1994). Supplier partnerships in manufacturing versus non-manufacturing firms. *International Journal of Logistics*, 5(1), 43–53.
- Enderwick, P. (2005). Globalization and Labor. New York: Chelsea House Publications.
- Frey, C. (2007). Rohstoffe als Beitrag zur Portfoliooptimierung. München: GRIN Verlag.
- Garvin, D. A. (1984). What does "product quality" really mean? *MIT Sloan Management Review*, 26(1), 25–43.
- Hamel, C. K., & Prahalad, G. (1990). The core competence of the corporation. *Harvard Business Review*, 61(3), 275–292.
- Hicks, B. J., Culley, S. J., & McMahon, C. A. (2006). A study of issues relating to information management across engineering SMEs. *International Journal of Information Management*, 26(4), 267–289. doi:10.1016/j.ijinfomgt.2006.03.006.
- Jacob, J., & Petrick, K. (2007). Qualitätsmanagement und Normung. In R. Schmitt & T. Pfeifer (Eds.), Masing Handbuch Qualitätsmanagement (pp. 101–121). München: Carl Hanser Verlag.
- Jansen-Vullers, M. H., van Drop, C. A., & Beulens, A. J. M. (2003). Managing traceability information in manufacture. *International Journal of Information Management*, 23(2003), 395–413.
- Kalpakjian, S., & Schmid, S. R. (2009). Manufacturing engineering and technology. Englewood Cliffs: Prentice Hall.
- Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. *Computers and Chemical Engineering*, 32(1–2), 12–24. doi:10.1016/j.compchemeng.2007.07.005.

- Kovačič, M., & Šarler, B. (2009). Application of the genetic programming for increasing the soft annealing productivity in steel industry. *Materials and Manufacturing Processes*, 24(3), 369– 374. doi:10.1080/10426910802679634.
- Köksal, G., Batmaz, İ., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. *Expert Systems with Applications*, 38(10), 13448– 13467. doi:10.1016/j.eswa.2011.04.063.
- Krcmar, H. (2005). Informationsmanagement. Berlin, Heidelberg, New York: Springer.
- Kreutzberg, J. (2000). *Qualitätsmanagement auf dem Prüfstand, Analyse des Qualitätsmanagements von Informationssystemen*. Dissertation, University of Zurich, Zurich, Switzerland.
- Kumar, S. (2002). *Intelligent Manufacturing Systems* (pp. 1–20). Ranchi. Retrieved from http://pchats.tripod.com/int_manu.pdf.
- Lang, S. (2007). Durchgängige Mitarbeiterinformation zur Steigerung von Effizienz und Prozesssicherheit in der Produktion. Dissertation, Universität Erlangen-Nürnberg, Bamberg: Meisenbach Verlag.
- Lange, K. M. (2007). Duden Wirtschaft von A bis Z: Grundlagenwissen für Schule und Studium, Beruf und Alltag (Gebundene Ausgabe). Mannheim: Bibliographisches Institut.
- Levitt, T. (1993). The globalization of markets. Harvard Business Review, May-June, 92–102.
- Linß, G. (2002). Qualitätsmanagement für Ingenieure. München/Wien: Hanser Verlag.
- Löhr-Richter, P. (1993). Zur Diskussion: Methodologie Methodik—Methode. Was steckt dahinter? Gesellschaft für Informatik e.V. - Lecture Notes in Informatics, 1(1993), 39–41.
- Maull, H. W. (1988). Strategische Rohstoffe—Risiken f
 ür die Wirtschaftliche Si-cherheit des Westens. M
 ünchen: Oldenbourg Verlag.
- Mohanty, P. P. (2004). An agent-oriented approach to resolve the production planning complexities for a modern steel manufacturing system. *The International Journal of Advanced Manufacturing Technology*, 24(3–4), 199–205. doi:10.1007/s00170-003-1673-3.
- N.N., (2006). The problem with solid engineering. The Economist, 379(8478), 71-73.
- Porter, M. (1998). Competitive advantage: Creating and sustaining superior performance: With a new introduction. New York: The Free Press.
- Porter, M. E. (2008). On competition. Boston: Harvard Business School Publishing.
- Puzzanghera, J. (2013). Manufacturing shows surprising strength. Los Angeles Times, October 2, 2013, p. B4.
- Schiersch, A. (2009). *Inefficiency in the German Mechanical Engineering Sector* 1–29. Berlin. Retrieved from http://ssrn.com/abstract=1514278.
- Sitek, P., Seifert, M., & Thoben, K.-D. (2010). Towards an inter-organisational perspective for managing quality in virtual organisations. *International Journal of Quality and Reliability Management*, 27(2), 231–246. doi:10.1108/02656711011014339.
- Specht, D., & Braunisch, D. (2008). Sekundärrohstofflogistik—Konzepte und Anwendungen. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 103(12), 875–879.
- Terzi, S., Panetto, H., Morel, G., & Garetti, M. (2007). A holonic metamodel for product traceabily in PLM. *International Journal of Product Lifecycle Management*, 2(3), 253–289. doi:10. 1504/IJPLM.2007.016292.
- Thesing, G., Randow, J., Kirchfeld, A., Berberich, S., & Webb, A. (2010). New rules and old companies (how the mittelstand company approach in germany encourages and benefits from a strong sense of social responsibility). *Bloomberg Businessweek*, 4198, 72–75.
- Thomas, A. J., Byard, P., & Evans, R. (2012). Identifying the UK's manufacturing challenges as a benchmark for future growth. *Journal of Manufacturing Technology Management*, 23(2), 142–156. doi:10.1108/17410381211202160.
- Tönshoff, H. K., & Denkena, B. (2013). Basics of cutting and abrasive processes. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-33257-9.
- Tilson, H. A. (1998). Developmental neurotoxicology of endocrine disruptors and pesticides: identification of information gaps and research needs. *Environmental Health Perspective*, 3(106), 807–811.

- Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August, 13 2013 from http://www.math.uni-bremen.de/cms/media.php/59/PromO%20FB%202-5%20 _14%203%2007_6442.pdf.
- Wuest, T., Klein, D., & Thoben, K.-D. (2011). State of steel products in industrial production processes. *Procedia Engineering*, 10(2011), 2220–2225.
- Wuest, T., & Thoben, K.-D. (2012). Exploitation of material property potentials to reduce rare raw material waste—a product state based concept for manufacturing process improvement. *Journal of Mining World Express (MWE)*, 1(1), 13–20.
- Wuest, T., Knoke, B., & Thoben, K.-D. (2014). Applying graph theory and the product state concept in manufacturing. *Procedia Technology*, 15(2014), 349–358. doi:10.1016/j.protcy.2014.09.089.
- Yul, T. & Wang, G. (2009). The process quality control of single-piece and small-batch products in advanced manufacturing environment. In 16th International Conference on Industrial Engineering and Engineering Management, 2009. IE&EM '09 (pp. 306–310). Beijing.
- Zoch, H.-W. & Lübben, Th. (2011). Verzugsbeherrschung—Systemorientierter Ansatz als wesentliche Voraussetzung für den Erfolg. Stahl Strukturen. In Bleck, W. (Ed.) (2011). Industrie-, Forschungs-, Mikro- und Bauteilstrukturen—Tagungsband zum 26. Aachener Stahlkolloquium, 19./20.05.2011, Verlagshaus Mainz, ISBN 3-86130-258-6.

Chapter 2 Developments of Manufacturing Systems with a Focus on Product and Process Quality

In this section MS as well as recent developments in the area of holistic IM and related topics will be presented. Furthermore, certain basic aspects of manufacturing, MS and related areas are described in detail in order to allow readers to familiarize themselves with the fundamental terms and definitions used throughout this dissertation. In each subsection, concluding paragraphs summarize how the described topic is relevant to the research and putting it in perspective. Main principles and how they are utilized throughout this dissertation is summarized there.

First the manufacturing domain is illustrated, focusing on manufacturing processes, products and manufacturing itself, highlighting process monitoring, process control and process diagnostics. This first subsection is rather descriptive, building a basic understanding of the terms and definitions. As product and process quality and its understanding is used differently in varying contexts, in this section, the definitions of quality related terms and approaches fundamental to the recent developments in manufacturing systems are derived. Presenting holonic and intelligent manufacturing systems in the next subsection, as they are a widely recognized conceptual and holistic view on modern manufacturing. In the previous sections, the connection to the information and data perspective is omnipresent. Therefore, an introduction to information and data management in manufacturing, incl. Big Data and information quality is presented. Concluding, key challenges of the recent developments in MS from a product and process information perspective are discussed.

2.1 Manufacturing Terms, Definitions and Developments

In this section the principle understanding of manufacturing, manufacturing processes and products in this domain is presented. On the highest level, the term manufacturing describes the production of goods using labor and machines, tools, processing, or formulation (see Fig. 2.1) (Steven 2007; Jehle 1999). Today, manufacturing is mostly

© Springer International Publishing Switzerland 2015

T. Wuest, Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning, Springer Theses, DOI 10.1007/978-3-319-17611-6 2

Fig. 2.1 Manufacturing as a transformation process to create material goods as an output

connected to industrial production. Hereby it has to be noted that while the terms production and manufacturing are frequently used interchangeably, their inherent meaning differs to some extent. Whereas it is true that every type of manufacturing is also production, not all production is necessarily manufacturing as it describes converting input to output in a broader term. An example for a production which cannot be described by manufacturing is a book. Whilst the making of the physical book itself can surely be manufactured, the content, the creative work cannot. Despite various researchers argue that manufacturing can also produce non-material products (e.g., Morris and Johnston 1987), in this research, manufacturing in understood as the making of material goods (see Fig. 2.1) in accordance with Filos (2013).

According to Filos (2013), "manufacturing is the activity to make goods, usually on a large scale, through processes involving raw materials, components, or assemblies with different operations divided among different workers. Manufacturing encompasses equipment for materials handling and quality control and typically includes extensive engineering activity such as product and system design, modeling and simulation, as well as tools for planning, monitoring, control, automation and simulation of processes and factories. It is increasingly seen as a priority area of economic activity especially for economies that have been hit by the recent financial and economic crisis."

There are five different manufacturing principles regarding the spatial structure of manufacturing in a facility, the workbench principle, the on-site principle, the function or job-shop principle, the cellular principle and the flow principle (Lödding 2013). Within this work the focus lies on function or job-shop principle and the flow principle. Within these, products are transported between stations where different transformation processes are conducted to change their state.

Looking at the production types, within this work, the focus lies on mass production with a large number of production runs and continuous production. Also a possible applicable area is a serial production with a large size of production runs. However, a large number of products manufactured are needed as a bases for the developed concept. Next, the basics of manufacturing processes are introduced.

Fig. 2.2 Transformation model in manufacturing and value creation

2.1.1 Manufacturing Processes¹

A process is a pattern, designed for a certain purpose (Fig. 2.2). It can describe different variants of combinations of activities or events which are related through causal and/or timed order relations directly to a process confining and activating activity or an activating event and a connected and related result (event or state). This can happen through relations to other activities or events of the process (Hoffmann et al. 2002). This very general definition of a process can be further sharpened and related to the manufacturing domain, looking at the DIN EN ISO 9000:2005 definition of a process. There a process is defined as "set of interdependent or interrelated tasks transforming inputs in outputs" (CEN 2005).

Manufacturing techniques, used for transforming e.g., products geometry or state can be classified as follows (see Fig. 2.3).

The presented techniques are in general not applied individually but in combination. The six primary techniques are described in more detail in the following list:

- *Primary shaping*: describes the creation of material object out of shapeless matter. By applying certain processes, e.g., casting, cohesion is created. Primary shaping techniques are mostly applied in early parts of a manufacturing programme (Grote and Feldhusen 2007).
- *Forming*: this technique is changing the form of a product whilst maintaining the cohesion. Through processes like e.g., rolling the elements are restored without changing the mass or cohesion (Fritz and Schulze 2006).
- *Cutting*: describes the production through changing the form of a product by reducing the cohesion and elimination of elements. Cutting represents an important area of manufacturing (König and Klocke 2008).
- *Joining*: summarized processes to join two or more parts or products. Examples for processes are adhesive bonding or welding (Westkämper and Warnecke 2010).

¹The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest and Thoben (2012).

Fig. 2.3 Classification of manufacturing techniques according to DIN 8580 (CEN 2003)

- *Coating*: is realized by permanently adding a shapeless material as an outer layer on a physical body. The added layer can e.g., improve the friction behaviour (Grote and Feldhusen 2007).
- *Changing material properties*: whereas the above stated manufacturing techniques change the outer form of a product, this one changes the material properties within the product itself. The changing of properties can be done by applying physical processing, chemical processing or biological processing (Steven 2007) e.g., heat treatment.

The transformation within a manufacturing process can either be base on actions of humans or machines (Zingel 2009). This definition is already very closely related to the manufacturing definition presented above describing manufacturing as a transformation process (see Fig. 2.2). The transformation within a manufacturing process needs time; a direct production of outputs is not possible (see Fig. 2.2). This implies that a manufacturing process mostly involves more than one stage or sub-processes (Gutenberg 1970). As the result of a manufacturing process is a product, which represents the customer needs, the manufacturing process is necessarily part of a business process or a business process (Korndörfer 2003) with the goal of adding value to the product (Porter 2008; Hutton and Denham 2008).

Figure 2.4 illustrates a manufacturing programme (sequence of manufacturing processes) connecting input of process n with output of process n - 1 through interfaces. These interfaces can either be internal or external. The terminology of the process hierarchy used in this dissertation is presented in the figure as well. A manufacturing programme represents the manufacturing system with all manufacturing processes,—operations down to the individual manufacturing activity involved.

After having clarified what a manufacturing programme,—process, etc. stands for in general and having introduced the main techniques, next, a more detailed

manufacturing programme (process sequence)

Fig. 2.4 Process sequence and hierarchy (adapted from Becker 2008)

discussion will focus on implications of a manufacturing process and its relation to quality. When looking at improving manufacturing processes, as a first step towards efficient manufacturing, it has to be ensured that the manufacturing processes, the entire manufacturing programme for that matter, design is capable to produce the desired product properties (Mohanty 2004). After this overarching requirement, a functional process design, is given, the process quality plays a major role, as it is directly connected to product quality (Brinksmeier 1991; Jacob and Petrick 2007). In every process, a certain degree of variation of the input parameters of individual products can be found even in state of the art manufacturing which can influence the product quality (Yu and Wang 2009).

The product quality can be influenced at the end of the manufacturing programme (final product quality) or during the different processes or operations. It is important to consider, that the processes and operations are often linked via process intra- and inter-relations to each other and thus, the variations can, even being tolerable from an individual (isolated) process perspective, lead to an unacceptable accumulation causing failure of the final product to meet the customer requirements (Wuest et al. 2013). Taking a closer look, some of these influences are not or just partly known today and in most cases hard or impossible to quantify (with monetary and technical restrictions) as it is mostly very specific to product and process. In this context, the system view gains importance as new research indicates that an isolated focus on single processes during monitoring or improvement initiatives may lead to an incomplete understanding of relations (Zantek et al. 2006; Jiang et al. 2012). This is further illustrated in Sect. 2.2.3. Furthermore, Viharos and Monostori (1999) state that having reliable process models is extremely important, as they are required e.g., for selecting optimal parameters during process planning, for designing and implementing adaptive control systems or model based monitoring algorithms.

Looking again at the input-output model of a manufacturing process as presented in Fig. 2.2, transformation in this case can be described as a change of the product state, and thus of one (or multiple) relevant state characteristics, from

value creation

input (product state) to output (product state). Every manufacturing process has an input product state, which deviates to a certain extent from the originally planned input (see Fig. 2.5) (Ding et al. 2002). The term product state used here describes a product at a certain point during a manufacturing programme. This will be presented in greater detail in Sect. 4.2. This deviation is always there and due to some degree to process 'noise' such as machine/material variability, environmental factors, thermal effects, operator error, etc. (Kaiser 1998). The level of the deviation and with it, the impact on the product quality, however varies a lot. These deviations of the input product state have an influence on the output product state after the state change (transformation) if transformation parameters can be considered unchanged (see Fig. 2.6) (Jansen-Vullers et al. 2003).

One option is to base the adjustment of the process parameters on information of the product, for example the input product state (see Fig. 2.7). Taking known cause-effect relations and the process view into account, this information can be described by the *product state concept*, introduced in this research (see Sect. 4.2 ff.). The comprehensive approach can contain all necessary information needed by processes involved.

However, identifying this set of relevant information is not trivial. A special focus within such a concept has to be laid on the question, how can the relevant information which provides the basis for the adjustment be identified. Once this relevant information, among it being the drivers of product state, is identified, experts can apply it to adjust the process on an informed basis accordingly.

Manufacturing is an area with a constant need for efficiency and product and process quality improvement. There are many different areas in manufacturing tackling this issue. In order to structure the following findings, the areas are

grouped in different domains. These domains constitute of areas with similar requirements and challenges towards supporting techniques and technologies. However, there are various forms of semantics out there and as the areas are not sharply distinguishable in their focus, overlaps between the domains will occur. The three overarching domains are monitoring, diagnostics and control. They are complementary in as much as it is necessary to monitor in order to control and without diagnostics control is unfocused/undefined. The additional domain of scheduling stands out as it is not directly related to the above. As this work is focusing on monitoring, the domains of control, diagnostics and scheduling are briefly introduced in the following paragraph, before process monitoring is detailed in the next subsection.

The domain of *control* includes a wide variation of areas and is closely related to monitoring (Kang et al. 1999). Control is the action of bringing a process back into a desirable state. Harding et al. (2006) state that "[ML] and computational intelligence tools provide excellent potential for better control of manufacturing systems". The areas represented by this domain include but are not limited to (intelligent) manufacturing control (e.g., Bowden and Bullington 1996; McFarlane et al. 2003), (statistical or automated) process control (e.g., Qin et al. 2006; Jenab and Ahi 2010) and simulation (e.g., Baker 1988; Fowler 2004). The domain of *diagnostics* (e.g., Chinnam and Baruah 2009) compromises the areas of process analysis (e.g., Arbor 2000) and fault diagnosis (e.g., Widodo and Yang 2007). Additionally there is the domain of *scheduling*, which is required to ensure the control and/or process actions happen in the right order. However, scheduling, as part of internal and external logistics will not be in the focus of this work. In order to present a rather complete picture, the different areas summarized under scheduling are: scheduling (e.g., Aytug et al. 1994), sequencing (e.g., Lödding 2013) and capacity planning (e.g., Lutz et al. 2012).

2.1.2 Process Monitoring

Using product and/or process data to monitor and/or forecast certain events, chains of events and/or outcomes is a topic, widely discussed among scholars for more than the last 20 years. Du et al. (1995) describe monitoring as an act of identification of characteristic changes of a process by evaluating process data without interfering running operations. Stavropoulos et al. (2013) describe monitoring as the manipulation of sensor measurements (e.g., force, vision, temperature) in determining the state of the processes. Ge et al. (2013) define process monitoring simply termed as fault detection and diagnosis, and as a tool for process safety and quality enhancement. These definitions already highlight again the connection to process control and process diagnostics as described before. The task of monitoring is to separate the normal process data samples from the faulty ones (Ge et al. 2011). The extraction of useful information from the recorded process dataset enables the monitoring and prediction of the process operation condition and the product quality (Ge et al. 2011).

Due to increased number of variables measured and monitored and the improved controllability of these variables a method of analyzing the data is required. Without an appropriate method only limited data about the processes can be extracted (Lee et al. 2004). Du et al. (1995) find in their research that monitoring based on learning from examples turns out to be more effective in manufacturing programmes than learning from instructions.

Monitoring in manufacturing includes the areas of machine performance monitoring (e.g., Spoerre et al. 1995), (machine) condition monitoring (e.g., Peng 2004; Widodo and Yang 2007), quality monitoring (e.g., Ribeiro 2005; Wuest et al. 2013) and process monitoring (e.g., Skittet al. 1993; Qin et al. 2006). More detailed application areas include the analysis of high-dimensional and correlated process data, e.g., in chemical and biological plants and products (Ge et al. 2011), wastewater treatment processes (Lee et al. 2004), model-based monitoring for fault detection and diagnosis in aerospace, engine and power systems (Ge et al. 2013), tool wear and tool breakage (Stavropoulos et al. 2013). The challenges in the domains control and monitoring are very similar, reflecting the large overlap and connection of the two domains. For example, in order to identify a faulty process, the cause-effect relations play an important role. When control kicks into get the process back on track based on the monitoring information, cause-effect relations are essential in order to take the right measures. Within the monitoring domain the challenges can be stated as follows: unclear/unknown cause-effect relations, high-dimensionality, incomplete (product and process) data. The relevant sub-domain of process monitoring, quality monitoring will be elaborated in a later section (see Sect. 3.2.2). Next, the term product and its understanding within the manufacturing domain is introduced.

2.1.3 Product in Manufacturing

In the definition of manufacturing introduced before, the purpose of manufacturing is the production of material goods. In industrial production, these goods can be referred to as products. As the term product is a central aspect of the developed

concept, first commonly accepted definitions are presented, before the agreed upon understanding of the term is presented.

A general definition describes a product as representing an output offered on the marketplace which satisfies the customer needs through specific functions and characteristics in a beneficial way. The output can be material goods, services, information or experiences (Kotler et al. 2011).

According to the Quality Management (QM) standard (DIN ISO EN 9000:2005), representing an engineering perspective, a product is defined as the final result of a process. The results of the previously discussed manufacturing processes can therefore be defined as products. During the manufacturing process, the to-be-transformed material is referred to as "work piece" (CEN 2005). Finalizing the manufacturing process, the work piece becomes a product (see Fig. 2.8). It has to be noted, that two or more work pieces can be combined to a single product (Schmachtenberg 2000).

In manufacturing, the PLM perspective is increasingly gaining attention. In closed-loop, item-level PLM, an object over all phases of its lifecycle, beginning from raw material over work piece and final result of manufacturing (product) to the to-be-recycled materials after usage are considered and referred to as product (Jun et al. 2007; Terzi et al. 2007; Taisch et al. 2011) (see Sect. 3.1).

In this research, the term product is used comprehensively to describe an artifact over various stages of its product-life-cycle replacing the more technically accurate terms e.g., raw material before and work-piece during manufacturing. Reasons include the focus on individual products (item-level) and the reduction of complexity. Based on this understanding of the term product, the product state describing a product at different stages of a manufacturing programme, will be defined later on (Sect. 4.2) (see Fig. 2.9). Next, basic quality terms and definitions are presented in the following subsections.

2.1.4 Quality in Manufacturing

Quality has been a focus area of manufacturing for several decades and the market success of companies successful in utilizing their understanding of quality and customer requirements highlight the importance of quality. De Weck et al. (2012) found in their recent study on system lifecycle properties ('Ilities') that quality is and was the most dominant 'ility' of engineering systems for over a century, rated higher than e.g., reliability and safety (De Weck et al. 2012).

In this research the term quality is understood as "the degree to which a set of inherent characteristics fulfils requirements" (DIN EN ISO 9001:2008—CEN 2008). Requirement within this context is defined as the "need or expectation that is stated, generally implied or obligatory" (DIN EN ISO 9001:2008—CEN 2008). According to this definition, quality depends on the fulfillment of requirements. The fulfillment of these requirements depends on the planning of processes (commands) and the execution of processes (executions) (see Fig. 2.10) (Masing 2007). Quality of the final product is regarded as achieved to a higher degree when more of the original customer requirements match with the achieved characteristics of the final product (Sitek 2012). The *product state concept* corresponds with this definition as it defines so called state characteristics by which the state of a product can be described at all times during its lifecycle. It has to be considered that a product can inherit different qualities, the sum of these (sub-)qualities like e.g., security, workmanship or durability finally represent the final product quality (Kamiske and Brauer 2008).

There are different definitions of quality in manufacturing available. Some researchers have a very technical view on quality in manufacturing. An example for such a technical definition is presented by Kaiser (1998), who defines quality in manufacturing as "primarily a factor of machining tolerances" This implies that quality can be achieved when the machining tolerances are controlled. This view does not reflect common problems like input deviations or environmental influence on the processes. Other researchers define quality in manufacturing more generally, as "confirming with requirements", thus focusing on the customers (Garvin 1984). However, researchers agree, that in most cases "products with small variations in shape and size are considered high quality, while products with large variations are considered poor quality" (Kaiser 1998). This corresponds with the former definition, as "a product that deviates from specifications is likely to be poorly made and unreliable" (Garvin 1984). However, these variations have to

Fig. 2.10 Elements of quality (adapted from Masing 2007; Sitek 2012)

be viewed form a customer requirement perspective. Some variations of parameters not important for the customer with not impact on other important parameters have no influence on quality. As manufacturing companies constantly try to improve the quality of their products and processes, it has to be noted that quality improvement generally requires collection and analyses of data to solve quality related manufacturing problems (Köksal et al. 2011).

According to the quality definition above, the final product quality depends on the fulfillment of the customer expectations and thus the customer requirements. Overall, there are many possible reasons for a discrepancy from these requirements, e.g., the requirements of customers where not correctly retrieved or the designers interpreted and transformed the requirements differently than the customer fancies. However, within this research it is assumed that the requirements were correctly retrieved and the product will fulfill the customer expectations if it meets the specifications set by the designers and process planers. Using the terminology of Fig. 2.10, the commands are considered correct and the execution is the focus area. The reason behind this is that this research is focusing on supporting the manufacturing process and does not directly support phases like e.g., the design or product planning. Following Taguchi's (1989) six stages of activities of manufacturing companies, the focus lies on stage (4) manufacturing and partly (3) manufacturing process design, whereas the stages (1) product planning, (2) product design, (5) marketing and (6) sales will not be looked upon.

2.1.4.1 Product Quality

The term product quality has been introduced partly in the previous section. As can be seen in Fig. 2.10 product quality is determined by the fulfillment of the (quality) requirements by the characteristics of the final product. To adapt this definition to the process and system view, product quality can also be determined for processes and/or operations within a manufacturing programme. The final product is to be understood as the outcome of a process or operation instead of the overall manufacturing programme. However, the requirements are not as easily determinable because of existing cause-effect relations between different processes and/or operation during the manufacturing programme. In manufacturing programmes, a wide variety of potential errors can influence the quality characteristics of a product. The product end quality is finally determined by all stages of the manufacturing program (Zantek et al. 2006; Jiang et al. 2012). This challenge is addressed by the *product state concept*, as it is one of the pillars towards the identification of a set of relevant information (see Sect. 4.4).

Some quality characteristics can be easily measureable, for example length, depth or weight, some are hard to measure, like functions or aesthetic. Easily measurable characteristics have the advantage of being easier to monitor and control. The quality characteristics being hard to measure are mostly hindering the checking of the fulfillment of requirements. Additionally, quality characteristics are an element for control of the impact of quality management processes (Eversheim 1997). It is however a challenge to determine the actual real life requirements according to which the product quality is finally determined (Olbertz and Otto 2001). As stated above, this question is not in the focus of this research.

2.1.4.2 Process Quality

Quality principles cannot just be applied to product but also to processes. The process quality definition depends to a large extent on the understanding of process itself. A process, e.g., a manufacturing process, inherits a specific order of transformation activities alongside temporal and spatial dimensions with a defined input and output. The quality of a manufacturing process is determined by the compliance with criteria for order, time, place, input and output (Kreutzberg 2000).

Process quality determines the product quality, given that the entire manufacturing programme and product/process design is capable of meeting the requirements, (Brinksmeier 1991; Jacob and Petrick 2007) (see Fig. 2.10). Even if a process is executed with the exact same parameters, a certain degree of variation of the input parameters of individual products can be found even in state of the art manufacturing which can influence the process quality and thus the product quality (Taguchi 1989; Yu and Wang 2009).

It is a major task of QM to ensure a high process quality in manufacturing. Continuous improvement is widely employed in order to reduce failure and to optimize manufacturing processes and the quality of the output (Eversheim 1997). This QM tasks, involving a lot of information and data and efficient handling of such, are introduced in the following subsections.

2.1.5 Example of a Manufacturing Programme²

A manufacturing programme consists of different processes and operations, each with a certain very specific task and goal. To transform a raw material to a final product, all processes are necessary and have to be executed in a certain order. To make the theory introduced in the previous sections more feasible, an exemplary description of the manufacturing programme of a highly stressed steel product will be presented. This example is based on an adapted manufacturing programme following (Klein et al. 2005) which consists of three process steps: forging, machining and heat treatment (Fig. 2.11).

In industrial practice, a manufacturing programme involves generally more processes and/or some have to be executed multiple times at different stages of the whole manufacturing programme. To build a foundation for the following concept,

 $^{^{2}}$ The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2013)

Fig. 2.11 Exemplary manufacturing programme with three processes

the author chose to use a simplified example in order to focus on the main ideas behind the concept instead of getting lost in details.

Today, it has to be taken into consideration that manufacturing programmes are not executed by a single company at a single location any longer but rather in collaboration with other companies (Seifert 2007). This includes extra interfaces and interdependencies between stakeholders as well as manufacturing and business processes. For example, could the forging (process 1) in the exemplary manufacturing programme (see Fig. 2.11) be done by company A in country X, whereas the processes machining (2) and heat treatment (3) are executed by company B's department C (country Y) and D (country Z). As this adds further complexity to the manufacturing itself by involving additional logistics and information exchange, there is an indispensible need for a clear structure to identify, share/distribute and use product and process information (Merali and Bennett 2011).

This section presented the basic terminology, e.g., manufacturing, product and process used in this research. It described how manufacturing processes transform products by adding value. This value adding can be done in various ways, e.g., machining or heat treatment. Furthermore, the importance of the availability of the right information for a manufacturing process is introduced. Together with process monitoring, which can be understood as the capturing of information in a manufacturing process this is the basic principle the *product state concept* is build upon.

2.2 Developments of Manufacturing System

A manufacturing system describes the method of manufacturing in a generalist way. A manufacturing system sub-summarizes all means necessary for the production of a certain product, including the manufacturing programme and processes, machines, production method, etc. It represents the overarching layer connecting the different stakeholders involved and is mostly complex and of large-scale (Höpf and Schaeffer 1997). Koren et al. (1998) have shown that the configuration of the manufacturing system affects the performance of the system. The effects identified include productivity, capacity scalability, and part quality and thus, influence the lifecycle cost of the manufacturing system.

Over time there have been many different methods and concepts concerning manufacturing systems. From flexible and integrated manufacturing systems (e.g., Collins 1980; Kimemia and Gershwin 1981) towards today's Holonic (HMS) and Intelligent Manufacturing Systems (IMS) (e.g., Höpf and Schaeffer 1997; McFarlane and Bussmann 2003) there are many different definitions available, each focusing on certain aspects with smaller or larger overlaps with each other. Even so some concepts were adopted in the 1980s, they are still to some extent valid and applied in their original or adapted/updated form today (ElMaraghy 2006).

Flexibility is still an important factor for today's manufacturing systems especially given the trend towards mass customization (He et al. 2013). However, the focus is increasingly shifting towards a combination of reconfigurability, flexibility and even adaptability (ElMaraghy 2006; Almeida 2011). Reconfigurability, flexibility and adaptability reflect the customer demand driven production of today's business environment. These concepts focus to a large extent on scheduling and production planning and control activities. IMS, in detail explained in Sect. 2.2.2, try expanding that view by expanding the focus on further characteristics like e.g., autonomy, learning and efficiency (Kumar 2002; Oztemel 2010; Almeida 2011). HMS, while based on the IMS concept, focus on the self organization aspects of large complex systems and how this integrates in and influences the performance of the system (McFarlane and Bussmann 2003) (see Sect. 2.2.3).

2.2.1 System View on Manufacturing

The general systems theory (Von Bertalanffy 1972) and the derived systems perspective has had an effect on various disciplines and has partly been adapted to the needs of various disciplines like operations, information systems and also engineering (Maddern et al. 2013). A System represents "a set of interacting components having well-defined (although possibly poorly understood) behavior or purpose; the concept is subjective in that what is a system to one person may not appear to be a system to another" (Magee and de Weck 2004). A complex system expands on the above system definition by being "a system with numerous components and interconnections, interactions or interdependencies that are difficult to describe, understand, predict, manage, design, and/or change" (Magee and de Weck 2004). Engineering (and thus manufacturing) systems) are "systems designed by humans having some purpose" (Magee and de Weck 2004).

However, in the manufacturing domain often the focus is on individual processes or operations, disregarding the previous or following ones, which can have an impact on the products final quality. Hoffmann et al. (2002) found that there are cause effect relations across process borders which have a significant influence on the behavior of a product during manufacturing (Sölter 2010). Such often complex process intra- and inter-relations are common in engineering systems (Giffin et al. 2009). In line with the principles of systems theory, the environment of the system also has an influence of the behavior of a system (Maddern et al. 2013). In manufacturing programmes, a wide variety of potential errors can influence the quality characteristics of a product. The product end quality is finally determined by all stages of the manufacturing programme (Zantek et al. 2006; Jiang et al. 2012). Therefore, taking the whole system into account instead of individual, isolated processes can help to accomplish sustainable product and process quality improvements (Zoch 2009). Supply Chain Management (SCM) represents a very common variant of a system view, focusing mostly on logistics and collaboration efforts (Christopher 2005), whereas the research focus in this manuscript lays on product and process quality improvements in manufacturing.

2.2.2 Intelligent Manufacturing Systems

Increasing market pressure towards quality, efficiency and flexibility together with new developments in ICT, Artificial Intelligence (AI) and optimization techniques lead to the concept of intelligent manufacturing. Intelligent manufacturing is also known as smart manufacturing, being used almost interchangeable. A comprehensive definition of smart/intelligent manufacturing is presented by Wallace and Riddick (2013) as follows: "Smart [or intelligent] manufacturing is a data intensive application of information technology at the shop floor level and above to enable intelligent, efficient and responsive operations" (Wallace and Riddick 2013).

Another definition of intelligent manufacturing describes the concept as "an intelligent manufacturing process [that] has the ability to self-regulate and/or self-control to manufacture the product within the design specifications" (Kumar 2002). In this definition the autonomous aspect of intelligent manufacturing is highlighted. What is commonly accepted among researchers is the importance of product and process information and data, technology and (human or machine inherent) knowledge (Chand and Davis 2013). This understanding already implies that in order to make a manufacturing process intelligent, various functions of a manufacturing company have to work together, e.g., design, process planning, production planning, operations and process control. Looking at the final product, individual quality control and based on that, corrective measures are required. During manufacturing itself, monitoring, diagnostics and measures like predictive maintenance play an important role (Mazumder 2008). Overall, continuous improvement is crucial to make the system intelligent.

However, the degree of autonomous behavior is not specifically defined. Kumar (2002) defines three ways to achieve the above-defined intelligent manufacturing:

- "Existing manufacturing processes can become intelligent by monitoring and controlling the state of the manufacturing machine
- Existing processes can be made intelligent by adding sensors to monitor and control the state of product being processed.
- New processes can be intelligently designed to produce parts of desired quality without the need of sensing and control of the process."

According to these findings, existing manufacturing processes can be made "intelligent" by monitoring and control the state of the products via sensor technology and the application of ICT. This is highly relevant to the conducted research as the here stated "state of a product" is in line with the basic understanding of products and processes of the developed concept.

The intellectual father of IMS, Yoshikawa, defines them as follows: "The IMS takes intellectual activities in manufacturing and uses them to better harmonize human beings and intelligent machines. Integrating the entire corporation, from marketing through design, production and distribution, in a flexible manner which improves productivity" (Yoshikawa according to Piddington and Pegram 1993).

The global, IMS program compromises a R&D program established to develop the next generation of manufacturing and processing technologies, led by industry (Nagy et al. 2005). The first idea for IMS came up by the end of the 1970s (Hatvany and Nemes 1978) shortly after followed by early IMS definitions (Hatvany 1983). Hatvany (1983) gave the next generation of manufacturing systems a perspective combining findings of AI research "to solve, within certain limits, unprecedented, unforeseen problems on the basis of even incomplete and imprecise information". (Monostori 2002) Being widely discussed, a worldwide IMS initiative, initiated by Japan 1989 (EC 2009), was formally started in the mid 1990s with the kick off of six test cases. One of the cases were Holonic Manufacturing Systems (HMS) (TC5), which looked into the ability of companies to react to rapidly changing market conditions (see Sect. 2.2.3), others looked into knowledge systemization in product and process design (TC7), whereas others focused on clean manufacturing (TC2), concurrent engineering (TC3) and rapid product development (TC6), etc. (Kopacek 1999). Even so the impact of conducted project within the first phase of IMS was positive, there is still potential for future development in IMS especially given the rapid development in ICT (Zobel and Filos 2006).

According to Kumar (2002), "IMS

- 1. uses technology which can minimize the use of human brain.
- 2. regulation for product mix and priority production, self regulated.
- 3. self controlled operations with automatic feedback mechanism.
- 4. monitoring and control of the manufacturing machine.
- 5. monitoring and controlling the state of product being processed.
- 6. new processes with intelligence can be made to produce parts of desired quality without the need of sensing and control of process" (Kumar 2002).

One has to bear in mind that the points stated above are rather idealistic goals as a realization in the near future is unlikely due to e.g., the high dimensionality and complexity involved in modern manufacturing and PLM approaches.

IMS, being based on the intelligent manufacturing paradigm, are supposed to support various characteristics, starting with flexibility and reconfigurability combining them with ideas from the ICT domain like autonomy, decentralization, flexibility, reliability, efficiency, learning, and self-regeneration (Liu et al. 1997; Revilla and Cadena 2008; Mekid et al. 2009; Shen et al. 2006; Almeida 2011).

Looking at the above, the importance of state monitoring of both, processes and products within IMS is evident. This research is contributing to support state monitoring issues in complex manufacturing programmes to support the IMS goals.

2.2.3 Holonic Manufacturing Systems

The word "holon" is an artificially created term based on the Greek word "holos" meaning whole and the Greek suffix "on" meaning particle or part as in proton or neutron (Höpf and Schaeffer 1997; McFarlane and Bussmann 2003). A holon is understood as "an identifiable part of a system which has a unique identity, yet is made of subordinate parts and in turn is part of a larger whole" (Kopacek 1999). McFarlane and Bussmann (2003) define a holon in manufacturing as an "autonomous and cooperative building block of a manufacturing system for transforming, transporting, storing physical and information objects". Given the above definition, a holon itself can contain a unlimited amount of holons as subsystems, providing the necessary processing, information, and human interfaces to the outside world (McFarlane and Bussmann 2003).

HMS were originally established as part of the global IMS initiative as TC5 "Holonic Manufacturing Systems" in 1989 to create "companies able to react promptly and efficiently to changes in environmental and marketing conditions" (Kopacek 1999). Especially SMEs require flexibility in their manufacturing systems to survive in the future global market environment. Holons offer allow those companies to create flexible manufacturing systems based on principles known from ICT. HMSs are supposed to be intelligent, flexible and modular (Kopacek 1999).

As a basis for this research HMS present an interesting foundation as it combines the detailed view on an "excerpt" (holon) of an overarching system and the implications of its performance/changes and inherent information/data representation. This is strongly related to the approach taken when looking at the manufacturing programme by the different product and process states and the identification of state drivers based on data from different defined sub-systems (see Sect. 5.3). The interpretation of the results strongly depends on how the findings of the analysis of sub-systems affect the manufacturing programme as the overall systems.

In conclusion, the previous subsections highlighted different approaches to describe manufacturing systems. Instead of looking at operations or processes individually, the importance of considering all elements of the manufacturing system, as there are correlations across process borders is described. The *product state concept*, describing a product holistically by its state over a manufacturing programme is a reflection of the system view on manufacturing.

2.3 Developments in Information and Data Management in Manufacturing³

This section presents a closer look on information and data and its handling and management in manufacturing. Most advanced manufacturing approaches, e.g., the above discussed IMS and HMS initiatives, rely strongly on information and data. The developed *product state concept*, as a holistic product focused information system is dependent on a functional information and data management as well.

Along a manufacturing programme, physical products as well as information are exchanged between the partners (Hicks et al. 2006). The availability of information is a precondition to adjust each manufacturing process in such a way that the outcome reflects the set quality requirements to a high degree. Quality, as stated before, constantly gains importance for customers and for a sustainable use of resources. At the same time, distributed production brings forth new challenges for managing quality (Sitek et al. 2010). Looking at quality improvements of manufacturing products and processes, the collection and analysis of data/information is essential to solve quality related manufacturing problems (Köksal et al. 2011).

In order to present a solid foundation and highlight the current challenges in the domain, first information and data management are presented before looking more closely into information quality and their understanding within the manufacturing domain. Based on this general introduction, selected standards and tools used in practice are presented. The widely discussed Big Data domain is briefly discussed at the end of this section; mainly to distinguish the differences and similarities of the developed concept with regard to the Big Data perspective. Two specific topics related to the domain of information and data management, namely PLM and PDM, are discussed in the next section due to the available practical applications and their close relation to the theoretical foundation of the *product state concept*.

Before focusing more closely into information and data management, Fig. 2.12 distinguishes the difference between IM (incl. data management) and Knowledge Management (KM). Overall, it can be stated, that information management is considered more technical than knowledge management and that knowledge is backed by information and data. An important differentiation, is that data and information can be stored relatively easy compared to knowledge which is always connected to a person (Probst et al. 2006). The differentiation in explicit and implicit knowledge is crucial for the transferability and applicability. They are based on Polanyis findings concerning the personalized nature of knowledge (Polanyi 1962). In comparison, information is relatively easy to transfer and data even easier. However, information itself does not foster realizations or new findings; it has to be connected to a context in order to become knowledge (Haun 2002). This is important

³The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest and Thoben (2012).

Fig. 2.12 Differentiation of knowledge and information management Wuest and Thoben (2012), inspired by North and Güldenberg (2008); Auer (2010)

for the developed concept as the process of connecting data and information with context represents a major challenge during the application.

However, the above illustrated distinctions between the different areas are not as clear as Fig. 2.12 indicates. One of the reasons is, that solid measures are missing resulting in large gray zones and overlaps between the different terms which make a clear distinction impossible at times. Within this manuscript, the focus is on information and data as a source of product state and process knowledge.

KM is the systematic and explicit control of knowledge based activities, programs and governance within the enterprise with the goal to make effective and profitable use of the intellectual capital (Wiig 1998). (Davenport et al. 1998) emphasize that KM does not only imply successful utilization of knowledge but also creation and allocation. The KM research field is a very broad one and there are various research areas involved, from social science over psychology and business to engineering. Therefore, the number of publications and available information is vast. Setting the focus on identifying knowledge, (Probst et al. 2006) with their model of knowledge building blocks defined one of them as "knowledge identification" (Probst et al. 2006). Taking a closer look, this block describes the need to increase transparency of internal and external sources of knowledge. It also is supposed to ease the way the own employees have access to knowledge needed. The pioneers in the field of KM, (Nonaka and Takeuchi 1997) created the well-known model of the "knowledge spiral", an illustration of the knowledge creating process focusing on transforming implicit to explicit knowledge. Other concepts, like e.g., process oriented KM (Mertins and Seidel 2009), are variations or combine the models of Probst et al. or Nonaka and Tekeuchi and combine it with other theories like Porter's value chain (Porter 2008). None of these approaches and models offers a defined and accepted concept clearly to identify very specific

Fig. 2.13 Information pyramid (Fink et al. 2005)

sources of information or data about an individual product or process. But they all emphasize the importance of having the right knowledge or information available at the right place for all business processes. This can be seen as the overarching argumentation for the *product state concept*, as it is supposed to provide the right information/data to experts who can apply their knowledge to improve the process and thus product quality on that basis. In the future expert systems could support knowledge creation based on the *product state concept*.

Another interesting distinction of knowledge, information and data, this time including the relations among each other in both directions is presented by the information pyramid (Fink et al. 2005) (see Fig. 2.13). The highlighted relations in Fig. 2.13 between knowledge, information and data can be seen throughout this research. In order to identify a relevant set of product state information, knowledge of the manufacturing programme, the individual processes and their process intra- and inter-relations has to be applied as well as available process and product data has to be analyzed when there is a knowledge gap.

The question if process and product quality can be improved through transparent IM based on identification of relevant product state characteristics along a manufacturing programme through modeling process intra- and inter-relations between these characteristics has not yet been addressed sufficiently in literature or practice. Areas related to this question were identified as follows: knowledge, information and data management; SCM (incl. process management and related areas); research on collaborative production and quality management.

Next, the areas of IM will be explained in greater detail to clarify the domain in focus of this research and provide a solid background before including a brief explanation of the Big Data domain.

2.3.1 Information Management (Systems) in Manufacturing

IM and the more technical term IM systems are strongly linked to ICT and related technical solution in the manufacturing domain. In this area, a lot of progress has been made over the last years. As stated above the understanding of IM and IM systems in manufacturing does not distinguish itself sharply from e.g., PDM and PLM systems, also with strong links to ICT, which will be discussed in next Sect. 3.1. However, IM is closely connected to the quality of the data and information to be managed (Storey et al. 2012). Garetti and Terzi (2004) highlight that the "product" information and data management is representing a key aspect of product centric and product driven approaches, also emphasizing a strong overlap between the two areas.

Nevertheless, the research focus of IM in manufacturing is mostly focused on how already existing information has to be managed (e.g., Choe 2004; Hicks 2007) or what existing IM system should be chosen (e.g., Beach et al. 2000; Gunasekaran and Ngai 2004). The general principles of IM (e.g., Augustin 1990; Jehle 1999; Hoke 2011), the right information at the right time in the right granularity at the right place in the right quality can be seen as the general vision this research builds on without providing a problem definition for the domain or a proposed solution.

The relatively new but widely discussed topic of Big Data plays an important role in the current developments within the information and data management domain in manufacturing. The economically reasonable retrieval and usage of crucial insights from qualitatively diverse and versatile structured information, which are subject to constant change and which accumulate in large scale is defined as Big Data. The Big Data development is seen as a paradigm shift, as the importance of hard- and software diminishes, the importance of data as a value adding factor rises. The industrial domain is seen as one of the main benefactors of Big Data developments. In a digital world, Big Data is seen as a fourth production factor besides capital, labor and raw materials. The rapid increase in the amount of data is partly based on new developments in e.g., sensor technology, improved (mobile) communication and social media content. Big Data applications tackle an area where traditional approaches reach their limitations, basically to handle the sheer amount of information for decision making support.

Even so Big Data is widely used in recent times, this reflects a contrast to the fact that there is no commonly accepted general definition. One can argue that due to the rapid developments in data processing technologies, concrete numbers might not be useful within a definition. So the amount of data needed for an application to be considered Big Data is vaguely considered too big for traditional approaches to handle with acceptable effort. This is not the only defining factor of Big Data applications. The complexity of the to-be-analyzed data and the velocity of the processing are crucial (Küll 2013).

Today a lot of sensor data is lost due to missing commonly accepted standards for data communication, processing and handling. Challenges are e.g., the large data volumes accrued by continuously recording sensor solutions. It not only the large amounts that propose challenges but also the rapid development in sensors and thus continued emergence of new data types which have to be handled (Lohr 2012). Especially wireless sensor networks are prone to outliers due to various factors. As there are many different sensors active in these networks, failures can accumulate fast (Branch et al. 2013). This 'contaminated' data streams are a big challenge also for Big Data applications. Researchers look into various methods to identify and eliminate negative effects in sensor data, ranging from ML to Hopfield nets (Aggarwal 2013).

In contrast to traditional data analysis methods, where the solution space is at least sketched, Big Data principles look at large amounts of data and try to identify new findings hidden in the data in real time. The approach used within the *product state concept* can be seen in between, however leaning towards traditional analysis paradigms. The goal of the *product state concept* is stated beforehand, as of identifying a relevant set of state characteristics to support quality monitoring in manufacturing. However, as there are large knowledge gaps in regard to cause effect relations across manufacturing processes/operations. In order to define a set of relevant information for the manufacturing programme, all possible information artifacts have to be considered initially and the identification of cause effect relations, in this case applying pattern recognition shares similarities to Big Data principles.

Technically, the amount of information artifacts will most likely not be considered Big Data due to the comparable small amount. Thinking ahead, considering improvements in sensor technologies this can change in the near future. Furthermore, the interpretation of real time is different in Big Data applications, closer to milliseconds, than it is in the developed concept where real time is understood as 'available when needed'.

The importance of knowledge, information and data was already introduced as early as in the introduction of this dissertation and further detailed throughout this section by presenting existing domains and definitions. The different approach of IM, trying to gather relevant data for pre-defined problems and big data, looking at all available data in real time, trying to identify patterns in order to create new knowledge, is explained. Both approaches have an influence on the *product state concept* development. The goal of the *product state concept* is to identify a comprehensive set of relevant information to describe a product along the manufacturing programme. However, there are many unsolved issues and discrepancies between the available knowledge about the manufacturing processes and the needed knowledge. Therefore, Big Data principles of looking at available manufacturing data in order to identify patterns, which help in return to identify relevant information of the product and process, are included in the concept.

In the following sub-section, the topic of data and information quality is introduced as it plays an important role in all information based applications in manufacturing.

2.3.2 Data and Information Quality⁴

Data and information quality is a topic of great interest for many domains, be it social sciences, natural sciences or engineering. In manufacturing, especially in the area of process monitoring and control, data and information quality can play a decisive role in weather an analysis and the subsequent action is successful or not. As was stated previously within this section, information and data is not sharply distinguished in literature. From now on, to simplify the understanding, the term data quality will be used comprehensively, integrating both, information and data. In the following subsection, the current state of the art in data quality is presented from a research point of view.

Data quality is a multi-dimensional concept (Pipino et al. 2002). Data and information quality is usually defined in terms of contribution to the objectives of the end-user (Helfert 2002). It can be additionally described as the adequacy for the relevant data processing application (Naumann 2007). Poor data quality can be a major cause for damages and losses on organizational processes (Storey et al. 2012). To avoid the damages and losses data quality problems and solutions should be considered as early as possible, best at the design stage of the information system (Storey et al. 2012).

2.3.2.1 Data and Information Quality Dimensions

Pipino et al. (2002) list under the data quality dimensions the following attributes: accessibility, appropriate amount of data, believability, completeness, concise representation, consistent representation, ease of manipulation, free-of-error, interpretability, objectivity, relevancy, reputation, security, timeliness, understandability, value-added. Data quality can thus be also described as a set of quality characteristics (Naumann 2007). Many of the listed attributes contribute a lot to the overall data quality, as tested by a third-peer.

The starting point for consideration of data quality is the user-oriented quality concept. Helfert divides data quality in design and execution quality. The fulfillment of end-user requirements and specifications can be met through a choice of properties in the data design. Design quality refers as such to the collection of specific quality requirements from the user's perspective. Execution quality includes compliance with the specifications (Helfert 2002). Helfert's basic data quality criteria are: correctness, completeness, consistency and timeliness (Helfert 2002). Data quality criteria developed by English are: data standards, data definitions and information architecture (English 1999). These criteria can be understood as the access capability, timeliness and interpretability of the data and the data system.

⁴The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2014).

Data quality as understood by Wang and Strong can be divided into internal data quality, contextual data quality, presentation, and access quality (Wang and Strong 1996). Wang and Strong focus on user-related data quality—interpretability, use-fulness, credibility, time reference, and availability have been rated as important criteria (Wang and Strong 1996; Helfert 2002). Jarke, Jeusfeld, Quix and Vassilidis's data quality criteria are: completeness, credibility, accuracy, consistency, and interpretability (Jarke et al. 1999). A poll conducted by Helfert delivers additional quality criteria important to organizations: clearly defined data descriptions, formal data syntax, delivery times (for data), and specific information about selected properties of the data, e.g., number of errors (Helfert 2002).

Rohweder et al. describe data quality as the degree the characteristics suffice the requirements on the data product. The requirements for the data are determined through particular decisions and goals set on data quality. Rohweder et al. define data quality with the help of 15 IQ (Information Quality) dimensions (Rohweder et al. 2011). These can be applied to e.g., master data, to assess if the data is useful or not acceptable. The IQ dimensions have been divided into four categories and form a regulatory concept for data quality (Rohweder et al. 2011). The 15 IQ dimensions are as follows:

System support (e.g., user interface).

- Accessibility: accessible and easy to access.
- Ease of manipulation: easy to use and to change.

Inherent (content examination).

- Reputation: data source and processing highly trustworthy.
- Free of error: error free and consistent with reality.
- Objectivity: strictly objective and value-free.
- Believability: reinforced with quality standards, etc.

Representation (overall presentation, e.g., the form of statistics)

- Understandability: ability of users to directly understand and use information.
- Concise representation: clear, saved in appropriate and understandable format.
- Consistent representation: uniform and held in consecutive and equal manner.
- Interpretability: understandable in same, technically correct manner.

Purpose-dependant (data use in the processes)

- Timeliness: actual properties of data (described) accurately and up-to-date.
- Value-added: usage leads to quantifiable increase in monetary cost function.
- Completeness: no missing information contained.
- Appropriate amount of data: amount meets requirements set on data.
- Relevancy: provides all necessary information for user.

Overall, it is accepted, that all IQ dimensions should exhibit a high or at least sufficient quality for an information system to be functional (Rohweder et al. 2011). Looking at the IQ dimensions, it can be stated that the *product state concept* can contribute to several of those. Especially the purpose-dependant dimensions, focusing on the data usage in processes, are reflected in the development. In Sect. 4.1, features of the *product state concept* are mapped to these information quality dimensions (Table 4.1) according to how they address the issues.

2.3.2.2 Avoiding Data Errors

Data errors can be avoided most effectively and most sustainably at the moment of their emergence, e.g., throughout the manual data entry or automatic data collection (Naumann 2007). A direct capture of the data from the source to an electronic device without human interference is the best way to minimize data input errors. When human interface is unavoidable input errors may occur and consequently degrade data quality (Verma 2012). To prevent quality degradation a quality check can be performed in the moment of data delivery (here data transformation to the target system). The data can be further checked by end-users through the use of complaints-forms or other rating-systems, e.g., statistical methods (Helfert 2002). In case of data sets from external sources, it is essential for the researcher/information-manager to deal consciously with the data and the data quality; it is crucial to mark the problematic data to be able to deal consciously with it (Naumann 2007). The external party and the person responsible for integrating the data into the target system should be clear about the purpose of why the data are being collected, and it should be clearly stated (Verma 2012).

The most common data quality issues are incorrect or missing values, duplicates, and errors in the recording process (Helfert 2002; Winkler 2004; Naumann 2007; Verma 2012). Errors in data cause errors in reports generated from the data, thus reinforcing the "garbage-in-garbage-out-effect". Errors can be found within the schema and/or the data level. The schema level describes the errors in the structural, semantic and schematic heterogeneity of the data characteristics. The data level includes value-, unit-, accuracy-, and duplicates errors (Naumann 2007).

Duplicates, one of the most costly data errors (Naumann 2007) can arise, e.g., due to typographical errors in the unique identifiers (e.g., the name of the researcher). Missing identifiers and contradictions in data indicate low quality (Winkler 2004). These issues can be prevented with data quality ensuring practices, e.g., marking of problematic data, auto correction of format errors, manual correction of the data values, troubleshooting and coordination with the data suppliers, and organizational rules (Helfert 2002). Furthermore file-linkage can be used to create "more complete" data (Winkler 2004). The traceability of data origin and documentation of discrepancies is also relevant (Helfert 2002). Semantics and identifiability, as well as the precision of the value ranges, the granularity of data models, and the technical aspects of the data are less critical for the overall data quality (Helfert 2002).

Data quality can be assessed by a third-peer. The assessment can either be taskindependent, where no contextual knowledge is required, or task-dependent, with specific application context (Pipino et al. 2002). The data quality methodologies can be classified according to various criteria (Batini and Scannapieco 2006):

- Data-driven versus process-driven
- Measurement versus improvement (assessment or improvement of data quality)
- General-purpose versus specific-purpose
- · Intra-organizational versus inter-organizational

The previously presented basics and subsequently described relation to the conducted research and developed concept are underpinned by an elaboration on challenges of MS from an information and system perspective in the next subsection.

2.4 Challenges of MS from a Product and Process Information Perspective

In this section the challenges in the manufacturing domain with regard to the increasing importance of product and process information are derived. This provides a broad understanding of the research area and research problem in a wider sense this dissertation is based upon. In the following Chap. 3, current concepts and approaches tackling these challenges to a certain extent will be presented. The resulting gaps between the challenges and how the current approaches tackle them further specifies the research problem.

The European Commission (EC) predicted the development of manufacturing along three paths⁵: (1) On-demand manufacturing; (2) Optimal (and sustainable) manufacturing and (3) Human-centric manufacturing (Filos 2013). Especially the second path highlights that manufacturing has to be prepared to produce high quality products with high security and durability, competitively priced without avoidable waste and scrap (Filos 2013). This focus on quality of individual products and efficient processes supports the arguments brought forth within this research.

There are several studies available proposing key challenges of manufacturing on a global level. The following key challenges most of researchers agree upon (Gordon and Sohal 2001; Shiang and Nagaraj 2011; Dingli 2012; Thomas et al. 2012):

- · Adoption of advanced manufacturing technologies
- · Growing importance of manufacturing of high value added products
- Utilizing advanced knowledge, information management and AI systems
- Sustainable manufacturing (processes) and products

⁵www.actionplant-project.eu/public/documents/vision.pdf (retrieved Feb. 12, 2014).

- · Agile and flexible enterprise capabilities and supply chains
- Innovation in products, services and processes
- Close collaboration between industry and research to adopt new technologies
- New manufacturing management paradigms.

However, these key challenges highlight the ongoing trend of manufacturing operations growing complexity. This complexity is inherited not only in the manufacturing programmes but increasingly in the to-be-manufactured product itself as well as in the (business) processes of the companies (Wiendahl and Scholtissek 1994). Adding to the challenge is the fact that the business environment of today's manufacturing companies is affected by uncertainty (Monostori 2002).

Focusing from the global challenges towards the challenges of monitoring in manufacturing systems, the inherent complexity in manufacturing systems brings several challenges to the table when it comes to modeling and/or monitoring and control approaches of manufacturing programmes. Some of the challenges new concepts have to be able to deal with are:

- the great number of different machining operations,
- multidimensional, non-linear, stochastic nature of machining,
- partially understood (cause-effect) relations between parameters,
- lack of reliable data,
- missing parts of data sets,
- high-dimensionality and multi-variate nature of data.

(Derived from: Tönshoff et al. 1988; Van Luttervelt et al. 1998; Monostori 2002; Viharos et al. 2002; Kano and Nakagawa 2008; Wuest et al. 2012).

When trying to increase quality through a monitoring of manufacturing processes, it is tough to tackle the challenge of identifying problematic states throughout manufacturing processes by modeling cause-effect relations between product states as of these process intra- and inter-relations along the process chain due to this and other factors. The problem at hand has an inherent high complexity and high dimensionality (in this context high-dimensionality is understood as a multidimensional system with a large number of dimensions) (Suh 2005; Lu and Suh 2009; Elmaraghyet al. 2012). Optimization tools in this field need to be able to handle a large number of dimensions and variables in order to be useful in practice. Even so it would be desirable to use precise first-principle models, the development and application of such models is hindered by the complex nature and the above stated challenges of manufacturing programmes, especially when it comes to new manufacturing programmes, processes or operations (Kano and Nkagawa 2008). The NP complete nature of the problem of identifying process intra- and inter-relations is described in more detail in Sect. 4.5.1.

Kano and Nakagawa (2008) identified three functions that systems intended to improve product quality in manufacturing need to fulfill in order to be considered useful: "(1) to predict product quality from operating conditions, (2) to derive better operating conditions that can improve the product quality, and (3) to detect faults or malfunctions for preventing undesirable operation". Tönshoff et al. (1988), outlined already in the late 1980s the necessity of sensor integration, sophisticated models, multi-model systems and learning ability in monitoring and control of manufacturing programmes, especially machining processes. A possible clustering of concepts based on the kind of knowledge applied, leaves fundamental, heuristic and empirical models that can be distinguished (Viharos et al. 2002).

In the next section, existing approaches which focus on the identified challenges are discussed. The gaps between the successful tackling of the raised issues by these approaches provide a further basis for the developed *product state concept*.

References

- Aggarwal, C. (Ed.). (2013). *Managing and Mining Sensor Data*. New York: Springer. doi:10.1007/978-1-4614-6309-2.
- Almeida, F. L. F. (2011). Designing and implementation of an intelligent manufacturing system. Journal of Industrial Engineering and Management, 4(4), 718–745. doi:10.3926/jiem.371.
- Arbor, A. (2000). Modeling and diagnosis of multistage manufacturing processes—part I—state space model. In JAPAN/USA Symposium on Flexible Automation 2000 (p. 8).
- Auer, T. (2010). ABC des Wissensmanagements (p. 41). Hedingen. Retrieved from http://www.pwm.at/file_upload/km_abc_v3.pdf.
- Augustin, S. (1990). Information als Wettbewerbsfaktor: Informationslogistik—Herausforderung an das Management. Köln: TÜV Media GmbH.
- Aytug, H., Bhattacharyya, S., Koehler, G. J., & Snowdon, J. L. (1994). A review of machine learning in scheduling. *IEEE Transactions on Engineering Management*, 41(2), 165–171.
- Baker, A. D. (1988). Complete manufacturing control using a contract net: A simulation study. In International Conference on Computer Integrated Manufacturing, 1988 (pp. 100–109). doi: 10.1109/CIM.1988.5399.
- Batini, C., & Scannapieca, M. (2006). Data quality: Concepts, methodologies and techniques. Heidelberg, Berlin: Springer.
- Beach, R., Muhlemann, A. P., Price, D. H. R., Paterson, A., & Sharp, J. A. (2000). The selection of information systems for production management: An evolving problem. *International Journal of Production Economics*, 64(1–3), 319–329. doi:10.1016/S0925-5273(99)00069-9.
- Becker, T. (2008). Prozesse in produktion und supply chain optimieren (2nd ed.). Berlin, Heidelberg: Springer.
- Bowden, R., & Bullington, S. F. (1996). Development of manufacturing control strategies using unsupervised machine learning. *IIE Transactions*, 28(4), 319–331.
- Branch, J. W., Giannella, C., Szymanski, B., Wolff, R., & Kargupta, H. (2013). In-network outlier detection in wireless sensor networks. *Knowledge and Information Systems*, 34(1), 23–54. doi:10.1007/s10115-011-0474-5.
- Brinksmeier, E. (1991). Prozeβ-und Werkstückqualität in der Feinbearbeitung. Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik (p. 256), Düsseldorf: VDI-Verlag.
- CEN. (2003). Manufacturing processes—terms and definitions, division (DIN EN ISO 8580:2003). Comité Européen de Normalisation (english: European Committee for Standardization).
- CEN. (2005). Quality management systems—fundamentals and vocabulary (DIN EN ISO 9000:2005). Comité Européen de Normalisation (english: European Committee for Standardization).

- CEN. (2008). Quality management systems—requirements (DIN EN ISO 9001:2008). Comité Européen de Normalisation (english: European Committee for Standardization).
- Chand, S., & Davis, J. (2013). What is smart manufacturing? Time.
- Chinnam, R. B., & Baruah, P. (2009). Autonomous diagnostics and prognostics in machining processes through competitive learning-driven HMM-based clustering. *International Journal of Production Research*, 47(23), 6739–6758. doi:10.1080/00207540802232930.
- Choe, J. (2004). The consideration of cultural differences in the design of information systems. *Information and Management*, *41*(5), 669–684. doi:10.1016/j.im.2003.08.003.
- Christopher, M. (2005). Logistics and supply chain management—creating value-adding networks. Harlow: FT Prentice Hall.
- Collins, J. (1980). Integrated manufacturing—the state of the art. *The Production Engineer*, 59, 41–44.
- Davenport, T. H., De Long, D. W., & Beers, M. C. (1998). Successful knowledge management projects. Sloan Management Review, 39(2), 43–57.
- De Weck, O. L., Ross, A. M., & Rhodes, D. H. (2012). Investigating relationships and semantic sets amongst system lifecycle properties (Ilities). In *Third International Engineering Systems Symposium CESUN 2012*, 18–20 June 2012 (pp. 18–20), Delft University of Technology.
- Ding, Y., Shi, J., & Ceglarek, D. (2002). Diagnosability analysis of multi-station manufacturing processes. Journal of Dynamic Systems, Measurement, and Control, 124, 1–13.
- Dingli, D. J. (2012). The Manufacturing Industry—Coping with Challenges (Working Paper No. 2012 / 05), Maastricht.
- Du, R., Elbestawi, M. A., & Wu, S. M. (1995). Automated monitoring of manufacturing processes, part 1: monitoring methods. *Journal of Engineering for Industry*, 117(2), 121. doi:10.1115/1.2803286.
- EC. (2009). Intelligent manufacturing systems—background. European Commission. Retrieved from: http://cordis.europa.eu/ims/background_en.html.
- ElMaraghy, H. A. (2006). Flexible and reconfigurable manufacturing systems paradigms. International Journal of Flexible Manufacturing Systems, 17(4), 261–276. doi:10.1007/ s10696-006-9028-7.
- Elmaraghy, W., Elmaraghy, H., Tomiyama, T., & Monostori, L. (2012). Complexity in engineering design and manufacturing. CIRP Annals—Manufacturing Technology, 61, 793–814.
- English, L. P. (1999). Improving data warehouse and business information quality. New York: Wiley.
- Eversheim, W. (1997). Prozeßorientiertes Qualitätscontrolling. Berlin: Springer.
- Filos, E. (2013). Manufacturing innovation and horizon. G. L. Kovacs & D. Kochan (Eds.), New prolamat 2013, IFIP AICT 411, IFIP International Federation for Information Processing (2013), (pp. 165–175), October 2013, Dresden, Germany.
- Fink, A., Schneidereit, G., & Voß, S. (2005). Grundlagen der Wirtschaftsinforma-tik, 2 überarbeitete Auflage. Heidelberg: Physica-Verlag.
- Fowler, J. W. (2004). Grand challenges in modeling and simulation of complex manufacturing systems. *Simulation*, 80(9), 469–476. doi:10.1177/0037549704044324.
- Fritz, H., & Schulze, G. (2006). Fertigungstechnik. 7. neu bearbeitete Auflage. Berlin, Heidelberg: Springer.
- Garetti, M. & Terzi, S. (2004). Product lifecycle management: Definition, trends and open issues. In Proceedings at the 3rd International Conference on Advances in Production Engineering, 17–19 June 2004, Warsaw, Poland.
- Garvin, D. A. (1984). What does "product quality" really mean? *MIT Sloan Management Review*, 26(1), 25–43.
- Ge, Z., Gao, F., & Song, Z. (2011). Batch process monitoring based on support vector data description method. *Journal of Process Control*, 21(6), 949–959. doi:10.1016/j.jprocont.2011.02.004.
- Ge, Z., Song, Z., & Gao, F. (2013). Review of recent research on data-based process monitoring. *Industrial and Engineering Chemistry Research*, 2013(52), 3543–3562. doi:10.1021/ ie302069q.

- Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., & Clarkson, P. J. (2009). Change propagation analysis in complex technical systems. *Journal of Mechanical Design*, 131(8), 1–14. doi:10.1115/1.3149847.
- Gordon, J., & Sohal, A. S. (2001). Assessing manufacturing plant competitiveness. International Journal of Operations and Production Management, 21(1/2), 233–253.
- Grote, K.-H., & Feldhusen, J. (2007). Dubbel Taschenbuch für den Maschinenbau, Zweiundzwanzigste, neubearbeitete und erweiterte Auflage. Berlin, Heidelberg, New York: Springer.
- Gunasekaran, A., & Ngai, E. W. (2004). Information systems in supply chain integration and management. *European Journal of Operational Research*, 159(2), 269–295. doi:10.1016/j.ejor.2003.08.016.
- Gutenberg, E. (1970). Grundlagen der Betriebswirtschaftslehre, Band 1: Die Produktion. 24. Auflage. Berlin, Heidelberg: Springer.
- Harding, J. A., Shahbaz, M., Srinivas, & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128(4), 969. doi:10.1115/1.2194554.
- Hatvany, J. (1983). The efficient use of deficient information. CIRP Annals, 32(1), 423-425.
- Hatvany, J., & Nemes, L. (1978). Intelligent manufacturing systems—a tentative forecast, In A link between science and applications of automatic control, Proceedings of the VIIth IFAC World Congress (Vol. 2, pp. 895–899), Helsinki, Finland.
- Haun, M. (2002). Handbook Knowledge Management. Basics and Realization, Systems and Praxis Examples. (original German title: Handbuch Wissensmanagement. Grundlagen und Umsetzung, Systeme und Praxisbeispiele). Berlin: Springer.
- He, N., Zhang, D. Z., & Li, Q. (2013). Agent-based hierarchical production planning and scheduling in make-to-order manufacturing system. *International Journal of Production Economics*. doi:10.1016/j.ijpe.2013.08.022.
- Helfert, M. (2002). *Planung und Messung der Datenqualität in Data-Warehouse-Systemen*. Dissertation, Universität St. Gallen.
- Hicks, B. J. (2007). Lean information management: Understanding and eliminating waste. *International Journal of Information Management*, 27(4), 233–249. doi:10.1016/j.ijinfo mgt.2006.12.001.
- Hicks, B. J., Culley, S. J., & McMahon, C. (2006). A study of issues relating to information management across engineering SMEs. *International Journal of Information Management*, 26(4), 267–289. doi:10.1016/j.ijinfomgt.2006.03.006.
- Hoffmann, M., Goesmann, T., & Kienle, A. (2002a). Analyse und Unterstützung von Wissensprozessen als Voraussetzung für erfolgreiches Wissensmanagement. In A. Abecker, K. Hinkelmann, H. Maus, & H. J. Müller (Eds.), Geschäftsprozessorientiertes Wissensmanagement (pp. 159–181). Berlin: Springer.
- Hoffmann, F., Keßler, O., Lübben, Th, & Mayr, P. (2002b). Distortion engineering—verzugsbeherrschung in der fertigung. *HTM*, 57(3), 213–217.
- Hoke, G. E. J. (2011). Shoring up information governance with GARP. Information Management Journal, 45(1), 26–31.
- Höpf, M., & Schaeffer, C. F. (1997). Holonic manufacturing systems. In J. Goossenaerts, F. Kimura, & H. Wortmann (Eds.), *Information infrastructure systems for manufacturing ifip—the international federation for information processing* (pp. 431–438), Springer. doi:10.1007/978-0-387-35063-9_37.
- Hutton, J., & Denham, J. (2008). *Manufacturing: New challenges, new opportunities* (p. 64), London.
- Jacob, J., & Petrick, K. (2007). Qualitätsmanagement und Normung. In R. Schmitt & T. Pfeifer (Eds.), Masing Handbuch Qualitätsmanagement (pp. 101–121). München: Carl Hanser Verlag.
- Jansen-Vullers, M. H., van Drop, C. A., & Beulens, A. J. M. (2003). Managing traceability information in manufacture. *International Journal of Information Management*, 23(2003), 395–413.

- Jarke, M., Jeusfeld, M., Quix, C., & Vassilidis, P. (1999). Architecture and quality in data warehouses: An extended repository approach. *Information Systems*, 3(24), 229–253.
- Jehle, E. (1999). Produktionswirtschaft. Heidelberg: Verlag Recht und Wirtschaft.
- Jenab, K., & Ahi, P. (2010). Fuzzy quality feature monitoring model. *International Journal of Production Research*, 48(17), 5021–5030. doi:10.1080/00207540903117907.
- Jiang, P., Jia, F., Wang, Y., & Zheng, M. (2012). Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. *Journal of Intelligent Manufacturing*, (2012). doi:10.1007/s10845-012-0703-0.
- Jun, H.-B., Kiritsis, D., & Xirouchakis, P. (2007). Research issues on closed-loop PLM. Computers in Industry, 58(8–9), 855–868. doi:10.1016/j.compind.2007.04.001.
- Kaiser, M. J. (1998). Generalized zone separation functionals for convex perfect forms and incomplete data sets. *International Journal of Machine Tools and Manufacture*, 38(4), 375– 404. doi:10.1016/S0890-6955(97)00042-4.
- Kamiske, G., & Brauer, J. (2008). *Qualitätsmanagements von A bis Z.* 6., Auflage. München: Carl Hanser-Verlag.
- Kang, B. S., Choe, D. H., & Park, S. C. (1999). Intelligent process control in manufacturing industry with sequential processes. *International Journal of Production Economics*, 60–61, 583–590. doi:10.1016/S0925-5273(98)00178-9.
- Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. *Computers and Chemical Engineering*, 32(1–2), 12–24. doi:10.1016/j.compchemeng.2007.07.005.
- Kimemia, J. G., & Gershwin, S. B. (1981). An algorithm for the computer control of production in a flexible manufacturing system. In 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, 1981 (Vol. 20, pp. 628–633). doi:10.1109/ CDC.1981.269285.
- Klein, D., Thoben, K.-D. & Nowak, L. (2005). Using Indicators to Describe Distortion Along a Process Chain. In H.-W. Zoch & T. Lübben (Eds.), *Proceedings 1st International Conference on Distortion Engineering*, 14–16.09.2005 in Bremen (pp. 31–36), Germany.
- Köksal, G., Batmaz, İ., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. *Expert Systems with Applications*, 38(10), 13448– 13467. doi:10.1016/j.eswa.2011.04.063.
- König, W., & Klocke, F. (2008). Fertigungsverfahren Drehen, Fräsen, Bohren 8., neu bearbeitete Auflage. Berlin, Heidelberg: Springer.
- Kopacek, P. (1999). Intelligent manufacturing: Present state and future trends. Journal of Intelligent and Robotic Systems, 26, 217–229.
- Koren, Y., Hu, S. J., & Weber, T. W. (1998). Impact of manufacturing system configuration on performance. Annals of the CIRP, 47(1), 369–372.
- Korndörfer, W. (2003). Allgemeine Betriebswirtschaftslehre. Wiesbaden: Gabler Verlag.
- Kotler, P., Armstrong, G., Saunders, J., & Wong, V. (2011). Grundlagen des Marketing (5th ed.). München: Pearson Studium.
- Kreutzberg, J. (2000). *Qualitätsmanagement auf dem Prüfstand, Analyse des Qualitätsmanagements von Informationssystemen*. Dissertation, University of Zurich, Zurich, Switzerland.
- Küll, U. (2013). Im Rausch der Geschwindigkeit: Big Data und Echtzeitanalysen revolutionieren Business Intelligence. Retrieved May 22, 2013 from: http://www.heise.de/microsites/bigdatagrosse-datenmengen-beherrschen-und-analysieren/big-data-und-echtzeitanalysenrevolutionierenbusiness-intelligence/150/379/1142/1.
- Kumar, S. (2002). *Intelligent manufacturing systems* (pp. 1–20), Ranchi. Retrieved from http://pchats.tripod.com/int_manu.pdf.
- Lee, J.-M., Yoo, C., & Lee, I.-B. (2004). Statistical process monitoring with independent component analysis. *Journal of Process Control*, 14(5), 467–485. doi:10.1016/j.jprocont.2003.09.004.
- Liu, X., Zhang, W. J., & Venuvinod, P. K. (1997). Intelligent manufacturing systems in global manufacturing paradigm: A critical review and new research issues. In CIRP International Symposium—Advanced Design and Manufacture in the Global Manufacturing Era, August 21–22, 1997, Hong Kong.

- Lödding, H. (2013). Handbook of manufacturing control-fundamentals, description, configuration. Heidelberg, New York: Springer.
- Lohr, S. (2012). The age of big data. New York Times, February 11, 2012.
- Lu, S. C.-Y., & Suh, N.-P. (2009). Complexity in design of technical systems. CIRP Annals— Manufacturing Technology, 58(1), 157–160. doi:10.1016/j.cirp.2009.03.067.
- Lutz, M., Boucher, X., & Roustant, O. (2012). Information technologies capacity planning in manufacturing systems: Proposition for a modelling process and application in the semiconductor industry. *Computers in Industry*, 63(7), 659–668. doi:10.1016/j.compind.2012.03.003.
- Maddern, H., Smart, P. A., Maull, R. S., & Childe, S. (2013). End-to-end process management: implications for theory and practice. *Production Planning and Control*, 1–19. doi:10.1080/ 09537287.2013.832821.
- Magee, C. L., & de Weck, O. L. (2004). Complex system classification. In Fourteenth Annual International Symposium of the International Council on Systems Engineering (INCOSE), June 20–24, 2004. Toulouse, France.
- Masing, J. (2007). Handbuch Qualität: Grundlagen und Elemente des Qualitätsmanagement: Systeme-Perspektiven. München: Carl Hanser Verlag.
- Mazumder, J. (2008). Intelligent manufacturing: Role of lasers and optics. LIA today, p. 6.
- McFarlane, D. C., & Bussmann, S. (2003). Holonic manufacturing control: Rationales, developments and open issues. In S. M. Deen (Ed.), Agent-Based manufacturing, advances in the holonic approach (pp. 303–326). Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-05624-0_13.
- McFarlane, D., Sarma, S., Chirn, J. L., Wong, C., & Ashton, K. (2003). Auto ID systems and intelligent manufacturing control. *Engineering Applications of Artificial Intelligence*, 16(4), 365–376. doi:10.1016/S0952-1976(03)00077-0.
- Mekid, S., Pruschek, P., & Hernandez, J. (2009). Beyond intelligent manufacturing: New generation of flexible intelligent NC machines. *Mechanism and Machine Theory*, 44(1), 466–476.
- Merali, Y., & Bennet, Z. (2011). Web 2.0 and Network Intelligence. In P. Warren, J. Davies, & E. Simperl (Eds.), *Context and semantics for knowledge management* (pp. 11–26). Heidelberg: Springer.
- Mertins, K., & Seidel, H. (2009). Wissensmanagement im Mittelstand. Grundlagen—Lšsungen— Praxisbeispiele. Berlin: Springer.
- Mohanty, P. P. (2004). An agent-oriented approach to resolve the production planning complexities for a modern steel manufacturing system. *The International Journal of Advanced Manufacturing Technology*, 24(3–4), 199–205. doi:10.1007/s00170-003-1673-3.
- Monostori, L. (2002). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. In *15th Triennial World Congress* (p. 12), Barcelona, Spain.
- Morris, B., & Johnston, R. (1987). Dealing with inherent variability: The difference between manufacturing and service? *International Journal of Operations and Production Management*, 7(4), 13–22. doi:10.1108/eb054796.
- Nagy, D., Jering, D., Strasser, T., Martel, A., Garello, P., Filios, E. (Eds.), (2005). *Intelligent manufacturing systems—impact report* (p. 48), Washington, D.C. Retrieved from ftp.cordis. europa.eu/pub/ims/docs/ims_impact_report_final.pdf.
- Naumann, F. (2007). Datenqualität Informatik-Spektrum, 30(1), 27–31. doi:10.1007/s00287-006-0125-5.
- Nonaka, I., & Takeuchi, H. (1997). Die Organisation des Wissens—Wie japanische Unternehmen eine brachliegende Ressource nutzbar machen (p. 299). Frankfurt/New York: Campus Verlag.
- North, K., & Güldenberg, S. (2008). Produktive Wissensarbeit(er)—Antworten auf die Managementherausforderungen des 21. Jahrhunderts. Wiesbaden: Gabler Verlag.
- Olbertz, J.-H. & Otto, H.-U. (Eds.), (2001). Qualit\u00e4t von Bildung. Vier Perspektiven (Arbeitsberichte 2'01). Hrsg. von HoF Wittenberg—Institut f\u00fcr Hochschulforschung an der Martin-Luther Universit\u00e4t Halle-Wittenberg, Wittenberg, (127). ISBN 3-9806701-4-7. ISSN 1436-3550.
- Oztemel, E. (2010). Intelligent manufacturing systems. In L. Benyoucef & B. Grabot (Eds.), Artificial intelligence techniques for networked manufacturing enterprises management (pp. 1–39). London, Dordrecht, Heidelberg, New York: Springer. doi:10.1007/978-1-84996-119-6.

