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Supervisor’s Foreword

It is my great pleasure to introduce Dr.-Ing. Thorsten Wuest’s Ph.D. research, 
accepted for publication within the prestigious Springer Theses series. Dr. Wuest 
joined my Department of ICT Applications in Production at BIBA—Bremer 
Institut für Produktion und Logistik GmbH, as a research scientist in 2009. 
Simultaneously, he pursued his Ph.D. research at the Faculty of Production 
Engineering at the University of Bremen under my guidance. Besides his Ph.D. 
work, Dr. Wuest worked on several collaborative research projects, among them 
the CRC 570 Distortion Engineering and the project InfoSys, both funded by 
the German Research Foundation (DFG), and was very involved in matters of 
teaching, service, as well as project and grant acquisitions. Additionally, he is an 
active member of several professional societies, e.g., being recently accepted as 
a Research Affiliate of CIRP, and acts as a reviewer for various journals and con-
ferences. Furthermore, Dr. Wuest conducted parts of his research as a research 
scholar at the Viterbi School of Engineering, University of Southern California, 
USA, being awarded a full research scholarship of the German Academic 
Exchange Service (DAAD). He completed his Ph.D. research with an oral defense 
in November 2014. Dr. Wuest’s thesis includes significant original contributions 
to the field and represents a considerable advancement in the way of handling 
steadily increasing data streams within multistage manufacturing systems. He suc-
cessfully published selected parts of his research work in highly ranked, refereed 
archival journals and prominent, internationally recognized conferences.

The global manufacturing domain faces major challenges which may be sum-
marized by increasing complexity and dynamics of products and processes as well 
as increasing requirements toward quality. The research problem of Dr. Wuest’s 
thesis is set in multistage manufacturing programs and focuses on the holistic han-
dling of data and information with the goal of improving the product and process 
quality. Existing solutions focus mostly on individual processes instead of the 
whole manufacturing system and do not incorporate product and process inter- and 
intrarelations. It was found that these process inter- and intrarelations have a sig-
nificant and varying impact on the quality outcome of successive processes and 
thus on the whole manufacturing program.
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In his dissertation, Dr. Wuest developed a concept to describe comprehensively 
a product by its states along a manufacturing process sequence. For this concept, 
it is of fundamental importance to identify a set of state characteristics allowing a 
comprehensive description of the product’s state. A major aspect within the work 
was found to be process intra- and interrelations between states and state char-
acteristics. Today, most manufacturing programs lack sufficient knowledge and 
transparency with regard to process intra- and interrelations rendering a complete 
modeling of the system unrealistic. In order to incorporate this crucial element 
in the analysis, supervised machine learning was employed in the form of SVM-
based feature ranking to incorporate successfully implicit process intra- and inter-
relations of the manufacturing program.

Dr. Wuest evaluated the conducted research using three different scenarios from 
distinctive manufacturing domains (aviation, chemical, and semiconductor) based 
on “real world” datasets. The purpose of choosing three different scenarios was to 
highlight the general applicability of the developed concept. The evaluation con-
firmed that it is possible to incorporate implicit process intra- and interrelations on 
process as well as program level as required through applying SVM-based feature 
ranking.

Dr. Wuest’s work addresses highly relevant and complex challenges which have 
been, and are emerging in modern manufacturing, taking current research streams like 
smart and advanced manufacturing, cyber-physical-production-systems, Industrial 
Internet, Industry 4.0 and Big Data approaches, and the resultant increase of data 
streams into consideration. A major asset of the concept is the possibility to identify 
currently unknown relations which may provide a basis for further in-depth research 
and experimentation.

The strength of Dr. Wuest’s dissertation is its relevance and simplicity as well 
as its applicability in actual and realistic manufacturing situations. The selected 
approach and methodology is such that it is neither a constraint to specific prod-
ucts, manufacturing processes, or systems nor is it constraint to specific qual-
ity concepts. In this way it is a notable addition to knowledge. The work and 
its results are well projected into “real-life” applications and as such provide an 
important contribution to the application domain of analysis and management of 
product and process quality in the manufacturing domain.

Bremen, February 2015 Prof. Dr.-Ing. habil. Klaus-Dieter Thoben
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Manufacturing creates wealth
(Prof. Ronald G. Askin, Arizona State University (USA) during 
the INCOM 2012 Keynote speech Wednesday, May 23, 2012 in  

Bucharest, Romania).

The German economy evolved into an engine of growth within the European 
Union (Thesing et al. 2010). A large part of this success is built on the indus-
trial base, especially the showcase sector of manufacturing. German engineering 
products are exported worldwide and have the reputation of advanced technology 
and premium quality (N.N. 2006). In other parts of the world, even in the United 
States the manufacturing industry is growing again (Puzzanghera 2013). The repu-
tation of high quality products is a key factor of success in the fierce global com-
petition (Enderwick 2005; Levitt 1993). The backbone of the German engineering 
success relies on its manufacturing companies, often being Small and Medium 
sized Enterprises (SME) (Schiersch 2009). However, being successful does not 
necessarily mean that there is no potential for further improvements (Schiersch 
2009). At the same time, companies are constantly challenged to improve to meet 
the steadily increasing customer’s requirements towards the quality of products 
and services (Kovačič and Šarler 2009) in order to survive in the competitive 
global business environment (Porter 2008). This stands especially true for manu-
facturing companies (Ellram and Krause 1994). Product quality in this research is 
understood as the degree of fulfilment of the (quality) requirements by the charac-
teristics of the final product (see Sect. 2.1.4.1) (Yul and Wang 2009).

Many companies focus on their core competencies and work together in collab-
orations and production networks to satisfy the increasing customer requirements 
and gain sustained competitive advantage (Hamel and Prahalad 1990; Porter 1998; 
Porter 2008; Thomas et al. 2012). All these developments lead to an increasing 
complexity that companies must deal with in order to remain competitive. Taking 

Chapter 1
Introduction

© Springer International Publishing Switzerland 2015 
T. Wuest, Identifying Product and Process State Drivers in Manufacturing  
Systems Using Supervised Machine Learning, Springer Theses,  
DOI 10.1007/978-3-319-17611-6_1

http://dx.doi.org/10.1007/978-3-319-17611-6_2


2 1 Introduction

into consideration that business success of every company is based on the quality 
of its business processes (Linß 2002), it can be said that business success of a col-
laborative network is based on the quality of business processes of every collabo-
ration partner. Looking at industrial companies, manufacturing processes play an 
important role through the direct value adding to products and the determination 
of product quality.

1.1  Motivation1

The purpose of every process step during the production process is to add value 
to the product and therefore, at least in the manufacturing industry, change the 
products state (Kumar 2002; Kalpakjian and Schmid 2009). This change of state 
typically happens in a progression of successive states until its final state. The final 
state is generally defined by the requirements towards the product from the cus-
tomers’ side and specific to the individual manufacturing programme. Once the 
final state is reached, the product is considered ready for delivery to customers. 
In the end, the quality of a product is directly influenced by the quality of the pro-
duction processes (Brinksmeier 1991; Jacob and Petrick 2007). Finally, the prod-
uct state has to meet the customers’ requirements in terms of product quality. But 
nowadays, this is not the only customer requirement the companies have to meet. 
Additionally, customers increasingly insist on transparent manufacturing processes 
and demand comprehensive information about a purchased product over the differ-
ent stages of the manufacturing programme as part of the product lifecycle (Terzi 
et al. 2007; Cassina et al. 2009). This sometimes even includes parameter settings 
of the machines used and source of raw materials (e.g., iron ore). In Fig. 1.1, an 
example of a manufacturing programme with three processes is illustrated. Ideally, 
the product increases its value in each process step and the next process gets the 
product (input) with the expected parameters (internal customer). Practically, the 
process can never reproduce a process step (output) 100 % due to different factors 
like: external influence (e.g., temperature, ‘Mondays’); process variations (e.g., 
lubricant, tools); input deviations (e.g., different supplier of steel: even so the steel 
delivered has the same ISO Number, it can vary due to e.g., tolerance levels within 
the norm), etc. Therefore, it is also necessary to exchange information about the 
individual product. In this case, this means not just between stakeholders with a 
direct interface but along the whole manufacturing process sequence.

The trend of today’s products becoming more and more optimized leads to a 
consistent exploitation of all achievable product properties (Denton et al. 2003; 
Deja and Siemiatkowski 2012). Considering the limited availability of resources 
(Specht and Braunisch 2008), limited not only by their global presence but also 

1The content of this section has been partly published in accordance with (Universität Bremen 
2007) in (Wuest and Thoben 2012; Wuest et al. 2014).
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political regulations (Maull 1988; Frey 2007; Lange 2007), and the increasing 
demand e.g., by emerging economies, like the ‘BRIC’ countries (Buhr et al. 2005; 
Specht and Braunisch 2008), the aspect of efficient use of these resources grows 
in importance. If processes can be optimized in a way to, on the one hand, reduce 
scrap and rework and, on the other hand, to exploit all possible product properties 
as said before, the waste of valuable resources may be reduced and the customer 
requirements towards quality and information can still be fulfilled. For example, 
if through an optimized process, e.g., final heat treatment, it is made possible to 
build a certain product from a widely available resource, e.g., steel, instead of a 
relatively rare resource, like e.g., titanium alloys, the rare resource of titanium will 
be preserved and can be put to use where it is absolutely necessary. For a company 
this practice may be beneficial regarding aspects of resource availability (e.g., 
widen the range of suppliers).

To do so, it has to be confirmed that these desired product properties can be 
achieved through the production process (Mohanty 2004). Therefore, a detailed 
understanding of the manufacturing programme, its processes/operations and 
their influence on products and in the end, their product state, becomes progres-
sively more important. Continuous improvement of the manufacturing programme 
can be a way to stay ahead of competition. One important factor of the increas-
ing overall complexity in the global business environment has on manufacturing 
engineering companies is the rapidly increasing need for information and infor-
mation exchange. This includes many pitfalls, which among other things include: 
data acquisition, low data and information quality, data analysis, communication 
problems, security issues, interface problems of Information and Communication 
Technology (ICT) systems and, of course, the sheer amount of information to  
process (Choudhary et al. 2009).

Fig. 1.1  Connection of product, process and information towards customer requirements

1.1 Motivation



4 1 Introduction

Today’s complex manufacturing programmes, processes and operations have 
the goal of adding value to the product. A manufacturing programme consists of 
a process chain with each process having a number of operations. In the chain, 
processes may be linked one-to-one, disjunctively or conjunctively to preceding 
or subsequent processes. Each process may have a chain of operations similarly 
linked within the process (see Sect. 2.1 and Fig. 2.6). Adding value to the prod-
uct can be done in various ways, e.g., by changing the physical form, hardness or 
extending the usability by adding services. Each manufacturing processes or oper-
ation, their planning and design, depends on information pertaining to the input 
state of a product. It is very important to distinguish between the planed input state 
and the real input state. This distinction is explained further in the following para-
graphs. Basically, there are two ways how this can be achieved.

On the one side, the information can be provided from the design phase of the 
product. In this case, the information used is based on the state that the product is 
expected to inherit at a certain stage, e.g., the final state. This means everything, 
e.g., every process is going exactly according to plan. This is however unlikely 
in an industrial environment due to various factors, e.g., wear and tear of tools 
or quality deviations of raw materials. In this scenario, deviations of the differ-
ent products will not be taken into account, as the possibility is not included in 
the system. A slight variation of this way is to include comprehensive quality con-
trol of the input states so just products passing the test, as they comply with the 
assumed “planned state”, will be allowed to go through the process step (Garvin 
1984). The downside is that this is expensive (through e.g., extra staff, measure-
ment technology, etc.) and time-consuming.

On the other side, the input information can be generated based on the indi-
vidual product state at the time of the beginning of the processes or operation. 
Today, many companies already store operation data from factories and prod-
uct property data from inspection (Kano and Nakagawa 2008). The information 
here is more likely to be accurate as it takes into account the variations that can 
influence the process quality. Process quality is understood as the ability of the 
process to comply with certain criteria and to achieve the desired output (see 
Sect. 2.1.4.2) (Kreutzberg 2000). In order to provide each step with the individu-
ally necessary information, it is essential to be able to describe a product effec-
tively. This can be done in various ways. Most likely the manner of describing 
an industrial product, e.g., gear made of steel, will be different from the descrip-
tion-style of a product designed to fulfill an aesthetic purpose (in addition to the 
functional purpose) in mind, e.g., a plastic rear mirror. At the same time, the 
individual describing a product influences the description based on, among other 
things, his or her own background, knowledge and experience. Therefore, the 
approach of describing a product through its product state (Kumar 2002; Wuest 
et al. 2011) will help to align the descriptions in a commonly understood manner 
as well as increase transferability and usability of accompanying information by 
the addressees.

http://dx.doi.org/10.1007/978-3-319-17611-6_2
http://dx.doi.org/10.1007/978-3-319-17611-6_2
http://dx.doi.org/10.1007/978-3-319-17611-6_2
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1.2  Problem Statement

Along a manufacturing programme, physical products as well as information are 
exchanged between the partners (Hicks et al. 2006) (see Fig. 1.1). The availability 
of information is a precondition to adjust each manufacturing process/operation in 
such a way that the outcome reflects the set quality requirements to a satisfactory 
degree. Quality, as stated before, constantly gains importance for the customer and 
for a sustainable use of resources. Sustainable in this sense is understood as not 
just focused on the environmental and social perspective but mainly focusing on 
the economical perspective. In addition, distributed production brings forth new 
challenges for managing quality (Sitek et al. 2010).