- Peng, Y. (2004). Intelligent condition monitoring using fuzzy inductive learning. *Journal of Intelligent Manufacturing*, 2004(15), 373–380.
- Piddington, C., & Pegram, M. (1993). An IMS test case—global manufacturing. In: Proceedings of the IFIP TC5/WG5.7 5th International Conference on Advances in Production management Systems, 28–30 September, 1993, Athens, Greece.
- Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment. *Communications of the* ACM, 45(4), 211. doi:10.1145/505248.506010.
- Polanyi, M. (1962). *Personal knowledge. Towards a post-critical philosophy*. London: Routledge and Kegan Paul Ltd.
- Porter, M. E. (2008). On competition. Boston: Harvard Business School Publishing.
- Probst, G. J. B., Raub, S., & Romhardt, K. (2006). Wissen managen (p. 307). Wiesbaden: Gabler. doi:10.1007/978-3-8349-9343-4.
- Qin, S. J., Cherry, G., Good, R., Wang, J., & Harrison, C. A. (2006). Semiconductor manufacturing process control and monitoring: A fab-wide framework. *Journal of Process Control*, 16(3), 179–191. doi:10.1016/j.jprocont.2005.06.002.
- Revilla, J., & Cadena, M. (2008). Trends in intelligent manufacturing systems. In Proceedings of the World Congress on Engineering (pp. 1257–1262), London, UK.
- Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. *IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews)*, 35(3), 401–410. doi:10.1109/TSMCC.2004.843228.
- Rohweder, J. P., Kasten, G., Malzahn, D., Piro, A. & Schmid, J. (2011). Informationsqualität— Definitionen, Dimensionen und Begriffe. In K. Hildebrand, M. Gebauer, H. Hinrichs, & M. Mielke (Eds.), *Daten- und Informationsqualität*. (pp. 25–45). Wiesbaden: Vieweg+Teubner. doi:10.1007/978-3-8348-9953-8.
- Schmachtenberg, E. (2000). Vom Material zum Produkt—Der Prozess der Werkstoffoptimierung. In Essener Unikate 13/2000 S (pp. 112–121), Heine, Essen.
- Seifert, M. (2007). Unterstützung der Konsortialbildung in Virtuellen Organisationen durch prospektives Performance Measurement. Dissertation, Universität Bremen. Bremen, Germany.
- Shen, W., Hao, Q., Yoon, H., & Norrie, D. (2006). Applications of agent-based systems in intelligent manufacturing: An update review. Advanced Engineering Informatics, 20(4), 415–431. http://dx.doi.org/10.1016/j.aei.2006.05.004.
- Shiang, L. E., & Nagaraj, S. (2011). Impediments to innovation: Evidence from malaysian manufacturing firms. Asia Pacific Business Review, 17(2), 209–223.
- Sitek, P. (2012). Quality management to support single companies in colloborative enterprise networks. Dissertation, University of Bremen, Bremen, Germany.
- Sitek, P., Seifert, M., & Thoben, K.-D. (2010). Towards an inter-organisational perspective for managing quality in virtual organisations. *International Journal of Quality and Reliability Management*, 27(2), 231–246. doi:10.1108/02656711011014339.
- Skitt, P. J. C., Javed, M. A., Sanders, S. A., & Higginson, A. M. (1993). Process monitoring using auto-associative, feed-forward artificial neural networks. *Journal of Intelligent Manufacturing*, 1993(4), 79–94.
- Sölter, J. (2010). Ursachen und Wirkmechanismen der Entstehung von Verzug infolge spanender Bearbeitung. Dissertation, Universität Bremen, Aachen: Shaker Verlag.
- Spoerre, J., & Ben Wang, H.-P. (1995). Machine performance monitoring and fault classification using an exponentially weighted moving average scheme. *International Journal of Production Research*, 33(2), 445–463.
- Stavropoulos, P., Chantzis, D., Doukas, C., Papacharalampopoulos, A., & Chryssolouris, G. (2013). Monitoring and control of manufacturing processes: A review. *Procedia CIRP*, 8, 421–425. doi:10.1016/j.procir.2013.06.127.
- Steven, M. (2007). *Handbuch produktion, theorie-management-logistik-controlling*. Stuttgart: Kohlhammer-Verlag.
- Storey, V. C., Dewan, R. M., & Freimer, M. (2012). Data quality: Setting organizational policies. Decision Support Systems, 54(1), 434–442. doi:10.1016/j.dss.2012.06.004.

- Suh, N. P. (2005). Complexity in engineering. CIRP Annals—Manufacturing Technology, 54(2), 46–63. doi:10.1016/S0007-8506(07)60019-5.
- Taguchi, G. (1989). *Introduction to quality engineering* (p. 263). New York: Kraus International Publications.
- Taisch, M., Cammarino, B. P., & Cassina, J. (2011). Life cycle data management: First step towards a new product lifecycle management standard. *International Journal of Computer Integrated Manufacturing*, 24(12), 1117–1135. doi:10.1080/0951192X.2011.608719.
- Terzi, S., Panetto, H., Morel, G., & Garetti, M. (2007). A holonic metamodel for product traceabily in PLM. *International Journal of Product Lifecycle Management*, 2(3), 253–289. doi:10 .1504/IJPLM.2007.016292.
- Thomas, A. J., Byard, P., & Evans, R. (2012). Identifying the UK's manufacturing challenges as a benchmark for future growth. *Journal of Manufacturing Technology Management*, 23(2), 142–156. doi:10.1108/17410381211202160.
- Tönshoff, H. K., Wulsberg, J. P., Kals, H. J. J., König, W., & Van Luttervelt, C. A. (1988). Developments and trends in monitoring and control of machining processes. *CIRP Annals*, 37(2), 611–622.
- Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August 13, 2013, from http://www.math.uni-bremen.de/cms/media.php/59/PromO%20FB%20 2-5%20_14%203%2007_6442.pdf.
- van Luttervelt, C. A., Childs, T. H. C., Jawahir, I. S., Klocke, F., & Venuvinod, P. K. (1998). Present situation and future trends in modelling of machining operations. *Annals of the CIRP*, 47(2), 587–626.
- Verma, R. (2012). Data quality and clinical audit. Anaesthesia and intensive care medicine, 13(8), 397–399. doi:10.1016/j.mpaic.2012.05.009.
- Viharos, Z. J., & Monostori, L. (1999). Intelligent, quality-oriented supervisory control of manufacturing processes and process chains. In *DYCOMANS Workshop*, 12–14 May, 1999 (pp. 129–134), Bled-Slovenia.
- Viharos, Z., Monostori, L., & Vincze, T. (2002). Training and application of artificial neural networks with incomplete data. In *Lecture Notes of Artificial Intelligence, LNAI 2358, The Fifteenth International Conference on Industrial and Engineering Application of Artificial Intelligence and Expert Systems, 17–20 June 2002* (pp. 649–659). Cairns, Berlin, Heidelberg, Australia: Springer.
- von Bertalanffy, L. (1972). The history and status of general systems theory. Academy of Management Journal, 15(4), 407–426.
- Wallace, E., & Riddick, F. (2013). Panel on enabling smart manufacturing (presentation). In APMS 2013, September 11, 2013, State College, USA.
- Wang, R. Y., & Strong, D. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 4(12), 5–33.
- Westkämper, E., & Warnecke, H. (2010). *Einführung in die Fertigungstechnik* (8th ed.). Wiesbaden: Vieweg+Teubner-Verlag.
- Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. *Mechanical Systems and Signal Processing*, 21(6), 2560–2574. doi:10.1016/j.ymssp.2006.12.007.
- Wiendahl, H.-P., & Scholtissek, P. (1994). Management and control of complexity in manufacturing. CIRP Annals, 43(2), 533–540.
- Wiig, K. M. (1998). Perspectives on introducing enterprise knowledge management. In Proceedings of the 2nd International Conference on Practical Aspects of Knowledge Management (PAKM98), 29–30 October 1998, Basel, Switzerland.
- Winkler, W. E. (2004). Methods for evaluating and creating data quality. *Information Systems*, 29(7), 531–550. doi:10.1016/j.is.2003.12.003.
- Wuest, T., & Thoben, K.-D. (2012). Exploitation of material property potentials to reduce rare raw material waste—a product state based concept for manufacturing process improvement. *Journal of Mining World Express (MWE)*, 1(1), 13–20.

- Wuest, T., Irgens, C., & Thoben, K.-D. (2012). Analysis of manufacturing process sequences, using machine learning on intermediate product states (as process proxy data). In C. Emmanouilidis, M. Taisch, & D. Kiritsis (Eds.), APMS 2012, Part II, IFIP AICT 398 (pp. 1–8). Heidelberg, Berlin: Springer.
- Wuest, T., Irgens, C., & Thoben, K.-D. (2013). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. *Journal of Intelligent Manufacturing*, 25(5), 1167–1180.
- Wuest, T., Tinscher, R., Porzel, R., & Thoben, K.-D. (2014). Experimental research data quality in materials science. *International Journal of Advanced Information Technology*, 4(6), 1–18.
- Yul, T. & Wang, G. (2009). The process quality control of single-piece and small-batch products in advanced manufacturing environment. In 16th International Conference on Industrial Engineering and Engineering Management, 2009. IE&EM '09 (pp. 306–310), Beijing.
- Zantek, P. F., Wright, G. P., & Plante, R. D. (2006). A self-starting procedure for monitoring process quality in multistage manufacturing systems. *IIE Transactions*, 38(4), 293–308. doi:10.1080/07408170500208354.
- Zingel, H. (2009). *Qualitätsmanagement und die ISO 9000er Normenfamilie*. Online-resource: Retrieved August 3, 2011, from http://hprichter.de/download/Qualitaetsmanagement.pdf.
- Zobel, R., & Filos, E. (2006). Technology management with a global perspective: The case of IMS. In *PICMET'06 Proceedings*, 9–13 July 2006 (pp. 9–13), Istanbul, Turkey.
- Zoch, H.-W. (2009). Distortion engineering: Vision or ready to application. *Mat.-wiss. u. Werkstofftech*, 40(5–6), 342–348.

Chapter 3 Current Approaches with a Focus on Holistic Information Management in Manufacturing

The developments within the domain of manufacturing, intelligent and holonic manufacturing systems from an information and data perspective were presented in the previous section. This was concluded by a brief elaboration of the key challenges in that area as a basis for this section and the later development of the *product state concept*. In this section, the focus is laid on existing approaches and concepts that try to address some of the identified challenges of MS when it comes to transparent and product specific information and data management. The main focal methods and concepts are PDM, PLM and quality monitoring in manufacturing. The presented domain specific knowledge is discussed within this section as it has strong relations with the later concept development. In order to allow the reader to easily identify the relation of the individual method to the *product state concept*, a short conclusion after each section highlights the relevancy and connection to the topic. The final sub-section of this third section will furthermore briefly summarize the complete section and help the reader with the transition towards the next section where the *product state concept* is presented.

3.1 Product Lifecycle Management in Manufacturing

PLM as mentioned in the previous chapters is focusing on the whole product lifecycle and promises to manage all data and information involved. This promise overlaps with the set goal of the developed concept, as it is based on information and data of an individual product over a whole manufacturing programme and beyond. PLM research has a long tradition not only in the engineering domain but also in management science. Strongly connected to PLM is the area of PDM, which is briefly discussed in the following subsection. After that, first the product lifecycle in manufacturing is investigated before taking a closer look at PLM in general and closed-loop, item level PLM in particular.

[©] Springer International Publishing Switzerland 2015

T. Wuest, *Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning*, Springer Theses, DOI 10.1007/978-3-319-17611-6_3

3.1.1 Product Data Management

Today there are many technologies available and widely used in industry. One of the first, Computer Aided Design (CAD) has developed greatly and has been supported by many other specialized tools like Computer Integrated Manufacturing (CIM), Computer-aided Engineering (CAE), Computer-aided Process Planning (CAPP), PDM and PLM systems (Chryssolouris et al. 2009). Other IM systems focus more on operations like Manufacturing Resource Planning (MRP), Manufacturing Execution Systems (MES), Advanced Production Systems (APS) and Enterprise Resource Planning (ERP) (Wiers 2002). Taking a closer look, MES, widely distributed in industry, are software packages designed to manage factory floor material control and labor and machine capacity (Helo et al. 2014) in real time. They are usually located at the factory level (Brecher et al. 2013), and are an integration of the management system and systems nearer of the shop floor operations (Simao et al. 2006). MES can be described as control systems with the goal to fill the gap between the upper planning level and the lower shop-floor execution. MES aim to control the production, maximize the workload of equipment, release unneeded machine tools, track and trace components and orders, manage inventory, and optimize production activities from order launch to finished goods. They are usually linked with ERP systems which issue, e.g., production orders to the MES system, linking quality control, scheduling and material information (Helo et al. 2014). The latest developments in MES include building flexible workflows and supporting distributed manufacturing (Helo et al. 2014). A MES can as such be understood as the operational arm of the ERP system. It implements the ERP's production plan and reports the current processing status back to the ERP level. The MES system monitors the local production lines and gathers data regarding the logistics and the technical parameters in the production process. In addition to monitoring the production, and materials status, it also provides the execution and construction plans of the production orders. The overall goal is the improvement of productivity and reduction of cycle-time. Overall, MES and related systems do not focus on individual product and process information.

However, this research is looking mainly on product and process data and information. Therefore, as focusing mainly on the product and a product-centric perspective, PDM stands out as it focuses on data and information directly connected to the products. PDM systems were developed to support CAD systems through management of the CAD-data and drawings. Since then the domain continuously developed further towards today's integrated solution for the management of product and process data between various systems. However, over time a large amount of terms were created (e.g., Digital Product Definition (DPD), collaborative Product Definition Management (cPDm)), enhancing the original meaning of PDM but also creating some confusion among practitioners (Abramovici and Sieg 2001).

Literature on PDM promises integration and management of all information that defines a product (Liu and Xu 2001). However, it is mostly seen as a tool to store, administrate and share product data, not to decide what information should be stored or determine how the stored information is connected to each other. Other researchers extent the view further. Saaksvuori and Immonen (2004) describe product data as "information broadly related to a product". PDM is one of the major focus areas of engineering and manufacturing companies (Fasoli et al. 2011). Fasoli et al. (2011) claim, that especially within today's distributed production processes, it is most important that data is first correct and second correctly distributed. It is essential that data is correct and in a format that it can be transferred to all addresses in need electronically (Saaksvuori and Immonen 2004; Gimenez et al. 2008). A system realizing this in an applicable way for industry practitioners has not yet been developed (Abramovici 2007) and the "requirements for efficient management of product data have been steadily increasing" (Leong et al. 2002). Other researchers looked into how product data manipulated by a manufacturing process can be integrated into a PDM system (Peltonen et al. 1996).

Within the PDM field, certain standards have evolved, tackling the interface issue and communication issue between different systems. Communicating advanced information about a product through current PDM standards like STEP (Standard for the Exchange of Product Model Data) are mainly focused on geometric information and does not explicitly support information like chemical composition of material. Combined with the fact that products become more complicated (increasing number of parts and variations) (Leong et al. 2002) this highlights the need for innovative concepts for structuring and handling product related data efficiently.

Looking at the claim of PDM systems that they can integrate and manage all application, information and processes that define a product (Chryssolouris et al. 2009), there are many challenges in data management in the manufacturing domain still to be faced (Fasoli et al. 2011). However, PDM systems today are used by most manufacturing companies for e.g., "controlling information, files, documents, and work processes and are required to design, build, support, distribute, and maintain products" (Chryssolouris et al. 2009). Chryssolouris et al. (2009) define typical product related information managed by PDM data as: "geometry, engineering drawings, project plans, part files, assembly diagrams, product specifications, numerical control machine-tool programs, analysis results, correspondence, bill of material, and engineering change orders among others".

In Fig. 3.1 the focus area of PDM is highlighted along the value chain. In contrast to the very narrow focus of PDM on design engineering, PLM is shown as a more overarching and thus more applicable from a systemic perspective on manufacturing. Furthermore, as PDM is looking mainly on a product class (e.g., tire model abc) the resulting extension of PDM to PLM and from that to closed-loop and item-level PLM (see Sect. 3.1.3) can be seen as a step towards a holistic IM of individual products (e.g., No. xyz of tire model abc). This is presented in the following subsection, starting with the product lifecycle itself.

Fig. 3.1 Distinction of PDM and PLM along the value chain (Paul and Paul 2008)

Fig. 3.2 Phases of the product lifecycle

3.1.2 Product Lifecycle Management¹

Product lifecycle literature generally differentiates organizational/marketing and production engineering/ICT perspectives (Sundin 2009). In marketing, practitioners and academics tend to adopt a sales-oriented view, dividing the lifecycle into five phases: introduction, growth, maturity, saturation and degeneration of a product. Here, the economic success of a product is the main concern of classification (Meffert et al. 2008). The scope a product refers to may be a model, type or category.

The engineering and ICT perspective used here follows (Kiritsis et al. 2003) (see Fig. 3.2). The basic product lifecycle framework in production engineering differentiates three main phases (Jun et al. 2007; Cao and Folan 2012), describing the product from the "cradle to grave" (Stark 2011):

- *Beginning-of-Life (BOL)*: processes related to development, production and distribution
- *Middle-of-Life (MOL)*: processes related to a product's use, service and repair
- *End-of-Life (EOL)*: processes related to reverse logistics like reuse, recycle and disposal

¹The content of this section has been partly published in accordance with (Universität Bremen 2007) in (Wuest et al. 2014a).

Being shortly introduced in the PDM section before, PLM extends the concept of PDM beyond the usage in product design and partly manufacturing (Paul and Paul 2008). Some researchers use the terms almost interchangeable whereas others clearly state that PLM is a central approach of an integrated management data related to products but also manufacturing processes and beyond (Fasoli et al. 2011). Classic PDM functionality encompasses object, component and document management, classification and search functionality, change management and tools for system administration and configuration (Abramovici and Sieg 2001). The production engineering and ICT perspective towards PLM also differs from the organizational and marketing perspective, as does the view on the product lifecycle itself (see above). In production engineering and ICT, PLM is commonly understood as a concept which "seeks to extent the reach of PDM [...] beyond design and manufacturing into other areas like marketing, sale and after sale service, and at the same time addresses all the stakeholders of the product throughout its lifecycle" (Golovatchev and Budde 2007). PLM consequently includes strategically modeling, capturing, exchanging and using information in all decision-making processes throughout the product lifecycle (Stark 2011; Moorthy and Vivekanand 2007). It implements an integrated, cooperative and collaborative management of product data along the entire product lifecycle (Terzi et al. 2007).

By definition, every product has a lifecycle. Manufacturers are becoming aware of the benefits inherent in managing those lifecycles (Sendler 2009). At the same time today's products are becoming increasingly complicated. For example, the amount of component parts is increasing. Simultaneously, development, manufacturing and usage cycles are accelerating (Sendler 2009) and production is being distributed geographically (Seifert 2007). These trends highlight the need for innovative concepts for structuring and handling product related information efficiently throughout the entire lifecycle. On top that, customer demand for more customization and variation stresses the need for a PLM at item, not merely type-level.

Besides merely handling product and process related data, PLM also has to take into account the interdependencies of information and communication between all of the stakeholders involved in the product lifecycle. Common graphical representations of the product lifecycle encompass three phases, beginning of life, middle of life and end of life (see Fig. 3.2). Recent research clusters available PLM methods/tools in three major groups (Gimenez et al. 2008; Fasoli et al. 2011): information (e.g., focus on identification methods) and process management (e.g., operational activities) as well as application integration (e.g., definition of interfaces).

Fig. 3.3 Closed-loop, item-level product lifecycle phases (Wuest et al. 2014a)

3.1.3 Closed-Loop and Item-Level PLM²

Conventional views of PLM tend to stress the first phase of the product lifecycle, due to its beginnings in PDM and CAD. Processes highlighted here are product design, development, production and sales. Emerging approaches such as closed-loop PLM (Jun et al. 2007) take a holistic view upon the entire product lifecycle, from product ideation to end-of-life processes, ideally also the end of one lifecycle into the beginning of the next. It thus puts forward a paradigm shift from 'cradle to grave' to 'cradle to cradle' (Pokharel and Mutha 2009) (see Fig. 3.3).

An example is the refurbishment of components from decommissioned products for use in new ones. The aim of closed-loop PLM is to close information gaps between the different phases and processes of the product lifecycle of individual products. This can be backwards, for example providing usage data to design processes, or forwards, for example providing production and assembly information to recycling processes. It deals with products not as classes or variants, but

²The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2011, 2013b, 2014a, b).

as individual items ("item-level"). Additionally, item-level PLM allows focusing more on the individual product and therefore creates the basis to e.g., monitor product quality on an individual level rather than on a batch level.

Being in the focus of researchers and practitioners for over a decade, data management in PLM still has to face the challenge of a gap between the existing reality and the expected features in data management (Fasoli et al. 2011). Especially in the area of item-level product data management along complex manufacturing chains are still many issues, like e.g., a generally accepted and interchangeable format that contains all relevant information, to be solved. The developed concept contributes to this development in the abstract way of systemizing product information around the product state.

The *product state concept* may be argued to be a sub-domain of item-level PLM or an extension of existing approaches. Both concepts are looking at individual products over different phases or processes. The *product state concept* incorporates many principles of item-level PLM and faces similar challenges, however the *product state concept* focuses mainly on the manufacturing phase as of today. For future application it is important to understand the similarities as it might present an interesting option to include the *product state concept* as a module in existing PLM tools. Furthermore, the *product state concept* highlights the need of understanding the process intra and inter relations between states whereas current PLM solutions do not look into this issue in detail.

Within the perspective of item-level PLM, the focus on the individual product, e.g., for optimization purposes is evident. It can be said that traceability is the basis for item-level PLM (Terzi et al. 2007). The *product state concept*, based on the principles of item-level PLM in manufacturing, has a basic requirement of traceability of individual products throughout the manufacturing programme. This is essential in order to derive state information and data at the checkpoints to take appropriate actions, e.g., adjust parameters accordingly. Tracking and tracing of individual products and batches of products is a well-established research field. In SCM research, there are already very advanced solutions available and applied in industry (Hribernik et al. 2010; Musa et al. 2013). The logistic chain in the food industry is an example where advanced tracking and tracing solutions are already applied (Van Dorp 2002; Jansen-Vullers et al. 2003; Stark 2011). For the before mentioned item-level PLM it is essential to trace individual products throughout the lifecycle.

The topic of tracking and tracing increasingly gains attention in the manufacturing domain highlighting also the importance of processes (e.g., Terzi et al. 2007; Brinkheinrich 2008; Zhang et al. 2010). The importance of continuous tracking and tracing of a product throughout the whole manufacturing process for manufacturing companies as well as participating stakeholders is widely accepted. This creates the basis for advanced information management and quality improvement and assurance (Van Dorp 2002). Being well established in the logistics domain, tracking and tracing in manufacturing faces different challenges which will be illustrated in the following paragraphs.
Jansen-Vullers et al. (2003) distinguish different types of traceability depending on their usage, whereas "tracking" was described as "method of following an object through the supply chain and registering any data considered of any historic or monitoring relevance." Looking at their reference model for traceability Jansen-Vullers et al. (2003) highlight the importance of the ability to distinguish between instances of products as a prerequisite of traceability.

Within this research the definition of Terzi et al. (2007) builds the basis for the understanding of product traceability in manufacturing. The definition is as follows: "Generally, product traceability is the ability of a user (manufacturer, supplier, vendor, etc.) to trace a product through its processing procedures. Concretely, the product traceability deals with maintaining information records of all materials and parts along a defined lifecycle (e.g., from raw material purchasing to finished goods selling) using a coding identification. Product traceability is by definition a PLM topic, since it is related to a product centric approach, where product data and information might be retrieved and managed along the whole lifecycle."

There are numerous benefits that result from implementing a functional tracking and tracing system. A general benefit is that companies are able to combine important information with individual products. In the production of small batches or even single products this offers the advantage of always being capable of checking what manufacturing processes the product already passed and what parameters were used. This can be the basis for an in-process adjustment of parameters based on the product state before each process step to increase quality in terms of reducing scrap and rework. Other benefits include, for example, proof for demanding customers, efficient PLM and feedback in case of product failure.

Overall tracking and tracing in manufacturing companies is different from other industries like food or areas that utilize tracking and tracing for mainly logistics purposes including regulatory purposes. There are more things to consider as the product itself goes through extreme conditions and can even changes consistency and shape during the manufacturing processes. This is not only a challenge for the physical marking of products but also for capturing information. The marking goes as far as possible at certain situations to mark the product directly with a tag or a code but it still must mark it indirectly through accompanying documentation. The information layer must also be capable of handling the information and processing it to make it practical and finally beneficial.

As mentioned above, an important aspect of tracking and tracing in manufacturing is that not only time and location have to be considered but also product state information has to be captured. Figure 3.4 depicts the critical elements of information capturing in manufacturing.

It is always necessary to link the captured information to a specific object (*identify*). Therefore, the object has to be identified precisely and uniquely. The identification can take place automatically by e.g., scanning a barcode or a RFID transponder or by entering the information manually into an IT system. Another critical element of information captured is *time*. A time stamp integrated into every event captured is necessary for having unique information. Moreover, the time

Fig. 3.4 Elements of information captured (Wuest et al. 2013b)

stamp is necessary to have a precise history of every object being tracked within the supply chain. Knowing about the *location* of an object is also very important when generating an event as information of the current process may be derived based on location/time. Last but not least, the *product state*, which incorporates various characteristics of a product e.g., quality and/or dimensions of an object, is considered relevant information. Based on the product state's characteristics, the following process steps and their parameters within supply chains can be planned. An example for a state characteristic is the diameter after machining, but also residual stress allocation within a steel disc (Wuest et al. 2013b) (see Sect. 4.2). In this context the question of the time horizon of information capturing comes up. As stated before, the information and data has to be captured in real time, which is understood within this work as available when needed.

3.2 Quality Monitoring in Manufacturing

Quality, as discussed before is of major influence in the manufacturing domain. The term itself, for both product and processes was introduced before. In this subsection, the existing applications in quality monitoring in manufacturing are presented. The *product state concept*, developed in the following section, may be understood as part of or extension of a quality monitoring system.

3.2.1 Quality Management in the Manufacturing Domain

QM is widely used and the term is understood slightly different depending on the domain (Steffelbauer-Meuche 2004). Manufacturing companies have been focusing on improving the quality of their products and processes in a structured way for the last few decades (Robinson and Malhotra 2005). Research

	verification of results	process excellence	quality management
	quality control	 quality assurance 	total quality management
goal	• zero defect production	• zero defect production • process excellence	• zero defect production • process excellence
action	 measuring technology statistical methods 	• zero defect philosophy • certification according to DIN ISO 9000 ff.	 customer satisfaction employee involvement organisational structure
	1 950	1 970	1 990

Fig. 3.5 Development of quality management (Wannenwetsch 2010)

on this topic can be summarized within the term QM. In this research, suitable for manufacturing domain, QM is understood as the entity of all quality related actions and goals. Within the framework of QM, certain measures are taken which are supposed to improve products and processes of a manufacturing company. In order to achieve these goals, quality standards are defined, which are organized in a QM handbook and which have to be met. In order to control the efforts, specific persons in charge have to be defined which are responsible for documenting and communicating possible deviations, develop improvements and monitor the implementation (Corsten and Gössinger 2008).

In the manufacturing domain, QM principles are applied in industry since the early 1970s (Robinson and Malhotra 2005). In academia, many well-known researchers are continuously working on this topic for the last decades (Hoyer and Hoyer 2001). The previous Fig. 3.5 illustrates an overview of the development of QM in the manufacturing domain. The development describes the way QM took, from a very technical perspective towards a more customer oriented approach (Wannenwetsch 2010). According to DIN EN ISO 8402, QM includes all management activities which define within the QM process the quality politics, goals and responsibilities as well as the measures like quality planning, control, assurance and improvement necessary to realize the former (Wannenwetsch 2010).

QM has a long history in both industrial application and academic research as elaborated above. That has led to a wide variation of available concepts, methods and tools for companies to increase process, product and documentation quality like Failure Mode and Effects Analysis (FMEA) to identify potential failure within a system (Tietjen et al. 2011) and Total Quality Management (TQM) to continuously improve products and processes (Forza and Filippini 1998) are just two out of many available. Köksal et al. (2011) e.g., list "inspection (100 %), Statistical Quality Control (SQC), Total Quality Control (TQC), zero defects, [...] kaizen, ISO 9000 quality standards, quality award programs (Malcolm

Baldrige, European Quality Award and so on), 6r, DFSS, lean six sigma have been among the most recognized ones (Fasser and Brettner 2002; Montgomery 2005)" (Köksal et al. 2011) as some of the most frequently used QM tools. Overall, most QM methods and tools are adjustable to various environments within the manufacturing industry and can be combined in order to realize the wanted outcome. Overarching approaches like Computer Aided Quality (CAQ) combine several of the quality philosophies with software tools in order to enhance the impact, support the practitioners without confusing them and create a companywide standard.

However, due to the diversified nature of manufacturing, manufacturing programmes, requirements and quality problems, etc. there is an almost endless variation of methods, tools and techniques available which can confuse practitioners. Partly due to the confusion and the lack of clear communication what quality means and which method, tool or technique is suitable, many of those quality initiatives produced mixed results often failing to reach the quality goal (Samson and Terziovski 1999; Kaynak 2003; Robinson and Malhotra 2005; Sitek 2012).

3.2.2 Quality Monitoring in Manufacturing Programmes³

Quality monitoring has strong ties and overlaps with process monitoring (Sect. 2.1.2) and QM in general. Certain tools like TQC and zero defects have an incremental need for quality monitoring in order to be employed effectively (Nebl 2007). However, quality monitoring can focus on different areas, e.g., product quality and process quality. Again the ties to process monitoring are showing as e.g., machine health monitoring has an impact on quality monitoring of the process and thus of the product itself. Quality monitoring checks if the quality of a product or process is within the accepted range at certain checkpoints (Nebl 2007), which is the basis for successful quality control in manufacturing. Köksal et al. (2011) state that the "process industries and discrete parts manufacturing industries have had a long history of these [quality monitoring] activities that aim to reduce variability. While quality monitoring tries to reduce variability by detection and removal of assignable causes, process control is based on the idea of process compensation and regulation to reduce variability."

Whereas, quality and condition monitoring is already well established and to some part successfully implemented for monitoring only one manufacturing process/operation at a time (e.g., Silva 2009; Jenab and Ahi 2010), concepts taking the importance of the system view, monitoring of the whole manufacturing programme, into account are still rare. Additionally, some like Ding et al. (2002) ecognize the importance of the system view for monitoring but focus on a specific characteristic, in that case diagnosing fixture faults. Other research, also taking the

³The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2013a).

whole manufacturing programme into account, focuses on the identification of the critical manufacturing process causing a deviation from the planed characteristics (e.g., Zantek et al. 2006). Jiang et al. (2012) and Sukchotrat et al. (2009) are both presenting novel approaches tackling similar issues as this research to monitor multistage manufacturing programmes using either error propagation networks (Jiang et al. 2012) or multivariate control charts (Sukchotrat et al. 2009) on a still conceptual level with further research ongoing. Quality monitoring is increasingly using modern AI and PR methods to improve the results. Among the used AI and PR tools and methods are: Artificial Neural Networks (ANN), Principal Component Analysis (PCA), Partial Least Squares (PLS), SVM, and Decision Trees (DTs), etc. (e.g., Zorriassatine and Tannock 1998; Hussain 1999; Ganesan et al. 2004; Köksal et al. 2011).

Common quality issues occurring in manufacturing programmes and a selection of solutions proposed by literature (see Annex Table A.3) show that the more detailed the manufacturing issues become, the more general are the proposed solutions. For specific and detailed issues there are many targeted solutions available, which are described in several case studies or implemented in industrial manufacturing programmes. However, there is an overall emphasis on information and data when it comes to (technical) manufacturing quality problems and how to tackle the issues.

In this section the other constant besides information and data is highlighted: quality. After the terms and definitions were introduced in the previous section, the important domain of quality monitoring is presented. Quality monitoring is expanding on the already introduced process monitoring as a framework on the *product state concept* and how successive states' inherited set of relevant information can be utilized. In order to understand industrial needs and challenges concerning quality in manufacturing, a selection of quality issues is presented in a table (see Annex Table A.3). It can be concluded, that information and data are considered important for tackling manufacturing quality issues. Today, the focus area of most QM and quality monitoring tools is still very specific in contrast to the holistic nature of many manufacturing programmes. This is reflected directly in the *product state concept*'s holistic design as it is an information-based system with the goal of improving manufacturing quality.

In the next section the limitations of existing approaches for holistic information management in manufacturing systems based on individual products are facing today is presented, highlighting aspects to be tackled by the developed *product state concept* which is described in later sections.

3.3 Limitations of Current Approaches for Holistic Information Management in Manufacturing Systems

In this section existing approaches to tackle the key challenges of modern MS are presented. The main concepts and methods introduced that focus on information management in manufacturing are PDM, PLM, QM and quality monitoring.

After each subsection a short conclusion was presented that discussed the gaps of the specific approach when it comes to address the previous challenges and goals. Furthermore, the relation to the later *product state concept* and overlaps are shown.

PDM and PLM are both concepts that gained increasing attention over the last years. Especially PLM moved slowly away from being a mainly design focused tool towards a more holistic approach considering other phases of the lifecycle. However, being in the focus of researchers and practitioners for over a decade, data management in PLM still has to face the challenge of a gap between the existing reality and the expected features in data management (Fasoli et al. 2011). Especially in the area of item-level product data management along complex manufacturing chains are still many issues, such as a generally accepted and interchangeable format that contains all relevant information, to be solved. The developed concept contributes to this development in the abstract way of systemizing product information around the product state.

The later developed *product state concept* may be argued to be a sub-domain of item-level PLM or an extension of existing approaches as both concepts are looking at individual products over different phases or processes. The *product state concept* incorporates many principles of item-level PLM and faces similar challenges, however the *product state concept* highlights the need of understanding the process intra and inter relations between states and actively includes the means to identify those. Current PLM solutions do not take this issue into account.

Recalling how QM and quality monitoring addresses the key challenges of holistic information management identified before, the overall more specific nature of the methods and concepts surfaces. In QM, due to the diversified nature of manufacturing, manufacturing programmes, requirements and quality problems, etc. there is an almost endless variation of methods, tools and techniques available which can confuse practitioners. However, the various tools and methods can be successfully used in combination, but still present no conclusive approach in a sense of a holistic concept for the whole manufacturing programme as of now. Quality monitoring on the other hand, even so specific approaches exist in the dozens has to be seen more as a philosophy than a method or approach. In this sense, the developed *product state concept* may be seen as a way to incorporate a holistic quality monitoring approach in manufacturing.

Concluding, the diversified challenges modern complex manufacturing operations have to face in order to improve their process and product quality is just partly addressed today by the above presented approaches. Most tools target a very specific area and have to be used in combination to effectively tackle the key challenges identified before. Especially the increasing complexity of large scale high-dimensional and multivariate product and process data involved in high-tech manufacturing and unknown cause-effect relations along the manufacturing programme highlight the need for supporting concepts helping the companies to cope with their product information needs. Such a concept has to be able to reduce the inherent complexity of today's manufacturing operations and provide relevant information about the individual product and process along the (manufacturing) lifecycle. In this case the term relevant means relevant to all stakeholders involved in the manufacturing programme and not just focusing on independent single manufacturing process or operation. The *product state concept* which will be introduced in the next chapter is based on a set of relevant information about an individual product and process which can be used as a basis for newly developed systems for product quality improvement according to the principles by Kano and Nakagawa (2008). The main challenge within this concept lies in the identification of such a set of relevant product state information.

In the next section, first the key findings of Sects. 4.2 and 4.3 will be picked up in a detailed argumentation and to set the boundaries for the developed *product state concept*. A key point will be the question how to identify process intra- and inter-relations between states especially under the existing knowledge gap which will also be shown in detail in the next Sect. 4.4.

References

- Abramovici, M. (2007). Future trends in product lifecycle management (PLM). In: F.-L. Krause (Ed.), *The Future of Product Development—Proceedings o the 17th CIRP Design Conference* (pp. 665–674). Berlin, Heidelberg: Springer.
- Abramovici, M., & Sieg, O. (2001). PDM—Technologie im Wandel—Stand und Entwicklungsperspektiven. Orientierung für die Praxis. Industrie Management, 5, 71–75.
- Brecher, C., Müller, S., Breitbach, T., & Lohse, W. (2013). Viable system model for manufacturing execution systems. *Proceedia CIRP*, 7, 461–466.
- Brinkheinrich, M. (2008). Transparenz durch Traceability. Rückverfolgbarkeit von Produkten und Produktionsprozessen - warum und wie. Der Betriebsleiter, 6(2008):18–19.
- Cao, H., & Folan, P. (2012). Product life cycle: the evolution of a paradigm and literature review from 1950–2009. *Production Planning & Control*, 23(8), 641–662.
- Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D., Michalos, G., & Georgoulias, K. (2009). Digital manufacturing: history, perspectives, and outlook. *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223*(5), 451–462. doi:10.1243/09544054JEM1241.
- Corsten, H. & Gössinger, R. (2008). Lexikon der Betriebswirtschaftslehre (5 Aufl.). Oldenburg.
- Ding, Y., Shi, J., & Ceglarek, D. (2002). Diagnosability analysis of multi-station manufacturing processes. *Journal of Dynamic Systems, Measurement, and Control, 124*, 1–13.
- Fasser, Y., & Brettner, D. (2002). *Management for quality in high-technology enterprises*. New York: Wiley-Interscience.
- Fasoli, T., Terzi, S., Jantunen, E., Kortelainen, J., Sääski, J. & Salonen, T. (2011). Challenges in data management in product life cycle engineering. In J. Hesselbach & C. Herrmann (Ed.), *Glocalized solutions for sustainability in manufacturing* (pp. 525–530). Heidelberg, Berlin: Springer.
- Forza, C., & Filippini, R. (1998). TQM impact on quality conformance and customer satisfaction: A causal model. *International Journal of Production Economics*, 55, 1–20.
- Ganesan, R., Das, T. K., & Venkataraman, V. (2004). Wavelet-based multiscale statistical process monitoring: A literature review. *IIE Transactions*, 36(9), 787–806.
- Gimenez, D. M., Vegetti, M., Leone, H. P. & Henning, G. (2008). Product ontology: defining product-related concepts for logistics planning activities. *Computers in Industry*, 2/3(59), 232–240.
- Golovatchev, J. D., & Budde, O. (2007). A holistic product lifecycle management framework facing the challenges of 21st century. In 3rd International Conference on Lifecycle Management, Zurich (pp. 577–590).

- Helo, P., Suorsa, M., Hao, Y., & Anussornnitisarn, P. (2014). Toward a cloud-based manufacturing execution system for distributed manufacturing. *Computers in Industry*, 65(4), 646–656. doi:10.1016/j.compind.2014.01.015.
- Hoyer, R. W., & Hoyer, B. B. Y. (2001). What is quality. Quality Progress, 34, 53-62.
- Hribernik, K. A., Pille, C., Jeken, O., Thoben, K.-D., Windt, K. & Busse, M. (2010). Autonomous control of intelligent products in beginning of life processes. In *International Conference on Product Lifecycle Management*.
- Hussain, M. A. (1999). Review of the applications of neural networks in chemical process control—Simulation and online implementation. *Artificial Intelligence in Engineering*, 13(1), 55–68.
- Jansen-Vullers, M. H., van Drop, C. A., & Beulens, A. J. M. (2003). Managing traceability information in manufacture. *International Journal of Information Management*, 23(2003), 395–413.
- Jenab, K., & Ahi, P. (2010). Fuzzy quality feature monitoring model. *International Journal of Production Research*, 48(17), 5021–5030. doi:10.1080/00207540903117907.
- Jiang, P., Jia, F., Wang, Y., & Zheng, M. (2012). Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. *Journal of Intelligent Manufacturing*, (2012). doi:10.1007/s10845-012-0703-0.
- Jun, H.-B., Kiritsis, D., & Xirouchakis, P. (2007). Research issues on closed-loop PLM. Computers in Industry, 58(8–9), 855–868. doi:10.1016/j.compind.2007.04.001.
- Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. *Computers & Chemical Engineering*, 32(1–2), 12–24. doi:10.1016/j.compchemeng.2007.07.005.
- Kaynak, H. (2003). The relationship between total quality management practices and their effects on firm performance. *Journal of Operations Management*, 21, 405–435.
- Kiritsis, D., Bufardi, A., & Xirouchakis, P. (2003). Research issues on product lifecycle management and information tracking using smart embedded systems. *Advanced Engineering Informatics*, 17(3–4), 189–202. doi:10.1016/j.aei.2004.09.005.
- Köksal, G., Batmaz, İ., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. *Expert Systems with Applications*, 38(10), 13448–13467. doi:10.1016/j.eswa.2011.04.063.
- Leong, K. K., Yu, K. M., & Lee, W. B. (2002). Product data allocation for distributed product data management systems. *Computers in Industry*, 47(2002), 289–298.
- Liu, T. D., & Xu, W. (2001). A review of web-based product data management systems. Computers in Industry, 44(2001), 251–262.
- Meffert, H., Burmann, C., & Kirchgeorg, M. (2008). *Marketing Grundlagen marktorientierter* Unternehmensführung (p. 924). Gabler.
- Montgomery, D. (2005). Introduction to statistical quality control. Hoboken, NJ: Wiley.
- Moorthy, A., & Vivekanand, S. (2007). Integration of PLM with other concepts for empowering business environments. In M. Garetti, S. Terzi, P. D. Ball, & S. Han (Eds.), *Product lifecycle management*, Special Publication 3 (p. 93). Bergamo/Milano.
- Musa, A., Gunasekaran, A., & Yusuf, Y. (2013). Supply chain product visibility: Methods, systems and impacts. *Expert Systems with Applications*. doi:10.1016/j.eswa.2013.07.020.
- Nebl, T. (2007). Produktionswirtschaft (6th edn.). München: Oldenbourg Verlag.
- Paul, G., & Paul, R. (2008). Engineering data management and product data management: Roles and prospects. In *International Scientific Conference Computer Science* (pp. 614–619).
- Peltonen, H., Pitkänen, O., & Sulonen, R. (1996). Process-based view of product data management. Computers in Industry, 31(3), 195–203. doi:10.1016/S0166-3615(96)00051-6.
- Pokharel, S., & Mutha, A. (2009). Perspectives in reverse logistics: A review. *Resources, Conservation and Recycling*, 53(4), 175–182. doi:10.1016/j.resconrec.2008.11.006.
- Robinson, C. J., & Malhotra, M. K. (2005). Defining the concept of supply chain quality management and its relevance to academic and industrial practice. *International Journal of Production Economics*, 96, 315–337.

- Samson, D., & Terziovski, M. (1999). The relationship between total quality management practices and operational performance. *Journal of Operations Management*, 17, 393–409.
- Saaksvuori, A., & Immonen, A. (2004). Product lifecycle management. Berlin, Heidelberg, NY: Springer.
- Seifert, M. (2007). Unterstützung der Konsortialbildung in Virtuellen Organisationen durch prospektives Performance Measurement. Dissertation. Universität Bremen, Bremen, Germany.
- Sendler, U. (2009). Das PLM-Kompendium. Referenzbuch des Produkt-Lebenszyklus-Managements. Heidelberg: Springer.
- Silva, R. G. (2009). Condition monitoring of the cutting process using a self-organizing spiking neural network map. *Journal of Intelligent Manufacturing*, 21(6), 823–829. doi:10.1007/ s10845-009-0258-x.
- Simão, J. M., Stadzisz, P. C., & Morel, G. (2006). Manufacturing execution systems for customized production. *Journal of Materials Processing Technology*, 179(1–3), 268–275. doi:10.1016/j.jmatprotec.2006.03.064.
- Sitek, P. (2012). Quality management to support single companies in colloborative enterprise networks. Dissertation. University of Bremen, Bremen, Germany.
- Stark, J. (2011). Product lifecycle management, 21st century paradigm for product realization. Heidelberg: Springer. doi:10.1007/978-0-85729-546-0.
- Steffelbauer-Meuche, G. (2004). *Qualitätsmanagement in der Internen Revision* (1. Aufl.). Sternenfels: Wissenschaft und Praxis.
- Sukchotrat, T., Kim, S. B., & Tsung, F. (2009). One-class classification-based control charts for multivariate process monitoring. *IIE Transactions*, 42(2), 107–120. doi:10.1080/07408170903019150.
- Sundin, E. (2009). Life-cycle perspectives of product/service-wSystems: In design theory. In M. L. Sakao (Ed.), *Introduction to product/service-system design* (pp. 31–49). London: Springer.
- Terzi, S., Panetto, H., Morel, G., & Garetti, M. (2007). A holonic metamodel for product traceabily in PLM. *International Journal of Product Lifecycle Management*, 2(3), 253–289. doi:10. 1504/IJPLM.2007.016292.
- Tietjen, T., Decker, A., & Müller, D. H. (2011). FMEA Praxis Das Komplettpaket für Training und Anwendung. München: Carl Hanser Verlag.
- Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August 13, 2013, from http://www.math.uni-bremen.de/cms/media.php/59/PromO%20FB%20 2-5%20_14%203%2007_.6442.pdf.
- Van Dorp, K.-J. (2002). Tracking and tracing: A structure for development and contemporary practices. *Logistics Information Management*, 15(1), 24–33. doi:10.1108/09576050210412648.
- Wannenwetsch, H. (2010). Integrierte Materialwirtschaft und Logistik Beschaffung, Logistik, Materialwirtschaft und Produktion. Berlin: Springer.
- Wiers, V. C. S. (2002). A case study on the integration of APS and ERP in a steel processing plant. *Production Planning & Control*, 13(6), 552–560.
- Wuest, T., Klein D., Seifert, M. & Thoben, K.-D. (2011). Challenges for grown engineering SMEs with a diverse product portfolio on information management and product tracking and tracing. In: Frick, J. (Eds.), Value Networks: Innovation, Technologies and Management. Proceedings of the APMS 2011 International Conference of Advances in Production Management Systems, September 26–28, 2011, Stavanger, Norway. ISBN 978-82-7644-461-2.
- Wuest, T., Irgens, C., & Thoben, K.-D. (2013a). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. *Journal of Intelligent Manufacturing*, 25(5), 1167–1180.
- Wuest, T., Werthmann, D. & Thoben, K. (2013b). Towards an approach to identify the optimal instant of time for information capturing in supply chains. In V. Prabhu, M. Taisch & D. Kiritsis (Eds.), APMS 2013, Part I, IFIP AICT 414, IFIP International Federation for Information Processing (pp. 3–12).

- Wuest, T., Hribernik, K., & Thoben, K.-D. (2014a). Accessing servitization potential of PLM data by applying the product avatar concept. *Production Planning and Control, XX*(XX), XX–XX (accepted).
- Wuest, T., Liu, A., Lu, S. C.-Y., & Thoben, K.-D. (2014b). Application of the stage gate model in production supporting quality management. *Proceedia CIRP*, 17, 32–37. doi:10.1016/j.procir.2014.01.071.
- Zantek, P. F., Wright, G. P., & Plante, R. D. (2006). A self-starting procedure for monitoring process quality in multistage manufacturing systems. *IIE Transactions*, 38(4), 293–308. doi:10.1080/07408170500208354.
- Zhang, Y., Jiang, P., Huang, G., Qu, T., Zhou, G., & Hong, J. (2010). RFID-enabled real-time manufacturing information tracking infrastructure for extended enterprises. *Journal of Intelligent Manufacturing*, 23(6), 2357–2366. doi:10.1007/s10845-010-0475-3.
- Zorriassatine, F., & Tannock, J. D. T. (1998). A review of neural networks for statistical process control. *Journal of Intelligent Manufacturing*, 9(3), 209–224.

Chapter 4 Development of the Product State Concept

In this section, the *product state concept* and its development will be illustrated from a theoretical perspective. The main intension is to provide a general understanding of the goals and basic pillars of the concept and its argumentation. Another major goal of this section is to discuss and present the challenges and limitations to the application of the presented theoretical approach in practice. This outcome is crucial for the selection of appropriate methods and the following approach to identify state drivers despite the knowledge gap concerning process intra- and inter-relations using ML which will bring the *product state concept* to life.

In this section, first, the rationale for developing the *product state concept* is presented based on the previously presented state of the art of intelligent manufacturing systems. The argumentation incorporates the identified challenges and requirements of modern manufacturing programmes towards information and data based approaches. The term product state is then defined for the manufacturing domain before the focus shifts onto product state characteristics and the challenge of how to distinguish which ones are relevant for a specific product and process.

In order to create a comprehensive concept, a complementary approach of applying a method to identify quality checkpoints in manufacturing, adapted from the stage gate model (Cooper 2010) briefly introduced (for details refer to Wuest et al. 2014b). This is essential as determining the checkpoints' influences on the complexity of the system to be analyzed and monitored. Determining more than the necessary checkpoints means that more process intra- and inter-relations and data points have to be taken into consideration and this consequently may influence the ease of applicability of the *product state concept*. Process intra- and inter-relations between states and state characteristics along the manufacturing programme are discussed in detail, as they are considered fundamental within the concept for the identification of a set of relevant state characteristics. In this section process intra- and inter-relations of state characteristics in manufacturing programmes are not only described but also the limitations towards describing and

illustrating them are derived. Based on these important principles and definition, a possible visualization of the *product state concept* is introduced, based on bipartite graphs as well as Unified Modeling Language (UML) and Business Process Modeling Notation (BPMN) principles. In this section the challenges arising with the so far presented approach and the to a large part theoretical discussion are already visible and it seems questionable how the originally stated goal of this work can be reached.

Following, the challenges and limitations of an approach based largely on process intra- and inter-relations are described, building a basis for the next step, the presentation of requirements towards supporting tools and methods for the identification of product state drivers. A brief analysis of the NP complete nature of the problem at hand paves the way towards ML techniques, which have a proven record of handling such issues rather well (e.g., Yang and Trewn 2004; Harding et al. 2006). By identifying the requirements towards state drivers identification, the suitability of modern ML approaches is discussed further. This leads over to the derived specific research hypotheses and approach to identify product state drivers of a manufacturing programme using SVM algorithm based feature selection presented in the following Chap. 5.

4.1 Rationale for the Product State Concept¹

In the previous sections different domains' importance for today's MSs and their basic paradigms were discussed. In this section the rationale for the *product state concept* development is presented. The basic paradigms the argumentation follows are summarized in Fig. 4.1.

It has been established that a successive incremental improvement approach in manufacturing can focus on an individual processes or operations or on a manufacturing programme as a whole (see Sect. 2.2). It has to be noted that this is not a 'black or white' differentiation and there are overlapping areas, e.g., approaches looking into the whole manufacturing programme whilst at the same time focusing on selected processes. Both improvement approaches have their justification. A focused approach on individual manufacturing processes can bring forth significant improvements in different areas like e.g., machining performance. New research results indicate the importance of cross-process relations and their influence on product quality (Zoch and Lübben 2011). Looking at a manufacturing programme as a system with different components, e.g., processes and operations, not being independent form each other and thus on the contrary, influence each other's outcomes (quality) can contribute to improvements. For example is it possible to induce reasons for quality variations during an early process of a manufacturing programme, which are triggered during a

¹The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2014a).

Fig. 4.1 Basic paradigms of the development of the product state concept

later stage (Zoch 2012; Surm and Rath 2012). An example is internal stress allocations, induced during the operation 'clamping' in the machining process of a manufacturing programme, which may have no significant effect until the final heat treatment process, where they may influence the process and lead to distortion of the product (Sölter and Brinksmeier 2008; Sölter 2010; Surm 2011). Increasing the transparency and ability to support the understanding of such relations may support quality initiatives. However, the complexity of a manufacturing programme increases rapidly with its number of processes and operations, and this represents a challenge newly developed concepts and approaches have to deal with.

The development of the *product state concept* is based on the 'system view' and tries to contribute to generating increased understanding of co-relations within a manufacturing programme. It furthermore may contribute to the further development by reducing the complexity by supporting the identification of relevant information within this system. This way information not regarded as relevant does not have to be processed and the dimensionality can be reduced. The relations between the different processes or product states, which contribute to the complexity, are actively taken into regard within the development of the *product state concept*. In this scenario, all available product and process data is used to identify relations, which accordingly may indicate relevance to certain state characteristics. This tactic utilizes basic Big Data principles combined with PR technologies to support the IM principle of just focusing on relevant information.

The second principle of the *product state concept* development is the focus on individual products instead of looking on product groups or families. This focus on individual products takes into account the high quality requirements towards highly stressed products. Variations between similar products can be the reason for quality problems during the manufacturing programme, and a resultant failure

to comply with the final customers' quality requirements. In order to respond to individual variations, which cannot be entirely avoided (Kaiser 1998), clearly predicates that a focus on individual products is necessary. This complies with the view taken in item-level PLM where the focus is on each individual product and its inherited information and data. The development of the *product state concept* adopts the item-level PLM perspective of looking at an individual product over the whole lifecycle, with the slight adaption of exchanging the focus domain from the whole lifecycle to the manufacturing programme. What makes the *product state concept* differ from existing approaches is that the individual item is not an identity attached to a raw material, work pieces and components, but from the start of the value adding processes of a manufacturing programme until the final stage, the individual item is considered being the same just changing its state.

Incorporating this focus on individual products throughout the manufacturing programme leads to questions about tracking and tracing. This question, even though crucial for industrial application will not be the focus of this research as there are already existing solutions available to track and trace individual products throughout a manufacturing programme. However, in this context the question of determining the checkpoints for information capturing needs to be addressed. Choosing the right time during the manufacturing programme is just as important as the question what information needs to be captured and often interrelated. In order to create a comprehensive concept, an approach of how to determine suitable checkpoints has been developed and is integrated within the *product state concept*. This approach, based on adapting the stage gate model and its principles from product development to manufacturing is described in detail in (Wuest et al. 2014b).

In the previous sections the importance of information and data for quality improvements in manufacturing was highlighted. The development of the *product state concept* focuses directly on the information and data layer and the individual product's data and information connection to corresponding processes. Additionally, the concept requires that information and data will be presented in a universally accepted manner (e.g., standardized formatting) to address upcoming interface issues. As the information is mainly of descriptive nature, describing product state characteristics and process parameters, exiting standards (e.g., STEP) may be supported and information may be stored in Comma-Separated Values (CSV) format.

Quality is one of the main focal points of improvement initiatives in manufacturing. According to the definition of quality the product has to fulfill the customer requirements. This in turn is the basis for fitness for purpose as a measure of product quality. This is reflected throughout the *product state concept* development as the identification of the set of relevant information is based on quality considerations. Furthermore, the concept supports the quality idea for all types of customers, internal or external, e.g., in a collaborative network or internal, e.g., another business unit or another process. In summary, by contributing to the understanding of the mechanisms within a manufacturing programme and the increase of transparency, the *product state concept* may support product and process quality improvement of manufacturing programmes.

Related to the information and data management issues that have to be considered during the development of the *product state concept*, Sect. 2.3.2.1 presented information quality dimensions. The focus lies on the purpose-dependent dimensions as they represent the main contribution of the *product state concept* towards information quality in manufacturing. These dimensions are related to customer requirements combined with a system support perspective. The five purpose-dependent IQ dimensions (Rohweder et al. 2011) and how they are addressed by the *product state concept* development, is summarized in Table 4.1. A table with all 15 IQ dimensions and the connection to the product state concept needs an integrated management of all information connected to the product (Garetti and Terzi 2004; Taisch et al. 2011).

In this section the rationale behind the development of the *product state concept* was introduced. The *product state concept* aims at reducing the complexity of a manufacturing programme by supporting the identification of relevant information within the system. In order to achieve this goal, the *product state concept* is actively analysing exiting co-relations within the manufacturing programme, which consequential may contribute to transparency and support knowledge acquisition. This increase in transparency and applicable knowledge may contribute to product *state concept* is looking at individual items. This differs from most existing approaches by considering the individual item as 'one product' from the first value adding process to the last only by subsequent change(s) of its state. Each individual product migrates through the set of states along the manufacturing programme

Purpose-dependent IQ dimension	Addressed by product state concept	
Timeliness	The product state information and data properties are accurately stored and uniquely identifiable to an individual product through the checkpoint system and mapping	
Value-added	The goal of the <i>product state concept</i> is to derive new knowl- edge and support the increase of transparency through the manufacturing chain in order to support process and product quality improvements	
Completeness	The product state information and data should be stored as complete as possible within the set of relevant information. However, this depends also on the external circumstances like sensors, etc.	
Appropriate amount of data	The <i>product state concepts</i> main objective is to identify a set of relevant information in order to reduce the amount of information and data to be handled	
Relevancy	The <i>product state concepts</i> main objective is to identify the set of relevant information. This contributes to ensure that the data and information captured is relevant for the chosen purpose	

Table 4.1 Purpose-dependent IQ dimensions and their influence on the product state concept

and thus the population of products relevant to each specific manufacturing programme grows. This growing population of products represents product state knowledge, which can be used for manufacturing monitoring and analysis. In order to achieve the goal of supporting transparency and reduce complexity, a method of determining checkpoints for data capturing within the manufacturing programme has been developed as part of the *product state concept* (Wuest et al. 2014b).

In the next sections, different elements of the *product state concept* are developed, described and defined, starting with a definition of the product state itself.

4.2 Product State²

A manufacturing programme transforms raw material to final products through different value adding manufacturing processes in order to deliver to the customer the desired product. Consequently, the goal of every manufacturing programme is to add value to a product (Kalpakjian and Schmid 2009). Adding value in manufacturing implies physical transformation of the product (e.g., transformation of form, hardness, chemical composition, etc.) over the course of the manufacturing programme. The specific purpose of every manufacturing process and operation is to execute a part of the physical transformation of the product. Thus, the state of the product is changed at least with every (value adding) process or operation. Looking at a product by its state has the advantage to being able to describe and/or monitor this transformation. Therefore, looking at the product state along the whole manufacturing programme accumulates a complete picture of realized measures and transforming processes. The product state is the core of the product state concept. In this section the term itself and its background will be described. For a comprehensive understanding the usage of the term product state and similar notions in other domains are briefly introduced.

The term product state itself is sporadically used in different fields. In physics for example, the term product state is used in the research field of quantum systems (Verstraete et al. 2007; Chen et al. 2012; Haegeman et al. 2012). In the engineering domain, the term product state is generally accepted and adopted. However, certain researchers used the term in different domains, describing different circumstances. All of which have an overlap to a certain extent with the definition of product state used in this work. Musa et al. (2013) are looking at product visibility from a supply chain perspective and mention the physical state of a product, which is important to be tracked during the product lifecycle. In principle in line with the understanding of product state in this work, they focus mostly on logistics operations. However, they mostly look at perishable goods like food items and not at manufacturing products going through value adding

²The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2011a, 2012b, 2013a).

manufacturing processes. Anderl et al. (2013), when looking into designing smart products, use the term to derive the description of functional behavior. Toenshoff and Denkena (2013) present an interesting view on states connected to a product in the production engineering domain. Though they do not talk directly about the product state by itself, but connect the term state to a work piece in the research domain of CAD and simulation. They connect certain state variables to the state of a work piece, describing it under different circumstances, like e.g., after hard-ening. Together with Kumar (2002), who states "existing processes can be made intelligent by adding sensors to monitor and control the state of product being processed" (Kumar 2002) these usages of the term are in principle in line with the sense as it is understood within the *product state concept* presented here. However, both do not go into detail how they define the "state of product" (Kumar 2002) or the state of a work piece (Toenshoff and Denkena 2013).

Next, a definition of the term product state is described. It has been noted before, that the manner of describing a manufacturing product, e.g., gear made of steel, will be different from the description-style of a product designed to fulfill an aesthetic purpose (in addition to the functional purpose) in mind, e.g., a plastic rear mirror. At the same time, the individual describing a product influences the description based on, among other things, its own background, knowledge and experience. Therefore, the approach of describing it through its product state will help to align the descriptions in a commonly understood manner as well as increase transferability and usability of accompanying information by the addressees.

At the moment, the term product state itself is not sufficiently defined for the use in manufacturing programmes as planed in the *product state concept*. Looking at literature, the term '*state*' is frequently used in various areas like physics, chemistry, medicine or even philosophy. However, the transfer and usability of these existing definitions to the context of industrial production processes is not easily achievable. Nevertheless, understanding what stands behind different definitions and what the major differences are is important for the definition of product state in industrial production processes. One of the oldest and most common used definitions is the state of aggregation, which describes the simplified classification of material as solid, fluid and gaseous (Hüttig 1943). The example of the state of aggregation of water can help to understand two aspects which are universal over most state definition and will be important for the definition of product state at a later point. First, the state is time-dependent. Water can be at checkpoint A (t = 0) in a liquid state and at checkpoint B (t = 1) in a solid one (see Fig. 4.2).

Another aspect is the descriptive character of state. Within the research field of ICT the term state is used, for example, in UML to describe a constraint of an object during the lifecycle (Gogolla and Parisi-Presicce 1998; Schöning 2001). The state is then active when the constraint becomes true. Another way of using state in

ICT is with finite-state machines. Within this theory, a new state (t = 1) depends always on an original state (t = 0) and an input. Again, the time-dependency of the state occurs, plus the dependency of state on external input or change.

A closely related concept is the so-called 'state transition model', describing an existing state and actions which transform the original state in a new one (Chander et al. 2001). The state transition model is applied in different domains, e.g., in medicine to describe e.g., changes in tumor growth by its state (Sonnenberg and Beck 1993; Mei et al. 2004) or in defense application like intrusion control (Goseva-Popstojanova et al. 2001). The descriptive character of common state definitions is also pointed out within the field of thermodynamics in which the term state is clearly defined. In thermodynamics, the state of a system describes a situation in which all variables of the system can be allocated with a clear numerical value. These variables are called state variables. The number of state variables, which is necessary for a definite determination of state, depends on the inner structure and complexity of the system (Geller 2006).

This definition introduces variables with attributed certain numerical values. It also implies that the number of variables needed depends on the situation. In other definitions or descriptions of state, these variables are also known as properties, parameters, attributes, factors or characteristics. Within this dissertation, the term characteristics will be used from now on as a descriptive element of state. Looking at the thermodynamic literature on how characteristics can be defined, one can find them described as qualitatively definable and quantitatively measurable physical quantities (Geller 2006). Other fields take a more uncommitted approach and view characteristics as a qualitative describable value or appearance without the means to quantify it (Mayer-Bachmann 2007). For the product state in manufacturing, a combination of quantitative and qualitative characteristics will be used.

Based on elements of the above definitions combined with the requirements of the manufacturing domain, the product state can be defined as follows:

The product state describes a product at a certain time during the manufacturing programme or after through a combination of state characteristics. State characteristics are definable and ascertainable measures, which can be described in a quantitative or qualitative way, e.g., weight or chemical composition of the material. The product state changes due to external influence, for example machining or corrosion from checkpoint A (t = 0) to checkpoint B (t = 1) when at least one descriptive state characteristic changes (see Fig. 4.3).

The external influence causing the change of product state along a manufacturing programme can be linked to manufacturing process parameters (Chryssolouris and Guillot 1988; Monostori 2002) and other factors like environmental parameters, e.g., humidity or vibrations. The change or transformation of product state can be categorized in different categories. To illustrate, during a manufacturing programme the state changes to a certain degree with every manufacturing process as value is added. This change is intentional, but it also involves the repercussion of unintentional changes. For example, when cutting a steel pipe the intension is to reduce the length to a certain degree. However, wanted or not, at the same time the weight of the pipe will be reduced due to the cutting of material. This is a simplified example. In reality

Fig. 4.3 Schematic product state change due to external influence

many more characteristics change with every process in a manufacturing programme. This issue and the different categories and their relations to one another are investigated in the following Sect. 4.3.3.

A more complex example also emphasizing the importance of looking at a manufacturing programme as a whole is the straightening of steel bars after heat treatment in the steel mill. The changed geometry of steel bars due to distortion is often straightened out before delivery to customers. There are many reasons for this, such as ease of transportation, continued processing or simply the look and feel of the product. The main purpose is to clear the bending of the steel bars. Nevertheless, at the same time residual stress is caused which can lead to problems at a later stage of the manufacturing programme, e.g., after the final heat treatment. For this reason, it is important to think of what characteristics have to be known to describe the product state. This will be highlighted in the next section.

The *product state concept* allows for a description of the actual current state of a product during a manufacturing programme. The final goal of every manufacturing programme is to produce products of the desired quality and thus meet the customer requirements and expectations. The customer requirements for the final product may be seen as an ideal product state, the final product of the manufacturing programme has to reach. All final product states meeting this goal are 'good states' and all product states that do not inherit the expected ideal product state may be considered of 'bad state'. As this is not a black or white matter, there are several 'shades of grey' in between, depending on the degree of fulfillment of the customer requirements. In this example this is solely focused on the final product state after the product went through all stages of the manufacturing programme.

This may be overly simplified, as in reality the issue is more complex. First of all, there may be also "good states" and "bad states" including the gray areas in between, throughout the manufacturing programme, which represent not final product states, e.g., the product state a product inherits after operation XX before operation XY. Those and their implication on the final product state may be more challenging to distinguish. With the categorization as 'good' or 'bad' of the intermediate states depends additionally on other factors as on whether or not the state has the potential to be transformed towards 'good' by the end of the manufacturing programme. This can be achieved e.g., by adjustment of the process parameters of following manufacturing processes. This of course adds further to the complexity.

The second issue is, that customer requirements may include factors of which the fulfillment by the product shows only over the usage phase and may not directly be measured after manufacturing at the current state of knowledge. However, applying customer feedback and item-level PLM principles, these customer requirements may be included in the analysis of relations between states, intermediate states and state characteristics during the manufacturing programme. An approach how this information may be utilized and the newly generated knowledge be integrated in the *product state concept* is presented in Chap. 5 by applying supervised ML on product state data.

In this context the issue of selecting appropriate checkpoints for information capturing in manufacturing programmes represents a crucial prerequisite for the determination of states. It has been established that manufacturing systems are becoming more complex and with this development the challenges towards information management increase. With each step along the manufacturing programme, with each value adding process or operation, the number of subsequent product states increases. The product state concept relies on the availability of relevant information and data (of the product state) along the manufacturing programme at the right time (use of data). There is a lot of research available on when the relevant information must be available during a manufacturing programme. In certain areas of production with a specific purpose of monitoring, e.g., concerning cycle times, structured methods exist to determine checkpoints (Heinecke et al. 2011). However, determining the right time (capturing of data) within the manufacturing programme to capture the relevant information (product state) is more complex and is not yet sufficiently discussed by industry and academia. This theoretical background of information capturing timing in manufacturing programmes has been published in Wuest et al. (2013b).

Based on those findings, a more practical approach has been developed transferring the well-established stage gate model (Cooper 2008, 2010) from the product development domain to the manufacturing domain (for further details Wuest et al. 2014b). Concluding, the findings indicate that the determination and positioning of checkpoints in a manufacturing programme is a very individual task. Despite many practitioners placing checkpoints in between processes and operations, this can be appropriate but is not the solution for all cases (Shetwan et al. 2011). The findings indicate that common sense, in-depth knowledge of the manufacturing programme assisted by following certain rules, as presented in (Wuest et al. 2014b) may help to choose relevant checkpoints.

However, as in practice it is a continuous struggle to get enough data from manufacturing processes and given the computing power and Big Data developments, the question may have to be adapted from "how can we choose checkpoints in order to not get too much data" towards "how do we have to choose checkpoints in order to get as much data as possible". This issue will also be addressed briefly in the later Chap. 5.

4.3 Relevant State Characteristics

In the definition of product state in the previous section, state characteristics were introduced as the determining factor of product state in combination. In this section, product state characteristics are described in greater detail. Furthermore, a distinct focus is laid on state transformation, which occurs when at least one state characteristic changes due to external influence. Therefore, different categories are developed in order to categorize and further illustrate such state transformation in manufacturing programmes. Questions like 'what are relevant state characteristics' and 'how can they be identified' are discussed within this section, before the next section discusses the important occurrence of co-relations between state characteristics and their influence on state transformation.

4.3.1 Product State Characteristics³

The product state represents a combination of different state characteristics describing a product at a certain stage during the manufacturing programme. Product state characteristics are definable and ascertainable measures, which can be described in a quantitative or qualitative way, e.g., weight or chemical composition of the material. In this section, state characteristics are described in more detail. A categorization of state characteristics is presented for a technical product and an example including a selection of state characteristics is provided.

Theoretically all state characteristics describing a product one can think of could be included for a complete description of a products state at a certain time during a manufacturing programme. However, this is neither reasonable nor practical. There are various reasons for a selection, important ones being summarized under 'technical', 'economical' and 'knowledge' reasons. Therefore a selection is sensible under these circumstances. However, this does not mean, just as a state characteristic and/or its influence of others or the manufacturing programme is not known for example it is not important. The identification of relevant state

³The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2011a), Knoke et al. (2012).

characteristics, which describe a product as complete as possible at the time of description is one goal of this research and described in detail in the following Sect. 4.3.5. The identification is not a static process but a dynamic one, which implies that the set can change at all times. A trigger for such a change can for example be when new knowledge concerning the state characteristics, their relation, the manufacturing programme or the customer requirements is available. To create such new knowledge may be a result of the application of the *product state concept*, making it a continuous process.

State characteristics change, or transform, due to external influence. This can be through a manufacturing process or operation or environmental influence, like e.g., corrosion due to high humidity. When state characteristics are subjected to transformation through a process, the process parameters have a major influence. Whereas the process parameters are supposed to be planned and controlled, the environment is often not taken into consideration to the same extent. However, the environmental parameters can have a big influence on the output state as well, e.g., vibration during machining. In some manufacturing processes the environmental parameters are actively controlled, e.g., dust particles in chip manufacturing.

The process and environmental parameters are not the only influential factors when it comes to the transformation of state characteristics. Very important factors represent the relations between the state characteristics themselves. For one, the input state characteristic has a major influence on the output state characteristic: directly, as it determines what can be achieved and indirectly, as it influences the impact of other parameters like process and environment on the output state. Another factor are process intra- and inter-relations between different state characteristics which influence the output directly and indirectly through other parameters. This aspect gains in importance when looking at the manufacturing programme with different processes and operations. The process intra- and inter-relations of state characteristics and their influence on the *product state concept* are described in detail in the later Sect. 4.4.

Following, an example for state characteristics of a technical product is presented. The intention of this example is to present what state characteristics in an industrial environment and introduce the complexity inherit within just this single manufacturing process. Additionally, the example shall provide a perspective of the possible high number of possible state characteristics. A steel cylinder during the manufacturing process of machining is chosen to represent a simple example for such a technical product. It has to be noted that the more complex a product is, the more state characteristics and categories of state characteristics it may inherit. For the chosen example the product state characteristics can be clustered in three major categories (Brinksmeier 1991) (see Fig. 4.4):

- surface state characteristics: describe e.g., the geometry of the product
- peripheral-zone state characteristics: describe e.g., the structure of the peripheral layer which often differs form the internal structure
- internal state characteristics: describe e.g., the material and material related properties of the product

Surface state characteristics are defined by their form, their location and/or their dimension/measurement (in a coordinate system). Form and location elements are only required when the defined dimensions/measurements are not sufficient. This primarily applies to co-axiality, symmetry and running deviations (DIN EN ISO 1101 according to Keferstein 2011).

A product can be described by form elements which are based on standard geometries, e.g., cylinder. Location elements are described by the positioning of elements towards each other, e.g., direction, location and running. In Fig. 4.5 a summary of form and location elements is summarized (DIN EN ISO 1101 according to Keferstein 2011).

Dimensions and measurements of surface state characteristics can be linked to one or more form and location elements. In general there is a distinction between internal and external dimension. External dimensions e.g., describe the distance between two parallel plains or tangent planes, which represent external boundaries of the product body. Internal dimensions describe e.g., the distance between two parallel plains or tangent planes, which represent internal boundaries of the

product body. Figure 4.6 illustrates the difference between external and internal dimensions using a cylinder with a drill hole as an example (Westkämper and Warnecke 2010).

The surface state characteristics form, location and dimension may be understood as a rough description of a product and the micro geometry of the product surface as a more deliberate description. This is not a judgment on the importance but based on the dimensions of tolerances. The micro geometry focuses mainly on two characteristics: (surface) roughness and waviness.

The (surface) roughness derives mostly from a regular or irregular, short-wave deviation in shape whereas waviness derives in most cases from periodical longwave deviations in shape. In case of the exemplary machining process, (surface) roughness is triggered by process parameters like geometry and kinematic of the cutting tool and type of chipping. Waviness in this scenario is a consequence of e.g., disturbances and oscillations, which may occur during the machining process (König and Klocke 2008). The (surface) roughness and its parameters can be illustrated through a profile, which can be compared to a lateral cut of the surface region (see Fig. 4.7) (Westkämper and Warnecke 2010). In Fig. 4.8, an exemplary selection of surface state characteristics is illustrated with no claim for completeness presenting three groups: 'coarse' characteristics, micro geometry characteristics and optical characteristics. There may be various other possible ways of grouping, additional groups and/or characteristics possible.

The peripheral-zone state characteristics and the internal state characteristics of a technical product influence various parameters, which are often relevant in accordance with customer requirements like endurance and reliability. In the following paragraphs, these categories will be presented within a similar scenario of a cylinder during the manufacturing process of machining.

The *peripheral-zone state characteristics* of a technical product are determined by the entity of the physical and chemical characteristics of the peripheral-zone. Among those characteristics are the microstructure, hardness, cohesiveness and residual stress (Brinksmeier 1991).

The microstructure is a grain structure, which may have an influence on transformations of mechanical strength and hardness. The hardness is e.g., being measured by a micro hardness test (DIN 55676) in the peripheral-zone (ca. 3 mm distance to the surface) using a test load of 1, 0.1 or 0.05 N (Vickers test). With

Fig. 4.6 External and internal dimension (exemplary) (Westkämper and Warnecke 2010)

Fig. 4.7 Profile illustration of a product surface (ad. from Westkämper and Warnecke 2010)

Fig. 4.8 Selection of surface state characteristics with focus on machining processes

increasing distance from the surface towards the core, the hardness is decreasing. This is one of the reasons for the differentiation between peripheral-zone state characteristics and internal state characteristics. Residual stress is stress that comes into effect without influence of external force(s) and thus loading stress. The degree of oxidation resistance and/or corrosion resistance is to a large extent depending on the peripheral-zone of a product and describes the resistance against influence of external factors like e.g., air, water or chemicals. Among peripheral-zone state characteristics or at least has an overlap depending on its size: the crack. A crack is a locally distributed separation with limited width but often of considerable length. It can be caused by e.g., internal and/or external stress (Söhner 2003).

Summarizing, peripheral-zone state characteristics may have an influence on the functional properties and therefore the functions and fulfillment of customer requirements of a product (König and Klocke 2008).

Internal state characteristics are state characteristics located within a product. Products are composed of basic materials, being elements of the periodic table. The smallest parts of those elements are atoms, which consists of a certain amount of elementary particle, thus distinguishing the different elements. The atomic arrangement in a solid-state body can be amorphous or crystalline. In a crystalline state the atoms (molecules) are arranged in a periodical, spatial mesh (Seidel and Hahn 2010). Internal state characteristics reflect the characteristics of the basic material, which are comprised in a product. In a technical product like the chosen steel cylinder, these characteristics can be categorized in chemical, mechanical and physical characteristics (Brinksmeier 1991). In Fig. 4.9 the categories and selected internal state characteristics are illustrated.

Chemical state characteristics of a material can be described by the type, size, arrangement and orientation of the atoms or metallographic constituent (Schatt and Worch 2003). The chemical composition and structure of a solid-state body have a strong influence on other internal state characteristics. The mechanical and physical characteristics are determined by the base grid as well as by type, number and location of grid imperfection/defects and grid contaminants (Seidel and Hahn 2010).

Mechanical state characteristics are determined by the behavior of the material towards strain and stress by (external) forces and/or momentums, e.g., cohesiveness and viscosity. They are defined by specific values, which are established through e.g., a tensile test. Among the mechanical characteristics are e.g., stiffness, wear resistance and fatigue strength (Schatt and Worch 2003).

Fig. 4.9 Selection of internal state characteristics and categories

Physical state characteristics represent substance-specific values, which are derived through measurements and experiments. The characteristics of the material are not changed through the measurement or experiment. Among physical state characteristics are e.g., mass density [Kg/m³] and thermal conductivity [S/m] (Seidel and Hahn 2010).

Additional to the above-presented categories of internal state characteristics there are certain characteristics, which may be important for the manufacturing programme and are based on the internal structure but do not fit the above categories. Among those are e.g., sinter ability, weldability or castability (Reuter 2007).

It is important to acknowledge that there is a very large number of state characteristics available to describe the state of a product. However, it can be assumed that certain 'higher level' product characteristics exist among them. Their 'importance' or 'relevance' is based on their relation towards the final product state ('good' or 'bad'). Various parameters, e.g., the aforementioned reliability, may influence the determination of relevance for these state characteristics. These relevant state characteristics are discussed in further detail in Sect. 4.3.4. However, looking at the possible process intra- and inter-relations, it is important to distinguish between correlation, which is a statistical relationship between variables, and causation (causality), referring to an event (e.g., change of variable) being the consequence of another (e.g., process parameter). This is further detailed in Sect. 4.4. The influence of these relevant state characteristics for the application of subsequent application of ML techniques and the question of correlation or causation is further investigated in Sect. 5.3.

In this section product state characteristics were introduced as being part of a product state description. Next, the transformation of a product's state along a manufacturing programme is illustrated. In order to make the theoretical construct more comprehensible, the example based on a manufacturing process 'machining' introduced above is being continued with a focus on state transformation.

4.3.2 Product State Transformation

The previous sections introduced the product state itself, state characteristics and briefly mentioned the change of state/state characteristics due to external influence during manufacturing programmes. It has been established before that the goal of every manufacturing programme is to add value to the product (Kalpakjian and Schmid 2009) with each process or operation by transforming its product state (see Fig. 2.2). In this section, this change of state, from now on referred to as transformation of state, will be described in detail.

At first the difference of the product state transformation and the transformation of individual state characteristics has to be discussed. Whereas the product state transforms as soon as a single, individual state characteristic changes according to the definition of product state, not every individual state characteristic changes when the product state transforms. The extent of how many state characteristics transform can vary theoretically from one to all of them. Most of the time the number of changing state characteristics will be in between these two extremes.

The state transformation is influenced by different factors. These factors can be internal or external. So can e.g., the environmental conditions of the manufacturing process have an influence on the transformation of state. An important factor are the process parameters. They determine to a large extent the outcome of the process. The influence can be directly or indirectly, which is detailed in Sect. 4.4.

Next, the influencing factors and their direct and indirect impact on state transformation are presented based on an example. This is due to the otherwise sheer endless number of possible factors. A concrete example provides boundaries within the descriptions and allows the reader to connect the description to previous elaborated information. The example continues based on the previously introduced example around the manufacturing process 'machining'. A selection of manufacturing process parameters of 'machining' with an influence on the state characteristics and their transformation are presented in the following paragraphs. Even though the presented selection has no claim for completeness, it again provides an indication and highlights the complexity already inherited by a single manufacturing process. Projecting this example on a whole manufacturing programme with multiple processes and operations and additional cross-process relations, the overall complexity and thus high-dimensionality of information needed can be envisioned.

Machinability is defined as the characteristic of a product to be machined under given conditions (DIN 6583). Therefore, machinability describes all characteristics of a product, which influence the machining process.

The machinability of a product has to be seen in relation to the chosen

- machining process (e.g., turning, drilling, milling, etc.),
- cutting material (e.g., HSS, carbide metal, etc.) and
- process parameters (e.g., cutting rate, feed rate, cooling, etc.).