One way to improve manufacturing processes is to look at the data and infor-
mation involved and how this information is put to use (Hicks et al. 2006). As 
stated by Albinoet al. (2002), the successful coordination of a manufacturing pro-
cess is mostly based on a successful handling of information to support process 
management and other tasks involved. With today’s advanced ICT it becomes 
possible to process, transfer and store large amounts of data and information for 
a reasonable price (Krcmar 2005). But too much information can be a threat for 
improved process quality as it can e.g., distract from the main issues/causalities 
or lead to delayed or wrong conclusions about appropriate actions (Lang 2007). 
Jansen-Vullers et al. (2003) emphasize the importance of the availability of the 
right information for quality during manufacturing processes. Hence the question 
is: What is the right and relevant information in the case of distributed manufactur-
ing process chains and high tech industrial products?

In manufacturing companies, many processes and operations operate auto-
mated. Every process needs information about the product at the beginning of 
treatment to adjust the machine parameters. In an automated manufacturing pro-
gramme, the information of the product is often not individual for the specific 
product at a specific time but derived of planning and design as described before. 
To assure an optimized handling of the individual product at a specific process 
during the manufacturing programme, information of the current product state 
(input product state) is necessary. The more precise and the more complete the 
information relevant for adjusting the process parameters is available, the bet-
ter the machines can be adjusted and the more the quality of the product will be 
enhanced.

The complex relationship of information and quality in manufacturing as 
described in the previous paragraphs represents an important area when it comes 
to the development of new approaches with the goal of contributing to quality 
improvements in manufacturing programmes. Next, the chosen approach of this 
research is detailed, highlighting how the relationship of information and quality 
in manufacturing is addressed and what more focused and detailed measures to 
improve the transparency are proposed.

1.2 Problem Statement
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Currently, this dissertation is focused on manufacturing companies produc-
ing complex, highly stressed products, e.g., gear wheels or turbine blades. This is 
reflected within the three evaluation scenario, especially scenario I which is sup-
plied by Rolls-Royce (see Sect. 6.2). Highly stressed products are understood as 
products which are exposed to higher force and power density than the average 
product and thus have different requirements, e.g., strength, hardness and wear 
resistance (Tönshoff and Denkena 2013). Tönshoff and Denkena (2013) state “in 
addition to the strength and hardness the quality requirements for highly-stressed 
components have grown significantly at the same time”. This does not however 
mean the concept cannot be extended or adjusted to other organizations with  
different product portfolios. The reasons for the current focus on this group of 
products is, that highly stressed products have high requirements towards product 
and process quality (Tönshoff and Denkena 2013), often use expensive materials, 
and the manufacturing programme itself is rather complex. This situation repre-
sents to a large extent the environment for the research problem. These complex 
manufacturing programmes are characterized by high quality requirements, high-
dimensional and multi-variate data, etc. which directly influenced the development 
of the product state concept. Furthermore, manufacturing companies producing 
highly stressed products will most likely be among the first who consider adopting 
new methods and concepts to address these issues as their customers expect pre-
mium quality and their competitive advantage depends on constant improvements, 
e.g., reducing scrap and rework as much as possible (e.g., Garvin 1984; Zoch and 
Lübben 2011).

Looking at the product information from a holistic manufacturing and quality 
perspective, the previously introduced relevant information becomes more impor-
tant. The set of relevant information contains all information that is in one way 
or another relevant for the manufacturing programme as a whole and occurring 
transformational activities. In theory, when such a set of relevant information is 
available for a manufacturing programme and individual product, all information 
necessary to achieve the desired process and subsequently product quality is avail-
able to the stakeholders. However, the question remains how such a set of rele-
vant information may be obtained in theory and practice. In order to determine 
what information subsets have to be included, in depth knowledge not only of the 
product itself but of all stages of the manufacturing programme, transformational 
activities and environmental influences and their inter-relations is required. Even 
for relatively simple manufacturing programmes and products, the required knowl-
edge is currently not completely available. Given the ongoing trend that manufac-
turing programmes (e.g., automation) and products (e.g., materials) are becoming 
more complex, the theoretically required knowledge allowing to identify a relevant 
set of product information is increasing as well. This lack of case specific knowl-
edge represents a major challenge for an information system and highlights the 
need for innovative approaches to identify relevant information in a manufacturing 
system in a comprehensive way even though total transparency cannot be achieved 
and not all necessary knowledge items are available.

http://dx.doi.org/10.1007/978-3-319-17611-6_6
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In summary, the problem statement of this dissertation reads as follows: In 
an increasingly complex manufacturing environment with high quality require-
ments and an enlarged focus on information, there is a need for a holistic concept 
that incorporates the relevant information describing individual artifacts (prod-
ucts) comprehensively along the whole manufacturing programme and organizes 
them logically. Such a holistic concept has to incorporate recent developments 
from various manufacturing related domains such as Product Data Management 
(PDM), item-level Product Lifecycle Management (PLM) (see Sect. 3.1), quality 
monitoring (see Sect. 3.2) and basics from intelligent manufacturing systems (see 
Sect. 2.2) and information and data management (see Sect. 2.3). A major chal-
lenge within the development of such a holistic concept is how to identify relevant 
information given the incomplete knowledge base and high complexity of the task.

1.3  Research Goal and Research Methodology

The research goal of this dissertation is to develop a holistic concept that describes a 
manufacturing system by utilizing the product’s changing state and the relations and 
information that entails. The focus of this concept is on identification of relevant infor-
mation, data and knowledge of both, the product and the manufacturing programme 
(incl. processes and operations), and how this can be utilized.

Within this concept, a methodology is established (Löhr-Richter 1993) to  
identify the relevant set of information a manufacturing programme and subse-
quent sets of relevant information for individual processes (operations) in order 
to provide a comprehensive basis for a holistic information management (IM) 
that may contribute to increase process quality and the final product quality. 
Identification in this aspect meaning to provide users or customers with the knowl-
edge of what information they need and why they need it (context & application) 
(Devadason and Lingam 1997; Tilson 1998). Within this concept and integrated 
methodology, inter- and intra-relations (incl. hidden ones) between different prod-
uct states over the whole manufacturing programme are also considered. This 
dissertation will contribute further to connect the product and the process perspec-
tives in manufacturing systems through the handling of attached information as 
both have to be considered to reach the quality goal (Brinksmeier 1991; Jacob and 
Petrick 2007; Yul and Wang 2009; Köksal et al. 2011). This will in turn support 
the transparency of IM in manufacturing systems.

The final result will be a holistic concept that describes a product by its states 
along a distributed manufacturing programme and organizes the relevant informa-
tion in a logical way. It will incorporate knowledge, information and data about 
the product and process (e.g., process intra- and inter-relations and influential 
state drivers). Through this enhanced content, the stakeholders may gain access to 
information and knowledge, which may be utilized to increase the overall quality, 
decrease rework and scrap and thus reduce the waste of resources.

1.2 Problem Statement

http://dx.doi.org/10.1007/978-3-319-17611-6_3
http://dx.doi.org/10.1007/978-3-319-17611-6_3
http://dx.doi.org/10.1007/978-3-319-17611-6_2
http://dx.doi.org/10.1007/978-3-319-17611-6_2
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An important aspect of developing the product state concept is the identifica-
tion of relevant information for a manufacturing programme. Within this aspect, 
the existing correlations between product states and different processes along the 
manufacturing programme are important to consider. As those correlations are just 
partly known, this presents a specific challenge for the research goal. In order to 
include hidden and unknown correlations and identify relevant state drivers (rel-
evant information) along the manufacturing programme, an approach based on 
supervised Machine Learning (ML) is being developed which can indicate hid-
den cause effect relations by showing unknown correlations. This allows to iden-
tify relevant information of complex manufacturing programmes dynamically 
and to utilize implicit knowledge available on data level. Through a continuous 
application of this approach, the set of relevant information for the manufacturing 
programme is continuously becoming more complete and new relations may be 
discovered.

However, it is not the goal to generate new knowledge about not yet discov-
ered characteristics of products. The concept will represent primarily a framework 
to organize all available and connected information and help to provide it to the 
selected addressee in need. The research will use existing knowledge of character-
istics and process intra- and inter-relations and support practitioners handling and 
using the information efficiently.

1.4  Structure of the Dissertation

In this subsection, the structure of the dissertation (see Fig. 1.2) and the motivation 
behind it is elaborated.

Before the various sections and their content are presented, a general remark 
concerning the overall structuring of this specific work is necessary. As specified 
in the previous sections and detailed thereafter, the goal of this dissertation is to 
develop a holistic concept to describe a product comprehensively along a manu-
facturing programme through relevant information. During the development of 
the concept, a major constraint surfaced which is the lack of knowledge concern-
ing the mapping of process inter- and intra-relations between states. This leads 
directly to it being necessary to investigate an additional field, ML, in order to 
bring the developed concept to life despite the identified limitations. Therefore, the 
dissertation contains an additional, brief reflection of the state of the art in the ML 
domain and a further specified problem analysis and research question. Overall, 
this necessity to include an additional approach from a different domain yields the 
slightly deviated structuring of the manuscript compared to average dissertations 
within the field. Furthermore, this added complexity and additional descriptions 
lead to an extended page count.

The introduction section (section one) of this work illustrates the general moti-
vation behind the conducted research, outlines the research problem statement, 
research goal and chosen research methodology (see Fig. 1.2).
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The second section the domain and the challenges to be tackled with the  
dissertation are presented in greater detail. Initially, it offers a general understanding 
of important background knowledge and definitions on which the developed concept 
is based upon. This is framed by recent developments in the domain of Manufacturing 
Systems (MS) from an information perspective. At first a general understanding of 
the manufacturing domain is presented, focusing in more detail on manufacturing 
processes, products and quality in manufacturing (Sect. 2.1). Widening the view on 
manufacturing, manufacturing systems, including holonic and intelligent manufac-
turing systems are described thereafter (Sect. 2.2). Additionally, being omnipres-
ent throughout the previous sections, the role of information and data management 
in manufacturing is discussed in more detail in Sect. 2.3. Concluding section two, 
identified challenges of MS from a product and process information perspective are 
summarized, highlighting the research problem fundamentals as a basis for the next 
sections (Sect. 2.4).

The following section three introduces existing methods and approaches that 
are dealing with the sketched research problem domain of IM in dynamic and com-
plex MS. The identified approaches are clustered within two main areas. PLM on 
the one side, including PDM and closed-loop and item-level PLM in manufacturing 
(Sect. 3.1). These concepts share many overlaps with the later developed product 
state concept. On the other side are approaches from the quality monitoring domain 
that focus on the previously identified challenges which are described in Sect. 3.2. 
Based on the analysis of these current methods and concepts, their limitations towards 
a holistic IM in manufacturing systems are identified. In this concluding sub-section 
the gaps the product state concept intends to fill are highlighted (Sect. 3.3).

Fig. 1.2  Structure of dissertation

1.4 Structure of the Dissertation

http://dx.doi.org/10.1007/978-3-319-17611-6_2
http://dx.doi.org/10.1007/978-3-319-17611-6_2
http://dx.doi.org/10.1007/978-3-319-17611-6_2
http://dx.doi.org/10.1007/978-3-319-17611-6_2
http://dx.doi.org/10.1007/978-3-319-17611-6_3
http://dx.doi.org/10.1007/978-3-319-17611-6_3
http://dx.doi.org/10.1007/978-3-319-17611-6_3


10 1 Introduction

Section four presents first the rationale for the product state concept develop-
ment (Sect. 4.1), highlighting the fit with the identified requirements and chal-
lenges of manufacturing systems by picking up the key findings of the previous 
sections. Describing the structure of section four in greater detail, firstly, the term 
product state, its origin and definition is described (Sect. 4.2). Next, the topic of 
relevant state characteristics is discussed on a theoretical level, playing a major 
role in the following argumentation (Sect. 4.3). Directly related to that, the process 
intra- and inter-relations of the aforementioned state characteristics are presented 
in Sect. 4.4. In Sect. 4.4.2, visualization approaches of the product state concept 
are illustrated directly followed by a discussion of the limitations and challenges 
within this concept (Sect. 4.4.3). In this sub-section an additional research ques-
tion, which is essential for the successful application of the product state concept 
is identified for the first time. This is expanded on by deriving requirements of 
state driver identification from the previous findings, describing the NP complete 
status of the problem at hand and arguing the suitability of applying supervised 
ML techniques for the identification of state drivers (Sect. 4.5) as a promising way 
to handle the challenges identified. Concluding, a first basic research hypothesis, 
specific for the derived research problem is presented (Sect. 4.6).

Based on previous findings, section five investigates the application of ML 
algorithms within the product state concept. First, ML in manufacturing is inves-
tigated briefly in order to provide a foundation for the selection of a suitable 
algorithm for the presented research problem (Sect. 5.1). Based on the previous 
findings, Sect. 5.2 presents Support Vector Machines (SVM) as the ML algorithm 
of choice and provides details background information on its development, func-
tions and application areas in manufacturing. Furthermore, a solid argumentation 
for the choice is presented in this sub-section. The final sub-section focuses on the 
theoretical application of SVM within the product state concept by highlighting 
the application and evaluation approach and giving an outlook on the outcome to 
be expected.