The machining process realizes plastic and elastic deformation of the product. The cutting tool penetrates the surface under the application of energy and separates the chips from the product. There are different machining processes, in this case the machining process 'turning', a process with geometric defined cutting edges, will be used. The basic principles can be transferred to the similar other machining processes e.g., drilling, milling and broaching (Westkämper and Warnecke 2010).

In Fig. 4.10 a selection of influencing factors of the transformation are presented. The factors are firstly structured into input and output variables. *Input variables* summarize system variables and manipulating variables. The system variables consist of elements of the manufacturing process, which are fixed, at least for more than one iteration. This can be the model of the turning machine used or the type of clamping system (e.g., three jaw chuck). The *manipulating variables* on the other hand may change depending on the machining plan for the product. They may be adjusted manually or automatically through a programme. *Output variables* condense process variables and effect variables. *Process variables* are directly derived from the manufacturing process like occurring forces, the processing power or temperature. The *effect variables* present the results of the machining process

Fig. 4.10 Variables of machining processes (based on Denkena and Tönshoff 2011)

Fig. 4.11 Example of process parameters with influence on turning process

concerning the product (the new product state/state characteristics), machine (e.g., wear, temperature), tool (e.g., wear) and cooling lubricant (e.g., temperature, contamination and chemical transformation) (Denkena and Tönshoff 2011).

Looking at the different variables, the system variables, manipulating variables, process variables and partly the effect variables are summarized under process parameters from this moment on. Only the product describing effect variables considered product state information. In Fig. 4.11, a selection of manufacturing

process parameters with a known influence on state transformation during the turning process are summarized. These process parameters with a known influence on the transformation of state during the turning process do not reflect all influencing factors. Even so it would be ideal to only focus on independent variables and thus causation rather than correlation this currently not possible. For example, the product state prior to the focus manufacturing process influences the process parameters directly and indirectly, and thus the state transformation. It is important to note that with 'prior to the manufacturing process' not only the product state before that along the manufacturing programme may have an influence (Sect. 4.4).

4.3.3 Categorization of Product State Transformation⁴

After the previous section detailed the transformation of state and influencing external factors, this section presents the different categories of product state transformation. Hereby, the focus is on possible challenges associated with the state transformation in manufacturing. Different categories of state transformation are established and illustrated. It is important to understand, that the categories are not exclusive. A state transformation and its influence on the different state characteristics and the product state itself may be described by more than one category. The categories of state transformation mostly focus on transformation of individual state characteristics. The categories of state transformation are established from the perspective of the process manufacturing programme owner and not from a universal perspective, e.g., some state transformations may be known to person A but not to person B. One has to understand that the aforementioned perspective is only valid for a certain point in time, as the population of state and the state transformation could be of dynamic nature and thus change over time. Also, as it is described later in this section, the knowledge of the population and state transformation is rather limited today. These indicators present already at this stage arguments for the later application of ML algorithms within this context (see Sect. 4.5.2).

At first, a crucial category of state transformation directly connected to the main goal of a manufacturing programme, create added value to a product (Kalpakjian and Schmid 2009), is introduced. This category focuses on the issue if the state transformation is *intentional* or not. This is related to the agreed upon quality definition for this research, connecting quality to the fulfillment of requirements. An example for this transformation categories is the following: In a manufacturing programme as described in Fig. 2.11 the last manufacturing process, heat treatment adds value to the product by changing the hardness of the product to meet the

⁴The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2011a, b, 2012b, 2013a).

customer requirements. The transformation of the state characteristic 'hardness' during the manufacturing process is intentional as it represents the planned output, a product with a higher hardness than before. A change of geometry is not the main goal of the process 'heat treatment' but can occur nevertheless during the process. This may be considered a *non-intentional* state transformation. It may be the case that a manufacturing process has only one intentional state transformation. This especially is often the case for manufacturing operations. However, there are manufacturing processes, which target more than one intentional state transformation. An example for such a manufacturing process is 'grind hardening', which targets the state characteristics 'hardness' and 'surface roughness' simultaneously (Brinksmeier and Brockhoff 1996; Brockhoff 1999).

Another category, very closely related with the one described above as intentional, can be described as *planned*. Planned state transformations are transformations of state characteristics, which are anticipated and thus 'planned' by the process owner. Whether or not these transformations are contributing to the goal of adding value to the product and fulfill the customer requirements is not in the focus of this category. The importance lies that the process owner is aware of the change and may thus reacts accordingly to reach the quality goal of the manufacturing process. As long as state transformation occurs as planned, the output is meeting the quality goal (for the state characteristic in the focus). As soon as a state transformation, which is *not planned*, occurs during a manufacturing process or operation, the outcome may vary from the quality requirements and thus jeopardize the quality goal. It has to be understood that this is an idealized scenario as when taking into account the other categories, the 'planning' based on e.g., customer requirements presents various pitfalls in itself. The customer requirements may be wrong, inaccurate or misunderstood. Also it may be that the transformation of customer requirements into a product concept can be wrong, inaccurate or misunderstood and thus the derived planned transformation may be problematic to begin with. Furthermore, the planned state transformations may not be possible disconnected from others, making this categorization a merely theoretical accentuation. Nevertheless the dynamic nature of state transformation is highlighted again.

Some state characteristics are not considered relevant and thus not part of the customer requirements. This is unveiled in a later section focusing directly on relevant state characteristics. For an example of planned state transformation, the above example of the manufacturing process 'heat treatment' is utilized again. As stated above, the intentional state transformation of this process is to change the 'hardness'. If a state transformation is intentional, it is always planned. However, if a state transformation is planned, it is not necessarily, even mostly not, intentional. During heat treatment, besides the hardness, other state characteristics may change. One of these is the geometry of the product, which may change during the heat treatment process and is not intentional. However, process planers are aware of the transformation, which will occur and thus plan it accordingly. This is for the 'plan-able' geometry change, which does not involve geometry changes due to distortion for example. As introduced before, distortion is a common challenge occurring regularly during heat treatment. However, state transformation, which is

not planned, is not necessarily not desirable. An example for an unplanned state transformation, which is considered desirable, occurred while performing repairs on 30l beverage KEG containers. The case was that the top of the KEGs was deformed and was to be repaired by means of reinstating its original form by a specially designed machine preforming a rolling process. Whereas the planned state transformation was to change the geometry, the physical characteristics of the KEG where also transformed. Through the rolling process, the hardness of the material changed which was not planned but represented a desirable outcome of state transformation.

Today, many practitioners and academics are aware of challenges linked to distortion during heat treatment. The state transformation of geometry linked to distortion is known even so it is not planned. This represents the next transformation category. This category describes state transformations, which occurrence is known to the process owner. State transformations, which have no influence on the customer requirements, fall, e.g., under this category. This can be a change of color during the heat treatment process. The process owner knows a change of color may occur but he does not plan with it, as it does not have an effect on the product quality in this example. The known state transformations are the largest group and all planned and intentional ones are always also known. The unknown state transformations are a very important group and focus area within this research. As they are unknown, for whatever reasons, the amount cannot be quantified. However, it can be assumed that it is a very large number of state transformations that happens which are unknown by the process owner. Within this group certain state transformations may be of potential benefit for the process and product quality if they were known, planned or even intentional. However, it is a challenge, especially by looking at the whole manufacturing programme and the cross-process/operation relations, to identify these state transformations with this potential. In the later sections, the identification of currently unknown state transformations and their impact on the process and product quality will be investigated further.

As was established in the previous paragraphs, the few intentional state transformations are a sub-group of the larger group of planned state transformations. Those are in turn a sub-group of the largest group of known state transformations (see Fig. 4.12). However, these groups are not fixed and the state transformation affiliation to a certain category can change depending on newly acquired knowledge or changes in e.g., process, environment or customer requirements.

There are two additional categories, which are important to categorize state transformations. One is describing if a state transformation is *measurable* or not. It is implied that measurable in this sense means the state characteristic that changes can be measured and the delta between input and output value linked to the process. If a state characteristic is measureable depends on various factors, like economic (e.g., being to expensive to measure), technical (e.g., not possible to measure without destroying the product) or knowledge reasons (e.g., the state characteristic is unknown, therefore cannot be measured). Intentional state transformations are mostly measurable as they represent the output defining the quality

of a process. The same stands true for planned state transformations; even so in this category it may be more often the case that the right output is assumed. For the rest of the known state transformations it is open it depends on the individual case if they are measurable or not. Interestingly, unknown state transformations may be measurable as well and may even be measured during the process. However, without knowledge of state transformation this information cannot be applied effectively.

The category '*measurable*' is a very crucial one, as it represents a basic requirement of the next state transformation category *controllable*. Being measurable is a requirement in order to control a state transformation. Thus, every state transformation considered controllable is at the same time measurable. However, not every measurable state transformation is necessarily controllable. 'Unknown' state transformations (to the process owner), even so they might be measurable and actually being measured during the process, are not controllable as the contextual knowledge is missing which allows the process owner to connect the measurement to the state transformation.

The presumably large number of unknown state transformation (see Fig. 4.12) does not mean that these state transformations and the state characteristics involved are not relevant. Looking at the whole manufacturing programme may even increase the likelihood of a necessary change of the categorization of certain state transformations as the influence across process and operation borders increases the need for knowledge about occurring transformations and transparency.

The application of pattern recognition described in later sections contributes to the goal of identifying and re-categorizing certain state transformations form unknown to known, planed or even intentional from a manufacturing programme perspective. Given the large number of assumed unknown state transformations and their potential impact on process and product quality this identification of currently unknown state transformations is one of the goals of the *product state concept* and will be described in more detail in following sections.

4.3.4 Relevant State Characteristics⁵

The product state of an individual product within a manufacturing programme may be theoretically described at any time through a combination of state characteristics. Despite this deterministic approach, holistic knowledge concerning all state characteristics of a product during a manufacturing programme is neither worthwhile nor feasible. The question remains how the different sets of information can be described to distinguish them.

Looking at those product state information from a theoretical perspective, three clusters of information/data sets can be identified: complete; relevant and individual (see Fig. 4.13). The "complete" cluster resembles all information needed to describe every detail about the product and process, may it be relevant to achieve the desired outcome or not. This is however a purely theoretical set, as it contains a large amount of information with no impact on the manufacturing programme and thus the final product quality.

The "relevant" cluster on the other hand contains all information that is in one way or another relevant for the whole manufacturing programme. The challenge to identify a way to obtain this set of information is in the focus of this dissertation. The individual set of information is a subset of the relevant information set, representing the information relevant to the individual process. In order to simplify, in this and the following paragraph just the manufacturing programme and the manufacturing processes are used for illustration. Manufacturing operations, nevertheless just as important are not considered in this case to not increase complexity unnecessarily. However, the principle can be applied accordingly to operations.

The "individual" cluster resembles a subset of the relevant cluster as it is basically the relevant information for an individual process whereas the relevant cluster contains all needed information for the whole manufacturing programme. The diverse nature of the individual cluster is highlighted by the different shapes of the cluster in different processes in Fig. 4.13. Individual information is important for monitoring and control of manufacturing processes in practice (see Fig. 4.14). However, as this cluster is contained within the relevant information and the focus is on a holistic concept for a manufacturing system, within this dissertation the focus remains on the relevant information.

Practical reasons for not considering a state characteristic can be divided into three groups. They can either be technical (e.g., not measurable or measurable

⁵The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2011a, b), Wuest and Thoben (2012), Wuest et al. (2012b), Knoke et al. (2012).

Fig. 4.13 Theoretical information/data clustering of product state concept

Fig. 4.14 Individual set of information for manufacturing process adjustment

by destroying the product), financial (e.g., measurement is too costly), or caused by a knowledge gap (e.g., state characteristic is not known). However, some state characteristics may be characterized as relevant regarding their impact on the manufacturing process and the product state. It is therefore necessary to describe the product state based on an individual selection of relevant state characteristics. The accentuation is on individual because relevant state characteristics cannot be identified over all products and processes once and for all (Brinksmeier 1991).

One way to identify relevant state characteristics is whether they include crucial information needed for each manufacturing process or operation. Therefore, a product state characteristic that neither impacts any manufacturing process or

Fig. 4.15 Exemplary parameters with influence on relevance of state characteristics (example, no claim for completeness)

operation of the manufacturing programme nor influences other product state characteristics may be disregarded. Knowing what the relevant state characteristics do may improve transparency and increase knowledge of the manufacturing programme itself. The state characteristics are often not independent, but relate to each other and form a complex (manufacturing) system.

There are many parameters influencing the relevance of state characteristics during a manufacturing process, e.g., type of product, type of material, type of production process, machinery used, application area of the product (e.g., low-cost or high-quality) and many more (see Fig. 4.15). Ideally, the relevance reflects not only the manufacturing programme, process and operation but the whole product-life-cycle. The set of relevant information is derived for the whole manufacturing programme, not individual manufacturing processes or operations (see Fig. 4.13).

In the following section, an approach to identify a set of relevant state characteristics is presented, before the next section focuses on the understanding and structure of relationships between product state characteristics, which represent a major challenge for the identification.

4.3.5 Identification of Relevant State Characteristics

In this section the question of how a set of relevant state characteristics may be identified given the previously illustrated understanding of product state, state characteristics and state transformation. The starting point is in accordance with the quality definition the goal of fulfilling the customer requirements (assumed they are transparent). As stated before, the set of relevant information has to incorporate the whole manufacturing programme (see Fig. 4.13).
The first attempt to identify a set of relevant state characteristics of a manufacturing programme is focusing on deriving it by looking into customer requirements/quality of the product and the transformation through processes and operations. As it was mentioned before, there are different categories of state transformation, with the intentional transformation being the targeted one. However, with each intentional transformation a variation of other state transformations goes side by side. Therefore the first target-area of relevant state characteristics is *state characteristics, which transform at least once during the manufacturing programme*. The reasoning behind this target-area is that the transformed state characteristics are relevant as they translate the manufacturing process effect and the development of the quality parameters.

The second target-area is connected to relations between state characteristics. *State characteristics, which are related to the target state characteristics* are considered relevant throughout the manufacturing programme. The reasoning is, that in order to reach the quality goal and thus the customer requirements, the target state characteristics (and thus target state) have to be met in a way to ensure the functionality expected from the customer. All state characteristics, which are related to these, have an influence on the transformation and the manufacturing programme output.

The third target-area is focusing on the process and its influence on the transformation. *State characteristics, which have an influence on process parameters,* are considered relevant. State characteristics are also influenced by process parameters, however, that case is reflected in the first target-area 'state transformation'. This reflects the importance of the process parameters on the transformation of state. As with the other target-areas, the perspective is the whole manufacturing programme and thus cross-process/operation relations.

In Fig. 4.16, the above-introduced target-areas used to identify relevant state characteristics are put into context to each other and all theoretically available state characteristics of a product throughout a manufacturing programme. The illustration of the figure suggests that the number of state characteristics in the different target areas is of equal number. This is not necessarily the case; the numbers may be of similar size or vary significantly. Also the boundaries between the set of relevant state characteristics are not fixed. As mentioned before, there are several circumstances where there may be a knowledge gap, which can lead to a smaller than theoretically possible selection. Especially given the complex cross-process/ operation intra-relations which will also be discussed in the following section. The figure is just a single snapshot in time before the boundaries change due to e.g., newly acquired knowledge about the process or a change in the set up.

To combine the state characteristics of the three target areas towards a set of relevant state characteristics, a two-stage process is envisaged (Fig. 4.17). All known state characteristics are an input in the three target areas during stage 1. In target area 1, the influencing factors are important to determine changing state characteristics. They may be mapped using a modified Ishikawa diagram (Fig. 4.18).

In order to identify a state characteristics that transform during the manufacturing programme, the input state $Xn_{(t=0)}$ and output state $Xn_{(t=1)}$ are compared. If

Fig. 4.16 Theoretical framework of the set of relevant state characteristic

Fig. 4.17 Two-stage process to identify set of relevant state characteristics

Fig. 4.18 Ishikawa diagram in order to connect influencing factors to state characteristic

they are not equal of value a transformation of state is assumed and the characteristic is considered relevant in target area 1 (see Annex Fig. A.12).

Identifying relevant state characteristics according to target area 2 during stage 1 involves the process intra- and inter-relations of the target state characteristics and other state characteristics along the manufacturing programme. This is done without adding a qualitatively (high—low) rating or quantifying the process intra- and inter-relations at this point. Just the existence of a process intra- and inter-relation is considered (see Annex Fig. A.13). However, given the existing knowledge gap of e.g., intra-relations (cross-process) between state characteristics, this task may be challenging.

Target area 3, identifying relevant state characteristics by their influence on process parameters along the manufacturing programme, is based the existence of process intra- and inter-relations. The difference to target area 2 is that the process intra- and inter-relation is not between state characteristics themselves but between state characteristics and process parameters. Again, given the existing knowledge gap of e.g., process intra- and inter-relation between state characteristics and process parameters, this task may be considered challenging (see Annex Fig. A.14).

After identifying the relevant state characteristics for the different target areas in stage 1, the identified relevant state characteristics are combined in stage 2 to create a comprehensive set of relevant state characteristics for the specific manufacturing programme and product (see Annex Fig. A.15).

In this section a preliminary approach to identify relevant state characteristics was presented. By doing so, the importance of the process intra- and inter-relations between states/state characteristics and states/state characteristics and processes/ process parameters is highlighted. Understanding these process intra- and inter-relations may be one lever to reach the set goal and increase the number of known relevant state characteristics and thus the transparency of the manufacturing programme. In the following section the process intra- and inter-relations are discussed in more detail before and different possible ways of describing and illustrate them are presented.

It has to be made clear that the identification of relevant state characteristic is not a one-time process, but a continuous effort to create a more complete set of relevant state characteristics describing the product state of a certain product along a specific manufacturing programme.

4.4 Process Intra- and Inter-relations Among State Characteristics

In this section, the process intra- and inter-relations of state characteristics are discussed. In this theoretical discussion, the term process intra- and inter-relations is chosen in order to reflect the general nature of the relationship in this context. The differentiation between the general relation, correlation and finally causation (causality) is not in focus here. Process inter-relation focuses on the relationship of

state characteristics and/or process parameters within a process/operation, whereas process intra-relation highlights the cross-process relationships of the same kind occurring within multi-stage manufacturing programmes. However, this differentiation comes into focus in the actual application of ML techniques in the following Chap. 5. In the previous section the importance these relations in regard to understanding the mechanics of product state transformation along a manufacturing programme has been pointed out. In a manufacturing system the different components are related others. Thus, relations exist between states and consequently between state characteristics. These relations can be of various form and character, direct or indirect, of importance within a single manufacturing programme.

Just, imagine an illustration of relations between a whole selection of relevant state characteristics and processes (process parameters) that provide a solid base for an information management system supporting in process quality control (Dijkman 2009). The more processes and operations and relevant state characteristics that have to be considered, the more a possible illustration becomes complicated. In other words, the dimensionality of the problem increases as the number of the state characteristics increases. As a result, this will increase complexity instead of helping to increase transparency.

Next, the occurring relations between state characteristics along a manufacturing programme and ways of describing them are presented before visualization of relations within a manufacturing programme are introduced.

4.4.1 Describing Process Intra- and Inter-relations of State Characteristics⁶

In this section, the different forms of describing relations between state characteristics during a manufacturing programme are analyzed. At first the difference between an interrelation and a relation are depicted on in the following paragraphs.

Figure 4.19 shows product states and state characteristics (SC) along a multistage manufacturing programme. Product states frame manufacturing processes responsible for the state transformation. The product is described by discrete product state characteristics. The term relation describes the general connections between state characteristics. These relations can either be one-directional (dependent) (see a, c, d in Fig. 4.19) or bi-directional (interdependent) (see b in Fig. 4.19). The parameters of the manufacturing processes (e.g., cutting speed, damping pressure) influence the transformation of state characteristics. As shown in Fig. 4.19 the manufacturing processes are framed by preceding and subsequent product states.

⁶The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2012b), Knoke et al. (2012).

Fig. 4.19 Visualization of process intra- and inter-relations between state characteristics

Interdependencies (see b in Fig. 4.19) can only occur within a definite product state while dependencies (see a, c, d in Fig. 4.19) cannot go against the process flow, so any potential shapes of the dependencies and interdependencies can be reduced. This is based on two axioms regarding the temporal restrictions of these connections:

- Dependencies can never go against process flow, since a state characteristic always has an existing value that only past or present effects can influence.
- Interdependencies can only exist between state characteristics of the same state and time, since a future effect cannot impact the past.

If a decision within the manufacturing process is considered because of an upcoming event, it is in fact not influenced by the future event but by expected requirements and other information existing at the present time of the decision. For example: A car within a manufacturing process is painted red not because a customer is expected to react positively to this specific color at the moment of exchange, but because he had ordered a red car in the past, and this information was already useable during the manufacturing process.

As described before, a state characteristic is dependent on state characteristics of previous states. These cross-state, and thus cross-process/cross-operation relations can add up and may become increasingly complex. From an analytical perspective, the relations of state characteristics may theoretically be characterized as mathematical functions. For example, the dependency of a state characteristic SC1 on another state characteristic SC2 is expressed in the term SC1 = f (SC2). If interdependency be-tween these two state characteristics exists, they are described by a common function f (SC1, SC2). These functions can be described either by a mathematical term (e.g., the mass of a cylinder: $m = \rho * 1 * d^2 * \pi$) or a text (e.g., the overall error ratio is 3 % in the dayshift and 5 % in the nightshift).

If dependencies between three or more state characteristics exist, four different characteristics can be identified. These types are visualized in Fig. 4.20. In complex models, these types may appear in combination:

Fig. 4.20 Different forms of dependencies between state characteristics **a** discrete dependencies, **b** linked dependencies, **c** lined dependencies, **d** split dependencies

State characteristics with *discrete dependencies* (see a in Fig. 4.20) have independent influence on another state characteristic. This occurs on the condition of additional process parameters (x, y). Since SC3 within the functions SC3 = f1(SC1) and SC3 = f2(SC2) could be eliminated, therefore $f_1(SC1) = f_2(SC2)$ would imply a direct connection. This causes the need of additional process parameters, which influence each function SC3 = f1(SC1,x) and SC3 = $f_2(SC2, y)$. *Linked dependencies* (see b in Fig. 4.20) are another form of the connection between state characteristics. In this case, the combination of two or more state characteristics impacts another. If two state characteristics SC1 and SC2 influence SC3 within a linked dependency, they share an interdependency f1(SC1, SC2), and SC3 can be described by the common function SC3 = f1(f2(SC1, SC2)). The sequence of multiple dependencies is defined as *lined dependencies* (see c in Fig. 4.20). If the dependencies SC2 = f1(SC1)and SC3 = f2(SC2) exist, they can be merged into a function SC3 = f2(f1(SC1)). Finally a state characteristic can also influence two or more other state characteristics. These *split dependencies* (see d in Fig. 4.20) share a common origin and

Fig. 4.21 Optional visualization possibilities of multiple interdependencies

impact different state characteristics. E.g., the functions SC2 = f1(SC1) and SC3 = f2(SC1).

If three or more state characteristics share interdependencies, they may theoretically be described by a common function. Following this approach, the visualization of all connections is redundant and can be replaced by a chain of interdependencies, as shown in Fig. 4.21. This may significantly simplify a model.

4.4.2 Visualization of Relations⁷

In this section, the development of a visualization model of existing relations between state characteristics in a manufacturing programme is presented. The resulting three-layer model is introduced, looking at the whole manufacturing programme, the process and the individual state characteristic. Based on this, the development of the visualization approach is briefly discussed. These results are the basis for the following discussions of limitations and challenges of the visualization approach and consequently of the theoretical *product state concept* introduced to this point. The findings of this discussion are accordingly used in the concluding sub-section to derive requirements towards finding a suitable method able to handle the challenges and limitations of the theoretical approach.

The visualization is based on the previously introduced concept of linked state characteristics. This structure of the linked state characteristic provides two different approaches for application, both with a different perspective and goal. Whenever changes within a manufacturing process occur or have to be implemented, the model of state characteristic relations, when transferred to a manufacturing programme, can be applied. If the value of a state characteristic exceeds the acceptable range, the system might be used to create a model with all relevant influences on the state characteristic to identify the problem ('cause') (see a in Fig. 4.22). Alternatively, if a process parameter has to be changed, the visualization might be used for the opposite purpose: providing information about the 'effect' of the change (see b in Fig. 4.23).

Next, the basic principles of the *product state concept* is translated into a threelayer visualization before the application and benefits of the application of graph theory on the findings is briefly discussed based on the developed visualization model. First, the theoretical development and foundations of the complete threelayer model and subsequently each individual layer is presented. In order to put it into perspective, a short industrial example of the application of the model is discussed, which provides a first impression of the limitations, challenges and shortcomings of reaching the set goals in industrial practice of the theoretical *product state concept* modeling approach. These challenges and limitations are

⁷The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2012b), Knoke et al. (2012), Wuest et al. (2014a).

Fig. 4.22 Theoretical application of a modeling of relations between state characteristics depending on the direction of view \mathbf{a} cause of state transformation, \mathbf{b} effect of state transformation

Fig. 4.23 Relation of different model layers

discussed in greater detail in the following section as a basis for the definition of requirements for the solution to-be developed.

The visualization model is developed following guiding modeling principles (Becker 1998). Even though, these guidelines are sometimes criticized for its partly subjective criteria (Heinrich et al. 2007), they are established as a supporting and guiding framework for process modeling in different domains (Kobler 2010). The six main principles are: correctness, relevance, economic efficiency, clarity, comparability and systematic composition (Rosemann and Schütte 1997;

Becker 1998; Batini et al. 1992; Becker and Schütte 2004). For further detail refer to Annex Sect. A.3.1.

Besides the principle of clarity, the information density has a major impact on the systematic composition. The information density depends on the amount of to-be illustrated information (e.g., knots, edges, objects, notations) and the spatial dimensions of the model. As cutting information is not always possible without jeopardizing the goal of the model, the stated challenges may be faced by applying a cascading of information in respect of different diagrams with different levels of detail (Sarich et al. 2010). The visualization of the theoretical *product state concept*, contains the available information about the relation between state characteristics. Additionally is includes process parameters within a manufacturing programme. Therefore, the model may most likely become very complex and difficult to handle. To approach this issue, a model with three different hierarchical layers and accordingly, levels of detail may support the applicability of such an attempt by cascading, according to the above stated principles.

One possible approach is to split the model into a meta-model and two submodels (see Fig. 4.23):

- A *meta-model* that provides a general overview on all states and process steps with the aligned process parameters and state characteristics, along with the general process structure.
- A *state-model* that focuses on the relations of a single state or process step, and shows the relations of all process parameters or state characteristics of the focal state or process step.
- A *state characteristic-model* that visualizes all relations of a single state characteristic or process parameter, and may include the functions that describe its relations.

In the following elaboration, the focus is laid on the meta model (layer 1) as the main visualization option within the *product state concept* at this point. For further details on the state model (layer 1) and the state characteristics model (layer 3) refer to the Annex Sects. A.3.2.1 and A.3.2.2.

In accordance to the principle of systematic composition, a meta-model is chosen to ensure the abstract overview of the model and its purpose/goal. The goal of the *meta-model (layer 1)* is to provide an overview over the manufacturing programme structure and connect relevant state characteristics to the different states along the manufacturing programme. Additionally the meta-model is illustrating existing (known) process intra- and inter-relations. The visualization form is based largely on the BPMN (OMG 2010). This modeling annotation's strength is the clarity and intuitive nature of its symbols. However, the focus is laid not on the processes itself but on the product states before (input) and after (output). As the illustration of states is not represented in the original BPMN model, the symbols of 'events' are used, with the result of a bipartite graph (Weisstein 2011).

The goal and purpose of the meta-model is mainly to provide an overview of the structure of the manufacturing programme and its processes/operations with the process intra- and inter-relations between the state characteristics in the focus. Therefore, the activities and edges of the processes are represented in broken lines (see Fig. 4.24). Through this alternative symbol, the original symbol for activity of the BPMN model can be applied to the state characteristics in the focus and the process intra- and inter-relations can be illustrated through arrows. The operators for branch and merge can be applied accordingly.

The allocation of State Characteristics (SCs) and product states (states) is realized through a rectangular frame in the background. In this context, a colored contour is preferred to a framed contour as the additional lines may add to the inherit complexity within the model and the arrows. The size and position is dependent on the number and position of the state characteristics to be contained (see Fig. 4.25 left).

In case Process Parameters (PP) impact can be directly mapped to SCs, the processes can be visualized in similar form (see Fig. 4.25 right). In order to distinguish product states and processes, a deviating color scheme should be chosen.

In Fig. 4.26, the previously theoretically discussed different forms of dependencies between state characteristics (see Fig. 4.20) are visualized by the above stated principles of the meta-model. In this figure, relations (dependencies) are visualized by a single headed arrow, whilst inter-/intra-relations (interdependencies) use two headed arrows as a representation. In case the edges (arrows) have to overcome vertical levels, this shall be accomplished within the colored contour representing the state/process (see a in Fig. 4.26). It is important to distinguish between connected and independent relations (dependencies). If the dependencies are independent, this shall be highlighted by including the number of overlaying relations (dependencies) (see c Figs. 4.26 and 4.27). In case a relation (dependency) skips a state, the representing arrow shall be directed underneath the colored contour of the skipped state (see Fig. 4.27). Thus, even with overlaying relations (dependencies) the distinct meaning of the illustration is ensured, highlighting the independencies of the relation (dependency) again with a number.

With increasing complexity it may be sensible to exclude the (inter-/intra-)relations ((inter-)dependencies) in the meta-model, reducing the meta-model purpose to providing only an overview of state characteristics, states and processes.

In Fig. 4.28 an exemplary manufacturing programme is illustrated applying the developed modeling annotations of the meta-model. The process structure is represented by the broken lined symbols and edges and the states accordingly by the previously introduced symbols. The color contours in the figure connect the state characteristics to the existing states and the process intra- and inter-relations are chosen randomly in this example.

It can already be observed that even in this comparably simple model with just four state characteristics connected to each state with a reduced relation density, that the illustrated edges cannot be distinctly assigned without additional coloring (compare $SC_{(z3)}$ to $SC_{(v*1)}$ (in red) and $SC_{(z4)}$ to $SC_{(v*4)}$ in Fig. 4.28) or that a relation, skipping a state, crosses other edges (compare $SC_{(x3)}$ to $SC_{(z3)}$ in Fig. 4.28). This highlights that the main purpose of the meta-model may mainly be to providing an overview over the manufacturing programme, positioning of states within and the assignment of state characteristics to states. For more detailed modeling

4.4 Process Intra- and Inter-relations Among State Characteristics

Fig. 4.24 Symbols used in meta-model

of the process intra- and inter-relations within the manufacturing programme a sub model needs to be developed.

After the meta model and its development was described previously, next a brief industrial example of the application of the theoretical product state framework and the developed model is presented. The industrial case is the manufacturing programme of a SME, producing products for the automotive industry (1st tier supplier). The main value adding processes are machining (turning and milling) and subsequent balancing. The company produces a large

Fig. 4.26 Selection of occurring dependencies within the meta-model **a** split dependency, **b** inter-dependency, **c** discrete dependency, **d** linked dependency, **e** lined dependency

Fig. 4.27 Illustration of independent dependencies with skipped state

amount of identical products with high requirements towards product quality, as it is common in the automotive supply chain. The manufacturing programme and its processes are organized mainly in a job-shop production with a quality check at the end.

Before applying the visualization model, the process intra- and inter-relations and relevant state characteristics have to be analyzed. This demonstrates the first major limitation of the modeling approach in industry: the transparency and knowledge requirements towards the programme, the processes and the products are very high from the beginning. As in the case study, not all required information was available to the process owner, the modeling was undertaken under this

Fig. 4.28 Exemplary illustration of meta-model (layer 1)

information mismatch constraint. The goal was to analyze the manufacturing programme with its three processes and four states and create a transparent visualization based on the developed modeling approach with the knowledge available from the process owner and existent in literature.

The result of the case analysis is depicted in Fig. 4.29. Even though limited knowledge about relevant state characteristics, process influence and existing process intra- and inter-relations was available, the visualization became very complex from the beginning. Applying the different layers of the three-model was partly a failure due to the missing knowledge and thus difficulties to create a comprehensive model at the different levels. Especially the transfer functions descriptions were not available and thus the model was adapted to the local situation at the case company as can be seen in Fig. 4.29. The model was reduced and mainly the meta-model notation was applied.

Taken the above stated situation into account, the derived visualization is still very complex and it is questionable if it is clearly understandable. Due to the knowledge gap and thus incomplete nature of the model, its contribution towards increasing transparency of the manufacturing programme is questionable as well. The important finding within these limitations around the knowledge gap is, that just very few companies actually possess this kind of knowledge about their processes and products. The large majority, especially SMEs, will face similar challenges, as did the company in this case study.

However, the following findings are worth mentioning despite the problematic nature of the case. The modeling approach is largely based on modeling process

Fig. 4.29 Exemplary ind. appl. of meta-model (adapted from Wuest et al. 2013a)

intra- and inter-relations, which could be either between state characteristics within a state or in between different states along the manufacturing programme. As has been found, to model these relations in this context, large volumes of product and process data/information are needed beforehand and thus make this approach impractical, at best. Not all relations are known as discussed in previous chapters, not to mention a possible quantification of the transfer function. Furthermore, there are still various correlations unknown, especially when the whole manufacturing programme is in the focus (system view) as it is the case here and not just a single manufacturing process/operation. An example for such knowledge about correlation is the field of distortion engineering where after years of research still not all mechanisms are identified (Zoch 2012).

Much research and individual testing/experiments would be needed to get a first, partly satisfying result. At the same time this makes the approach inflexible, time-consuming and vastly expensive, thus, not applicable in a fast changing environment like industrial manufacturing. Theoretically, assuming that most dependencies, basically cause-effect relationships, between states or state characteristics are known, it still is very resource intensive to integrate them all in a model (see Fig. 4.29). The feedback of the application was, that even so some knowledge gain and awareness was raised within the company, the process of deriving the relations and inter-/intra-relations and cumulating them in a visualization model was too time-consuming and prone to failure. As soon as one parameter of a process within the manufacturing programme is changed or the product itself or even the environment changes, the whole model may have to be redeveloped. And, if a company has different production lines with different products (variants), the model has to be developed for each individual product/production line.

The combination of unknown process intra- and inter-relations, fast increasing complexity and high-dimensionality in modern manufacturing and the time-consuming and resource binding process are not reflected adequately in the achievable results of the visualization model as presented above. These are some of the major limitation of the application of the theoretical *product state concept*, which will be derived in detail later within this section.

Within the development of the *product state concept* the utilization of graph theory as a suitable addition was analyzed. However, similar to the previously introduced visualization, graph theory application within this context has certain limitations. The main limitation of applying graph theory in this context is the required level of understanding and knowledge about the manufacturing programme, its products and processes in greater detail. Unknown state characteristics and especially unknown process intra- and inter-relations may jeopardize any beneficial findings from the beginning as the initial model does not reflect the 'real world' in the detail needed. Another limitation is the effort needed to model all sub-graphs, depending on the complexity of the manufacturing programme, there can be a large number of sub-graphs needed, and the subsequent application of the algorithm. The algorithm design itself is a challenge but that is more a technical than a systemic one. Partly based on the first limitation raised here, the challenge to obtain an accurate set of (manufacturing) data for the purpose of modeling the manufacturing system is more of a general challenge for most analysis in manufacturing domain. In this case the added difficulty is the partly missing knowledge about what data is really needed. For a more detailed presentation of the graph theory application within the product state concept, please refer to (Wuest et al. 2014a).

In the next sections the limitations and challenges of the *product state concept* including its visualization, partly presented previously, will be summarized and elaborated in detail as a basis for the development of requirements towards a solution in this respect concluding the chapter.

4.4.3 Limitations of Describing Process Intra- and Inter-relations⁸

This section will focus on the findings of the previous sections on the limitations and challenges of describing process intra- and inter-relations and, indirectly, of the theoretical *product state concept* are presented.

Modern multi-variate systems have considerable complexity with high-dimensional data (Apley and Shi 2001; Zhang and Wang 2009) with unknown or unclear cause-effect relationships in the process(-es) and with non-Gaussian data distributions, at times exhibiting seeming chaotic behavior (Chou et al. 1998; Borror et al. 1999;

⁸The content of this section has been partly published in accordance with Universität Bremen (2007) in Wuest et al. (2013a).

Stoumbos and Sullivan 2002), categorical (Wang and Tsung 2007) or mixed (categorical and numerical) variables, and numerical data with different scales of measurement. Overall, the complexity and uncertainty inherit in most modern manufacturing programmes, can be considered the major challenge and limitations of the previously presented approach and also most conventional control and (off-line, predictive) scheduling approaches (Monostori 2002). The *product state concept* and the visualization modeling have an inherent high complexity and high dimensionality (in this context high-dimensionality is understood as a multidimensional system with a large number of dimensions) (Suh 2005; Lu and Suh 2009; Elmaraghy et al. 2012). Optimization tools in this field need to be able to handle a large number of dimensions and variables in order to be useful in practice. And a monitoring technique without assumptions on the parametric forms of distributions is important in this context (Monostori et al. 2006).

The importance of understanding process intra- and inter-relations of the product state for the theoretical *product state concept* was highlighted multiple times. However, even though the previous approaches were mainly just looking at the pure existence of process intra- and inter-relations, the identification is already complex. Given the experience with visualization and application of graph theory, the need for a more detailed description, be it quantitative or functional, of the process intra- and inter-relations adds to that already existing complexity. Determining if a relation is a correlation (or even a causal relationship) is knowledge hardly available, difficult to analyze but rather important to the concept.

Another limiting factor towards the successful application of the theoretical *product state concept* in practice it the matter of describing, mapping and illustrating the process intra- and inter-relations along a manufacturing programme is time consuming and may be considered un-flexible (Kano and Nakagawa 2008). With each change occurring within the manufacturing programme, the visualization model needs to be adapted or at least checked for applicability. Taking into account the agile nature of modern manufacturing, manufacturing programmes change often and quickly, with constantly changing products (states), processes (parameters) and environmental conditions highlight the challenge this issue presents for practical application under financial and time restrictions. After all, "the performance of manufacturing companies ultimately hinges on their ability to rapidly adapt their production to current internal and external circumstances" (Monostori 2002). The future solution ideally possesses or at least supports the adaptability and flexibility needed in today's manufacturing environment, maybe even in a (partly) automated processes.

A major limitation is the lack of ways to identify process intra- and inter-relations of importance, e.g., by adding a rating of the impact on the output quality. Especially as this is fundamental to the model generation and thus the generation of feasible results. The concept offers no support in identifying process intra- and inter-relations to this point. Availability of knowledge about existing process intra- and inter-relations is a pre-requirement. However, given the existing knowledge gap, this presents a major challenge when it comes to the applicability of the approach. This challenge is shared with many first principle models trying to explain why product quality issues appear. Kano and Nakagawa (2008) present an example for the steel industry, where "the relationship of operating conditions to product defects such as surface flaws and internal defects is not clear. The product qualities have been usually maintained by skilled operators on the basis of their experience and intuition. Although much effort has been devoted to clarify the relationship between operating conditions and product quality, the problem remains unsolved." Even though, the *product state concept* is not alone facing this challenge, a future solution should include ways to reduce the reliance on existing knowledge about process intra- and interrelations and ideally provide help in identifying existing process intra- and interrelations continuously throughout the manufacturing programme run.

It was mentioned before, a major challenge of most monitoring and control approaches in manufacturing is obtaining an accurate (quality) and sufficient (amount) set of (manufacturing) data. While in theory the issue of having too much data and thus having trouble to handle it is valid, in manufacturing practice, the lack of enough data represents a major issue. The reasons are manifold, starting by on a first account profane arguments like security issues of companies, over technical reasons to financial reasons, arguing that to obtain the data is too costly given the estimated benefits. Often the only possibility to apply a model or concept is to use the available data. Therefore, the future solution ideally makes use of all available manufacturing data of the manufacturing programme.

The whole theoretical *product state concept* is built around the relevant state characteristics and the process intra- and inter-relations to each other over the whole manufacturing programme. While the arguments for such an approach are strong in theory, given that precise first principle models are considered "the most reliable approach to quality monitoring" (Kano and Nakagawa 2008), in today's practice, with the limiting factors like knowledge gaps, complexity and high dimensionality as described previously, there are many challenges hindering the successful reach of the set goals with the theoretical concept.

Overall, describing relations between state characteristics along a manufacturing programme is very complex and, if applied in industry, requires in-depth understanding, high levels of product and process knowledge and a high transparency of product, process and effects in order to realize its potential. Theoretically, if an application of the approach is possible, it may help to increase the final product quality and process efficiency by supporting the early identification of problems and allocation of in-formation to the right addressee. However, establishing such a model is binding significant resources if possible at all due to knowledge available. Furthermore, it is not very flexible which does not help justifying the resources needed to create it. Therefore, other means of identifying, evaluating and utilizing product state relations and their impact on product and process quality are needed.

Based on these findings it has to be researched how the knowledge gap can be attacked despite the limiting factors of high-dimensionality and complexity within the product state framework. Ideally a suitable methodology should contribute to solve or at least support the development of the *product state concept* in the theoretically sketched way, e.g., helping decrease the knowledge gap of state characteristics and process intra- and inter-relations between states and state characteristics. Following,

the requirements of such an approach and specific goals are discussed by first looking into the NP complete nature of the problem, followed by a discussion of the suitability of ML techniques based on the requirements.

4.5 Requirements of State Driver Identification

In this section the requirements for a future solution are discussed based on the previously determined challenges and limitations. Before the subsequent presentation of the suitability of ML techniques for a future solution approach, the NP completeness of the *product state concept* and its fundamental description of state/state characteristics process intra- and inter-relations are analyzed. However, firstly the main requirements towards a future solution approach and their corresponding limitations and challenges are summarized in Table 4.2.

*			
Limitations/challenges	Requirements towards future solution approach		
High complexity of modern manufacturing programmes leading to <i>high-dimensionality</i> of data (in this context high-dimensionality is understood as a multidimensional system with a large number of dimensions)	Ability to handle high-dimensional problems and data sets with reasonable effort		
High complexity of modern manufacturing programmes leading to <i>multi-variate</i> nature of data	Ability to handle multi-variate problems and data sets with reasonable effort		
Lack of transparency and thus benefit for pro- cess owners once the model is developed as of the complex visualization of the model	Ability to reduce the possibly complex nature of the results and present transparent and concrete advice for practitioners (e.g., monitor state characteristic XX and process parameter YY at checkpoint ZZ)		
Fast <i>changing processes/inputs</i> (process parameters/input parameters/products/envi- ronment) require constant adaptation and remodeling	Ability to adapt to changing environment with reasonable effort and cost. Ideally a degree auf 'automated' adaptation to changing condition		
<i>Knowledge gap</i> of correlation/causality from the beginning	Ability to further the existing knowledge by learning from results		
<i>Limited availability</i> of relevant information (manufacturing data) and unlikelihood of companies to initially add extra measuring points	Ability to work with the available manufactur- ing data without special requirements towards capturing of very specific information at the start		
Describing process intra- and inter-relations and ideally correlation or causality towards each other is required for a successful model	Ability to identify relevant process intra- and inter-relations and ideally correlation and/or even causality towards each other		

 Table 4.2
 Limitations and challenges and resulting requirements of theoretical product state concept

After presenting an overview of the limitations and challenges of the theoretical *product state concept* and the requirements for a future solution approach, the next section will focus on the NP complete nature of the *product state concept*.

4.5.1 NP Complete Nature of Product State Concept

Given the many challenges and limitations and the resulting requirements towards a future solution approach, in this section the NP (nondeterministic polynomial time) complete nature of the optimization problem is discussed. Furthermore, examples of developed approaches handling similar limitations and challenges are briefly presented, indicating towards a possibility of utilizing AI and ML methods.

Based on the inherent complexity and high dimensionality of todays manufacturing programmes, the question is, if today's monitoring problems can be defined as NP-complete problems of complexity theory. Introduced by Cook (1971) in the paper "The complexity of theorem-proving procedures", the NP-completeness theory describes that NP-complete problems turn out to be not solvable in polynomial time. No efficient algorithm has been found to prove the contrary. The scientific majority believes that there is no such algorithm.

Lewis et al. describe a NP problem as a problem for which a valid (in polynomial time solvable) solution is being sought, but which may be solved (using the algorithms known so far) only in exponential time (Lewis et al. 1996). The traveling salesman problem is a classic example of a NP-complete case. Angel uses the example of the traveling salesman to show that local search algorithms in manufacturing are NP-complete (Angel and Zissimopoulos 1998).

A literature review shows that many combinatorial optimization problems in production (Nearchou 2011), such as scheduling, can be seen as NP-complete problems (Baker 1988). The same can be said about issues in resource allocation (Udo 1992), as well in flow-line and job-shop protocols (Lewis et al. 1996). Crama and Klundert provides additional evidence for the NP-completeness of scheduling issues, in terms of lower and upper bounds of processing windows (Crama and Klundert 1997). NP-completeness can be thus also found in assembly line balancing (Nearchou 2011) and in the just-in-time manufacturing (Baker 1988). Tiwari et al. cover NP-completeness at the organizational level and addresses specifically the distribution of tasks (Tiwari et al. 2009). However, Lewis et al. shows that reentrant flow protocols are solvable in polynomial time, which is one of the few exceptions in production-issues (Lewis et al. 1996). In order to handle such NP-complete problems, different algorithms and ML tools have been applied and shown promising results. So are genetic and biologically inspired algorithms are presented as a possible tool to overcome the hurdles of optimization problems in production (Aytug et al. 2003; Pham and Afify 2005; Laili et al. 2011; Ponsignon and Mönch 2012; Shetwan et al. 2011). Additionally, e.g., Brun treats the issues of self-assembly and their NP-completeness using DNA-computation (Brun 2008).

It has been argued that the limitations and challenges the theoretical *product state concept* faces indicate the NP complete nature of the optimization problem and thus the inability of first-principle models, like the visualization model to reach tangible solution (Kano and Nakagawa 2008). Mapping complexities and relationships as they occur within this context is practically impossible and analyses without a real multi-variate approach has little to no chance of success. Therefore, in the next section, the suitability of techniques, known for their ability to handle such issues in many cases, namely AI and ML is discussed.

4.5.2 Suitability of Machine Learning Methods

Before looking into the suitability of ML based on the previously derived requirements towards a future solution approach, the used terms are briefly introduced (for more detailed description see Sect. 5.1). ML is known for its ability to handle many problems of NP-complete nature, which often appear in the domain of intelligent manufacturing (Monostori et al. 1998; Srdoč et al. 2007).

The application of ML techniques increased over the last two decades due to various factors, e.g., the availability of large amounts of complex data with little transparency (Smola and Vishwanathan 2008) and the increased usability and power of available ML tools (Larose 2005). Nevertheless, the main definition of ML, allowing computers (artificial systems) to solve problems without being specifically programmes to do so (Samuel 1959) is still valid today. ML is connected to other terms, like Data Mining (DM), Knowledge Discovery (KD), AI and others (Alpaydin 2010). Today, ML is already widely applied in different areas of manufacturing, e.g., optimization, control and troubleshooting (Pham and Afify 2005; Alpaydin 2010) (for further details refer to Sect. 5.1).

Many ML techniques (e.g., SVM) are designed to analyze large amounts of data and capable of handling high-dimensionality (>1000) very well. However, accompanying issues like possible over-fitting has to be considered (Widodo and Yang 2007) during the application. If dimensionality proves to be an issue despite it being unlikely due to the power of the algorithms, there are methods to reduce the dimensions available, which claim to reduce the impact of the reduction of the dimensionality on the expected results (Kotsiantis 2007; Manning et al. 2009). The importance of using ML, in this case SVM (see Sect. 5.2 for details) is that dimensionality is not a practical problem and therefore the need for reducing dimensionality is reduced. This implies the possibility of being more liberal in including seemingly irrelevant information available in the manufacturing data that may turn out to be relevant under certain circumstances. This may have a direct effect on the existing knowledge gap described previously (Pham and Afify 2005; Alpaydin 2010).

Besides the capability of ML to handle high-dimensionality, it is also capable of handling mutli-variate problems and data sets. Examples of successful application include monitoring and control problems based on multi-variate data (Yang and Trewn 2004). The expected implications are similar to the ones described

above, allowing the usage of previously not considered data and information to identify new information and knowledge of the manufacturing programme.

Applying ML in manufacturing may result in deriving pattern from existing data sets, which can provide a basis for the development of approximations about future behavior of the system (Nilsson 2005; Alaydin 2010). This new information (knowledge) may support process owners in their decision-making or used to automatically improve the system directly. In the end, the goal of certain ML techniques is to detect patterns or regularities that describe relations (Alpaydin 2010).

Given the challenge of a fast changing environment in manufacturing, ML, being part of AI and inherit the ability to learn and adapt to changes "the system designer need not foresee and provide solutions for all possible situations" (Alpaydin 2010). Therefore, ML provides a strong argument why its application in manufacturing may be beneficial given the struggle of most first-principle models to cope with the adaptability. Learning from and adapting to changing environments automatically is a major strength of ML (Simon 1983; Lu 1990).

ML techniques are designed to derive knowledge out of existing data (Alpaydin 2010; Kwak and Kim 2012). Alpaydin (2010) emphasizes that "stored data becomes useful only when it is analyzed and turned into information that we can make use of, for example, to make predictions" (Alpaydin 2010). This is especially true for manufacturing, given the struggle of obtaining real-time data during a live manufacturing programme run with the technical, financial and knowledge restrictions. This may also have an impact on the previously discussed issue of positioning of checkpoints (Wuest et al. 2014b). Whereas, it makes sense to carefully select checkpoints under the perspective of what data is useful, it may be obsolete given the analytical power of ML techniques to derive information from formerly considered useless data. This may result in the ability to determine more states along the overall manufacturing programme. If this is beneficial is an open question, which has to be researched. Given the ability of ML to handle highdimensionality and multi-variate data, the technical side of analyzing the additional data provides no problem. However, in terms of capturing data it may still be a problem, specifically the ability to capture the data. Once the data is available, determining state drivers in very high-dimensionality situations is not considered problematic, nor is repeating it frequently. Table 4.3 provides a summary of the theoretical ability of ML techniques to meet the previously derived requirements of a future solution for the product state concept.

Overall, as Monostori et al. (1996) emphasize, "intelligence is strongly connected with learning, and learning ability must be an indispensable feature of IMSs". ML provides strong arguments when it comes to the limitations and challenges the theoretical *product state concept* faces. Given the above stated analysis, ML techniques seem to provide a promising solution based on the derived requirements. Most of the requirements are directly addressed positively by ML. However, a more detailed analysis of available ML techniques as well as their strengths and limitations concerning the requirements has to be provided. Most of all, the possible compatibility with the theoretical *product state concept* and its perspective on the manufacturing programme has to be discussed further before a final judgment can be given.

Requirements	Theoretical ability of ML approaches to meet requirements		
Ability to handle high-dimensional problems and data sets with reasonable effort	Certain ML techniques (e.g., SVM) are capable of handling high-dimensionality (>1000) very well. However, accompanying issues like possible over-fitting has to be considered (Widodo and Yang 2007)		
Ability to handle multi-variate problems and data sets with reasonable effort	ML is capable of handling mutil-variate problems and data sets. Examples of success- ful application include monitoring and control problems based on multi-variate data (Yang and Trewn 2004)		
Ability to reduce the possibly complex nature of the results and present transparent and concrete advice for practitioners (e.g., monitor state characteristic XX and process parameter YY at checkpoint ZZ)	ML may be able to derive pattern from exist- ing data and derive approximations about future behavior (Alaydin 2010). This new information (knowledge) may support process owners in their decision-making or used to automatically improve a system		
Ability to adapt to changing environment with reasonable effort and cost. Ideally a degree auf 'automated' adaptation to changing condition	As ML is part of AI, and thus be able to learn and adapt to changes, "the system designer need not foresee and provide solutions for all possible situations" (Alpaydin 2010). Learning from and adapting to changing environments automatically is a major strength of ML (Simon 1983; Lu 1990)		
Ability to further the existing knowledge by learning from results	ML can contribute to create new information and possibly knowledge by e.g., identifying patters in existing data (Pham and Afify 2005; Alpaydin 2010).		
Ability to work with the available manufactur- ing data without special requirements towards capturing of very specific information at the start	ML techniques are designed to derive knowledge out of existing data (Alpaydin 2010; Kwak and Kim 2012). "The stored data becomes useful only when it is analyzed and turned into information that we can make use of, for example, to make predictions" (Alpaydin 2010)		
Ability to identify relevant process intra- and inter-relations and ideally correlation and/or even causality towards each other	The goal of certain ML techniques is to detect certain patterns or regularities that describe relations (Alpaydin 2010)		

Table 4.3 Summary of theoretical suitability of ML methods based on derived requirements

Furthermore, there are many questions to be answered like how ML techniques may handle qualitative information.

In the following section, the derived research hypothesis is introduced based on the presented findings. This is to be seen on a more conceptual level before a suitable ML technique for the problem at hand is selected and the integration in the *product state concept* is developed and evaluated.

4.6 Derived Research Hypothesis of the Application of ML Within the Product State Concept

One Key Success Factor (KSF) of the application of the *product state concept* as described in the previous section is transparency of the existing process intraand inter-relations between states. The nature of these process intra- and interrelations can be described as resembling a correlation and/or causation/causality. *Correlation* can be defined as the dependence between two random quantities, e.g., X and Y. Kent also argues that the concept of information gain can be used to define a measure of correlation, if the dependence between the two quantities is modeled parametrically (Kent 1983). Causation/causality on the other hand can be described, in simplest terms, as judging if X causes Y, with these cause-effect relations being fundamentally deterministic (Pearl 2000).

Ideally it would be possible to select only independent variables thus focusing on causation/causality rather than correlation. However, that is not applicable given the existing knowledge gap, the large number of 'unknown' state transformations and the apparent complexity represented by high-dimensionality and multi-variate nature of the derived data. It is not even possible to identify all existing correlations between states and state characteristics within the manufacturing programme in reasonable time, making it applicable under the efficiency and flexibility constraints modern manufacturing faces today. Adding the existing impact of manufacturing processes and/or operations, environmental factors, etc. on state transformation, the identification of correlations or even causation becomes even more unlikely. In the long run, the differentiation between correlation and causation/causality may be relevant for the further interpretation and identification of state drivers along the manufacturing programme. Under the current circumstances, this objective is not achievable. However, in the long run it may be possible to arrange for the continuous learning of manufacturing programmes thus increasing the likelihood of discovering independent state variables and/or causal mechanism.

However, the previously introduced ML techniques, which allow for the analysis of such problems with similar constraints (limitations and challenges) offer a chance to reach the overall goal of increasing the transparency and increase the knowledge of the manufacturing programme. Applying supervised learning methods like e.g., a multi-variate classification method (SVM), allows to a large extent to include all available variables without having to define and map (known) influence or (inter-/intra-)relation. Using such a method, it should be possible to incorporate existing process intra- and inter-relations, known and unknown, within the analysis implicitly.

Within this research, the goal is to identify state drivers (or 'drivers of state') within a manufacturing programme. State drivers define the weighting of certain process parameters, state characteristics or events, which initiate a state

transformation from 'good' to 'bad' along the whole manufacturing programme. State drivers therefore are not only representing process intra- and inter-relations but all influencing factors causing a state to change (transform). Based on that, the main research hypotheses for this dissertation are presented.

(1) Hypothesis 1 'Capturing of process intra- and inter-relations by implication through ML'

Modern manufacturing programmes are complex and many process intra- and inter-relations between states, state characteristics and processes/operations cannot be mapped accurately due to increasing complexity and unknown relationships. Hence, it is desirable to capture existing relationships by implication without having to model them and their influences. Through the application of Supervised ML main drivers of the product and process state can be identified throughout the whole manufacturing programme by capturing and utilizing process intra- and inter-relations implicitly by incorporating all available product and process state data. This will positively impact the currently existing knowledge gap by furthering the understanding of the correlation mechanisms within the manufacturing programme.

(2) Hypothesis 2 'Adaptability to changing conditions through ML'

Manufacturing programmes are set in constantly changing environments. Changing product and process parameters as well as shifting external influences demand that successful optimization approaches are able to adapt to these frequently changing conditions with minimal effort. Many of today's ML tools are highly adaptable to changing conditions with, at the same time, reduced demands in (computational) resources. By applying ML, changes of product states, process parameters and external factors can be continuously integrated in and thus, eventually reflected in the results of the analysis by contiguously updating the learning data set. This in turn will also contribute to the goal of reducing the existing knowledge gap about the manufacturing programme and its mechanisms by increasing the knowledge of the influence of changing conditions.

The above-presented hypotheses represent the general research direction which follows the identified requirements to bring the *product state concept* despite the identified limitations (e.g., lack of knowledge) to life. In the further course of the next section, the individual hypothesis are detailed further when the particular specification of the chose ML technique are defined (see Sect. 5.3).

Therefore, in the next sections a suitable ML technique is selected after a general introduction into the topic. Afterwards, a methodology for the application of SVM to identify state drivers in manufacturing programmes is developed. Subsequently, elaborating the evaluation of the application of the methodology, the derived specific research questions originated in the presented hypotheses are discussed in greater detail.

References

- Alpaydın, E. (2010). Introduction to machine learning (2nd ed.). Cambridge: The MIT Press.
- Anderl, R., Picard, A., & Albrecht, K. (2013). Smart product engineering. In M. Abramovici & R. Stark (Eds.), 23rd CIRP Design Conference (pp. 1–10). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-30817-8.
- Angel, E., & Zissimopoulos, V. (1998). On the quality of local search for the quadratic assignment problem. *Discrete Applied Mathematics*, 82(1–3), 15–25. doi:10.1016/ S0166-218X(97)00129-7.
- Apley, D., & Shi, J. (2001). A factor-analysis method for diagnosing variability in mulitvariate manufacturing processes. *Technometrics*, 43(1), 84–95.
- Aytug, H., Khouja, M., & Vergara, F. E. (2003). Use of genetic algorithms to solve production and operations management problems: A review. *International Journal of Production Research*, 41(17), 3955–4009. doi:10.1080/00207540310001626319.
- Baker, A. D. (1988). Complete manufacturing control using a contract net: A simulation study. In International Conference on Computer Integrated Manufacturing, 1988 (pp. 100–109). doi: 10.1109/CIM.1988.5399.
- Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual database design. An entity-relationshipapproach. Redwood City: Addison Wesley.
- Becker, J. (1998). Die Grundsätze ordnungsmäßiger Modellierung und ihre Einbettung in ein Vorgehensmodell zur Erstellung betrieblicher Informationsmodelle. Retrieved April 15, 2012, from http://www.wi-inf.uni-duisburg-essen.de/MobisPortal/pages/rundbrief/pdf/Beck98.pdf.
- Becker, J., & Schütte, R. (2004). *Handelsinformationssysteme*. Frankfurt am Main: Redline Wirtschaft.
- Borror, C., Montgomery, D., & Runger, G. (1999). Robustness of the EWMA control chart to non-normality. *Journal of Quality Technology*, *31*(3), 309–316.
- Brinksmeier, E. (1991). Prozeβ-und Werkstückqualität in der Feinbearbeitung. Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik (p. 256). Düsseldorf: VDI-Verlag.
- Brinksmeier, E., & Brockhoff, T. (1996). Utilization of grinding heat as a new heat treatment process. CIRP Annals—Manufacturing Technology, 45(1), 283–286. doi:10.1016/ S0007-8506(07)63064-9.
- Brockhoff, T. (1999). Grind-hardeing: A comprehensive view. CIRP—Manufacturing Technology, 48(1), 255–260.
- Brun, Y. (2008). Solving NP-complete problems in the tile assembly model. *Theoretical Computer Science*, 395(1), 31–46. doi:10.1016/j.tcs.2007.07.052.
- Chander, A., Dean, D., & Mitchell, J. C. (2001). A state-transition model of trust management and access control. In *Proceedings of the 14th IEEE Computer Security Foundations Workshop*, 2001, *Ieee* (pp. 27–43). doi:10.1109/CSFW.2001.930134.
- Chen, J., Su, H., Wu, C., & Oh, C. H. (2012). *Quantumness of product states.* eprint arXiv:1204.1798.
- Chou, Y., Polansky, A., & Mason, R. (1998). Transforming non-normal data to normality in statistical process control. *Journal of Quality Technology*, 30(2), 133–141.
- Chryssolouris, G., & Guillot, M. (1988). An AI approach to the selection of process parameters in intelligent machining. *Proceedings of the Winter Annual Meeting of the ASME on Sensors* and Controls for Manufacturin. Chicago, Illinois.
- Cook, S. A. (1971). The complexity of theorem-proving procedures. In STOC '71 Proceedings of the Third Annual ACM Symposium on Theory of computing (pp. 151–158). doi:10.1145/800157.805047.
- Cooper, R. G. (2008). Perspective: The stage-gates idea-to-launch process—update, what's new and NexGen systems. *Journal of Product Innovation Management*, 25(3), 213–232.
- Cooper, R. G. (2010). Top oder Flop in der Produktentwicklung. 2. Auflage: Weinheim.

- Crama, Y., & Klundert, J. J. (1997). *Robotic flowshop scheduling is strongly NP-complete*. Maastricht: METEOR, Maastricht research school of Economics of Technology and Organizations.
- Denkena, B., & Tönshoff, H. K. (2011). Spanen. Grundlagen (3rd ed.). Heidelberg: Springer. doi:10.1007/978-3-642-19772-7.
- Dijkman, M. (2009). Automated compensation of distortion in the production process of bearing rings. Dissertation Universität Bremen, Verlagshaus Mainz GmbH, Aachen.
- Elmaraghy, W., Elmaraghy, H., Tomiyama, T., & Monostori, L. (2012). Complexity in engineering design and manufacturing. *CIRP Annals—Manufacturing Technology*, 61, 793–814.
- Garetti, M., & Terzi, S. (2004). Product lifecycle management: Definition, trends and open issues. In Proceedings at the 3rd International Conference on Advances in Production Engineering, June 17–19, 2004. Warsaw, Poland.
- Geller, W. (2006). *Thermodynamik für Maschinenbauer—Grundlagen für die Praxis*. Heidelberg: Springer.
- Gogolla, M., & Parisi-Presicce, F. (1998). State diagrams in UML: A formal semantics using graph transformations. In M. Broy, D. Coleman, T. S. E. Maibaum, & B. Rumpe (Eds.), *Proceedings PSMT'98 Workshop on Precise Semantics for Modeling Techniques*. Technische Universität München, TUM-I9803.
- Goseva-Popstojanova, K., Wang, F., Wang, R., Gong, F., Vaidyanathan, K., Trivedi, K., & Muthusamy, B. (2001). Characterizing intrusion tolerant systems using a state transition model. In *Proceedings of the DARPA Information Survivability Conference & Exposition II*, 2001. DISCEX'01 (Vol. 2, pp. 211–221).
- Haegeman, J., Cirac, J. I., Osborne, T. J., & Verstraete, F. (2012). Calculus of continuous matrix product states. eprint arXiv:1211.3935. Retrieved from arXiv:1211.3935.
- Harding, J., Shahbaz, A., Srinivas, M., & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128(4), 969. doi:10.1115/1.2194554.
- Heinrich, L. J., Heinzl, A., & Roithmayr, F. (2007). Wirtschaftsinformatik: Einführung und Grundlegung. München: Oldenbourg Verlag.
- Heinecke, G., Lamparter, S., & Kunz, A. (2011). Process transparency: Effects of a structured read point selection. In *Proceedings of the 21st International Conference on Production Research, Innovation in Product and Production, July 31–August 4, 2011.* Stuttgart, Germany.
- Hüttig, G. F. (1943). Zur Systematik der Aggregatzustände. Colloid and Polymer Science, 104(2–3), 161–167.
- Kaiser, M. J. (1998). Generalized zone separation functionals for convex perfect forms and incomplete data sets. *International Journal of Machine Tools and Manufacture*, 38(4), 375–404. doi:10.1016/S0890-6955(97)00042-4.
- Kalpakjian, S., & Schmid, S. R. (2009). *Manufacturing engineering and technology*. New Jersey: Prentice Hall.
- Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. *Computers and Chemical Engineering*, 32(1–2), 12–24. doi:10.1016/j.compchemeng.2007.07.005.
- Keferstein, C. (2011). Fertigungsmesstechnik praxisorientierte Grundlagen, mo-derne Messverfahren. Wiesbaden: Vieweg+Teubner-Verlag.
- Kent, J. T. (1983). Information gain and a general measure of correlation. *Biometrika*, 70(1), 163–173. doi:10.1093/biomet/70.1.163.
- Knoke, B., Wuest, T., & Thoben, K.-D. (2012). Understanding product state relations within manufacturing processes. In C. Emmanouilidis, M. Taisch, & D. Kiritsis (Eds.), International Conference of Advances in Production Management Systems (APMS 2012)— Competitive Manufacturing for Innovative Products and Services. Berlin, Heidelberg: Springer.

- Kobler, M. (2010). Qualität von Prozessmodellen: Kennzahlen zur analytischen Qualitätssicherung bei der Prozessmodellierung. Berlin: Logos Verlag.
- König, W., & Klocke, F. (2008). Fertigungsverfahren Drehen, Fräsen, Bohren 8, neu (bearbeitete ed.). Berlin-Heidelberg: Springer.
- Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. *Informatica*, 31, 249–268.
- Kumar, S. (2002). *Intelligent manufacturing systems* (pp. 1–20). Ranchi. Retrieved from http://pchats.tripod.com/int_manu.pdf.
- Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. *Expert Systems with Applications*, 39(3), 2590–2596. doi:10.1016/j.eswa.2011.08.114.
- Laili, Y., Tao, F., Zhang, L, & Ren, L. (2011). The optimal allocation model of computing resources in cloud manufacturing system. *Seventh International Conference on Natural Computation* (pp. 2322–2326). doi:10.1109/ICNC.2011.6022564.
- Larose, D. (2005). *Discovering knowledge in data—an introduction to data mining*. Hoboken: Wiley.
- Lewis, F. L., Horne, B. G., & Abdallah, C. T. (1996). On the computational complexity of the manufacturing job shop and reentrant flow time (pp. 1–27). Retrieved July 10, 2013, from http://ise.unm.edu/controls/papers/on-the-computational-complexity.pdf.
- Lu, S. C.-Y. (1990). Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation. *Computers in Industry*, 15(1990), 105–120.
- Lu, S. C.-Y., & Suh, N.-P. (2009). Complexity in design of technical systems. CIRP Annals— Manufacturing Technology, 58(1), 157–160. doi:10.1016/j.cirp.2009.03.067.
- Manning, C. D., Raghavan, P., & Schütze, H. (2009). An introduction to information retrieval. Cambridge: Cambridge University Press.
- Mayer-Bachmann, R. (2007). Integratives Anforderungsmanagement—Konzept und Anforderungsmodell am Beispiel der Fahrzeugentwicklung. Dissertation Universität Karlsruhe (TH), Universitätsverlag Karlsruhe, Karlsruhe.
- Mei, D. C., Xie, C. W., & Zhang, L. (2004). The stationary properties and the state transition of the tumor cell growth mode. *The European Physical Journal B*, 41(1), 107–112. doi:10.1140/epjb/e2004-00300-1.
- Monostori, L. (2002). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. In 15th Triennial World Congress (p. 12). Barcelona, Spain.
- Monostori, L., Márkus, A., Van Brussel, H., & Westkämper, E. (1996). Machine learning approaches to manufacturing. CIRP Annals, 45(2), 675–712.
- Monostori, L., Hornyák, J., Egresits, C., & Viharos, Z. J. (1998). Soft computing and hybrid AI approaches to intelligent manufacturing. In *Tasks and Methods in Applied Artificial Intelligence Lecture Notes in Computer Science* (Vol. 1416, pp. 765–774). doi:10.1007/3-540-64574-8_463.
- Monostori, L., Váncza, J., & Kumara, S. R. T. (2006). Agent-based systems for manufacturing. CIRP Annals—Manufacturing Technology, 55(2), 697–720.
- Musa, A., Gunasekaran, A., & Yusuf, Y. (2013). Supply chain product visibility: Methods, systems and impacts. *Expert Systems with Applications*. doi:10.1016/j.eswa.2013.07.020.
- Nearchou, A. C. (2011). Maximizing production rate and workload smoothing in assembly lines using particle swarm optimization. *International Journal of Production Economics*, 129(2), 242–250. doi:10.1016/j.ijpe.2010.10.016.
- Nilsson, N. J. (2005). *Introduction to machine learning* (p. 188). Stanford: Stanford University Press.
- OMG. (2010). Business process model and notation (BPMN). Object management group. Retrieved October 4, 2012, from http://www.omg.org/spec/BPMN/2.0/PDF.

- Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(5), 395–412. doi:10.1243/095440505X32274.
- Pearl, J. (2003). Causality: Models, reasoning, and inference. *Econometric Theory*, 19, 675–685. doi:10.1017/S0266466603004109.
- Ponsignon, T., & Mönch, L. (2012). Heuristic approaches for master planning in semiconductor manufacturing. *Computers and Operations Research*, 39(3), 479–491. doi:10.1016/j.cor.2011.06.009.
- Reuter, M. (2007). *Methodik der Werkstoffauswahl, Der systematische Weg zum richtigen Material*. München: Carl Hanser-Verlag.
- Rohweder, J. P., Kasten, G., Malzahn, D., Piro, A., & Schmid, J. (2011). Informationsqualität— Definitionen, Dimensionen und Begriffe. In K. Hildebrand, M. Gebauer, H. Hinrichs, & M. Mielke (Eds.), *Daten-und Informationsqualität* (pp. 25–45). Wiesbaden: Vieweg+Teubner. doi:10.1007/978-3-8348-9953-8.
- Rosemann, M., & Schütte, R. (1997). Grundsätze ordnungsmäßiger Referenzmodellierung. In J. Becker, M. Rosemann, R. Schütte (Hrsg.), Entwicklungsstand und Entwicklungsperspektiven der Referenzmodellierung (16–33). Münster: Arbeitsberichte des Instituts für Wirtschaftsinformatik.
- Samuel, A. (1959). Some studies in machine learning using the game of checkers. *IBM Journal*, 3(3), 210–229.
- Sarich, M., Schutte, C., & Vanden-Eijden, E. (2010). Optimal fuzzy aggregation of networks. *Multiscale Modeling and Simulation*, 8(4), 1535–1561.
- Schatt, W., & Worch, H. (2003). Werkstoffwissenschaft 9, Auflage. Weinheim: Wiley.
- Schöning, U. (2001). Theoretische Informatik-kurzgefasst. Heidelberg, Berlin: Spektrum, Akademischer Verlag.
- Seidel, W. W., & Hahn, F. (2010). Werkstofftechnik 8, neu (bearbeitete ed.). München: Carl Hanser-Verlag.
- Shetwan, A. G., Vitanov, V. I., & Tjahjono, B. (2011). Allocation of quality control stations in multistage manufacturing systems. *Computers and Industrial Engineering*, 60(4), 473–484. doi:10.1016/j.cie.2010.12.022.
- Simon, H. A. (1983). Why should machines learn? In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), *Machine learning: An artificial intelligence approach* (pp. 25–38). Charlotte: Tioga Press.
- Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to machine learning. Cambridge: Cambridge University Press.
- Söhner, J. (2003). Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der Finite-Elemente-Methode. Dissertation, Universität Karlsruhe.
- Sölter, J. (2010). Ursachen und Wirkmechanismen der Entstehung von Verzug infolge spanender Bearbeitung. Dissertation Universität Bremen, Shaker Verlag, Aachen.
- Sölter, J., & Brinksmeier, E. (2008). Modelling and simulation of ring deformation due to clamping. In *International Conference on Distortion Engineering. September 17–19, 2008* (pp. 143–151). *Bremen, Germany.*
- Sonnenberg, F., & Beck, J. R. (1993). Markov models in medical decision making: A practical guide. *Medical Decision Making*, 13(4), 322–338. doi:10.1177/0272989X9301300409.
- Srdoč, A., Bratko, I., & Sluga, A. (2007). Machine learning applied to quality management—a study in ship repair domain. *Computers in Industry*, 58(5), 464–473. doi:10.1016/j.compind.2006.09.013.
- Stoumbos, Z., & Sullivan, J. (2002). Robustness to non-normality of the multivariate EWMA control chart. *Journal of Quality Technology*, 34(3), 260–276.
- Suh, N. P. (2005). Complexity in engineering. *CIRP Annals—Manufacturing Technology*, 54(2), 46–63. doi:10.1016/S0007-8506(07)60019-5.
- Surm, H. (2011). Identifikation der verzugsbestimmenden Einflussgrößen beim Austenitisieren am Beispiel von Ringen aus dem Wälzlagerstahl 100Cr6. Dissertation, University of Bremen.

- Surm, H., & Rath, J. (2012). Mechanismen der Verzugsentstehung bei Wälzlagerringen aus 100Cr6 (Distortion Mechanisms in the Process Chain Bearing Ring). *Journal of Heat Treatment Materials*, 67(5), 1–13.
- Taisch, M., Cammarino, B. P., & Cassina, J. (2011). Life cycle data management: First step towards a new product lifecycle management standard. *International Journal of Computer Integrated Manufacturing*, 24(12), 1117–1135. doi:10.1080/0951192X.2011.608719.
- Tiwari, V., Patterson, J. H., & Mabert, V. (2009). Scheduling projects with heterogeneous resources to meet time and quality objectives. *European Journal of Operational Research*, 193(3), 780–790. doi:10.1016/j.ejor.2007.11.005.
- Tönshoff, H. K., & Denkena, B. (2013). Basics of cutting and abrasive processes. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-33257-9.
- Udo, G. J. (1992). Neural networks applications in manufacturing processes. *Computers and Industrial Engineering*, 23(1–4), 97–100.
- Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August 13, 2013, from http://www.math.uni-bremen.de/cms/media.php/59/PromO%20FB%20 2-5%20_14%203%2007_.6442.pdf.
- Verstraete, F., Wolf, M. M., & Cirac, J. I. (2007). Matrix product state representations. Retrieved from http://arxiv.org/pdf/quant-ph/0608197.pdf.
- Wang, K., & Tsung, F. (2007). Run-to-run process adjustment using categorical observations. Journal of Quality Technology, 39(4), 312–325.
- Weisstein, E. W. (2011). Bipartite graph. Retrieved May 10, 2013, from http://mathworld.wolfra m.com/BipartiteGraph.html.
- Westkämper, E., & Warnecke, H. (2010). *Einführung in die Fertigungstechnik* (8th ed.). Wiesbaden: Vieweg+Teubner-Verlag.
- Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. *Mechanical Systems and Signal Processing*, 21(6), 2560–2574. doi:10.1016/j.ymssp.2006.12.007.
- Wuest, T., Klein, D., & Thoben, K.-D. (2011a). State of steel products in industrial production processes. *Procedia Engineering*, 10(2011), 2220–2225.
- Wuest, T., Klein D., Seifert, M., & Thoben, K.-D. (2011b). Challenges for grown engineering SMEs with a diverse product portfolio on information management and product tracking and tracing. In J. Frick (Eds.), Value Networks: Innovation, Technologies and Management. Proceedings of the APMS 2011 International Conference of Advances in Production Management Systems, September 26–28, 2011. Stavanger, Norway. ISBN 978-82-7644-461-2.
- Wuest, T., & Thoben, K.-D. (2012a). Exploitation of material property potentials to reduce rare raw material waste—a product state based concept for manufacturing process improvement. *Journal of Mining World Express (MWE)*, 1(1), 13–20.
- Wuest, T., Klein, D., Seifert, M., & Thoben, K.-D. (2012b). Method to describe interdependencies of state characteristics related to distortion. *Materialwissenschaft und Werkstofftechnik*, 43(1–2), 186–191. doi:10.1002/mawe.201100908.
- Wuest, T., Irgens, C., & Thoben, K.-D. (2013a). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. *Journal of Intelligent Manufacturing*, 25(5), 1167–1180.
- Wuest, T., Werthmann, D., & Thoben, K. (2013b). Towards an approach to identify the optimal instant of time for information capturing in supply chains. In V. Prabhu, M. Taisch & D. Kiritsis (Eds.), APMS 2013, Part I, IFIP AICT 414, IFIP International Federation for Information Processing (pp. 3–12).
- Wuest, T., Knoke, B., & Thoben, K.-D. (2014a). Applying graph theory and the product state concept in manufacturing. *Procedia Technology*, 15(2014), 349-358. doi: 10.1016/j.pro tcy.2014.09.089.

- Wuest, T., Liu, A., Lu, S. C.-Y., & Thoben, K.-D. (2014b). Application of the stage gate model in production supporting quality management. *Procedia CIRP*, 17, 32-37. doi: 10.1016/j.pro cir.2014.01.071.
- Yang, K., & Trewn, J. (2004). Multivariate statistical methods in quality management. New York: McGraw-Hill.
- Zhang, J., & Wang, H. (2009). A minimized zero mean entropy approach to networked control systems. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, IEEE (pp. 6876–6881). Shanghai, China. doi:10.1109/CDC.2009.5400679.
- Zoch, H.-W. (2012). Distortion engineering—interim results after one decade research within the collaborative research center. *Materialwissenschaft und Werkstofftechnik*, 43(1–2), 9–15. doi :10.1002/mawe.201100881.
- Zoch, H.-W. & Lübben, T. (2011). Verzugsbeherrschung—Systemorientierter Ansatz als wesentliche Voraussetzung für den Erfolg. Stahl Strukturen. In W. Bleck (Ed.), Industrie-, Forschungs-, Mikro- und Bauteilstrukturen—Tagungsband zum 26. Aachener Stahlkolloquium, 19./20.05.2011. Verlagshaus Mainz, ISBN 3-86130-258-6.

Chapter 5 Application of Machine Learning to Identify State Drivers

It has been established in the previous sections that ML techniques may be generally suitable for the identified challenges of applying the *product state concept*. The successful identification of state drivers taking process intra- and inter-relations into account is essential for the application of the developed concept. To reach that goal, distinct research hypotheses focusing on a promising approach of applying ML within the *product state concept* were derived in the previous section.

In this section, the application of ML is investigated in further detail. First ML is briefly introduced in more detail with respect to the manufacturing domain. Based on this brief general elaboration, SVM algorithms are selected as a suitable ML technique to match the detailed requirements of the stated research problem. In the final subsection, the application of SVM is discussed towards its objective of identification of *state drivers* in manufacturing programmes. Within this last subsection, the application and evaluation approach of the SVM application are presented and the derived hypotheses are detailed based on the decision to use the SVM algorithm to conclude the section.

5.1 Machine Learning in Manufacturing

In this subsection the application of ML techniques in manufacturing is introduced. ML has been successfully utilized multiple times in various process optimization, monitoring and control applications in manufacturing in different industries (Gardner and Bicker 2000; Pham and Afify 2005; Alpaydin 2010; Kwak and Kim 2012). ML techniques were found to provide promising potential for improved quality control optimization in manufacturing systems (Apte et al. 1993), especially in "complex manufacturing environments where detection of the causes of

T. Wuest, *Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning*, Springer Theses, DOI 10.1007/978-3-319-17611-6 5

problems is difficult" (Harding et al. 2006). However, often ML applications are found to be limited focusing on specific processes instead of the whole manufacturing programme or manufacturing system (Doltsinis et al. 2012).

There are many different ML methods, tools and techniques available, each with distinct advantages and disadvantages. The domain of ML has grown to an independent research domain. Therefore, within this section the goal is to introduce ML techniques briefly and select a suitable algorithm for the previously established problem. The purpose is not to develop new tools or techniques to further the ML development. In order to achieve that goal, first, a brief general introduction to ML with regard of manufacturing application is presented. The subsequently identified supervised ML technique, SVM, is then detailed and the rationale behind the selection is discussed in greater detail, relating the arguments to the previously identified requirements.