In order to evaluate the proposed approach, section six presents the application 
of the SVM algorithm within the product state concept on three scenarios resem-
bling differently structured ‘real world’ manufacturing programmes and different 
challenges from the available manufacturing data structure. The first scenario con-
sists of a data set from a manufacturing process of a highly stressed product from 
the aviation domain provided by Rolls-Royce, whereas the second scenario pro-
vides insights in a chemical manufacturing programme. Both scenarios are sup-
plemented by synthetic data adding additional process steps. The third scenario 
resembles a complex semiconductor manufacturing process. Before applying the 
proposed approach within the scenarios, the data sets are introduced (Sect. 6.1). 
The following sub-Sects. 6.2 (scenario I), 6.3 (scenario II) and 6.4 (scenario III) 
illustrate the application process in depth documenting all executed steps for each 
scenario.

The evaluation results of the conducted research are critically discussed in  
section seven. First the results are elaborated in detail (Sect. 7.1) before the 
interpretation and critical discussion (Sect. 7.2) structured around the developed 

http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_5
http://dx.doi.org/10.1007/978-3-319-17611-6_5
http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_7
http://dx.doi.org/10.1007/978-3-319-17611-6_7
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research hypotheses is presented. Finally, the limitations of the conducted research 
and the evaluation results are identified and discussed (Sect. 7.3).

The last and eighth section critically questions and reviews the achieved results 
and knowledge gained of this work and puts it in the greater context. Furthermore, 
an outlook is presented identifying further research areas related to the findings.
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In this section MS as well as recent developments in the area of holistic IM and 
related topics will be presented. Furthermore, certain basic aspects of manufac-
turing, MS and related areas are described in detail in order to allow readers to 
familiarize themselves with the fundamental terms and definitions used throughout 
this dissertation. In each subsection, concluding paragraphs summarize how the 
described topic is relevant to the research and putting it in perspective. Main prin-
ciples and how they are utilized throughout this dissertation is summarized there.

First the manufacturing domain is illustrated, focusing on manufacturing pro-
cesses, products and manufacturing itself, highlighting process monitoring, process 
control and process diagnostics. This first subsection is rather descriptive, building 
a basic understanding of the terms and definitions. As product and process qual-
ity and its understanding is used differently in varying contexts, in this section, the 
definitions of quality related terms and approaches fundamental to the recent devel-
opments in manufacturing systems are derived. Presenting holonic and intelligent 
manufacturing systems in the next subsection, as they are a widely recognized con-
ceptual and holistic view on modern manufacturing. In the previous sections, the 
connection to the information and data perspective is omnipresent. Therefore, an 
introduction to information and data management in manufacturing, incl. Big Data 
and information quality is presented. Concluding, key challenges of the recent devel-
opments in MS from a product and process information perspective are discussed.

2.1  Manufacturing Terms, Definitions and Developments

In this section the principle understanding of manufacturing, manufacturing processes 
and products in this domain is presented. On the highest level, the term manufactur-
ing describes the production of goods using labor and machines, tools, processing, or 
formulation (see Fig. 2.1) (Steven 2007; Jehle 1999). Today, manufacturing is mostly 
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connected to industrial production. Hereby it has to be noted that while the terms pro-
duction and manufacturing are frequently used interchangeably, their inherent mean-
ing differs to some extent. Whereas it is true that every type of manufacturing is also 
production, not all production is necessarily manufacturing as it describes convert-
ing input to output in a broader term. An example for a production which cannot be 
described by manufacturing is a book. Whilst the making of the physical book itself 
can surely be manufactured, the content, the creative work cannot. Despite various 
researchers argue that manufacturing can also produce non-material products (e.g., 
Morris and Johnston 1987), in this research, manufacturing in understood as the mak-
ing of material goods (see Fig. 2.1) in accordance with Filos (2013).

According to Filos (2013), “manufacturing is the activity to make goods, 
usually on a large scale, through processes involving raw materials, compo-
nents, or assemblies with different operations divided among different workers. 
Manufacturing encompasses equipment for materials handling and quality control 
and typically includes extensive engineering activity such as product and system 
design, modeling and simulation, as well as tools for planning, monitoring, con-
trol, automation and simulation of processes and factories. It is increasingly seen 
as a priority area of economic activity especially for economies that have been hit 
by the recent financial and economic crisis.”

There are five different manufacturing principles regarding the spatial struc-
ture of manufacturing in a facility, the workbench principle, the on-site principle, 
the function or job-shop principle, the cellular principle and the flow principle 
(Lödding 2013). Within this work the focus lies on function or job-shop princi-
ple and the flow principle. Within these, products are transported between stations 
where different transformation processes are conducted to change their state.

Looking at the production types, within this work, the focus lies on mass pro-
duction with a large number of production runs and continuous production. Also a 
possible applicable area is a serial production with a large size of production runs. 
However, a large number of products manufactured are needed as a bases for the 
developed concept. Next, the basics of manufacturing processes are introduced.

Fig. 2.1  Manufacturing as a transformation process to create material goods as an output
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2.1.1  Manufacturing Processes1

A process is a pattern, designed for a certain purpose (Fig. 2.2). It can describe 
different variants of combinations of activities or events which are related through 
causal and/or timed order relations directly to a process confining and activating 
activity or an activating event and a connected and related result (event or state). 
This can happen through relations to other activities or events of the process 
(Hoffmann et al. 2002). This very general definition of a process can be further 
sharpened and related to the manufacturing domain, looking at the DIN EN ISO 
9000:2005 definition of a process. There a process is defined as “set of interde-
pendent or interrelated tasks transforming inputs in outputs” (CEN 2005).

Manufacturing techniques, used for transforming e.g., products geometry or 
state can be classified as follows (see Fig. 2.3).

The presented techniques are in general not applied individually but in combina-
tion. The six primary techniques are described in more detail in the following list:

•	 Primary shaping: describes the creation of material object out of shapeless mat-
ter. By applying certain processes, e.g., casting, cohesion is created. Primary 
shaping techniques are mostly applied in early parts of a manufacturing pro-
gramme (Grote and Feldhusen 2007).

•	 Forming: this technique is changing the form of a product whilst maintaining 
the cohesion. Through processes like e.g., rolling the elements are restored 
without changing the mass or cohesion (Fritz and Schulze 2006).

•	 Cutting: describes the production through changing the form of a product by 
reducing the cohesion and elimination of elements. Cutting represents an impor-
tant area of manufacturing (König and Klocke 2008).

•	 Joining: summarized processes to join two or more parts or products. Examples 
for processes are adhesive bonding or welding (Westkämper and Warnecke 
2010).

1The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest and Thoben (2012).

Fig. 2.2  Transformation model in manufacturing and value creation

2.1 Manufacturing Terms, Definitions and Developments
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•	 Coating: is realized by permanently adding a shapeless material as an outer 
layer on a physical body. The added layer can e.g., improve the friction 
 behaviour (Grote and Feldhusen 2007).

•	 Changing material properties: whereas the above stated manufacturing tech-
niques change the outer form of a product, this one changes the material prop-
erties within the product itself. The changing of properties can be done by 
applying physical processing, chemical processing or biological processing 
(Steven 2007) e.g., heat treatment.

The transformation within a manufacturing process can either be base on actions 
of humans or machines (Zingel 2009). This definition is already very closely 
related to the manufacturing definition presented above describing manufactur-
ing as a transformation process (see Fig. 2.2). The transformation within a manu-
facturing process needs time; a direct production of outputs is not possible (see 
Fig. 2.2). This implies that a manufacturing process mostly involves more than one 
stage or sub-processes (Gutenberg 1970). As the result of a manufacturing pro-
cess is a product, which represents the customer needs, the manufacturing process 
is necessarily part of a business process or a business process (Korndörfer 2003) 
with the goal of adding value to the product (Porter 2008; Hutton and Denham 
2008).

Figure 2.4 illustrates a manufacturing programme (sequence of manufacturing 
processes) connecting input of process n with output of process n − 1 through 
interfaces. These interfaces can either be internal or external. The terminology of 
the process hierarchy used in this dissertation is presented in the figure as well. 
A manufacturing programme represents the manufacturing system with all man-
ufacturing processes,—operations down to the individual manufacturing activity 
involved.

After having clarified what a manufacturing programme,—process, etc. stands 
for in general and having introduced the main techniques, next, a more detailed 

Fig. 2.3  Classification of manufacturing techniques according to DIN 8580 (CEN 2003)
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discussion will focus on implications of a manufacturing process and its rela-
tion to quality. When looking at improving manufacturing processes, as a first 
step towards efficient manufacturing, it has to be ensured that the manufacturing 
processes, the entire manufacturing programme for that matter, design is capable 
to produce the desired product properties (Mohanty 2004). After this overarch-
ing requirement, a functional process design, is given, the process quality plays a 
major role, as it is directly connected to product quality (Brinksmeier 1991; Jacob 
and Petrick 2007). In every process, a certain degree of variation of the input 
parameters of individual products can be found even in state of the art manufactur-
ing which can influence the product quality (Yu and Wang 2009).

The product quality can be influenced at the end of the manufacturing pro-
gramme (final product quality) or during the different processes or operations. It 
is important to consider, that the processes and operations are often linked via pro-
cess intra- and inter-relations to each other and thus, the variations can, even being 
tolerable from an individual (isolated) process perspective, lead to an unaccepta-
ble accumulation causing failure of the final product to meet the customer require-
ments (Wuest et al. 2013). Taking a closer look, some of these influences are not 
or just partly known today and in most cases hard or impossible to quantify (with 
monetary and technical restrictions) as it is mostly very specific to product and 
process. In this context, the system view gains importance as new research indi-
cates that an isolated focus on single processes during monitoring or improvement 
initiatives may lead to an incomplete understanding of relations (Zantek et al. 
2006; Jiang et al. 2012). This is further illustrated in Sect. 2.2.3. Furthermore, 
Viharos and Monostori (1999) state that having reliable process models is 
extremely important, as they are required e.g., for selecting optimal parameters 
during process planning, for designing and implementing adaptive control systems 
or model based monitoring algorithms.

Looking again at the input-output model of a manufacturing process as pre-
sented in Fig. 2.2, transformation in this case can be described as a change of the 
product state, and thus of one (or multiple) relevant state characteristics, from 

Fig. 2.4  Process sequence and hierarchy (adapted from Becker 2008)

2.1 Manufacturing Terms, Definitions and Developments
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input (product state) to output (product state). Every manufacturing process has an 
input product state, which deviates to a certain extent from the originally planned 
input (see Fig. 2.5) (Ding et al. 2002). The term product state used here describes 
a product at a certain point during a manufacturing programme. This will be pre-
sented in greater detail in Sect. 4.2. This deviation is always there and due to some 
degree to process ‘noise’ such as machine/material variability, environmental fac-
tors, thermal effects, operator error, etc. (Kaiser 1998). The level of the deviation 
and with it, the impact on the product quality, however varies a lot. These devia-
tions of the input product state have an influence on the output product state after 
the state change (transformation) if transformation parameters can be considered 
unchanged (see Fig. 2.6) (Jansen-Vullers et al. 2003).

One option is to base the adjustment of the process parameters on information 
of the product, for example the input product state (see Fig. 2.7). Taking known 
cause-effect relations and the process view into account, this information can be 
described by the product state concept, introduced in this research (see Sect. 4.2 
ff.). The comprehensive approach can contain all necessary information needed by 
processes involved.

However, identifying this set of relevant information is not trivial. A special 
focus within such a concept has to be laid on the question, how can the relevant 
information which provides the basis for the adjustment be identified. Once this 
relevant information, among it being the drivers of product state, is identified, 
experts can apply it to adjust the process on an informed basis accordingly.

Manufacturing is an area with a constant need for efficiency and product and 
process quality improvement. There are many different areas in manufactur-
ing tackling this issue. In order to structure the following findings, the areas are 

Fig. 2.5  Input and output 
deviation of manufacturing 
process

Fig. 2.6  Output deviation 
based on adjustment of 
parameters of manufacturing 
process

http://dx.doi.org/10.1007/978-3-319-17611-6_4
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grouped in different domains. These domains constitute of areas with similar 
requirements and challenges towards supporting techniques and technologies. 
However, there are various forms of semantics out there and as the areas are not 
sharply distinguishable in their focus, overlaps between the domains will occur. 
The three overarching domains are monitoring, diagnostics and control. They 
are complementary in as much as it is necessary to monitor in order to control 
and without diagnostics control is unfocused/undefined. The additional domain 
of scheduling stands out as it is not directly related to the above. As this work 
is focusing on monitoring, the domains of control, diagnostics and scheduling 
are briefly introduced in the following paragraph, before process monitoring is 
detailed in the next subsection.