5.1.1 Machine Learning

The topic of ML firstly gained attention after Samuel (1959) published his paper "Some Studies in Machine Learning Using the Game of Checkers". Since then, not only did the research field of ML grow continuously but also it grew more divers. Today ML is omnipresent in our daily lives, e.g., through the use of various google products or certain public transportation systems (Smola and Vishwanathan 2008). There are several journals specifically targeted to ML research available, some actively publishing continuously for more than 25 years.

The research domain of ML looks into the practice of preparing computers or artificial systems to act or react to certain events without being specifically programmed to do so (Nilsson 2005; Smola and Vishwanathan 2008). ML aims to solve (manufacturing) problems by applying knowledge that was acquired from analysis of (data of) earlier problems of similar nature to the to be solved problem (Priore et al. 2006). This capability is desirable or may be even necessary in some cases for various reasons. Nilsson (2005) states the following list of some existing reasons for the application of ML. All of those stated reasons can be directly mapped to the research problem at hand in this dissertation:

- Some tasks can only be defined by example *without a complete understanding of the existing relationships* (input–output). Therefore machines are required to adjust in order to succeed in creating correct outputs with given inputs by approximately 'learn' the implicit relationships.
- Possibility of *hidden relationships and correlations* in large piles of data, which ML may provide a tool to extract.
- Products are used in different environments and might not function as desired in some of them. This can be due to limited knowledge of the actual application area at the time of design or due to changing environmental factors, etc. However, *ML may enable products to adapt* to some of those previously not-anticipated circumstances.

- In the age of cheap data storage and sensor technology, it is possible that the *amount of data available exceeds the (economical and technical) ability* of humans to incorporate the contained information and knowledge in the programming. Preparing the artificial system to learn from the available sources independently through ML allows designers to make use of that knowledge.
- The previous point can be extended to *new information and knowledge discovered during the utilization* of a product. By incorporating ML techniques, the artificial system can make use of new developments and thus reduce the need for actively redesign or redevelop an existing system.

As mentioned before, the ML domain compromises several sub-domains and/ or closely related domains with large overlaps. For instance, AI represents the theoretical and methodological foundation for learning of systems (Negnevitsky 2005) and thus being a crucial part of ML. However, not all AI methods inherit the capability of learning (Negnevitsky 2005). Whereas AI can be seen as the overarching domain, ML being a part of it (Whitehall et al. 1990), DM and KD/ Knowledge Discovery from Databases (KDD) are more sub-domains describing a certain area of ML techniques. Kotsiantis (2007) identifies DM as the most significant application area of ML. MD and KD/KDD concepts focus on uncover and find hidden knowledge and information from (often large amounts) of available data. The unknown process intra- and inter-relations between states can be seen as such 'hidden knowledge'. DM and KDD have been applied successful to various problems in the manufacturing domain (Kwak and Kim 2012). The areas of predictive maintenance, fault detection, condition monitoring, OM, operations, etc. are all examples where the ability of DM to identify hidden patterns is receiving increased attention (Harding et al. 2006). Within this dissertation, the term ML is used comprehensively instead of further differentiations in DM or KDD as the presented techniques all incorporate a learning component.

Within this dissertation, the focus will be laid on supervised methods described in more detail in the following subsection. Other methods like Reinforcement Learning (RL) (Wiering and Van Otterlo 2012) and unsupervised ML (Manning et al. 2009) are not considered further due to the specific nature of the problem. The main assumption is that knowledgeable experts can provide feedback on the classification of states to identify the learning set in order to train the algorithm. However, in some cases this might not be possible or, in the future, desirable.

5.1.2 Supervised Machine Learning

In manufacturing application, supervised ML techniques are mostly applied due to the data-rich but knowledge-sparse nature of the problems (Lu 1990). In addition, supervised ML may benefit from the established data collection in manufacturing for statistical process control purposes (Harding et al. 2006) and the fact that this data is mostly labeled. This is true also for the problem described in this

Fig. 5.1 Generic process of supervised ML (Kotsiantis 2007)

dissertation. Basically, supervised ML "is learning from examples provided by a knowledgeable external supervisor" (Sutton and Barto 2012). Supervised learning is often applied in manufacturing. This is partly due to the availability of (a) expert feedback (e.g., quality) and (b) the labeled instances. Supervised ML is applied in different domains of manufacturing, with monitoring and control being very prominent among them (e.g., Apte et al. 1993; Pham and Afify 2005; Harding et al. 2006; Alpaydin 2010; Kwak and Kim 2012). The general process of supervised ML is illustrated in Fig. 5.1.

Based on a given problem, the required data is identified and (if needed) preprocessed. An important aspect is the definition of the training set, as it influences the later classification results to a large extent. Even so in Fig. 5.1 it appears that the algorithm selection is always following the definition of the training data set, the definition of the training data also has to take the requirements of the algorithm selection into account. This is to some extent also true for the identification and pre-processing of the data as different algorithms have certain strength and weaknesses concerning the handling of different data sets (e.g., format, dimensions, etc.). After an algorithm is selected, it is trained using the training data set. In order to judge the ability to perform the targeted task, the trained algorithm is then evaluated using the evaluations data set. Depending on the performance of the trained algorithm with the evaluation data set, the parameters can be adjusted to optimize the performance, in case the performance is already good. In case the performance is not satisfying, the process has to be started over at an earlier stage, depending on the actual performance. Reliant on the application case, a rule of thumb is that 70 % of the data set is used as a training data set, 20 % as an evaluation data set (in order to adjust the parameters—e.g., bias) and the final 10 % as a test data set, however, in practice often a 70 % (training data) and 30 % (test data) split is utilized.

There are several established supervised ML algorithms available. Each of these algorithms has specific advantages and limitations concerning the application in manufacturing (see Table 5.1).

A major challenge is to select a suitable algorithm for the requirements of the research problem. As described before, as a first step, a general applicability of a ML algorithm with the requirements may be derived from more general comparisons (e.g., presented by Kotsiantis (2007)). This may be conducted to rule out unsuitable ML algorithms. However, due to the individual nature of most research problems and the specific characteristics of ML algorithms as well as their adapted 'siblings', it is not advisable to base the decision for a ML algorithm solely on such a theoretical and general selection. In order to identify a suitable ML algorithms on research problems with similar requirements. The research problems do not have to be located within the same domain. A major issue in this selection is the matching of the identified requirements, which in this case include the ability to handle multi-variate, high dimensional data sets and the ability to continuously adapt to changing environments (updating the learning set).

The selected ML algorithms to be applied to the identified research problem within this dissertation are SVM. The detailed argumentation and the identified comparable structured problems with matching requirements are presented in the following subsection in greater detail.

5.2 Selection of Suitable Machine Learning Technique

In this section, the ML technique SVM is presented as the algorithm of choice to apply on the identified research problem. Details concerning the choice and suitability of SVM are illustrated in the later Sect. 5.2.2 (also see Wuest et al. 2013). Burbidge et al. (2001) found SVM to be a "robust and highly accurate intelligent classification technique well suited for structure–activity relationship analysis". SVM can be understood as a practical methodology of the theoretical framework

	Desicion	Neural	Naïve	kNN	SVM	Rule-learners
	trees	networks	bayes			
Accuracy in general	**	***	*	**	****	**
Speed of learning with respect to number of attributes and number of instances	***	*	***	****	*	**
Speed of classification	***	****	****	*	****	*** *
Tolerance to missing values	***	*	****	*	**	**
Tolerance to irrelevant attributes	***	*	**	**	****	**
Tolerance to redundant attributes	**	**	*	**	***	**
Tolerance to highly interdependent attributes (e.g. parity problems)	**	***	*	*	***	**
Dealing with discrete/binary/ continuous attributes	***	*** (not discrete)	***(not continu- ous)	*** (not directly discrete)	**(not discrete)	*** (not directly continuous)
Tolerance to noise	**	**	***	*	**	*
Dealing with danger of overfitting	**	*	***	***	**	**
Attempts for incremental learning	**	***	****	****	**	*
Explanation ability/ transparency of knowledge/ classifications	***	*	***	**	*	***
Model parameter handling	***	*	***	***	*	***

 Table 5.1
 Comparing learning algorithms (Kotsiantis 2007)

Explanatory remarks **** stars represent the best performance and * star represents the worst performance
of Statistical Learning Theory (STL) (Cherkassky and Ma 2009). SVM have a proven track record for successfully dealing with non-linear problems (Li et al. 2009). SVM can be combined with different kernels and thus adapt to different circumstances/requirements (e.g., Neural Networks; Gaussian) (Keerthi and Lin 2003).

First, SVM, as a supervised ML algorithm is described in greater detail, presenting the main principles, technical background and its main application fields. Following, the reasoning for the choice of SVM with regard to the identified requirements of the research problem is shown. As previously stated, in this section, existing applications of SVM on similar problems (with regard to the requirements) are referred to within the argumentation. After introducing SVM and the rationale behind its choice, the application and evaluation approach of the technique is described in the following Sect. 5.3.

5.2.1 Support Vector Machines (SVM)

SVMs were introduced by Cortes and Vapnik (1995) as a new ML technique for two-group classification problems. The idea behind it is that input vectors are non-linearly mapped to a very high dimensional feature space (Cortes and Vapnik 1995). Lately, SVM as a relatively new supervised ML algorithm (Kotsiantis 2007) received increasing attention within the research community due to their ability to balance structural complexity and empirical risk (Khemchandani and Chandra 2009). The theoretical background of SVM is presented in the next subsection, followed by an introduction of different application fields of this algorithm.

5.2.1.1 Theoretical Background¹

SVM as a classification technique has its roots in STL (Khemchandani and Chandra 2009; Salahshoor et al. 2010), has shown promising empirical results in a number of practical manufacturing applications (Chinnam 2002; Widodo and Yang 2007) and works very well with high-dimensional data (Sun et al. 2004; Ben-hur and Weston 2010; Wu 2010; Salahshoor et al. 2010; Azadeh et al. 2013). Another aspect of this approach is that it represents the decision boundary using a subset of the training examples, known as the support vectors.

SVM are linear two-class classifiers (Ben-hur and Weston 2010). The basic idea behind SVM, is the concept of a maximal margin hyperplane. A linear SVM can be trained explicitly to look for this type of hyperplane in linearly separable data. However, the method can also be extended to non-linearly separable data

¹The content of this section has been partly published in accordance with (Universität Bremen 2007) in (Wuest et al. 2012).

using kernels. Through application of kernels, the former linear classifier can be extended to serve as a non-linear classifier. This will be explained later on.

A linear SVM is based on a decision boundary, called hyperplane that divides a set of data points into two classes. These two classes are described as either positive (+1) or negative (-1) examples. Figure 5.2 illustrates a decision boundary $(w^Tx + b = 0)$ between two linear separate sets of positive $(w^Tx + b > 0)$ and negative $(w^Tx + b < 0)$ class (Ben-hur and Weston 2010).

The following technical definition of linear SVM follows Ben-hur and Weston (2010) if not indicated otherwise. In this example, \mathbf{x} is understood as a vector with components x_i . The term \mathbf{x}_i symbolizes the *i*th vector in a data set, $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, with y_i describing the label \mathbf{x}_i is associated with. The scalar product, which is required in order to define a linear classifier is defined as $\mathbf{w}^T \mathbf{x} = \sum_i w_i x_i$. Based on this foundation, a linear classifier is built around the discriminant function:

$$f(x) = \boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{b} \tag{5.1}$$

In this function, vector w is defined as the weight vector whereas b is known as the bias. By considering b = 0, the set of points x such that $w^{T}x = 0$ represent all points perpendicular to w which go through the origin. Hence it forms a line (two dimensions), a plane (three dimensions), and more generally, a hyperplane (n dimensions). The vector w in this aspect represents a decision hyperplane normal vector and is commonly named weight vector in SVM literature (Hamel 2009; Manning et al. 2009). Thus both bold notations indicate vectors whereas T stands for transpose and the bias b translates the hyperplane away from the origin, when $\neq 0$. Consequently, the hyperplane can be described as:

$$\left\{ x: f(x) = \boldsymbol{w}^T \boldsymbol{x} + b \right\}$$
(5.2)

Dividing the space in two, this hyperplane allows to classify points by the sign of the discriminant function f(x) as positive and negative (Ben-hur and Weston 2010).

Figure 5.3 shows a data set containing examples that belong to two different classes, represented as squares and circles. The data set is also linearly separable; i.e., there is a hyperplane such that all the squares reside on one side of the hyperplane and all the circles reside on the other side. A linear decision boundary between regions (see Fig. 5.2) defines a classifier as linear. Inevitably such clear-cut results are not always available in real applications and suitable compromise solutions are used in order to allow a certain amount of misclassification.

There are infinitely many hyperplanes possible. Although their training errors may be zero, there is no guarantee that the hyperplanes will perform equally well on previously unseen examples. The classifier must choose one of these hyperplanes to represent its decision boundary, based on how well they are expected to perform on test examples.

SVM are utilizing the concept of a maximal margin separation (see Fig. 5.4) (Lessmann et al. 2009). The algorithm tries to maximize the distance between the decision surface and data points separating the two classes (circles and squares) (Cristianini and Shawe-Taylor 2000; Manning et al. 2009). The algorithm tries to place the decision surface maximally far away from the data points (Manning et al. 2009). In Fig. 5.4, the optimal decision surface B is assumed to be the chosen decision surface with the largest margin. The supporting hyperplanes $b_{(-1)}$ and $b_{(1)}$ show the distance to the closest data points (support vectors).

The maximization of the margin reduces the upper bound of the (expected) generalization error, i.e., error of future data (Vapnik 1995; Kotsiantis 2007; Lessmann et al. 2009). The decision function is defined by a sub-set of the data (training data) defining the position of the hyperplane (Manning et al. 2009). "These points are referred to as the support vectors (in a vector space, a point can be thought of

as a vector between the origin and that point)" (Manning et al. 2009). As SVM is a supervised ML algorithm, this training data is generally selected by experts.

The problem with SVM classifiers is to establish relevant training/learning data for the case at hand so that the computation of the support vectors can be completed. Given that most process control and analysis task display a degree of dynamism, the use of SVM is not immediately clear for such applications as it is likely that the generation of support vectors will have to be done frequently and without knowledge of detailed performance results of the process.

The geometric representation of the maximum margin is briefly described, mainly based on Ben-hur and Weston (2010). For this example, it is assumed that the data is separable. Therefore, for a given hyperplane, x_+ and x_- are defined as the nearest data points to the hyperplane of the two classes (positive and negative as mentioned earlier). Then the length of the weight vector w is denoted by its norm ||w|| and given by $\sqrt{w^T w}$. The unit vector \hat{w} in the direction of w can be obtained by w/||w|| having $||\hat{w}|| = 1$. Based on these preconditions, the margin of hyperplane f within the data set D may be seen as:

$$m_D(f) = \frac{1}{2} \widehat{w}^T (x_+ - x_-)$$
(5.3)

Within this formula \hat{w} is representing a unit vector in the direction of *w* and the distance of x_+ and x_- are assumed to be equal. Therefore the following equations may be set up:

$$f(x_{+}) = w^{T}x_{+} + b = 1$$
(5.4)

5.2 Selection of Suitable Machine Learning Technique

$$f(x_{-}) = w^{T}x_{-} + b = -1$$
(5.5)

Adding the previous Eqs. (5.4, 5.5) in the decision function (5.3), and divide it by ||w||, a function as follows can be obtained:

$$m_D(f) = \frac{1}{2}\widehat{w}^T(x_+ - x_-) = \frac{1}{\|w\|}$$
(5.6)

As mentioned before, the data set is assumed to be linearly separable so a hard margin SVM can be applied. Later in this section, this is modified in order to handle non-separable data. A main functionality of SVM is the maximum margin classifier which is represented by a discriminant function maximizing the geometric margin 1/||w||. As maximizing 1/||w|| is the equivalent to minimizing $||w^2||$, the constrained optimization problem can be formulated as follows:

$$\begin{array}{ccc}
& \underset{w,b}{\text{minimize}} & \frac{1}{2} \|w\|^2 \\
& \text{subject to}: & y_i \left(w^T x_i + b \right) \ge 1 \quad i = 1, \dots, n
\end{array}$$
(5.7)

The resulting equation is based on the linear separability of the data set. However, in practice, data sets are not always linear separable. Additionally, when it happens to be linear separable, the achievable maximum margin is greater if the classifier allows misclassification of a certain number of data points, which is called soft margin SVM. In order to integrate a certain allowed classification error, the inequality constrain in (5.7) is replaced by

subject to:
$$y_i(w^T x_i + b) \ge 1 - \xi_i \quad i = 1, ..., n$$
 (5.8)

This addition allows certain points (called slack variables: $\xi_i \ge 0$) to be either within the margin (called margin error: $0 \le \xi_i \le 1$) or misclassified ($\xi_i > 1$). Hence, a data point is misclassified when the value of the slack variable is exceeding 1. This allows for calculating the total number of misclassified data points ($\sum_i \xi_i$). Including this in Eqs. (5.7, 5.8) allows for representing a cost element (also known as penalizing element) in the maximum margin optimization function:

$$\begin{array}{l} \underset{w,b}{\substack{\text{minimize}\\w,b}} & \frac{1}{2} \|w\|^2 + C \sum_i \xi_i \\ subject \ to : \quad y_i \left(w^T x_i + b \right) \ge 1 - \xi_i, \xi_i \ge 0 \quad i = 1, \dots, n \end{array}$$
(5.9)

In this function (5.9), the relative importance of maximizing the margin and minimizing the error is represented by the constant C > 0. By applying the Lagrange multiplier method, a dual formulation can be obtained, expressed by variables α_i (Ben-hur and Weston 2010):

$$\sum_{\alpha}^{maximize} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i}y_{j} \propto_{i} \alpha_{j} x_{i}^{T}x_{j}$$

$$subject to: \sum_{i=1}^{n} y_{i} \propto_{i} = 0, \quad 0 \le \alpha_{i} \le C$$

$$(5.10)$$

Dual formulation, or duality, aims to convert "a linear model in the original (possibly infinite dimensional) 'feature' space into a dual learning model in the corresponding (finite dimensional) dual 'sample' space" (Zhang 2002). The dual formulation allows to expand the weight vector w in terms of input data:

$$w = \sum_{i=1}^{n} y_i \propto_i x_i \tag{5.11}$$

Given $\alpha_i > 0$, the points x_i are located on or within the margin in case a soft margin SVM is applied and are called support vectors. The number of data serving as support vectors with regard to the total number of data points is used as an upper bound of the error rate of the classifier (Ben-hur and Weston 2010).

SVM so far have been presented as a classifier for linearly separable data with the addition of slack variables. As previously mentioned, SVM can be also used on non-linear data sets. Actually, SVM have a proven track record for successfully dealing with non-linear problems (Li et al. 2009). It has been found that non-linear classifiers provide better accuracy in many applications. However, they lack the advantage of linear classifiers, e.g., utilizing (relatively) simple training algorithms and scaling with regard to the number of examples. It has been shown, that through dual formulation, the SVM optimization problem is depending on the data through dot products. This allows to replace the dot product through kernel function which is non-linear and thus performing large margin separation in the feature-space of the kernel (Ben-hur and Weston 2010). The dot product, also known as inner or scalar product, describes the generation of a single number out of two (equally long) sequences of numbers, e.g., a vector, through an algebraic operation (Manning et al. 2009).

As can be seen in Fig. 5.5a and b, a SVM with a polynomial kernel allows to separate two classes more accurately than a soft margin linear SVM in this example. Through applying kernels, SVMs are able to "classify points by assigning them to one of two disjoint half spaces, either in the pattern space or in a higher-dimensional feature space" (Khemchandani and Chandra 2009).

Through applying a more complex kernel, the potential to achieve better results may be increased (Chinnam 2002). On the other side, choosing the wrong kernel for the problem may reduce the performance of the classifier. As there are many different kernels for SVM available it is important to choose a suitable one, in accordance with the requirements of the data, in order to achieve the best classification results. A more complex kernel adds to the computation cost of the algorithm compared to a linear SVM (Ulaş et al. 2012). However, given the recent development in ICT, most optimization problems of high-dimensionality, even

Fig. 5.5 a Soft margin SVM with a linear kernel. b SVM with a polynomial kernel (based on Ben-hur and Weston 2010)

with complex kernels, are mostly computable in a reasonable timeframe. Today, available software tools like 'RapidMiner' or 'WEKA' allow the user to apply different kernels within their solution without the need to do any programming themselves. Thus providing the opportunity to adjust the algorithm, including parameters and kernels, more easily based on the performance and requirements of a certain problem and the available data.

Overall, Ben-hur and Weston (2010) summarize the specific challenges for applying SVM in form of a list of decisions that have to be made prior to the application: "how to preprocess the data, what kernel to use, and finally, setting the parameters of the SVM and the kernel" (Ben-hur and Weston 2010). For further in-depth reading on the technical background and a more detailed insight of the mathematical models behind the algorithm and kernels, the following publications are suggested (Burges 1998; Sánchez 2003; Larose 2005; Bishop 2006; Smola and Vishwanathan 2008; Hamel 2009; Manning et al. 2009; Alpaydin 2010).

5.2.1.2 Application Fields

SVM as a classifier technique has a very broad application field. Basically SVM can be applied wherever classification is needed. With regard to the research problem of this dissertation, certain domains where SVM was successfully applied are presented. While the focus is on manufacturing application, other domains with problems of similar nature are also included.

A major application area of SVM in manufacturing is monitoring (Chinnam 2002). In particular within that domain, *tool/machine condition monitoring*, fault diagnosis and tool wear are domains where SVM is continuously and successfully applied (Azadeh et al. 2013; Sun et al. 2004; Widodo and Yang 2007; Salahshoor et al. 2010). Quality monitoring in manufacturing is another field where SVMs were successfully applied (Ribeiro 2005).

An application area of SVM with an overlap to manufacturing application is *picture/image recognition* (e.g., character and face recognition) (Salahshoor et al. 2010; Widodo and Yang 2007; Wu 2010). In manufacturing, this applicationcan be utilized to identify (classify) damaged products (e.g., surface roughness) (Çaydaş and Ekici 2010). Other application areas include handwriting classification (Scheidat et al. 2009). *Time series forecasting* is also a domain where SVM optimization is often applied (Tay and Cao 2002; Guo et al. 2008; Salahshoor et al. 2010).

Besides manufacturing and image recognition, SVMs are often used within the medicine domain. Among the many areas of application within this domain, the use of SVM in *cancer research* stands out (Furey et al. 2000; Guyon et al. 2002; Rejani and Selvi 2009). Other medical application areas are e.g., drug design (Burbidge et al. 2001) and detection of microcalcifications (El-naqa et al. 2002).

Further application areas include but are not limited to credit rating (Huang et al. 2004), food quality control (Borin et al. 2006), classification of polymers (Li et al. 2009) and rule extraction (Martens et al. 2007). These examples from various industries and optimization problems highlight the wide applicability and adaptability of the SVM algorithm.

5.2.2 Rationale of SVM Application for Identification of State Drivers in Manufacturing Systems²

The previous section presented the SVM algorithm's technical background and its different application fields. This section will focus on the suitability of SVM as a supervised ML algorithm for the previously stated research problem. First, the main advantages and challenges of SVM regarding the problem requirements are presented in more detail. Following, two research problems of similar nature to the one at hand and how SVM was successfully applied to solve their optimization problem are highlighted. This way the choice as well as the suitability and applicability of an SVM algorithm on the identified problem of identification of state drivers in manufacturing are made comprehensible.

Before coming to the distinct advantages of SVM for the research problem, the main challenges one has to face when applying SVM are introduced. It has been found, that in order to achieve the high accuracy, a *large sample size* is required by SVM (Kotsiantis 2007). SVM are also known for obvious over prediction when the available number of data examples is too small (Sun et al. 2004). However, given the derived problem of identifying state drivers in manufacturing, the sample size may be considered to be large enough to not cause any problems in most cases. As has been stated in previous sections, for the *product state concept*, continuous manufacturing with a large output is assumed. Therefore, this challenge may be considered as not relevant in this application scenario.

 $^{^{2}}$ The content of this section has been partly published in accordance with (Universität Bremen 2007) in (Wuest et al. 2013).

Over-fitting is commonly accepted as a draw back of SVMs under certain circumstances (Kotsiantis 2007). However, other researchers found no indication for over-fitting problems for SVMs (with simple dot product kernels) (Chinnam 2002). Thinking about over-fitting problems within this approach, it has to be considered that SVM is basically very resistant against over-fitting given that the training data has no massive class imbalance (Scheidat et al. 2009) and a specific hyperplane is chosen among the many separating the data (Vapnik 1998). The chosen kernel and the nature of the data influence the risk of over-fitting when applying SVM (Cawley and Talbot 2010). In this case, the training data may not be assumed to having a massive class imbalance, thus the over-fitting risk is assumed not to be problematic. However, once the individual application and its parameters are fixed, it has to be analyzed concerning the tendency to and risk of over-fitting.

As previously mentioned, another main problem of applying SVM algorithms is the large influence of *choosing a suitable kernel and/or setting the right parameters*. In both cases a non-suitable choice has a significant impact on the SVMs optimization performance (Azadeh et al. 2013). This is a very common challenge similar to most supervised ML algorithms. As the software tools become more user friendly and the computational efficiency increases, today it is possible to compare test runs with different kernels and parameter settings in order to select a suitable alternative which allows to achieve a high classification performance. The selection of and decision for a suitable configuration can be done by utilizing k-fold cross validation. Typically n = 10 provides good results with a reasonable effort. In order to do so, various configurations (e.g., different kernels, cost elements variations) are applied to the learning set and run through n-fold cross validation (n = 10) until a good solution is determined.

After presenting the major challenges of SVM application in the previous paragraphs, the following paragraphs introduce major advantages. Overall SVM are found to "find an optimal tradeoff between structural complexity and empirical risk" (Khemchandani and Chandra 2009). One major advantage of SVM over other supervised ML algorithms is that the solution of the classification problem is relatively straightforward and even though it may involve non-linear training, the output as an objective function is convex. In general the number of training points, still being relatively large and depending on the size of the training set, is larger than the number of basis functions (Bishop 2006). This highlights the *high interpretability and comprehensibility of the results* for the practitioner compared to other algorithms like NN (Pham and Afify 2005; Kotsiantis 2007). This factor presents an important argument when thinking about applying the algorithm in a manufacturing environment.

Besides the relatively easy to interpret results, SVMs are capable of *handling high-dimensional and multi-variate data* (Sun et al. 2004; Kotsantis 2007; Ben-hur and Weston 2010; Wu 2010; Salahshoor et al. 2010; Azadeh et al. 2013). Given that this is one of the major requirements of the identified research problem, this advantage is a strong argument for the choice of SVM as a classifier.

One, if not the most important, advantage is the proven *high performance in practical applications* of SVM algorithms. It has been found that "SVM

generalization performance either matches, or is significantly better than, that of competing statistical and machine learning methods" (Chinnam 2002). This is always an advantage for the application of SVM on classification problems.

Besides achieving high performance, the wide applicability of SVM algorithms is another advantage. SVM can be combined with different kernels and thus adapt to different circumstances/requirements (e.g., NN) (Chinnam 2002; Keerthi and Lin 2003). Furthermore, the wide applicability is supported by the factor that SVM inherit a high flexibility in modeling diverse sources of data (Ben-hur and Weston 2010). As noted in the manufacturing domain, more specific advantages of SVM are described in recent literature. So found Chinnam (2002) that "SVMs are extremely good at recognizing shifts in correlated and non-correlated manufacturing processes". Burbidge et al. (2001) found SVM to be a "robust and highly accurate intelligent classification technique well suited for structure-activity relationship analysis". The advantage of SVM of allowing to "take advantage of prior knowledge of tool wear and construct a hyperplane as the decision surface so that the margin of the separation between different tool state examples is maximized" (Sun et al. 2004), underlines the suitability of SVM. Adding the fact that the "classification performance for every tool state can be adjusted" (Sun et al. 2004), presents a strong argument for SVM application.

After the main challenges and advantages have been discussed with regard to the identified research problem, existing problems of similar nature which have been approached using SVM are presented next. The goal is to highlight the suitability of SVM algorithms for problems of such kind and identify lessons learned on the application in order to incorporate those in the application and evaluation approach described in the next subsection.

The selected publications are all looking into similar problems: selecting examples of importance, calling it feature selection or gene selection method. The general idea is to identify 'relevant' factors which are either able to represent a system through generalization (feature selection) or are important to monitor as they may allow to predict a certain (future) outcome/behavior (gene selection). This corresponds highly with the set goal of this dissertation to identify state drivers, which are in return relevant state characteristics within the *product state concept*.

The first publication identified with a similar research problem is "A gene selection method for cancer classification using Support Vector Machines" (Guyon et al. 2002). The research background of this publication is that DNA micro-arrays allow the screening of large amounts of genes simultaneously in order to determine genes, which are either active, hyperactive or silent in normal or cancerous tissue. This corresponds highly with the previously introduced concept of 'good' and 'bad' states (see Sect. 4.6) which applies to the 'normal' and 'cancer' tissue (with cancer tissue having different possible specifications). In this study, the research problem of selecting a small subset of genes from the large amount of available data using training examples from cancer and normal patients is addressed by applying SVM with Recursive Feature Elimination (RFE). The goal is to identify a set of genes, biologically relevant to cancer (Guyon et al. 2002). In this study, linear SVM are applied as they correspond with the nature of the investigated data set, the DNA micro-arrays.

The result of this research is that by applying SVM, it is possible to extract a small subset of relevant, highly discriminant genes as a basis for building a very reliable cancer classifier. It has been proven that SVM perform very effective for discovering informative features or attributes. Compared to other available methods for gene selection, the approach presented in the paper shows qualitative and quantitative advantages and outperforms "other methods in classification performance for small gene subsets while selecting genes that have plausible relevance to cancer diagnosis" (Guyon et al. 2002). During the study it has been found, that the experienced performance improvement of the SVM application are rooted in the SVM feature selection which provides the basis for the decision function whereas the way the decision function itself is trained, was found to be less important. Another finding is that SVM achieves better performance than other methods given a smaller selection of examples (genes) and is able to deal with high-dimensionality (number of features) and small number of training patterns (number of patients in this case). An important finding is the need for preprocessing of the data as it has a strong impact on SVM. In this case, the scales have been made comparable by subtracting the mean and dividing the result by the standard deviation for every individual feature. The authors of the study cross checked the top ranked features selected by the SVM classifier and found that they are all known for their plausible relation to cancer (in contrast to other methods) in previous medical/biological research (Guyon et al. 2002).

Besides the advantages shown in the previous paragraph, two important findings that distinguish the application of SVM from other methods were found.

- SVM as multivariate classifiers *make use of information between features*. This is very important in the case of applying a similar approach on product state data as it has been shown in Sect. 4.4 that process intra- and inter-relations exist and have to be taken into consideration.
- With the applied method, the *decision function is only based on support vectors that are "borderline" cases* (instead of all examples trying to map a typical case) (Guyon et al. 2002). In other words, the dominant parameters (drivers) that were found to have a significant influence on the classification (cancer/no cancer) are emphasized. This may also be a factor to consider in the following application within the *product state concept*.

Supporting the rationale behind this approach of applying SVM is that similar research also in the field of cancer research was undertaken by (Fung and Mangasarian 2006; Huanget al. 2013).

The second publication "*Feature Ranking Using Linear SVM*" (Chang and Lin 2008) is actually based on the first one. In this study, again a linear SVM is combined the (SVM specific) feature ranking method introduced in (Guyon et al. 2002) and compared to a number of different feature ranking methods. The main advantage of feature ranking being that it supports the gain of knowledge about a data set and allows to identify relevant features (Chang and Lin 2008). The findings indicate that the performance of this (relatively) simple method is very high and even outperforms several more complicated casual discovery methods. However, the method used ranks features based on their relevance and does not

directly increase the knowledge on underlying causal relationships. Therefore, in this case the performance on non-manipulated data sets is found to be much better than on manipulated ones. Another important factor is that the study was undertaken within the so called 'causality challenge' which provided the data set and goal of making predictions on manipulated testing sets. This again corresponds with the requirements of the research problem of this dissertation, the identification of state drivers within the *product state concept*. However, the currently missing causality representation of this method may need to be addressed later.

Overall, it has to be stated that there are several other publication available besides the two previously presented ones looking into feature selection applying SVM (e.g., Bradley and Mangasarian 1998; Bi et al. 2003; Fung and Mangasarian 2004; Mangasarian and Wild 2007; Abe 2010). These additional publications may also serve as argumentation for the selection of SVM for the given research problem, however, the author decided that the added benefits are marginal as the presented three can be considered sufficient in supporting the argument for the choice of SVM for the given research problem.

The rationale behind selecting SVM as a suitable approach for the given research problem of this dissertation was discussed in this section. It can be concluded, that SVM, as a classification method based on maximizing the margin between two groups of data points is theoretically suitable for the task of identifying state drivers within a manufacturing programme. The maximum margin hyperplane (and its weight vector w), as a population separator and state classifier defining whether or not the x_i is positively classified is the key advantage of the SVM algorithm.

In the product state application scenario, the challenge lies in transferring the (inherited) relationships of product and process state characteristics in the algorithm and to interpret the results accordingly. The hyperplane, being constructed in the multidimensional space is able to reflect these relationships, meaning the time-liness of operations/processes from early state to a final state. Thus, SVM utilizing the hyperplane allows for classification in multi-dimensional space and furthermore to derive the driving parameters (or features/attributes) which are responsible for a change in class (this directly related to hypothesis 1 and 2). When applied to a product state description of a manufacturing programme, these driving parameters may represent state drivers which are (partly) responsible (or have a strong impact) on a change in class, which in this case would translate to a change between desirable or undesirable state ('good'/'bad'). Following, the application of SVM to identify state drivers is presented in greater detail.

5.3 Application of SVM for Identification of State Drivers

This section is structured in two major parts, one presenting the conducted application and evaluation and the second will provide an outlook on the derived results and how they may be interpreted. First, the previously introduced hypothesis 1 is adapted and discussed in more detail leading to the formulation of two sub-hypothesis, hypothesis 2 is adapted and hypothesis 3 is introduced. Next, the application of SVM on a manufacturing programme within a *product state concept* perspective is illustrated. This is structured around the previously adapted hypotheses and presents the structure of the research conducted in the subsequent section.

The second part looks at the expected outcomes of the application and evaluation in order to create awareness from the beginning on what may be expected. This is important on the one hand to manage expectations and on the other to provide guidance on how the results are to be interpreted.

A crucial part of the approach is to evaluate the application of SVM on product and process state data and the ability to identify (known and unknown) process intra- and inter-relations between states and state characteristics (*hypothesis 1*). In order to achieve this, the hypothesis has to be detailed further. Two distinct subhypotheses can be derived from *hypothesis 1* 'Capturing of process intra- and inter-relations by implication through ML'. The overall hypothesis is updated to '*Capturing of process intra- and inter-relations by implication through application of SVM*'. Hereafter, these two sub-hypothesis are described in greater detail.

Hypothesis 1.1 'Application of SVM allows the identification of state drivers of individual processes'

In hypothesis 1.1 the focus is on individual processes or operations. Again, process is used comprehensively throughout this section to reduce complexity. The individual process will be monitored using product and process state data based on the output of that process. The final result of the overall manufacturing programme is furthermore based upon the final quality assessment of the finished product. The manufacturing programme is seen as an entity of the manufacturing processes.

Within this hypothesis, the increasing complexity introduced to the progressing product state from process to process is not reflected in the observation as it focuses on individual processes. Therefore, process intra-relations which may have a significant influence across process/operation borders may be overlooked. This may prohibit the ability to detect and identify state drivers and unacceptable process drifts during intermediate stages of the process.

By analyzing the manufacturing programme using SVM, state drivers of an individual process/operation can be identified. The created state vectors indicate their influence on the state change by crossing the hyperplane (change of prefix +/-).

This hypothesis' focus on individual processes as a complementary approach is considered valid, in combination with, the following hypothesis 1.2. Hypothesis 1.2 reflects the importance of cross-process (inter-)relations better, which is a fundamental pillar of the *product state concept*'s view on manufacturing systems.

Hypothesis 1.2 'Combining different processes allows the identification of relevant drivers at different phases of the manufacturing programme'

Hypothesis 1.2 concentrates on identifying the process intra-relations across process borders within the manufacturing programme. As established in Sect. 4.4, the states and state characteristics and their process intra- and inter-relations have to be analysed from a systems perspective. The goal is to provide a realistic monitoring and control of the product's progress towards its final product state and acceptable quality. The plan to achieve this is to make use of intermediate quality observations collections which may be reflected in accumulating state vectors for different stages. For example, in a manufacturing programme with three processes, the accumulated vectors are {process 1}; {process 1; process 2}; {process 3}. It is assumed that operational quality influences are incorporated at each stage so that the increase in complexity is captured and can be analysed stage-by-stage. This utilizes the previously stated finding that dependencies never go against the process flow and interdependencies between state characteristics can only exist within a state (see Sect. 4.4). Concluding, hypothesis 1.2 reflects the *product state concept*'s overall understanding of a manufacturing programme and how it influences the final product's quality.

By creating accumulated state vectors, combining individual processes along the manufacturing programme and applying SVM, relevant state drivers reflecting (ex- and implicit) process intra- and inter-relations (system view) can be identified.

As this hypothesis is assumed to incorporate intra-relations (cross-process) of states and state characteristics to a higher degree than hypothesis 1.1, hypothesis 1.2 is considered the main research focus of this dissertation. However, there might be more sophisticated approaches of accumulating the state vectors throughout the manufacturing programme. This will be looked into during this research.

Hypothesis 2 'Adaptability to changing conditions through ML' is looking into how the proposed method reflects the need of a manufacturing programme for adaptability is not further divided as it is already focused enough to be evaluated in the following Chap. 6. By utilizing the SVM algorithm, the hyperplane is the learning mechanism which can be updated/re-computed with high frequency and low computational effort. Its major practical limitation is the need for updated learning data. So this hypothesis is updated to '*Adaptability to changing conditions through application of SVM*'.

In addition to hypotheses 1 and 2, the following paragraph introduces hypothesis 3. Hypothesis 3 reflects the future potential of the findings and is split in two sub-hypotheses similar to hypothesis 1. *Hypothesis 3* states '*Through application of the SVM approach, defect products can be identified*'. This is further specified in *hypothesis 3.1* stating 'the trained SVM system is able to detect faulty products in the manufacturing programme'. Connecting this hypothesis to hypothesis 1.1, *hypothesis 3.2* states 'a connection to the identified state drivers can be established within the set of (within the manufacturing programme) identified defect products'.

Organizing the product and process data according to the *product state concept*, in a cluster of subsequent states, is the basis for this research and thus the approach illustrated in the next section. As was described in previous sections, there is still a knowledge gap when it comes to the existing process intra- and inter-relations within a multi-stage manufacturing programme.

To test the previously identified hypotheses, three scenarios are analyzed in the following section. Two are based on publically available data sets, resembling a chemical manufacturing process (Kuhn and Johnson 2013) and a manufacturing programme for semiconductors (McCann et al. 2010). One scenario is based on a mechanical engineering manufacturing process from the aviation industry provided by Rolls-Royce. In this case, no further information concerning the parameters or products in focus can be provided due to anonymity requirements. Each result will be compared to the results of the other scenarios in order to verify the made assumptions concerning the wide applicability of the approach. In all scenarios, the approach will be tested within a 'real world' application to verify its applicability in practice.

It has been established that modern manufacturing programmes often display chaotic behavior (Monostori 2002). One reason for this can be that they tend to have very high dimensionality, at times extremely high dimensionality, and consequently the cause-effect mechanisms are hidden and the important process driving parameters are thus unknown and may indeed change with time such that parameters P which are important at time t will have changed to parameters P'at time t + r. This may indeed happen where the complete manufacturing programme is constructed from a number of interdependent processes/operations. Consequentially different process analysis and control methods are needed from the established orthodox ones. This in turn contributes to the chaotic nature of the manufacturing programme in that the process' outputs (product state) seem to be varying inconsistently with expected values for the given inputs. It is highly likely that this is a perception by the observer and that the outputs in fact are driven by cause-effect mechanisms as yet undefined/un-discovered. The implication of this is that such processes will seem to enter and exit process states in a random fashion and even the actual process states may seem to be random and undefined, adding to the chaotic perception by the observer (Fig. 5.6).

If it is possible to bring some order into the seemingly chaotic output, then it may be possible to identify the set of product and process state. If product and process states can be identified, then it would be possible to identify the associated inputs and from this determine the actual state 'drivers' (driving variables) which

Fig. 5.6 Chaotic nature of manufacturing programmes

Fig. 5.7 Order manufacturing programme according to the product state concept

Fig. 5.8 Final product state is driven by previous product and process states of the manufacturing programme (based on Wuest et al. 2013)

are found to influence the process results (product states). Each process state is thus associated with input and output variables' values and can then be classified as good or bad. Given that the drivers for each good or bad product state is known, the seemingly chaotic manufacturing programme could be perceived as ordered and thus controllable (Fig. 5.7).

The assumption is that processes are likely to operate across a relatively constant set of process states. This means that one may assume that the product will enter a specific state dependent upon the input to the process. For complex chain of manufacturing programmes such input should include the human participants responsible for the effectuation of the process. The process concept would thus become (see Fig. 5.8):

The conceptual approach for the application of the approach on manufacturing data is presented in the following paragraphs. As each of the three evaluation scenarios is different and serves different purposes, each will vary to some extent from the following generic methodology. Also the different steps, though numbered in Fig. 5.9, are not followed strictly as they may be run parallel or in reverse order in the three scenarios. This is due to the nature of the data and the specific focus of the individual evaluation. For example, scenario I & II focus on hypothesis 1.2 and have multiple processes within the manufacturing programme.

Fig. 5.9 General application approach for evaluation

Each of the three scenarios is introduced briefly before the available data sets are organized according to the *product state concept*. In this first step, the three scenarios differentiate thus far, that scenarios I & II focus on the processes and their interconnection within the manufacturing programme whereas the third scenario focuses on the individual and final product state.

The data sets are pre-processed so that the SVM algorithm may be applied. For more details refer to Sect. A.2 in the Annex. Again, the pre-processing is different for each of the three scenarios and reflects the nature of the data and the goal of the evaluation. Important steps of data pre-processing include the replacement/ handling of missing values, creating synthetic process based on existing process parameters and standardization/normalization of the data set.

In a next step, first hyperplanes of the classifier may be computed. Of the available selection the most suitable parameter (incl. kernel) configuration for the available data set is to be selected using n-fold cross-validation. The typical

parameter for the cross-validation is n = 10. This provides a first impression of the classification power through a confusion matrix and individual weights of the *w* vectors. As soon as a suitable parameter configuration is chosen, the classification power of the algorithm may be tested by use of the test data set by the trained (using the learning set) SVM algorithm.

After the data is prepared and the classifier is set up and running, the testing of the research hypotheses is executed. There will be different evaluations for each scenario. For example, in scenario I & II different accumulated vectors will be derived and analyzed by the SVM algorithm to test hypothesis 1.2. To do so, SVM feature evaluation according to Guyon et al. (2002) is applied to derive the weights for the individual features and rank them accordingly. However, the specific approach is described in more detail within the evaluation scenario set up in Chap. 6.

Another part of the evaluation is described by the next activity. Here the complete data set is split into a learning (70 %) and a test (30 %) set (Borovicka et al. 2012). In this case there is no need for an evaluation set which is needed for some algorithms and in general accounts for around 10 % of the whole data set. The learning and test set are decided based on the specific situation. Depending on the available knowledge, different methods may be applicable. In this case, the splitting is done randomly, however keeping the ratio of the original set concerning the two classes. The goal of this evaluation is to show the classification performance of the classifier on formerly unknown examples. The general methodology is summarized in Fig. 5.59.

Next, the to be expected results will be briefly introduced in order to prepare the reader on what to expect. This will not entail any information on values or findings, but more the visual and information output of the applied approach. The structure is oriented on the previously presented hypothesis and the presented approach. The goal is to prepare the reader in what to expect from the following evaluation. However, it has to be understood that this section is not replacing the discussion of the results afterwards.

Overall, the reasoning behind the evaluation using three scenarios from different domains with data sets of different complexity is to show the general applicability of the developed approach. Whereas scenario I, the Rolls-Royce manufacturing programme resembles the targeted area of mechanical engineering, scenario II, the chemical manufacturing process gives a different perspective. Scenario III, the semiconductor manufacturing process, was chosen to show the challenges a real world data set may present regarding data pre-processing (e.g., missing values), classification and general structure of the data (hypothesis 2).

The results of the pre-processing may not provide additional arguments to answer the raised research question (hypotheses). Therefore they are not part of the main body of the dissertation and presented in the Annex (see Annex Sect. A.2). However, they provide a necessary step of every ML based approach.

The second area of results provides the classification performance of the different data sets. This part is crucial as it provides evidence that the approach is applicable to real life application cases. Part of these results is also the application of a feature ranking/selection as described in Guyon et al. (2002). In this case, feature selection is applied, reducing the number of attributes (features) of the data sets. Then the classification performance of the reduced (variations) data sets is analyzed. In this regard, especially the comparison of classification performance by means of cross-validation 'pre-feature selection' and 'post-feature selection' provides evidence that relevant state drivers can be identified by the approach (hypothesis 1.1).

After the previously sketched results show that it is possible to identify relevant features (state drivers) for individual processes, the next challenge is to show that it is also possible to identify relevant state drivers cross-process which reflect the process intra- and inter-relations highlighted in the previous sections. Those are a key point of the *product state concept* and thus it is essential that the approach is able to include them. This is done by applying feature ranking to combinations of processes in addition to the individual processes as described before. By doing so, the applied SVM feature weights indicate the important features the same way as they do for individual processes. However, this way they incorporate the (implicit and explicit) cross-process intra-relations which have an influence of the product state. The results are then different rankings showing the relevant features for both individual and combined processes (manufacturing programme) and by analyzing and comparing them, especially shifts of importance along the program, indicates the inclusion of important process intra- and inter-relations (hypothesis 1.2).

Looking at the classification performance of the model, trained by the learning set and applied to the test set, shows the ability of the approach to create a model which may be implemented in a manufacturing programme to identify quality problems at an early stage (hypothesis 3).

References

- Abe, S. (2010). Feature selection and extraction. In S. Abe (Ed.) Support vector machines for pattern classification—advances in pattern recognition (p. 471). London: Springer. doi:10.1007/978-1-84996-098-4.
- Alpaydın, E. (2010). *Introduction to machine learning* (2nd ed.). Cambridge, USA: The MIT Press.
- Apte, C., Weiss, S., & Grout, G. (1993). Predicting defects in disk drive manufacturing: A case study in high dimensional classification. In *IEEE annual computer science conference on* artificial Intelligence in application pp. (212–218). Los Alamitos.
- Azadeh, A., Saberi, M., Kazem, A., Ebrahimipour, V., Nourmohammadzadeh, A., & Saberi, Z. (2013). A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization. *Applied Soft Computing*, 13(3), 1478–1485. doi:10.1016/j.asoc.2012.06.020.
- Ben-hur, A., & Weston, J. (2010). A user's guide to support vector machines. In *Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol. 609* (pp. 223–239). Totowa, NJ: Humana Press. doi:10.1007/978-1-60327-241-4_13.
- Bi, J., Bennett, K. P., Embrechts, M., Breneman, C. M., & Song, M. (2003). Dimensionality reduction via sparse support vector machines. *The Journal of Machine Learning Research*, 3, 1229–1243.

Bishop, C. M. (2006). Pattern recognition and machine learning (p. 749). New York: Springer.

- Borin, A., Ferrão, M. F., Mello, C., Maretto, D. A., & Poppi, R. J. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. *Analytica Chimica Acta*, 579(1), 25–32. doi:10.1016/j.aca.2006.07.008.
- Borovicka, T., Jirina, J. M., Kordik, P., & Jirina, M. (2012). Selecting representative data sets. In Advances in data mining knowledge discovery and applications (pp. 43–70).
- Bradley, P., & Mangasarian, O. (1998). Feature selection via concave minimization and support vector machines. In J. Shavlik (Eds.), *Proceedings of the Fifteenth International Conference* on Machine Learning (ICML '98) San Francisco, California (pp. 82–90).
- Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: Support vector machines for pharmaceutical data analysis. *Computers & Chemistry*, 26(1), 5–14.
- Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.
- Cawley, G. C., & Talbot, N. L. C. (2010). Over-fitting in model selection and subsequent selection bias in performance evaluation. *Journal of Machine Learning Research*, 11, 2079–2107.
- Çaydaş, U., & Ekici, S. (2010). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. *Journal of Intelligent Manufacturing*, 23(3), 639–650. doi:10.1007/s10845-010-0415-2.
- Chang, Y., & Lin, C. (2008). Feature ranking using linear SVM. In *JMLR: Workshop and Conference Proceedings 3* (pp. 53–64).
- Cherkassky, V., & Ma, Y. (2009). Another look at statistical learning theory and regularization. Neural Networks The Official Journal of the International Neural Network Society, 22(7), 958–969. doi:10.1016/j.neunet.2009.04.005.
- Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. *International Journal of Production Research*, 40(17), 4449–4466. doi:10.1080/00207540210152920.
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
- Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press.
- Doltsinis, S., Ferreira, P., & Lohse, N. (2012). Reinforcement learning for production ramp-up: A Q-batch learning approach. In 11th international conference on machine learning and applications (pp. 610–615). Ieee. doi:10.1109/ICMLA.2012.113.
- El-naqa, I., Yang, Y., Wernick, M. N., Galatsanos, N. P., & Nishikawa, R. M. (2002). A support vector machine approach for detection of microcalcifications. *IEEE Transactions on Medical Imaging*, 21(12), 1552–1563.
- Fung, G. M., & Mangasarian, O. L. (2004). A feature selection newton method for support vector machine classification. *Computational Optimization and Applications*, 28(2), 185–202. doi:10.1023/B:COAP.000026884.66338.df.
- Fung, G. M., & Mangasarian, O. L. (2006). Breast tumor susceptibility to chemotherapy via support vector machines. *Computational Management Science*, 3, 103–112.
- Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. *Bioinformatics*, 16(10), 906–914.
- Gardner, R., & Bicker, J. (2000). Using machine learning to solve tough manufacturing problems. International Journal of Industrial Engineering-Theory Applications and Practice, 7(4), 359–364.
- Guo, X., Sun, L., Li, G., & Wang, S. (2008). A hybrid wavelet analysis and support vector machines in forecasting development of manufacturing. *Expert Systems with Applications*, 35(1–2), 415–422. doi:10.1016/j.eswa.2007.07.052.
- Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). A gene selection method for cancer classification using support vector machines. *Machine Learning*, 46, 389–422. doi:10.1155/2012/586246.
- Hamel, L. (2009). Knowledge discovery with support vector machines. Hoboken, NJ: Wiley.
- Harding, J. A., Shahbaz, M., Srinivas & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128(4), 969. doi:10.1115/1.2194554.

- Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. *Decision Support Systems*, 37(4), 543–558. doi:10.1016/S0167-9236(03)00086-1.
- Huang, L., Zhang, H. H., Zeng, Z.-B., & Bushel, P. R. (2013). Improved sparse multi-class svm and its application for gene selection in cancer classification. *Cancer Informatics*, 12, 143–153. doi:10.4137/CIN.S10212.
- Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. *Neural Computation*, 15(7), 1667–1689. doi:10.1162/089976603321891855.
- Khemchandani, R., & Chandra, S. (2009). Knowledge based proximal support vector machines. European Journal of Operational Research, 195(3), 914–923. doi:10.1016/j.ejor.2007.11.023.
- Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. *Informatica*, *31*, 249–268.
- Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer. doi:10.1007/978-1-4614-6849-3.
- Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. *Expert Systems with Applications*, 39(3), 2590–2596. doi:10.1016/j.eswa.2011.08.114.
- Larose, D. (2005). *Discovering knowledge in data—An introduction to data mining*. Hoboken: Wiley.
- Lessmann, S., Sung, M.-C., & Johnson, J. E. V. (2009). Identifying winners of competitive events: A SVM-based classification model for horserace prediction. *European Journal of Operational Research*, 196(2), 569–577. doi:10.1016/j.ejor.2008.03.018.
- Li, H., Liang, Y., & Xu, Q. (2009). Support vector machines and its applications in chemistry. *Chemometrics and Intelligent Laboratory Systems*, 95(2), 188–198. doi:10.1016/ j.chemolab.2008.10.007.
- Lu, S. C.-Y. (1990). Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation. *Computers in Industry*, 15(1990), 105–120.
- Mangasarian, O. L., & Wild, E. W. (2007). Feature selection for nonlinear kernel support vector machines. In Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007) (pp. 231–236). Ieee. doi:10.1109/ICDMW.2007.30.
- Manning, C. D., Raghavan, P., & Schütze, H. (2009). An introduction to information retrieval. Cambridge, UK: Cambridge University Press.
- Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. *European Journal of Operational Research*, 183(3), 1466–1476. doi:10.1016/j.ejor.2006.04.051.
- McCann, M., Li, Y., Maquire, L., & Johnston, A. (2010). Causality challenge: Benchmarking relevant signal components for effective monitoring and process control. *Journal of Machine Learning Research: Workshop and Conference Proceedings*, 6, 277–288.
- Monostori, L. (2002). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. In 15th triennial world congress (p. 12). Barcelona, Spain.
- Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent systems. Essex, UK: Addison Wesley.
- Nilsson, N. J. (2005). Introduction to machine learning (p. 188). Stanford, USA: Stanford University.
- Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(5), 395–412. doi:10.1243/095440505X32274.
- Priore, P., de la Fuente, D., Puente, J., & Parreño, J. (2006). A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems. *Engineering Applications* of Artificial Intelligence, 19(3), 247–255. doi:10.1016/j.engappai.2005.09.009.
- Rejani, Y. I. A., & Selvi, S. T. (2009). Early detection of breast cancer using SVM classifier technique. *International Journal on Computer Science and Engineering*, 1(3), 127–130.
- Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. *IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews)* 35(3), 401–410. doi:10.1109/TSMCC.2004.843228.

- Salahshoor, K., Kordestani, M., & Khoshro, M. S. (2010). Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. *Energy*, 35(12), 5472–5482. doi:10.1016/ j.energy.2010.06.001.
- Samuel, A. (1959). Some studies in machine learning using the game of checkers.IBM Journal 3(3), 210–229.
- Sánchez, A. V. D. (2003). Advanced support vector machines and kernel methods. *Neurocomputing*, 55(1–2), 5–20. doi:10.1016/S0925-2312(03)00373-4.
- Scheidat, T., Leich, M., Alexander, M., & Vielhauer, C. (2009). Support vector machines for dynamic biometric handwriting classification. In *Proceedings of AIAI Workshops* (pp. 118–125).
- Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to machine learning. Cambridge, UK: Cambridge University Press.
- Sun, J., Rahman, M., Wong, Y., & Hong, G. (2004). Multiclassification of tool wear with support vector machine by manufacturing loss consideration. *International Journal of Machine Tools* and Manufacture, 44(11), 1179–1187. doi:10.1016/j.ijmachtools.2004.04.003.
- Sutton, R. S., & Barto, A. G. (2012). *Reinforcement learning: An introduction* (2nd ed.). Cambridge, USA: The MIT Press.
- Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. *Neurocomputing*, 48, 847–861.
- Ulaş, A., Yıldız, O. T., & Alpaydın, E. (2012). Cost-conscious comparison of supervised learning algorithms over multiple data sets. *Pattern Recognition*, 45(4), 1772–1781. doi:10.1016/ j.patcog.2011.10.005.
- Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August 13, 2013, from http://www.math.uni-bremen.de/cms/media.php/59/PromO%20FB%202-5% 20_14%203%2007_.6442.pdf.
- Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
- Vapnik, V. (1998). Statistical learning theory. Hoboken: Wiley.
- Whitehall, B. L., Lu, S. C.-Y., & Stepp, R. E. (1990). CAQ: A machine learning tool for engineering. Artificial Intelligence in Engineering, 5(4), 189–198. doi:10.1016/0954-1810(90)90020-5.
- Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. *Mechanical Systems and Signal Processing*, 21(6), 2560–2574. doi:10.1016/j.ymssp.2006.12.007.
- Wiering, M., & Van Otterlo, M. (2012). *Reinforcement learning: State-of-the-art*. New York: Springer.
- Wu, Q. (2010). Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system. *Journal of Computational and Applied Mathematics*, 233(10), 2481–2491. doi:10.1016/j.cam.2009.10.030.
- Wuest, T., Irgens, C., & Thoben, K.-D. (2012). Analysis of manufacturing process sequences, using machine learning on intermediate product states (as process proxy data). In C. Emmanouilidis, M. Taisch, & D. Kiritsis (Eds.), APMS 2012, Part II, IFIP AICT 398 (pp. 1–8). Heidelberg: Springer.
- Wuest, T., Irgens, C., & Thoben, K.-D. (2013). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. *Journal of Intelligent Manufacturing*, 25(5), 1167–1180.
- Zhang, T. (2002). On the dual formulation of regularized linear systems with convex risks. *Machine Learning*, 46, 91–129.

Chapter 6 Application of SVM to Identify Relevant State Drivers

In this section, the previously derived hypotheses are evaluated by developing and analyzing three scenarios. The section is structured as follows: at first the scenarios are briefly introduced (for more detail refer to Annex Sect. A.2). The following two subsections focus on the application of the previously introduced research plan on the three scenarios. However, it has to be noted that the scenarios were not evaluated following the presented sequence during the analysis phase. The presented sequence (scenarios I–III) does not resemble the timely sequence of evaluation of the different scenarios. Therefore, it is possible that the background of and justification for some of the methods, tools and applications are explained in later sections even so they are applied beforehand. In such cases, reference is given to the more detailed explanation in later sections. The Chap. 7 presents and discusses the evaluation results and illustrates the limitations of the approach.

6.1 Introducing Scenarios I, II and III

In this section the three evaluation scenarios are introduced and the available data for each scenario is presented and analyzed. After the three processes and accompanying data sets are presented individually, necessary pre-processing steps were conducted. Since this is not part of the main application approach, this is expanded on in the Annex (see Sect. A.2). The pre-processing entails among other things, replacing missing values (scenarios II & III) and the generation of additional data (scenarios I & II). The result of the pre-processing are three data sets ready for the application of SVM algorithms in order to identify state drivers. The three data sets complement each other in terms of the evaluation focus areas and goals.

The *first scenario* 'RR' (details in Annex Sect. A.2.1) is based on a mechanical manufacturing process of a highly stressed product. The scenario is set in the

aviation domain and is provided by Rolls-Royce. The 'real world' data set resembles a complex process in the manufacturing programme. It is supplemented by two additional synthetic processes named 'Dick' and 'Harry' which are generated based on the characteristics of the original data set.

The *second scenario 'CHEM'* (details in Annex Sect. A.2.2) is similarly designed and set in the chemical manufacturing domain. The original data set is complemented by two additional synthetic processes, based on the characteristics of the original process. Both scenarios aim to show how the structuring according to the *product state concept*, intelligent combination of processes and application of SVM, allows the identification of state drivers throughout the manufacturing programme (hypothesis 1.2). As can be seen in Fig. 6.1a, scenarios I and II focus on different areas of the manufacturing programme for the evaluation of the hypotheses. The data sets resemble the manufacturing programme as well as the individual processes vectors to accumulated process vectors (e.g., process 1 & 2—highlighted in dashed red line). Having distinct 'real world' scenarios from different environments of manufacturing. This is extended further by the following third scenario, set in the semiconductor manufacturing domain.

This *scenario III* 'SECOM' (details in Annex Sect. A.2.3) represents another 'real world' manufacturing programme, based on process data from the semiconductor manufacturing domain. The main purpose of this scenario is to apply the approach on a data set that presents a challenge for pre-processing and application due to its highly imbalanced, high dimensional nature, additionally containing a large amount of missing values. This is common in real world data sets and thus the developed approach needs to evaluate its applicability towards such data sets. However, this scenario shall also provide further evidence of the broad practical application potential of the develop approach given the different domain it is set in. Furthermore, scenario III will be used to support the evaluation of hypothesis 1.1. The evaluation focus of this scenario is on the complete manufacturing programme (highlighted in continuous orange line) and partly on an individual process (highlighted in dashed orange line) (see Fig. 6.1b). The term 'partly' describes the assumption that even though the complete data set describes a manufacturing programme, it can also be perceived as a process containing

Fig. 6.1 Summary of focus areas of evaluation scenarios I, II & III. a Scenarios I & II—RR & Chem. b Scenario III—SECOM

various operations. This may be of relevance for the later comparison of the results between this scenario and scenarios I & II.

For details of the data pre-processing, it is advised to refer to the Annex. The application of the developed approach is evaluated in the following subsections.

6.2 Scenario I—Rolls-Royce

In this section, the described approach of applying supervised ML (SVM algorithm) to identify relevant information in form of state drivers (relevant features) within the Rolls-Royce data set as described within the approach is presented. At first the classification performance of the Rolls-Royce data set is evaluated using first a linear kernel and later an ANOVA kernel. This is done in detail for the TOM(RR) process as it represents real world data. For the synthetic and combined vectors, a basic evaluation is applied in order to evaluate the suitability of the feature ranking method. Following, a feature ranking based on SVM weight vectors w is performed and the classification performance of the data set with different reduced feature sets is compared to the original full features data set based on the TOM(RR) process. Then a feature ranking is applied for the other synthetic processes as well as the combined vectors. Finally, the classification performance of the model on previously unknown data is analyzed using a (random) split in a learning (70 %) and test (30 %) set. However, for this scenario, the results of the analysis have specific limitations which will be specified in the respective section.

6.2.1 SVM Kernel and Parameters for Hyperplane by X-Validation

At first the classification performance of the data set is tested through tenfold cross-validation. For a more detailed description on how this is applied technically, refer to Sect. 6.4.1. In a first step, the basic linear kernel is applied with original parameters as provided by RapidMiner (v5.3).

The classification results of this test show acceptable results even so they are partly below a threshold of 80 % (see Fig. 6.2). The target threshold of 80 % over

1.68% (mikro: 72.32%)		
true Defect140	true PASS	class precision
1774	837	67.94%
324	1260	79.55%
84.56%	60.09%	
	1774 324	true Defect140 true PASS 1774 837 324 1260

Fig. 6.2 Confusion matrix showing the classification performance of x-val. for TOM(RR) with a linear kernel (orig. parameters)

all class prediction and class recall percentages is used for the evaluation within this dissertation. This is deemed to represent a good classification results for the application case within the three presented scenarios. It is however not possible to judge a classification performance over all domain, data sets, etc. as the threshold may vary significantly for what is deemed a good or a bad result. In general, this has to be determined based on the case at hand and the circumstances (Witten et al. 2011).

After some basic optimization of the linear kernel parameters (C 1.5) (see Fig. A.17 in Annex), the classification results improve considerably, nearing the target threshold (see Fig. 6.3). These acceptable classification results running with the basic linear kernel indicate that the later feature ranking based on SVM algorithm determined weight w is applicable for this data set's structure.

After this first run with the linear kernel, a parameter optimization is run to find the best fitting parameters for the data set and improve the classification performance significantly. The identified parameter set with the best classification performance is an ANOVA kernel with the following specs (different from orig.): kernel degree 3.0 and C 1.0. The results are significantly higher than the target threshold of 80 % for class recall as well as class precision (see Fig. 6.4).

After the original data set provided by Rolls-Royce is analyzed and shows good classification performance with the chosen SVM algorithm, the additional synthetic data sets of the individual processes DICK(RR) and HARRY(RR) as well as the combined vectors TD(RR) and TDH(RR) are analyzed according to their classification performance with a linear kernel. This is also done to show the general suitability of the feature ranking based on the weight vectors w.

The results are summarized in the following Fig. 6.5 and show overall a very good classification performance for all processes and combined vectors. This was expected due to the chosen process of synthesizing the processes and combined vectors and assigning labels. Therefore, the later applied feature ranking method

accuracy: 78.24% +/-	1.91% (mikro: 78.24%)		
	true Defect140	true PASS	class precision
red. Defect140	1840	655	73.75%
ored. PASS	258	1442	84.82%
class recall	87.70%	68.76%	

Fig. 6.3 Classification results of RR data set (TOM(RR)) by x-val. after basic parameter optimization on linear kernel (C 1.5)

accuracy: 98.45% +/- 0	0.47% (mikro: 98.45%)		
	true Defect140	true PASS	class precision
ored. Defect140	2097	64	97.04%
ored. PASS	1	2033	99.95%
class recall	99.95%	96.95%	

Fig. 6.4 Classification results of RR data set (TOM(RR)) by x-val. after basic parameter optimization on ANOVA kernel (kernel degree 3.0; C 1.0)

(a)			(b)			(c)		
Accuracy:	72.4	0%	Accuracy:	99.90	0%	Accuracy:	99.93	%
1774	834	68.02%	2693	2	99.93%	2327	2	99.91%
324	1263	79.58%	2	1498	99.87%	1	1865	99.95%
84.56%	60.23%		99.93%	99.87%		99.96%	99.89%	
(d)			(e)		8			
Accuracy:	99.3	3%	Accuracy:	99.09	9%			
1869	12	99.36%	2156	18	99.17%			
16	2298	99.31%	20	2001	99.01%			
99.15%	99.48%		99.08%	99.11%				

Fig. 6.5 X-val classification performance of the processes and combined vectors. **a** TOM(RR) (x-val; orig. para.; DOT kernel). **b** DICK(RR) (x-val; orig. para.; DOT kernel). **c** HARRY(RR) (x-val; orig. para.; DOT kernel). **d** TD(RR) (x-val; orig. para.; DOT kernel). **e** TDH(RR) (x-val; orig. para.; DOT kernel)

is assumed suitable for the complete data set (original and synthetic) of the Rolls-Royce scenario.

The very good classification performance by cross-validation of all processes and combined vectors using a linear kernel shows that a feature ranking by the weight vector w using an SVM classifier is applicable. In the following subsection, such a feature ranking method is applied for all processes and combined vectors.

6.2.2 Feature Ranking Using SVM Classifier

In this section, the features of the different processes and combined vectors are ranked according to their weight vector w. This method is based on Guyon et al. (2002) and described in greater detail in Sect. 6.3.4. As the WEKA¹ feature ranking function does not provide an output of the actual weight values, in this scenario the feature ranking function of RapidMiner (v5.3) is additionally utilized as illustrated in Fig. 6.6. The feature ranking derived by the WEKA function is detailed subsequently in Table 6.1. Following a short comparison of the results of the two approaches (WEKA and RapidMiner) is described.

The RapidMiner (v5.3) function does not allow for the same customization as does the WEKA version. However, as has been previously established (see Fig. 6.3), the C value was identified as the optimizing lever for linear kernels and this parameters can be adjusted in the function (see Fig. 6.6).

The resulting feature ranking including the values of the weight vector w are depicted in Table A.7 in the Annex. The weight vector w values are normalized

¹WEKA 3: Data Mining Software in Java issued under the GNU General Public License (http://www.cs.waikato.ac.nz/~ml/weka/).

Main Process		↓ We	ight by SVM	
inp	C res C res	v normalize weight sort weights sort direction C	ascending	*

Fig. 6.6 Feature ranking by SVM in RapidMiner (v5.3)

[1;0]. Based on this ranking, the feature selection is done. The chosen variants are FS10; FS15; FS20; FS30 and FS50. The variants are chosen not based on their weight value at this point, but for the comparability within and between scenarios. The later discussed variant with 57 features is based on the weight value, as the values of the features ranking no. 58 to no. 85 is under 0.1. For the respective data sets the classification performance is tested by tenfold cross validation using the previously determined parameters (see Fig. 6.4). The results are illustrated in the following Fig. 6.7.

The results show that even so the classification performance of the full features data set is the highest, even the data set with a significantly reduced feature set (10) reaches very good classification performance. The variations with 30 and 50 highest ranking features reach almost the performance of the full data set. This confirms that the feature selection is able to select the state drivers rather accurately. Looking at the weight values, one more evaluation is run with the 57 highest ranking features. Those features have a normalized weight value of 0.1 or above. Figure 6.8 shows that the results are nearing the results of the full feature set:

The results of the previously applied RapidMiner (v5.3) feature selection function are compared with the WEKA feature ranking function which is used in scenarios II & III. The WEKA tool is designed based on Guyon et al. (2002) and

	85			FS10		F\$15			
Accuracy:	98.45%		Accuracy:	92.4	42%	Accuracy:	93.9	92%	
2097	64	97.04%	2040	260	88.70%	2058	215	90.54%	
1	2033	99.95%	58	1837	96.94%	40	1882	97.92%	
99.95%	96.95%		97.24%	87.60%		98.09%	89.75%		
	FS20			FS30			FS50		
Accuracy:	95.0	07%	Accuracy:	96.5	59%	Accuracy:	97.6	56%	
2072	181	91.97%	2084	129	94.17%	2097	97	95.58%	
26	1916	98.66%	14	1968	99.29%	1	2000	99.95%	
98.76%	91.37%		99.33%	93.85%		99.95%	95.37%		

Fig. 6.7 Comparison of classification performance by x-val for TOM(RR) with variations in no. of features (RapidMiner (v5.3)) (ANOVA; kernel gamma 1; kernel degree 3; C 1)

accuracy: 97.97% +/- 0).47% (mikro: 97.97%)			
	true Defect140	true PASS	class precision	
pred. Defect140	2097	84	96.15%	
pred. PASS	1	2013	99.95%	
class recall	99.95%	95.99%		

Fig. 6.8 X-val classification performance on TOM(RR) with 57 highest ranking features

Rank	Feature	Rank	Feature	Rank	Feature	Rank	Feature
1	para.51	23	para.46	45	para.23	67	para.56
2	para.21	24	para.48	46	para.24	68	para.30
3	para.50	25	para.31	47	para.25	69	para.40
4	para.33	26	para.38	48	para.83	70	para.77
5	para.6	27	para.11	49	para.73	71	para.79
6	para.36	28	para.42	50	para.41	72	para.65
7	para.14	29	para.20	51	para.37	73	para.69
8	para.9	30	para.16	52	para.17	74	para.71
9	para.47	31	para.13	53	para.26	75	para.4
10	para.59	32	para.84	54	para.52	76	para.7
11	para.29	33	para.53	55	para.39	77	para.72
12	para.55	34	para.3	56	para.87	78	para.74
13	para.61	35	para.43	57	para.8	79	para.70
14	para.60	36	para.22	58	para.12	80	para.80
15	para.44	37	para.62	59	para.10	81	para.82
16	para.45	38	para.19	60	para.27	82	para.86
17	para.34	39	para.54	61	para.15	83	para.68
18	para.32	40	para.57	62	para.18	84	para.78
19	para.64	41	para.81	63	para.28	85	para.76
20	para.2	42	para.75	64	para.63		
21	para.5	43	para.49	65	para.67		
22	para.35	44	para.58	66	para.66		

Table 6.1 Feature ranking of TOM(RR) by WEKA

thus directly applicable to the task at hand. Thereafter, the same evaluation is run with the feature ranking derived from the WEKA function for process TOM(RR) (see Table 6.1). A more detailed description of the WEKA feature ranking function and the fundamental method described by Guyon et al. (2002) is presented in Sect. 6.3.4.

As can be directly observed, the feature ranking derived by the WEKA function (see Table 6.1) is rather different to the one derived by RapidMiner (v5.3) (see Table A.7 Annex). Next, the classification performance during the same test configurations as shown before are performed with the data set with reduced feature sets (based on the WEKA feature ranking). The results are presented in Fig. 6.9.

	85			FS10		FS15			FS20		
Accuracy:	98.45%		Accuracy:	91.9	99%	Accuracy:	94.0	06%	Accuracy:	96.0	04%
2097	64	97.04%	2026	264	88.47%	2056	207	90.85%	2083	151	93.24%
1	2033	99.95%	72	1833	96.22%	42	1890	97.83%	15	1946	99.24%
99.95%	96.95%		96.57%	87.41%		98.00%	90.13%		99.29%	92.80%	
FS30				FS50			FS57				
Accuracy:	96.92%		Accuracy:	98.1	19%	Accuracy:	98.3	33%			
2090	121	94.53%	2096	74	96.59%	2097	69	96.81%			
8	1976	99.60%	2	2023	99.90%	1	2028	99.95%			
99.62%	94.23%		99.90%	96.47%		99.95%	96.71%				

Fig. 6.9 Comparison of classification performance by x-val for TOM(RR) with variations in the number of features (WEKA) (ANOVA; kernel gamma 1; kernel degree 3; C 1)

When comparing the classification performance results of the different data sets with varying number of features, the tendency is similar for the feature ranking derived by RapidMiner (v5.3) (see Figs. 6.7 and 6.8) and WEKA (Fig. 6.9).

In Fig. 6.9 the classification performance of similar feature selection variations (10; 15; 20; 30; 50; 57 features) using tenfold cross-validation with an SVM classifier (ANOVA kernel) is evaluated. In this case the feature selection is based on the feature ranking derived with the feature ranking function of WEKA based on Guyon et al. (2002). Overall the results show also very good classification performance results, similar to the previous evaluations of variants based on the RapidMiner (v5.3) feature selection function. It shows that the classification performance improves the more features are employed by the data set. However there is a slightly better performance noticeable for the WEKA ranking for data sets with 15 and more features compared to the RapidMiner (v5.3) ranking. Just for the data set with 10 features the RapidMiner (v5.3) version outperforms the WEKA version by a fraction. Overall, the results of both variations can be considered very good.

In the following paragraphs, one more comparison analysis for the two different feature ranking functions is conducted. For each version, a data set with the 20 highest ranking features and the 20 lowest ranking features is compared (see Fig. 6.10). Interestingly for the RapidMiner (v5.3) version, it shows that the data set with the 20 lowest ranked features performs better than the version with the 20 highest ranked features. This is rather unexpected. The WEKA version on the other hand shows a significantly better performance for the 20 highest ranked feature ture data set with an accuracy of 96 % over 74 % for the 20 lowest ranked feature data set.

RapidMiner	(v5.3)					WEKA					
hig	highest FS20 lowest FS20				lowest FS20 highest FS20 lowest F					west FS20	Ê.
Accuracy:	95.0)7%	Accuracy:	95.2	23%	Accuracy:	96.0)4%	Accuracy:	75.1	14%
2072	181	91.97%	2072	174	92.25%	2083	151	93.24%	1599	544	74.62%
26	1916	98.66%	26	1923	98.67%	15	1946	99.24%	499	1553	75.68%
98.76%	91.37%		98.76%	91.70%		99.29%	92.80%	-	76.22%	74.06%	

Fig. 6.10 Comparison of class. Perf. by x-val for TOM(RR) for WEKA and RapidMiner (v5.3) version with 20 highest and lowest ranked features (ANOVA; ker. gamma 1; ker. degree 3; C 1)

FS variant	FS10	FS15	FS20	FS30	FS50	FS57	lowestFS20
No. of identical features	2	6	8	16	34	44	6
Percentage of overlap	10.00%	40.00%	40.00%	53.33%	68%	77.19%	30.00%

Fig. 6.11 No. of features contained in both rankings of WEKA and Rapidminer (v5.3)

Comparing the number of similar features contained in the different variations of the WEKA and RapidMiner (v5.3) ranking, the FS10 variant also stands out with a very low overlap percentage of 20 % followed by the 'lowest FS20' variant with 30 % whereas all other variants show overlaps of 40 % and above (see Fig. 6.11).

As for the original Rolls-Royce data set TOM(RR) expert knowledge is available, the ranking of features by WEKA was approved by the experts. The WEKA ranking was found to share a higher compliance with the existing expert knowledge of the relevant process parameters than the Rapidminer (v5.3) ranking. This confirms the previous suspicion of the WEKA ranking method being superior to the Rapidminer (v5.3) one.

The WEKA analysis confirmed already known relevant process parameters for the TOM(RR) processes. More importantly the conducted analysis also identified a new and potentially most important influence by including the implicit process inter-relations. In this case the process intra-relations could not be confirmed in a similar fashion by the RR experts as the processes DICK(RR) and HARRY(RR) and the combined vectors TD(RR) and TDH(RR) are supplemented by synthetic data. The experts however acknowledged the potential those analyses promise and are interested in exploring the applicability within their manufacturing system further. Based on this results, for this scenario, the WEKA version is used in the throughout the following evaluation scenarios for feature ranking purposes.

6.2.3 Classification on Previously Unknown Data

As has been previously mentioned, the results of this sub-section, looking into the classification performance of previously unknown data for the RR data are not necessarily generable or comparable to those of scenarios II & III. The reason for this is that SMOTE oversampling was applied prior to the provision of the data set by Rolls-Royce. As SMOTE does add additional examples to the minority class that are inspired by the existing population, the data of the test set cannot be considered unknown.

However, as is discussed in the following results section (see Sect. 7.1.5), the classification performance on the test set may still indicate how the data set may behave when more examples of the minority class are available under the assumption that the future minority examples are not too diverse.

	85			FS10		FS15			
Accuracy:	97.30%		Accuracy: 91.10%		Accuracy:	92.7	77%		
641	2	99.69%	608	35	94.56%	618	25	96.11%	
32	583	94.80%	77	538	87.48%	66	549	89.27%	
95.25%	99.66%		88.76%	93.89%		90.35%	95.64%		
				FS30 FS50					
	FS20			FS30			FS50		
Accuracy:		28%	Accuracy:		03%	Accuracy:		56%	
Accuracy: 619)3% 98.29%			66% 99.22%	
	94.2		632	96.0		638		102/2010/10	

Fig. 6.12 Comparison of classification performance of previously unknown data for TOM(RR) with variations in no. of features (ANOVA; kernel gamma 1; kernel degree 3; C 1)

For the application of this method, the TOM(RR) data set is randomly split in a learning set (70 %), used to train the model and a test set (30 %) on which the model is applied subsequently. The feature selection in this section is based on the feature ranking done by the RapidMiner (v5.3) SVM weight function. For further details on the technical aspects of the process refer to Sect. 6.3.2.

The analysis of classification performance on previously unknown data, depicted in Fig. 6.12 show results that are similar to the ones obtained by cross-validation (see Fig. 6.7). For the full feature set, all four percentages are in the mid- to high-nineties and thus have to be considered very good. The variations with different numbers of highest ranking features show that the classification performance results are slightly lower than for the full feature set. Nevertheless, even the data set reduced to the 10 highest ranking features shows very good classification results significantly higher than the target threshold of 80 %. This indicates that even with reduced features the outcome can be predicted with a high accuracy. The limitations of the RR data set for the learning/test evaluation as stated before also apply for this test. In the evaluation scenario the analysis of a chemical manufacturing programme is presented.

6.3 Scenario II—Chemical Manufacturing Process

In this section, the previously introduced chemical manufacturing process is evaluated with regard of the proposed research hypothesis. At first, the classification performance of the data set is evaluated using by applying a cross-validation (tenfold). Following, a suitable SVM classification algorithm is identified (regarding kernel and parameter choice) and if needed, additional measures are taken (e.g., oversampling of minority class, etc.) in order to optimize the classification performance. Then, the identification of relevant attributes (features), the state drivers is applied by the feature selection method proposed by Guyon et al. (2002). In a first step a feature ranking is derived, sorting the features according to their weight vector w, reflecting their importance. In

order to evaluate the correct choice, the classification performance different variations concerning the amount of features of the data set is compared to the performance of the full data set. In order to analyze the applicability of the approach in practice and to evaluate the ability of the approach to identify formerly unknown failure examples, a performance evaluation is conducted by splitting the data set in a learning (70 %) and test (30 %) subset. Finally, feature ranking is applied to all individual processes and combined process vectors. The results of this will be evaluated in the following Chap. 7.