The domain of control includes a wide variation of areas and is closely 
related to monitoring (Kang et al. 1999). Control is the action of bringing a 
process back into a desirable state. Harding et al. (2006) state that “[ML] and 
computational intelligence tools provide excellent potential for better con-
trol of manufacturing systems”. The areas represented by this domain include 
but are not limited to (intelligent) manufacturing control (e.g., Bowden and 
Bullington 1996; McFarlane et al. 2003), (statistical or automated) process 
control (e.g., Qin et al. 2006; Jenab and Ahi 2010) and simulation (e.g., Baker 
1988; Fowler 2004). The domain of diagnostics (e.g., Chinnam and Baruah 
2009) compromises the areas of process analysis (e.g., Arbor 2000) and fault 
diagnosis (e.g., Widodo and Yang 2007). Additionally there is the domain of 
scheduling, which is required to ensure the control and/or process actions hap-
pen in the right order. However, scheduling, as part of internal and external 
logistics will not be in the focus of this work. In order to present a rather com-
plete picture, the different areas summarized under scheduling are: scheduling 
(e.g., Aytug et al. 1994), sequencing (e.g., Lödding 2013) and capacity plan-
ning (e.g., Lutz et al. 2012).

2.1.2  Process Monitoring

Using product and/or process data to monitor and/or forecast certain events, chains 
of events and/or outcomes is a topic, widely discussed among scholars for more 

Fig. 2.7  Importance of 
relevant process information 
process parameter adjustment

2.1 Manufacturing Terms, Definitions and Developments
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than the last 20 years. Du et al. (1995) describe monitoring as an act of identifi-
cation of characteristic changes of a process by evaluating process data without 
interfering running operations. Stavropoulos et al. (2013) describe monitoring 
as the manipulation of sensor measurements (e.g., force, vision, temperature) in 
determining the state of the processes. Ge et al. (2013) define process monitoring 
simply termed as fault detection and diagnosis, and as a tool for process safety and 
quality enhancement. These definitions already highlight again the connection to 
process control and process diagnostics as described before. The task of monitor-
ing is to separate the normal process data samples from the faulty ones (Ge et al. 
2011). The extraction of useful information from the recorded process dataset 
enables the monitoring and prediction of the process operation condition and the 
product quality (Ge et al. 2011).

Due to increased number of variables measured and monitored and the 
improved controllability of these variables a method of analyzing the data is 
required. Without an appropriate method only limited data about the processes can 
be extracted (Lee et al. 2004). Du et al. (1995) find in their research that monitor-
ing based on learning from examples turns out to be more effective in manufactur-
ing programmes than learning from instructions.

Monitoring in manufacturing includes the areas of machine performance moni-
toring (e.g., Spoerre et al. 1995), (machine) condition monitoring (e.g., Peng 
2004; Widodo and Yang 2007), quality monitoring (e.g., Ribeiro 2005; Wuest 
et al. 2013) and process monitoring (e.g., Skittet al. 1993; Qin et al. 2006). More 
detailed application areas include the analysis of high-dimensional and correlated 
process data, e.g., in chemical and biological plants and products (Ge et al. 2011), 
wastewater treatment processes (Lee et al. 2004), model-based monitoring for 
fault detection and diagnosis in aerospace, engine and power systems (Ge et al. 
2013), tool wear and tool breakage (Stavropoulos et al. 2013). The challenges in 
the domains control and monitoring are very similar, reflecting the large overlap 
and connection of the two domains. For example, in order to identify a faulty pro-
cess, the cause-effect relations play an important role. When control kicks into 
get the process back on track based on the monitoring information, cause-effect 
relations are essential in order to take the right measures. Within the monitoring 
domain the challenges can be stated as follows: unclear/unknown cause-effect 
relations, high-dimensionality, incomplete (product and process) data. The rele-
vant sub-domain of process monitoring, quality monitoring will be elaborated in a 
later section (see Sect. 3.2.2). Next, the term product and its understanding within 
the manufacturing domain is introduced.

2.1.3  Product in Manufacturing

In the definition of manufacturing introduced before, the purpose of manufactur-
ing is the production of material goods. In industrial production, these goods can 
be referred to as products. As the term product is a central aspect of the developed 

http://dx.doi.org/10.1007/978-3-319-17611-6_3
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concept, first commonly accepted definitions are presented, before the agreed upon 
understanding of the term is presented.

A general definition describes a product as representing an output offered on 
the marketplace which satisfies the customer needs through specific functions and 
characteristics in a beneficial way. The output can be material goods, services, 
information or experiences (Kotler et al. 2011).

According to the Quality Management (QM) standard (DIN ISO EN 
9000:2005), representing an engineering perspective, a product is defined as the 
final result of a process. The results of the previously discussed manufacturing 
processes can therefore be defined as products. During the manufacturing pro-
cess, the to-be-transformed material is referred to as “work piece” (CEN 2005). 
Finalizing the manufacturing process, the work piece becomes a product (see 
Fig. 2.8). It has to be noted, that two or more work pieces can be combined to a 
single product (Schmachtenberg 2000).

In manufacturing, the PLM perspective is increasingly gaining attention. In 
closed-loop, item-level PLM, an object over all phases of its lifecycle, beginning 
from raw material over work piece and final result of manufacturing (product) to 
the to-be-recycled materials after usage are considered and referred to as product 
(Jun et al. 2007; Terzi et al. 2007; Taisch et al. 2011) (see Sect. 3.1).

In this research, the term product is used comprehensively to describe an arti-
fact over various stages of its product-life-cycle replacing the more technically 
accurate terms e.g., raw material before and work-piece during manufacturing. 
Reasons include the focus on individual products (item-level) and the reduction 
of complexity. Based on this understanding of the term product, the product state 
describing a product at different stages of a manufacturing programme, will be 
defined later on (Sect. 4.2) (see Fig. 2.9). Next, basic quality terms and definitions 
are presented in the following subsections.

Fig. 2.8  Raw material, work 
piece and product in relation 
to a manufacturing process

Fig. 2.9  Product with 
changing state during a 
manufacturing process
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2.1.4  Quality in Manufacturing

Quality has been a focus area of manufacturing for several decades and the mar-
ket success of companies successful in utilizing their understanding of quality and 
customer requirements highlight the importance of quality. De Weck et al. (2012) 
found in their recent study on system lifecycle properties (‘Ilities’) that quality is 
and was the most dominant ‘ility’ of engineering systems for over a century, rated 
higher than e.g., reliability and safety (De Weck et al. 2012).

In this research the term quality is understood as “the degree to which a set 
of inherent characteristics fulfils requirements” (DIN EN ISO 9001:2008—CEN 
2008). Requirement within this context is defined as the “need or expectation 
that is stated, generally implied or obligatory” (DIN EN ISO 9001:2008—CEN 
2008). According to this definition, quality depends on the fulfillment of require-
ments. The fulfillment of these requirements depends on the planning of processes 
(commands) and the execution of processes (executions) (see Fig. 2.10) (Masing 
2007). Quality of the final product is regarded as achieved to a higher degree when 
more of the original customer requirements match with the achieved characteris-
tics of the final product (Sitek 2012). The product state concept corresponds with 
this definition as it defines so called state characteristics by which the state of a 
product can be described at all times during its lifecycle. It has to be considered 
that a product can inherit different qualities, the sum of these (sub-)qualities like 
e.g., security, workmanship or durability finally represent the final product quality 
(Kamiske and Brauer 2008).

There are different definitions of quality in manufacturing available. Some 
researchers have a very technical view on quality in manufacturing. An example 
for such a technical definition is presented by Kaiser (1998), who defines qual-
ity in manufacturing as “primarily a factor of machining tolerances” This implies 
that quality can be achieved when the machining tolerances are controlled. This 
view does not reflect common problems like input deviations or environmen-
tal influence on the processes. Other researchers define quality in manufacturing 
more generally, as “confirming with requirements”, thus focusing on the custom-
ers (Garvin 1984). However, researchers agree, that in most cases “products with 
small variations in shape and size are considered high quality, while products with 
large variations are considered poor quality” (Kaiser 1998). This corresponds with 
the former definition, as “a product that deviates from specifications is likely to 
be poorly made and unreliable” (Garvin 1984). However, these variations have to 

Fig. 2.10  Elements of quality (adapted from Masing 2007; Sitek 2012)
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be viewed form a customer requirement perspective. Some variations of param-
eters not important for the customer with not impact on other important param-
eters have no influence on quality. As manufacturing companies constantly try to 
improve the quality of their products and processes, it has to be noted that quality 
improvement generally requires collection and analyses of data to solve quality 
related manufacturing problems (Köksal et al. 2011).

According to the quality definition above, the final product quality depends on 
the fulfillment of the customer expectations and thus the customer requirements. 
Overall, there are many possible reasons for a discrepancy from these require-
ments, e.g., the requirements of customers where not correctly retrieved or the 
designers interpreted and transformed the requirements differently than the cus-
tomer fancies. However, within this research it is assumed that the requirements 
were correctly retrieved and the product will fulfill the customer expectations if 
it meets the specifications set by the designers and process planers. Using the ter-
minology of Fig. 2.10, the commands are considered correct and the execution is 
the focus area. The reason behind this is that this research is focusing on support-
ing the manufacturing process and does not directly support phases like e.g., the 
design or product planning. Following Taguchi’s (1989) six stages of activities of 
manufacturing companies, the focus lies on stage (4) manufacturing and partly (3) 
manufacturing process design, whereas the stages (1) product planning, (2) prod-
uct design, (5) marketing and (6) sales will not be looked upon.

2.1.4.1  Product Quality

The term product quality has been introduced partly in the previous section. As 
can be seen in Fig. 2.10 product quality is determined by the fulfillment of the 
(quality) requirements by the characteristics of the final product. To adapt this def-
inition to the process and system view, product quality can also be determined for 
processes and/or operations within a manufacturing programme. The final product 
is to be understood as the outcome of a process or operation instead of the overall 
manufacturing programme. However, the requirements are not as easily determi-
nable because of existing cause-effect relations between different processes and/or 
operation during the manufacturing programme. In manufacturing programmes, a 
wide variety of potential errors can influence the quality characteristics of a prod-
uct. The product end quality is finally determined by all stages of the manufactur-
ing program (Zantek et al. 2006; Jiang et al. 2012). This challenge is addressed by 
the product state concept, as it is one of the pillars towards the identification of a 
set of relevant information (see Sect. 4.4).

Some quality characteristics can be easily measureable, for example length, 
depth or weight, some are hard to measure, like functions or aesthetic. Easily 
measurable characteristics have the advantage of being easier to monitor and 
control. The quality characteristics being hard to measure are mostly hindering 
the checking of the fulfillment of requirements. Additionally, quality character-
istics are an element for control of the impact of quality management processes 

2.1 Manufacturing Terms, Definitions and Developments
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(Eversheim 1997). It is however a challenge to determine the actual real life 
requirements according to which the product quality is finally determined (Olbertz 
and Otto 2001). As stated above, this question is not in the focus of this research.

2.1.4.2  Process Quality

Quality principles cannot just be applied to product but also to processes. The 
process quality definition depends to a large extent on the understanding of pro-
cess itself. A process, e.g., a manufacturing process, inherits a specific order of 
transformation activities alongside temporal and spatial dimensions with a defined 
input and output. The quality of a manufacturing process is determined by the 
compliance with criteria for order, time, place, input and output (Kreutzberg 
2000).

Process quality determines the product quality, given that the entire manufac-
turing programme and product/process design is capable of meeting the require-
ments, (Brinksmeier 1991; Jacob and Petrick 2007) (see Fig. 2.10). Even if a 
process is executed with the exact same parameters, a certain degree of variation 
of the input parameters of individual products can be found even in state of the art 
manufacturing which can influence the process quality and thus the product qual-
ity (Taguchi 1989; Yu and Wang 2009).

It is a major task of QM to ensure a high process quality in manufacturing. 
Continuous improvement is widely employed in order to reduce failure and to 
optimize manufacturing processes and the quality of the output (Eversheim 1997). 
This QM tasks, involving a lot of information and data and efficient handling of 
such, are introduced in the following subsections.

2.1.5  Example of a Manufacturing Programme2

A manufacturing programme consists of different processes and operations, each 
with a certain very specific task and goal. To transform a raw material to a final 
product, all processes are necessary and have to be executed in a certain order. To 
make the theory introduced in the previous sections more feasible, an exemplary 
description of the manufacturing programme of a highly stressed steel product will 
be presented. This example is based on an adapted manufacturing programme fol-
lowing (Klein et al. 2005) which consists of three process steps: forging, machin-
ing and heat treatment (Fig. 2.11).

In industrial practice, a manufacturing programme involves generally more pro-
cesses and/or some have to be executed multiple times at different stages of the 
whole manufacturing programme. To build a foundation for the following concept, 

2The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2013)
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the author chose to use a simplified example in order to focus on the main ideas 
behind the concept instead of getting lost in details.

Today, it has to be taken into consideration that manufacturing programmes are 
not executed by a single company at a single location any longer but rather in col-
laboration with other companies (Seifert 2007). This includes extra interfaces and 
interdependencies between stakeholders as well as manufacturing and business 
processes. For example, could the forging (process 1) in the exemplary manufac-
turing programme (see Fig. 2.11) be done by company A in country X, whereas 
the processes machining (2) and heat treatment (3) are executed by company 
B’s department C (country Y) and D (country Z). As this adds further complex-
ity to the manufacturing itself by involving additional logistics and information 
exchange, there is an indispensible need for a clear structure to identify, share/dis-
tribute and use product and process information (Merali and Bennett 2011).

This section presented the basic terminology, e.g., manufacturing, product and 
process used in this research. It described how manufacturing processes transform 
products by adding value. This value adding can be done in various ways, e.g., 
machining or heat treatment. Furthermore, the importance of the availability of the 
right information for a manufacturing process is introduced. Together with process 
monitoring, which can be understood as the capturing of information in a manu-
facturing process this is the basic principle the product state concept is build upon.

2.2  Developments of Manufacturing System

A manufacturing system describes the method of manufacturing in a generalist 
way. A manufacturing system sub-summarizes all means necessary for the produc-
tion of a certain product, including the manufacturing programme and processes, 
machines, production method, etc. It represents the overarching layer connecting 
the different stakeholders involved and is mostly complex and of large-scale (Höpf 
and Schaeffer 1997). Koren et al. (1998) have shown that the configuration of the 
manufacturing system affects the performance of the system. The effects identified 
include productivity, capacity scalability, and part quality and thus, influence the 
lifecycle cost of the manufacturing system.

Fig. 2.11  Exemplary manufacturing programme with three processes

2.1 Manufacturing Terms, Definitions and Developments
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Over time there have been many different methods and concepts concerning 
manufacturing systems. From flexible and integrated manufacturing systems (e.g., 
Collins 1980; Kimemia and Gershwin 1981) towards today’s Holonic (HMS) 
and Intelligent Manufacturing Systems (IMS) (e.g., Höpf and Schaeffer 1997; 
McFarlane and Bussmann 2003) there are many different definitions available, each 
focusing on certain aspects with smaller or larger overlaps with each other. Even 
so some concepts were adopted in the 1980s, they are still to some extent valid and 
applied in their original or adapted/updated form today (ElMaraghy 2006).

Flexibility is still an important factor for today’s manufacturing systems espe-
cially given the trend towards mass customization (He et al. 2013). However, the 
focus is increasingly shifting towards a combination of reconfigurability, flexibility 
and even adaptability (ElMaraghy 2006; Almeida 2011). Reconfigurability, flex-
ibility and adaptability reflect the customer demand driven production of today’s 
business environment. These concepts focus to a large extent on scheduling and 
production planning and control activities. IMS, in detail explained in Sect. 2.2.2, 
try expanding that view by expanding the focus on further characteristics like e.g., 
autonomy, learning and efficiency (Kumar 2002; Oztemel 2010; Almeida 2011). 
HMS, while based on the IMS concept, focus on the self organization aspects of 
large complex systems and how this integrates in and influences the performance 
of the system (McFarlane and Bussmann 2003) (see Sect. 2.2.3).

2.2.1  System View on Manufacturing

The general systems theory (Von Bertalanffy 1972) and the derived systems per-
spective has had an effect on various disciplines and has partly been adapted to 
the needs of various disciplines like operations, information systems and also 
engineering (Maddern et al. 2013). A System represents “a set of interacting com-
ponents having well-defined (although possibly poorly understood) behavior or 
purpose; the concept is subjective in that what is a system to one person may not 
appear to be a system to another” (Magee and de Weck 2004). A complex sys-
tem expands on the above system definition by being “a system with numerous 
components and interconnections, interactions or interdependencies that are dif-
ficult to describe, understand, predict, manage, design, and/or change” (Magee 
and de Weck 2004). Engineering (and thus manufacturing) systems) are “systems 
designed by humans having some purpose” (Magee and de Weck 2004).

However, in the manufacturing domain often the focus is on individual pro-
cesses or operations, disregarding the previous or following ones, which can have 
an impact on the products final quality. Hoffmann et al. (2002) found that there are 
cause effect relations across process borders which have a significant influence on 
the behavior of a product during manufacturing (Sölter 2010). Such often com-
plex process intra- and inter-relations are common in engineering systems (Giffin 
et al. 2009). In line with the principles of systems theory, the environment of the 
system also has an influence of the behavior of a system (Maddern et al. 2013). 
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In manufacturing programmes, a wide variety of potential errors can influence 
the quality characteristics of a product. The product end quality is finally deter-
mined by all stages of the manufacturing programme (Zantek et al. 2006; Jiang 
et al. 2012). Therefore, taking the whole system into account instead of individual, 
isolated processes can help to accomplish sustainable product and process quality 
improvements (Zoch 2009). Supply Chain Management (SCM) represents a very 
common variant of a system view, focusing mostly on logistics and collaboration 
efforts (Christopher 2005), whereas the research focus in this manuscript lays on 
product and process quality improvements in manufacturing.

2.2.2  Intelligent Manufacturing Systems

Increasing market pressure towards quality, efficiency and flexibility together with 
new developments in ICT, Artificial Intelligence (AI) and optimization techniques 
lead to the concept of intelligent manufacturing. Intelligent manufacturing is also 
known as smart manufacturing, being used almost interchangeable. A compre-
hensive definition of smart/intelligent manufacturing is presented by Wallace and 
Riddick (2013) as follows: “Smart [or intelligent] manufacturing is a data intensive 
application of information technology at the shop floor level and above to enable 
intelligent, efficient and responsive operations” (Wallace and Riddick 2013).

Another definition of intelligent manufacturing describes the concept as “an 
intelligent manufacturing process [that] has the ability to self-regulate and/or 
self-control to manufacture the product within the design specifications” (Kumar 
2002). In this definition the autonomous aspect of intelligent manufacturing is 
highlighted. What is commonly accepted among researchers is the importance of 
product and process information and data, technology and (human or machine 
inherent) knowledge (Chand and Davis 2013). This understanding already implies 
that in order to make a manufacturing process intelligent, various functions of a 
manufacturing company have to work together, e.g., design, process planning, 
production planning, operations and process control. Looking at the final prod-
uct, individual quality control and based on that, corrective measures are required. 
During manufacturing itself, monitoring, diagnostics and measures like predic-
tive maintenance play an important role (Mazumder 2008). Overall, continuous 
improvement is crucial to make the system intelligent.

However, the degree of autonomous behavior is not specifically defined. Kumar 
(2002) defines three ways to achieve the above-defined intelligent manufacturing:

•	 “Existing manufacturing processes can become intelligent by monitoring and 
controlling the state of the manufacturing machine

•	 Existing processes can be made intelligent by adding sensors to monitor and 
control the state of product being processed.

•	 New processes can be intelligently designed to produce parts of desired quality 
without the need of sensing and control of the process.”

2.2 Developments of Manufacturing System
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According to these findings, existing manufacturing processes can be made “intel-
ligent” by monitoring and control the state of the products via sensor technology 
and the application of ICT. This is highly relevant to the conducted research as the 
here stated “state of a product” is in line with the basic understanding of products 
and processes of the developed concept.

The intellectual father of IMS, Yoshikawa, defines them as follows: “The IMS 
takes intellectual activities in manufacturing and uses them to better harmonize 
human beings and intelligent machines. Integrating the entire corporation, from 
marketing through design, production and distribution, in a flexible manner which 
improves productivity” (Yoshikawa according to Piddington and Pegram 1993).

The global, IMS program compromises a R&D program established to develop 
the next generation of manufacturing and processing technologies, led by indus-
try (Nagy et al. 2005). The first idea for IMS came up by the end of the 1970s 
(Hatvany and Nemes 1978) shortly after followed by early IMS definitions 
(Hatvany 1983). Hatvany (1983) gave the next generation of manufacturing sys-
tems a perspective combining findings of AI research “to solve, within certain 
limits, unprecedented, unforeseen problems on the basis of even incomplete and 
imprecise information”. (Monostori 2002) Being widely discussed, a world-
wide IMS initiative, initiated by Japan 1989 (EC 2009), was formally started in 
the mid 1990s with the kick off of six test cases. One of the cases were Holonic 
Manufacturing Systems (HMS) (TC5), which looked into the ability of companies 
to react to rapidly changing market conditions (see Sect. 2.2.3), others looked into 
knowledge systemization in product and process design (TC7), whereas others 
focused on clean manufacturing (TC2), concurrent engineering (TC3) and rapid 
product development (TC6), etc. (Kopacek 1999). Even so the impact of con-
ducted project within the first phase of IMS was positive, there is still potential for 
future development in IMS especially given the rapid development in ICT (Zobel 
and Filos 2006).

According to Kumar (2002), “IMS

1. uses technology which can minimize the use of human brain.
2. regulation for product mix and priority production, self regulated.
3. self controlled operations with automatic feedback mechanism.
4. monitoring and control of the manufacturing machine.
5. monitoring and controlling the state of product being processed.
6. new processes with intelligence can be made to produce parts of desired quality 

without the need of sensing and control of process” (Kumar 2002).

One has to bear in mind that the points stated above are rather idealistic goals as 
a realization in the near future is unlikely due to e.g., the high dimensionality and 
complexity involved in modern manufacturing and PLM approaches.

IMS, being based on the intelligent manufacturing paradigm, are supposed to 
support various characteristics, starting with flexibility and reconfigurability com-
bining them with ideas from the ICT domain like autonomy, decentralization, 
flexibility, reliability, efficiency, learning, and self-regeneration (Liu et al. 1997; 
Revilla and Cadena 2008; Mekid et al. 2009; Shen et al. 2006; Almeida 2011).
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Looking at the above, the importance of state monitoring of both, processes and 
products within IMS is evident. This research is contributing to support state mon-
itoring issues in complex manufacturing programmes to support the IMS goals.

2.2.3  Holonic Manufacturing Systems

The word “holon” is an artificially created term based on the Greek word “holos” 
meaning whole and the Greek suffix “on” meaning particle or part as in proton or 
neutron (Höpf and Schaeffer 1997; McFarlane and Bussmann 2003). A holon is 
understood as “an identifiable part of a system which has a unique identity, yet is 
made of subordinate parts and in turn is part of a larger whole” (Kopacek 1999). 
McFarlane and Bussmann (2003) define a holon in manufacturing as an “autono-
mous and cooperative building block of a manufacturing system for transforming, 
transporting, storing physical and information objects”. Given the above defini-
tion, a holon itself can contain a unlimited amount of holons as subsystems, pro-
viding the necessary processing, information, and human interfaces to the outside 
world (McFarlane and Bussmann 2003).

HMS were originally established as part of the global IMS initiative as TC5 
“Holonic Manufacturing Systems” in 1989 to create “companies able to react 
promptly and efficiently to changes in environmental and marketing conditions” 
(Kopacek 1999). Especially SMEs require flexibility in their manufacturing sys-
tems to survive in the future global market environment. Holons offer allow those 
companies to create flexible manufacturing systems based on principles known 
from ICT. HMSs are supposed to be intelligent, flexible and modular (Kopacek 
1999).

As a basis for this research HMS present an interesting foundation as it com-
bines the detailed view on an “excerpt” (holon) of an overarching system and the 
implications of its performance/changes and inherent information/data representa-
tion. This is strongly related to the approach taken when looking at the manufac-
turing programme by the different product and process states and the identification 
of state drivers based on data from different defined sub-systems (see Sect. 5.3). 
The interpretation of the results strongly depends on how the findings of the analy-
sis of sub-systems affect the manufacturing programme as the overall systems.

In conclusion, the previous subsections highlighted different approaches to 
describe manufacturing systems. Instead of looking at operations or processes 
individually, the importance of considering all elements of the manufacturing 
system, as there are correlations across process borders is described. The product 
state concept, describing a product holistically by its state over a manufacturing 
programme is a reflection of the system view on manufacturing.

2.2 Developments of Manufacturing System

http://dx.doi.org/10.1007/978-3-319-17611-6_5
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2.3  Developments in Information and Data Management 
in Manufacturing3

This section presents a closer look on information and data and its handling and 
management in manufacturing. Most advanced manufacturing approaches, e.g., 
the above discussed IMS and HMS initiatives, rely strongly on information and 
data. The developed product state concept, as a holistic product focused informa-
tion system is dependent on a functional information and data management as 
well.

Along a manufacturing programme, physical products as well as informa-
tion are exchanged between the partners (Hicks et al. 2006). The availability of 
information is a precondition to adjust each manufacturing process in such a way 
that the outcome reflects the set quality requirements to a high degree. Quality, as 
stated before, constantly gains importance for customers and for a sustainable use 
of resources. At the same time, distributed production brings forth new challenges 
for managing quality (Sitek et al. 2010). Looking at quality improvements of man-
ufacturing products and processes, the collection and analysis of data/information 
is essential to solve quality related manufacturing problems (Köksal et al. 2011).

In order to present a solid foundation and highlight the current challenges in the 
domain, first information and data management are presented before looking more 
closely into information quality and their understanding within the manufacturing 
domain. Based on this general introduction, selected standards and tools used in 
practice are presented. The widely discussed Big Data domain is briefly discussed 
at the end of this section; mainly to distinguish the differences and similarities of 
the developed concept with regard to the Big Data perspective. Two specific top-
ics related to the domain of information and data management, namely PLM and 
PDM, are discussed in the next section due to the available practical applications 
and their close relation to the theoretical foundation of the product state concept.

Before focusing more closely into information and data management, Fig. 2.12 
distinguishes the difference between IM (incl. data management) and Knowledge 
Management (KM). Overall, it can be stated, that information management is con-
sidered more technical than knowledge management and that knowledge is backed 
by information and data. An important differentiation, is that data and information 
can be stored relatively easy compared to knowledge which is always connected 
to a person (Probst et al. 2006). The differentiation in explicit and implicit knowl-
edge is crucial for the transferability and applicability. They are based on Polanyis 
findings concerning the personalized nature of knowledge (Polanyi 1962). In com-
parison, information is relatively easy to transfer and data even easier. However, 
information itself does not foster realizations or new findings; it has to be con-
nected to a context in order to become knowledge (Haun 2002). This is important 

3The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest and Thoben (2012).
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for the developed concept as the process of connecting data and information with 
context represents a major challenge during the application.