6.3.1 SVM Kernel and Parameters for Hyperplane by X-Validation

A tenfold cross-validation is applied on the TOM(CHEM) data set using RapidMiner (v5.3) as shown in Fig. 6.16. In the first run, the original settings of the SVM function is used (kernel type DOT). The classification performance results of the derived confusion matrix (see a in Fig. 6.13) show a low classification performance of the minority class (negative). As can be observed, the results are uneven, but still significantly below the target threshold of 80 % for both class recall and class prediction.

To show that the synthetic processes are applicable to classification by SVM algorithms with linear kernels and thus for feature ranking as described later, the results of the tenfold cross-validation for DICK(CHEM), HARRY(CHEM), TD(CHEM) and TDH(CHEM) are presented in (b)–(e) in Fig. 6.13. The classification performance of TD(CHEM) with a linear kernel is not very good. However, it is deemed acceptable within the scenario. The further application process is however based on TOM(CHEM) as it resembles real world data with all the challenges associated with real world data.

The next step in improving the classification model is to optimize the parameters of the SVM classifier applied. Optimizing parameters can improve the classification results significantly depending on the data set structure.

Fig. 6.13 Results of x-val classification performance of synthetic CHEM processes linear SVM. **a** TOM(CHEM) (x-val; orig. para.; DOT kernel). **b** DICK(CHEM) (x-val; orig. para.; DOT kernel). **c** HARRY(CHEM) (x-val; orig. para.; DOT kernel). **d** TD(CHEM) (x-val; orig. para.; DOT kernel). **e** TDH(CHEM) (x-val; orig. para.; DOT kernel)

The optimization can either be done manually by continuously adapting the individual parameters, by observing and reacting to the changing results, or automated according to relevant parameters. In order to find the optimal classification model for the TOM(CHEM) data set, the automated optimization method was applied. The reasons are that the automated method allows for a structured and thorough testing of all parameter combinations with a direct feedback loop from the associated results.

RapidMiner (v5.3) allows to incorporate a parameter optimization including the cross-validation process (component "optimize parameter (Grid)"). The function acts like a shell around the cross-validation component as can be seen in Fig. 6.14, showing the overall process, Figs. 6.15 and 6.16 illustrating the containing components within the optimization component.

The optimization component allows to select the parameters which shall be optimized for all components within the 'shell'. In this case, the parameters of the SVM classifier are in focus. For each parameter to be optimized, the range of optimization, number of steps and the scale (e.g., linear) may be chosen. Alternatively it is also possible to pre-define a list of values to be tested. As each parameter and each individual step adds to the number of calculations exponentially, it may be sensible to divide the optimization in several runs. This stands especially true as for each alternative n validations (n = 10) are calculated. In this case, first an optimization finding the most suitable kernel type was conducted before the individual parameters were targeted. The final optimization routine calculated over 19,000 operations to find the optimal combination of parameters for the data set.

The log routine (see Fig. 6.15) of the optimization routine tracks the different combinations of parameters and their performance during the process (see Fig. 6.17). This is updated throughout the process in real time. The results of the

Fig. 6.14 RapidMiner (v5.3) x-val process incl. optimization routine (top-level)

Fig. 6.15 RapidMiner (v5.3) CHEM x-val process incl. log routine (second level)

Fig. 6.16 RapidMiner (v5.3) CHEM x-val process with SVM classifier (third level)

Learning r	Kernel	Performance V	Opti para	Kernel Gamma	Kernel Degree	L_pos	L_neg
-1	anova	1	SVM.kernel	1.666666666666666	2.3333333333333333333	0.800000000000000	1.200000000000
-1	anova	1	SVM.kernel	3	1	2	2.700000000000
-1	anova	0.941176470588235	SVM.kernel	1	1	0.400000000000000	0.600000000000
-1	anova	0.941176470588235	SVM.kernel	1.666666666666666	1.6666666666666666	0.4000000000000000	0.600000000000
-1	anova	0.941176470588235	SVM.kernel	1	3	0.4000000000000000	0.600000000000
-1	anova	0.941176470588235	SVM.kernel	1	1	0.600000000000000	0.900000000000
-1	anova	0.941176470588235	SVM.kernel	1.6666666666666666	3	0.4000000000000000	1.200000000000
-1	anova	0.941176470588235	SVM.kernel	3	1	0.600000000000000	1.200000000000
-1	anova	0.941176470588235	SVM.kernel	2.3333333333333333333	1	0.8000000000000000	1.200000000000
-1	anova	0.941176470588235	SVM.kernel	3	1	0.8000000000000000	1.200000000000
-1	anova	0.941176470588235	SVM.kernel	1	1	1	1.200000000000
-1	anova	0.941176470588235	SVM.kernel	1.666666666666666	1	1	1.200000000000
-1	anova	0.941176470588235	SVM.kernel	1	1.6666666666666666	1.8000000000000000	1.200000000000
-1	anova	0.941176470588235	SVM.kernel	3	2.3333333333333333333	0.4000000000000000	1.500000000000
-1	anova	0.941176470588235	SVM.kernel	3	1.6666666666666666	0.600000000000000	1.800000000000
-1	anova	0.941176470588235	SVM.kernel	2.33333333333333333333	2.33333333333333333333	0.800000000000000	1.800000000000
-1	anova	0.941176470588235	SVM.kernel	1	1	1.20000000000000000	1.800000000000

Fig. 6.17 Optimization of SVM parameter (ANOVA)

final optimization run are compromised by the parameter set found to realize the optimal classification performance for the tested data set (see Fig. 6.18) and a confusion matrix highlighting the classification performance using the optimal parameters set (see Fig. 6.19). It can be observed that the classification performance improved compared to the first cross-validation (see Fig. 6.13). In particular, looking at class recall performance of the negative class. However, the performance is still under the target threshold of 80 % for all indicators.

The difficulty of the classifier to correctly classify the minority class may be caused by the unbalanced data (minority ratio of 27.6 %). In such cases, there are several established methods available. One that was found explicitly powerful is oversampling of the minority class using the Synthetic Minority Oversampling TEchnique (SMOTE) method (Chawla et al. 2002; Tang et al. 2009; Chawla 2010; Farquad and Bose 2012). The advantage of this technique is that it is specifically designed to avoid overfitting when oversampling is used. SMOTE operates in a feature space instead of a data space (Chawla 2010). SMOTE oversampling by 200–500 % of the minority class shows promising results in improvement

Text View O Annotations	a l	-
ParameterSet		
Parameter set:		
Performance:		
PerformanceVector [
	% +/- 6.86% (mikro: 81.18%)	
ConfusionMatrix:		
True: positive	negative	
positive: 111	20	
negative: 12	27	
	5% +/- 21.98% (mikro: 69.23%) (positive class: negative)	
ConfusionMatrix:		
True: positive	negative	
positive: 111	20 27	
negative: 12	<pre>2/ +/- 29.43% (mikro: 57.45%) (positive class: negative)</pre>	
ConfusionMatrix:	+/- 29.43% (mikro: 57.45%) (positive class: negative)	
True: positive	negative	
positive: 111	20	
negative: 12	27	
AUC (optimistic AUC: 0.86564102): 0.865641025641026 +/- 0.106987621175594 (mikro: 0.865641025641026) (positive class: negati 5641026 +/- 0.106987621175594 (mikro: 0.865641025641026) (positive class: negative) c): 0.865641025641026 +/- 0.106987621175594 (mikro: 0.865641025641026) (positive class: negat	
SVM.kernel_gamma	= 3.0	
SVM.kernel_degree	= 3.0	
SVM.L_pos = 0.8		
SVM.L neg = 1.7	99999999999998	

Fig. 6.18 Results of parameter optimization (ANOVA)

accuracy: 84.12% +/-	8.34% (mikro: 84.12%)		
	true positive	true negative	class precision
pred. positive	111	15	88.10%
pred. negative	12	32	72.73%
class recall	90.24%	68.09%	

Fig. 6.19 Cross-validation performance with optimized parameters as shown in Fig. 6.18 (ANOVA kernel type 3; kernel degree 3; C -1; Lpos 0.8; Lneg 1.8)
of classification of unbalanced data sets (Chawla et al. 2002). In some applications, SMOTE oversampling of 1000 % and more showed good results in previous research (Akbani et al. 2004; Yun et al. 2011). The application of the SMOTE method in WEKA using the build in function is described in more detail in scenario III SECOM (Sect. 6.4.1).

In this case the minority class was enhanced by 100 % using the SMOTE method as it is incorporated in WEKA. The results of the subsequent cross-validation of the enhanced data set show significantly improved results. All indicators are above the target threshold of 80 % (see Fig. 6.20).

However, the previous parameter optimization which is the basis for the chosen parameters used for the cross-validation of the enhanced data set was based on another data set with need for a higher penalty for negative misclassification. The enhanced data set is more balanced and thus may profit from different parameter settings. Optimizing the parameters and subsequent cross-validation for the enhanced data set shows that the results improve further (see Fig. 6.21) presenting now a very good classification result.

6.3.2 Classification on Previously Unknown Data

In this scenario, three possible approaches to select the learning and test set are applied and illustrated in order to evaluate the classification performance on previously unknown data. First the learning and test set is selected using different approaches before their classification performance is compared.

accuracy: 87.16% +/-	9.26% (mikro: 87.10%)		
	true positive	true negative	class precision
ored. positive	103	8	92.79%
ored. negative	20	86	81.13%
class recall	83.74%	91.49%	

Fig. 6.20 X-val of TOM(CHEM) with SMOTE (100 %) and same previously identified optimal parameters (ANOVA kernel type 3; kernel degree 3; C - 1; Lpos 0.8; Lneg 1.8)

accuracy: 89.94% +/-	7.31% (mikro: 89.86%)		
	true positive	true negative	class precision
ored. positive	109	8	93.16%
ored. negative	14	86	86.00%
lass recall	88.62%	91.49%	

Fig. 6.21 X-val of TOM(CHEM) with SMOTE (100 %) and optimized parameters (ANOVA kernel type 3; kernel degree 3; C 1; Lpos 1; Lneg 1)

6.3.2.1 Definition of Learning Set—Random

The approach described in this subsection is based upon the annotation of the data set in positive (\geq 39 Yield) and negative (<39 Yield) examples. Two variations are utilized, one defining the learning set as 70 % of the positive and 70 % of the negative examples, chosen at random by a RapidMiner (v5.3) sampling process.

From the *negative* examples, the following 15 (out of 51; exact ratio 29.4 %) were chosen as the *test data set*: (*example no.*) 26; 29; 30; 62; 87; 105; 136; 139; 141; 152; 154; 155; 157; 164; 165.

From the *positive* examples, the following 37 (out of 125; exact ratio 29.6 %) were chosen as the *test data set*: (*example no.*) 2; 7, 10; 11; 12; 14; 17; 19; 23; 31; 40; 41; 46; 47; 53; 59; 61; 67; 70; 72; 83; 84; 97; 113; 118; 122; 128; 130; 140; 142; 143; 144; 151; 168; 172; 174; 176.

The learning set is composed from the remaining positive and negative examples. The two separate tables (positive and negative examples) for each learning set are combined to a single one before proceeding to the next step.

The other uses the same process but the inverted ratio of 30 % for the learning set and 70 % for the test set. This reflects the reality in some application cases better. This allows using the same sets as before by just relabeling the test for learning and vice versa.

6.3.2.2 Definition of Learning Set—Timely

Resembling a manufacturing process, the learning and test set are selected in a timely manner (timely sequence in process) in this subsection (compare Fig. 6.34). The reasoning is that the first 70 % of all examples which are in timely succession, represent the learning set. As the classifier is trained by these, the following 30 % of the examples are the test set. This test set is representing new examples which are monitored based on the classifier model trained by the previous examples. In this case, the ratio of negative and positive examples is not the same as it is in the random selection.

The learning set consists of the first 119 examples, incorporating 22 negative examples (18.5 %). The test set resembles 51 examples following in timely succession. Of those, 25 are negative, leading to a ratio of 49 %. This shows that the smaller test set (30 %) includes more negative results than the learning set (70 %). This is representing an extra challenge for the classifier for identifying negative results correctly as the learning set possibly does not represent a majority of the possible negative results. Therefore, the constructed hyperplane may have difficulties with correctly classifying previously unknown failure examples.

6.3.2.3 Definition of Learning Set—Cluster Analysis

In this subsection the definition of the learning set by applying a cluster analysis is illustrated. The rationale behind this approach is that the two extreme clusters within a data set may present a good data set for the learning phase in case no expert knowledge is available to select suitable examples for the learning set.

The identified clusters within the data set are:

- Cluster one: (example no.) 136, 121, 153, 135, 165, 137, 166, 167.
- *Cluster two*: (*example no.*) 7, 23, 24, 36, 65.

It can be seen that the learning set (13 examples) is significantly smaller than the test set (163 examples). Which may have an influence on the classification results.

6.3.3 Compilation of SVM Operation and Output Data

In order to create the classifier model, the algorithm is trained using the selected learning set. The process is modeled in RapidMiner (v5.3) (see Fig. 6.22). After reading the learning data set, including the positive/negative labels in the systems, roles are assigned. In this case, the roles are the label (positive/negative) and the identifier (No. of example). Following, the SVM is applied to create the model (*w* vectors for hyperplane) and the model is exported in a *.mod file as well as forwarded to the results output of RapidMiner.

Fig. 6.22 RapidMiner (v5.3) model generation process

The selected parameters for the SVM algorithm are the same as were identified as optimal for the data set in the focus during the tenfold cross-validation described before. In this case, the cross-validation using the SVM classification was executed with the same parameter identified before (see Fig. 6.21).

Once the model is successfully generated and stored in the specified *.mod file, the next phase can be tackled. In order to evaluate the created model, it is applied to the test data set. In this case, the test data set has no labels and the examples are classified according to the created model. The process, modeled in RapidMiner (v5.3), is illustrated in Fig. 6.23.

It starts with loading the respective model (*.mod) and the test data set in form of an adjusted excel table with removed labels. The operator 'apply model' then classifies the examples according to the learned model and illustrated an output with the predicted classification for each example (see Fig. 6.24).

Additionally, an excel table is created as an output providing an extra column with the predicted classification (positive/negative). This allows to compare the prediction to the actual classification for each example. The results for the three variations are summarized in the following Fig. 6.25.

It can be observed that the classification results of all variations are significantly worse than the cross-validations classification results. This was to be expected. As suspected, the variations with a smaller learning set did not perform as well as the ones using more examples to train the SVM classification algorithm model. This corresponds with the common practice of using a 70 % (learning) and 30 % (test) split for evaluation purposes.

Another explanation why the variant using cluster analysis did not perform that strongly may be that it is due to the lack of expert knowledge which is needed to identify the relevant clusters. This is not available for this data set.

The results for the test of formerly unknown data (test set 30 %) indicate that an implementation of a SVM classification model implemented in a monitoring system may be possible. By constantly growing the learning set with an increasing number of negative results the performance is expected to improve over time.

Fig. 6.23 Applying the trained model on test data set

🖉 Resu	It Overview	C 🗍 Exa	mpleSet (Re	ad Excel) 🕺					
Data Vi	ew 🔘 Meta D	ata View 🔘	Plot View (Advanced Cl	harts 🔿 Ann	otations			
ExampleSe	t (124 examp	les, 3 specia	l attributes,	57 regular att	ributes)				V
Row No.	confidence	confidence	prediction	BiologicalM	BiologicalM	BiologicalM	BiologicalM	BiologicalM	Biological
1	0.4798309	0.5201690	Positive	0.9690885	0.1515659	0	0.5765566	0.0001493	0.16666
2	0.4803557	0.5196442	Positive	0.8810299	0.7885906	0.4938909	0.0000769	0.0001457	0.66773
3	0.4791249	0.5208750	Positive	0.8810299	0.7885906	0.4938909	0.0000769	0.0001457	0.66773
4	0.4803365	0.5196634	Positive	0.3669388	0.9205816	0.7180451	0.8783988	0.0001112	0.74866
5	0.4816880	0.5183119	Positive	0.8880543	0.6426174	0.3919172	0.0000878	0.0002036	0.56602
6	0.4672660	0.5327339	Positive	0.7295192	0.9356823	0.7091165	0.8815817	0.0001472	0.75186
7	0.4706663	0.5293336	Positive	0.7295192	0.9356823	0.7091165	0.8815817	0.0001472	0.75186
8	0.4804093	0.5195906	Positive	0.9079003	0.8031319	0.6127819	0.0000497	0.0001293	0.65122
9	0.4728853	0.5271146	Positive	0.9536222	0.8982102	0.6000939	0.8821508	0.0001738	0.74387
10	0.4774966	0.5225033	Positive	0.8769888	0.7511185	0.5267857	0.8821929	0.0001781	0.63312
11	0.4725050	0.5274949	Positive	0.4983285	0.7030201	0.4816729	0.0000984	0.9949024	0.60809
12	0.4809858	0.5190141	Positive	0.3978503	0.7197986	0.4844924	0.0000994	0.9970939	0.62300
13	0.4831614	0.5168385	Positive	0.3978503	0.7197986	0.4844924	0.0000994	0.9970939	0.62300
14	0.4777229	0.5222770	Positive	0.8854942	0.8366890	0.6447368	0.0000512	0.0001067	0.67465
15	0.4651600	0.5348399	Positive	0.9845336	0.5234899	0.3764097	0.3680494	0.0001355	0.51703
16	0.4792103	0.5207896	Positive	0.9085561	0.9390380	0.7739661	0.0001553	0.0002505	0.85410
17	0 4770501	0 5220408	Positivo	0 8861289	0 4133100	0 1889097	0 9461026	0 0001648	0 35303

Fig. 6.24 Exemplary results of the application of the trained model in RapidMiner (v5.3)

random (LS 70% & 1	rs 30%)	time sequence			extreme clusters			random (LS 30% & TS 70%)		
Accuracy:	78.85%		Accuracy:	68.6	53%	Accuracy:	78.5	53%	Accuracy:	78.2	23%
9	6	60.00%	11	14	44.00%	17	28	37.78%	14	22	38.89%
5	32	86.49%	2	24	92.31%	7	111	94.07%	5	83	94.32%
64.29%	84.21%		84.62%	63.16%		70.83%	79.86%		73.68%	79.05%	

Fig. 6.25 Accuracy of SVM classifier models for learning/test set variations (ANOVA; kernel gamma 3; kernel degree 3; C 1)

In the next section, the identification of relevant state characteristics (state drivers) using feature selection for individual processes and combined process vectors is evaluated (hypotheses 1.1 & 1.2).

6.3.4 Feature Ranking Using SVM Classifier

After the classification performance is acceptable for the CHEM data set with the adjusted kernel settings and parameters, a feature selection is conducted. As described previously in Sect. 5.2.2, a SVM based feature selection (Guyon et al. 2002) is applied to rank the features based on their importance. The importance is determined by the weight vector w of each feature.

The feature selection method is based on a linear kernel, therefore the classification performance of such a kernel for the specific data set is relevant. The first result can be seen in Fig. 6.13. Applying some parameter adjustment, the classification results are acceptable (see Fig. 6.26). Hence, the applicability of the proposed feature selection method based on linear SVM on the CHEM data set is assumed.

accuracy: 84.35% +/-	4.61% (mikro: 84.33%)		
	true positive	true negative	class precision
pred. positive	104	15	87.39%
pred. negative	19	79	80.61%
class recall	84.55%	84.04%	

Fig. 6.26 Results x-val DOT kernel (SMOTE 100 %; C -1.0; conv. eps. 0.005; Lpos 1.8; Lneg 2.0)

000	w	eka.gui.GenericObjectEditor	
weka.filters.	supervised.a	attribute.AttributeSelection	
A supervise	d attribute fil	ter that can be used to select	More
utilibutes.			Capabilities
	Choose		
evaluator	Choose	SVMAttributeEval -X 1 -Y	0 -Z 0 -P 1.0E-25 -
search	Choose	Ranker -T -1.7976931348	623157E308 -N -1
Open		Save OK	Cancel

Fig. 6.27 WEKA SVM feature evaluation function

The open source software toolkit WEKA includes an implemented feature evaluation function called 'SVM Attribute Eval' (see Fig. 6.27) (Witten et al. 2011; Eibe et al. 2014). This function resembles the methodology described by Guyon et al. (2002) and allows an easy application on available data sets. One limitation of the WEKA function is that the weight vectors w are not available as an output.

However, WEKA has different requirements when it comes to importing data sets. The data set needs to be in the *.arff format. RapidMiner however allows for easy transformation of *.csv and *.xlsx data sets in the respective format.

Once loaded, the software allows applying the feature evaluation with relative ease. A few steps are needed before the evaluation can be started. First, the existing special column 'Identifier', supplying a unique number to each example has to be removed before a feature ranking can be conducted. Furthermore, the attribute 'SVM' has to be manually selected before application of the function as in this data set, the 'SVM' attribute is not at the end of the attribute list, which would allow for an automatic recognition.

There are two components which have to be selected together after choosing 'AttributeSelection' in WEKA. One is the 'SVMAttributeEval' and the other is called 'Ranker'. The former is responsible for determining the feature weights (= importance/relevance) and the latter for preparing the ranking based on the previously determined weights (see Fig. 6.27).

Once these pre-processing steps are done, the parameters of the function can be adjusted. One of the most important ones is the 'numToSelect'. This parameter describes what number of the highest ranked features shall remain in the data set after the evaluation is completed. For ranking purposes this is set to '-1', leading to a complete ranking by importance (weight) and no elimination of features. By doing so, all attributes are rearranged starting with the one of highest weight and ending with the least important one (lowest weight).

For the evaluation of the classification performance after feature selection, the ranker threshold is set to 5; 10; 15; 20 and 30 features. By doing so, different data sets are derived who's classification performance in cross-validation is individually assessed (see Fig. 6.28). This allows to evaluate the performance of the feature selection in identifying the most relevant features (state drivers).

The comparison of classification performance of different settings (no. of features and SMOTE oversampling) derived using cross-validation with an ANOVA kernel (orig. parameters) shows interesting results. So the best overall performance (accuracy) is reached not by the expected full feature set with 200 % SMOTE oversampling, but by the data set with 30 features and 100 % SMOTE oversampling is that even a significantly reduced data set (5 features) performs relatively well. The data set with 15 features outperforms the full data set (57 features) in the variation without SMOTE and SMOTE 100 %. This confirms that by selecting relevant features based on the Guyon et al. (2002) feature selection technique, the process may be described sufficiently to allow for good classification results.

	No SMOTE			20	100%		200%		
	Accuracy:	81.1	L8%	Accuracy:	82.4	49%	Accuracy:	83.	33%
57	118	27	81.38%	105	20	84.00%	95	16	85.59%
57	5	20	80.00%	18	74	80.43%	28	125	81.70%
	95.93%	42.55%		85.37%	78.72%		77.24%	88.65%	
	Accuracy:	78.2	24%	Accuracy:	78.7	70%	Accuracy:	82.	20%
5	117	31	79.05%	91	15	85.85%	85	9	90.43%
	6	16	72.73%	31	79	71.82%	38	132	77.65%
	95.12%	34.04%		74.59%	84.04%		69.11%	93.62%	
	Accuracy:	82.9	94%	Accuracy:	82.9	95%	Accuracy:	84.4	47%
10	116	22	84.06%	98	12	89.09%	90	8	91.84%
10	7	25	78.13%	25	82	76.64%	33	133	80.12%
	94.31%	53.19%		79.67%	87.23%		73.17%	94.33%	
	Accuracy:	83.5	53%	Accuracy:	84.33%		Accuracy:	85.	61%
15	119	24	83.22%	108	19	85.04%	93	8	92.08%
15	4	23	85.19%	15	75	83.33%		133	81.60%
	96.75%	48.94%		87.80%	79.79%		75.61%	94.33%	
	Accuracy:	84.7	71%	Accuracy:	82.9	95%	Accuracy:	85.	23%
20	119	22	84.40%	107	21	83.59%		7	92.86%
20	4	25	86.21%	16	73	82.02%	32	134	80.72%
	96.75%	53.19%		86.99%	77.66%		73.98%	95.04%	
	Accuracy:	82.9	94%	Accuracy:	86.6	54%	Accuracy:	86.	36%
30	120	26	82.19%	108	14	88.52%	98	11	89.91%
50	3	21	87.50%	15	80	84.21%	25	130	83.87%
	97.56%	44.68%		87.80%	85.11%		79.67%	92.20%	

Fig. 6.28 Matrix of results of x-val on different feature numbers and SMOTE oversampling

As stated before, the applied SVM based feature selection method utilizes the weight vector w as a ranking criterion. The weight vectors w_i represent a distinct number (small fraction) of vectors of the training set used to construct the hyperplane (decision boundary). As described before (Sect. 5.2.1.1) the hyperplane is constructed to leave the largest (maximum) margin between the two classes. The so-called 'support vectors' (hence the name SVM) are located on the margin and define the hyperplane (decision boundary) (Guyon et al. 2002). The smaller the weight vector w value is, the less relevant is the feature for classification decisions.

Through Recursive Feature Elimination (RFE) based on the weight vector w value, the feature with the lowest w value is eliminated in each run (Guyon et al. 2002). This is different to a ranking based on one run with the complete feature set. The RFE approach takes changing relevancy of features when the number of features I reduced into account. It is possible to eliminate multiple features simultaneously in each run if computing efforts make that necessary. The utilized WEKA function allows to specify the number of (lowest ranking) features to be eliminated in each run. In this dissertation the amount of to-be-eliminated features for each run is set to '1' as originally suggested (Guyon et al. 2002).

As a test of the general accuracy of the feature ranking based on SVM weight vectors w, a basic evaluation of the classification performance using a data set with the lowest ranked 10 and 20 features with an ANOVA kernel (orig. parameters) is illustrated in the following Fig. 6.29a, b. The results confirm that the feature ranking is working probably as the two resulting confusion matrices show significantly lower classification performance than the ones of the comparable set using the highest ranked 10 and 20 features.

Finally, the classification performance is tested by again dividing the data sets in learning (70 %) and test (30 %) set. This way the ability of a trained classification model to identify classes in previously unknown data is evaluated after feature selection and compared to one another (incl. the performance of the complete set). The results are also compared to the previous classification performance as illustrated in Fig. 6.25.

The comparison of results (confusion matrix) of the trained model application (learning 70% and test 30%) in various settings show that the results of data sets with a reduced feature set can outperform the data set with a full feature set. The best accuracy is reached by a data set with 15 features, 100% SMOTE oversampling on the learning set and an ANOVA kernel with original parameter settings almost even meeting the target threshold for cross-validation classification

(a)			(b)		
Accuracy:	74.3	12%	Accuracy:	76.4	47%
116	37	75.82%	113	30	79.02%
7	10	58.82%	10	17	62.96%
94.31%	21.28%		91.87%	36.17%	

Fig. 6.29 X-val class. perf. of TOM(CHEM) with lowest ranking 10 and 20 features selected. **a** TOM(CHEM) (10 lowest ranked features). **b** DICK(CHEM) (20 lowest ranked features)

performance. This is a very good result for classification on a new, formerly unknown data set. This confirms that the feature selection is able to identify relevant state drivers (Fig. 6.30).

The results describing the feature ranking for all processes and process combinations are discussed in detail in Chap. 7. A complete illustration of the detailed ranking results is presented in Table A.12 in the Annex.

The effects of feature selection and SMOTE oversampling on the classification performance of formerly unknown data organized in timely sequence is also substantial. Comparing the results presented in Fig. 6.31 with the previous results presented in Fig. 6.25, it shows that the performance of the variation with 15 features and 200 % SMOTE oversampling can be considered good and significantly better than the one without this pre-processing steps.

Focusing on the best performing variant with 15 features and SMOTE 200 % oversampling applied on the learning set, a slight optimization is possible by changing the kernel gamma (Fig. 6.32).

When the predicted 'fail' examples are plotted in timely sequence (see Fig. 6.33), one can observe that the process seems relatively stable at the beginning. However, then the process begins to become more unstable until it produces 11 fail examples in a row (example 152 to example 162).

			Lea	rning (70%)	& Test (30	0%) - rand	om		
	ANOVA (kei	rnel gamn	na 3; kern	el degree 3;	C 1; con e	ps 0.001)	ANOVA (orig. para.)		
	N	o SMOTE			100%			100%	
	Accuracy:	71.	15%	Accuracy:	78.8	35%	Accuracy:	78.8	35%
57	0	15	0.00%	11	4	73.33%	11	4	73.33%
57	0	37	100.00%	7	30	81.08%	7	30	81.08%
	#DIV/0!	71.15%		61.11%	88.24%		61.11%	88.24%	
	Accuracy:	75.	00%	Accuracy:	76.9	92%	Accuracy:	76.9	92%
5	4	11	26.67%	12	3	80.00%	12	3	80.00%
	2	35	94.59%	9	28	75.68%	9	28	75.68%
	66.67%	76.09%		57.14%	90.32%		57.14%	90.32%	
	Accuracy:	71.	15%	Accuracy:	73.0	08%	Accuracy:	86.5	54%
10	5	10	33.33%	6	9	40.00%	12	3	80.00%
10	5	32	86.49%	5	32	86.49%	4	33	89.19%
	50.00%	76.19%		54.55%	78.05%		75.00%	91.67%	
	Accuracy:	78.	85%	Accuracy:	82.6	59%	Accuracy:	88.46%	
15	9	6	60.00%	11	4	73.33%	13	2	86.67%
15	5	32	86.49%	5	32	86.49%	4	33	89.19%
	64.29%	84.21%		68.75%	88.89%		76.47%	94.29%	
	Accuracy:	78.	85%	Accuracy:	80.7	77%	Accuracy:	75.0	00%
20	8	7	53.33%	9	6	60.00%	9	6	60.00%
20	4	33	89.19%	4	33	89.19%	7	30	81.08%
	66.67%	82.50%		69.23%	84.62%		56.25%	83.33%	
	Accuracy:	71.	15%	Accuracy:	69.2	23%	Accuracy:	69.2	23%
30	0	15	0.00%	7	8	46.67%	7	8	46.67%
50	0	37	100.00%	8	29	78.38%	8	29	78.38%
	#DIV/0!	71.15%		46.67%	78.38%		46.67%	78.38%	

Fig. 6.30 Accuracy of SVM classifier models for learning/test set (random) variations with different feature selection variations

		Learning (70%) & Test (30%) - time sequence							
		ANO\	/A (kernel	gamma 3; kernel degree 3; C 1; con eps 0.001)					
	N	o SMOTE			100%			200%	
	Accuracy:	56.8	36%	Accuracy:	72.5	55%	Accuracy:	72.5	55%
FS10	7	18	28.00%	17	8	68.00%	17	8	68.00%
F310	4	22	84.62%	6	20	76.92%	6	20	76.92%
	63.64%	55.00%		73.91%	71.43%		73.91%	71.43%	
	Accuracy:	64.7	71%	Accuracy:	70.5	59%	Accuracy:	74.51%	
FS15	10	15	40.00%	13	12	52.00%	17	8	68.00%
1313	3	23	88.46%	3	23	88.46%	5	21	80.77%
	76.92%	60.53%		81.25%	65.71%		77.27%	72.41%	
	Accuracy:	62.7	75%	Accuracy:	64.7	71%	Accuracy:	72.5	55%
FS20	9	16	36.00%	12	13	48.00%	16	9	64.00%
F320	3	23	88.46%	5	21	80.77%	5	21	80.77%
	75.00%	58.97%		70.59%	61.76%		76.19%	70.00%	

Fig. 6.31 Accuracy of SVM classifier models for learning/test set (time sequence) variations with different feature selection and SMOTE variations

Accuracy:	76.47%			
17	8	68.00%		
4	22	84.62%		
80.95%	73.33%			

Fig. 6.32 Para. optimization for TOM(CHEM) FS15 & SMOTE 200 % (kernel gamma: 2)

Fig. 6.33 Time plot of predicted state change ('pass' = 1/'fail' = -1) of TOM(CHEM) process

Comparing this predicted time plot with the original (see Fig. 6.34), it can be observed that the massive disruption between 'example 152' and 'example 162' is correctly predicted by the classifier. Such a prediction, especially with a significantly reduced feature set may allow the process owner to preemptively adjust the process and reduce the risk of such a relatively long period of manufacturing products with not sufficient quality.

In the next sub-section, the presented approach is applied to scenario III, a highly complex, exemplary process from the semiconductor manufacturing domain.

Fig. 6.34 Original time plot of changing state ('pass' = 1/'fail' = -1) of TOM(CHEM) process

6.4 Scenario III—SECOM

In this section, the SVM algorithm is set up as a classifier and applied on the preprocessed SECOM data set as described within the research plan. At first a suitable configuration of the SVM algorithm, given the specific nature of the SECOM data set, is identified through n-fold cross-validation (n = 10) in the following sub-section. Subsequently, a learning set is defined before the SVM algorithm is applied on test and evaluation set. The results are presented in Sect. 7.1.

6.4.1 SVM Kernel and Parameters for Hyperplane by X-Validation

Before the hyperplane can be constructed, a suitable SVM kernel method and corresponding parameter settings have to be identified. These factors depend strongly on the available data and its structure. The previously described splitting of the data set in training, evaluation and test set is automated by applying n-fold cross-validation (n = 10) in RapidMiner (v5.3). This process automatically divides the data set in 9/10 and 1/10 packets n-times for evaluation.

The first step is importing the complete and normalized SECOM data set (approach 2 variant 2) in the process (component "Read Excel") and mark the label ("good"/"bad") and identifier (No. of example) (component "Set Role"). The results show that all 1209 examples and 528 features/attributes are successfully imported and the label and identifier are correctly assigned.

The process component "validation" is available as a pre-set building block in RapidMiner (v5.3). The building block has to be adapted. Therefore the classification algorithm is set to "SVM". The parameters for both, the cross-validation and the SVM classifier can be adjusted. For the cross-validation they are set to n = 10. For the SVM the standard parameters for a polynomial kernel are used.

The result of running the previously introduced cross-validation process is a confusion matrix. The confusion matrix illustrates how well the learning data can be separated by a hyperplane using various SVM kernels. Ideally, both classes should reach a result of 80 % or above. This indicates that the *w* values represent a set of good features (state drivers). If the results are significantly below 80 %, then

the SVM kernel choice does not correspond well with the structure of the data set and needs to be adapted. The same is true for the parameters of the chosen kernel, which may have to be adjusted to create a good fit and thus an assumingly good weight vector w.

In this case, the first results of the previously presented RapidMiner (v5.3) cross-validation process of the SECOM data set are significantly below the target threshold of 80 % over class recall as well as class precision (see Fig. 6.35). The kernel for the SVM was chosen as polynomial with all parameters used as pre-set, except the kernel degree, which was set to 3.0.

This results could not be improved significantly by changing the kernel and/or the SVM parameters. Therefore, a step back to pre-processing has to be taken.

6.4.1.1 Under- and Oversampling

In this case, it can be assumed that the bad performance was partly based on the SECOM data set's highly unbalanced (ratio of fails/pass of 6.95 %) data (see Fig. 6.36. Unbalanced data is fairly common in many application areas (Provost 2000; Evgeniou and Pontil 2001; Li et al. 2008). SVM algorithms may experience problems when it comes to classification tasks of some unbalanced data (Li and Shawe-Tayler 2003; Li et al. 2008; Tang et al. 2009; Wang and Japkowicz 2010; Choi 2010). As can be observed in Fig. 6.36, the negative examples are furthermore not equally distributed of the duration of the monitoring. The concentration of 'fail' examples (minority class) is higher during the early runs of the process.

There are different approaches to handle the problem suggested by literature. For example, Veropoulos et al. (1999) suggest to introduce weights (penalties) for the misclassification of the underrepresented class, whereas Wang et al. (2004) suggest to handle such classification task with a one-versus-one classifier rather than a one-versus-rest. A rather promising approach for handling unbalanced data

accuracy: 84.54% +/-	25.16% (mikro: 84.53%)		
	true negative	true positive	class precision
pred. negative	9	112	7.44%
pred. positive	75	1013	93.11%
class recall	10.71%	90.04%	

Fig. 6.35 SECOM cross-validation with RapidMiner (v5.3) first results

Fig. 6.36 Time plot of changing state ('pass' = 1/'fail' = -1) of SECOM process

sets is under- or oversampling of the respective class (Chawla 2010). However, random under- and oversampling can lead to problems like deleting of important examples (random undersampling) or over-fitting (random oversampling) (Chawla 2010). Next, first undersampling of majority class within the SECOM data set will be analyzed before oversampling of the minority class is looked into more closely.

Undersampling

In order to address this issue of unbalanced data by under-sampling, a new component is added to the cross-validation process. It can be seen in the results (see Fig. 6.35), that the classification performance for the underrepresented class ('1'/'fail') are not acceptable. Therefore, a sampling method is installed prior to the cross-validation of the classifier in order to even out the ratio of the learning set. The chosen sampling mechanism is based on the Kennard-Stone algorithm. The Kennard-Stone algorithm allows to identify outliers of the data set, which are assumed to be good representations of the class (De Groot et al. 1999). This sampling method is just applied to the overrepresented class ('-1'/'non fail').

In order to integrate the Kennard-Stone sampling algorithm in the previously introduced cross-validation process in RapidMiner (v5.3), the SECOM data set has to be divided in two. One data set containing all examples of class '1' ('fail'), 84 examples in total and the other all examples of class '-1' ('non fail'), 1125 examples in total. As described before, both data sets have to be imported and the respective roles have to be assigned (label and identifier). For the data set representing the over-represented class '-1', the Kennard-Stone sampling is added, allowing to define the number of examples being sampled either absolute or relative. In this case the number is chosen absolute and set to 84, matching the number of examples of the other class. Conducted tests with different variations of the sampling number did not lead to improved classification results (Fig. 6.37). After this process step, the two data sets are merged again to one complete data set containing both classes (component 'append').

After this addition, the cross-validation process was run again, setting the SVM kernel to polynomial and using the pre-set parameters except the kernel degree, which was set to 3.0.

It can be observed that the results are improved but still significantly below the target threshold. However, it was possible through parameter optimization, to reach the threshold. Despite that, during the later model development and

accuracy: 52.34% +/-	4.52% (mikro: 52.38%)		
	true positive	true negative	class precision
pred. positive	30	30	50.00%
pred. negative	60	69	53.49%
class recall	33.33%	69.70%	

Fig. 6.37 First results after integrating Kennard-Stone sampling in cross-validation process

evaluation utilizing the learning and test set, the classification performance of this approach was not acceptable. This leads to the application of the oversampling approach which is illustrated in the following subsection.

Oversampling

Before starting to assess the possible measures for oversampling, the deleted negative examples are assessed again if the feature eliminating conducted in preprocessing may result in "complete" (no missing values) negative examples. The following 15 additional negative examples were identified and added to the existing data set: example 51; example 189; example 236; example 239; example 283; example 322; example 327; example 328; example 345; example 407; example 442; example 602; example 606; example 635; example 710.

It has been stated that random oversampling may lead to overfitting (Chawla 2010). In a first attempt, random oversampling was conducted to observe the effect it has on the results. In Fig. 6.38, the confusion matrix of random oversampling of the minority class is illustrated. With tenfold oversampling the threshold is almost reached. In this case, the original parameter settings of the Kernel choice in RapidMiner (v5.3) was used to allow a better comparability of the results. With optimized parameters, the results would most likely vary only marginally. Therefore, parameters optimization is applied after the best variation was identified.

In a next step, the parameters of the kernel are adjusted to improve the results and bring them over the threshold of 80 %. The results indicate an almost perfect classification performance (see Fig. 6.39). This result already indicates a possible overfitting of the generated model.

To test the performance of the random oversampling approach, a learning set (70 %) and test set (30 %) of the original data set is divided, holding up the original ratio of both classes. The learning set is then pre-processed by randomly oversampling the negative examples (minority class) ten times. Then a model is

Fig. 6.38 Random oversampling of minority class x-val results in RapidMiner (v5.3). **a** No oversampling (x-val; orig. para. polyn. kernel). **b** Oversampl. neg. class x3 (x-val; orig. para. polyn. kernel). **c** Oversampl. neg. class x6 (x-val; orig. para. polyn. kernel). **d** Oversampl. neg. class x9 (x-val; orig. para. polyn. kernel). **e** Oversampl. neg. class x10 (x-val; orig. para. polyn. kernel)

accuracy: 99.54% +/-	0.48% (mikro: 99.54%)		
	true negative	true postive	class precision
pred. negative	840	9	98.94%
pred. postive	0	1116	100.00%
class recall	100.00%	99.20%	

Fig. 6.39 results x-val of tenfold random oversampling after parameter adjustment

Fig. 6.40 Classification performance of created model	Accuracy:	92.0	01%
by random oversampling	1	24	4.00%
minority class	5	333	98.52%
	16.67%	93.28%	

created with the learning set and the classification performance is evaluated using the test set in RapidMiner (v5.3). The results can be observed in Fig. 6.40.

The results show poor classification performance on previously unknown data. This may support the previous suspicion of a possible overfitting problem by applying random oversampling through multiplication of the minority class or again be a sign for a high diversity within the example population of the minority class. However, instead of random oversampling a rather promising oversampling technique called SMOTE is applied. The advantage of this technique is, as previously stated (Sect. 6.3.1) that it is specifically designed to avoid overfitting when oversampling is used.

SMOTE is an established method to handle unbalanced data sets. The method is implemented as a built in function in the WEKA toolkit. Before applying the SMOTE function on the SECOM data set, an additional 15 minority class examples are added to the SECOM data set. Those examples are derived after the preprocessing step "attribute deletion" during which attributes containing missing values are eliminated. This step allowed for 15 minority class examples to be subsequently added as they do not contain any missing values. The data set then contains 1224 examples of which 99 examples fall under the 'fail' class.

After applying the SMOTE technique in WEKA, the ratio between the classes is now 34.6 %. This is still not a completely balanced data set but the ratio should allow for a better model development and thus classification performance.

A tenfold cross validation is then conducted on the now complete data set in RapidMiner (v5.3). The results are promising as they are all over or close to the target threshold of 80 % in a first run with the original parameters of an AVM algorithm with a DOT kernel (see Fig. 6.41). Similar as before, in this case the original parameter settings of the kernel choice in RapidMiner (v5.3) were applied to allow a better comparability of the results. With optimized parameters, the results would most likely improve further marginally. However, parameter

accuracy: 87.79% +/-	3.40% (mikro: 87.78%)		
	true negative	true positive	class precision
pred. negative	519	135	79.36%
pred. positive	75	990	92.96%
class recall	87.37%	88.00%	

Fig. 6.41 Results x-val SMOTE oversampling DOT kernel

	N	o SMOTE			200%		500%			
	Accuracy:	91.91%		Accuracy:	92.76%		Accuracy: 95.35%			
	0	0		196	2	98.99%	518	4	99.23%	
	99	1125	91.91%	101	1123	91.75%	76	1121	93.65%	
528	0.00%	100.00%		65.99%	99.82%		87.21%	99.64%		
(original)	1000%				1500%					
(original)	Accuracy:	96.4	43%	Accuracy:	97.0	05%				
	1019	9	99.12%	1519	15	99.02%				
	70	1116	94.10%	65	1110	94.47%				
	93.57%	99.20%		95.90%	98.67%					

Fig. 6.42 Results of x-val ANOVA kernel and different SMOTE oversampling percentages

optimization is very individual for every data set. This reasoning is applied in all cases where original parameter settings are used without optimization.

The results of the DOT kernel are already good and, given that no parameter adjustment was yet conducted significantly better than with simple oversampling by multiplication of the minority class as illustrated previously. This shows that the following feature ranking based on linear SVM is applicable. However, it is possible that this may still represent a similar case of overfitting as the oversampling by multiplication of the existing examples presents (see Fig. 6.38), especially in cases of SMOTE oversampling 500 % and higher.

In Fig. 6.42 the different results of tenfold cross-validation with AONVA kernel (no parameter optimization conducted) and different SMOTE percentages are compared. The results indicate that the classification performance improves from 200 % SMOTE to 500 % SMOTE but then the improvement slows down for 1000 % SMOTE and 1500 % SMOTE.

In a next step, the kernel parameters are optimized, finding a better setting to improve the classification performance in case of 200 % SMOTE oversampling.

The classification performance of the cross-validation using SVM algorithm with adjusted parameters shows that the results improve and come close for the SMOTE oversampled data set (200 %) which was previously not acceptable. In general, SMOTE oversampling is applicable for larger percentages (e.g., 300 or 500 %) as well (Chawla et al. 2002). However, the author decided to only use a smaller percentage, 200 % in this case, which allows for good classification results (see Fig. 6.43) when parameter optimization is utilized.

In order to evaluate the applicability of the classification model in a manufacturing environment, e.g., in monitoring (hypothesis 3), the classification performance, model development and subsequent evaluation through learning and test

accuracy: 94.45% +/-	2.16% (mikro: 94.44%)		
	true negative	true positive	class precision
pred. negative	229	11	95.42%
pred. positive	68	1114	94.25%
class recall	77.10%	99.02%	

Fig. 6.43 Results x-val ANOVA kernel and 200 % SMOTE oversampling (parameters: kernel gamma: 2.0; kernel degree: 3.0; C: 2.6; convergence epsilon: 0.001)

SECOM 528	SMOTE 2	00%										
Accuracy: 91.85% Accuracy: 90.22%												
2	28											
2 336 99.41% 6 332 98.22%												
50.00%	92.31%		0.00%	91.71%								
Parameters: Parameters:												
(Anova, KG	2, KD 3, C	2.6)	(Poly., KD 3	, C 2.6, C-6	eps. 0.001)							
			SECOM 5	528 SMOT	E 500%		0					
Accuracy:	91.0	03%	Accuracy:	90.	76%	Accuracy:	92.	12%				
2	28	6.67%	1	29	3.33%	1	29	3.33%				
5	333	98.52%	5	333	98.52%	0	338	100.00%				
28.57%	92.24%		16.67%	91.99%		100.00%	92.10%					
Parameters	:		Parameters	:		Parameters	:					
Anova, KG 3, KD 3, C 2.6) (Poly., KD 3, C 2.6, C-eps. 0.001) (Poly., KD 2, C 2, C-eps. 0.001)												

Fig. 6.44 Classification results of test set applying 200 and 500 % SMOTE on learning set

set is conducted with this kernel and parameters. In a first step, the original data set (pre-oversampling) is divided in learning (70 %) and test (30 %) set, upholding the same ratio of the two classes. This is done using the random function on two files, each containing one class in RapidMiner (v5.3). The separated class files are then merged to learning and test set. Then the learning set is subject to SMOTE oversampling (200 and 500 %) to create the classification model. Finally, the classification performance of this model is tested by applying it on the test set and evaluating the classification results.

It can be seen that even so the cross-validation performance is very good after the application of SMOTE oversampling, the low classification performance on previously unknown data persists. This may again be based on the overfitting problem. As the SMOTE approach is designed to avoid overfitting, the alternative suspicion is that the high diversity within the example population of the minority class is responsible for the poor classification results becomes more likely. The showing classification performance results are not acceptable (see Fig. 6.44) even so slightly better than with random oversampling (see Fig. 6.40). The reason for overfitting may be found in the fact that the overfitting problem is caused by two (independent) characteristics of the data set or the data structure does not allow for the classification of novel examples with a trained model. First, the unbalanced data set concerning the two classes which is enhanced by random oversampling. A possible solution for this is the SMOTE oversampling method. However, there is the second cause of overfitting that may be found in the ratio of vectors (examples) and attributes (features) in the data set (Yu and Liu 2004). Therefore, in the next sub-section, this challenge is targeted.

6.4.1.2 Feature Ranking Using SVM Classifier

It was argued in previous sections during the original pre-processing stage that the goal is to keep as many features as possible. The reason is, that in theory, though this should provide more discriminant power (Yu and Liu 2004) and thus allow for detection of more process intra- and inter-relations between state characteristics. However, in practice, when only a limited amount of training examples (vectors) is available combined with a large amount of features (attributes), overfitting is common when there are irrelevant features in the learning set (Guyon et al. 2002; Yu and Liu 2004). Even so SVM algorithms are relatively robust towards overfitting, they profit from a feature reduction (Guyon et al. 2002).

At this point, the feature (attribute) size needs to be reduced in order to achieve a better ratio between examples and attributes/features in the data set. At this stage it can be assumed that the important features are selected in accordance with the objective of feature selection as presented by (e.g., Guyon et al. 2002; Yu and Liu 2004; Chang and Lin 2008). Feature selection was found to have a positive impact on most learning algorithms (Waikowski and Chen 2010).

However, this might be problematic in cases where process steps, integrated in an overall manufacturing programme, are concerned. In such cases, the feature selection might deem features "not important" which may be 'important' (state drivers) within a larger context, e.g., a {process1; process2} combination as shown in scenarios I & II. In such a case, it may be possible to apply feature selection on the individual process but then the process is repeated from scratch for the combined process vector (incl. all original features) to identify further 'important features' (state drivers) for the overall manufacturing programme.

In a first step towards eliminating unimportant features for the SECOM process, all the features with all (99.0 %—adjustable) similar values or largely varying values are removed using the WEKA function 'RemoveUseless' (Unsupervised; Attribute) (Bhuvaneswari and Dhulipala 2013). This is due to the assumption that those features do not support classification in the majority of cases. The application of this function removes 116 features (of 528) leaving 412 features for further processing. In order to evaluate the assumption that those features are indeed 'useless' for classification purposes, eliminated features are compared to the later conducted feature ranking by SVM. During the later feature ranking by SVM evaluation, the 116 eliminated features are all deemed the least important by the classifier (see Tables A.13 and A.14 in the Annex) which supports the assumption made before.

In the following step, the feature selection function based on Guyon et al. (2002) incorporated in WEKA is applied in order to reduce the number of

features. The elimination can either be triggered by a fixed threshold given the number of "to-be-maintained" features or a threshold concerning the minimum weight of the weight vector w of the sustaining features. As previously described, the weight vector w represents the major ranking criterion for the SVM feature selection method (Guyon et al. 2002). This was previously described in more detail in Sect. 6.3.4.

In a first analysis, the SECOM data set undergoes feature selection with a hard threshold of 50; 80; 100 and 120 features. Each of those resulting data sets is then supplemented by oversampling using SMOTE 200, 500, 1000 and 1500 %. Figure 6.45 summarizes the results of the confusion matrix. In this case the cross-validation is run with a SVM algorithm with an ANOVA kernel (orig. parameters).

The results show that for cases with a lower percentage of SMOTE oversampling (200 %) the feature selection seems to improve the overall classification results. For the test runs with higher SMOTE oversampling, even the data set with a feature set reduced to 50 features produces classification examples above the threshold of 80 % for class recall and class prediction. One finding of this analysis is that the feature selection allows the reduction of the total amount of features to a set of relevant features, representing state drivers, responsible directly and indirectly for the quality outcome. This confirms the assumption that a set of relevant state characteristics may be selected and used to describe the state comprehensively as it is understood in the *product state concept*.

One has to bear in mind, that in this compression, no SVM classification parameter optimization was conducted. By adjusting the SVM parameters to the data structure, the results may improve further. With an optimized parameter set, the SECOM data set with 50 and 80 features and 200 % SMOTE oversampling meets the target threshold of 80 % (see Fig. 6.46). For the data set resembling 50 remaining relevant features, an ANOVA kernel achieves a relatively evenly distributed result over the target threshold of 80 %. However, the 80 feature/attribute

	N	o SMOTE			200%			500%			1000%			1500%		
	Accuracy:	91.9	91%	Accuracy:	92.1	76%	Accuracy:	95.	35%	Accuracy:	96.	43%	Accuracy:	97.0	05%	
528	0	0	#DIV/0!	196	2	98.99%	518	4	99.23%	1019	9	99.12%	1519	15	99.02%	
(original)	99	1125	91.91%	101	1123	91.75%	76	1121	93.65%	70	1116	94.10%	65	1110	94.47%	
56 G (K)	0.00%	100.00%		65.99%	99.82%		87.21%	99.64%		93.57%	99.20%		95.90%	98.67%	8	
1. 1970 C	Accuracy:	91.9	91%	Accuracy:	90.	15%	Accuracy:	95.	52%	Accuracy:	96.	66%	Accuracy:	96.1	83%	
412	0	0	#DIV/0!	158	1	99.37%	519	2	99.62%	1025	10	99.03%	1518	20	98.70%	
(no SVM_FS)	99	1125	91.91%	139	1124	88.99%	75	1123	93.74%	64	1115	94.57%	66	1105	94.36%	
Auge - Service - Charles	0.00%	100.00%		53.20%	99.91%		87.37%	99.82%		94.12%	99.11%	-	95.83%	98.22%		
	Accuracy:	91.9	91%	Accuracy:	85.	94%	Accuracy:	88.	71%	Accuracy:	91.	01%	Accuracy:	92.3	28%	
50	0	0	#DIV/0!	119	22	84.40%	488	88	84.72%	1030	140	88.03%	1550	175	89.86%	
50	99	1125	91.91%	178	1103	86.10%	106	1037	90.73%	59	985	94.35%	34	950	96.54%	
	0.00%	100.00%		40.07%	98.04%		82.15%	92.18%		94.58%	87.56%		97.85%	84.44%		
	Accuracy:	91.9	91%	Accuracy:	90.	37%	Accuracy:	92.3	32%	Accuracy:	94.	49%	Accuracy:	95.9	94%	
80	0	0	#DIV/01	179	19	90.40%	519	57	90.10%	1040	73	93.44%	1551	77	95.27%	
00	99	1125	91.91%	118	1106	90.36%	75	1068	93.44%	49	1052	95.55%	33	1048	96.95%	
	0.00%	100.00%		60.27%	98.31%		87.37%	94.93%		95.50%	93.51%		97.92%	93.16%		
	Accuracy:	91.9	91%	Accuracy:	91.4	19%	Accuracy:	92.	57%	Accuracy:	94.	94%	Accuracy:	96.0	01%	
100	0	0	#DIV/0!	190	14	93.14%	514	46	91.79%	1039	62	94.37%	1548	72	95.56%	
100	99	1125	91.91%	107	1111	91.22%	80	1079	93.10%	50	1063	95.51%	36	1053	96.69%	
	0.00%	100.00%		63.97%	98.76%	1	86.53%	95.91%		95.41%	94.49%		97.73%	93.60%		
	Accuracy:	91.9	91%	Accuracy:	91.	56%	Accuracy:	93.	54%	Accuracy:	96.	07%	Accuracy:	96.1	86%	
120	0	0	#DIV/0!	190	13	93.60%	520	37	93.36%	1044	42	96.13%	1542	43	97.29%	
120	99	1125	91.91%	107	1112	91.22%	74	1088	93.63%	45	1083	96.01%	42	1082	96.26%	
	0.00%	100.00%		63.97%	98.84%		87.54%	96.71%		95.87%	96.27%		97.35%	96.18%		

Fig. 6.45 Matrix comparing x-val performance (ANOVA—orig. parameters) of SECOM data in different variations of SMOTE and feature selection parameters

Optimizing Parameters (FS 80 SMOTE 200)

- p											
Accuracy:	94.	16%	Accuracy:	90.	08%	Accuracy:	93.	.95%	Accuracy:	94.	30%
241	27	89.93%	253	97	72.29%	234	23	91.05%	260	44	85.53
56	1098	95.15%	44	1028	95.90%	63	1102	94.59%	37	1081	96.699
81.14%	97.60%		85.19%	91.38%		78.79%	97.96%		87.54%	96.09%	
Parameters:	(Parameters			Parameters		2	Parameters:	S.	60 100-00
- Kernel		Anova	- Kernel		Poly.	- Kernel		Anova	- Kernel		Poly.
- Kernel gam	ima	2.0	- Kernel deg	ree	3.0	- Kernel gan	nma	3.0	- Kernel deg	ree	3.0
Kernel deg	ree	3.0	- C		2.0	- Kernel deg	ree	3.0	- C		2.0
- C		2.6	- convergen	ce eps	0.001	- C		2.0	- convergen	ce eps	0.005
						- convergen	ce eps	0.001			

Fig. 6.46 Results x-val after parameter optimization on SECOM after feature selection (50 and 80) and SMOTE oversampling (200 %)

version achieves better classification performance results with the Polynomial kernel. Figures 6.30 and 6.37

The final results with the optimized parameters show a confusion matrix with values significantly higher than the target threshold of 80 % for both versions (50 and 80 features/attributes). These results confirm that applying feature selection allows the identification of relevant state drivers by which the quality of a product may be measured even for a challenging data set like the SECOM process.

To evaluate the impact the feature selection has on the classification performance of a previously unknown data set, the previously used randomly selected learning (70 %) and test (30 %) set (see Fig. 6.44) is reduced to 50 features and 80 features. The obsolete features were deleted manually from the previous data set to ensure the same examples are in the learning and test data set. This increases the comparability of the results. Afterwards, the model is generated by applying SOMTE (200 and 500 %) to the learning set with an ANOVA kernel (kernel gamma 2.0; kernel degree 3.0; C 2.6) before the test set is evaluated.

A second analysis concerning the classification results on previous unknown data is conducted. In this case, the learning and test set is selected in timely succession of the process. The first 70 % of the examples are used as the learning set and the latter 30 % as the test set. This resembles an industrial application scenario as the latter 30 % resemble new examples which are to be classified based on historic data. However, in this case, the 'fail' ratio differs minimally between the test and the learning set. The pre-SMOTE learning set has an already low ratio of 8.75 % whereas the test set has only 6.54 %.

The results of the cross-validation of the SVM classifier using an ANOVA kernel (kernel gamma 2.0; kernel degree 3.0; C 2.6) similar to the previous test are not very promising (Fig. 6.48). The recognition rate for 'fail' examples is even worse than for the randomly divided data set (Fig. 6.47).

As can be observed in Figs. 6.17 and 6.48, the classification results are not satisfactory for previously unknown data even with sophisticated pre-processing measures like feature selection and SMOTE oversampling. This confirms the suspicion that the poor classification results are most likely based on the high diversity within the example population of the minority class. In the results section (Sect. 7.1.5) this is picked up in more detail and additional evaluation results are provided that confirm the suspicion further.

Optimizing Parameters (FS 50 SMOTE 200)

	N	o SMOTE			200%			500%			
	Accuracy:	91.85%		Accuracy:	91.85%		Accuracy:	91.03%			
528	1	29	3.33%	2	28	6.67%	2	28	6.67%		
(no FS)	1	337	99.70%	2	336	99.41%	5	333	98.52%		
	50.00%	92.08%	9	50.00%	92.31%		28.57%	92.24%			
	Accuracy: 91.85%		Accuracy:	91.85%		Accuracy: 90.49		19%			
FS50	2	28	6.67%	4	26	13.33%	3	27	10.00%		
F350	2	336	99.41%	4	334	98.82%	8	330	97.63%		
	50.00%	92.31%		50.00%	92.78%		27.27%	92.44%			
	Accuracy:	92.1	12%	Accuracy:	92.1	12%	Accuracy:	92.1	L2%		
FS80	2	28	6.67%	3	27	10.00%	5	25	16.67%		
F360	1	337	99.70%	2	336	99.41%	4	334	98.82%		
	66.67%	92.33%		60.00%	92.56%		55.56%	93.04%	0 10		

Fig. 6.47 Comparison matrix of classification results of test set (randomly selected) after feature selection (50 and 80) and SMOTE (200 and 500 %) application on learning set

	n	o SMOTE			200%		500%			
	Accuracy:	93.46%		Accuracy:	93.46%		Accuracy:	93.4	93.46%	
528	0	24	0.00%	0	24	0.00%	0	24	0.00%	
(no FS)	0	343	100.00%	0	343	100.00%	0	343	100.00%	
		93.46%			93.46%			93.46%		
	Accuracy:	93.19%		Accuracy:	93.	19%	Accuracy:	93.3	19%	
FS50	0	24	0.00%	0	24	0.00%	1	23	4.17%	
F350	1	342	99.71%	1	342	99.71%	2	341	99.42%	
	0.00%	93.44%		0.00%	93.44%		33.33%	93.68%		
	Accuracy:	93.46%		Accuracy:	93.4	46%	Accuracy:	92.0	54%	
FS80	0	24	0.00%	0	24	0.00%	1	23	4.17%	
F380	0	343	100.00%	0	343	100.00%	4	339	98.83%	
		93.46%			93.46%		20.00%	93.65%		

Fig. 6.48 Comparison matrix of classification results of test set (in timely succession) after feature selection (50 and 80) and SMOTE (200 and 500 %) application on learning set

However, the results do show that the classification results after feature selection, especially with 80 features remaining, are slightly better than without. As the difference is marginal, the question remains what conclusion can be drawn from that. This is also discussed in greater detail in the following section.

In the next section, the evaluation results are presented in a structured way and critically discussed. Furthermore, the limitations of the approach and the evaluation are illustrated.

References

- Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying support vector machines to imbalanced datasets. In: *Machine Learning: ECML 2004*.
- Bhuvaneswari, E., & Dhulipala, V. R. S. (2013). The study and analysis of classification algorithm for animal kingdom dataset. *Information Engineering*, 2(1), 6–13.

Chang, Y., & Lin, C. (2008). Feature ranking using linear SVM. In *JMLR: Workshop and Conference Proceedings 3* (pp. 53–64).

- Chawla, N. V. (2010). Data mining for imbalanced datasets: An overview. In Maimon, O. & Rokach, L. (Eds.). Data mining and knowledge discovery handbook (pp. 875–886). Springer. doi:10.1007/978-0-387-09823-4_45.
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. *Journal of Intelligence Research*, 16, 321–357.
- Choi, J. (2010). A selective sampling method for imbalanced data learning on support vector machines. In AAAI'2000 Workshop on Imbalanced Data Sets. Iowa State University.
- De Groot, P. J., Postma, G. J., Melssen, W. J., & Buydens, L. M. C. (1999). Selecting a representative training set for the classification of demolition waste using remote NIR sensing. *Analytica Chimica Acta*, 392(1999), 67–75.
- Eibe, F., Hall, M. & Holland, K. (2014). Class SVMAttributeEval. WEKA package attribute selection. Retrieved March 27, 2014, from http://weka.sourceforge.net/doc.stable/weka/attrib uteSelection/SVMAttributeEval.html.
- Evgeniou, T., & Pontil, M. (2001). Support vector machines: Theory and applications. In G. Paliouras, V. Karkaletsis, & C. Spyropoulos (Eds.), ACAI'99, LNAI 2049 (pp. 249–257). Berlin, Heidelberg: Springer.
- Farquad, M. A. H., & Bose, I. (2012). Preprocessing unbalanced data using support vector machine. Decision Support Systems, 53(1), 226–233. doi:10.1016/j.dss.2012.01.016.
- Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). A gene selection method for cancer classification using support vector machines. *Machine Learning*, 46, 389–422. doi:10.1155/2012/586246.
- Li, Y., & Shawe-Taylor, J. (2003). The SVM with uneven margins and chinese document categorisation. In 17th Pacific Asia Conference on Language Information and Computation (PACLIC17), October (pp. 216–227).
- Li, B., Hu, J., & Hirasawa, K. (2008). Support vector machine classifier with WHM offset for unbalanced data. *Journal of Advanced Computational Intelligence and Intelligent Infomatics*, 12(1), 94–101.
- Provost, F. (2000). Machine learning from imbalanced data sets 101. In AAAI'2000 workshop on imbalanced data sets.
- Tang, Y., Zhang, Y.-Q., Chawla, N. V, & Krasser, S. (2009). SVMs modeling for highly imbalanced classification. *IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 39*(1), 281–288. doi:10.1109/ TSMCB.2008.2002909.
- Veropoulos, K., Cristianini, N., & Campbell, C. (1999). The application of support vector machines to medical decision support: A case study. In *ECCAI Advanced Course in Artificial Intelligence, Chania, Greece (ACAI99)* (pp. 17–21).
- Wang, B., & Japkowicz, N. (2010). Boosting support vector machines for imbalanced data sets. *Knowledge and Information Systems*, 25(1), 1–20.
- Wang, L.-H., Liu, J., Li, Y.-F., & Zhou, H.-B. (2004). Predicting protein secondary structure by a support vector machine based on a new coding scheme. *Genome Informatics. International Conference on Genome Informatics*, 15(2), 181–190.
- Wasikowski, M., & Chen, X. (2010). Combating the small sample class imbalance problem using feature selection. *IEEE Transactions on Knowledge and Data Engineering*, 22(10), 1388–1400.
- Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and techniques (p. 665). Burlington: Elsevier.
- Yu, L., & Liu, H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5, 1205–1224.
- Yun, Z., Nan, M. A., Da, R., & Bing, A. N. (2011). An effective over-sampling method for imbalanced data sets classification. *Chinese Journal of Electronics*, 20(3), 2–7.

Chapter 7 Evaluation of the Developed Approach

The evaluation results derived from the previous application section are presented in a condensed fashion and critically discussed within this section. The critical discussion is roughly structured along the previously presented research hypotheses. Following, the limitations identified during the evaluation and analysis including data pre-processing are highlighted. Within that section the implications of those limitations on the hypotheses and the research results are illustrated.

7.1 Evaluation Results

In this section the results of the application and evaluation conducted in the previous section are presented in a condensed fashion. This provides a basis for the following critical discussion in the next sub-section. The results compromise not only results with an impact on the raised research question, but also additional findings that surfaced during the evaluation.

7.1.1 Data Pre-processing

All three scenarios include pre-processing the data sets which is detailed in Sect. A.2 in the Annex. Even so the pre-processing itself is not considered a main part of the dissertation, the subsequent limitations are regarded as highly relevant and thus presented within the main body of the thesis. Scenario I represents a special case in this context as the data was provided by Rolls-Royce in anonymized form and thus already pre-processed to a certain extent (no missing values and normalized). However, the other scenarios illustrate the challenges data pre-processing represents in manufacturing. The CHEM data set, contained relatively

[©] Springer International Publishing Switzerland 2015 T. Wuest, *Identifying Product and Process State Drivers in Manufacturing*

Systems Using Supervised Machine Learning, Springer Theses, DOI 10.1007/978-3-319-17611-6_7

few missing values and with only 176 examples and 57 attributes/features can be considered small. This is reflected in the effort needed for preprocessing and handling of missing values. Also the computing requirements are lower for this scenario than for the larger data sets of scenario I and III.

Scenario III provides an example of a very challenging data set when it comes to pre-processing. This is supported by the fact that it was published as part of the 'Causality Challenge' (McCann and Johnston 2008). The data set with its originally 1567 examples and 591 attributes/features contains a large amount of missing data. Not only is the ratio of missing data high, but the missing values are also distributed over almost all examples and attribute/features, making the handling challenging. The approach on how to handle the data was found to have an impact on the later behavior of the data during evaluation by comparing two of the variants presented in Sect. A.2.3.

As stated previously, the different data pre-processing approaches regarding the elimination of missing values differentiate themselves in the number of features and examples. 'Approach 1', deleting all features with missing data (see Fig. A.5) compared to 'Approach 2 Variant 2 (plus 15)', keeping all features with less than 10 missing values show that the ranking of the relevant features (WEKA Attribute Evaluation) show that of the 485 features of the data set pre-processed according to 'Approach 1', 43 are not ranked within the top 485 features of the most relevant features of the data set according to 'Approach 2 Variant 2 (plus 15)'. Comparing the classification performance of the two (see Fig. 7.1), the results are comparable showing a more even distribution for the data set containing more features (528) prior to feature ranking/elimination.

		200%			500%			200%		
1	Accuracy: 87.38%			Accuracy: 90.35%			Accuracy: 94.61%			
Approach 1	84	4	95.45%	401	46	89.71%	197	15	92.92%	
FS 50	174	1149	86.85%	115	1107	90.59%	61	1138	94.91%	
	32.56%	99.65%		77.71%	96.01%		76.36%	98.70%		
Approach 2	Accuracy:	85.94%		Accuracy:	88.71%		Accuracy:	94.1	6%	
var 2 plus 50	119	22	84.40%	488	88	84.72%	241	27	89.93%	
FS 50	178	1103	86.10%	106	1037	90.73%	56	1098	95.15%	
F3 50	40.07%	98.04%		82.15%	92.18%		81.14%	97.60%		
		Parameters			Parameters:					
2	Orig.			Orig.			(Anova, KG	2, KD 3, C	2.6)	
Approach 1	Accuracy:	89.72%		Accuracy:	93.89%		Accuracy:	95.18%		
FS 80	123	10	92.48%	445	31	93.49%	221	31	87.70%	
F3 60	135	1143	89.44%	71	1122	94.05%	37	1122	96.81%	
	47.67%	99.13%		86.24%	97.31%		85.66%	97.31%		
Ammunach 2	Accuracy:	90.37%		Accuracy:	92.32%		Accuracy:	94.30%		
Approach 2	179	19	90.40%	519	57	90.10%	260	44	85.53%	
var 2 plus 50	118	1106	90.36%	75	1068	93.44%	37	1081	96.69%	
FS 80	60.27%	98.31%		87.37%	94.93%		87.54%	96.09%	1	
ă.	Parameters: Orig.				Parameters: Orig.			Parameters: (Poly., KD 3, C 2, co.eps 0.005)		

Fig. 7.1 Comparison of pre-processing approach 1 and approach 2 var. 2 (plus 15) by classification performance after feature selection and SMOTE application

7.1 Evaluation Results

Looking at the comparison of the two variations of approach 2, the following features are eliminated in variant 1 during pre-processing as they contained more than 5 missing values: 20; 85; 156; 220; 291; 358; 429; 492. Looking in the ranking position of those features in the feature ranking during the evaluation of 'Approach 2 variant 1 (plus 15)', it shows the following results: Feature 429 rank 14 (528); Feature 156 rank 59 (528); Feature 492 rank 61 (528); Feature 201 rank 127 (528); Feature 85 rank 149 (528); Feature 358 rank 282 (528); Feature 220 rank 358 (528). The relatively high ranking position of feature no. 429 indicates that by deleting features during pre-processing, valuable information (state drivers) might get lost and with them potential knowledge/ information about the process and product state development.

These results indicate the existing influence that data pre-processing has on the later application of supervised ML algorithms and its results. In this case, there is no judgment made with regard of one approach being better. The main reason for presenting this result is to highlight the importance of data pre-processing and the possible influence on the results.

7.1.2 Cross-validation Performance of SVM Classifier

Overall it can be said that all scenarios showed acceptable to good performance in the cross-validation test, partly after significant optimization efforts.

The results of the evaluation of the classification performance through crossvalidation for the Rolls-Royce data set (scenario I) show very good results. This stands true for application of a linear kernel (important for the later feature selection approach) and even more so for the optimized algorithm sporting an ANOVA kernel. In this set up, the results are extremely good (see Fig. 6.3). Even so this is promising and shows that the data set's structure/nature allows for classification, this might present a previously induced bias. The data set was provided in anonymized form and by doing so the providing party, Rolls-Royce, applied SMOTE to a) alter the data set so no information can be extracted by competitors and b) to make it more balanced. However, as it is not known by how many percent the minority class was extended, the classification results are to be interpreted with care. When comparing the difference a SMOTE application can make on a previously not ideal performing data set (from a classification perspective) like the SECOM one (see Fig. 6.42), it has to be assumed that the SMOTE application has an influence on the good results of the RR data set as well. Nevertheless, the performance results still confirm that it is possible to identify the quality outcome of the process with a good accuracy using an SVM classifier algorithm.

In the second scenario, a chemical manufacturing process was analyzed. Originally this process was published as a regression data set. However, by selecting a threshold (Yield 39), the data set was transformed in a data set with two classes ('pass' and 'fail'). The classification performance of the original data set was below the target threshold in the cross-validation evaluation, even with

optimized parameters. However, by applying the SMOTE method and subsequent parameter optimization, the classification results following were very good and significantly higher than the target threshold. As the percentage of SMOTE enhanced minority class was rather low with 100 %, the results are good. The high classification performance results confirm that the CHEM data set, now used for classification, is applicable for this evaluation and the SVM algorithm is able to distinguish the product quality of the process with high accuracy (see Fig. 6.20).

The originally unsatisfactory classification performance results of the SECOM data in the cross-validation test (see Fig. 6.35) could be improved significantly by different measures targeting the identified problematic areas of the data set. The reasons for the poor classification performance where identified to be based on the unbalanced data set. Overall, the minority class ('fail') was underrepresented and additionally, the large feature set (528 features) with only 1224 examples was problematic. This was approached by under-/oversampling and features selection. The results of these applications are presented in the following sub-section.

As for scenario I and II, which also included synthetic and combined vectors in the evaluation, the classification performance of those is briefly discussed here. For the RR manufacturing programme, the classes were assigned based on a previous conducted cluster analysis. This is different from the more random approach used for the synthetic processes of the CHEM manufacturing programme. Different approaches have been chosen to reduce the possible bias possibly induced by either one. For the RR data set, the original process TOM(RR) shows acceptable classification results whereas the synthetic and combined vectors show very good classification results in cross-validation using a linear kernel (see Fig. 6.5). This was expected as the synthetic processes and combined vectors are designed in such a way with weak inherent clustering and standard deviation. This allows for a good application of the following feature ranking method in the data sets. For the CHEM manufacturing programme the synthetic and combined vectors were evaluated with regard to their classification performance using a linear kernel and the original parameters as well. Similar to the RR manufacturing programme, the reason is to see whether the feature ranking method is applicable to the vectors. With an exception of the TD(CHEM) vector, all other processes and TDH(CHEM) show very good classification results. This stands especially true given that a basic linear kernel has been used. The TD(CHEM) vector stands out as its performance is below the threshold. However, it was decided to not adjust it (e.g., repeat the random selection of class) to reproduce realistic circumstances as much as possible.

Overall, all scenarios and the respective 'real world' and synthetic data sets show at least acceptable classification performance with SVM algorithm classifiers. After some adjustments have been made to improve the performance, mainly targeting the unbalanced nature of two of the three cases, and additional parameter optimization, the majority shows very good classification performance results.

7.1.3 Unbalanced Data

Looking at the issue of unbalanced data sets, it shows that when working with 'real world' manufacturing data sets this issue often surfaces. In scenario II and III the unbalanced nature of the data set had to be tackled by appropriate measures. The chosen methods, SMOTE oversampling and feature selection have shown good results (see Figs. 6.28 and 6.45).

For scenario I however, SMOTE oversampling was applied previously to the provision of the data set from Rolls-Royce with regard to the anonymity issues. Therefore, the received data set does not feature unbalanced ratio of 'fails' and 'pass' examples. However, as SMOTE was applied previously, it suggests that the raw data set prior to anonymizing actions also faced unbalanced ratio of the minority and majority class.

It has to be noted that unbalanced data with a smaller minority class (hence the name) is actually desired in manufacturing even so it makes life harder for model generation. Ideally the ratio is as small as possible as this means the manufacturing programme has very little quality issues (small 'fail' rate). However, this highlights the need to develop appropriate methods to select representative examples for model generation which counter the unbalanced data bias.

7.1.4 Feature Selection and Feature Ranking

In this section the results of the applied feature selection based on the feature ranking following Guyon et al. (2002) of the three scenarios are presented. It has been shown that the classification performance, thus performance of correct judgment of quality in this case, is equally good or even better in some cases when feature ranking and selection is applied.

Looking at the results of the Rolls-Royce process (scenario I) it was found that for the original TOM(RR) process the feature selection has a rather small effect on the classification performance (cross-validation). In this case the feature ranking was conducted by two different programs. One feature ranking of the TOM(RR) process was conducted using the RapidMiner (v5.3) function 'Weight by SVM' which provides the actual weight vector w values (normalized) as an output. The classification performance of the reduced data set can be considered very good for all tested variations (FS10; FS15; FS20; FS30; FS50 & FS57). However, the results seem to show that the more features used, the better the results and the closer to the results of the full feature set. The best results were achieved by the full features data set without feature selection. On the other hand, the classification performance of the reduced feature set, even the smallest one with 10 features, shows good classification performance above the target threshold (see Fig. 6.7).

The second feature ranking variant was conducted with the WEKA function 'SVMAttributeEval', which is designed based on the feature ranking method

developed by Guyon et al. (2002). The resulting feature ranking is different from the one obtained by the RapidMiner (v5.3) SVM weight function. The performance of the different variations with different amount of features by cross-validation show overall a better performance of the WEKA based feature selection (see Fig. 6.9).

Looking at a comparison of two variants, one with the top ranked 20 features and the other with the 20 lowest ranked features, the classification performance differs for each programme (RapidMiner & WEKA) (see Fig. 6.10). Whereas the RapidMiner (v5.3) variant surprises with a better classification performance for the lowest ranked features, the WEKA variant shows the expected result of significantly better classification performance for the version with the 20 highest ranking features. Based on these results, the overall better classification performance of variants with feature selection and the better documentation of the WEKA function, the ranking of the RR manufacturing programme is conducted based on the WEKA feature ranking. In the following, scenarios II and III, the WEKA function is also employed as the function of choice.

Looking at the individual and combined vectors of the manufacturing programme, the results are interesting. Table 7.1 illustrates the change in rank of certain features along the manufacturing programme in an excerpt of the full feature ranking set up. The full ranking containing all features is provided in the Annex (see Annex Table A.11). The RR feature ranking evaluation results are similar to the ones obtained by the analysis of the CHEM scenario which is analyzed after.

The interesting development is that certain parameters (features) which are ranked rather high within the individual processes (TOM(RR), DICK(RR) & HARRY(RR)) feature rankings, are often not ranked as that relevant when it comes to the combined vectors TD(RR) and TDH(RR) and vice versa. For example, 'para.51', the highest ranked feature of process TOM(RR) (No.1) is ranked number 103 in TD(RR) and even number 158 in TDH(RR). On the other hand, 'para.77', ranked rather low with number 77 in TOM(RR) is ranked number 11 in TDH(RR) but number 85 in TD(RR). Interestingly, for DICK(RR), three parameters which are ranked closely together in the individual ranking (no. 30; no. 31; no. 32) are all ranked within the top ten highest ranked features for both TD(RR) and TDH(RR). However, the top ranked feature 'para.DICK.29' during the individual process DICK(RR) is ranked number 32 in TD(RR) and number 136 in TDH(RR). For process HARRY(RR), two of the top ten ranked features ('para.HARRY.67'; 'para.HARRY.11') are also ranked within the top ten of TDH(RR). One of them, 'para.HARRY.67' ranked the most important feature of TDH(RR). The top ranked feature of the individual process HARRY(RR), 'para.HARRY.43' is ranked lower at position 30 in TDH(RR). A feature, rather lowly ranked with number 54 in the individual process HARRY(RR), 'para.HARRY.1' is ranked the high number 10 in the combined vector TDH(RR).