However, the above illustrated distinctions between the different areas are not 
as clear as Fig. 2.12 indicates. One of the reasons is, that solid measures are miss-
ing resulting in large gray zones and overlaps between the different terms which 
make a clear distinction impossible at times. Within this manuscript, the focus is 
on information and data as a source of product state and process knowledge.

KM is the systematic and explicit control of knowledge based activities, pro-
grams and governance within the enterprise with the goal to make effective and 
profitable use of the intellectual capital (Wiig 1998). (Davenport et al. 1998) 
emphasize that KM does not only imply successful utilization of knowledge but 
also creation and allocation. The KM research field is a very broad one and there 
are various research areas involved, from social science over psychology and busi-
ness to engineering. Therefore, the number of publications and available infor-
mation is vast. Setting the focus on identifying knowledge, (Probst et al. 2006) 
with their model of knowledge building blocks defined one of them as “knowl-
edge identification” (Probst et al. 2006). Taking a closer look, this block describes 
the need to increase transparency of internal and external sources of knowledge. 
It also is supposed to ease the way the own employees have access to knowledge 
needed. The pioneers in the field of KM, (Nonaka and Takeuchi 1997) created the 
well-known model of the “knowledge spiral”, an illustration of the knowledge cre-
ating process focusing on transforming implicit to explicit knowledge. Other con-
cepts, like e.g., process oriented KM (Mertins and Seidel 2009), are variations or 
combine the models of Probst et al. or Nonaka and Tekeuchi and combine it with 
other theories like Porter’s value chain (Porter 2008). None of these approaches 
and models offers a defined and accepted concept clearly to identify very specific 

Fig. 2.12  Differentiation of knowledge and information management Wuest and Thoben (2012), 
inspired by North and Güldenberg (2008); Auer (2010)

2.3 Developments in Information and Data Management in Manufacturing
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sources of information or data about an individual product or process. But they all 
emphasize the importance of having the right knowledge or information available 
at the right place for all business processes. This can be seen as the overarching 
argumentation for the product state concept, as it is supposed to provide the right 
information/data to experts who can apply their knowledge to improve the process 
and thus product quality on that basis. In the future expert systems could support 
knowledge creation based on the product state concept.

Another interesting distinction of knowledge, information and data, this time 
including the relations among each other in both directions is presented by the 
information pyramid (Fink et al. 2005) (see Fig. 2.13). The highlighted relations 
in Fig. 2.13 between knowledge, information and data can be seen throughout this 
research. In order to identify a relevant set of product state information, knowl-
edge of the manufacturing programme, the individual processes and their process 
intra- and inter-relations has to be applied as well as available process and product 
data has to be analyzed when there is a knowledge gap.

The question if process and product quality can be improved through trans-
parent IM based on identification of relevant product state characteristics along 
a manufacturing programme through modeling process intra- and inter-relations 
between these characteristics has not yet been addressed sufficiently in literature 
or practice. Areas related to this question were identified as follows: knowledge, 
information and data management; SCM (incl. process management and related 
areas); research on collaborative production and quality management.

Next, the areas of IM will be explained in greater detail to clarify the domain 
in focus of this research and provide a solid background before including a brief 
explanation of the Big Data domain.

Fig. 2.13  Information pyramid (Fink et al. 2005)
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2.3.1  Information Management (Systems) in Manufacturing

IM and the more technical term IM systems are strongly linked to ICT and related 
technical solution in the manufacturing domain. In this area, a lot of progress 
has been made over the last years. As stated above the understanding of IM and 
IM systems in manufacturing does not distinguish itself sharply from e.g., PDM 
and PLM systems, also with strong links to ICT, which will be discussed in next 
Sect. 3.1. However, IM is closely connected to the quality of the data and informa-
tion to be managed (Storey et al. 2012). Garetti and Terzi (2004) highlight that 
the “product” information and data management is representing a key aspect of 
product centric and product driven approaches, also emphasizing a strong overlap 
between the two areas.

Nevertheless, the research focus of IM in manufacturing is mostly focused 
on how already existing information has to be managed (e.g., Choe 2004; Hicks 
2007) or what existing IM system should be chosen (e.g., Beach et al. 2000; 
Gunasekaran and Ngai 2004). The general principles of IM (e.g., Augustin 1990; 
Jehle 1999; Hoke 2011), the right information at the right time in the right granu-
larity at the right place in the right quality can be seen as the general vision this 
research builds on without providing a problem definition for the domain or a pro-
posed solution.

The relatively new but widely discussed topic of Big Data plays an important 
role in the current developments within the information and data management 
domain in manufacturing. The economically reasonable retrieval and usage of cru-
cial insights from qualitatively diverse and versatile structured information, which 
are subject to constant change and which accumulate in large scale is defined as 
Big Data. The Big Data development is seen as a paradigm shift, as the importance 
of hard- and software diminishes, the importance of data as a value adding factor 
rises. The industrial domain is seen as one of the main benefactors of Big Data 
developments. In a digital world, Big Data is seen as a fourth production factor 
besides capital, labor and raw materials. The rapid increase in the amount of data 
is partly based on new developments in e.g., sensor technology, improved (mobile) 
communication and social media content. Big Data applications tackle an area 
where traditional approaches reach their limitations, basically to handle the sheer 
amount of information for decision making support.

Even so Big Data is widely used in recent times, this reflects a contrast to the 
fact that there is no commonly accepted general definition. One can argue that 
due to the rapid developments in data processing technologies, concrete num-
bers might not be useful within a definition. So the amount of data needed for an 
application to be considered Big Data is vaguely considered too big for traditional 
approaches to handle with acceptable effort. This is not the only defining factor of 
Big Data applications. The complexity of the to-be-analyzed data and the velocity 
of the processing are crucial (Küll 2013).

Today a lot of sensor data is lost due to missing commonly accepted standards 
for data communication, processing and handling. Challenges are e.g., the large 

2.3 Developments in Information and Data Management in Manufacturing
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data volumes accrued by continuously recording sensor solutions. It not only the 
large amounts that propose challenges but also the rapid development in sen-
sors and thus continued emergence of new data types which have to be handled 
(Lohr 2012). Especially wireless sensor networks are prone to outliers due to vari-
ous factors. As there are many different sensors active in these networks, failures 
can accumulate fast (Branch et al. 2013). This ‘contaminated’ data streams are a 
big challenge also for Big Data applications. Researchers look into various meth-
ods to identify and eliminate negative effects in sensor data, ranging from ML to 
Hopfield nets (Aggarwal 2013).

In contrast to traditional data analysis methods, where the solution space is at 
least sketched, Big Data principles look at large amounts of data and try to identify 
new findings hidden in the data in real time. The approach used within the product 
state concept can be seen in between, however leaning towards traditional analysis 
paradigms. The goal of the product state concept is stated beforehand, as of identi-
fying a relevant set of state characteristics to support quality monitoring in manu-
facturing. However, as there are large knowledge gaps in regard to cause effect 
relations across manufacturing processes/operations. In order to define a set of rel-
evant information for the manufacturing programme, all possible information arti-
facts have to be considered initially and the identification of cause effect relations, 
in this case applying pattern recognition shares similarities to Big Data principles.

Technically, the amount of information artifacts will most likely not be con-
sidered Big Data due to the comparable small amount. Thinking ahead, consid-
ering improvements in sensor technologies this can change in the near future. 
Furthermore, the interpretation of real time is different in Big Data applications, 
closer to milliseconds, than it is in the developed concept where real time is under-
stood as ‘available when needed’.

The importance of knowledge, information and data was already introduced 
as early as in the introduction of this dissertation and further detailed throughout 
this section by presenting existing domains and definitions. The different approach 
of IM, trying to gather relevant data for pre-defined problems and big data, look-
ing at all available data in real time, trying to identify patterns in order to create 
new knowledge, is explained. Both approaches have an influence on the product 
state concept development. The goal of the product state concept is to identify a 
comprehensive set of relevant information to describe a product along the man-
ufacturing programme. However, there are many unsolved issues and discrepan-
cies between the available knowledge about the manufacturing processes and the 
needed knowledge. Therefore, Big Data principles of looking at available manu-
facturing data in order to identify patterns, which help in return to identify relevant 
information of the product and process, are included in the concept.

In the following sub-section, the topic of data and information quality is 
introduced as it plays an important role in all information based applications in 
manufacturing.
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2.3.2  Data and Information Quality4

Data and information quality is a topic of great interest for many domains, be it 
social sciences, natural sciences or engineering. In manufacturing, especially in 
the area of process monitoring and control, data and information quality can play a 
decisive role in weather an analysis and the subsequent action is successful or not. 
As was stated previously within this section, information and data is not sharply 
distinguished in literature. From now on, to simplify the understanding, the term 
data quality will be used comprehensively, integrating both, information and data. 
In the following subsection, the current state of the art in data quality is presented 
from a research point of view.

Data quality is a multi-dimensional concept (Pipino et al. 2002). Data and 
information quality is usually defined in terms of contribution to the objectives 
of the end-user (Helfert 2002). It can be additionally described as the adequacy 
for the relevant data processing application (Naumann 2007). Poor data quality 
can be a major cause for damages and losses on organizational processes (Storey 
et al. 2012). To avoid the damages and losses data quality problems and solutions 
should be considered as early as possible, best at the design stage of the informa-
tion system (Storey et al. 2012).

2.3.2.1  Data and Information Quality Dimensions

Pipino et al. (2002) list under the data quality dimensions the following attrib-
utes: accessibility, appropriate amount of data, believability, completeness, con-
cise representation, consistent representation, ease of manipulation, free-of-error, 
interpretability, objectivity, relevancy, reputation, security, timeliness, understand-
ability, value-added. Data quality can thus be also described as a set of quality 
characteristics (Naumann 2007). Many of the listed attributes contribute a lot to 
the overall data quality, as tested by a third-peer.

The starting point for consideration of data quality is the user-oriented quality 
concept. Helfert divides data quality in design and execution quality. The fulfill-
ment of end-user requirements and specifications can be met through a choice of 
properties in the data design. Design quality refers as such to the collection of spe-
cific quality requirements from the user’s perspective. Execution quality includes 
compliance with the specifications (Helfert 2002). Helfert’s basic data quality cri-
teria are: correctness, completeness, consistency and timeliness (Helfert 2002). 
Data quality criteria developed by English are: data standards, data definitions and 
information architecture (English 1999). These criteria can be understood as the 
access capability, timeliness and interpretability of the data and the data system. 

4The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2014).
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Data quality as understood by Wang and Strong can be divided into internal data 
quality, contextual data quality, presentation, and access quality (Wang and Strong 
1996). Wang and Strong focus on user-related data quality—interpretability, use-
fulness, credibility, time reference, and availability have been rated as impor-
tant criteria (Wang and Strong 1996; Helfert 2002). Jarke, Jeusfeld, Quix and 
Vassilidis’s data quality criteria are: completeness, credibility, accuracy, consist-
ency, and interpretability (Jarke et al. 1999). A poll conducted by Helfert delivers 
additional quality criteria important to organizations: clearly defined data descrip-
tions, formal data syntax, delivery times (for data), and specific information about 
selected properties of the data, e.g., number of errors (Helfert 2002).

Rohweder et al. describe data quality as the degree the characteristics suffice 
the requirements on the data product. The requirements for the data are deter-
mined through particular decisions and goals set on data quality. Rohweder et al. 
define data quality with the help of 15 IQ (Information Quality) dimensions 
(Rohweder et al. 2011). These can be applied to e.g., master data, to assess if the 
data is useful or not acceptable. The IQ dimensions have been divided into four 
categories and form a regulatory concept for data quality (Rohweder et al. 2011). 
The 15 IQ dimensions are as follows:

System support (e.g., user interface).

•	 Accessibility: accessible and easy to access.
•	 Ease of manipulation: easy to use and to change.

Inherent (content examination).

•	 Reputation: data source and processing highly trustworthy.
•	 Free of error: error free and consistent with reality.
•	 Objectivity: strictly objective and value-free.
•	 Believability: reinforced with quality standards, etc.

Representation (overall presentation, e.g., the form of statistics)

•	 Understandability: ability of users to directly understand and use information.
•	 Concise representation: clear, saved in appropriate and understandable format.
•	 Consistent representation: uniform and held in consecutive and equal manner.
•	 Interpretability: understandable in same, technically correct manner.

Purpose-dependant (data use in the processes)

•	 Timeliness: actual properties of data (described) accurately and up-to-date.
•	 Value-added: usage leads to quantifiable increase in monetary cost function.
•	 Completeness: no missing information contained.
•	 Appropriate amount of data: amount meets requirements set on data.
•	 Relevancy: provides all necessary information for user.

Overall, it is accepted, that all IQ dimensions should exhibit a high or at least suf-
ficient quality for an information system to be functional (Rohweder et al. 2011). 
Looking at the IQ dimensions, it can be stated that the product state concept can 
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contribute to several of those. Especially the purpose-dependant dimensions, 
focusing on the data usage in processes, are reflected in the development. In 
Sect. 4.1, features of the product state concept are mapped to these information 
quality dimensions (Table 4.1) according to how they address the issues.

2.3.2.2  Avoiding Data Errors

Data errors can be avoided most effectively and most sustainably at the moment of 
their emergence, e.g., throughout the manual data entry or automatic data collec-
tion (Naumann 2007). A direct capture of the data from the source to an electronic 
device without human interference is the best way to minimize data input errors. 
When human interface is unavoidable input errors may occur and consequently 
degrade data quality (Verma 2012). To prevent quality degradation a quality check 
can be performed in the moment of data delivery (here data transformation to the 
target system). The data can be further checked by end-users through the use of 
complaints-forms or other rating-systems, e.g., statistical methods (Helfert 2002). 
In case of data sets from external sources, it is essential for the researcher/informa-
tion-manager to deal consciously with the data and the data quality; it is crucial to 
mark the problematic data to be able to deal consciously with it (Naumann 2007). 
The external party and the person responsible for integrating the data into the tar-
get system should be clear about the purpose of why the data are being collected, 
and it should be clearly stated (Verma 2012).

The most common data quality issues are incorrect or missing values, dupli-
cates, and errors in the recording process (Helfert 2002; Winkler 2004; Naumann 
2007; Verma 2012). Errors in data cause errors in reports generated from the data, 
thus reinforcing the “garbage-in-garbage-out-effect”. Errors can be found within 
the schema and/or the data level. The schema level describes the errors in the 
structural, semantic and schematic heterogeneity of the data characteristics. The 
data level includes value-, unit-, accuracy-, and duplicates errors (Naumann 2007).

Duplicates, one of the most costly data errors (Naumann 2007) can arise, 
e.g., due to typographical errors in the unique identifiers (e.g., the name of the 
researcher). Missing identifiers and contradictions in data indicate low quality 
(Winkler 2004). These issues can be prevented with data quality ensuring prac-
tices, e.g., marking of problematic data, auto correction of format errors, manual 
correction of the data values, troubleshooting and coordination with the data sup-
pliers, and organizational rules (Helfert 2002). Furthermore file-linkage can be 
used to create “more complete” data (Winkler 2004). The traceability of data ori-
gin and documentation of discrepancies is also relevant (Helfert 2002). Semantics 
and identifiability, as well as the precision of the value ranges, the granularity of 
data models, and the technical aspects of the data are less critical for the overall 
data quality (Helfert 2002).

2.3 Developments in Information and Data Management in Manufacturing
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Data quality can be assessed by a third-peer. The assessment can either be task-
independent, where no contextual knowledge is required, or task-dependent, with 
specific application context (Pipino et al. 2002). The data quality methodologies 
can be classified according to various criteria (Batini and Scannapieco 2006):

•	 Data-driven versus process-driven
•	 Measurement versus improvement (assessment or improvement of data quality)
•	 General-purpose versus specific-purpose
•	 Intra-organizational versus inter-organizational

The previously presented basics and subsequently described relation to the con-
ducted research and developed concept are underpinned by an elaboration on chal-
lenges of MS from an information and system perspective in the next subsection.

2.4  Challenges of MS from a Product and Process 
Information Perspective

In this section the challenges in the manufacturing domain with regard to the 
increasing importance of product and process information are derived. This pro-
vides a broad understanding of the research area and research problem in a wider 
sense this dissertation is based upon. In the following Chap. 3, current concepts 
and approaches tackling these challenges to a certain extent will be presented. The 
resulting gaps between the challenges and how the current approaches tackle them 
further specifies the research problem.

The European Commission (EC) predicted the development of manufacturing 
along three paths5: (1) On-demand manufacturing; (2) Optimal (and sustainable) 
manufacturing and (3) Human-centric manufacturing (Filos 2013). Especially the 
second path highlights that manufacturing has to be prepared to produce high 
quality products with high security and durability, competitively priced without 
avoidable waste and scrap (Filios 2013). This focus on quality of individual prod-
ucts and efficient processes supports the arguments brought forth within this 
research.

There are several studies available proposing key challenges of manufacturing 
on a global level. The following key challenges most of researchers agree upon 
(Gordon and Sohal 2001; Shiang and Nagaraj 2011; Dingli 2012; Thomas et al. 
2012):

•	 Adoption of advanced manufacturing technologies
•	 Growing importance of manufacturing of high value added products
•	 Utilizing advanced knowledge, information management and AI systems
•	 Sustainable manufacturing (processes) and products

5www.actionplant-project.eu/public/documents/vision.pdf (retrieved Feb. 12, 2014).

http://dx.doi.org/10.1007/978-3-319-17611-6_3
http://www.actionplant-project.eu/public/documents/vision.pdf
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•	 Agile and flexible enterprise capabilities and supply chains
•	 Innovation in products, services and processes
•	 Close collaboration between industry and research to adopt new technologies
•	 New manufacturing management paradigms.

However, these key challenges highlight the ongoing trend of manufacturing oper-
ations growing complexity. This complexity is inherited not only in the manufac-
turing programmes but increasingly in the to-be-manufactured product itself as 
well as in the (business) processes of the companies (Wiendahl and Scholtissek 
1994). Adding to the challenge is the fact that the business environment of today’s 
manufacturing companies is affected by uncertainty (Monostori 2002).

Focusing from the global challenges towards the challenges of monitoring in 
manufacturing systems, the inherent complexity in manufacturing systems brings 
several challenges to the table when it comes to modeling and/or monitoring and 
control approaches of manufacturing programmes. Some of the challenges new 
concepts have to be able to deal with are:

•	 the great number of different machining operations,
•	 multidimensional, non-linear, stochastic nature of machining,
•	 partially understood (cause-effect) relations between parameters,
•	 lack of reliable data,
•	 missing parts of data sets,
•	 high-dimensionality and multi-variate nature of data.

(Derived from: Tönshoff et al. 1988; Van Luttervelt et al. 1998; Monostori 2002; 
Viharos et al. 2002; Kano and Nakagawa 2008; Wuest et al. 2012).

When trying to increase quality through a monitoring of manufacturing pro-
cesses, it is tough to tackle the challenge of identifying problematic states through-
out manufacturing processes by modeling cause-effect relations between product 
states as of these process intra- and inter-relations along the process chain due to 
this and other factors. The problem at hand has an inherent high complexity and 
high dimensionality (in this context high-dimensionality is understood as a mul-
tidimensional system with a large number of dimensions) (Suh 2005; Lu and Suh 
2009; Elmaraghyet al. 2012). Optimization tools in this field need to be able to 
handle a large number of dimensions and variables in order to be useful in prac-
tice. Even so it would be desirable to use precise first-principle models, the devel-
opment and application of such models is hindered by the complex nature and the 
above stated challenges of manufacturing programmes, especially when it comes 
to new manufacturing programmes, processes or operations (Kano and Nkagawa 
2008). The NP complete nature of the problem of identifying process intra- and 
inter-relations is described in more detail in Sect. 4.5.1.

Kano and Nakagawa (2008) identified three functions that systems intended 
to improve product quality in manufacturing need to fulfill in order to be con-
sidered useful: “(1) to predict product quality from operating conditions,  
(2) to derive better operating conditions that can improve the product quality, and  
(3) to detect faults or malfunctions for preventing undesirable operation”. 

2.4 Challenges of MS from a Product and Process Information Perspective
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Tönshoff et al. (1988), outlined already in the late 1980s the necessity of sensor 
integration, sophisticated models, multi-model systems and learning ability in 
monitoring and control of manufacturing programmes, especially machining pro-
cesses. A possible clustering of concepts based on the kind of knowledge applied, 
leaves fundamental, heuristic and empirical models that can be distinguished 
(Viharos et al. 2002).

In the next section, existing approaches which focus on the identified chal-
lenges are discussed. The gaps between the successful tackling of the raised 
issues by these approaches provide a further basis for the developed product state 
concept.
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The developments within the domain of manufacturing, intelligent and holonic 
manufacturing systems from an information and data perspective were presented 
in the previous section. This was concluded by a brief elaboration of the key 
 challenges in that area as a basis for this section and the later development of the 
product state concept. In this section, the focus is laid on existing approaches and 
concepts that try to address some of the identified challenges of MS when it comes 
to transparent and product specific information and data management. The main 
focal methods and concepts are PDM, PLM and quality monitoring in manufac-
turing. The presented domain specific knowledge is discussed within this section 
as it has strong relations with the later concept development. In order to allow the 
reader to easily identify the relation of the individual method to the product state 
concept, a short conclusion after each section highlights the relevancy and connec-
tion to the topic. The final sub-section of this third section will furthermore briefly 
summarize the complete section and help the reader with the transition towards the 
next section where the product state concept is presented.

3.1  Product Lifecycle Management in Manufacturing

PLM as mentioned in the previous chapters is focusing on the whole product life-
cycle and promises to manage all data and information involved. This  promise 
overlaps with the set goal of the developed concept, as it is based on information 
and data of an individual product over a whole manufacturing programme and 
beyond. PLM research has a long tradition not only in the engineering domain 
but also in management science. Strongly connected to PLM is the area of PDM, 
which is briefly discussed in the following subsection. After that, first the product 
lifecycle in manufacturing is investigated before taking a closer look at PLM in 
general and closed-loop, item level PLM in particular.

Chapter 3
Current Approaches with a Focus  
on Holistic Information Management  
in Manufacturing
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3.1.1  Product Data Management

Today there are many technologies available and widely used in industry. One of 
the first, Computer Aided Design (CAD) has developed greatly and has been sup-
ported by many other specialized tools like Computer Integrated Manufacturing 
(CIM), Computer-aided Engineering (CAE), Computer-aided Process Planning 
(CAPP), PDM and PLM systems (Chryssolouris et al. 2009). Other IM sys-
tems focus more on operations like Manufacturing Resource Planning (MRP), 
Manufacturing Execution Systems (MES), Advanced Production Systems (APS) 
and Enterprise Resource Planning (ERP) (Wiers 2002). Taking a closer look, 
MES, widely distributed in industry, are software packages designed to manage 
factory floor material control and labor and machine capacity (Helo et al. 2014) in 
real time. They are usually located at the factory level (Brecher et al. 2013), and 
are an integration of the management system and systems nearer of the shop floor 
operations (Simao et al. 2006). MES can be described as control systems with the 
goal to fill the gap between the upper planning level and the lower shop-floor exe-
cution. MES aim to control the production, maximize the workload of equipment, 
release unneeded machine tools, track and trace components and orders, manage 
inventory, and optimize production activities from order launch to finished goods. 
They are usually linked with ERP systems which issue, e.g., production orders 
to the MES system, linking quality control, scheduling and material informa-
tion (Helo et al. 2014). The latest developments in MES include building flexible 
workflows and supporting distributed manufacturing (Helo et al. 2014). A MES 
can as such be understood as the operational arm of the ERP system. It imple-
ments the ERP’s production plan and reports the current processing status back to 
the ERP level. The MES system monitors the local production lines and gathers 
data regarding the logistics and the technical parameters in the production process. 
In addition to monitoring the production, and materials status, it also provides 
the execution and construction plans of the production orders. The overall goal is 
the improvement of productivity and reduction of cycle-time. Overall, MES and 
related systems do not focus on individual product and process information.

However, this research is looking mainly on product and process data and 
information. Therefore, as focusing mainly on the product and a  product-centric 
perspective, PDM stands out as it focuses on data and information directly 
 connected to the products. PDM systems were developed to support CAD 
 systems through management of the CAD-data and drawings. Since then the 
domain continuously developed further towards today’s integrated solution for 
the management of product and process data between various systems. However, 
over time a large amount of terms were created (e.g., Digital Product Definition 
(DPD),  collaborative Product Definition Management (cPDm)), enhancing the 
 original meaning of PDM but also creating some confusion among practitioners 
(Abramovici and Sieg 2001).
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Literature on PDM promises integration and management of all information 
that defines a product (Liu and Xu 2001). However, it is mostly seen as a tool to 
store, administrate and share product data, not to decide what information should 
be stored or determine how the stored information is connected to each other. Other 
researchers extent the view further. Saaksvuori and Immonen (2004) describe product 
data as “information broadly related to a product”. PDM is one of the major focus 
areas of engineering and manufacturing companies (Fasoli et al. 2011). Fasoli et al. 
(2011) claim, that especially within today’s distributed production processes, it is 
most important that data is first correct and second correctly distributed. It is essen-
tial that data is correct and in a format that it can be transferred to all addresses in 
need electronically (Saaksvuori and Immonen 2004; Gimenez et al. 2008). A sys-
tem realizing this in an applicable way for industry practitioners has not yet been 
developed (Abramovici 2007) and the “requirements for efficient management of 
product data have been steadily increasing” (Leong et al. 2002). Other researchers 
looked into how product data manipulated by a manufacturing process can be inte-
grated into a PDM system (Peltonen et al. 1996).

Within the PDM field, certain standards have evolved, tackling the interface issue 
and communication issue between different systems. Communicating advanced 
information about a product through current PDM standards like STEP (Standard for 
the Exchange of Product Model Data) are mainly focused on geometric information 
and does not explicitly support information like chemical composition of material. 
Combined with the fact that products become more complicated (increasing number 
of parts and variations) (Leong et al. 2002) this highlights the need for innovative 
concepts for structuring and handling product related data efficiently.