The feature rankings of the CHEM manufacturing programme are obtained using the SVM evaluation (feature weights). This is applied according to Guyon et al. (2002) by using the WEKA function 'SVMAttributeEval'. The features of the (individual/combined) vector are ranked by the square of the weight assigned

7.1 Evaluation Results

Rank	TOM(RR)	Rank	DICK(RR)	Rank	HARRY(RR)	Rank	TD(RR)	Rank	TDH(RR)
1	para.51	1	para.DICK.29	1	para.HARRY.43	1	para.DICK.43	1	para.HARRY.67
2	para.21	2	para.DICK.7	2	para.HARRY.33	2	para.DICK.32	2	para.DICK.32
3	para.50	3	para.DICK.41	3	para.HARRY.24	3	para.DICK.47	3	para.HARRY.1
4	para.33	4	para.DICK.12	4	para.HARRY.32	4	para.DICK.42	4	para.DICK.43
5	para.6	5	para.DICK.27	5	para.HARRY.47	5	para.DICK.33	5	para.HARRY.2
6	para.36	6	para.DICK.21	6	para.HARRY.42	6	para.DICK.24	6	para.HARRY.5
7	para.14	7	para.DICK.48	7	para.HARRY.58	7	para.DICK.11	7	para.DICK.33
8	para.9	8	para.DICK.31	8	para.HARRY.30	8	para.DICK.2	8	para.HARRY.3
9	para.47	9	para.DICK.9	9	para.HARRY.67	9	para.DICK.52	9	para.DICK.24
10	para.59	10	para.DICK.56	10	para.HARRY.11	10	para.DICK.36	10	para.HARRY.1
11	para.29	11	para.DICK.17	11	para.HARRY.2	11	para.DICK.1	11	para.77
12	para.55	12	para.DICK.23	12	para.HARRY.52	12	para.26	12	para.DICK.26
13	para.61	13	para.DICK.37	13	para.HARRY.36	13	para.DICK.45	13	para.HARRY.4
14	para.60	14	para.DICK.51	14	para.HARRY.64	14	para.DICK.55	14	para.HARRY.5
15	para.44	15	para.DICK.22	15	para.HARRY.65	15	para.DICK.30	15	para.DICK.30
16	para.45	16	para.DICK.28	16	para.HARRY.39	16	para.DICK.13	16	para.HARRY.6
17	para.34	17	para.DICK.34	17	para.HARRY.45	17	para.DICK.28	17	para.DICK.39
18	para.32	18	para.DICK.13	18	para.HARRY.59	18	para.DICK.37	18	para.HARRY.1
19	para.64	19	para.DICK.5	19	para.HARRY.55	19	para.62	19	para.DICK.44
20	para.2	20	para.DICK.6	20	para.HARRY.60	20	para.6	20	para.HARRY.4
21	para.5	21	para.DICK.55	21	para.HARRY.13	21	para.DICK.23	21	para.DICK.47
22	para.35	22	para.DICK.45	22	para.HARRY.19	22	para.DICK.17	22	para.HARRY.4
23	para.46	23	para.DICK.1	23	para.HARRY.28	23	para.70	23	para.HARRY.3
24	para.48	24	para.DICK.36	24	para.HARRY.50	24	para.DICK.56	24	para.DICK.19
25	para.31	25	para.DICK.52	25	para.HARRY.37	25	para.DICK.9	25	para.HARRY.2
26	para.38	26	para.DICK.2	26	para.HARRY.23	26	para.DICK.39	26	para.DICK.50
27	para.11	27	para.DICK.11	27	para.HARRY.17	27	para.DICK.31	27	para.HARRY.3
28	para.42	28	para.DICK.42	28	para.HARRY.56	28	para.45	28	para.DICK.46
29	para.20	29	para.DICK.47	29	para.HARRY.9	29	para.DICK.19	29	para.24
30	para.16	30	para.DICK.32	30	para.HARRY.15	30	para.DICK.50	30	para.HARRY.4
					• • • • • • • • • • • • • • • • • • •		•••••••••••••••••••••••••••••••••••••••		
46	para.24	31	para.DICK.43	54	para.HARRY.1	32	para.DICK.29	120	para.6
	para.26		para.DICK.33				para.77		para.DICK.29
	para.77						para.51		para.51
1000							para.24		para.26

 Table 7.1
 Feature ranking RR manufacturing programme (selected)

by the SVM classifier. The following Table 7.2 shows an excerpt of the resulting ranking for the different processes, combined processes and the complete manufacturing programme (to analyze cross-process intra-relations). In this table, the 30 features ranked most important are displayed, expanded by selected additional features chosen to illustrate the changing importance over the process. A full ranking containing all features is provided in the Annex (see Annex Table A.12).

In Table 7.2, it becomes apparent that in the combined state vectors TD(CHEM) and TDH(CHEM), different and/or additional state drivers (features) become relevant compared to those identified as relevant by feature ranking in the individual processes. Next, selected examples are discussed to analyze the findings further.

nk	TOM(CHEM)	Rank	DICK(CHEM)	Rank	HARRY(CHEM)	Rank	TD(CHEM)	Rank	TDH(CHEM)
1	BiologicalMaterial07	1	Parameter 29	1	Parameter29	1	ManufacturingProcess16	1	ParameterII29
2	ManufacturingProcess32	2	Parameter 38	2	Parameter11	2	ManufacturingProcess05	2	Parameterll11
3	ManufacturingProcess09	3	Parameter 11	3	Parameter13	3	ManufacturingProcess06	3	ParameterII13
4	ManufacturingProcess34	4	Parameter 13	4	Parameter32	4	ManufacturingProcess33	4	ParameterII32
5	ManufacturingProcess13	5	Parameter 32	5	Parameter02	5	BiologicalMaterial06	5	ParameterII02
6	ManufacturingProcess19	6	Parameter 02	6	Parameter09	6	ManufacturingProcess42	6	ParameterII09
7	ManufacturingProcess30	7	Parameter 09	7	Parameter28	7	ManufacturingProcess13	7	ParameterII28
8	ManufacturingProcess39	8	Parameter 45	8	Parameter17	8	BiologicalMaterial12	8	ManufacturingProcess4
9	ManufacturingProcess21	9	Parameter 43	9	Parameter31	9	ManufacturingProcess14	9	ParameterII17
10	ManufacturingProcess01	10	Parameter 28	10	Parameter25	10	ManufacturingProcess22	10	ParameterII31
11	BiologicalMaterial05	11	Parameter 34	11	Parameter07	11	Parameterl 38	11	ParameterII25
12	BiologicalMaterial02	12	Parameter 39	12	Parameter26	12	BiologicalMaterial01	12	ParameterII07
13	ManufacturingProcess10	13	Parameter 47	13	Parameter12	13	ManufacturingProcess38	13	Parameterll26
14	BiologicalMaterial09	14	Parameter 17	14	Parameter10	14	BiologicalMaterial08	14	Parameterll12
15	ManufacturingProcess03	15	Parameter 31	15	Parameter03	15	ManufacturingProcess45	15	ParameterII10
16	ManufacturingProcess31	16	Parameter 42	16	Parameter04	16	ManufacturingProcess11	16	ManufacturingProcess2
17	ManufacturingProcess37	17	Parameter 25	17	Parameter22	17	BiologicalMaterial07	17	Parameter/103
18	ManufacturingProcess12	18	Parameter 07	18	Parameter15	18	ManufacturingProcess36	18	ParameterII04
19	BiologicalMaterial10	19	Parameter 37	19	Parameter01	19	ManufacturingProcess43	19	Parameterll22
20	ManufacturingProcess23	20	Parameter 26	20	Parameter06	20	ManufacturingProcess15	20	Parameterll15
21	ManufacturingProcess02	21	Parameter 12	21	Parameter23	21	ManufacturingProcess08	21	Parameter/101
22	ManufacturingProcess15	22	Parameter 10	22	Parameter19	22	ManufacturingProcess12	22	BiologicalMaterial10
23	ManufacturingProcess38	23	Parameter 03	23	Parameter16	23	BiologicalMaterial10	23	BiologicalMaterial01
24	ManufacturingProcess36	24	Parameter 04	24	Parameter05	24	ManufacturingProcess04	24	Parameter/106
25	ManufacturingProcess14	25	Parameter 22	25	Parameter14	25	ManufacturingProcess02	25	ParameterII23
26	ManufacturingProcess40	26	Parameter 15	26	Parameter08	26	ManufacturingProcess07	26	BiologicalMaterial11
	BiologicalMaterial12	27	Parameter 35	27	Parameter20		ManufacturingProcess20		ManufacturingProcess0
	ManufacturingProcess06	28	Parameter 01	28	Parameter24		ManufacturingProcess32		Parameterli19
	ManufacturingProcess08	29	Parameter 48	29	Parameter18		ManufacturingProcess28	29	ManufacturingProcess3
30	ManufacturingProcess24	30	Parameter 06	30	Parameter21	30	BiologicalMaterial04	30	ManufacturingProcess0
	•						•		•
31	ManufacturingProcess22		Parameter 46				Parameterl 29		BiologicalMaterial06
	BiologicalMaterial11		Parameter 27				Parameterl 46		Parameter127
	ManufacturingProcess42						Parameterl 27		Parameter146
	BiologicalMaterial06						BiologicalMaterial11		ManufacturingProcess1
	ManufacturingProcess16						ManufacturingProcess17		Parameter138
	ManufacturingProcess17						0		Parameterl29
									ManufacturingProcess1
									BiologicalMaterial07

 Table 7.2
 Feature ranking CHEM manufacturing programme (selected)

Looking at feature '*BiologicalMaterial01*' of process TOM(CHEM), ranked as most important in the individual process, it can be observed that the importance decreases to rank no. 17 in the combined TD(CHEM) vector. In the ranking of the features for the complete manufacturing programme TDH(CHEM) the feature 'BiologicalMaterial01' is the least important feature of all, ranked as no. 137. This indicates that features which are highly relevant state drivers for individual processes, may have little influence when the whole multi-stage manufacturing programme is concerned.

On the other hand, looking at feature '*ManufacturingProcess42*' (rank no. 36 in TOM(CHEM)), the influence of features in individual processes may be insignificant. However, the same feature is the ranked no. 6 (TD(CHEM)) and no. 8 of the most influential features for the whole manufacturing programme TDH(CHEM), resembling the highest rank of all features from process TOM(CHEM) in the ranking, surpassing all 35 features ranked higher individually.

Similar examples include '*ManufacturingProcess16*', being ranked no. 51 (TOM(CHEM)) and no. 1 (TD(CHEM)) and '*BiologicalMaterial06*' ranked no. 45 (TOM(CHEM)) and no. 5 (TD(CHEM)). However, both features rank significantly

lower when analyzing the complete manufacturing programme TDH(CHEM) with rank no. 88 ('ManufacturingProcess16') and no. 31 ('BiologicalMaterial06'). This indicates that the increase of importance of a feature within a manufacturing programme is not necessarily increasing towards the final state but can have its peak at different checkpoints throughout the manufacturing programme.

On the other hand, looking at the two highest ranking features, '*Parameter 29*' and '*Parameter 38*' of process DICK(CHEM), a steady decrease in importance can be observed. Here formerly highest ranking 'Parameter 29' is showing a larger decrease with rank no. 40 (TD(CHEM)) and no. 129 (TDH(CHEM)) than 'Parameter 38' with rank no. 11 (TD(CHEM)) and no. 103 (TDH(CHEM)). However, both indicate that features considered important state drivers for individual processes may have steadily decreasing impact considering the final state.

Another interesting observation of the ranking is that the individual processes seem to have different weights overall when it comes to the combined state vectors. When looking at TD(CHEM), it can be observed that only one feature of process DICK(CHEM) is ranked within the top 30, this being 'Parameter 38'. Looking further, in the complete manufacturing programmes vector TDH(CHEM), it is transparent that no feature representing process DICK(CHEM) is ranked within the top 30 most important features. Furthermore, only 8 features from process TOM(CHEM) are among the top 30, leaving 22 features from process HARRY(CHEM) dominating the feature ranking. Speculations that the importance of the processes increases over the sequence cannot be supported by the data as TOM(CHEM) is the first process before DICK(CHEM) in the manufacturing programme. It can be assumed that the processes have a rather individual influence.

In the third scenario, the SECOM process was analyzed. In this case the evaluation was focusing on an individual process instead of a manufacturing programme with multiple processes. However, feature ranking and selection was applied to the SECOM process and the results show similar results to the ones obtained in the prior scenarios.

Overall the presented findings within the evaluation of feature ranking (feature selection) are considered important for answering the research question and thefore the hypotheses. The findings indicate that parameter relationships may vary considerably through the manufacturing programme's process chain and may illuminate some of the known/unknown process intra- and inter-relations discussed earlier from a theoretical point of view. However, this is discussed in more detail in the following Sect. 7.2.

The classification results of the SECOM data set after feature selection is applied show that the results are equally good or better than with the full feature set (see Figs. 6.45 and 6.46). This confirms the results of the other two scenarios, that by applying feature selection, relevant state characteristics (state drivers) are selected which allow a judgment of the quality performance (final product state) of the product.

7.1.5 Classification Performance on Previously Unknown Data

For the Rolls-Royce data set the test of classification performance has been conducted. The results show very good classification performance on previously unknown data (learning 70 % and test 30 % split). However, these results might not be transferable/generable and thus evaluation may not be possible as SMOTE was applied previous to provision by Rolls-Royce. With SMOTE applied, the split of the data set does not guarantee that the test data is not (partly) incorporated in the learning set as SMOTE does create additional examples based on existing ones. Thus a bias is involved and the results are questionable in relevance. Thereafter, this question was evaluated using the SECOM data set and the results seem to confirm the suspicion (see Fig. 7.2).

The CHEM data set in scenario two showed poor classification performance when it comes to previously unknown data. However, after applying parameter optimization of the SVM algorithm, SMOTE oversampling of the minority class for the learning set and subsequent feature selection, the classification results of the minority class are acceptable (see Fig. 6.30). The best results show an overall accuracy of 88.5 % with three of the four percentages being significantly over the threshold of 80 % and just one being slightly below (76.5 %). Even so they are lower than the optimized cross-validation results, which is common and would raise suspicion if not so, the results show that it is possible to reach good classification performance with a trained model on previously unknown data. This is a prerequisite for an application of the approach within an industrial manufacturing environment for e.g., monitoring tasks.

The classification results of previously unknown data in a timely sequence along the process is conducted by using the first 70 % of examples as the training set and the latter 30 % of examples as the test set. The classification performance is not as good as with the random split (see Fig. 6.25). As the distribution of 'fail' examples in the data set was found to be uneven (see Fig. 6.34) and more

		200%			500%		1000%		
528	Accuracy:	91.85%		Accuracy:	91.0	03%			
(split pre-	2	28	6.67%	2	28	6.67%			
SMOTE)	2	336	99.41%	5	333	98.52%			
SWOTE	50.00%	92.31%		28.57%	92.24%				
FS80	Accuracy:	92.12%		Accuracy:	92.12%				
(split pre-	3	27	10.00%	5	25	16.67%			
SMOTE)	2	336	99.41%	4	334	98.82%			
SIVIOTE	60.00%	92.56%		55.56%	93.04%				
528	Accuracy:	94.85%		Accuracy:	95.54%		Accuracy:	96.23%	
(split after	74	18	80.43%	160	20	88.89%	305	21	93.56%
SMOTE)	4	331	98.81%	3	333	99.11%	4	334	98.82%
SIVIOTE)	94.87%	94.84%		98.16%	94.33%		98.71%	94.08%	

Fig. 7.2 Comparison of classification performance results on previously unknown data (split after SMOTE application)

dense towards the end of the process, this was to be expected. The random split had a similar 'fail'/'pass' ratio whereas in the timely split, the ratio of the learning set was significantly lower than that of the test set. This indicates that the trained model was not able to take the characteristics of most 'fail' examples into consideration which may explain the lower performance. By applying parameter optimization, feature selection and SMOTE oversampling of the learning set, the classification results improved further and thus resembled the tendency of the results from the random split case (see Fig. 6.32). However, similar to the random split, it can be assumed that the performance will improve even further with the increase of examples available for the model generation. Looking at the resulting time plot of the predicted product states (see Fig. 6.33), the classifier enables early identification of disruptions within the manufacturing process and thus allows the process owner to react. This, combined with the reduction of the feature set and thus identifying relevant state drivers, supports process control within the manufacturing system.

Furthermore, if expert knowledge is available, the examples for the learning set can be selected in a supervised fashion and possibly improve the results even further. In this case, the examples within a class do not have such a wide spread and variety as they do in scenario three, making the task at hand very challenging.

The SECOM data set performs poorly when classification of previously unknown data is concerned based on the split of the data set in a learning (70 %) and test (30 %) set in two different cases. One case is based on a random split of learning and test set with a similar ratio in both. The second case is based on a split in timely succession, with the first 70 % of the examples resembling the learning set and the latter 30 % the test set. In the second case, the ratio is a little more uneven as the 'fail' examples are not distributed evenly throughout the process. Even so a slight increase in performance could be observed in the first case (see Figs. 6.47 and 6.48), the difference is marginal, that it neither confirms nor negates the ability of feature selection to improve the classification of previously unknown data. At this point, the classification of previously unknown data has to be considered not applicable for the current SECOM data set.

In order to show how the increase in examples of the minority group will affect the performance of the classification results on previously unknown data the following Fig. 7.2 depicts the results of a learning (70 %) and test (30 %) split after SMOTE is applied on the SECOM data set ('Approach 2 Var. 2 plus 15'). The SVM algorithm has an ANOVA kernel, with the same optimized parameters identified previously (kernel gamma 2.0; kernel degree 3.0; C 2.6).

In this case it is assumed, that future minority examples are of similar nature as the previous ones. It has to be noted that the different SMOTE percentages are not completely comparable as the random split of the data was applied after enhancing the data set. Therefore the examples contained in learning and test set may vary. However the general direction of the results show significant improvements of the classification when more examples are available. Even with a small amount of SMOTE (200 %) applied, the results meet the target threshold for classification performance of cross-validation. This indicates also that the assumption of not comparing the classification of previously unknown data of the RR data set (split after SMOTE) to the ones achieved by the CHEM and SECOM data sets (split pre-SMOTE). The assumption that the SECOM data set minority class contains examples of very diverse nature is supported by this result. This may ease the pressure of the previous assumption of overfitting to some extent.

In the following sub-section, the presented results are critically discussed based on the previously raised research hypotheses (see Sect. 5.3).

7.2 Discussion of Evaluation Results

The critical discussion of the evaluation results is based on the three application scenarios and structured around the three main hypotheses. However, this provides only a rough structure, with possible overlaps in argumentation due to the intertwined nature of the results.

Hypothesis 1

At first, the evaluation results relevant for *hypothesis 1* are presented. The hypothesis states that the '*Capturing of process intra- and inter-relations by implication through application of SVM*' is possible. This hypothesis was split in two sub-hypothesis. Hypothesis 1.1 ('Application of SVM allows to identify state drivers of individual processes') focusing on the individual process and hypothesis 1.2 ('Combining different processes allows to identify relevant drivers at different phases of the manufacturing programme') focusing on intra-relations within the manufacturing programme.

The evaluation results show that by selecting relevant information as a representation, in this case features/attributes by their weight vector w allows to describe the description of the product and process state. This is in accordance to the *product state concept*'s main idea to identify a set of relevant information by which the product's state can be described comprehensively. As discussed previously, the challenge was to include the process intra- and inter-relations between the state characteristics, both within a process and across process borders as there exists a knowledge gap.

For the individual process (hypothesis 1.1 'Application of SVM allows the identification of state drivers of individual processes'), the equally good or improved classification performance of the reduced data set in comparison to the original (full featured) data set in all three scenarios confirms that it is possible to identify relevant state characteristics or state drivers by applying feature ranking on manufacturing process data. The feature ranking method based on Guyon et al. (2002) utilized the process intra- and inter-relations between features (or in this case state characteristics/state drivers), and thus includes those considerations in the selection process. As previously stated, the weight vector w is the basis of the feature selection method by Guyon et al. (2002). This emphasizes the role of the weight value of the support vectors in identifying the relevant state drivers of the processes and combined vectors. However, it has to be noted, that the

ranking does only rank all available features (using RFE) but does not provide information concerning the optimal threshold.

In this case, either expert knowledge needs to be included to select the set of relevant features or the set may be established by further experimentation. In scenario II and III further experimentation was applied to chose a promising amount of features through comparing the classification performance by cross-validation. For scenario I, the results of feature selection based on the feature ranking show that the classification performance of a reduced set is very good but not as good as the full feature set. For scenario I, expert knowledge is available, but due to the confidentiality agreement, the experts were not able to provide detailed feedback of what features are already known as relevant process parameters and what features are potential new ones. In this case, the information regarding to what individual parameters mean, contain or measure is not available to the author. However, the qualitative feedback by experts confirms the accuracy of the identification of relevant state drivers by applying SVM based feature selection on product state data.

Another difference of the feature ranking between scenario I and scenario II & III is that for scenario one it was done utilizing the RapidMiner (v5.3) function 'Weight by SVM' which allows an export of the weight values (normalized) and the WEKA function, whereas in scenario II and III only the 'SVMAttributeEval' function based on Guyon et al. (2002) in WEKA was utilized. The WEKA ranking was showing more consistent results in the evaluation and according to the expert feedback in scenario I, the results are more compliant to the existing knowledge of the processes. Therefore, the WEKA ranking was utilized thereafter. However, both approaches show that good classification of acceptable ('pass') and unacceptable ('fail') is possible within a 'real world' manufacturing process by identifying and using relevant state drivers (features).

After confirming the statement of hypothesis 1.1, the following paragraphs focus on the evaluation results with relevance to *hypothesis 1.2* 'Combining different processes allows the identification of relevant drivers at different phases of the manufacturing programme'. Hypothesis 1.2 is focussed on the following: the accumulating (combined) vectors are constructed from the TOM, DICH and HARRY vectors in scenario I and II. At stage 1, post process TOM, the state vector is the single process TOM's vector. For each vector a quality assessment is available in the form of a 'pass' and 'fail' label. Similarly, for the second stage, post-process DICK, the state vector TD will be the concatenated vectors TOM and DICK. This is repeated for the final stage post-operation HARRY. In this way the state vectors increase their dimensionality by the number of features of the last process included for each process stage of the manufacturing programme TDH.

In the previous section, it has been shown (see Tables 7.1 and 7.2) that the feature selection applied to combined vectors show variations within the ranked features. The combined vectors partly rank previously top ranked features (individual processes) rather low and previously low ranked (unimportant) features rather high. Given the established results of feature selection for individual processes by cross-validation performance, it is confirmed that the ranking reflects the relevancy of features correctly. As the combined vectors do not reflect the ranking of features of the contained individual processes, the variation can be retraced to the cross-process process intra-relations and their influence on the results. It has to be noted that the ranking can only reflect the information available. Therefore, the combined vector has to include all available features of the original processes pre-elimination. This stands true also for information not available to the classifier. Projecting this on the previously used example, if there is no feature available indicating what clamping method was used, the influence on the heat treatment cannot be identified. Therefore it is utmost important to collect as much information as possible prior to feature selection.

It has been shown in previous applications of feature ranking and selection in different domains and has been confirmed by the three manufacturing evaluation scenarios that the identification of relevant information is possible. In conclusion, it was confirmed by the evaluation results that the stated hypothesis is confirmed given the assumption. The limitations of the evaluation approach that may have an impact on this judgment are presented in the final sub-section of this section.

The identification by feature selection and thus incorporation of implicit process intra- and inter-relations on process and programme level supplements the three areas of relevant information identification of the *product state concept* (Sect. 4.3.5). The ML approach is intended to support experts who design the monitoring system for the manufacturing programme. It allows to benefit from previously unknown process intra- and inter-relations relations between state characteristics within processes/operations and across process-borders. It has to be noted that it is not intended as a standalone and fully automated approach at this stage. The approach integrates not only in the previously introduced *product state concept* but supports the intelligent manufacturing vision.

Hypothesis 2

The discussion of *hypothesis 2* 'Adaptability to changing conditions through application of SVM' is based on the results of the three different manufacturing scenarios. The adaptability may be viewed from two general perspectives, first, considering the application domain and second regarding changes in process and/ or environmental factors.

Looking at the adaptability of the proposed concept for different domains, the results of the three scenarios indicate that this is quite high within the overall manufacturing domain. The concept was successfully applied to three different manufacturing domains:

- Scenario 1—mechanical manufacturing (see Sect. 6.2)
- Scenario 2—chemical manufacturing (see Sect. 6.3)
- Scenario 3—semiconductor manufacturing (see Sect. 6.4)

The three domains chosen as evaluation scenarios represent a wide variety of manufacturing applications and thus allow the conclusion that the concept is applicable and highly adaptable within the manufacturing domain. Even though the wide spread of the chosen scenarios may indicate that the concept may also be applicable within other domains outside of manufacturing, this can neither be confirmed
nor negated based on the conducted evaluations. The adaptability of the concept on other processes/process chains, e.g., in the service domain has to be analyzed in future studies (see Sect. 8.2). Given that Guyon et al. (2002) successfully applied the feature selection method in the medical domain indicates a good chance for a successful transfer of the findings to different domains.

The second perspective, focusing on the adaptability of the concept based on changing process and/or environmental factors, can be confirmed. The concept is able to adapt to changing conditions rather quickly as the basic model generation of the SVM algorithm can be adapted as soon as new learning data is available, which allows a real time adaptation. This is supported by the small amount of time needed to train the classifier model with new training data and apply the new model on new classification tasks. However, in order to do that, expert input is necessary to evaluate when the model needs to be updated by new learning examples (supervised learning). Looking at the results of the SECOM data set (scenario 3), the importance of having a meaningful learning set is eminent especially when the approach is supposed to classify formerly unknown date with high accuracy.

Partly related to the second perspective, the computing efforts can be considered reasonable once a set of suitable parameters for the model generation is established. This stands true even for big data sets like the SECOM or RR data set. The model generation and subsequent application of the trained model takes very little computing resources and effort. With regard to computing time, the training of the classifier model requires seconds/minutes rather than hours and can be considered almost real time. This is a significant advantage when it comes to the application within an industrial manufacturing environment.

Finding suitable parameters through optimization of cross-validation classification performance however may require a certain amount of computing resources and effort. In particular for bigger data sets, an optimization run can easily take (significantly) more than 10 h in RapidMiner (v5.3), even when the optimizing parameters are split in different runs.¹ This is due to the exponential increase of tobe-calculated cases with every added optimization parameter. A complete optimization run is not required for every adjustment of the training data, therefore in established scenarios, the optimization runs are more likely to be located within a 10–15 min timeframe.

Overall, the results confirm that the concept is indeed adaptable to different domains (of manufacturing) and changing conditions of the process and/or environmental factors and thus hypothesis 2 can be regarded as confirmed.

Hypothesis 3

The *third hypothesis* '*Through application of the SVM approach, defect products can be identified*' focuses on the evaluation of the ability to integrate the approach in a manufacturing programme in the current form in order to improve product and process quality in the sense of an intelligent manufacturing system.

¹Specifications of machine used: Processor: 2.6 GHz dual-core Intel Core i5 processor (Turbo Boost up to 3.1 GHz) with 3 MB shared L3 cache (fourth generation Intel Haswell); Ram: 8 GB of 1600 MHz DDR3; SSD: 512 GB PCIe; Graphics: Intel Iris 1024 MB; OS: OS X 10.9.2.

In this case the overall hypothesis was split in two sub-hypothesis, hypothesis 3.1 'the trained SVM system is able to detect faulty products in the manufacturing programme' and hypothesis 3.2 'a connection to the identified state drivers can be established within the set of (within the manufacturing programme) identified defect products'.

Overall, the issues raised in hypothesis 3 cannot be confirmed at this stage based on the evaluation conducted and the obtained findings. Whereas some findings support the hypothesis others do not. For hypothesis 3.1, the findings of the classification performance on formerly unknown data are highly relevant. The three scenarios present very diverse feedback on this issue.

As stated beforehand, even though tests of the classification performance of previously unknown data have been conducted with the RR data set, these results can neither be applied to confirm nor negate the raised hypothesis. This is due to the fact that SMOTE oversampling has been applied prior to provision of the data set. Thus the results may be biased as described in Sect. 7.1.5.

Initially showing low classification performance when it comes to previously unknown data, the TOM(CHEM) manufacturing process classification results improved during the evaluation. After applying parameter optimization of the SVM algorithm, SMOTE oversampling of the minority class for the learning set and feature selection, the classification results of the minority class can be considered acceptable (see Fig. 6.30). The best results show overall accuracy of 88.5 % with three of the four percentages being significantly over the threshold of 80 % and just one being slightly below (76.5 %). Even though they are lower than the optimized cross-validation results, the findings confirm that it is possible to reach good classification performance with a trained model on previously unknown data for the TOM(CHEM) data set. This is a prerequisite for an application of the approach within an industrial manufacturing environment e.g., monitoring tasks.

As stated before, looking at the split based on timely sequence of learning/test set, which is the most relevant for industrial application, the uneven distribution of 'fail'/'pass' examples over the process run made a comprehensive model generation difficult and may explain the classification results. By utilizing pre-processing steps similar to the randomly split variant, feature selection and SMOTE oversampling the classification performance on previously unknown data in a timely sequence split could be significantly improved (see Fig. 6.32). Given the challenging starting position, this can be regarded as a very good result. Looking at the time plot of the predicted product states, it can be observed that disruptions within the manufacturing process can be correctly predicted by the classifier at an early stage, allowing for preemptive measures to bring the process back on track. Such a prediction, especially with a significantly reduced feature set may allow the process owner to preemptively adjust the process and reduce the risk of such a relatively long period of manufacturing products without sufficient quality. This result of the evaluation of scenario II can be considered in favor of hypothesis 3 and especially hypothesis 3.1.

It can be assumed that the performance of classification on previously unknown data will improve further with the increase of examples available for the model generation. Furthermore, if expert knowledge is available, the examples for the learning set can be selected in a supervised fashion and possibly improve the results even further. In this case, the examples within a class have not had such a wide spread and variety as they do in scenario three, making the task at hand very challenging.

As previously stated, the poor classification results of the SECOM data set even after elaborate pre-processing through feature selection and SMOTE oversampling do not support the hypothesis. A possible reason may be that the negative examples (minority class) are very diverse in nature which do not allow the classifier to prepare the model accordingly to successfully classify new negative examples. It may be possible that over time the classification results of previously unknown data improve when a bigger selection of minority examples are available to train the model. However, at this point this is speculation and thus the results of scenario three do not confirm the hypothesis.

For hypothesis 3.2, the results confirm that the approach takes implicit process intra- and inter-relations into account and identifies the relevant state drivers. However, at this stage, the results allow no connection of process intra- and inter-relations and individual state drivers to defects. In order to do that, expert input is needed. Furthermore, the SVM approach does take process intra- and inter-relations into consideration but does not allow to extract those. Therefore, this sub-hypothesis cannot be confirmed at this stage.

Overall, it shows that in order to fully explore the questions raised in hypothesis 3, further research, ideally in collaboration with industry directly in the processes, is necessary. At this stage, the results from e.g., the predictive states in time plots of the TOM(CHEM) process indicate an outcome in favor of the raised hypothesis.

After the previous discussion of the evaluation results structured roughly around the raised hypotheses, Table 7.3 provides a summary of the findings.

7.3 Limitations

In this section, the limitations of the concept are illustrated and discussed.

First of all, the chosen approach proved useful with quantifiable parameters during the evaluation. However, theoretically the state can also be described by using qualitative parameters. Even if those are digitized, it may prove difficult to use qualitative parameters in methods, which depend upon the needs to calculate distances between vectors like the chosen SVM. There are several methods available to transform qualitative measures in quantitative ones which can be utilized with supervised learning methods (e.g., Bratko and Suc 2003). If such an approach is applicable within the developed concept, it needs to be studied in future research.

The synthetic data sets used for the evaluation in the first and second scenario may not represent a 'real world' manufacturing data set in all nuances.

Researc	ch hypotheses	Result of evaluation
1	'Capturing of process intra- and inter-relations by implication through application of SVM'	The evaluation results confirm the hypothesis statement that by applying feature ranking based on SVM it is possible to capture process intra- and inter-relations by implication throughout the manufacturing programme
1.1	'Application of SVM allows the identification of state drivers of individual processes'	The performance of processes with a reduced feature set are equally good or better than the ones using the full feature set. This confirms that by selecting relevant information, the product and process state can be sufficiently described. Hence, hypothesis 1.1 is confirmed
1.2	'Combining different processes allows the identification of relevant drivers at different phases of the manufacturing programme'	Evaluation results of scenario I & II show that the combined vectors' feature ranking differ from the individual rankings for specific features. This confirms that cross-process process intra-relations are reflected in the results and all relevant state characteristics of a manufacturing programme may be identified by applying the proposed method. This confirms hypothesis 1.2
2	'Adaptability to changing conditions through application of SVM'	The three scenarios describe very diverse domains and data sets. The approach was shown to be applicable to all three scenarios which shows its broad applicability and adaptability. The relative ease of adapting the learning set in case new examples, expert knowledge and/or attributes are available confirms the adaptability of the approach Determining the classes of the synthetic processes in two different ways with comparable results, shows additionally the adaptability and broad applicability of the concept. Adaptability of the model based on the learning set and application does not require much computing effort and resources once suitable parameter configuration has been established. This allows for a fast creation and application of model-updates as
		soon as new examples for the learning set are available e.g., when process and/or environmental factors change over the course of a manufacturing programme Therefore, hypothesis 2 can be considered confirmed for (manufacturing) processes with a similar structure of the data sets

 Table 7.3
 Summary of the results with regard to postulated hypotheses

(continued)

Rese	arch hypotheses	Result of evaluation	
3	'Through application of the SVM approach, defect products can be identified'	Hypothesis 3 could not be confirmed nor negated during the evaluation within this dissertation. Whereas some results indicate that the hypothesis is true, others do not entirely support the hypothesis at this stage. To fully elaborate this issue, further data and in process application and evaluation is necessary	
3.1	'Trained SVM system is able to detect faulty products in the manufacturing programme'	Whereas the results of the classification performance on formerly unknown data partly support this sub-hypothesis, they do not confirm it beyond doubt over all evaluated scenarios. In this specific area, a collaborative evaluation in process with an industrial partner is necessary to answer the raised research question	
3.2	'A connection to the identified state drivers can be established within the set of (within the manufacturing programme) identified defect products'	The results confirm that the approach takes implicit process intra- and inter-relations into account and identifies the relevant state drivers. However, at this stage, the results allow no connection of process intra- and inter-relations and individual state drivers to defects. In order to do that, expert input is needed. Furthermore, the SVM approach does take process intra- and inter-relations into consideration but does not allow to extract those. Therefore this sub-hypothesis cannot be confirmed at this stage	

Table 7.3 (continued)

Even though an effort was made to synthesize the data set as close to the realistic manufacturing "master data set" as possible, a complete (100 %) accurate simulation of real world data may not be possible. To reflect two different extremes, the synthetic processes and combined vectors of scenario I and II are tailored to show a rather good classification performance (scenario I) and a more challenging classification performance (scenario II). This is only based on the assigned class labels, not on the process data itself. The synthetic processes resemble their 'parent' real world processes by characteristics such as mean and standard deviation. An effort was made to change the definition of class (by cluster in scenario I and random in scenario II) in order to show that the results are comparable in different variations. However, the main findings are mostly of methodological benefit. The results show that such process intra- and inter-relations and driving states can be identified by the approach and how the results look like. Furthermore, the interpretation is a main finding. It does not and is not intended to represent evidence that the same results may be obtained when applying the approach to a 'real world' manufacturing programme. It has been shown that even the three 'real world' data sets behave in different ways when it comes to applying classification algorithms.

Nevertheless, the successful application of the approach on three different 'real world' data sets shows comparable and similar results over all scenarios.

The data set on which scenario II is based upon is published as a regression data set. Therefore, there are no two classes defined by design but a quality feature 'Yield'. The approach of selecting a certain threshold (Yield 39) to divide the data set in 'pass' and 'fail' classes may be the reason for the partly low classification accuracy. However, overall the data set behaved rather well and the results are comparable to the ones obtained within the other two scenarios. As 'Yield' is often used as an important quality measure, this is not surprising. Nevertheless, this limitation has to be taken into consideration.

A rather basic limitation is the needed resources for the application of the approach. The resources needed to create a feature ranking may take time and computational effort. This stands especially true for large data sets with high number of examples and features (e.g., scenario III). However, the generation of the classification model and its application does not require significant resources. Therefore, the limitation based on needed (computational) resources does not effect the application of the approach but the efforts beforehand.

Using the built-in feature selection function based on Guyon et al. (2002) in WEKA for scenario II and III does not allow to extract the weight vector w values. This would allow to determine the threshold in a different way and the results could be evaluated based on the classification performance. In these cases, a variety of thresholds was tested and compared to identify a well performing set of features. However another limitation of the method is that it does not indicate an optimal number of features to be selected for the best classification performance. This has to be done by manual experimentation and thus represents a challenge.

Applying another function for SVM feature ranking (RapidMiner (v5.3)) instead of the WEKA function allows to extract the weight vector w values. However, the two functions are not completely comparable. Therefore, the results of scenario I and scenario II and III may be not 100 % comparable when it comes to feature ranking. In this case, the option to extract the weight value was regarded more important than complete comparability. In any case, the WEKA feature ranking option is regarded the more applicable one as it is directly based on Guyon et al. (2002)'s approach.

By dividing the data set in learning (70 %) and test (30 %) set randomly, the comparability between different performance results is not guaranteed 100 %. Depending which examples are chosen randomly for each set, the training of the model may vary to some extent as does the to-be-classified test set. Depending on the amount of outliers among the examples within a set (learning or test) this may or may not influence the performance significantly. To reduce this effect, the same version of the split data set (same examples for each set) is utilized in the different evaluations in order to ensure comparability within the analysis.

Missing data or corrupted data represents a significant challenge and limitation to the approach. In 'real world' manufacturing process/product data, missing values are a common problem accompanied by challenges like noise, redundancy and/or inconsistency (Zhang et al. 2009). For the presented approach, missing values (incomplete) within the data set need to be removed/replaced in order to determine a learning set. However, as can be observed in the SECOM data set, missing values are often not distributed equally within a manufacturing data set. Often certain state characteristics (process parameters and features/attributes) contain a significantly higher number of missing values than others. Depending on the strategy to handle missing values within a data set, either information may get lost or a certain bias may be introduced. In the chosen approach to eliminate the missing values applying a 4-stage method (see Sect. A.2.3), the feature space was reduced to 528 (89, 49 %) from the original 590 features. A comparison of the results, identified 'state drivers' with the data sets obtained using 'approach 1' and 'approach 2 variant 1' show that when features are eliminated (reduction of dimension) also information is lost. For example feature 165 represents a relevant driver within the data set (Top 50, ranking no. 2, 'Approach 2 Var. 2 plus 15') but is not part of the top 50 ranked relevant features of 'Approach 1' data set due to the elimination process. This highlights the influence of the data pre-processing on the approach when handling 'real world' manufacturing data. This challenge will hopefully be decreasing in importance over time with sensor technology and other data capturing technologies developing at a fast pace and provide data sets with less missing values and noise.

Ideally all identified state characteristics may be included especially in combined vectors (to identify cross-process process intra-relations) as the SVM algorithm is able to handle large dimensionality (1000+). If it becomes necessary to limit dimensionality beforehand, then one will have to start selecting. In such a case, the presented dimension reducing methods can be used based on the feature weight rather than removing variable according to our limited knowledge. However, the effect of a selection of features prior to the feature ranking of combined vectors has to be studied. The evaluation conducted within this dissertation did not include such variations.

A rather important limitation of the proposed concept, being mentioned before, is that if state characteristics (features) are not 'measured' (and thus included in data) they cannot be ranked and identified as important. Furthermore, possible process intra- and inter-relations between state characteristics cannot be taken into consideration and identified. However, this limitations leads to a potentially important benefit of the concept. By incorporating all possible measures, (even those which relations are not known or expected to have no impact) allows to identify relevant ones. This way, even formerly neglected state characteristics may prove important in one way or another. This may present a starting point for further investigations on that particular state driver. This represents a chance at the same time where this concept may have a significant impact on the understanding and transparency of manufacturing programmes. At the same time it has to be understood that the concept will not automatically identify and extract all important (relevant) features and process intra- and inter-relations for all processes without expert input. It presents a tool to support experts in their work and utilize their knowledge.

Overall, it can be stated that there are considerable limitations to the concept which may influence the applicability in practice to a certain extent. Some of the mentioned limitations may represent starting points for future research efforts.

References

- Bratko, I., & Suc, D. (2003). Qualitative data mining and its applications. *Journal of Computing and Information Technology*, 3, 145–150. doi:10.1109/ITI.2003.1225313.
- Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). A gene selection method for cancer classification using Support Vector Machines. *Machine Learning*, 46, 389–422. doi:10.1155/2012/586246.
- McCann, M. & Johnston, A. (2008). SECOM data set. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School of Information and Computer Science.
- Zhang, S., Jin, Z., Zhu, X., & Zhang, J. (2009). Missing data analysis: A kernel-based multiimputation. In M. L. Gavrilova & C. J. K. Tan (Eds.) *Transaction on Computer Science III*, *LNCS 5300* (pp. 122–142). Berlin: Springer.

Chapter 8 Recapitulation

This section, structured in two subsections summarizes the research work and concludes the findings before giving a short outlook into potential future directions in this research domain.

8.1 Conclusion

As initially stated, the manufacturing domain faces major challenges which may be summarized by increasing complexity and dynamics of products and processes as well as increasing requirements towards quality. The research problem of this thesis is set in multi-stage manufacturing programmes and focuses on the holistic handling of information with the goal of improving product and process quality. Today, existing solutions focus mostly on individual processes instead of the whole manufacturing system and do not incorporate product and process inter- and intra-relations. It was found that these process inter- and intra-relations can have a significant and varying impact on the quality outcome of successive processes and thus on the whole manufacturing programme.

In the dissertation, the *product state concept* has been developed as a method to describe comprehensively a product by its states along a complete manufacturing programme. A core mechanism of this concept is the description of the product state by a set of state characteristics. The fundamental question of how to identify this set of state characteristics to allow a comprehensive description of the products state, set the foundation for the conducted research. A major aspect within the work was found to be process intra- and inter-relations between state characteristics, later referred to as state drivers. Today, most manufacturing programmes lack sufficient knowledge and transparency with regard to process intra- and inter-relations making a complete modeling of the system unrealistic. In order to be able

to incorporate this crucial element in the analysis, supervised machine learning was employed in form of SVM based feature ranking to incorporate successfully implicit process intra- and inter-relations of the manufacturing programme.

The evaluation of the research was conducted by using three different scenarios from distinctive manufacturing domains based on 'real world' data sets. The first scenario represented the mechanical manufacturing domain, blade manufacturing, with a case provided by Rolls-Royce. The second scenario focused on the chemical manufacturing domain and the third scenario resembled a semiconductor manufacturing case. The purpose of choosing three different scenarios was to highlight the general applicability of the developed concept. The evaluation confirmed that it is possible to incorporate implicit process intra- and inter-relations on process as well as programme level as required by the *product state concept* through applying SVM based feature ranking. Even so the results confirm that the approach successfully utilizes the implicit process intra- and inter-relations between states and state characteristics, at this point the relations are not provided as an explicit output of the analysis. However, they are implicitly included within the section or relevant state drivers. In this regard, expert knowledge is still a crucial factor for the successful application of the concept in manufacturing.

Concluding, the presented product state concept allows to identify relevant state drivers of complex manufacturing systems. The concept is able to utilize complex, diverse and high-dimensional data sets which often occur in manufacturing applications. This fits nicely with current initiatives like 'Industrie 4.0', 'Cyber Physical Systems' in Europe and the 'Industrial Internet' and 'Advanced Manufacturing Partnership' in the US as well as the growing area of Big Data research. It can be safely said that in the near future, the amount of data derived from manufacturing operations will increase due to these developments. This offers both opportunities and challenges for manufacturing companies and manufacturing research. With the developed concept, the increasing data streams can be analyzed efficiently and applicable results can be derived. The analysis results present a direct benefit in form of the most important process parameters and state characteristics, the state drivers, of the manufacturing system. These can be directly utilized in, e.g., quality monitoring and advanced process control. Additionally, the results represent a first indication of what processes and parameters may benefit from a more in-depth analysis. This way, the product state con*cept* indirectly contributes to a sustainable growth of knowledge in manufacturing.

8.2 Outlook and Future Work

During the research conducted within the framework of this dissertation a variety of topics emerged which may be worthwhile to trigger further investigations. In this section, a short outlook is presented illustrating some of those areas of future research. One of the bigger aspects of future research is the possibility to apply and evaluate different approaches of feature selection. This includes a combination of other supervised and unsupervised ML methods with the previously applied SVM approach (e.g., random forest). This is expected to strengthen the focus vis-a-vis the importance of the state variables. The necessary tools are overall readily available in the RapidMiner (v5.3), R or WEKA suit. Another interesting aspect of feature ranking and feature selection is to investigate the optimal threshold for a feature set (feature selection). So far the optimal amount of features is not part of the feature selection technique (Guyon et al. 2002).

Going in the same direction, it may be worth investigating to apply a combination of ML algorithms when creating a monitoring model. Recent advances of e.g., RL show promising results in similar application scenarios. A possibility would be to utilize the developed approach to determine relevant state drivers of the manufacturing programme and subsequently set up a RL model with those features. This would allow utilizing the advantages of both techniques.

Even though as of today it is not common practice in manufacturing to consider the inner product state characteristics, technological development will provide more and advanced tools, which allow an efficient and economical capturing of more data points. In the wood market it is already possible to scan whole trunks through a computer tomography scanner in order to plan the following processes according to the given (internal) structure of the wood (e.g., knobs and knots). It can be assumed that in the near future it is possible to measure and collect more data that is not only more accurate but also requires lower investments. As stated earlier, the more data is available the more implicit process intra- and inter-relations may be incorporated by applying the proposed concept.

As mentioned before, knowledge about the customer requirements and the degree of fulfillment by the product is important to determine 'good' and 'bad' states within the concept. Looking into the usage (middle-of-life) in order to identify quality problems, which occur after the delivery to the customer, may help to identify additional state drivers and support process and product quality improvement further. The authors developed a supporting concept to derive information about the usage of products during middle- and end-of-life from all stakeholders involved. The so-called product avatar concept may allow to access additional information and knowledge which is not easily accessible for the manufacturers by creating a digital counterpart for interaction purposed between different stakeholders of a product (Wuest et al. 2012, 2013, 2014). However the integration of the two concepts has to be evaluated more closely in future research.

Another important aspect related to the presented research is to analyze the transferability of the findings, which are valid only for manufacturing, to other product lifecycle phases e.g., the usage phase (middle-of-life). Here an application in maintenance (health) monitoring could be feasible and has to be investigated further. Furthermore, a possible connection of identified state drivers from the manufacturing phase may prove useful in the design phase, more specifically, the conceptual design phase. Transferability of gained knowledge concerning

the relevancy of certain state characteristics into functional requirements and/or design parameters needs to be investigated further.

Studying the transferability of results to other domains than engineering could be beneficial, here especially, the health or education domain seem promising. Also an application within a service ("service state") environment may allow new insights and improvements in the field. However, without further research no statement of transferability can be given at this point. Apart from researching transfer possibilities of the findings to other lifecycle phases, the transfer to other domains may be beneficial as well. For example, the health care industry might profit from certain findings and ideas of the *product state concept* and an adaption towards a health state concept could be discussed in order to support transparency of health monitoring. One possible application within this domain might be to interpret different examinations/examination results as processes and combined process vectors to utilize the implicit process intra- and inter-relations. Another lever may be to include environmental factors and different stages in the analysis of genes. However, this needs to be done in close collaboration with experts in the respective field.

A visionary goal may be a self-assessing/analyzing manufacturing system within the product state framework supported by the developments in AI, (supervised and unsupervised) ML and in sensor technology.

References

- Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). A gene selection method for cancer classification using support vector machines. *Machine Learning*, 46, 389–422. doi:10.1155/2012/586246.
- Wuest, T., Hribernik, K., & Thoben, K. (2012). Can a product have a facebook? A new perspective on product avatars in product lifecycle management. In L. Rivest, A. Bouraz, & B. Louhichi (Eds.), Product Lifecycle Management: Towards Knowledge-Rich Enterprises. Proceedings of the 9th International Conference on Product Lifecycle Management. Montréal, Canada.
- Wuest, T., Hribernik, K., & Thoben, K. (2013). Digital representations of intelligent products: Product avatar 2.0. In M. Abramovici & R. Stark, M. Abramovici & R. Stark (Eds.), *Smart Product Engineering, LNPE* (pp. 675–684). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-30817-8.
- Wuest, T., Hribernik, K. & Thoben, K.-D. (2014). Accessing servitization potential of PLM data by applying the product avatar concept. *Production Planning and Control* (accepted).

Annex

In the Annex, additional content is presented to extend the previously presented research and results. There are two main parts, first the pre-processing of the evaluation data sets is described in detail. Not only the approach on how to deal with missing values is explained but also how the synthetic processes for scenarios I & II are created is shown in detail. A special focus in this part is laid on missing data (missing values) as it presents a common obstacle in data based manufacturing operations. How to handle missing values my influence the outcome of further analysis conducted with the respective data sets to a large extent. Therefore, the first subsection gives an introduction into theory on how to handle missing data. Following, the conducted data pre-processing of the three evaluation scenarios is presented. The respective references used in this section are included in the previous reference list. Later different additional tables and figures are sub summarized under the section miscellaneous.

A.1 Theoretical Elaboration on Missing Data

As Kabacoff (2011) stated, "[...] in the real world, missing data are ubiquitous". In research as well as in application the approach how to handle missing data and information represents an important issue. In this subsection the terms and different kinds of missing data are described and established techniques to handle missing data and information are introduced.

It is important to understand that certain domains have to deal with different challenges when it comes to missing data. Where a lot of empirical research is conducted, e.g., business studies or psychology, missing data can be, among other things, unanswered questions in a questionnaire (Graham 2009). In more experimental and observation oriented domains, e.g., engineering or environmental studies, missing data can be, among other things, based on technical failure, like failing recording equipment, bad connectivity or miscoded data (Alvo and Park

2002; Zhang et al. 2009). There are even reasons unknown to the stakeholders why certain data is missing. It can be assumed that in the future, regarding the fast pace development of sensor and communication technology, missing data will remain an important research area (Williams et al. 2007a, b).

The challenge, of how to analyze a data set with missing values depends on various factors. For example, Alvo and Park (2002) point out that missing data in multivariate data sets presents a different challenge than non-multivariate incomplete data sets and needs to be handled in a different way. In this research, the missing data problem can be considered is one of missing values in experimental and observing oriented domains, handling mostly technical reasons for missing values. Additionally, in ML, an important part of this research, data sets are often of high-dimensional and multivariate nature with complex patterns of missing values (Ghahramani and Jordan 1994). Therefore, the elaboration will exclusively focus on issue inherent to these problems, leaving aspects from other domains out.

Most analytical and statistical methods work under the assumption, that the data set the analysis is based on is complete. Some, like Neural Networks are known for their capability to handle data sets, which are noisy, imprecise and incomplete to a certain extent (Li and Huang 2009). It is important to understand the nature of the missing data and the preconditions of the method, which will be applied in order to be able to estimate the impact on the ability to answer the substantive research questions (Kabacoff 2011). In order to do so, a set of questions should be asked:

- "What percentage of the data is missing?
- Is it concentrated in a few variables, or widely distributed?
- Does it appear to be random?
- Does the covariation of missing data with each other or with observed data suggest a possible mechanism that's producing the missing values?" (Kabacoff 2011)

Looking at the question whereas the missing data appears to be random or not, this is important for three central concepts in missing data theory: Missing Completely At Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) (Graham 2012). This is important for an informed decision to delete or replace the data and if replace, what method is applicable.

Missing data and information can have various effects on analysis based on the data set in the focus, e.g., generate bias, affecting quality of (supervised) learning methods or classification (Zhang et al. 2009). Schafer and Graham (2002) highlight, that ad-hoc editing of data sets leading to the appearance of completeness may do more harm than good. Among the effects of missing data and/or ineffective editing are the following: findings can be biased, e.g., indicate different problems, inefficient and unreliable (Schafer and Graham 2002).

Missing data can be generally divided in two categories (Graham 2012):

- *item nonresponse*: describes the case when some, but not all data from the measurement session is available. Reasons can be e.g., loss during collection or storage, equipment malfunction
- wave nonresponse: describes the case when repeated measures are taken over time and all data for some sessions (measures at a point in time) are missing completely.

Annex

Graham (2012) states that item nonresponse missing data can be handled reasonably well with available methods whereas wave nonresponse missing data is more challenging. Kabacoff (2011) postulates a generic, three step approach researchers should follow when dealing with incomplete data sets:

- 1. "Identify the missing data.
- 2. Examine the causes of the missing data.
- 3. Delete the cases containing missing data or replace (impute) the missing values with reasonable alternative data values."

Of the three steps, only the identification of missing values is considered unambiguous. Even step two can proof hard to elaborate in some cases, as it requires in depth knowledge of the process, e.g., manufacturing programme, and the technique and method used to capture the data. Step three raises a fundamental question of two general options of handling missing values that come to mind (Kabacoff 2011), both leading to a complete data set:

- Remove the measurements containing missing data from the data set
- Replace (complete) measurements with missing values with reasonable substitute values.

Removing the missing cases seems to be the logical action. However, it is not always the best choice. For one, there are cases, especially dealing with data sets of high-dimensionality, when removing cases with missing values eliminates a significant amount of the data available. This is when the missing values are spread over a large number of cases instead of multiple missing values per case. Another factor can be that valuable information can get lost when the cases with missing values are removed or a bias can be inserted in the data set (Wang and Wang 2009).

For the other alternative action, replacing the missing values, there are a large number of methods available to complete data sets. Among those are e.g., triangle inequality; complete-case analysis (listwise deletion); Multiple Imputation (MI) and Maximum Likelihood (MLH) (Hathaway and Bezdek 2002; Schafer and Graham 2002; Kabacoff 2011). Under the assumption of MAR, MI and MLH are presenting the state of the art today (Schafer and Graham 2002; Graham 2012). However, these approaches of replacing missing values to complete the data set have also certain risks of introducing bias, distorted, and unreliable conclusions, etc. (Feelders 1999; Dasu and Johnson 2003; Wang and Wang 2009; Kwak and Kim 2012). It is very important to decide on the right method for the available data, taking the product and process into account, and the analysis technique into account (Viharos et al. 2002; Wang and Wang 2009).

This section focuses on information and data issues in manufacturing. It is split in two factions. The first focuses on the information quality issue, which is relevant to every approach based on manufacturing information like the *product state concept*. The *product state concept* has to comply with the information quality dimensions and incorporate the principles presented here. The second fraction is looking at the common problem of missing data, which is omnipresent in all industrial applications where data capturing is involved. The *product state concept*

is dependent on product and process data and thus, missing values occur and have to be handled according to existing standards. In the evaluation section (Sect. 6.1) a real data set with missing data values is used and the above stated principles applied.

In the following subsection, the evaluation scenarios I–III are introduced individually and the data pre-processing steps performed are described.

A.2 Pre-processing of Data Sets for Evaluation Scenarios

In this section the three evaluation scenarios are introduced in detail and the available data for each scenario is presented and analyzed. After the three processes and accompanying data sets are presented, individually necessary pre-processing steps are described in detail. The pre-processing entails among other things, replacing missing values (scenarios II & III) and the generation of additional data (scenarios I & II). The result of this section are three data sets ready for the application of SVM algorithms in order to identify state drivers. The three data sets complement each other in terms of the evaluation focus areas and goals.

A.2.1 Rolls-Royce (RR)—Data Set (Scenario I)

In this section a data set resembling a manufacturing process of a highly stressed product from the aviation domain provided by Rolls-Royce (RR) is introduced. Due to confidentiality requirements by Rolls-Royce, the data set is made anonymous and the tangible product manufactured and observed cannot be disclosed.

The major advantage of this data set is the access to expert knowledge about the process. This allows to specifically choose suitable examples for the learning/ training data set for the model generation of the classifier. This is assumed to be highly beneficial for the performance of the approach. This will be explained in more detail in Sect. 6.2.

A.2.1.1 Pre-processing of RR Data Set

The process described by the data set is named Tom(RR) and consists of a set of 85 features (attributes) and 4195 examples (vectors). The parameters are labeled *para.2, para.3,...,para.n* and the real names and contexts are not provided to the researcher. The values of the different features are normalized between [-1;1] and the actual original values are not disclosed to the researcher. There are no known missing values within the provided data set. The data set ratio of 'pass' and 'fail' examples is balanced (50.0 %) with 2098 'fail' and 2097 'pass'. To achieve this

Annex

balance and to support the non-identifiable nature of the data set, the data sets minority class was enhanced by applying the SMOTE method (unknown percentage) by the providing agency. The examples in this scenario are also not in timely sequence but in random order. As the data set is pre-processed by Rolls-Royce, there is no need for further pre-processing within the setting of this dissertation.

A.2.1.2 Structure of RR Manufacturing Programme

As the data set is pre-processed by Rolls-Royce, the need for further preprocessing is minimal. The provided data set describes an individual process and not a whole manufacturing programme with several process instances. Therefore, additional process instances are added by generating synthetic data sets based on the specific characteristics of the original RR data set.

In order to simplify the illustrative nature of the approach it was decided to limit the resulting manufacturing programme (TDH(RR)) to three linked manufacturing processes. The processes are called 'Tom(RR)', 'Dick(RR)' and 'Harry(RR)' (TOM(RR), DICK(RR) and HARRY(RR)) and they form a simple sequence as defined below in Fig. A.1.

Creating this three process manufacturing programme allows to focus on evaluating hypothesis 1.2, by applying the approach on different combinations of subsequent processes in order to identify state drivers within the programme. In the following paragraphs, the rationale and the generation of the data set is presented in more detail before the complete data set is presented.

The manufacturing programme thus represent a combination of real world process data and generic processes (synthetic data) onto which any specific set of manufacturing processes may be mapped. In the above Fig. A.1 the variables k, m and n indicate the numbers of quality observations (products) at each completed process stage (\rightarrow product state). In this case the number of examples for

State-vector-TDH(RR)={ State-vector-2, State-vector-1, State-vector-0} + {Finished-product-state-vector}

Fig. A.1 Manufacturing programme TDH(RR) and its three processes

each inspection is identical for all processes and set to 4195 as provided by the initial RR data set. While *i* defines the number of process variables (\rightarrow state characteristics), in this case set to 85 for TOM(RR), 56 for DICK(RR) and 68 for HARRY(RR).

For clarity the following terminology will be used. The sequence of TOM, DICK and HARRY is the manufacturing programme TDH(RR) while TOM(RR), DICK(RR) and HARRY(RR) are the processes of that programme. As was previously stated, the (complete) manufacturing programme TDH(RR) and also each individual process (TOM(RR), DICK(RR) or HARRY(RR)) (in Fig. 6.1 only process T is highlighted in red to avoid confusion) may be compared to the manufacturing programme utilized in scenarios II and III, as they all have a final product as an outcome. Additionally, the combined state vector TD(RR), containing the processes TOM(RR) and DICK(RR) is also analysed.

In the following sub-section the generation of synthetic instances for the RR manufacturing programme is illustrated.

A.2.1.3 Generation of Synthetic Processes

The use of synthetic data sets is common in the area of statistical learning and data mining applications, etc. (Lundin et al. 2002; Reiter 2004; Nonnemaker and Baird 2009). The reasons are manifold, among others the need for confidentiality, testing (Reiter 2004; Abowd and Lane 2004; Reiter and Raghunathan 2007) and/or comparability (Lundin et al. 2002) purposes are arguments for the use of synthetic data. There are concerns that synthetic data produces different results as 'real data' (Abowd and Lane 2004). However, multiple studies show that synthetic data has provided results and performed well in application (Nonnemaker and Baird 2009).

There are several ways to create synthetic data and several variations of synthetic data composition (Lundin et al. 2002; Abowd and Lane 2004; Reiter and Raghunathan 2007; Jensen 2007; Nonnemaker and Baird 2009). Synthetic data has been successfully used in supervised classification, which is similar to the approach utilized in this research (Nonnemaker and Baird 2009). Synthetic data can represent a large variety of processes, from processes involving heavy human interaction to fully automated ones (Barse et al. 2003). A major advantage of synthetic data is that it can be used to demonstrate certain properties of a system (Barse et al. 2003).

In order to create a synthetic data set that replicates an existing authentic 'real world' data set, in this case the RR manufacturing process, certain (statistical) characteristics need to be derived. These characteristics provide the basis for the data generation.

In this case the process of generating complementary synthetic process data is designed as follows:

• Analyze *standard deviation* and *mean* for each feature (attribute) of the original data set (using Excel functions 'AVERAGE' and 'STDEV')

Annex

- Create a *probability* for each vector (using Excel function 'RAND' for a Gaussian normal distribution)
- Create a *probability* for each attribute (using Excel function 'RAND' for a Gaussian normal distribution)
- Both probabilities are summarized and divided by 2 giving a unique probability for each vector/attribute combination
- Replace each value by the inverse normal cumulative distribution (using Excel function 'NORMINV'('combined probability of vector/attribute', 'mean for feature', 'standard deviation of feature'))
- The number of vectors is kept as it is given by the original authentic data set
- The number of features is varied, but the total number is always lower than the one in the original.
- The new data set is normalized using Range Transformation [-1;1]
- Additionally the class label is defined by identifying extreme clusters and determine the two which are furthest apart as the poles (determining the class) and serve as the learning set. The SVM model based on this learning set is used to assign the classes to the synthetic processes.

A.2.1.4 Cluster Analysis to Assign Classes to Synthetic Processes

In this section the process of assigning classes ('fail' and 'pass') to the synthetic processes is presented. In this case the labeling is based on a cluster analysis approach whereas in the later described scenario 2, a random approach is utilized (see Sect. A.2.2.3). This way the complementary processes resemble the main characteristics of manufacturing processes within the specific domain but also distinguish themselves enough from the original to constitute new and stand alone processes.

In a first step a cluster analysis done to identify the extreme clusters which resemble the learning set. This is done using the programme Cluster3.0.¹ The programme analyses the data set using Euclidean distance with an average linkage clustering method (see Fig. A.16).

The resulting 'dendogram' is then exported and analyzed using Java Treeview (v.1.1.6r4).² This programme allows to identify the extreme clusters of a data set including their correlation (see Fig. A.2). The software also allows exporting the examples contained within a cluster. By exporting the two most extreme clusters and assigning the label 'fail' to one and 'pass' to the other, a learning set is created. This learning set is then used to construct a hyperplane (train a SVM model). The labels for the complete synthetic process data set are then assigned by applying the created SVM model.

¹http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm.

²http://jtreeview.sourceforge.net.

Fig. A.2 Screenshot of Java Treeview to analyze cluster 'dendogram' and extract examples

This way the resulting synthetic data set including labels are expected to show rather good classification performance in cross-validation. In this case this is welcome as it represents a different extreme to the second set of generated synthetic processes in scenario 2. This allows to test the concept under different circumstances.

For the first synthetic process, *DICK(RR)*, the cluster analysis shows two extreme clusters:

- Cluster 1 has a correlation factor of 0.9730 (653 examples)
- Cluster 2 has a correlation factor of 0.9938 (332 examples)

These two clusters are the furthest apart and represent the cluster on the extreme left (cluster 2) and extreme right (cluster 1). The classes are assigned as follows: cluster 1 is considered 'fail' and cluster 2 is considered 'pass'. A cross-validation (DOT kernel, orig. parameters) of the learning set prior to model generation shows a perfect classification result with no misclassified examples indicating that the clusters allow a good separation by the constructed hyperplane.

The same procedure is applied to synthetic process *HARRY(RR)*, identifying the two extreme clusters as follows:

- Cluster 1 has a correlation factor of 0.9958 (265 examples)
- Cluster 2 has a correlation factor of 0.9941 (330 examples)

These two clusters are the furthest apart and represent the cluster on the extreme left (cluster 2) and extreme right (cluster 1). The classes are assigned as follows: cluster 1 is considered 'fail' and cluster 2 is considered 'pass'. A cross-validation (DOT kernel, orig. parameters) of the learning set prior to model generation shows

a perfect classification result with no misclassified examples indicating that the clusters allow a good separation by the constructed hyperplane.

The cluster analysis for the combined vector TD(RR) leads to three identified extreme clusters:

- Cluster 1 has a correlation factor of 0.5323 (1889 examples)
- Cluster 1.5 has a correlation factor of 0.3991 (4 examples)
- Cluster 2 has a correlation factor of 0.8933 (796 examples)

In this case, cluster 1.5 is the extreme cluster on the right side. However, due to the small size of cluster 1.5 it is combined with cluster 1, which is the next bigger cluster on the right hand side and assigned the label 'fail'. Cluster 2 represent the cluster on the extreme left and is given the label 'pass'. A cross-validation (DOT kernel, orig. parameters) of the learning set prior to model generation shows a perfect classification result with no misclassified examples indicating that the clusters allow a good separation by the constructed hyperplane.

The cluster analysis of *TDH(RR)* shows that 3 distinct extreme clusters can be identified:

- Cluster 1 has a correlation factor of 0.8693 (215 examples)
- Cluster 1.5 has a correlation factor of 0.3804 (3 examples)
- Cluster 2 has a correlation factor of 0.8666 (366 examples)

In this case, cluster 1.5 is the extreme cluster on the right side. However, due to the small size of cluster 1.5 it is combined with cluster 1, which is the next bigger cluster on the right hand side and assigned the label 'fail'. Cluster 2 represent the cluster on the extreme left and is given the label 'pass'. A cross-validation (DOT kernel, orig. parameters) of the learning set prior to model generation shows a perfect classification result with no misclassified examples indicating that the clusters allow a good separation by the constructed hyperplane.

The perfect classification results are to be expected as the classes were assigned based on previously developed SVM model. If the same results would show in a 'real world' data set, this could resemble a case of serious overfitting. In the case of scenario I, the very good classification results are desired to provide an example case. The following manufacturing programme presented in scenario II does not sport such a perfect classification result to represent cases with a more challenging data basis.

A.2.1.5 Complete RR Data Set

The resulting process vectors (TOM(RR), DICK(RR) & HARRY(RR)), combined state vector (TD(RR)) and the manufacturing programme state vector (TDH(RR)) are presented in this sub-section.

The original process vector TOM(RR) entails 4195 examples with 85 descriptive features/attributes. The data set is balanced with 2098 'fail' and 2097 'pass' examples (50.0 %). The synthetic process vector DICK(RR) comprises 4195 examples as well, each described by 56 descriptive features/attributes. The data set can still be considered rather balanced with 1500 'fail' and 2695 'pass' examples (35.8 %).

The last synthetic process vector HARRY(RR) contains 4195 examples with 68 features/attributes. The ratio of 44.5 % makes the data set slightly less balanced than the original (2328 'pass' & 1867 'fail').

The combined state vector TD(RR) with its 4195 examples and 141 features/attributes has a ratio of 55.1 % making it also slightly less balanced than TOM(RR) (1885 'pass' & 2310 'fail').

The manufacturing programme vector TDH(RR) consists of 4195 examples with a total of 209 features/attributes. With 2019 'fail' examples and 2176 'pass' examples, the ratio is 48.1 % and almost as balanced as the original data set.

In the following section, the data pre-processing of the second scenario, resembling a chemical manufacturing process is presented.

A.2.2 CHEM—Data Set (Scenario II)

In this section, the second scenario based on a chemical manufacturing programme supplemented by synthetic processes, similar to the above example, is presented. The scenario and its defining characteristics and principles are illustrated below.

A.2.2.1 Structure of CHEM Manufacturing Programme

The data set describes a chemical manufacturing process is publically available as part of the 'Applied Predictive Modeling' package (CRAN-R 2014; Kuhn and Johnson 2013). In the manufacturing process described, a raw material is going through a sequence of 27 operations to manufacture a pharmaceutical product.

The data set consist of 176 examples (vectors) with 57 attributes (features). Of those 57 attributes, 12 represent measures of the raw material (input product state) and 45 measures of the manufacturing process. The measures of the manufacturing process include but are not limited to: temperature, drying time, washing time, and concentrations of by-products during different operations. The vectors are not all independent as some resemble form a batch of the raw material (Kuhn and Johnson 2013). The quality criteria in this case are the values of the 'Yield' attributes, measured at the end of the process. As this data set is also used for regression analysis, for this application the yield threshold dividing the data set in 'pass'/fail' examples is set at 39. All examples with a yield of equal or greater 39 are considered 'pass' (good state) and all examples with a yield of lower than 39 are considered 'fail' (bad state). Choosing this threshold allows for a realistic and not too unbalanced data set considering both classes.

Annex

The chemical manufacturing data set is available in an R data format (*.RData). This is extracted and saved as a *.csv file and imported to Excel. The first analysis using RapidMiner (v5.3) shows the following characteristics:

- 127 examples are of 'pass' quality (72.2 %)
- 27 (15.3 %) of all examples contain missing values
- 109 values are missing from all attributes (1.1 % of all values)
- No missing values in the classification attribute ('Yield')

A.2.2.2 Pre-processing of CHEM Data Set

The first step in pre-processing of the CHEM data set is to align the seemingly chaotic usage of commas and dots for decimal points. This is done by importing and exporting the data set in RapidMiner (v5.3).

The second step in pre-processing the CHEM data set is to focus on the missing values. Like most 'real' manufacturing process data (Kabacoff 2011), the CHEM data set contains also a certain amount of missing data (null values) (Mccann et al. 2010). Being a key step of every ML or DM approach, data pre-processing can make up for a significant amount of the overall effort (Cios and Kurgan 2002). However, the CHEM data set can be considered relatively clean as the total amount of missing values makes up for 1 % of all values and is limited to 27 (out of 176) examples. The SECOM data set, illustrated in the following section, presents a more challenging example for a data set in need of significant pre-processing.

In this case, the choice is to eliminate 6 examples who contain more than 10 missing values and replace the missing values of the remaining examples instead of eliminating all examples which contain missing values (see Table A.6). The reasons are two-fold: firstly, the total amount of examples in this data set is already limited with 176, further elimination would create an even larger discrepancy (ratio) between the number of examples and the number of attributes. Secondly, the number of missing values is considerably small with 1.1 % of all values and 0.4 % of remaining values after elimination of the 6 examples containing more than 10 missing values. The remaining data set contains 123 'pass' (72.4 %) and 47 'fail' (27.6 %) examples.

In order to replace the missing values, first, all 'Na' are replaced by empty cells in excel. This way the missing values named 'Na' and the missing values already represented by empty cells are equalized. RapidMiner (v5.3) contains different functions for replacing missing values in data sets. The most commonly used one is using the average of an attribute. In a majority of cases the average function is applied. The respective attributes resembling the cases are listed in brackets.

• *Case 1*: Attributes where missing values are replaced using the *average* function as the values are diverse and resemble the wide variety of possible values (BiologicalMaterial01; ManufacturingProcess03; ManufacturingProcess06; ManufacturingProcess14).

- *Case 2*: Attribute where missing values are replaced using the *MinMax* function as within this process, the values alternate between extremes. In such a case, using the average function may introduce some previously not used values and thus a bias (ManufacturingProcess02).
- *Case 3*: Attribute where missing values are replaced by a manually defined value using the *Value* function as in this case the variation between very high and very small numbers jumped between extremes (ManufacturingProcess10; ManufacturingProcess11).

With eliminating or replacing missing values, the data pre-processing is not yet completed for the following application of the SVM algorithm. The next step is a normalization (also known as 'standardization') process which has to be executed in order to standardize the data set. This means ensuring the values within the different features/attributes are made comparable by adjusting the scale. As in "many applications, the available features are continuous values, where each feature is measured in a different scale and has a different range of possible values. In such cases, it is often beneficial to scale all features to a common range" (Benhur and Weston 2010). Normalization plays an important role in the preparation of data sets prior to many data analysis and ML algorithms (Herbrich and Graepel 2001). For SVM application it has been found that pre-processing, especially normalization of the input space is of great importance (Graf and Borer 2001). The accuracy of SVM can suffer if no normalization step is executed within the data pre-processing stage (Ben-hur and Weston 2010). Graf and Borer (2001) show that it is possible to apply normalization within the feature space through normalized kernel functions. However, in this research the input will be normalized.

For the data pre-processing before application of SVM algorithms, the use of the normalization method 'range transformation' is widely accepted (Graf and Borer 2001; Abe 2003). The range may be set to [0;1] or [-1.0;1.0] without having an effect on the performance of results of the SVM analysis (Abe 2003). This normalization method will be applied to the CHEM data set, which was previously cleaned from missing values. The normalization is executed by utilizing RapidMiner (v5.3). It allows for an easy design of data processing processes for various purposes. In this case the process for normalizing the CHEM data sets contained three main elements:

- *Data input*: The process element reads the source file, in this case a Microsoft Excel *.xlsx file
- *Normalization*: The process elements normalizes the data file according to certain parameters
- *Data output*: The process element provides an output of the normalized data set, in this case in from of a Microsoft Excel *.xlsx file.

The parameter settings for the normalization task of the designed process are set to the method of range transformation [min;max] [0;1] for all features/attributes in the data set. This method normalizes all values of the selected features/attributes within the specified range.

Annex

After the data set is normalized, the labels 'SVM' and 'Identifier' are added. 'SVM' adds the classes with value 'positive' for each example with Yield equal or over 39 and 'negative' for Yield lower than 39. 'Identifier' replaces the heading for the numbering of the examples (original 'A'). At the same time the Yield attribute is eliminated.

After assigning classes to the examples different analyses can be conducted. Looking at the distribution of 'fail' examples over time by organizing the examples in timely succession (see Fig. 6.34) it can be seen that they are not equally distributed. This may indicate a change of raw material during the end of the succession or wear of machines which influences the quality. Even though, this is not directly relevant for the following analysis, it indicates the importance of the research as the diagram shows a certain timely accumulation of failures within the process. If an early identification of problematic states can be utilized, the parameters may be adjusted to prevent the following failures. However, at this point that has to be considered speculative.

With this last step the data set pre-processing of the CHEM manufacturing process is finalized. In the next sub-section the generation of synthetic complementary processes and their combination to a manufacturing programme is illustrated.

A.2.2.3 Structure of Complete CHEM Manufacturing Programme and Generation of Synthetic Processes

Similar to the generation of synthetic processes in the previously described RR scenario, the CHEM process is supplemented by two additional synthetic processes based on the characteristics of the original real world process. As the process was already described in detail in the Sects. A.2.1.2, in this section just the main parameters are presented. As can be observed in Fig. A.3, the manufacturing programme consists of three processes with 170 examples (vectors) each

State-vector-TDH(CHEM)={ State-vector-2, State-vector-1, State-vector-0} + {Finished-product-state-vector}

Fig. A.3 Manufacturing programme TDH(CHEM) and its three processes

and different number of attributes (Tom(CHEM) = 57; Dick(CHEM) = 48; Harry(CHEM) = 32).

The created synthetic process *Dick(CHEM)*, the second process within the manufacturing programme, contains 28 (of 170) (16.5 %) negative examples and 48 attributes (features) plus the classifying attribute ('positive'/'negative') based on 'yield' and the Identifier.

The third process, *Harry(CHEM)* contains 22 (of 170) (12.9 %) negative values and 32 attributes (features) plus the classifying attribute ('positive'/'negative') based on 'yield' and the Identifier.

The combined state vector TD(CHEM), containing the processes TOM(CHEM) and DICK(CHEM) resembles 170 examples with 105 attributes. Of those 170 examples, 63 are negative (37.1 %).

Thus, the overall manufacturing programme TDH(CHEM) 170 examples and 137 attributes (features) plus the classifying attribute ('positive'/'negative') based on 'yield' and the Identifier. The final ratio is made up from 30 negative examples at the final quality control (17.6 %).

The results of the cross-validation of the different processes and combined vectors are summarized in the later Sect. 6.3 (see Fig. 6.13). The classification performance is significantly lower for the CHEM data than it was for the RR data. For the synthetic and combined vectors that is due to the different approaches in designing the data sets and thus the desired outcome to evaluate different examples during the evaluation.

In the next section, the SECOM manufacturing programme is introduced and analyzed. This data set is considered very challenging given its nature. This corresponds with it being posted as part of the 'Causality Challenge' (McCann et al. 2010). The goal is to show that the approach is also applicable in challenging real world manufacturing examples.

A.2.3 SECOM—Data Set (Scenario III)

In this section the third scenario, also based on a 'real world' data set, utilized to evaluate the hypotheses of this dissertation is introduced. The data set resembles a manufacturing programme from the semiconductor industry (McCann et al. 2010) available in the UCI ML repository called SECOM (McCann and Johnston 2008). The evaluation with the SECOM data set has three main purposes: (a) show if main results of the theoretical (synthetic) data set, introduced in the following subsection, are comparable; (b) test the applicability of the developed approach in a 'real world' problem, represented in the 'real' manufacturing data set and (c) show that the approach is indeed able to handle high-dimensional data.

Semiconductor manufacturing involves a multi-stage, highly complex manufacturing programme with high quality requirements and advanced monitoring is often in place for fault detection and semiconductor yield improvement purposes (Harding et al. 2006; Li and Huang 2009; Kim et al. 2012; Arif et al. 2013).

The complexity and quality requirements are expected to increase further as e.g., device dimensions continue to shrink and the number of chips per wafer is expected to increase as well (May and Spanos 2006). In semiconductor manufacturing it is possible to have a large number of operations within a process, often >500 which leads to large amounts of monitoring data (McCann et al. 2010). This factor presents an interesting option for the question raised in hypothesis 1.2, as it allows for various options to combine different operations to accumulated state vectors.

The SECOM data set consists of 1567 example products with 590 features (591 incl. the quality assessment). All of these examples are additionally tagged with a time stamp and a quality assessment (ok/not-ok). Of these 1567 examples, 104 are not-ok (represented by '1') which means they fail to meet the quality requirements (6.64 % failure rate). That means the data set is unbalanced. However, that is common for 'real world' data sets. The products passing the quality examination are marked with '-1' in the data set. The features represent process data (measurements) taken form the manufacturing programme (McCann et al. 2010). Each feature is understood as being a 'state characteristic' or potential state 'driver' during the process measurements/features and thus determining different processes/operations (product states) along the manufacturing programme are not available for this data set due to privacy concerns of the issuing company (see Fig. A.4).

Therefore, just the complete manufacturing programme can be analyzed applying the presented method. However, given the assumption that the data set could constitute a process with various operations the results can be interpreted as those of an individual process. This is comparable to the first (individual process) and last (complete manufacturing programme) step of the three process manufacturing programmes TDH(RR) (with its processes 'Tom(RR)', 'Dick(RR)' and 'Harry(RR)') and TDH(CHEM) (with its processes 'Tom(CHEM)', 'Dick(CHEM)' and 'Harry(CHEM)') analysis in the previous sections. Analyzing different subsequent states along the developing manufacturing programme is conducted, given the objective of presenting a challenging real world data set and how to pre-process such.

Fig. A.4 Production cycle (based on McCann et al. 2010)

The SECOM data set, like many 'real' manufacturing process data (Kabacoff 2011), contains also a certain amount of missing data (null values) (Mccann et al. 2010). Being a key step of every ML or DM approach, data pre-processing can make up for a significant amount of the overall effort (Cios and Kurgan 2002). Ciao et al. (2007) summarize in their review the estimated effort for data preparation to 45–60 % of the total effort in knowledge discovery. This reflects the fact that real world data, especially manufacturing data is often incomplete, redundant, inconsistent, and/or noisy (Zhang et al. 2009). In the following section, the missing data challenge of the SECOM data set is discussed in more detail.

A.2.3.1 Pre-processing of SECOM Data Set

In this section the SECOM data set is analyzed for its missing values to understand the challenge presented. In case of the SECOM data set, missing data is represented by 'NaN' as per MatLab (McCann and Johnston 2008). This has to be considered for the data pre-processing and in the discussion of the results as it might affect the outcome depending on the algorithm used. Following, appropriate measures are discussed and applied to create a data set ready for the proposed application and evaluation approach.

Analyzing the SECOM data set and its missing data shows the following numbers:

- In total 41951 data points or 4.54 % of the data is missing ('NaN').
- 0 examples (0 %) are missing the quality assessment results.
- 104 examples (6.64 %) do not pass the quality assessment ('1').
- 1567 examples (100 %) contain missing values.
- 0 examples (0 %) contain more than 50 % missing data.
- 3 examples (0.19 %) contain more than 20 % missing data.
- 34 examples (2.17 %) contain more than 10 % missing data.
- 328 examples (20.93 %) contain more than 6 % missing data.
- 473 examples (30.19 %) contain more than 5 % missing data.
- 1205 examples (76.90 %) contain more than 3 % missing data.
- 1558 examples (99.46 %) contain more than 1 % missing data.
- 538 features (91.19 %) contain missing values.
- 28 features (4.75 %) contain more than 50 % missing data.
- 32 features (5.42 %) contain more than 20 % missing data.
- 52 features (8.81 %) contain more than 10 % missing data.
- 52 features (8.81 %) contain more than 5 % missing data.
- 60 features (10.17 %) contain more than 2 % missing data.
- 103 features (17.46 %) contain more than 1 % missing data.
- 0 features (0 %) show identical values for all examples (e.g., 0, 100, etc.).
- 117 features (19.83 %) show identical values for all examples (e.g., 0, 100, etc.) incl. missing data.
- 126 features (21.36 %) show identical values for 98 % of the examples (e.g., 0, 100, etc.) incl. missing data.

In the following subsection, the challenge which missing values within a data set present, is elaborated and a method to create a complete data set is chosen.

A.2.3.2 Adding Missing Values

In a first step of data pre-processing, all examples containing more than 6 % of missing values are removed in order to minimize the risk of inflicting a possible bias through replacing missing values. This reduces the data set to 1239 examples/ vectors. The reduced data set contains 86 (6.94 %) examples/vectors which do not pass the quality assessment ('1'). Compared to the 6.64 % of non-pass examples in the original data set 'pre-reduction', this distribution is acceptable and indicates no direct bias being introduced by deleting examples/vectors with more than 6 % of missing values. The eliminated examples are summarized in Table A.8. This is a common process when handling data sets with large amounts of missing data. In this case the choice was to first reduce the amount of vectors rather than replacing features directly. By first eliminating features as e.g., Kerdprasop and Kerdprasop (2011) do in their study, the dimensionality would be reduced and this may alter the characteristics of the manufacturing programme and/or its processes more than it is absolutely necessary. Especially considering the feature selection that is applied within the evaluation sections. This is considered too important within this research and thus the feature space is reduced a selection of vectors containing too much missing values is eliminated. Next, the process of eliminating missing values is described in more detail.

To further reduce the number of missing values in the data set, for the features, showing missing values and are part of the 117 features (19.83 %) showing identical values for all examples (e.g., 0, 100, etc.) incl. missing data the missing values are replaced by the same value as the remaining identical values for the other examples show (Feature No.: 6; 142; 179; 277; 314; 315; 415; 450; 451).

After this first measures to reduce missing values, the data set contains 3.70 % (27057 data points) of missing values ('NaN') compared to 4.54 % before. Furthermore, the previous number of 538 features (91.19 %) containing missing values is reduced to only 95 features (17.79 %) containing missing values.

After theses previous measures reduced the missing values, now the features containing missing values are targeted. Basically two approaches are applicable. First, all features containing missing values may be eliminated. Or secondly, all features containing more than 5 (variant 1) or 10 (variant 2) missing values are eliminated and the missing values of the remaining features (with less than 5 or 10 missing values each) are eliminated by identifying and eliminating the examples still containing missing values (see Fig. A.5).

The second approach was selected over the possibility to replacing missing values through existing data replacement methods (e.g., Provost 1990; Schafer and Graham 2002; Williams et al. 2007a, b; Grzymala-Busse et al. 2007; Li and Huang 2009; Kabacoff 2011; Graham 2012) as it is less likely to induce a bias to the data set. Furthermore does the application of methods to replace missing values require

Fig. A.5 Schematic illustration of chosen approach to generate a complete data set (SECOM)

in depth knowledge (e.g., by engineers) of the manufacturing process and the application of statistical tools (Kwak and Kim 2012). As the SECOM data set is provided with limited information concerning the process layout, in depth knowledge is not available. Hence, applying advanced data replacement methods like MAR is not possible without a considerable risk of inducing a bias and altering the results.

The first approach applied to the data set leads to 1239 examples (79.06 % of the original data set) with 485 features (82.2 % of the original data set) without any missing values. The ratio 'pass' to 'non-pass' stays the same with 6.95 %. However, by deleting 95 features (for a list of deleted features see Table A.9) in the process, this may have a significant impact on the results as some of these features may be relevant for the identification of state drivers. Basically by deleting examples important support-vectors may be deleted and thus the whole knowledge picture be altered.

The second approach, eliminating all features that contain *more than 5 missing values (variant 1)* leads to 1239 examples with 520 features. A list of the eliminated features is illustrated in Table A.10. This brings the ratio of missing values ('NaN') to 0.010 % (67 data points) with a total of 14 examples still containing missing values whereas 1225 examples are now complete data vectors. By eliminating the aforementioned 14 examples still containing missing data, the resultant complete data set consists therefore of 1225 examples (78.17 % of the original data set) with 520 features (88.14 % of the original data set). The ratio of 'pass'/'non-pass' examples in this complete data set is 6.85 % (85 examples with 'non-pass'/'1'). Compared to the first stage reduced data set (containing 86 (6.94 %) examples/vectors which do not pass the quality assessment ('1')) and the 6.64 % of non-pass examples in the original data set 'pre-reduction', this distribution is acceptable and indicates no direct bias. The additionally eliminated examples are: Example No. 22; 67; 118; 232; 570; 726; 886; 1085; 1219; 1223; 1305; 1321; 1373; 1461.

Applying the second approach with a slightly adjusted parameter of eliminating features with *more than 10 missing values* (*variant 2*), 1239 examples and 528 features contain 131 missing values (ratio: 0.020 %). The list of the eliminated features of variant 1 illustrated in Table A.10 is still valid for variant 2 except features No. 20; 85; 156; 220; 291; 358; 429; 492 are not eliminated initially. Of those 1239 examples, 1209 contain no missing values in this scenario. After eliminating the 30 examples still containing missing values that results in a complete data set containing 1209 examples (77.15 % of the original data set) with 528 features (89.49 % of the original data set) and a 'pass'/'non-pass' ratio of 6.95 % (85 examples with 'non-pass'/'1'). The additionally eliminated examples are: Example No. 22; 65; 67; 103; 106; 108; 112; 118; 121; 124; 153; 192; 232; 390; 426; 483; 570; 625; 693; 726; 886; 1085; 1165; 1196; 1219; 1223; 1305; 1321; 1373; 1461.

When comparing the two variations of the second approach, the resulting data sets are considered equally distributed with regard to 'pass'/'non-pass' ratio. The difference lies in the number of examples and features. Whereas variant 1 contains a larger amount of examples/vectors (1225 vs. 1209), the second variant manages to keep more features (520 vs. 528). As the features represent so to speak state characteristics or potential state drivers, the benefit of having a larger number of features succeeds over a slight increase in examples/vectors for the purpose of this analysis. Therefore, the data set of *variant 2* is selected as the primary data set for the first scenario (see Fig. A.5).

After the challenge of handling missing values within the SECOM data set is successfully taken care of with the creation of a complete data set in different variations, necessary further pre-processing steps are described in the next section.

A.2.3.3 Further Pre-processing Measures (SECOM)

The normalization of the completed SECOM data sets ('approach 1'; 'approach 2 var. 1'; 'approach 2 var. 2') is executed by utilizing Rapidminer (v5.3) as described in the previous scenarios. The parameter settings for the normalization task of the designed process are set to the method of range transformation [min;max] [-1.0;1.0] for all features/attributes in the data set. This method normalizes all values of the selected features/attributes within the specified range.

The resultant complete SECOM data sets have the following specifications after all data pre-processing steps are finalized (incl. the later added appr. 1 var.2 plus 15) (see Table A.1).

	5	1 1	U	
Name	No. of examples/ vectors	No. of features/ attributes	Normalization method [range]	No. of missing values
Approach 1	1239	485	Range transfor- mation $[-1;1]$	0
Approach 2 var. 1	1225	520	Range transfor- mation $[-1;1]$	0
Approach 2 var. 2	1209	528	Range transfor- mation $[-1;1]$	0
(Approach 2 var. 2 plus 15)	(1224)	(528)	(Range transfor- mation $[-1;1]$)	(0)

Table A.1 Summary of SECOM data sets after pre-processing

It has to be noted that the SECOM data set represents a very challenging data set. It was published as part of the "causality challenge" which suggests that classification will not be an easy task. The baseline results of classification performance published in accordance with the SECOM data set by McCann et al. (2010) show the difficulty of achieving good classification results with this data set. This corresponds with the findings of Kerdprasop and Kerdprasop (2011) investigating classification performance of the same data set.

A.3 Miscellaneous

A.3.1 Principles of Modeling

The six main principles of modeling are:

- correctness: in order to comply to the principle of correctness, the model needs to be following syntactic rules of modeling annotations (Rosemann and Schütte 1997) and additionally be semantically correct. However, the semantically correctness is often not formally provable (Becker 1998).
- *relevance*: just elements which are of relevance for the modeling goal are included (Becker 1998). A model is minimal, when no more elements can be eliminated without losing information important for the goal (Batini et al. 1992).
- *economic efficiency*: connected to the principle of relevance is the economic efficiency, which has an effect on all other principles (Rosemann and Schütte 1997). The detail and effort has to be judged also by economic parameters. It may prove reasonable to use reference models in order to reduce the economic effort to create a model.
- *clarity*: this principle is targeting the understandability or comprehensibility. The goal is to create a clear arrangement and an intuitive illustration (Becker and Schütte 2004).

- *comparability*: is targeting the compatibility of models created with different tools. This is especially important when reference models are utilized (Rosemann and Schütte 1997). Generally it is advised to use as little as possible different tools and modeling annotations for process illustrations in order to reduce comparability problems (Becker 1998; Becker and Schütte 2004).
- *systematic composition*: is focusing on the structural consistency of the model (Becker and Schütte 2004). This means that in case a modeling annotations allows different perspectives, the one is to be chosen which represents the to be modeled context. In case more than one perspective is chosen, a meta-model is to be utilized to ensure the abstract overview (Becker 1998; Becker and Schütte 2004).

A.3.2 Visualization Models of Product State Concept

A.3.2.1 State Model (Layer 2)

The goal of the sub model, called *state-model* (*layer 2*), is to illustrate all process intra- and inter-relations of an individual state within a manufacturing programme and characterize these process intra- and inter-relations through a transfer function. The transfer function or its placeholder shall be integrated in the modeling notation.

In respect of the chosen symbols of the state-model, the elements of the metamodel are applied as well (see Fig. A.6). In order to increase the readability, the visualization of the process structure and process parameters can be excluded from the model. However, if the visualization of the processes, process parameters and their influence on state characteristics desired, the visualization principles and symbols of the meta-model are to be applied in the state-model.

Within the state-model, the states are separated from the manufacturing programme structure and positioned next to each other. Within this model, only one state is in the focus at a time. This focus state should be highlighted within the model by choosing a deviant color for the color contour (see state_(z) in Fig. A.7). Different from the meta-model visualization, only the state characteristics connected through relations to the focus state (through its state characteristics) are included in the visualization.

For describing the relations, rectangular boxes are placed on the edges, representing relations. This is similar to captions in BONAPART notations (Krallmann et al. 2007; Hoyer 1988). Besides the exclusion of processes/process parameters, the focus on one state at a time and a reduced number of state characteristics, the state-model differentiates itself from the meta-model through the visualization of overlaying, independent relations. Whereas in the meta model a number indicated the number of independent relations represented, in the state model, the different transfer functions are highlighted by individual boxes on top of the edge (see SC_(x1) and SC_(y1) to SC_(z1) in Fig. A.7).

Fig. A.6 Symbols used in state-model

Fig. A.7 Exemplary illustration of state-model layer (layer 2)

Transfer functions can be of various natures in the state-model, e.g., a mathematical equation like the mass of a cylinder ($m = \rho * 1 * d^2 * \pi$). More complex transfer functions may be describable as well, be it through a differential equation or even in written form, e.g., the failure rate is in average 5 % in the morning shift and 7 % in the late shift. Such complex transfer functions shall be replaced by a placeholder in the state-model and connected to the relation underneath the model (see (a) and (b) in Fig. A.7).

In Fig. A.7 an exemplary application of the state-model including randomly selected relations and inter-/intra-relations. All previously described varieties of process intra- and inter-relations (see Figs. 4.26 and 4.27) are included in order to present the example in a comprehensive way. The focus state $(state_{(z)})$ is highlighted by a green contour in the middle of the figure. The exemplary application shows that transfer-functions within the state-model have to be replaced by placeholders even at this low level of inherit complexity the model represents. It might be necessary to split the model in parts, when a large number of state

characteristics have to be summarized under the states and if a gap between parts (no existing process intra- and inter-relations) is given (see between $SC_{(z4)}$ and $SC_{(z5)}$ in Fig. A.7).

A.3.2.2 State Characteristic Model (Layer 3)

Looking at individual state characteristics, there may be a need to reduce the complexity of the model even further under some circumstances. In order to comply with these requirements, the *state characteristics model* (*layer 3*) is developed. Next, the model and the rationale behind its development is introduced.

The state characteristics model has a single state characteristic in the focus and illustrates all existing process intra- and inter-relations of that individual state characteristic with other state characteristics of the manufacturing programme. The goal is to visualize all existing process intra- and inter-relations comprehensively in a clear well-arranged way. It is further important to be able to distinguish relations and inter-/intra-relations within the state characteristics model.

In order to achieve the above stated goals and requirements, the model is developed on the basis of an adapted cause-effect diagram (also known as Ishikawadiagram) (Kern 2008). The cause-effect diagram is not known originally as a process-modeling notation but as a tool for failure analysis. The model represents various influences of a problem. Those influences are structures in main causes and sub-causes, which leads to a so-called 'fishbone' structure (Kamiske and Brauer 2008). The clear structure presents a chance to clearly visualize the stated goal of all process intra- and inter-relations of a single state characteristic once adapted from the original description. The adaptation starts by replacing the main focus from the 'problem' (original) to the 'focus state characteristic' (see SC_{z2} in green in Fig. A.8). 'Influences' (original) are replaced by process intra- and interrelations respectively their transfer functions or placeholders in the state characteristics model (see blue boxes in Fig. A.8). The state characteristics with an influence on the transfer function are replacing the 'main causes' (original) in the fishbone structure (see Fig. A.8). It has to be distinguished between:

- Relations of state characteristics of current or previous states, which have an influence on the state characteristic in the focus. These relations are represented by an arrow coming form the left side towards the focus state characteristic.
- Inter-/intra-relations with other state characteristics, which occur necessarily within the same state, are represented by a two-headed arrow, positioned above and/or below the state characteristic in the focus.
- Relations to other state characteristics from the state characteristic in the focus are represented by an arrow heading to the right from the focus state characteristic. It is important that state characteristics, which have a combined relation with the state characteristic in the focus on another state characteristic are illustrated by a line without an arrowhead. Arrows heading away represent state characteristics being influenced.

Fig. A.8 Exemplary illustration of state characteristic model (layer 3)

Shall elements of lined dependencies be illustrated without direct connection to the focus state characteristic, this relation needs to be addressed in the transfer function. At the same time, such associated influences shall be represented as state characteristics or process parameters in form of replacing 'sub-causes' (original) in the diagram.

The exemplary illustration of the state characteristics model in Fig. A.8 gives an impression of the visualization. Depending on the complexity and possible analytical description of the transfer functions, they may need to be substituted by placeholders and described in detail at another location. In case the influences are quantifiable and the state characteristic in the focus is a stock figure with its value being time dependent, the application of the System Dynamics modeling notation (Sterman 1992; Krallmann et al. 2007) might be appropriate. As this represents a special case and the methodology is adaptable to a large extent, this will not be elaborated in detail within this thesis.

A.3.3 Application of SMOTE in WEKA

A first step in applying the SMOTE technique is loading the SECOM data set in the WEKA software. As WEKA only accepts *.arff format, RapidMiner (v5.3) is used to convert the *.xlsx file to an *.arff file. Once the file is loaded into WEKA, the two classes can be observed (see Fig. A.9).

In a next step the to be applied SMOTE technique is chosen as a filter and the parameter adjusted (see Fig. A.10). In this case the classValue = 0 defines the minority class to be oversampled. The percentage (in this case 500 %) predefines the resulting number of examples in the minority class after the SMOTE application.
Annex

0 0 Weka I	Explorer
Preprocess Classify Cluster A	ssociate Select attributes Visualize
Open file Open URL Open DB Gene	erate Undo Edit Save
Filter	
Choose SMOTE -C 0 -K 5 -P 100.0 -S 1	Apply
Current relation Relation: RapidMinerData Instances: 1224 Attributes: 530	Selected attribute Name: SVM Type: Nominal Missing: 0 (0%) Distinct: 2 Unique: 0 (0%)
Attributes All None Invert Pattern	No. Label Count 1 negative 99 2 positive 1125
No. Name S20 feature 577 521 feature 578 522 feature 578	
523 feature 584	Class: SVM (Nom) \$ Visualize All
524 feature 585 525 feature 586 526 feature 587 527 feature 588 528 feature 589 529 feature 590 530 SVM	1125
Remove	23
tatus DK	Log

Fig. A.9 SECOM data set before applying SMOTE oversampling technique in WEKA

Fig. A.10 Parameter	000	weka.gui.GenericObjectEditor			
of SMOTE filter in WEKA	weka.filters.supervi	sed.instance.SMOTE			
	About				
	Resamples a dataset by applying the Synthetic Minority More Oversampling TEchnique (SMOTE).				
		Capabilities			
	classValue	0]		
	nearestNeighbors	5]		
	percentage	500.0	1		
	randomSeed	1	1		
	Open	Save OK Cancel)		

After applying SMOTE in WEKA, a few more steps are necessary (see Fig. A.11). At first the numbering of the additional examples of the minority class has to be adjusted. WEKA does not continue the numbering of the existing examples but uses existing numbers. As WEKA adds the additional examples to the end of the data set, this is done manual in Excel after converting the *.arff file to an *.xlsx file. The numbering of the additional examples is chosen to start at 'example 1600'.

Fig. A.11 Randomizing the SECOM data set after SMOTE oversampling in WEKA

A.3.4 Tables and Graphs

See Tables A.2 and A.3; Figs. A.12, A.13, A.14 and A.15; Tables A.4 and A.5; Fig. A.16; Table A.6; Fig. A.17; Tables A.7, A.8, A.9 and A.10; Figs. A.18 and A.19; Tables A.11, A.12, A.13 and A.14.

IQ dimension	Addressed by product state concept
Accessibility	The product state information and data represents product inher- ited information and data in universally accepted formats. This way the information can be processed, exchanged and transferred as needed
Ease of manipulation	The product state information and data is structured according to the product and process requirements and can be used for various purposes despite the goals of the <i>product state concept</i>
Reputation	Different systems can be used to derive the needed informa- tion and data. The reputation is based on the used system and it has to be ensured that the chosen system complies with this IQ dimension
Free of error	This is out of the scope of the <i>product state concept</i> but methods and tools to cope with eventual errors in information and data are available
Objectivity	Product state information and data represents not-interpreted information and (raw) data with in the defined set of relevant information
Believability	Depending of the company and manufacturing programme, qual- ity certifications can be used to ensure the processes
Understandability	The product state information and data is directly understandable as it is connected to processes and products of a specific manufac- turing programme
Concise representation	Product state information and data is stored in universally accepted formats
Consistent representation	The product state information and data is stored in a structured way based on the product and processes of the manufacturing programme
Interpretability	Product state information and data represents raw data, which is descriptive to product and process and thus inherits a high interpretability
Timeliness	The product state information and data properties are accurately stored and uniquely identifiable to an individual product through the checkpoint system and mapping
Value-added	The goal of the <i>product state concept</i> is to derive new knowledge and support the increase of transparency through the manu- facturing chain in order to support process and product quality improvements
Completeness	The product state information and data should be stored as com- plete as possible within the set of relevant information. However, this depends also on the external circumstances like sensors, etc.
Appropriate amount of data	The <i>product state concepts</i> main objective is to identify a set of relevant information in order to reduce the amount of information and data to be handled
Relevancy	The <i>product state concepts</i> main objective is to identify the set of relevant information. This contributes to ensure that the data and information captured is relevant for the chosen purpose

 Table A.2
 15 information quality dimensions and their influence on the product state concept

Table A.3 Qualit	Table A.3 Quality issues in manufacturing		
Top level issue	Issue	Example	Proposed solution
Quality level	High level of unremunerative/ unplanned cost (Instone and	Operating and manufacturing costs (Instone and Dale 1989)	Reduce costs by getting it "right first time" (Instone and Dale 1989)
	Dale 1989)		Provide better product-related services (Instone and Dale 1989)
			'Quality cost' management (Instone and Dale 1989)
	Poor level of organization	Shortage of parts (Instone and Dale 1989)	
	(Instone and Dale 1989)	Rescheduling of jobs (Instone and Dale 1989)	
		Lack of information needed by various functions	Quality control panels (Instone and Dale 1989)
		(Instone and Dale 1989)	Quality audits (Instone and Dale 1989)
			Documentation of procedures (Instone and Dale 1989)
		Goods leaving the assembly area not fully completed (Instone and Dale 1989)	
Quality management	Leadership support (Instone and Dale 1989; Sohal and Terziovski 2000)	"[] agreed that senior management need to take the lead if any quality initiative is going to be cred- ible and effective." (Instone and Dale 1989)	Reports, interviews and meetings (Instone and Date 1989)
		Short term vision (Sohal and Terziovski 2000)	Companies that had invested in leadership train- ing are more likely to succeed []" (Sohal and Terziovski 2000)
			Positive attitude towards quality, leadership education and training (Sohal and Terziovski 2000)
			(continued)

242

Top level issue	Issue	Example	Proposed solution
	Staff involvement (Instone and Dale 1989; Sohal and Terziovski 2000)	People thinking quality is not their responsibility (Instone and Dale 1989, p. 25)	Emphasizing quality and introduction of quality plans to all employees in meetings and briefings (Instone and Dale 1989)
			Developing appropriate performance indicators and rewards (Sohal and Terziovski 2000)
	Customer/Supplier involvement (Sohal and Terziovski 2000)		Manufacturing and services quality department (Badri et al. 1995)
			Integrating the voice of the customer and the supplier (Sohal and Terziovski 2000)
	Poor level of organization (Badri et al. 1995)	Co-ordination between the quality department and other departments (Badri et al. 1995)	Encouraging automation in the process (Badri et al. 1995)
	Product design (Badri et al. 1995)		Manufacturing and services quality department (Badri et al. 1995)
Defective	Operator error (Dhafr	Inadequate skills (Dhafr et al. 2006)	Control of the process variables that affect the
products	et al. 2006)	Ignorance of operation instruction (Dhafr et al. 2006)	quality of the product, application of a lean
	Machine fault (Dhafr	Faulty machine design (Dhafr et al. 2006)	manufacturing tool—Jidoka (Dhafr et al. 2006)
	et al. 2006)	Temporary fault (Dhafr et al. 2006)	
	Inadequate surrounding/envi-	Inadequate cleaning (Dhafr et al. 2006)	
	ronments (Dhafr et al. 2006)	Contamination not noticed (Dhafr et al. 2006)	
	Fault in process (Dhafr	Inadequate procedure (Dhafr et al. 2006)	
	et al. 2006)	Procedure temporary inadequate (Dhafr et al. 2006)	
	Faulty raw material (Dhafr et al. 2006)	Supplier error (Dhafr et al. 2006)	
	Rejected products, due to:	Inclusion (71.43 %) (Dhafr et al. 2006)	Appropriate cleaning of parts; use of rust-
	(Dhafr et al. 2006)	Scratches (12.91 %) (Dhafr et al. 2006)	free jigs; reducing particles in the air; control
		Fibers (11.48 %) (Dhafr et al. 2006)	measures for quality of the paint; appropriate
		Under spray, paint run, warped, second pass, pin holes (Dhafr et al. 2006)	internal nanouing procedures to munumize pos- sibilities of scratch (Dhafr et al. 2006)

Top level issue	Issue	Example	Proposed solution
Onality loce	Chance variations and system-	Resulting from tool wear (Robles and Roy 2004)	
	atic errors (Robles and Roy	Process sequence errors: disk filing, shaping,	
	2004)	polishing, milling, grinding (Robles and Roy 2004)	
	Tolerance optimization (Robles and Roy 2004)	Limitations of process capabilities (Robles and Roy 2004)	Statistical tolerance analysis (Robles and Roy 2004)
		Limitations of machining capacities (Robles and Roy 2004)	
		Measurement errors (Robles and Roy 2004)	
	Internal failure (Shetwan et al.	Reworking (Shetwan et al. 2011)	
	2011)	Scrapping (Shetwan et al. 2011)	
		Replacement (Shetwan et al. 2011)	
	External failure (Shetwan et al.	Replacement (Shetwan et al. 2011)	
	2011, p. 475)	Repairing (Shetwan et al. 2011)	
		Quality loss (Shetwan et al. 2011)	
	Errors from machine tools	Wear of guideway (Jiang et al. 2012)	Maintaining the equipment (Jiang et al. 2012)
	(Jiang et al. 2012)	Fault of electric motors (Jiang et al. 2012)	
	Errors from cutting tools (Jiang et al. 2012)		
	Fixtures (Jiang et al. 2012)		
	Errors of the machining process	Perpendicularity of the final feature (Jiang et al. 2012)	
	(Jiang et al. 2012)	Cylindricity of the final feature (Jiang et al. 2012)	
Quality	Inspection capability (Shetwan	Inspection time (Shetwan et al. 2011)	
monitoring	et al. 2011)	Type-I error: producer risk—rejecting good item (Shetwan et al. 2011)	
		Type-II error: consumer risk—accepting non-conforming product (Shetwan et al. 2011)	
	Defective parts (Shetwan et al. 2011)	Non-conforming product (Shetwan et al. 2011)	
	-		

244

state characteristic	state (t=0)	state (t=1)	transformation yes/no (Xn _(t*0) ≠ Xn _(t*1)) n: 1i	relevant state characteristics (target area 1)
X1	X1	X1	+	X1
X2	X2	X2	-	-
Х3	Х3	Х3	+	Х3
X4	X4	X4	+	X4
X5	X5	X5	-	
:		:	:	:
Xi	Xi	Xi	+	Xi

Fig. A.12 Relevant state characteristics (target area 1)

	target state characteristics					relevant state characteristics
state characteristic	X1	X2	Х3	X4	X5	(target area 2)
X1	+	+	+	+	-	X1
X2	+	-	+	-	-	X2
Х3	-	-	-	-	-	-
X4	+	-	-	-	-	X4
X5	-	-	-	-	-	-
:	:	:	:	:	:	:
:	:	:	:	:	:	:
:	:	:	:	:	:	:
Xi	-	+	+	-	-	Xi

Fig. A.13 Relevant state characteristics (target area 2)

						relevant state characteristics
state characteristic	Y1	Y2	Y3	¥4	Y5	(target area 3)
X1	-	-	-	-	-	-
X2	+	-	-	+	-	X2
ХЗ	-	+	-	-	-	Х3
X4	+	+	-	+	-	X4
Х5	-	-	-	-	-	-
:	:	:	:	:	:	:
Xi	-	-	-	-	-	-

Fig. A.14 Relevant state characteristics (target area 3)

state characteristic	re	relevant state characteristics (combined)		
	target area 1	target area 2	target area 3	(combined)
X1	X1	-	-	X1
X2	X2	X2	-	X2
X3	-	-	-	-
X4	-	-	-	-
X5	X5	X5	X5	X5
X6			X6	Х6
Х7	X7	X7	-	X7
X8	X8	X8	X8	X8
Х9	-	-	-	-
X10		-	X10	X10
X11	-	-	-	-
:	:	:	:	:
:	:	:	:	:
Xi	Xi	Xi	-	Xi

Fig. A.15 Combining relevant state characteristics of the three target areas in stage 2

Adventego	ML algorithm	Application area	Pafaranaas
Advantage	ML algorithm	Application area	References
More complex knowl- edge bases can be built in shorter time with less engagement of experts	Learning from examples/decision trees/rules	Decision making in machining processes	Filipic and Junkar (2000)
Successful supporting sensor integration, signal processing, uncertainty handling, real-time and adap- tive functioning	ANN [Artificial Neural Networks]	Intelligent manufacturing	Monostori (2003)
Efficient classifica- tion of new prob- lem instances with unknown classes and represent domain concepts in a compact and transparent way suitable for human inspection presenting new insights	Learning from examples/decision trees/rules	Decision making in machining processes	Filipic and Junkar (2000)
Machine learning analysis has proved beneficial in detecting inconsistencies and suggesting correc- tions of existing prescriptions	Learning from examples/decision trees/rules	Decision making in machining processes	Filipic and Junkar (2000)
Machine learning methods [] support transfer of relevant information to the technology planning level	Learning from examples/decision trees/rules	Decision making in machining processes	Filipic and Junkar (2000)
Savings in both the operating time and the investments into wheel stock	Learning from examples/decision trees/rules	Decision making in machining processes	Filipic and Junkar (2000)
Fast (compared to other techniques), simple and their generated models are easy to understand	Inductive learning	Manufacturing	Pham and Afify (2005)
Successfully employed to detect multi-modal distribu- tions as well as non- linear distributions	Novelty detection methods	Faulty wafer detec- tion (semiconductor manufacturing)	Kim et al. (2012)

 Table A.4
 Specific advantages of ML algorithms in manufacturing appl. derived from literature

Advantage	ML algorithm	Application area	References
Overcame the major problems of statistical process control: lin- earity and unimodal- ity of data	FDC (Fault Detection and Classification)	Faulty wafer detec- tion (semiconductor manufacturing)	Kim et al. (2012)
No need for assump- ions of distribu- ion, and nonlinear problems can be addressed	FDC (Fault Detection and Classification)	Faulty wafer detec- tion (semiconductor manufacturing)	Kim et al. (2012)
Formulation of NN or c-NN algorithms is very simple	Nearest neighbour/k-NN	Dynamic scheduling in flexible manufac- turing systems	Priore et al. (2006)
Most well-known and widely used as pattern classi- iers and function approximators	Back propagation Neural networks	Dynamic scheduling in flexible manuf. Systems	Priore et al. (2006)
Provide lowest test error	Nearest neighbour (k-NN)	Dynamic scheduling in flexible manuf. systems	Priore et al. (2006)
Reduce the effort nvolved in determin- ng the knowledge required to make decisions	ML (inductive learning or neural networks)	Dynamic schedul- ing (semiconductor manuf.)	Priore et al. (2001)
Jseful when input ouffer size is limited and small, and there s a great variation in processing times for parts in the bottleneck machines	Inductive learning, C4.5	Dynamic schedul- ing (semiconductor manuf.)	Priore et al. (2001)
Provides the most adequate dispatching rule	Back-propagation neural network	Dynamic schedul- ing (semiconductor manuf.)	Priore et al. (2001)
Superior performance	Competitive neural networks	Dynamic schedul- ing (semiconductor manuf.)	Priore et al. (2001)
Deals with noise in lata more efficiently	Inductive learning, C4.5	Dynamic schedul- ing (semiconductor manuf.)	Priore et al. (2001)
Advantage of gen- erating rules that are ntelligible to humans compared with neu- ral networks)	Inductive learning, fuzzy logic	Dynamic schedul- ing (semiconductor manuf.)	Priore et al. (2001)

Table A.4 (continued)

Advantage	ML algorithm	Application area	References
Very efficient at classification, despite their simplicity	Case based reasoning	Dynamic schedul- ing (semiconductor manuf.)	Priore et al. (2001)
Inductive learning classifiers obtain similar and some- times better accura- cies compared with other classification techniques	Inductive learning	Manufacturing	Pham and Afify (2005)
Rule sets extracted were more accu- rate and compact than those obtained using its immediate predecessor	RULES-5	Manufacturing	Pham and Afify (2005)
Ability to model complex target con- cepts and the fact that information present in the training instances is never lost	Instance based methods	Manufacturing	Pham and Afify (2005)
Well-suited to problems in which he training data correspond to noisy, complex sensor data, such as inputs from cameras and nicrophones	Neural networks	Manufacturing	Pham and Afify (2005)
Wide applicability	Neural networks	Manufacturing	Pham and Afify (2005)
Potentially greater ability to avoid local minima than is possible with the simple greedy search employed by most learning techniques	Genetic algorithm (GA)	Manufacturing	Pham and Afify (2005)
Natural platform for combining domain knowledge and empirical learning	Bayesian networks	Manufacturing	Pham and Afify (2005)
Improved to handle large data sets efficiently	Decision-tree algorithms	Manufacturing	Pham and Afify (2005)

 Table A.4 (continued)

Advantage	ML algorithm	Application area	References
Flexible and can be applied to a number of other design and manufacturing processes to reduce costs and improve productivity	C4.5 algorithm	Manufacturing	Pham and Afify (2005)
Adding hidden layers to a feed-forward network enlarges the space of hypotheses that can be repre- sented by the network	Neural Networks	Scheduling	Mönch et al. (2006)
Simple and power- ful form of learning algorithms	Inductive decision trees	Scheduling	Mönch et al. (2006)
Functional dependen- cies between input and output variables can be described by rules	Inductive decision trees	Scheduling	Mönch et al. (2006)
Successful training phase is possible within seconds	Inductive decision trees	Scheduling	Mönch et al. (2006)
Computational effort is much smaller by following the machine learning approach	ML (inductive deci- sion trees, neural networks)	Scheduling	Mönch et al. (2006)
CBR with the 'Activity' weighting method had a better prediction rate, out- performing the CBR- alone and all other weighting methods	Hybrid (neural net- works and case-based reasoning)	Yield management in semiconduc- tor manufacturing companies	Lee and Ha (2009)

 Table A.4 (continued)

ly sent ver- e	mples/decision trees/	Decision making in machining processes	
			Filipic and Junkar (2000)
hot totaity devoid of all known daw- backs of centralized/hierarchical control systems		Uncertainty, complexity and change in manufacturing	Monostori (2003)
Beyond a given problem size even multi-agent approaches may becomes unrealistic, first of all due to the rapidly increasing communication burden	Multi-agent approaches	Uncertainty, complexity and change in manufacturing	Monostori (2003)
Larger batch size leads to a larger error Inductive de	Inductive decision trees, neural networks	Scheduling	Mönch et al. (2006)
A larger number of families leads to Inductive de poorer results	Inductive decision trees, neural networks	Scheduling	Mönch et al. (2006)
Time and experience needed to perform Inductive de optimization of Fuzzy membership func- tions that correspond to attribute intervals of decision tree	Inductive decision trees, neural networks	Scheduling	Mönch et al. (2006)
In practice available attributes often do Supervised not contain all the information necessary to unambiguously determine the classes of an example	Supervised classification	Manufacturing	Pham and Afify (2005)
Inability to handle noisy data Rule induct	Rule induction (RULE-5 algorithm)	Manufacturing	Pham and Afify (2005)

Annex

Challenge/limitation	ML algorithm	Application area	References
Cost of classifying new instances can be high	Instance-based learning	Manufacturing	Pham and Afify (2005)
High computational cost	Genetic algorithm	Manufacturing	Pham and Afify (2005)
Typically consider all attr. of instances when attempting to retrieve similar train- ing instances from memory	Instance-based approaches (near-est neighbor)	Manufacturing	Pham and Afify (2005)
Difficulty to understand produced models	Neural networks	Manufacturing	Pham and Afify (2005)
Time-consuming training	Neural networks	Manufacturing	Pham and Afify (2005)
Inference can have a high time complex- ity and as tools for classification learning Bayesian networks are not yet as mature or well tested as other approaches	Bayesian networks	Manufacturing	Pham and Afify (2005)
Suffers from feature weighting; when it measures the distance between cases, some features should be weighted differently	Case-based reasoning (CBR)	Yield management in semiconductor manufacturing companies	Lee and Ha (2009)
Assumption that the input data are gener- ated from a single Gaussian distribution	Gaussian density estimation	Faulty wafer detection (semiconductor manufacturing)	Kim et al. (2012)
True Positive Rate (TPR)/False Positive Rate (FPR) ratio influenced by set misclassification cost	Novelty detection models (Gaussian density estimation, G. mixture model, Parzen window)	Faulty wafer detection (semiconductor manufacturing)	Kim et al. (2012)
Outliers in the data can degrade model performance	Novelty detection models (Gaussian density estimation, G. mixture model, Parzen window)	Faulty wafer detection (semiconductor manufacturing)	Kim et al. (2012)
Conventional binary classification mod- els tend to place too much emphasis on majority class	Binary classification algorithms	Faulty wafer detection (semiconductor manuf.)	Kim et al. (2012)

Table A.5 (continued)			
Challenge/limitation	ML algorithm	Application area	References
Training examples and learning algo- rithm must be fitting	Knowledge-based systems	Dynamic scheduling (semiconductor manuf.)	Priore et al. (2001)
Training set is a subset of the universe of all possible cases	Knowledge-based systems	Dynamic scheduling (semiconductor manuf.)	Priore et al. (2001)
System's performance depends on num- ber and range of control attributes taken into account in the design of training examples	Knowledge-based systems	Dynamic scheduling (semiconductor manufacturing)	Priore et al. (2001, 2006)
System can be prone to inadequate generalizations in extremely imprecise situations	Knowledge-based systems	Dynamic scheduling (semiconductor manuf.)	Priore et al. (2001, 2006
No identification of important attributes if not considered initially -> Process must be repeated if performance measurements change	Neural Networks	Dynamic scheduling (semiconductor manuf.)	Priore et al. (2001)
Lack of a method to systematically search for an optimum no. of output nodes to the neural network, and that it is compared to a random system rather than the best possible combination of the proposed dispatching rules	Competitive neural network	Dynamic scheduling (semiconductor manufacturing)	Priore et al. (2001)
Difficulty of determination of • optimum no. of training examples • adequate monitoring period • mechanism or filter to smooth transitory states	Knowledge-based systems	Dynamic scheduling (semiconductor manufacturing)	Priore et al. (2001)

Annex

le loaded	/Users/th	orstenwuest/De	sktop/RR/Synthetic processes i				
ob name	RR_DICK_	AVER	/ER 4195 Rows 56 Columns				
ataset has							
Filter Data	Adjust Data	Hierarchical	k-Means SOMs PCA				
Genes		Arra	ys.				
Cluster	Calculate		Cluster				
Similarity	Metric		Similarity Metric				
Euclidean distance		1 0	rrelation (uncentered)				

Fig. A.16 Screenshot of Cluster 3.0 software to create the cluster Dendogram

Table A.6 Eliminated examples incl. no. of missing	No. of example	'Positive'/'Negative'	No. of missing values
values and label	1	negative (Yield 38)	16
	172	positive (Yield 39.66)	11
	173	positive (Yield 39.68)	11
	174	positive (Yield 42.23)	11
	175	negative (Yield 38.48)	11
	176	positive (Yield 39.49)	11

Fig. A.17 Optimization results x-val with linear kernel TOM(RR)

Table A.7	Feature ranking	of TOM (RR) incl	. weight	t values by	RapidMiner (v5.3)
Rank fe	eature	weight	Rank	feature	weight

	-		-		•
	feature	weight		feature	weight
	para.20	1.0		para.37	0.19073308720125864
	para.46	0.9431972103438553		para.22	0.17965204384777628
	para.23	0.8464995383086241		para.35	0.17520430381272134
	para.50	0.8352833142593754		para.2	0.1657479320668089
	para.33	0.8229103820488326		para.8	0.16169403401941393
6	para.56	0.7756820916332756	49	para.13	0.15176382850956638
	para.32	0.7675416276804052		para.55	0.14283514298535313
	para.60	0.749193123828978		para.59	0.14283514298535313
	para.3	0.7406241674830152		para.17	0.13840327319873905
10	para.16	0.7341441214201473	53	para.44	0.13125343691007132
11	para.9	0.7336618695289076	54	para.42	0.12454214027707596
	para.14	0.7122208751888185		para.72	0.11473269596225709
13	para.69	0.7087935762760935	56	para.30	0.10440208602478708
	para.61	0.6942744565358098	57	para.62	0.10373404877225662
15	para.48	0.5920141474501461	58	para.80	0.09744052824308289
16	para.40	0.5327406977305587	59	para.66	0.09463194343840874
17	para.10	0.5322276525211775	60	para.79	0.09101524842481891
18	para.58	0.5232503308553361	61	para.76	0.09053871706160208
19	para.7	0.5088399235689387	62	para.87	0.08240904343515952
20	para.6	0.4860916337002901	63	para.18	0.08033421039918315
21	para.11	0.48149353056291866	64	para.75	0.07496266780365791
22	para.24	0.4799253897020237	65	para.41	0.0693218455939779
23	para.54	0.4711020118823952	66	para.4	0.06924983973843427
24	para.36	0.46361412755010806	67	para.31	0.06496569971664111
25	para.38	0.4485329360291879		para.49	0.06112259066582686
26	para.81	0.42309516223387544	69	para.57	0.058928097142938694
27	para.47	0.4010679323978458	70	para.70	0.05429731076153086
28	para.28	0.39988480752979627	71	para.63	0.051576110138954995
29	para.65	0.3882502167171662	72	para.53	0.04808178170191992
30	para.73	0.37907180557897474	73	para.86	0.047763036285393926
31	para.25	0.3760098002890117	74	para.83	0.04511856973150561
32	para.64	0.3542035417456957	75	para.27	0.04473973585514782
33	para.39	0.3343960071837557	76	para.34	0.04362704328448821
34	para.77	0.3332916203012297	77	para.45	0.04346133182092924
35	para.19	0.32441843773640944	78	para.15	0.03721077646461305
36	para.51	0.2793760367487238	79	para.78	0.021039814030233365
37	para.29	0.24360210981477157	80	para.74	0.018627141845566384
38	para.52	0.23672616359340248	81	para.43	0.010050237256845713
39	para.26	0.23538699948122366	82	para.67	0.008891523120404967
40	para.5	0.2308081505950978	83	para.82	0.007684004320234522
41	para.68	0.22717347818444095	84	para.21	0.007231314510371265
42	para.12	0.19655264733132205	85	para.84	0.0
43	para.71	0.19401523378644578			

Example No.	Quality ass.	Time- stamp	Missing values	Example No.	Quality ass.	Time- stamp	Missing values	Example No.	Quality ass.	Time- stamp	Missing values
example 1	-1	19.07.08 11:55	44	example 141	-1	06.08.08 19:24	40	example 270	-1	18.08.08 15:30	44
example 2	-1	19.07.08 12:32	36	example 143	-1	06.08.08 20:17	36	example 273	-1	18.08.08 16:19	44
example 5	-1	19.07.08 15:22	40	example 146	-1	06.08.08 23:40	36	example 283	1	19.08.08 03:59	44
example 7	-1	19.07.08 19:44	40	example 152	-1	07.08.08 08:55	52	example 284	-1	19.08.08 04:58	36
example 18	-1	22.07.08 08:41	40	example 166	-1	09.08.08 02:37	36	example 285	-1	19.08.08 05:09	48
example 21	-1	22.07.08 15:30	48	example 174	-1	09.08.08 21:07	40	example 293	-1	19.08.08 06:24	36
example 27	-1	27.07.08 11:10	44	example 176	-1	09.08.08 22:37	40	example 297	-1	19.08.08 08:07	36
example 51	1	29.07.08 18:08	44	example 178	-1	09.08.08 23:34	36	example 298	-1	19.08.08 08:33	36
example 54	-1	29.07.08 23:19	47	example 184	-1	10.08.08 11:16	43	example 300	-1	19.08.08 09:05	80
example 60	-1	31.07.08 13:57	36	example 186	-1	10.08.08 12:22	36	example 301	-1	19.08.08 10:46	36
example 75	-1	03.08.08 14:25	44	example 189	1	10.08.08 20:07	36	example 304	-1	19.08.08 11:13	36
example 90	-1	04.08.08 16:15	87	example 196	-1	12.08.08 04:23	60	example 308	-1	19.08.08 11:57	40
example 94	-1	04.08.08 18:24	96	example 199	-1	12.08.08 11:29	44	example 309	-1	19.08.08 11:58	44
example 95	-1	04.08.08 19:58	68	example 202	-1	15.08.08 03:26	48	example 310	-1	19.08.08 12:30	36
example 96	-1	04.08.08 20:32	96	example 205	-1	15.08.08 09:38	40	example 317	-1	19.08.08 20:53	64
example 98	-1	04.08.08 21:43	36	example 215	-1	16.08.08 06:52	36	example 318	-1	20.08.08 00:05	36
example 99	-1	04.08.08 22:51	48	example 236	1	17.08.08 21:26	44	example 322	1	20.08.08 02:27	40
example 101	-1	05.08.08 00:04	36	example 239	1	17.08.08 23:04	36	example 323	-1	20.08.08 03:00	40
example 102	-1	05.08.08 01:12	40	example 246	-1	18.08.08 04:12	36	example 326	-1	20.08.08 07:12	36
example 104	-1	05.08.08 02:36	36	example 247	-1	18.08.08 04:35	36	example 327	1	20.08.08 08:40	40
example 115	-1	05.08.08 07:12	36	example 249	-1	18.08.08 05:25	36	example 328	1	20.08.08 09:17	40
example 119	-1	05.08.08 09:48	40	example 252	-1	18.08.08 06:26	36	example 330	-1	20.08.08 16:08	48
example 134	-1	06.08.08 09:57	84	example 253	-1	18.08.08 07:11	44	example 331	-1	20.08.08 16:16	36
example 135	-1	06.08.08 12:33	40	example 258	-1	18.08.08 10:13	36	example 336	-1	20.08.08 18:35	44
example 136	-1	06.08.08 13:35	40	example 263	-1	18.08.08 12:49 18.08.08 14:04	44	example 337	-1	20.08.08 19:20 20.08.08 22:13	64 36
example 138	-1	06.08.08 18:00	40	example 266							
						10.00.00 14.04	40	example 342		20.00.00 22.15	
Example No.	Quality ass.	Time- stamp	Missing values	Example No.	Quality ass.	Time- stamp	Missing values	Example No.	Quality ass.	Time- stamp	Missing values
example 345	1	ju di u di u di u di u di u di u di u di	Missing 47 values	example 428	Quality 1 ass.	ame June 22.08.08 23:49	Missing 40	No. No. Example 495	Quality 1 ass.	ame temps 28.08.08 20:20	Missing 44 values
example 345 example 347	-1	الم 20.08.08 23:43 21.08.08 02:46	Missing 44 48	example 428 example 433	Cuality 1- ass.	du text 22.08.08 23:49 23.08.08 04:52	Missing 40 44	example 495 example 498	Cuality 1- ass.	built state 28.08.08 20:20 28.08.08 21:52	Missing 44 values
example 345 example 347 example 359	1 -1 -1	20.08.08 23:43 21.08.08 02:46 21.08.08 13:11	Missing 44 48 40	example 428 example 433 example 436	1- 1- 1- 1- 1-	du uu uu 22.08.08 23:49 23.08.08 04:52 23.08.08 05:58	Missing 40 44 36	example 495 example 498 example 500	1 -1 ass.		Missing 44 44 36
example 345 example 347 example 359 example 363	1 -1 -1 -1	20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47	Wissing 44 40 36	example 428 example 433 example 436 example 442	0uality 1- 1- 1	au La 22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 15:29	Wissing 40 44 36 44	example 495 example 498 example 500 example 501	Cuality 1- 1- 1- 1- 1- 1-	28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42	Missing 44 44 36 48
example 345 example 347 example 359 example 363 example 370	1 -1 -1 -1	20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 16:36	Wissing 44 40 36 40	example 428 example 433 example 436 example 442 example 450	00000000000000000000000000000000000000	22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 15:29 25.08.08 09:29	Missing 40 44 36 36	example 495 example 495 example 498 example 500 example 501 example 506	00000000000000000000000000000000000000	28.08.08 20:20 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27	Buissing 44 44 48 48
example 345 example 347 example 359 example 363 example 370 example 373	1 -1 -1 -1 -1 -1	<u>е</u> 20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 16:36 21.08.08 18:04	Wissing 44 48 40 36 40 36 40	example 428 example 433 example 436 example 436 example 450 example 451	Quality 1- 1- 1- 1- 1- 1- 1-1 1-1	22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 15:29 25.08.08 09:29 27.08.08 00:46	Wissing 40 44 36 40 40	example 495 example 495 example 500 example 501 example 506 example 512	Quality 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	28.08.08 20.20 28.08.08 21.52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54	B 44 44 48 48 48 100
example 345 example 347 example 359 example 363 example 370 example 373 example 374	1 -1 -1 -1 -1 -1 1	20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 16:36 21.08.08 18:04 21.08.08 18:05	8 Wissing 44 40 36 40 40 40 40	example 428 example 433 example 433 example 436 example 450 example 450 example 451 example 455	Quality 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 15:29 25.08.08 09:29 27.08.08 04:46 27.08.08 14:18	Wissing 40 44 36 40 44 40 44	example 495 example 495 example 500 example 501 example 506 example 512 example 513	Quality 1 1 1 2 2 0 1 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54	8 values 44 44 48 48 48 100 84
example 345 example 347 example 359 example 359 example 370 example 373 example 374 example 375	1 -1 -1 -1 -1 -1 1 -1	20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 16:36 21.08.08 18:04 21.08.08 18:05 21.08.08 18:05 21.08.08 18:39	Wissing 44 48 40 36 40 40 40 36	example 428 example 428 example 433 example 436 example 442 example 450 example 455 example 458	Guality 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 05:58 23.08.08 15:29 25.08.08 09:29 27.08.08 00:46 27.08.08 14:18 27.08.08 12:58	Wissing 40 44 36 44 36 40 44 36	example 495 example 498 example 500 example 500 example 501 example 512 example 513 example 514	Quality 1 </td <td>28.08.08 20:20 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54</td> <td>8 44 44 44 44 44 44 44 44 44 44 44 44 44</td>	28.08.08 20:20 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54	8 44 44 44 44 44 44 44 44 44 44 44 44 44
example 345 example 345 example 359 example 363 example 370 example 373 example 374 example 375 example 376	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	Building Wissing 44 48 40 36 40 40 40 36 44	example 428 example 438 example 436 example 436 example 450 example 455 example 458 example 458	00000000000000000000000000000000000000	2 2.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 05:58 23.08.08 05:59 25.08.08 09:29 27.08.08 14:18 27.08.08 14:18 27.08.08 22:58 28.08.08 03:03	Buissing 40 44 36 44 36 40 44 36 36 36	example 495 example 495 example 500 example 501 example 512 example 512 example 514 example 514	Cuality Cuality Cuality Cuality Cuality	28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:40 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:57 29.08.08 05:57	84 44 44 44 44 48 48 100 84 36 44
example 345 example 347 example 347 example 363 example 370 example 373 example 373 example 375 example 376 example 383	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Line 2010 21/08/08 23:43 20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:53 21.08.08 18:53 21.08.08 21:32	Wizsing 44 40 36 40 40 40 40 40 40 36 44 44 36	example 428 example 428 example 433 example 433 example 452 example 451 example 455 example 459 example 459 example 459 example 459	00000000000000000000000000000000000000	22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 15:29 25.08.08 00:46 27.08.08 00:46 27.08.08 14:18 27.08.08 14:18 27.08.08 20:58 28.08.08 03:30	Muissing 40 44 36 44 36 40 44 36 36 56	example 495 example 495 example 500 example 500 example 501 example 512 example 513 example 514 example 516 example 516	Quality 1 </td <td>28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:55 29.08.08 06:55 29.08.08 06:55</td> <td>44 44 48 48 48 100 84 36 44 44 36</td>	28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:55 29.08.08 06:55 29.08.08 06:55	44 44 48 48 48 100 84 36 44 44 36
example 345 example 347 example 347 example 359 example 367 example 370 example 374 example 375 example 376 example 383 example 384	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Wissing 44 48 40 40 40 40 40 40 40 40 40 40 40 40 40	example 428 example 428 example 438 example 436 example 450 example 450 example 455 example 459 example 459 example 461	00000000000000000000000000000000000000	i 22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 09:29 25.08.08 09:29 27.08.08 00:46 27.08.08 14:18 27.08.08 22:58 28.08.08 03:03 28.08.08 03:29	Wissium 40 44 36 44 44 36 40 44 36 56 36 36	example 495 example 495 example 500 example 501 example 511 example 513 example 514 example 514 example 522 example 523	Quality 1 </td <td><u>i</u> <u>1</u> <u>28.08.08 20:20</u> <u>28.08.08 21:52</u> <u>28.08.08 23:42</u> <u>29.08.08 23:42</u> <u>29.08.08 05:54</u> <u>29.08.08 05:54</u> <u>29.08.08 05:557 <u>29.08.08 07:525</u> <u>29.08.08 07:224</u></u></td> <td>44 44 46 48 48 48 48 48 48 48 40 44 44 44 44 44 44</td>	<u>i</u> <u>1</u> <u>28.08.08 20:20</u> <u>28.08.08 21:52</u> <u>28.08.08 23:42</u> <u>29.08.08 23:42</u> <u>29.08.08 05:54</u> <u>29.08.08 05:54</u> <u>29.08.08 05:557 <u>29.08.08 07:525</u> <u>29.08.08 07:224</u></u>	44 44 46 48 48 48 48 48 48 48 40 44 44 44 44 44 44
example 345 example 347 example 353 example 363 example 370 example 373 example 374 example 375 example 376 example 383 example 383	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u>20.08.08 23:43 21.08.08 02:46 21.08.08 13:41 21.08.08 14:47 21.08.08 16:36 21.08.08 18:04 21.08.08 18:05 21.08.08 18:53 21.08.08 21:32 21.08.08 22:25 21.08.08 22:41</u>	Buissing Wissing 44 48 40 36 40 40 40 36 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 44	example 428 example 428 example 433 example 436 example 450 example 450 example 455 example 458 example 459 example 460 example 461	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u>22.08.08.23:49 23.08.08 05:58 23.08.08 05:58 23.08.08 05:59 27.08.08 09:29 27.08.08 09:29 27.08.08 14:18 28.08.08 03:03 28.08.08 03:04 28.08.08 03:29 28.08.08 04:10</u></u>	Buissim 40 44 36 44 36 36 36 36 36 36 36 36 36	example 495 example 495 example 495 example 500 example 500 example 512 example 513 example 513 example 516 example 522 example 523 example 524	Quality 1 </td <td><u><u>i</u></u> 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 29.08.08 03:27 29.08.08 03:27 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:55 29.08.08 07:24 29.08.08 07:24</td> <td>8 wissing 44 44 44 44 44 44 44 44 44 4</td>	<u><u>i</u></u> 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 29.08.08 03:27 29.08.08 03:27 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:55 29.08.08 07:24 29.08.08 07:24	8 wissing 44 44 44 44 44 44 44 44 44 4
example 345 example 345 example 347 example 363 example 363 example 373 example 374 example 374 example 376 example 384 example 385 example 387	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u>i</u><u>i</u><u>i</u><u>i</u><u>i</u><u>i</u> 20.08.08 23:43 21.08.08 02:46 21.08.08 13:41 21.08.08 14:47 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:39 21.08.08 21:32 21.08.08 21:32 21.08.08 22:45 21.08.08 23:27</u>	Buissing 44 48 40 36 40 40 36 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 36 44 36	example 428 example 428 example 433 example 433 example 432 example 432 example 450 example 455 example 455 example 458 example 456 example 461 example 461 example 465	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<u>i</u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u>23.08.08 24552 23.08.08 04:552 23.08.08 05:58 25.08.08 09:59 27.08.08 00:46 27.08.08 14:18 27.08.08 22:58 28.08.08 03:04 28.08.08 03:04 28.08.08 03:42 28.08.08 04:20	Buissim 40 44 36 44 36 40 44 36 56 56 36 36 36 36 36	example 495 example 498 example 500 example 501 example 512 example 513 example 514 example 514 example 512 example 523 example 523 example 523	Quality 1 </td <td>in in 28.08.08 20:20 28.08.08 21:52 28.08.08 21:42 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 06:35 29.08.08 07:22 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 08:20 29.08.08 08:20</td> <td>8 Missing 44 44 44 44 44 44 44 44 44 4</td>	in in 28.08.08 20:20 28.08.08 21:52 28.08.08 21:42 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 06:35 29.08.08 07:22 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 08:20 29.08.08 08:20	8 Missing 44 44 44 44 44 44 44 44 44 4
example 345 example 345 example 345 example 370 example 370 example 370 example 374 example 374 example 375 example 384 example 384 example 387 example 389	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Wissing 44 48 40 36 40 40 36 40 40 36 44 36 40 36 40 40 36 40 40 40 40 40 40 40	example 428 example 438 example 438 example 436 example 450 example 451 example 455 example 458 example 459 example 464 example 464 example 464	Guality -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	i 22.08.08 23:49 23.08.08 04:52 23.08.08 05:59 25.08.08 09:59 27.08.08 09:59 27.08.08 09:29 27.08.08 04:52 28.08.08 03:04 28.08.08 03:04 28.08.08 04:10 28.08.08 04:54	Busissing 40 44 36 36 40 44 36 36 36 36 36 36 40 36 44	example 495 example 495 example 500 example 501 example 511 example 513 example 514 example 522 example 522 example 523 example 524 example 524	Quality 1 </td <td>t 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:52 29.08.08 07:22 29.08.08 07:23 29.08.08 07:23 29.08.08 08:25</td> <td>Buissing 44 44 44 36 48 48 48 36 44 36 44 36 44 44 36 44 44 48</td>	t 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:52 29.08.08 07:22 29.08.08 07:23 29.08.08 07:23 29.08.08 08:25	Buissing 44 44 44 36 48 48 48 36 44 36 44 36 44 44 36 44 44 48
example 345 example 345 example 345 example 359 example 370 example 373 example 374 example 374 example 376 example 383 example 384 example 385 example 385 example 387 example 389	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u><u></u>20.08.08 23:43 21.08.08 02:46 21.08.08 13:41 21.08.08 14:47 21.08.08 16:36 21.08.08 16:36 21.08.08 18:04 21.08.08 18:53 21.08.08 21:32 21.08.08 22:52 21.08.08 22:41 21.08.08 23:27 21.08.08 23:57 21.08.08 23:57 21.08.08 23:57 21.08.08 23:57 21.08.08 23:57 21.08.08 23:57 21.08.08 23:57 21.08.08 23:57	Sample Mussim 44 48 40 36 40 40 40 40 40 40 40 40 40 36 40 36 40 36 40 36 40 36	example 428 example 428 example 433 example 436 example 450 example 450 example 450 example 458 example 458 example 464 example 465 example 465 example 466	Guality 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u>22.08.08.23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 05:58 23.08.08 05:59 27.08.08 09:29 27.08.08 09:29 27.08.08 14:18 28.08.08 03:29 28.08.08 03:29 28.08.08 04:10 28.08.08 04:20 28.08.08 04:20 28.08.08 04:50</u>	Buissing 40 44 36 44 36 36 36 36 36 36 36 36 36 36 36 36 36	example 495 example 495 example 500 example 500 example 506 example 512 example 512 example 514 example 523 example 523 example 523 example 527 example 527 example 529	Quality 1 </td <td><u><u>i</u></u> 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:55 29.08.08 07:24 29.08.08 07:24 29.08.08 07:23 29.08.08 08:25 29.08.08 08:45 29.08.08 08:45 29.08.08 08:45</td> <td>84 36 44 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 36 44 36 36 36 36 36 36 36 36 36 36</td>	<u><u>i</u></u> 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:55 29.08.08 07:24 29.08.08 07:24 29.08.08 07:23 29.08.08 08:25 29.08.08 08:45 29.08.08 08:45 29.08.08 08:45	84 36 44 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 36 44 36 36 36 36 36 36 36 36 36 36
example 345 example 345 example 345 example 359 example 363 example 373 example 374 example 374 example 376 example 383 example 385 example 385 example 389 example 398	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u>i</u></u><u><u>i</u></u><u><u>i</u></u><u><u>i</u></u><u></u> 20.08.08 23:43 21.08.08 02:46 21.08.08 13:41 21.08.08 14:47 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:39 21.08.08 21:32 21.08.08 21:32 21.08.08 22:45 21.08.08 23:27 21.08.08 23:27 22.08.08 00:47 22.08.08 00:25	Sample Mission 44 44 48 40 36 40 40 40 40 40 40 36 44 36 40 36 44 36 40 44 36 40 44 36 40 44	example 428 example 428 example 433 example 433 example 432 example 450 example 450 example 455 example 455 example 458 example 456 example 461 example 466 example 465 example 466 example 467 example 469	Guality 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	the second	Wissing 40 44 36 44 36 36 36 36 36 36 36 36 36 36 36 44 36 44 36 44	example 495 example 495 example 498 example 501 example 501 example 512 example 513 example 514 example 514 example 522 example 523 example 522 example 529 example 529 example 533	Quality 1 </td <td>ż Bł 28.08.08 20:20 28.08.08 21:52 28.08.08 21:42 29.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 07:22 29.08.08 07:22 29.08.08 07:22 29.08.08 07:24 29.08.08 08:20 29.08.08 08:20 29.08.08 08:22 29.08.08 08:22 29.08.08 12:22 29.08.08 13:04 25.08.08 13:04</td> <td>Buissing 44 44 44 44 36 484 36 444 36 444 36 444 36 444 36 444 36 366 34 366 36</td>	ż Bł 28.08.08 20:20 28.08.08 21:52 28.08.08 21:42 29.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 07:22 29.08.08 07:22 29.08.08 07:22 29.08.08 07:24 29.08.08 08:20 29.08.08 08:20 29.08.08 08:22 29.08.08 08:22 29.08.08 12:22 29.08.08 13:04 25.08.08 13:04	Buissing 44 44 44 44 36 484 36 444 36 444 36 444 36 444 36 444 36 366 34 366 36
example 345 example 345 example 347 example 363 example 370 example 376 example 376 example 375 example 376 example 383 example 384 example 385 example 385 example 389 example 398 example 398 example 398	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u>i</u></u> 20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 14:47 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 21:32 21.08.08 21:32 21.08.08 22:25 21.08.08 23:27 21.08.08 23:57 22.08.08 00:47 22.08.08 00:47 22.08.08 03:18	Wissing 44 48 40 36 40 36 40 36 44 36 44 36 40 36 44 36 40 36 40 36 40 36 40 36 40 36 40 36 40 36 40 36 40 36	example 428 example 438 example 438 example 436 example 442 example 450 example 451 example 459 example 459 example 469 example 464 example 466 example 467 example 467 example 467	Guality -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	i 22.08.08 23:49 23.08.08 04:52 23.08.08 05:59 25.08.08 09:59 27.08.08 09:59 27.08.08 09:29 27.08.08 15:29 27.08.08 15:29 27.08.08 09:29 27.08.08 04:54 28.08.08 04:20 28.08.08 04:54 28.08.08 06:59 28.08.08 06:59	Wissing 40 44 36 40 44 36	example 495 example 498 example 500 example 501 example 511 example 513 example 514 example 522 example 522 example 522 example 523 example 529 example 531 example 534	I I Outsite I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I </td <td><u>i</u> <u>i</u> <u>i</u> <u>i</u> 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 07:22 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 08:31</td> <td>44 44 48 48 48 48 48 48 48 48 48 48 48 4</td>	<u>i</u> <u>i</u> <u>i</u> <u>i</u> 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 07:22 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 08:31	44 44 48 48 48 48 48 48 48 48 48 48 48 4
example 345 example 345 example 345 example 359 example 370 example 373 example 374 example 374 example 375 example 383 example 385 example 385 example 385 example 389 example 389 example 392 example 392 example 404	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u>i</u></u><u><u>i</u></u><u><u>i</u></u><u><u>i</u></u> 20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 18:04 21.08.08 18:04 21.08.08 18:05 21.08.08 18:53 21.08.08 21:32 21.08.08 21:32 21.08.08 22:57 21.08.08 23:57 21.08.08 23:57 22.08.08 00:47 22.08.08 05:21	Wissing 44 48 40 36 40 36 40 36 44 36 44 36 40 36 44 36 40 36 36 36 36 36 36 36 36	example 428 example 428 example 438 example 436 example 450 example 451 example 455 example 458 example 468 example 461 example 464 example 466 example 469 example 477	Attien of the second se	E E C E C	Wissing 40 44 36 44 36 44 36 44 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37	example 495 example 495 example 500 example 500 example 506 example 512 example 512 example 514 example 523 example 523 example 523 example 523 example 533 example 533	Interface Construction Interface Interface Interface Interface Interface	<u>i</u> 28.08.08 20:20 28.08.08 21:52 28.08.08 21:42 29.08.08 23:42 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:55 29.08.08 05:55 29.08.08 07:24 29.08.08 07:24 29.08.08 07:23 29.08.08 08:45 29.08.08 08:45 29.08.08 13:24 29.08.08 13:27	44 44 44 44 44 44 44 44 44 48 48 48 48 4
example 345 example 345 example 345 example 359 example 359 example 373 example 373 example 374 example 375 example 383 example 383 example 385 example 385 example 382 example 392 example 392 example 404 example 406	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	E E C	Buissing Multiple 44 48 40 36 40 40 36 40 44 36 44 36 40 36 44 36 40 36 40 36 40 40 36 40 40 40 36 40	example 428 example 428 example 433 example 433 example 432 example 450 example 450 example 455 example 455 example 458 example 458 example 460 example 461 example 466 example 465 example 466 example 467 example 469 example 470 example 470	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	the second	Buissing 40 44 36 44 36 36 36 36 36 40 36 36 44 44 36 36 36 36 36 36 36 36 36 36 36 36 36	example 495 example 498 example 500 example 501 example 512 example 513 example 514 example 514 example 513 example 522 example 522 example 522 example 522 example 523 example 533 example 534 example 538	11 11 11 11 11 11 11 11 11 11 11 11 11	the second	44 44 44 48 48 48 48 48 48 48 48 48 48 4
Example 345 example 345 example 347 example 363 example 373 example 373 example 374 example 375 example 374 example 375 example 383 example 384 example 385 example 389 example 389 example 398 example 400 example 400 example 407	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u>i</u></u> 20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 21:32 21.08.08 21:32 21.08.08 22:25 21.08.08 23:27 21.08.08 23:27 22.08.08 03:18 22.08.08 00:35 22.08.08 05:32 22.08.08 br>20.08 05:32 20.08 05:32 20.08 05:32 20.0	Santes 44 40 36 40 40 40 40 40 40 40 40 40 40 40 40 36 44 36 40 36 40 36 40 36 40 36 36 36 36 36 36 36	example 428 example 438 example 438 example 436 example 450 example 450 example 451 example 459 example 459 example 460 example 464 example 466 example 467 example 477 example 479	Automatical and a series of a	i 22.08.08 23:49 23.08.08 04:52 23.08.08 05:59 25.08.08 09:29 27.08.08 05:59 27.08.08 09:29 27.08.08 14:18 27.08.08 22:58 28.08.08 03:04 28.08.08 03:04 28.08.08 04:20 28.08.08 04:20 28.08.08 04:54 28.08.08 06:39 28.08.08 06:39 28.08.08 06:56 28.08.08 10:32 28.08.08 10:32 28.08.08 10:32 28.08.08 10:32 28.08.08 10:32 28.08.08 10:32 28.08.08 11:19	Sense Sense 40 44 36 44 36 44 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 36 38 39	example 495 example 498 example 500 example 501 example 501 example 511 example 513 example 514 example 522 example 522 example 522 example 523 example 533 example 538 example 538	Image: Constraint of the sector of	<u>i</u> 28.08.08 20:20 28.08.08 21:52 28.08.08 23:40 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 07:22 29.08.08 07:22 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 13:04 29.08.08 13:04 29.08.08 13:04 29.08.08 13:14 29.08.08 14:18 29.08.08 14:30	Buissing 44 44 44 46 48 48 100 84 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36
example 345 example 345 example 345 example 359 example 359 example 373 example 373 example 374 example 375 example 383 example 383 example 385 example 385 example 389 example 392 example 392 example 404 example 406	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	E E C	Buissing Multiple 44 48 40 36 40 40 36 40 44 36 44 36 40 36 44 36 40 36 40 36 40 40 36 40 40 40 36 40	example 428 example 428 example 433 example 436 example 450 example 451 example 458 example 459 example 459 example 464 example 464 example 465 example 466 example 466 example 467 example 477 example 478 example 478 example 478 example 478	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	the second	Buissing 40 44 36 44 36 36 36 36 36 40 36 36 44 44 36 36 36 36 36 36 36 36 36 36 36 36 36	example 495 example 495 example 500 example 501 example 506 example 512 example 514 example 514 example 516 example 523 example 523 example 523 example 534 example 534	11 11 11 11 11 11 11 11 11 11 11 11 11	the second	44 44 44 48 48 48 48 48 48 48 48 48 48 4
Example 345 example 345 example 359 example 359 example 373 example 373 example 374 example 374 example 375 example 383 example 384 example 385 example 385 example 389 example 389 example 389 example 389 example 389 example 389 example 400 example 400	11 -11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u>i</u></u><u><u>i</u></u><u><u>i</u></u><u><u>i</u></u> 20.08.08 23:43 21.08.08 02:46 21.08.08 13:11 21.08.08 14:47 21.08.08 18:04 21.08.08 18:04 21.08.08 18:04 21.08.08 18:39 21.08.08 18:53 21.08.08 21:25 21.08.08 22:25 21.08.08 22:25 21.08.08 22:25 21.08.08 23:57 22.08.08 00:47 22.08.08 00:47 22.08.08 05:21 22.08.08 05:32 22.08.08 05:32 22.08.08 07:04	Buissing Main 44 48 40 36 40 40 40 40 40 40 40 40 40 40 36 40 40 36 40 36 40 36 40 36 40 36 36 36 36 36 36 36 36 36	example 428 example 438 example 438 example 436 example 450 example 450 example 451 example 459 example 459 example 460 example 464 example 466 example 467 example 477 example 479	Automatical and an and an an an an an an an an an an an an an	<u>i</u> 22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 05:58 23.08.08 09:29 27.08.08 09:29 27.08.08 04:64 27.08.08 22:58 28.08.08 03:29 28.08.08 03:29 28.08.08 04:50 28.08.08 04:50 28.08.08 04:50 28.08.08 05:50 28.08.08 05:50 28.08.08 05:50 28.08.08 05:50 28.08.08 05:50 28.08.08 10:28 28.08.08 10:28 28.08.08 10:28 28.08.08 16:43	Buissim 40 44 36 44 36 40 44 36 36 36 36 36 36 36 36 44 43 36 36 36 36 36 36 36 36 36 36 36 36 36	example 495 example 498 example 500 example 501 example 501 example 511 example 513 example 514 example 522 example 522 example 522 example 523 example 533 example 538 example 538	1. 0 anity 0 a	<u>i</u> 28.08.08 20:20 28.08.08 21:52 28.08.08 21:42 29.08.08 03:24 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:55 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 08:45 29.08.08 13:04 29.08.08 13:14 29.08.08 13:27 29.08.08 14:18 29.08.08 14:18 29.08.08 14:18	Sontex 44 444 44 464 48 488 48 400 84 366 44 366 444 366 444 366 444 366 444 366 444 366 444 366 448 366 448 366 436 366 366
example 345 example 345 example 345 example 359 example 359 example 373 example 373 example 374 example 374 example 375 example 383 example 384 example 385 example 385 example 392 example 404 example 404 example 404 example 404 example 404	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	E E C	Suissim 44 40 40 40 40 40 40 40 40 40 40 40 36 44 36 44 36 40 40 40 36 40 36 36 36 36 36 36 36	example 428 example 428 example 433 example 433 example 432 example 450 example 450 example 455 example 455 example 458 example 458 example 456 example 460 example 466 example 466 example 467 example 469 example 470 example 479 example 479 example 479 example 487	Automatical and a series of a	the second	Supervision 44 36 44 36 40 44 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 38 44 36 39 36 39 36 39 44	example 495 example 495 example 501 example 501 example 501 example 512 example 513 example 514 example 513 example 522 example 522 example 522 example 523 example 533 example 533 example 538 example 538 example 538 example 539 example 539 example 541	1. 0uality 1. 1. 0uality 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ż B 28.08.08 20:20 28.08.08 21:52 28.08.08 21:42 29.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 07:22 29.08.08 07:22 29.08.08 07:24 29.08.08 08:20 29.08.08 08:20 29.08.08 08:21 29.08.08 13:24 29.08.08 13:41 29.08.08 13:41 29.08.08 13:41 29.08.08 13:41 29.08.08 14:18 29.08.08 14:18 29.08.08 14:50 29.08.08 14:50 29.08.08 15:51 29.08.08 15:51	Buissing 444 444 36 48 48 36 444 36 444 36 444 36 444 36 444 36 444 36 444 36 444 36
Example 345 example 345 example 347 example 363 example 373 example 374 example 374 example 375 example 378 example 383 example 384 example 385 example 382 example 382 example 388 example 388 example 388 example 388 example 388 example 398 example 400 example 400 example 400 example 400 example 400 example 400	1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u>iii</u> <u>iiiiiiiiiiiiiiiiiiiiiiii</u>	Supervision Supervision 44 44 48 40 40 36 40 36 40 36 40 36 40 36 36 40 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36	example 428 example 438 example 438 example 438 example 432 example 450 example 450 example 451 example 459 example 459 example 461 example 464 example 466 example 467 example 470 example 479 example 479 example 484 example 484	Automatical and a series of a	<u>i</u> 22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 25.08.08 09:29 27.08.08 05:59 27.08.08 09:29 27.08.08 15:29 27.08.08 14:18 27.08.08 22:58 28.08.08 03:04 28.08.08 03:04 28.08.08 04:20 28.08.08 04:20 28.08.08 04:20 28.08.08 04:54 28.08.08 06:39 28.08.08 06:56 28.08.08 10:32 28.08.08 10:32 28.08.08 11:19 28.08.08 17:32 28.08.08 17:32	samplex 44 36 36 40 44 36 40 44 36 56 36 36 36 36 36 36 36 39 36 39 38 44 36	example 495 example 498 example 500 example 501 example 501 example 511 example 513 example 514 example 522 example 522 example 522 example 522 example 523 example 533 example 533 example 538 example 538 example 539 example 541 example 542	1	ż B 28.08.08 20:20 28.08.08 21:52 28.08.08 21:52 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 05:54 29.08.08 07:22 29.08.08 07:22 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 13:41 29.08.08 13:04 29.08.08 13:04 29.08.08 13:04 29.08.08 13:04 29.08.08 13:14 29.08.08 14:18 29.08.08 15:41 29.08.08 15:41 29.08.08 15:41 29.08.08 15:41 29.08.08 15:41 29.08.08 15:41 29.08.08 15:41 29.08.08 15:41	Buissilw 444 464 464 366 488 366 444 366 444 366 444 366 444 366 444 366 444 366 444 366 444 366 444 366 444 366 444 366 444 366 444 366 444 366 444
Example 345 example 345 example 359 example 359 example 363 example 373 example 374 example 374 example 375 example 383 example 384 example 385 example 385 example 385 example 389 example 389 example 389 example 400 example 400 example 402 example 402 example 402 example 403 example 404 example 404 example 408 example 414 example 421	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	<u><u>i</u></u> 20.08.08 23:43 21.08.08 02:46 21.08.08 13:41 21.08.08 13:41 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 18:05 21.08.08 21:32 21.08.08 22:41 21.08.08 22:41 21.08.08 22:41 21.08.08 22:57 22.08.08 00:47 22.08.08 05:21 22.08.08 10:37	Samples Samples Buissilw 44 44 48 40 36 40 40 40 36 40 40 40 40 36 44 40 36 44 36 40 40 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36	example 428 example 428 example 438 example 436 example 450 example 450 example 451 example 459 example 459 example 464 example 464 example 465 example 466 example 466 example 466 example 466 example 467 example 469 example 477 example 479 example August 2014	i 22.08.08 23:49 23.08.08 04:52 23.08.08 05:58 23.08.08 09:29 27.08.08 09:29 27.08.08 00:46 27.08.08 14:18 27.08.08 22:58 28.08.08 03:29 28.08.08 03:29 28.08.08 04:50 28.08.08 04:50 28.08.08 04:50 28.08.08 06:56 28.08.08 06:50 28.08.08 06:50 28.08.08 06:50 28.08.08 06:50 28.08.08 06:50 28.08.08 10:28 28.08.08 10:28 28.08.08 11:19 28.08.08 17:22 28.08.08 18:25 28.08.08	sample Aug duissilw 444 436 444 436 566 566 566 400 366 444 366 436 366 444 366 444 366 336 444 336 344 336 369 338 399 348 444 366 400	example 495 example 495 example 500 example 500 example 511 example 512 example 512 example 514 example 523 example 523 example 523 example 523 example 533 example 538 example 539 example 539 example 539 example 539 example 539 example 539 example 539 example 539 example 539 example 540 example 542 example 543	алана ана ана ана ана ана ана ана ана ан	ju Bit 28.08.08 20:20 28.08.08 20:20 28.08.08 21:52 28.08.08 21:52 28.08.08 23:42 29.08.08 03:27 29.08.08 05:54 29.08.08 05:54 29.08.08 05:55 29.08.08 05:55 29.08.08 05:54 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 07:24 29.08.08 08:25 29.08.08 08:25 29.08.08 08:24 29.08.08 08:24 29.08.08 13:24 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 13:14 29.08.08 15:01 29.08.08 15:01 29.08.08 15:01 29.08.08 15:01 29.08.08 15:02 29.08.08 16:26	Buissim 44 44 36 44 36 48 100 84 36 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 36 48 36 36 48 44 44	

 Table A.8
 Eliminated examples/vectors with more than 6 % of missing values (SECOM data set)

Table A.8 (continued)

Example No.	Quality ass.	Time- stamp	Missing values	Example No.	Quality ass.	Time- stamp	Missing values	Example No.	Quality ass.	Time- stamp	Missing values
example 552	-1		36	example 602	1		48	example 657	-1	02.09.08 03:33	36
example 553	-1		40	example 605	-1		36	example 659	-1	02.09.08 03:35	48
example 554 example 555	-1	30.08.08 00:57 30.08.08 01:29	36 36	example 606 example 608	-1	31.08.08 10:59 31.08.08 11:03	36 40	example 660 example 662	-1	02.09.08 04:19 02.09.08 05:46	48
example 555	-1	30.08.08 02:08	36	example 610	-1	31.08.08 15:13	36	example 663	-1	02.09.08 06:03	40
example 550	-1	30.08.08 02:22	48	example 611	-1	31.08.08 16:32	44	example 664	-1	02.09.08 06:19	40
example 558	-1	30.08.08 02:32	36	example 612	-1	31.08.08 20:24	36	example 666	-1	02.09.08 06:48	43
example 559	-1	30.08.08 02:39	36	example 614	-1	31.08.08 21:46	40	example 667	-1	02.09.08 07:22	36
example 564	-1	30.08.08 04:55	44	example 615	-1	31.08.08 21:58	36	example 671	-1	02.09.08 09:36	44
example 565	-1	30.08.08 05:05	48	example 617	-1	31.08.08 22:48	40	example 676	-1	02.09.08 10:33	40
example 567	-1	30.08.08 05:38	44	example 620	-1	01.09.08 00:39	40	example 677	-1	02.09.08 11:08	52
example 571	-1	30.08.08 08:10	48	example 621	-1	01.09.08 00:45	36	example 679	-1	02.09.08 11:47	40
example 575	-1	30.08.08 09:13	36	example 624	-1	01.09.08 05:32	39	example 680	-1	02.09.08 11:49	48
example 579	-1	30.08.08 10:16	48	example 627	-1	01.09.08 06:52	36	example 681	-1	02.09.08 12:01	52
example 582	-1	30.08.08 11:18	40	example 628	-1	01.09.08 08:18	36	example 683	-1	02.09.08 12:26	36 52
example 583	-1	30.08.08 11:57 30.08.08 14:23	36 36	example 635	-1	01.09.08 19:54 01.09.08 20:51	40	example 684 example 685	-1	02.09.08 12:30 02.09.08 12:44	36
example 585 example 586	-1	30.08.08 14:23	44	example 636	-1	01.09.08 20:51	40		-1	02.09.08 12:44	36
example 580 example 587	-1	30.08.08 14:37	36	example 637 example 638	-1	01.09.08 22:05	40	example 686 example 687	-1	02.09.08 13:03	44
example 587	-1	30.08.08 15:50	51	example 641	-1	01.09.08 23:28	40	example 688	-1	02.09.08 13:08	44
example 590	-1	30.08.08 15:57	40	example 643	-1	01.09.08 23:45	40	example 690	-1	02.09.08 14:09	40
example 593	-1	30.08.08 17:05	40	example 647	-1	02.09.08 00:46	44	example 697	-1	02.09.08 16:58	44
example 595	-1	30.08.08 19:21	44	example 648	-1	02.09.08 01:09	44	example 698	-1	02.09.08 17:10	48
example 598	-1	30.08.08 20:53	48	example 650	-1	02.09.08 01:10	40	example 701	-1	02.09.08 18:52	84
example 600	-1	30.08.08 23:51	36	example 652	-1	02.09.08 01:50	40	example 702	-1	02.09.08 19:18	44
example 601	-1	31.08.08 02:57	40	example 656	-1	02.09.08 02:52	39	example 703	-1	02.09.08 20:18	36
Example No.	Quality ass.	Time- stamp	Missing values	Example No.	Quality ass.	Time- stamp	Missing values	Example No.	Quality ass.	Time- stamp	Missing values
example 707	-1	03.09.08 00:18	40	example 808	-1	12.09.08 13:08	64	example 1008	-1	22.09.08 10:43	40
example 708	-1	03.09.08 00:45	39	example 810	-1	12.09.08 15:40	36	example 1012	-1	22.09.08 13:03	36
example 710	-1	03.09.08 01:15	48 36	example 811	-1	12.09.08 16:23 12.09.08 20:28	99 96	example 1016	-1	22.09.08 16:25 24.09.08 07:23	36
example 719 example 721	-1	03.09.08 18:16	40	example 815	-1	12.09.08 20:28	36	example 1055 example 1076	-1	25.09.08 07:23	92 40
example 721 example 722	-1	03.09.08 20:10	40	example 828 example 830	-1	13.09.08 12:48	40	example 1078 example 1140	-1	27.09.08 20:46	36
example 722 example 729	-1	04.09.08 08:01	36	example 832	-1	13.09.08 20:06	40	example 1140 example 1141	-1	27.09.08 20:46	52
example 725	-1	04.09.08 16:30	36	example 841	-1	14.09.08 19:13	36	example 1141 example 1153	-1	28.09.08 17:05	100
example 733	-1	04.09.08 16:56	48	example 842	-1	14.09.08 20:00	36	example 1207	-1	30.09.08 23:34	76
example 734	-1	04.09.08 17:30	40	example 847	-1	15.09.08 02:04	84	example 1235	-1	02.10.08 07:58	68
example 736	-1	05.09.08 21:48	88	example 849	-1						
example 738	-1	07.09.08 00:12	40			15.09.08 11:40	36	example 1356	-1	06.10.08 08:57	36
example 744	-1			example 855	-1	15.09.08 11:40	36 40	example 1356 example 1372	-1		36 36
oupports 7F4		07.09.08 18:02	36	example 855 example 857	-			example 1356 example 1372 example 1449		06.10.08 08:57 06.10.08 17:26 10.10.08 12:30	
jexample /51	-1	07.09.08 18:02 07.09.08 23:33	36 40		-1	15.09.08 22:13	40	example 1372	-1	06.10.08 17:26	36
example 751 example 752	-1 -1			example 857	-1 -1	15.09.08 22:13 15.09.08 22:54	40 36	example 1372 example 1449	-1 -1	06.10.08 17:26 10.10.08 12:30	36 36
		07.09.08 23:33	40	example 857 example 862	-1 -1 -1	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52	40 36 44	example 1372 example 1449 example 1451	-1 -1 -1	06.10.08 17:26 10.10.08 12:30 10.10.08 15:50	36 36 40 44 36
example 752 example 753 example 765	-1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33	40 40 72 40	example 857 example 862 example 866 example 867 example 874	-1 -1 -1 -1 -1 -1	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28	40 36 44 40 44 36	example 1372 example 1449 example 1451 example 1460 example 1462 example 1468	-1 -1 -1 -1 -1 -1	06.10.08 17:26 10.10.08 12:30 10.10.08 15:50 11.10.08 07:42 11.10.08 14:43 12.10.08 01:50	36 36 40 44 36 36
example 752 example 753 example 765 example 767	-1 -1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36	40 40 72 40 40	example 857 example 862 example 866 example 867 example 874 example 878	-1 -1 -1 -1 -1 -1 -1 -1	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43	40 36 44 40 44 36 36	example 1372 example 1449 example 1451 example 1460 example 1462 example 1468 example 1470	-1 -1 -1 -1 -1 -1 -1 -1	06.10.08 17:26 10.10.08 12:30 10.10.08 15:50 11.10.08 07:42 11.10.08 14:43 12.10.08 01:50 12.10.08 03:21	36 36 40 44 36 36 36 40
example 752 example 753 example 765 example 767 example 769	-1 -1 -1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36 08.09.08 22:17	40 40 72 40 40 40	example 857 example 862 example 866 example 867 example 874 example 878 example 885	-1 -1 -1 -1 -1 -1 -1 -1	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 10:48	40 36 44 40 44 36 36 36	example 1372 example 1449 example 1451 example 1460 example 1462 example 1468 example 1470 example 1543	-1 -1 -1 -1 -1 -1 -1 -1 -1	06.10.08 17:26 10.10.08 12:30 10.10.08 15:50 11.10.08 07:42 11.10.08 14:43 12.10.08 01:50 12.10.08 03:21 15.10.08 22:54	36 36 40 44 36 36 40 52
example 752 example 753 example 765 example 767 example 769 example 780	-1 -1 -1 -1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36 08.09.08 22:17 11.09.08 00:17	40 40 72 40 40 40 40	example 857 example 862 example 866 example 867 example 874 example 878 example 885 example 896	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 10:48 19.09.08 01:57	40 36 44 40 44 36 36 36 36 36	example 1372 example 1449 example 1451 example 1460 example 1462 example 1468 example 1470 example 1543 example 1544	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	06.10.08 17:26 10.10.08 12:30 10.10.08 15:50 11.10.08 07:42 11.10.08 01:43 12.10.08 01:50 12.10.08 03:21 15.10.08 22:54 15.10.08 23:00	36 36 40 44 36 36 40 52 52
example 752 example 753 example 765 example 767 example 769 example 780 example 786	-1 -1 -1 -1 -1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36 08.09.08 22:17 11.09.08 00:17 11.09.08 09:24	40 40 72 40 40 40 40 44 40	example 857 example 862 example 866 example 867 example 874 example 878 example 885 example 896 example 921	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 10:48 19.09.08 01:57 19.09.08 20:05	40 36 44 40 44 36 36 36 36 44	example 1372 example 1449 example 1451 example 1460 example 1462 example 1468 example 1468 example 1543 example 1544 example 1545	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	06.10.08 17:26 10.10.08 12:30 10.10.08 15:50 11.10.08 07:42 11.10.08 14:43 12.10.08 03:21 15.10.08 23:54 15.10.08 23:45	36 36 40 44 36 36 36 40 52 52 52 48
example 752 example 753 example 765 example 767 example 769 example 780 example 786 example 787	-1 -1 -1 -1 -1 -1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36 08.09.08 22:17 11.09.08 00:17 11.09.08 09:24 11.09.08 12:47	40 40 72 40 40 40 40 40 40 40	example 857 example 862 example 866 example 867 example 874 example 878 example 885 example 896 example 921 example 924	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 10:48 19.09.08 10:57 19.09.08 20:05	40 36 44 40 44 36 36 36 36 36 44 36	example 1372 example 1449 example 1451 example 1460 example 1462 example 1468 example 1470 example 1543 example 1544	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	06.10.08 17:26 10.10.08 12:30 11.10.08 07:42 11.10.08 07:42 11.10.08 14:43 12.10.08 01:50 12.10.08 03:21 15.10.08 22:54 15.10.08 23:00 15.10.08 23:45	36 36 40 44 36 36 40 52 52 52 52 48 48
example 752 example 753 example 765 example 767 example 769 example 780 example 786 example 787 example 792	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36 08.09.08 22:17 11.09.08 00:17 11.09.08 09:24 11.09.08 12:47	40 40 72 40 40 40 40 40 40 36	example 857 example 862 example 866 example 867 example 874 example 878 example 885 example 896 example 896 example 921 example 924 example 929	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 01:43 19.09.08 01:57 19.09.08 20:17 19.09.08 20:17	40 36 44 40 44 36 36 36 36 36 36 44 36 68	example 1372 example 1449 example 1451 example 1462 example 1462 example 1468 example 1543 example 1544 example 1545 example 1546	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	06.10.08 17:26 10.10.08 12:30 10.10.08 15:50 11.10.08 07:42 11.10.08 07:42 12.10.08 07:45 12.10.08 07:45 12.10.08 07:45 15.10.08 22:54 15.10.08 23:45 16.10.08 02:16	36 36 40 44 36 36 40 52 52 52 52 48 48 48 48
example 752 example 753 example 765 example 767 example 769 example 780 example 786 example 787 example 792 example 794	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36 08.09.08 22:17 11.09.08 00:17 11.09.08 09:24 11.09.08 15:05 11.09.08 16:28	40 40 72 40 40 40 40 40 40 40 36 36	example 857 example 862 example 866 example 874 example 878 example 878 example 878 example 878 example 989 example 921 example 929 example 929	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 10:48 19.09.08 10:48 19.09.08 10:45 19.09.08 20:15 19.09.08 20:15 19.09.08 21:14 20.09.08 12:36	40 36 44 40 44 36 36 36 36 36 44 36 68 44	example 1372 example 1449 example 1451 example 1460 example 1460 example 1460 example 1543 example 1544 example 1545 example 1547 example 1547 example 1547	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	06.10.08 17:26 10.10.08 12:30 10.10.08 12:50 11.10.08 07:42 11.10.08 07:42 11.00.80 07:42 12.10.08 03:21 15.10.08 22:54 15.10.08 22:54 16.10.08 02:16 16.10.08 02:16	36 36 40 44 36 36 36 40 52 52 52 52 48 48 48 48 60
example 752 example 753 example 765 example 769 example 780 example 786 example 787 example 792 example 794 example 795	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36 08.09.08 21:36 08.09.08 22:37 11.09.08 09:74 11.09.08 19:74 11.09.08 15:75 11.09.08 15:28 11.09.08 15:28	40 40 72 40 40 40 40 40 36 36 36	example 857 example 862 example 866 example 874 example 874 example 878 example 885 example 921 example 924 example 949 example 951	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 01:43 19.09.08 01:43 19.09.08 20:05 19.09.08 20:17 19.09.08 21:14 20.09.08 11:40	40 36 44 40 44 36 36 36 36 36 36 44 36 68 44 36 68 44 36	example 1372 example 1449 example 1450 example 1460 example 1460 example 1468 example 1540 example 1545 example 1545 example 1546 example 1548 example 1549	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	$\begin{array}{c} 06.10.08 \ 17:26\\ 10.10.08 \ 12:30\\ 10.10.08 \ 15:50\\ 11.10.08 \ 07:42\\ 11.10.08 \ 07:42\\ 12.10.08 \ 01:50\\ 12.10.08 \ 03:21\\ 15.10.08 \ 22:54\\ 15.10.08 \ 22:54\\ 15.10.08 \ 22:54\\ 16.10.08 \ 02:16\\ 16.10.08 \ 02:17\\ 16.10.08 \ 02:27\\ \end{array}$	36 36 40 44 36 36 36 40 52 52 52 52 48 48 48 48 60 52
example 752 example 753 example 767 example 767 example 769 example 786 example 787 example 792 example 792 example 795 example 795 example 802	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 00:40 08.09.08 21:36 08.09.08 21:36 08.09.08 22:17 11.09.08 00:17 11.09.08 00:17 11.09.08 15:28 11.09.08 15:28	40 40 72 40 40 40 40 40 40 40 40 40 40 40 40 40	example 857 example 862 example 866 example 874 example 878 example 878 example 896 example 921 example 924 example 929 example 949 example 951 example 951 example 951	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 01:43 19.09.08 01:43 19.09.08 01:57 19.09.08 20:77 19.09.08 21:76 20.09.08 14:00 21.09.08 14:00	40 36 44 40 44 36 36 36 36 36 36 36 36 44 36 68 44 36 68 44 36 92 82 82 82 82 82 82 82 82 82 8	example 1372 example 1449 example 1450 example 1460 example 1462 example 1462 example 1543 example 1543 example 1545 example 1545 example 1546 example 1549 example 1549 example 1549 example 1549 example 1549	Quality Construction Constructi	06.10.08 17:26 10.10.08 17:30 10.10.08 15:50 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 12.10.08 03:21 15.10.08 22:54 15.10.08 22:16 16.10.08 02:16 16.10.08 02:25 16.10.08 02:25 <u> <u> <u> </u> <u> <u> <u> </u> <u> </u> <u> <u> </u> <u> </u> <u> </u> <u> </u> </u></u></u></u></u>	36 36 36 40 44 36 36 40 52 52 52 52 56 50 56 52 56 56 56 56 56 56
example 752 example 753 example 765 example 767 example 780 example 780 example 780 example 787 example 787 example 792 example 795 example 802 example 502 example 502	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 00:40 08.09.08 21:36 08.09.08 21:36 08.09.08 22:17 11.09.08 00:74 11.09.08 10:28 11.09.08 15:05 11.09.08 15:05 11.09.08 15:05 11.09.08 15:05 11.09.08 21:13 12.09.08 06:41	40 40 72 40 40 40 40 40 40 40 40 36 36 36 36 36 48 60	example 857 example 862 example 866 example 867 example 874 example 878 example 878 example 986 example 921 example 929 example 929 example 949 example 956 example 956	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 18:23 16.09.08 19:34 17.09.08 07:43 18.09.08 07:43 18.09.08 07:43 19.09.08 20:15 19.09.08 20:15 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 21:14 20.09.08 18:12 21.09.08 18:12 21.09.08 18:12	40 36 44 40 44 36 36 36 36 36 36 36 36 36 36	example 1372 example 1449 example 1451 example 1460 example 1462 example 1462 example 1543 example 1543 example 1544 example 1546 example 1548 example 1549 example 1550 example 1550 example 1563	1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	06.10.08 17:26 10.10.08 12:30 10.10.08 12:50 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 12.10.08 03:21 15.10.08 22:54 15.10.08 22:54 15.10.08 22:16 16.10.08 02:16 16.10.08 02:17 16.10.08 02:55 igent 16.10.08 15:13	36 36 40 44 36 36 40 52 52 48 48 48 60 52 56 56 52 56 52 52 56 52
example 752 example 753 example 767 example 769 example 786 example 786 example 787 example 792 example 794 example 795 example 802 example 1552 example 1553	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	07.09.08 23:33 08.09.08 00:32 08.09.08 00:32 08.09.08 00:40 08.09.08 22:17 11.09.08 00:17 11.09.08 00:17 11.09.08 00:17 11.09.08 12:05 11.09.08 12:05 11.09.08 12:05 11.09.08 12:05 11.09.08 06:41 <u><u><u>u</u></u><u>u</u><u>u</u><u>u</u><u>u</u><u>u</u><u>u</u><u>u</u><u>u</u><u>u</u><u>u</u><u>u</u><u></u></u>	40 40 72 40 40 40 40 40 40 40 36 36 36 36 36 36 36 60 60	example 857 example 862 example 8662 example 867 example 874 example 878 example 878 example 929 example 929	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 18:23 16.09.08 01:43 18.09.08 01:43 18.09.08 01:43 19.09.08 01:57 19.09.08 20:15 19.09.08 20:15 19.09.08 20:15 19.09.08 21:14 20.09.08 12:13 20.09.08 12:13 20.09.08 12:14 20.09.08 12:14	40 36 44 40 44 36 36 36 36 36 36 44 36 68 44 36 92 92 48 52	example 1372 example 1449 example 1451 example 1460 example 1462 example 1462 example 1543 example 1543 example 1544 example 1547 example 1549 example 1549 example 1564 example 1564	1- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06.10.08 17:26 10.10.08 12:30 10.10.08 12:50 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 12.10.08 03:21 15.10.08 22:54 15.10.08 22:54 16.10.08 02:16 16.10.08 02:15 16.10.08 02:25 <u>tent</u> 16.10.08 15:13 16.10.08 15:13 16.10.08 20:49	366 366 40 444 366 366 252 525 366 525 525 525
example 752 example 753 example 765 example 766 example 786 example 786 example 786 example 787 example 782 example 792 example 795 example 802 example 1553 example 1554	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 00:40 08.09.08 19:33 08.09.08 21:36 08.09.08 22:17 11.09.08 00:17 11.09.08 00:17 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 06:41 16.10.08 04:02 16.10.08 04:02 16.10.08 04:04	40 40 72 40 40 40 40 40 40 36 36 36 36 36 36 36 36 36 36 36 36 36	example 857 example 862 example 866 example 874 example 878 example 878 example 886 example 886 example 886 example 886 example 886 example 921 example 929 example 949 example 949 example 949 example 951 example 1558 example 1558	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 18:23 18.09.08 01:43 19.09.08 01:43 19.09.08 01:48 19.09.08 10:48 19.09.08 10:48 19.09.08 20:15 19.09.08 20:15 19.09.08 21:14 20.09.08 12:36 20.09.08 14:00 21.09.08 18:12 <u><u><u><u>u</u></u> <u><u>u</u></u> <u><u>u</u></u> <u><u>u</u></u> 16.10.08 05:13 16.10.08 05:44</u></u>	40 36 44 40 44 36 36 36 36 36 36 44 36 68 44 36 68 44 36 52 48	example 1372 example 1449 example 1450 example 1460 example 1462 example 1462 example 1462 example 1543 example 1543 example 1545 example 1548 example 1549 example 1549 example 1549 example 1550 example 1563	1- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06.10.08 17:26 10.10.08 12:30 10.10.08 12:50 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 15.10.08 22:54 15.10.08 22:54 16.10.08 02:16 16.10.08 02:16 16.10.08 02:15 16.10.08 02:55 <u> <u> <u> u</u> <u> u</u> <u> u</u> <u> u</u> <u> u</u> <u> u</u> <u> u</u></u></u>	366 366 400 444 366 366 400 522 522 488 488 488 600 522 556 Solution 522 552 522 522 522 522
example 752 example 753 example 767 example 767 example 769 example 780 example 787 example 792 example 795 example 795 example 795 example 1553 example 1553 example 1555	-1- -1- -1- -1- -1- -1- -1- -1- -1- -1-	07.09.08 23:33 08.09.08 00:32 08.09.08 00:40 08.09.08 00:40 08.09.08 21:36 08.09.08 21:36 08.09.08 22:17 11.09.08 00:27 11.09.08 00:24 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 15:28 11.09.08 16:28 11.09.08 04:44 16.10.08 04:44 16.10.08 04:44	40 40 772 40 40 40 44 44 40 40 36 36 36 36 36 48 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	example 857 example 862 example 862 example 867 example 874 example 874 example 878 example 885 example 986 example 929 example 929 example 959 example 956 example 1558 example 1550 example 1551	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 19:34 17.09.08 07:28 18.09.08 01:43 18.09.08 01:43 18.09.08 01:43 19.09.08 20:15 19.09.08 20:15 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 20:17 19.09.08 21:14 20.09.08 14:00 21.09.08 14:00 21.09.08 14:00 21.09.08 14:00 21.09.08 15:08 16.10.08 05:08	40 36 44 40 44 36 36 36 36 36 36 36 44 36 92 92 92 92 92 92 92 92 92 92 92 92 92	example 1372 example 1449 example 1450 example 1460 example 1460 example 1462 example 1543 example 1543 example 1544 example 1546 example 1547 example 1549 example 1550 example 1563 example 1563 example 1565	1- 1 1 1 1 1 1 1 1 1 1 1 1 1	06.10.08 17:26 10.10.08 17:30 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 11.10.08 12:54 15.10.08 22:54 15.10.08 22:45 16.10.08 02:16 16.10.08 02:16 16.10.08 02:22 16.10.08 02:25 16.10.08 15:13 16.10.08 25:5 16.10.08 25:5 16.10.08 25:5 16.10.08 25:5 16.10.08 25:5 16.10.08 25:5 17.10.08 05:20 17.10.08 05:20 17.1	366 366 400 444 366 366 400 522 526 566 525 525 525 525 5252 5252
example 752 example 753 example 765 example 766 example 786 example 786 example 786 example 787 example 782 example 792 example 795 example 802 example 1553 example 1554	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	07.09.08 23:33 08.09.08 00:32 08.09.08 00:32 08.09.08 00:40 08.09.08 22:17 11.09.08 00:17 11.09.08 00:17 11.09.08 00:17 11.09.08 12:07 11.09.08 12:07 11.09.08 12:07 11.09.08 12:07 11.09.08 06:41 12.09.08 06:41 12.09.08 04:02 16.10.08 04:02 16.10.08 04:50 16.10.08 04:55 16.10.08 04:55	40 40 72 40 40 40 40 40 40 36 36 36 36 36 36 36 36 36 36 36 36 36	example 857 example 862 example 866 example 874 example 878 example 878 example 886 example 886 example 886 example 886 example 886 example 921 example 929 example 949 example 949 example 949 example 951 example 1558 example 1558	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	15.09.08 22:13 15.09.08 22:54 16.09.08 08:52 16.09.08 18:23 16.09.08 18:23 18.09.08 01:43 19.09.08 01:43 19.09.08 01:48 19.09.08 10:48 19.09.08 10:48 19.09.08 20:15 19.09.08 20:15 19.09.08 21:14 20.09.08 12:36 20.09.08 14:00 21.09.08 18:12 <u><u><u><u>u</u></u> <u><u>u</u></u> <u><u>u</u></u> <u><u>u</u></u> 16.10.08 05:13 16.10.08 05:44</u></u>	40 36 44 40 44 36 36 36 36 36 36 44 36 68 44 36 68 44 36 52 48	example 1372 example 1449 example 1450 example 1460 example 1462 example 1462 example 1462 example 1543 example 1543 example 1545 example 1548 example 1549 example 1549 example 1549 example 1550 example 1563	1- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06.10.08 17:26 10.10.08 12:30 10.10.08 12:50 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 11.10.08 07:42 15.10.08 22:54 15.10.08 22:54 16.10.08 02:16 16.10.08 02:16 16.10.08 02:15 16.10.08 02:55 <u> <u> <u> u</u> <u> u</u> <u> u</u> <u> u</u> <u> u</u> <u> u</u> <u> u</u></u></u>	366 366 400 444 366 366 400 522 522 488 488 488 600 522 556 Solution 522 552 522 522 522 522

							-
Feature No.	Σ 'NaN'	Feature No.	Σ 'NaN'	Feature No.	Σ 'NaN'	Feature No.	Σ 'NaN'
feature 1	5	feature 143	1	feature 358	7	feature 544	1
feature 2	4	feature 144	2	feature 359	1027	feature 545	1
feature 3	1	feature 156	9	feature 363	42	feature 546	1
feature 4	1	feature 158	1119	feature 364	42	feature 547	47
feature 5	1	feature 159	1119	feature 383	729	feature 548	47
feature 7	1	feature 220	7	feature 384	729	feature 549	47
feature 8	2	feature 221	1027	feature 385	729	feature 550	47
feature 20	9	feature 225	42	feature 386	592	feature 551	47
feature 41	17	feature 226	42	feature 409	1	feature 552	47
feature 42	17	feature 245	729	feature 410	5	feature 553	47
feature 73	612	feature 246	729	feature 411	4	feature 554	47
feature 74	612	feature 247	729	feature 412	1	feature 555	47
feature 85	7	feature 248	592	feature 413	1	feature 556	47
feature 86	1027	feature 271	1	feature 414	1	feature 557	47
feature 90	42	feature 272	5	feature 416	1	feature 558	47
feature 91	42	feature 273	4	feature 417	2	feature 563	129
feature 110	729	feature 274	1	feature 429	9	feature 564	129
feature 111	729	feature 275	1	feature 492	7	feature 565	129
feature 112	729	feature 276	1	feature 493	1027	feature 566	129
feature 113	592	feature 278	1	feature 497	42	feature 567	129
feature 136	1	feature 279	2	feature 498	42	feature 568	129
feature 137	5	feature 291	9	feature 517	729	feature 569	129
feature 138	4	feature 293	1119	feature 518	729	feature 570	129
feature 139	1	feature 294	1119	feature 519	729	feature 579	703
feature 140	1	feature 346	612	feature 520	592	feature 580	703
feature 141	1	feature 347	612	feature 543	1	feature 581	703
						feature 582	703

 Table A.9
 Eliminated features with missing values on reduced SECOM data set 1239 examples

Table A.10Eliminated features containing more than 5 (>5) missing values on reducedSECOM data set (1239 examples)

Feature No.	Σ 'NaN'	Feature No.	Σ 'NaN'	Feature No.	Σ 'NaN'	Feature No.	Σ 'NaN'
feature 20	9	feature 225	42	feature 386	592	feature 554	47
feature 41	17	feature 226	42	feature 429	9	feature 555	47
feature 42	17	feature 245	729	feature 492	7	feature 556	47
feature 73	612	feature 246	729	feature 493	1027	feature 557	47
feature 74	612	feature 247	729	feature 497	42	feature 558	47
feature 85	7	feature 248	592	feature 498	42	feature 563	129
feature 86	1027	feature 291	9	feature 517	729	feature 564	129
feature 90	42	feature 293	1119	feature 518	729	feature 565	129
feature 91	42	feature 294	1119	feature 519	729	feature 566	129
feature 110	729	feature 346	612	feature 520	592	feature 567	129
feature 111	729	feature 347	612	feature 547	47	feature 568	129
feature 112	729	feature 358	7	feature 548	47	feature 569	129
feature 113	592	feature 359	1027	feature 549	47	feature 570	129
feature 156	9	feature 363	42	feature 550	47	feature 579	703
feature 158	1119	feature 364	42	feature 551	47	feature 580	703
feature 159	1119	feature 383	729	feature 552	47	feature 581	703
feature 220	7	feature 384	729	feature 553	47	feature 582	703
feature 221	1027	feature 385	729				

Annex

	//Local Reposit	ory/processes/SECOM x-val K-	S Opti - final* - RapidMiner 5.3.01	13 @ guest-wireless-upc-nat-206-1	17-88-146.usc.edu	
Elle Edit Process	Icols Yiew Help					
📑 📦 🖬 🕼		D 🔊 🛒 🔍)			
	Result Overview X	1	📓 ParameterSet (Optimize Para		Repositories 14	100
	% PerformanceVector (Perfo	ormance) X	Log X	💡 Kernel Model (SVM) 🚿	8.8 - 8.8 4	
	Text View Annotations				🛱 🌁 💌 🗑 🌖 Samples (nore)	
Criterion Selector	Multiclass Classification	Performance 🔿 Annotations		6	B B DB	
precision recall	Table View Plot	View			E of Local Repository	norsteewwest)
AUC (optimistic)	accuracy: 81.60% +/- 3	7.94% (mikro: 81.61%)				
AUC (pessimistic)		true postive	true negative	class precision		
	pred. postive	72	14	83.72%		
	pred. negative	18	70	79.55%		
	class recall	80.00%	83.33%			
Log × 4					System Monitor	(Yes)
					System Monitor	125 6 61
Mar 20, 2014 9:10:5 Mar 20, 2014 9:31:1	4 AM Information: Loading init 7 AM Information: Saving resu	des.	x -val k -S Opti - final starts x -val K -S Opti - final finished succe	sofully after 20:23	The state of the s	
0						- E - 1

Fig. A.18 SECOM data set x-val result (accuracy)

🗋 🖬 🖬 🖉 🙇 🦛 🖢 🖩 🔳 🔊	2 1		
S PerformanceVector (Performance) 🗵] _ ⊞Log X _](💡 Kernel Model (SVM) 🔣	Repositories × 24 a D
Kesult Overview 🛛	ParameterSet (Optimize Para		
Text View \bigcirc Annotations Parameter Set: Parameter set: Performance:	ve class: negative) 286666556 (mikro: 0.866975388641975 rro: 0.866975386641975) (positive c	5) (positive class: negative) (inss: negative)	The State Control Band Control ontrol Control Control Control Control
6 tog X 25 4 10			System Monitor X 💥 🛛 🗃
Aar 20, 2014 9:10:54 AM Information: Process //Local Repository/proces Aar 20, 2014 9:10:54 AM Information: Loading initial data.	ses/SECOM x-val K-S Opti - final starts		P

Fig. A.19 SECOM x-val results (parameters—last optimization cycle)

-
complete)
programme (
able A.11 Feature ranking RR manufacturing programme (complete
RR
e ranking
Feature
able A.11

Rank TDH(RR)	201 para.5	202 para.37	203 para.30	204 para.39	206 nara 47	207 Dara 56	208 para.27	209 para.44																																				
Rank TDH(RR)		152	153 para.73	156 para.12	156 nara 2			159 para.34	160 para.53	161 para.46		164 para.02	165 para.21		167 para.49					172 para.52			176 para.16	177 para.66	178 para.32	179 para.41		181			185 para.25	186 para.4	187 para.72	100 pera.5/	190 Dara.48	191 para.18	192 para.82	193 para.80	194 para.74	195 para.84	196 para.76		81	200 para.61
Rank TDH(RR)	101 para.DICK.54	102 para.HARRY.18	103 para.HARRY.S	104 para.UICK.9	106 para DiCK 51	107 Dara HARRY 68	108 para.DICK.20	109 para.DICK.48	110 para.HARRY.53	111 para.DICK.12	112 para.HARRY.46	113 para.HAKKY.25 114 para.DKK 14	115 Dara.HARRY.8	116 para.HARRY.54	117 para.23	118 para.DICK.38	119 para.HARRY.20	120 para.6	121 para.HARRY.14	122 para.43	124 Dara HABBY 26	125 para DICK 21	126 para.29	127 para.DICK.41	128 para.DICK.4	129 para.20	130 para.63	131 para.HARRY.38	133 Dara HARRY 44	134 para.14	135 para.83	136 para.DICK.29	137 para.DICK.7	120 para.33	140 para 67	141 para.HARRY.4	142 para.DICK.16	143 para.50	144 para.HARRY.16	145 para.54	146 para.DICK.3	147 para.HARRY.3	148 para.HARRY.35	149 para./1
Rank TDH(RR) R		g		S4 para.markt.02				RY-57		61 para.HARRY.41		64 para.HAKKY.05	RY.12		67 para.DICK.40				71 para.HARRY.59	72 para-HAKKY.19 122 para-43			6.6	77 para.DICK.25	78 para.HARRY.15		RY-21		83 Dara HARRY 48	84 para.HARRY.61	85 para.DICK.10	86 para.38	6	89 Dara DICK 34	e			93 para.HARRY.22	94 para.DICK.17 1	RV.34				100 para.HAKKY.IU
Rank TDH(RR) Ri	1 para.HARRY.67	2 para.DICK.32	3 para.HARRY.11	4 para.UICK.45 6 onto HABBY 7	6 nora HARRY 52	7 para.DICK.33	8 para.HARRY.36	9 para.DICK.24	10 para.HARRY.1	11 para.77	12 para.DICK.26	13 para.HARKY.45 14 para.HARRY.55	15 para.DICK.30	16 para.HARRY.60	17 para.DICK.39	18 para.HARRY.13	19 para.DICK.44	20 para.HARRY.42	21 para.DICK.47	22 para.HARKY.47	26 nors DICK 10	25 Dara.HARRY.28	26 para.DICK.50	27 para.HARRY.37	28 para.DICK.46	29 para.24	30 para.HARRY.43	31 para.DICK.42	32 perd.m/mm1.23	34 para.DICK.11	35 para.HARRY.24	36 para.DICK.2	37 para.HARY.17	30 pera.manki 15 39 pera.manki 15	40 para.75	41 para.HARRY.56	42 para.DICK.36	43 para.HARRY.9	44 para.HARRY.31	45 para.DICK.35	46 para.DICK.49	47 para.HARRY.30	48 para.DICK.1	49 para.HAKKY.bb 50 nara DICK 45 1
Rank TD(RR) R	101 para.40	102 para.46	103 para.51	106 para.54	106 nars 15	107 para 11	108 para.3	109 para.61	110 para.41	111 para.52		114 para.73	115 para.58		117 para.47			120 para.33		122 para 35	174 nars 60	125 para 2	126 para.23	127 para.37	128 para.34	129 para.32	130 para.59	131 para.55			135 para.28	136 para.13	137 para.14	130 para 67	140 para 57	141 para.20								
Rank TD(RR)	51 para.82	52 para.DICK.34	53 para.66	Se para.53	56 nara 64	57 para DICK 5	58 para.DICK.6	59 para.17	60 para.5	61 para.84	62 para.DICK.25	64 para.DICK.10 64 para.DICK.8	65 para.DICK.54	66 para.DICK.20	67 para.31	68 para.DICK.14	69 para.DICK.53	70 para.DICK.46	71 para.8	72 para.DICK.26	74 Mars DICK 28	75 para.18	76 para.DICK.4	77 para.25	78 para.79	79 para.63	80 para.81	81 para.43	83 nara DICK 35	84 para.DICK.3	85 para.77	86 para.10	87 para.87	90 para.03	90 para.48	91 para.16	92 para.60	93 para.42	94 para.49	95 para.65	96 para.4	97 para.22	98 para./5	100 para.12
Rank TD(RR) F	1 para.DICK.43	2 para.DICK.32	3 para.DICK.47	4 para.UICK.42	6 para DiCK 24	7 para DICK 11	8 para.DICK.2	9 para.DICK.52	10 para.DICK.36	11 para.DICK.1	12 para.26	13 para.DICK.45 14 para.DICK.55	15 para.DICK.30	16 para.DICK.13	17 para.DICK.28	18 para.DICK.37	19 para.62	20 para.6	21 para.DICK.23	22 para-DICK.17	24 para./U	25 para.DICK.9	26 para.DICK.39	27 para.DICK.31	28 para.45	29 para.DICK.19	30 para.DICK.50	31 para.DICK.7	32 para DICK 15	34 para.DICK.41	35 para.DICK.12	36 para.DICK.49	37 para.68	30 para./ 39 para Dir'k 27	40 para DICK 21	41 para.DICK.48	42 para.DICK.40	43 para.74	44 para.78	45 para.72	46 para.DICK.51	47 para.76	48 para.80	49 para.UIUK.22 50 para 44
Rank HARRY(RR) R	51 para.HARRY.22	52 para.HARRY.14	53 para.HARRY.34	54 para.markrt.1	56 nora HARRY 18	57 Dara HARRY 10	58 para.HARRY.5	59 para.HARRY.6	60 para.HARRY.38	61 para.HARRY.53	62 para.HARRY.46	64 para-HARRY.4	65 para, HARRY, 44	66 para.HARRY.16	67 para.HARRY.3	68 para.HARRY.35																												
Rank HARRY(RR) F	1 para.HARRY.43	2 para.HARRY.33	3 para HARRY.24	4 para.markt.52 6 open MARPA 47	6 nars HARRY 42	7 Dara HARRY 58	8 para-MARRY.30	9 para HARRY.67	10 para.HARRY.11	11 para.HARRY.2	12 para HARRY.52	13 para HARRY.30 14 para HARRY.64	15 para HARRY.65	16 para HARRY.39	17 para HARRY 45	18 para.HARRY.59	19 para HARRY.55	20 para.HARRY.60	21 para.HARRY.13	22 para HAKKY.19	24 Date HARRY 50	25 para HARRY.37	26 para HARRY 23	27 para.HARRY.17	28 para-HARRY.56	29 para.HARRY.9	30 para.HARRY.15	31 para HARRY.31	33 Dara HARRY 40	34 para HARRY 66	35 para.HARRY.7	36 para-MARRY.29	37 para.HARRY.62	30 para MARRY 41	40 para HARRY 12	41 para HARRY.27	42 para HARRY.68	43 para HARRY 21	44 para.HARRY.25	45 para HARRY.8	46 para.HARRY.54	47 para.HARRY.20	48 para HARRY.61	50 para HARRY 51
	51 para.DICK.14	52 para.DICK.38	53 para.DICK.4	54 para.UICA.10 66 onto DICV 3	56 ners DICK 10																																							
	1 para.DICK.29	2 para.DICK.7	3 para.DICK.41	4 para.UICK.12 6 outs DICK 77	6 hars DICK 21	7 para DICK 48	8 para.DICK.31	9 para.DICK.9	10 para.DICK.56	11 para.DICK.17	12 para.DICK.23	14 para.DICK.51	15 para.DICK.22	16 para.DICK.28	17 para.DICK.34	18 para.DICK.13	19 para.DICK.5	20 para.DICK.6	21 para.DICK.55	22 para.DICK.45	24 Mars DICK 26	25 para.DICK.52	26 para.DICK.2	27 para.DICK.11	28 para.DICK.42	29 para.DICK.47	30 para.DICK.32	31 para.DICK.43	32 para DICK 24	34 para.DICK.53	35 para.DICK.46	36 para.DICK.30	37 para.DICK.26	30 para.DICK 44	40 para DICK 19	41 para.DICK.50	42 para.DICK.15	43 para.DICK.49	44 para.DICK.40	45 para.DICK.18	46 para.DICK.35	47 para.DICK.25	48 para.DICK.8	50 para DICK 30
Rank TOM(RR) Rank TOM(RR) Rank DICK(RR)	51 para.37	52 para.17	53 para.26	54 para.52	56 mars 87	57 para 8	58 para.12	59 para.10	60 para.27	61 para.15	62 para.18	64 para.28	65 para.67	66 para.66	67 para.56	68 para.30	69 para.40	70 para.77	71 para.79	72 para 65	7A mara 71	75 para.4	76 para.7	77 para.72	78 para.74	79 para.70	80 para.80	81 para.82	83 nara 68	84 para.78	85 para.76													
Rank TOM(RR)	1 para.51	2 para.21	3 para-50	4 para.35	a pilled a	7 para 14	8 para 9	9 para.47	10 para.59	11 para.29	12 para 55	13 para.61 14 para.60	15 para.44	16 para.45	17 para.34	18 para.32	19 para.64	20 para.2	21 para.5	22 para 35	24 Para 48	25 para 31	26 para 38	27 para.11	28 para.42	29 para.20	30 para.16	31 para.13	33 Dara 53	34 para 3	35 para.43	36 para-22	37 para.62	30 para.19	40 para 57	41 para 81	42 para.75	43 para.49	44 para.58	45 para.23	46 para.24	47 para 25	48 para.83	49 para./3

(complete)	
programme	
manufacturing	
CHEM 1	
ranking	
Feature	
able A.12	

Rank TDH(CHEM)	99 Parameteri05	100 Parameter133	101 BiologicalMaterial04	Parameteri16	103 Parameteri38	Parameter119	Parameter123	106 Parameteri13	Parameter106	108 Parameteri32	109 Parameterl48	110 Parameteri02	111 Parameteri11	113 Parameteri09	114 Parameteri35	115 Parameteri45	116 Parameteri43	117 Parameteri15	118 Parameteri28	119 Parameteri22	120 Parameteri34	121 Parameteri04	122 Parameteri39	123 Parameteri03	124 Parameteri47	125 Parameter/10	126 Parameteri17	127 ManufacturingProcess31	128 Parameteri31	129 Parameter129 130 Parameter142	Parameter 12	132 Parameteri26	133 Parameter125	134 Parameteri07	135 Parameteri37	136 ManufacturingProcess17	BiologicalMaterial07									
Rank					103	104	105	106															122									132					137	8	80			0 -	0			D
Rank TDH(CHEM)	50 ManufacturingProcess11	51 ManufacturineProcess44	52 ManufacturingProcess03	53 ManufacturingProcess12		55 Parameteri27	56 BiologicalMaterial03	57 BiologicalMaterial09	58 Parameterii27	59 ManufacturingProcess30	60 Parameteri46	61 ManufacturingProcess23		64 ManufacturineProcessed	65 Parameteri40	66 ManufacturingProcess36	67 ManufacturingProcess28	68 ManufacturingProcess35	69 ManufacturingProcess37	70 BiologicalMaterial02	71 ManufacturingProcess45	72 ManufacturingProcess32	73 Parameteri41	74 Parameteri30		2	77 ManufacturingProcess05	78 ManufacturingProcess43	79 Parameteri21	80 ManufacturingProcess06 81 ManufacturingProcess33	82 Parameteri18	83 Parameteri24	84 ManufacturingProcess01	85 Parameteri20	86 ManufacturingProcess20				8	91 Parameteri08 92 Parameteri14	ATLANAUSIN 76	93 ManufacturingProcess10	or promotion	95 ManufacturineProcesc18	97 ManufacturineProcess26	98 Parameteri44
Rank TDH(CHEM)	1 Parameteril29	2 Parameterii11	3 Parameteril13	4 Parameterli32	5 Parameteril02	6 Parameter/109	7 Parameteril28	8 ManufacturingProcess42	9 Parameterii17	10 Parameterii31	11 Parameterii25	12 ParameterII07	13 Parameterii26	15 Parameterii10	16 ManufacturingProcess22	17 Parameteril03	18 Parameter/104	19 Parameterli22	20 Parameterii15	21 Parameteril01	22 BiologicalMaterial10	23 BiologicalMaterial01	24 Parameter/106	25 ParameterII23	26 BiologicalMaterial11	27 ManufacturingProcess04	28 Parameteril19	29 ManufacturingProcess34	30 ManufacturingProcess07	31 BiologicalMaterial06 32 BiologicalMaterial05	33 ManufacturingProcess15	34 ManufacturingProcess21	35 ParameterII16	36 Parameteril05	37 Parameterl114	38 Parameteril08	39 ManufacturingProcess19	40 Parameterii20	41 ManufacturingProcess14	42 ManufacturingProcess41 43 Parameteri134	totalisations of	44 Parameterii18	42 Parameterii.121	47 RiologicalMaterial12	48 RiologicalMaterial08	49 Parameterii30
Rank TD(CHEM)	99 Parameterl 40	100 Parameterl 25	101 Parameterl 07	102 Parameteri 12	103 Parameteri 26	104 Parameterl 37	105 ManufacturingProcess17																																							
Rank TD(CHEM)	50 Parameteri 20	51 Parameteri 13	52 ManufacturingProcess34 101 Parameter107	53 Parameteri 21	54 Parameteri 32	55 Parameteri 30	56 Parameteri 02	57 Parameteri 41	58 ManufacturingProcess09	59 Parameteri 46	60 ManufacturingProcess10	61. Parameteri 09	62 Parameteri 08	65 Parameteri 45	65 Parameteri 43	66 Parameteri 36	67 ManufacturingProcess41	68 Parameteri 28	69 Parameteri 44	70 Parameteri 05	71 Parameteri 34	72 Parameteri 33	73 Parameteri 39	74 Parameteri 16	75 Parameteri 19	76 ManufacturingProcess03	77 ManufacturingProcess27	78 ManufacturingProcess25	79 Parameteri 23	80 BiologicalMaterial02 81 Parameteri 06	82 Parameteri 47	83 Parameteri 48	84 Parameteri 27	85 Parameteri 01	86 BiologicalMaterial11	87 Parameteri 35	88 Parameteri 15	89 ManufacturingProcess01	90 Parameteri 22	91 Parameteri 17 92 Parameteri 04	to Largementation	93 ManufacturingProcess26	or Parameteri us	95 Parameteri 31 96 Parameteri 42	97 ManufacturineProcess37	98 Parameteri 10
	1 Parameter29 1 ManufacturingProcess16 50 Parameteri 20	2 ManufacturineProcess05				6 ManufacturingProcess42	7 ManufacturingProcess13	8 BiologicalMaterial12	9 ManufacturingProcess14	10 ManufacturingProcess22	11 Parameteri 38	12 BiologicalMaterial01	13 ManufacturingProcess38	14 Biologicalmateriation 15 ManufacturineProceeds	16 ManufacturingProcess11	17 BiologicalMaterial07	18 ManufacturingProcess36	19 ManufacturingProcess43	20 ManufacturingProcess15	21 ManufacturingProcess08	22 ManufacturingProcess12	23 BiologicalMaterial10	24 ManufacturingProcess04	25 ManufacturingProcess02	26 ManufacturingProcess07	27 ManufacturingProcess20	28 ManufacturingProcess32	29 ManufacturingProcess28	30 BiologicalMaterial04	31 ManufacturingProcess24 32 ManufacturingProcess40	33 ManufacturingProcess30	34 ManufacturingProcess18	35 ManufacturingProcess29	36 ManufacturingProcess19	37 BiologicalMaterial09	38 ManufacturingProcess35	39 BiologicalMaterial05	40 Parameteri 29	41 BiologicalMaterial03	42 ManufacturingProcess23 43 Decembers1 24	to relationers 44	44 ManufacturingProcess21	TestandumingProcessor	40 Manuracumigriocesses 47 Parameteri 18	d8 Parameteri 11	Process39
tank HARRY(CHEN R	1 Parameter29	2 Parameter11	3 Parameter13	4 Parameter32	5 Parameter02	6 Parameter09	7 Parameter28	8 Parameter17	9 Parameter31	10 Parameter25	11 Parameter07			15 Parameter()3	16 Parameter04	17 Parameter22	18 Parameter15	19 Parameter01	20 Parameter06				24 Parameter05	25 Parameter14	26 Parameter08	27 Parameter20	28 Parameter24	29 Parameter18		31 Parameter30 32 Parameter37	A 1 10111111111111111															
Rank DICK(CHEM) Rank HARRY(CHEN Rank TD(CHEM)	1 Parameter 29					6 Parameter 02	7 Parameter 09	8 Parameter 45	9 Parameter 43	10 Parameter 28	11 Parameter 34	12 Parameter 39	13 Parameter 47	15 Parameter 17	16 Parameter 42	17 Parameter 25	18 Parameter 07	19 Parameter 37	20 Parameter 26	21 Parameter 12	22 Parameter 10	23 Parameter 03	24 Parameter 04	25 Parameter 22	26 Parameter 15		28 Parameter 01		30 Parameter 06	31 Parameter 23 32 Parameter 19	33 Parameter 16		35 Parameter 05		37 Parameter 36	38 Parameter 14	39 Parameter 08			42 Parameter 15 43 Parameter 21	T7 LOLOLINGIC T7	44 Parameter 30	The lease of the second	40 Farameter 40 47 Parameter 37	48 Parameter 40	of languages of
tank TOM(CHEM) R	50 ManufacturingProcess35		52 ManufacturingProcess27				56 BiologicalMaterial04	57 ManufacturingProcess17																																						
Rank TOM(CHEM) R	1 BiologicalMaterial07	132	3 ManufacturingProcess09			6 ManufacturingProcess19	7 ManufacturingProcess30	8 ManufacturingProcess39	9 ManufacturingProcess21	10 ManufacturingProcess01		12 BiologicalMaterial02	13 ManufacturingProcess10	15 ManufacturineProceed3		17 ManufacturingProcess37	18 ManufacturingProcess12	19 BiologicalMaterial10	20 ManufacturingProcess23	21 ManufacturingProcess02							28 ManufacturingProcess06	29 ManufacturingProcess08		31 ManufacturingProcess22 32 RiologicalMaterial11			35 ManufacturingProcess41			38 ManufacturingProcess11	39 ManufacturingProcess33			42 BiologicalMaterial01 43 ManufacturingDocese20	Crease and an an an an an an an an an an an an an	44 ManufacturingProcess28 An Biotocicitation	abiologicalmaterialuo			

Table A.13Feature ranking SECOM 412 & 528 Part I

	ле А.1.	, 1	reature	ran	ĸш	g SECO	JIVI	412 a	520	ra	rt I								
				412					412					412					412
Rank	SECOM_412	Rank	SECOM_528		Rank	SECOM_412	Rank	SECOM_528		Rank	SECOM_412	Rank	SECOM_528		Rank	SECOM_412	Rank	SECOM_528	=
				528					528					528					528
1	feature 171	1	feature 171	1	75	feature 522	75	feature 522	1	149	feature 85	149	feature 85	1	223	feature 272	223	feature 272	1
2	feature 165		feature 165	1		feature 274		feature 274	1	200	feature 4	200	feature 4	1		feature 144		1001010 211	1
3	feature 301	3	feature 301	1		feature 176		feature 176	1				feature 454	1		feature 273			1
4	feature 250	4	feature 250	1		feature 131		feature 131	1		feature 2		feature 2	1				feature 167	1
5	feature 521	5	feature 521 feature 388	1		feature 147 feature 559		feature 147 feature 559	1		feature 541 feature 170		feature 541 feature 170	1		feature 477 feature 206		feature 477 feature 206	1
5	feature 388 feature 574	5	feature 388 feature 574	1		feature 559 feature 313		feature 559 feature 313	1		feature 170 feature 108		feature 170 feature 108	1		feature 206 feature 271		feature 206 feature 271	1
8	feature 336	8	feature 336	1	82	feature 515	82	feature 66	1	155	feature 303		feature 303	1		feature 501	230		1
9	feature 526	9	feature 536	1	83	feature 412		feature 412	1		feature 251		feature 251	1		feature 106		feature 106	1
10	feature 425	10	feature 425	1	84			feature 295	1		feature 9		feature 9	1		feature 528		feature 528	1
11	feature 339	11	feature 339	1	85	feature 342	85	feature 342	1	159	feature 213	159	feature 213	1	233	feature 488	233	feature 488	1
12	feature 338	12	feature 338	1	86	feature 204	86	feature 204	1	160	feature 163	160	feature 163	1	234	feature 289	234	feature 289	1
13	feature 60	13	feature 60	1	87	feature 296	87	feature 296	1	161	feature 133	161	feature 133	1	235	feature 411	235	feature 411	1
14	feature 429		feature 429	1				feature 48	1		feature 185		feature 185	1		feature 172		feature 172	1
15	feature 100		feature 100	1		feature 426		feature 426	1		feature 228		feature 228	1		feature 300		feature 300	1
16	feature 349	16	feature 349	1	90	feature 578		feature 578	1	164	feature 318		feature 318	1		feature 575	238	feature 575	1
17	feature 215 feature 76		feature 215 feature 76	1		feature 77 feature 589		feature 77 feature 589	1		feature 89 feature 487		feature 89 feature 487	1		feature 29 feature 479		feature 29 feature 479	1
	feature 76 feature 472		feature 75 feature 472	1		feature 589 feature 122		feature 589 feature 122	1		reactive tor		feature 335	1	2.40	feature 479 feature 270		feature 479 feature 270	1
19 20	feature 472 feature 104	19 20		1		feature 122 feature 356		feature 122 feature 356	1				feature 355 feature 353	1		feature 2/0 feature 201		feature 270 feature 201	1
	feature 495		feature 495	î		feature 305		feature 305	1		feature 430			1		feature 18		feature 18	1
22	feature 203		feature 203	1		feature 441		feature 441	1				feature 287	1		feature 136		feature 136	1
23	feature 445	23		1		feature 280		feature 280	1		feature 312		feature 312	1		feature 54		feature 54	1
24	feature 282	24	feature 282	1	98	feature 109		feature 109	1	172	feature 278		feature 278	1	246	feature 545	246		1
25	feature 34	25	feature 34	1	99	feature 211	99	feature 211	1	173	feature 473	173	feature 473	1	247	feature 35	247	feature 35	1
26	feature 103	26		1				feature 471	1		feature 197		feature 197	1		feature 64		feature 64	1
27	feature 302	27		1		feature 135		feature 135	1		feature 470		feature 470	1		feature 123		feature 123	1
28	feature 461	28	feature 461	1	102	feature 151		feature 151	1	176	feature 36		feature 36	1		feature 304	250		1
29	feature 576		feature 576	1	103	feature 44		feature 44	1		feature 392		feature 392	1		feature 297		feature 297	1
30	feature 22	30	1001010 88	1	104	feature 13	20-	feature 13	1		feature 21		feature 21	1		feature 494		feature 494	1
31	feature 174	31		1		feature 82		feature 82	1	179	feature 542		feature 542	1		feature 254	253		1
32 33	feature 161 feature 523	32	feature 161 feature 523	1	106	feature 129 feature 202		feature 129 feature 202	1	180	feature 153 feature 483		feature 153 feature 483	1	254	feature 87 feature 585	254	feature 87 feature 585	1
	feature 525		feature 525	1		feature 202		feature 181	1		feature 25		feature 25	1		feature 321		feature 321	1
	feature 407		feature 65	1		feature 120	~~~	feature 120	1				feature 139	1		feature 546	~~~	feature 546	1
	feature 212		feature 212	1		feature 322		feature 322	1				feature 351	1		feature 255		feature 255	1
37	feature 458	37	feature 458	1	111	feature 460	111	feature 460	1	185	feature 281	185	feature 281	1	259	feature 348	259	feature 348	1
38	feature 115	38	feature 115	1	112	feature 46	112	feature 46	1	186	feature 47	186	feature 47	1	260	feature 78	260	feature 78	1
39	feature 422	39	feature 422	1	113	feature 438	113	feature 438	1	187	feature 431	187	feature 431	1	261	feature 478	261	feature 478	1
40	feature 428	40	feature 428	1	114	feature 20	114	feature 20	1	188	feature 332	188	feature 332	1	262	feature 62	262	feature 62	1
41	feature 486	41	feature 486	1	115	feature 540	115	feature 540	1	189	feature 169	189	feature 169	1	263	feature 469	263	feature 469	1
1.0	feature 105		feature 105	1	***	feature 269	***	feature 269	1		feature 427	200	feature 427	1	201	feature 377	20.4	feature 377	1
43	feature 588		feature 588	1	117	feature 39		feature 39	1	~~~~	feature 118		feature 118	1		feature 434		feature 434	1
44	feature 320	44	feature 320 feature 24	1	118	feature 406		feature 406 feature 1	1		feature 58		feature 58	1		feature 52		feature 52 feature 51	1
45 46	feature 24 feature 361		feature 361	1	119 120	feature 1 feature 146		feature 1 feature 146	1		feature 292 feature 160		feature 292 feature 160	1		feature 51 feature 19		feature 51 feature 19	1
40	feature 361 feature 239	40	1000010 000	1		feature 455		feature 455	1		feature 325		feature 325	1		feature 19	269	reatione ap	1
48	feature 239	48	feature 259	1	121	feature 369		feature 369	1	195	feature 577	195	feature 525	1		feature 216	269	feature 216	1
40	feature 317		feature 317	1		feature 175		feature 175	1		feature 168		feature 168	1		feature 268		feature 268	1
	feature 130		feature 130	1		feature 394		feature 394	1		feature 453		feature 453	1		feature 209		feature 209	1
51	feature 311	51	feature 311	1	125	feature 189	125	feature 189	1	199	feature 413	199	feature 413	1	273	feature 421	273	feature 421	1
52	feature 306	52	feature 306	1	126	feature 63	126	feature 63	1		feature 10	200	feature 10	1		feature 362		feature 362	1
53	feature 23	53	feature 23	1	127	feature 291	127	feature 291	1	201	feature 198	201	feature 198	1	275	feature 367	275	feature 367	1
54	feature 218		feature 218	1		feature 511		feature 511	1		feature 96		feature 96	1		feature 240		feature 240	1
55	feature 544	55	feature 544	1		feature 572		feature 572	1		feature 584		feature 584	1		feature 343		feature 343	1
56	feature 366	56	feature 366	1	130	feature 173		feature 173	1	204	feature 256		feature 256	1	278	feature 196		feature 196	1
57	feature 345	57		1		feature 368	~~~	feature 368	1		feature 88		feature 88	1		feature 67		feature 67	1
58	feature 72 feature 156	58 59		1	132 133	feature 288 feature 333		feature 288 feature 333	1		feature 69 feature 435		feature 69 feature 435	1		feature 210 feature 476		feature 210 feature 476	1
59 60	feature 156 feature 279	59 60		1	133 134	feature 333 feature 33		feature 333 feature 33	1	207	feature 435 feature 561		feature 435 feature 561	1		feature 476 feature 358		feature 476 feature 358	1
60 61	feature 279 feature 492		feature 279 feature 492	1	134 135	feature 33 feature 93		feature 33 feature 93	1		feature 561 feature 573		feature 561 feature 573	1		feature 358 feature 207		feature 358 feature 207	1
62	feature 186		feature 492 feature 186	1	135	feature 95 feature 155		feature 93 feature 155	1		feature 573 feature 92		feature 573 feature 92	1		feature 207		feature 207	1
63	feature 186 feature 57		feature 186 feature 57	1	136	feature 222	~~~	feature 222	1		feature 32 feature 337		feature 32 feature 337	1		feature 586	~~ ~	feature 75	1
64	feature 457	64	feature 457	1	138	feature 140		feature 140	1	212	feature 15		feature 15	1	286	feature 11	286		1
65	feature 350		feature 350	1	139	feature 45		feature 45	1		feature 83		feature 83	1		feature 480		feature 480	1
66	feature 217		feature 217	1	140	feature 188		feature 188	1		feature 59	214	feature 59	1	288	feature 132		feature 132	1
67	feature 357		feature 357	1		feature 468		feature 468	1		feature 95		feature 95	1		feature 355		feature 355	1
68	feature 307	68	feature 307	1	142	feature 424	142	feature 424	1	216	feature 137	216	feature 137	1	290	feature 164	290	feature 164	1
69	feature 208	69	feature 208	1	143	feature 49	143	feature 49	1	217	feature 119	217	feature 119	1	291	feature 154	291	feature 154	1
	feature 219	70	COLOR C RAD	1	***	feature 340		feature 340	1		feature 543		1001010.010	1		feature 410		feature 410	1
71	feature 40	71	feature 40	1		feature 99		feature 99	1		feature 490		feature 490	1		feature 71		feature 71	1
	feature 138	72	feature 138	1	146	feature 152	146	feature 152	1	220	feature 102	220	feature 102	1		feature 418	294	feature 418	1
72																			
73	feature 489 feature 223	73	feature 489 feature 223	1		feature 512 feature 114		feature 512 feature 114	1		feature 432 feature 143			1		feature 442 feature 587		feature 442	1

Table A.14Feature ranking SECOM 412 & 528 Part II

						0											
Beer la		P	SECOM_528	412 =	Provide State	SECOM_412	0		412 =	0	SECOM_412 Rank		412 =	Rank SECOM_412			412
капк	SECOM_412	Kank	SECOM_528	= 528	Kank	SECOM_412	калк	SECOM_528	528	капк	SECOM_412 Rank	SECOM_528	= 528	Rank SECOM_412	Kank S	SECOM_528	= 528
									520				328				528
	feature 8 feature 440		feature 8			feature 162 feature 485			1			feature 451 feature 450				eature 98 eature 70	
	feature 199					feature 390			1			feature 450 feature 423				eature 53	
	feature 56		feature 56			feature 439			1			feature 415				eature 50	
	feature 414		feature 414	1		feature 324		feature 324	1			feature 405				eature 43	
	feature 30		feature 30	1		feature 408		feature 408	1			feature 404				eature 14	
	feature 117					feature 27		feature 27	1			feature 403				eature 6	
304	feature 420	304	feature 420	1	379	feature 178	379	feature 178	1		454	feature 402					
305	feature 378	305	feature 378	1	380	feature 393	380	feature 393	1		455	feature 401					
306	feature 38		feature 38	1	381	feature 484	381	feature 484	1		456	feature 400					
307	feature 283	307	feature 283	1	382	feature 148	382	feature 148	1		457	feature 399					
308	feature 496	308	feature 496	1	383	feature 205	383	feature 205	1		458	feature 398					
309	feature 116	309	feature 116	1	384	feature 341	384	feature 341	1		459	feature 397					
310	feature 16	310	feature 16	1	385	feature 177	385	feature 177	1		460	feature 396					
311	feature 149	311	feature 149	1		feature 409		feature 409	1			feature 395					
	feature 79		feature 79			feature 387			1			feature 382					
	feature 389					feature 525			1			feature 381					
	feature 68		feature 68			feature 107			1			feature 380					
	feature 448					feature 94		feature 94	1			feature 379					
	feature 183		feature 183	-		feature 7		feature 7	1			feature 376					
	feature 229		feature 229	1		feature 500		feature 500	1		101	feature 375					
	feature 61		feature 61	1		feature 214		feature 214	1			feature 374					
	feature 475		feature 475	1		feature 55		feature 55	1			feature 373					
	feature 299					feature 391		feature 391	1			feature 372					
	feature 298		feature 298	1		feature 417		feature 417	1			feature 371					
	feature 443			1		feature 126		feature 126	1			feature 370					
	feature 419 feature 121		feature 419 feature 121	1		feature 571 feature 182		feature 571 feature 182	1			feature 365 feature 331					
	feature 200		feature 200	1		feature 182 feature 249		feature 182 feature 249	1			feature 331					
	feature 200 feature 433		feature 200 feature 433	1		feature 249 feature 253		feature 249 feature 253	1			feature 330 feature 329					
	feature 583					feature 253 feature 344		feature 253 feature 344	1			feature 329					
	feature 134			-		feature 5		feature 5	1			feature 327					
	feature 134 feature 37		feature 134 feature 37			feature 5 feature 128		feature 5 feature 128	1			feature 327					
	feature 37					feature 560		feature 560	1			feature 323					
	feature 524					feature 560 feature 141			1			feature 325					
	feature 12		feature 324	1		feature 449		feature 449	1			feature 315					
	feature 334		feature 334	1		feature 446		feature 446	1			feature 314					
	feature 354		feature 354	1		feature 97		feature 97	1			feature 285					
	feature 491			1		feature 157		feature 157	1			feature 277					
336	feature 81	336	feature 81	1	411	feature 444			1		486	feature 267					
			feature 360	1		feature 276			1			feature 266					
338	feature 447	338	feature 447	1			413	feature 539			488	feature 265					
	feature 125		feature 125	1				feature 538				feature 264					
340	feature 145	340	feature 145	1			415	feature 537			490	feature 263					
341	feature 28	341	feature 28	1			416	feature 536			491	feature 262					
342	feature 474	342	feature 474	1			417	feature 535			492	feature 261					
343	feature 436	343	feature 436	1			418	feature 534			493	feature 260					
344	feature 527	344	feature 527	1			419	feature 533			494	feature 259					
	feature 224			1				feature 532				feature 258					
	feature 309			1			421	feature 531			496	feature 257					
	feature 456			1				feature 530				feature 244					
	feature 124		feature 124	1				feature 529				feature 243					
	feature 416		feature 416	1				feature 516				feature 242					
	feature 562		feature 562	1				feature 515				feature 241					
	feature 481			1				feature 514				feature 238					
	feature 590			1				feature 513				feature 237					
	feature 290			1				feature 510				feature 236					
	feature 17		feature 17	1				feature 509				feature 235					
000	feature 3	200	feature 3	1				feature 508			202	feature 234					
	feature 308		feature 308	1				feature 507				feature 233					
	feature 80		feature 80	1				feature 506				feature 232					
	feature 220		feature 220	1				feature 505				feature 231					
	feature 286 feature 32		feature 286 feature 32	1				feature 504 feature 503				feature 230 feature 227					
0.00	feature 32 feature 437		1000010 040	1			10.0	feature 503 feature 502			0.40	feature 227 feature 195					
	feature 437 feature 166			1				feature 502 feature 499				feature 195 feature 194					
	feature 166 feature 252			1				feature 499 feature 482				feature 194 feature 193					
	feature 252 feature 310		feature 252 feature 310	1				feature 482 feature 467				feature 193 feature 192					
	feature 310 feature 319		feature 310 feature 319	1				feature 467 feature 466				feature 192 feature 191					
	feature 319		feature 319	1				feature 466 feature 465				feature 191 feature 190					
	feature 184			1				feature 464				feature 187					
	feature 184 feature 284			1				feature 464 feature 463				feature 187 feature 180					
	feature 31		feature 204	1				feature 463				feature 179					
	feature 352			1				feature 459				feature 150					
	feature 275		feature 332	1				feature 455				feature 142					
											521						

Appreciation of Student Contribution

This work contains results which have been achieved through supervision of student academic works:

- Dennis Zeglin, "Entwicklung einer Quality-Gate-basierten Methodik zur Steigerung der Prozessqualität in der Produktion" ("Development of a Quality-Gate-based methodology to increase process quality in production") (*master thesis*)
- Benjamin Knoke, "Analyse und Darstellung der Abhängigkeiten von Zustandseigenschaften in Produktionsprozessen" ("Analysis and illustration of dependencies of product state characteristics in manufacturing processes") (*master thesis*)
- Bernat Fabregà Creixell, "Development of a method to illustrate interdependencies between state characteristics of a manufacturing programme as of the customer's perspective" (*master thesis*)
- Jakub Mak-Dadanski, "Konzeption und Entwurf eines Qualitätsmanagementhandbuchs zur Archivierung und Bereitstellung von werkstoffwissenschaftlichen Forschungsdaten" ("Conception and design of a Quality Management Manual for archiving and provision of materials science research data") (*bachelor thesis*)
- Mohamed Yassin Affoun, "Methode zur Identifikation von relevanten Zustandseigenschaften eines Produktes am Beispiel der Zerspanung" ("Method for identification of relevant product state characteristics evaluated in the machining process") (*diploma thesis*)
- Sebastian Till Alexander Schäfer, "Konzept zur Einführung von Wissensmanagement in kleinen organisatorischen Einheiten" ("Concept for implementation of knowledge management in small organisational units") (*diploma thesis*)
- Johannes Kuder, Atilla Odabasi, Benedikt Rolfes, Jan Schönmann, Henning Sebastian Voeltz, Christian Wolff, Kamran Yazdian and Dennis Zeglin, "Informationsmanagement zur Verfolgung des Produktzustands entlang einer Fertigungskette" ("Tracing of product states along the production process through information management") (*student project*)

References

- Abe, S. (2003). On invariance of support vector machines. In 4th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL'03). Hong Kong, China.
- Abowd, J. M., & Lane, J. (2004). New approaches to confidentiality protection: Synthetic data, remote access and research data centers. In J. Domingo-Ferrer & V. Torra (Eds.), *Privacy in* statistical databases, Lecture Notes in Computer Science Vol. 3050 (pp. 282–289). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-25955-8_22.
- Alvo, M., & Park, J. (2002). Multivariate non-parametric tests of trend when the data are incomplete. *Statistics & Probability Letters*, 57(3), 281–290. doi:10.1016/S0167-7152(02)00062-7.
- Arif, F., Suryana, N., & Hussin, B. (2013). A data mining approach for developing quality prediction model in multi-stage manufacturing. *International Journal of Computer Applications*, 69(22), 35–40.
- Badri, Ma., Davis, D., & Davis, D. (1995). A study of measuring the critical factors of quality management. *International Journal of Quality & Reliability Management*, 12(2), 36–53. doi:10.1108/02656719510080604.
- Barse, L. E., Kvarnström, H., & Jonsson, E. (2003). Synthesizing test data for fraud detection systems. In 19th Annual Computer Security Applications Conference (ACSAC 2003) (p. 11).
- Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual database design. An entity-relationshipapproach. Redwood City: Addison Wesley.
- Becker, J. (1998). Die Grundsätze ordnungsmäßiger Modellierung und ihre Einbettung in ein Vorgehensmodell zur Erstellung betrieblicher Informationsmodelle. Retrieved April 15, 2012, from http://www.wi-inf.uni-duisburg-essen.de/MobisPortal/pages/rundbrief/pdf/Beck98.pdf.
- Becker, J., & Schütte, R. (2004). Handelsinformationssysteme. Frankfurt am Main: Redline Wirtschaft.
- Ben-hur, A., & Weston, J. (2010). A user's guide to support vector machines. In *Data mining techniques for the life sciences. methods in molecular biology* (Vol. 609, pp. 223–239). Totowa, NJ: Humana Press. doi:10.1007/978-1-60327-241-4_13.
- Ciao, K. J., Pedrycz, W., Swiniarski, R. W., & Kurgan, L. A. (2007). *Data mining: A knowledge discovery approach*. New York: Springer.
- Cios, K. J., & Kurgan, L. A. (2002). Trends in data mining and knowledge discovery. In N. R. Pal & L. Jain (Eds.), *Knowledge discovery in advanced information systems* (pp. 1–26). Heidelberg: Springer.
- Dasu, T. & Johnson, T. (2003). Exploratory data mining and data cleaning. John Wiley & Sons.
- Dhafr, N., Ahmad, M., Burgess, B., & Canagassababady, S. (2006). Improvement of quality performance in manufacturing organizations by minimization of production defects. *Robotics* and Computer-Integrated Manufacturing, 22(5–6), 536–542. doi:10.1016/j.rcim.2005.11.009.
- Feelders, A. (1999). Handling missing data in trees: Surrogate splits or statistical imputation? In J. Zytkow & J. Rauch (Eds.), *Principles of data mining and knowledge discovery, Lecture Notes in Computer Science Volume 1704* (pp. 329–334). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-48247-5_38.
- Filipic, B., & Junkar, M. (2000). Using inductive machine learning to support decision making in machining processes. *Computers in Industry*, 43, 31–41.
- Ghahramani, Z., & Jordan, M. I. (1994). Learning from incomplete data (pp. 1–11). Cambridge, USA: Massachusetts Institute of Technology.
- Graf, A., & Borer, S. (2001). Normalization in support vector machines. In B. Radig & S. Florczyk (Eds.), *Pattern recognition. Lecture Notes in Computer Science Volume 2191* (pp. 277–282). Munich. doi:10.1007/3-540-45404-7_37.
- Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576. doi:10.1146/annurev.psych.58.110405.085530.
- Graham, J. W. (2012). Missing data—Analysis and design (p. 322). NY: Springer.
- Grzymala-Busse, J. W., Grzymala-Busse, W. J., Hippe, Z. S., & Rzasa, W. (2007). A comparison of three approximation strategies for incomplete data sets. In 2007 IEEE International Conference on Granular Computing (GRC 2007) (pp. 301–301). doi:10.1109/GrC.2007.119.

- Harding, J. A., Shahbaz, M., Srinivas, & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128(4), 969. doi:10.1115/1.2194554.
- Hathaway, R. J., & Bezdek, J. C. (2002). Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm. *Pattern Recognition Letters*, 23(1–3), 151– 160. doi:10.1016/S0167-8655(01)00115-5.
- Herbrich, R., & Graepel, T. (2001). A PAC-Bayesian margin bound for linear classifiers: Why SVMs work. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems 13 (pp. 224–230). Cambridge, MA: MIT Press.
- Hoyer, R. (1988). Organisatorische Voraussetzungen der Büroautomatisation: Rechnergestützte, prozessorientierte Planung von Büroinformations- und Kommunikationssystemen. Berlin: Erich Schmidt Verlag.
- Instone, F., & Dale, B. (1989). A case study of the typical issues involved in quality improvement. International Journal of Operations & Production Management, 9(1), 15–26.
- Jensen, D. (2007). Proximity 4.3 Tutorial (p. 174).
- Jiang, P., Jia, F., Wang, Y., & Zheng, M. (2012). Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. *Journal of Intelligent Manufacturing*, (2012). doi:10.1007/s10845-012-0703-0.
- Kabacoff, R. I. (2011). Advanced methods for missing data. In R. I. Kabacoff (Ed.), *R IN ACTION: Data analysis and graphics with R* (pp. 352–371). Shelter Island: Manning Publications Co.
- Kamiske, G., & Brauer, J. (2008). *Qualitätsmanagements von A bis Z.* 6. Auflage. München: Carl Hanser-Verlag.
- Kerdprasop, K., & Kerdprasop, N. (2011). A data mining approach to automate fault detection model development in the semiconductor manufacturing process. *International Journal of Mechanics*, 5(4), 336–344.
- Kern, J. (2008). Ishikawa Diagramme Ursache-Wirkungs-Diagramme. München: GRIN Verlag.
- Kim, D., Kang, P., Cho, S., Lee, H., & Doh, S. (2012). Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing. *Expert Systems with Applications*, 39(4), 4075–4083. doi:10.1016/j.eswa.2011.09.088.
- Krallmann, H., Schönherr, M., & Trier, M. (2007). Systemanalyse im Unternehmen: Prozessorientierte Methoden der Wirtschaftsinformatik. München, Wien: Oldenbourg Wissenschaftsverlag.
- Kuhn, M. & Johnson, K. (2013). Applied Predictive Modeling. New York, NY: Springer New York. doi:10.1007/978-1-4614-6849-3
- Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. *Expert Systems with Applications*, 39(3), 2590–2596. doi:10.1016/j.eswa.2011.08.114.
- Lee, J., & Ha, S. (2009). Recognizing yield patterns through hybrid applications of machine learning techniques. *Information Sciences*, 179(6), 844–850. doi:10.1016/j.ins.2008.11.008.
- Li, T.-S., & Huang, C.-L. (2009). Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing. *Expert Systems with Applications*, 36(1), 374– 385. doi:10.1016/j.eswa.2007.09.023.
- Lundin, E., Kvarnström, H., & Jonsson, E. (2002). A synthetic fraud data generation methodology. In R. Deng, F. Bao, Z. Jianying, & Q. Sihan (Eds.), *Information and communications* security, Lecture Notes in Computer Science (Vol. 2513, pp. 265–277). Berlin, Heidelberg: Springer.
- May, G. S., & Spanos, C. J. (2006). Fundamentals of semiconductor manufacturing and process control (p. 480). Hoboken, New Jersey: Wiley-Interscience.
- McCann, M. & Johnston, A. (2008). SECOM data set. UCI Machine Learning Repository [http:// archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

- McCann, M., Li, Y., Maquire, L., & Johnston, A. (2010). Causality challenge: Benchmarking relevant signal components for effective monitoring and process control. *Journal of Machine Learning Research: Workshop and Conference Proceedings*, 6, 277–288.
- Monostori, L. (2003). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. *Engineering Applications of Artificial Intelligence*, 16(4), 277–291. doi:10.1016/S0952-1976(03)00078-2.
- Mönch, L., Zimmermann, J., & Otto, P. (2006). Machine learning techniques for scheduling jobs with incompatible families and unequal ready times on parallel batch machines. *Engineering Applications of Artificial Intelligence*, 19(3), 235–245. doi:10.1016/j.engappai.2005.10.001.
- Nonnemaker, J., & Baird, H. S. (2009). Using synthetic data safely in classification. In IS&T/SPIE Conference on Document Recognition and Retrieval (DRR 2009), San Jose, CA, January 28–February 1.
- Pham, D. T. & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(5), 395–412. doi:10.1243/095440505X32274.
- Priore, P., de la Fuente, D., Gomez, A., & Puente, J. (2001). A review of machine learning in dynamic scheduling of flexible manufacturing systems. *Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 15*(3), 251–263. doi:10.1017/S0890060401153059.
- Priore, P., de la Fuente, D., Puente, J., & Parreño, J. (2006). A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems. *Engineering Applications of Artificial Intelligence*, 19(3), 247–255. doi:10.1016/j.engappai.2005.09.009.
- Provost, S. B. (1990). Estimators for the parameters of a multivariate normal random vector with incomplete data on two subvectors and test of independence. *Computational Statistics & Data Analysis*, 9(1), 37–46. doi:10.1016/0167-9473(90)90069-T.
- Reiter, J. P. (2004). Simultaneous use of multiple imputation for missing data and disclosure limitation. *Survey Methodology*, *30*, 235–242.
- Reiter, J. P., & Raghunathan, T. E. (2007). The Multiple adaptations of multiple imputation. *Journal of the American Statistical Association*, 102(480), 1462–1471. doi:10.1198/016214507000000932.
- Robles, N., & Roy, U. (2004). Optimal tolerance allocation and process-sequence selection incorporating manufacturing capacities and quality issues. *Journal of Manufacturing Systems*, 23(2), 127–133. doi:10.1016/S0278-6125(05)00002-6.
- Rosemann, M. & Schütte, R. (1997). Grundsätze ordnungsmäßiger Referenzmodellierung. In: J. Becker, M. Rosemann & R. Schütte (Hrsg.), Entwicklungsstand und Entwicklungsperspektiven der Referenzmodellierung. Arbeitsberichte des Instituts für Wirtschaftsinformatik, 16–33.
- Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. *Psychological Methods*, 7(2), 147–177. doi:10.1037//1082-989X.7.2.147.
- Shetwan, A. G., Vitanov, V. I., & Tjahjono, B. (2011). Allocation of quality control stations in multistage manufacturing systems. *Computers & Industrial Engineering*, 60(4), 473–484. doi:10.1016/j.cie.2010.12.022.
- Sterman, J. D. (1992). System dynamics modeling for project management. Retrieved October 26, 2013, from http://web.mit.edu/jsterman/www/SDG/project.pdf.
- Sohal, A. S., & Terziovski, M. (2000). TQM in Australian manufacturing: Factors critical to success. International Journal of Quality & Reliability Management, 17(2), 158–167.
- Viharos, Z., Monostori, L., & Vincze, T. (2002). Training and application of artificial neural networks with incomplete data. In *Lecture Notes of Artificial Intelligence, LNAI 2358, The Fifteenth International Conference on Industrial & Engineering Application of Artificial Intelligence & Expert Systems*, 17–20 June 2002 (pp. 649–659). Cairns, Australia, Berlin, Heidelberg: Springer.
- Wang, H., & Wang, S. (2009). Towards optimal use of incomplete classification data. *Computers & Operations Research*, 36(4), 1221–1230. doi:10.1016/j.cor.2008.01.005.
- Williams, D., Liao, X., Xue, Y., Carin, L., & Krishnapuram, B. (2007a). On classification with incomplete data. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(3), 427–436. doi:10.1109/TPAMI.2007.52.

- Williams, D., Liao, X., Xue, Y., Carin, L., & Krishnapuram, B. (2007b). On classification with incomplete data. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(3), 427–436. doi:10.1109/TPAMI.2007.52.
- Zhang, S., Jin, Z., Zhu, X., & Zhang, J. (2009). Missing Data analysis: A kernel-based multiimputation. In M. L. Gavrilova & C. J. K. Tan (Eds.), *Transactions on computer science III*, *LNCS 5300* (pp. 122–142). Berlin, Heidelberg: Springer.

About the Author

Dr.-Ing. Thorsten Wuest, born 1982 in Aalen, was awarded his Ph.D. in Production Engineering with Summa Cum Laude by the University of Bremen, Bremen, Germany in 2014. Previously, Dr. Wuest received his Master's (German 5 year Diploma) in Industrial Engineering and Management from the University of Bremen, Germany. Additionally, he graduated top of the class in the International Business Master's program at the AUT University, Auckland, New Zealand.

Dr. Wuest accepted a position as assistant professor for smart and avanced manufacturing at the Department of Industrial and Management Systems Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, USA as of August 2015. Previously, Dr. Wuest has worked as a research scientist and post doctoral researcher for BIBA-Bremer Institut für Produktion und Logistik GmbH in Bremen from 2009 to 2015. In his role, he was involved in different research. teaching and service activities. Over the last years, he successfully acquired several funded grants for original research projects from DFG, EC, BMBF, etc. Dr. Wuest taught undergraduate and graduate classes at the University of Bremen and supervised multiple Master and Bachelor theses as well as student research projects. In 2013/2014 Dr. Wuest received a prestigious doctoral grant form the German Academic Exchange Service (DAAD) and furthered his research for ten months at the Viterbi School of Engineering, Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California (USC), Los Angeles, USA.

Dr. Wuest's research interest is currently focused on smart and advanced manufacturing. Additionally, his research includes work in knowledge, information and data management as well as closed-loop, item-level Product Lifecycle Management (PLM) with a focus on manufacturing systems. Furthermore, he is interested in machine learning and big data applications in industrial settings. In his research activities, Dr. Wuest puts an emphasis on an interdisciplinary and holistic approach towards analysis and optimization. Dr. Wuest published over 40 articles in international peer reviewed journals and conferences and additionally serves as a reviewer for many.