Looking at the claim of PDM systems that they can integrate and manage all 
application, information and processes that define a product (Chryssolouris et al. 
2009), there are many challenges in data management in the manufacturing domain 
still to be faced (Fasoli et al. 2011). However, PDM systems today are used by 
most manufacturing companies for e.g., “controlling information, files, docu-
ments, and work processes and are required to design, build, support,  distribute, 
and maintain products” (Chryssolouris et al. 2009). Chryssolouris et al. (2009) 
define typical product related information managed by PDM data as: “geometry, 
engineering drawings, project plans, part files, assembly diagrams, product speci-
fications, numerical control machine-tool programs, analysis results, correspond-
ence, bill of material, and engineering change orders among others”.

In Fig. 3.1 the focus area of PDM is highlighted along the value chain. In con-
trast to the very narrow focus of PDM on design engineering, PLM is shown as a 
more overarching and thus more applicable from a systemic perspective on manu-
facturing. Furthermore, as PDM is looking mainly on a product class (e.g., tire 
model abc) the resulting extension of PDM to PLM and from that to closed-loop 
and item-level PLM (see Sect. 3.1.3) can be seen as a step towards a holistic IM 
of individual products (e.g., No. xyz of tire model abc). This is presented in the 
 following subsection, starting with the product lifecycle itself.

3.1 Product Lifecycle Management in Manufacturing
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Fig. 3.1  Distinction of PDM and PLM along the value chain (Paul and Paul 2008)

Fig. 3.2  Phases of the product lifecycle

3.1.2  Product Lifecycle Management1

Product lifecycle literature generally differentiates organizational/marketing and pro-
duction engineering/ICT perspectives (Sundin 2009). In marketing, practitioners and 
academics tend to adopt a sales-oriented view, dividing the lifecycle into five phases: 
introduction, growth, maturity, saturation and degeneration of a product. Here, the 
economic success of a product is the main concern of classification (Meffert et al. 
2008). The scope a product refers to may be a model, type or category.

The engineering and ICT perspective used here follows (Kiritsis et al. 2003) 
(see Fig. 3.2). The basic product lifecycle framework in production engineering 
differentiates three main phases (Jun et al. 2007; Cao and Folan 2012), describing 
the product from the “cradle to grave” (Stark 2011):

•	 Beginning-of-Life (BOL): processes related to development, production and 
distribution

•	 Middle-of-Life (MOL): processes related to a product’s use, service and repair
•	 End-of-Life (EOL): processes related to reverse logistics like reuse, recycle and 

disposal

1The content of this section has been partly published in accordance with (Universität Bremen 
2007) in (Wuest et al. 2014a).
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Being shortly introduced in the PDM section before, PLM extends the concept 
of PDM beyond the usage in product design and partly manufacturing (Paul and 
Paul 2008). Some researchers use the terms almost interchangeable whereas 
 others clearly state that PLM is a central approach of an integrated management 
data related to products but also manufacturing processes and beyond (Fasoli 
et al. 2011). Classic PDM functionality encompasses object, component and 
document management, classification and search functionality, change manage-
ment and tools for system administration and configuration (Abramovici and 
Sieg 2001). The production engineering and ICT perspective towards PLM also 
differs from the organizational and marketing perspective, as does the view on 
the product lifecycle itself (see above). In production engineering and ICT, PLM 
is commonly understood as a concept which “seeks to extent the reach of PDM 
[…] beyond design and manufacturing into other areas like marketing, sale and 
after sale service, and at the same time addresses all the stakeholders of the 
product throughout its lifecycle” (Golovatchev and Budde 2007). PLM conse-
quently includes strategically modeling, capturing, exchanging and using infor-
mation in all decision-making processes throughout the product lifecycle (Stark 
2011; Moorthy and Vivekanand 2007). It implements an integrated, cooperative 
and collaborative management of product data along the entire product lifecycle 
(Terzi et al. 2007).

By definition, every product has a lifecycle. Manufacturers are becoming 
aware of the benefits inherent in managing those lifecycles (Sendler 2009). At the 
same time today’s products are becoming increasingly complicated. For  example, 
the amount of component parts is increasing. Simultaneously, development, 
 manufacturing and usage cycles are accelerating (Sendler 2009) and production 
is being distributed geographically (Seifert 2007). These trends highlight the need 
for innovative concepts for structuring and handling product related informa-
tion efficiently throughout the entire lifecycle. On top that, customer demand for 
more customization and variation stresses the need for a PLM at item, not merely 
type-level.

Besides merely handling product and process related data, PLM also has to take 
into account the interdependencies of information and communication between 
all of the stakeholders involved in the product lifecycle. Common  graphical rep-
resentations of the product lifecycle encompass three phases, beginning of life, 
 middle of life and end of life (see Fig. 3.2). Recent research clusters  available 
PLM methods/tools in three major groups (Gimenez et al. 2008; Fasoli et al. 
2011): information (e.g., focus on identification methods) and process manage-
ment (e.g., operational activities) as well as application integration (e.g., definition 
of interfaces).

3.1 Product Lifecycle Management in Manufacturing
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3.1.3  Closed-Loop and Item-Level PLM2

Conventional views of PLM tend to stress the first phase of the product lifecycle, 
due to its beginnings in PDM and CAD. Processes highlighted here are product 
design, development, production and sales. Emerging approaches such as closed-
loop PLM (Jun et al. 2007) take a holistic view upon the entire product lifecycle, 
from product ideation to end-of-life processes, ideally also the end of one lifecycle 
into the beginning of the next. It thus puts forward a paradigm shift from ‘cradle to 
grave’ to ‘cradle to cradle’ (Pokharel and Mutha 2009) (see Fig. 3.3).

An example is the refurbishment of components from decommissioned  products 
for use in new ones. The aim of closed-loop PLM is to close  information gaps 
between the different phases and processes of the product lifecycle of  individual 
products. This can be backwards, for example providing usage data to design 
processes, or forwards, for example providing production and  assembly informa-
tion to recycling processes. It deals with products not as classes or variants, but 

2The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2011, 2013b, 2014a, b).

Fig. 3.3  Closed-loop, item-level product lifecycle phases (Wuest et al. 2014a)
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as individual items (“item-level”). Additionally, item-level PLM allows focusing 
more on the individual product and therefore creates the basis to e.g., monitor 
product quality on an individual level rather than on a batch level.

Being in the focus of researchers and practitioners for over a decade, data 
management in PLM still has to face the challenge of a gap between the  existing 
 reality and the expected features in data management (Fasoli et al. 2011). 
Especially in the area of item-level product data management along complex 
manufacturing chains are still many issues, like e.g., a generally accepted and 
interchangeable format that contains all relevant information, to be solved. 
The developed concept contributes to this development in the abstract way of 
 systemizing product information around the product state.

The product state concept may be argued to be a sub-domain of item-level PLM 
or an extension of existing approaches. Both concepts are looking at individual 
products over different phases or processes. The product state concept  incorporates 
many principles of item-level PLM and faces similar challenges, however the 
product state concept focuses mainly on the manufacturing phase as of today. For 
future application it is important to understand the similarities as it might present 
an interesting option to include the product state concept as a module in existing 
PLM tools. Furthermore, the product state concept highlights the need of under-
standing the process intra and inter relations between states whereas current PLM 
solutions do not look into this issue in detail.

Within the perspective of item-level PLM, the focus on the individual  product, 
e.g., for optimization purposes is evident. It can be said that traceability is the 
basis for item-level PLM (Terzi et al. 2007). The product state concept, based on 
the principles of item-level PLM in manufacturing, has a basic requirement of 
traceability of individual products throughout the manufacturing programme. This 
is essential in order to derive state information and data at the checkpoints to take 
appropriate actions, e.g., adjust parameters accordingly. Tracking and tracing of 
individual products and batches of products is a well-established research field. In 
SCM research, there are already very advanced solutions available and applied in 
industry (Hribernik et al. 2010; Musa et al. 2013). The logistic chain in the food 
industry is an example where advanced tracking and tracing solutions are already 
applied (Van Dorp 2002; Jansen-Vullers et al. 2003; Stark 2011). For the before 
mentioned item-level PLM it is essential to trace individual products throughout 
the lifecycle.

The topic of tracking and tracing increasingly gains attention in the manu-
facturing domain highlighting also the importance of processes (e.g., Terzi et al. 
2007; Brinkheinrich 2008; Zhang et al. 2010). The importance of continuous 
tracking and tracing of a product throughout the whole manufacturing process for 
manufacturing companies as well as participating stakeholders is widely accepted. 
This creates the basis for advanced information management and quality improve-
ment and assurance (Van Dorp 2002). Being well established in the logistics 
domain, tracking and tracing in manufacturing faces different challenges which 
will be illustrated in the following paragraphs.

3.1 Product Lifecycle Management in Manufacturing
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Jansen-Vullers et al. (2003) distinguish different types of traceability  depending 
on their usage, whereas “tracking” was described as “method of following an 
object through the supply chain and registering any data considered of any 
 historic or monitoring relevance.” Looking at their reference model for traceability 
 Jansen-Vullers et al. (2003) highlight the importance of the ability to distinguish 
between instances of products as a prerequisite of traceability.

Within this research the definition of Terzi et al. (2007) builds the basis 
for the understanding of product traceability in manufacturing. The definition 
is as follows: “Generally, product traceability is the ability of a user (manufac-
turer, supplier, vendor, etc.) to trace a product through its processing procedures. 
Concretely, the product traceability deals with maintaining information records 
of all materials and parts along a defined lifecycle (e.g., from raw material 
 purchasing to finished goods selling) using a coding identification. Product 
 traceability is by definition a PLM topic, since it is related to a product centric 
approach, where product data and information might be retrieved and managed 
along the whole lifecycle.”

There are numerous benefits that result from implementing a functional 
 tracking and tracing system. A general benefit is that companies are able to 
 combine important information with individual products. In the production of 
small batches or even single products this offers the advantage of always being 
capable of checking what manufacturing processes the product already passed and 
what parameters were used. This can be the basis for an in-process adjustment of 
parameters based on the product state before each process step to increase quality 
in terms of reducing scrap and rework. Other benefits include, for example, proof 
for demanding customers, efficient PLM and feedback in case of product failure.

Overall tracking and tracing in manufacturing companies is different from other 
industries like food or areas that utilize tracking and tracing for mainly logistics 
purposes including regulatory purposes. There are more things to consider as the 
product itself goes through extreme conditions and can even changes consistency 
and shape during the manufacturing processes. This is not only a challenge for 
the physical marking of products but also for capturing information. The marking 
goes as far as possible at certain situations to mark the product directly with a tag 
or a code but it still must mark it indirectly through accompanying documentation. 
The information layer must also be capable of handling the information and pro-
cessing it to make it practical and finally beneficial.

As mentioned above, an important aspect of tracking and tracing in manufac-
turing is that not only time and location have to be considered but also product 
state information has to be captured. Figure 3.4 depicts the critical elements of 
information capturing in manufacturing.

It is always necessary to link the captured information to a specific object 
(identify). Therefore, the object has to be identified precisely and uniquely. The 
identification can take place automatically by e.g., scanning a barcode or a RFID 
transponder or by entering the information manually into an IT system. Another 
critical element of information captured is time. A time stamp integrated into every 
event captured is necessary for having unique information. Moreover, the time 
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stamp is necessary to have a precise history of every object being tracked within 
the supply chain. Knowing about the location of an object is also very important 
when generating an event as information of the current process may be derived 
based on location/time. Last but not least, the product state, which incorporates 
various characteristics of a product e.g., quality and/or dimensions of an object, is 
considered relevant information. Based on the product state’s  characteristics, the 
following process steps and their parameters within  supply chains can be planned. 
An example for a state characteristic is the diameter after machining, but also 
residual stress allocation within a steel disc (Wuest et al. 2013b) (see Sect. 4.2).  
In this context the question of the time horizon of information capturing comes up. 
As stated before, the information and data has to be  captured in real time, which is 
understood within this work as available when needed.

3.2  Quality Monitoring in Manufacturing

Quality, as discussed before is of major influence in the manufacturing domain. 
The term itself, for both product and processes was introduced before. In this sub-
section, the existing applications in quality monitoring in manufacturing are pre-
sented. The product state concept, developed in the following section, may be 
understood as part of or extension of a quality monitoring system.

3.2.1  Quality Management in the Manufacturing Domain

QM is widely used and the term is understood slightly different depending on 
the domain (Steffelbauer-Meuche 2004). Manufacturing companies have been 
 focusing on improving the quality of their products and processes in a struc-
tured way for the last few decades (Robinson and Malhotra 2005). Research 

Fig. 3.4  Elements of information captured (Wuest et al. 2013b)

3.1 Product Lifecycle Management in Manufacturing
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on this topic can be summarized within the term QM. In this research, suitable 
for  manufacturing domain, QM is understood as the entity of all quality related 
actions and goals. Within the framework of QM, certain measures are taken which 
are supposed to improve products and processes of a manufacturing company. In 
order to achieve these goals, quality standards are defined, which are organized in 
a QM handbook and which have to be met. In order to control the efforts, specific 
persons in charge have to be defined which are responsible for documenting and 
communicating possible deviations, develop improvements and monitor the imple-
mentation (Corsten and Gössinger 2008).

In the manufacturing domain, QM principles are applied in industry since 
the early 1970s (Robinson and Malhotra 2005). In academia, many well-known 
researchers are continuously working on this topic for the last decades (Hoyer and 
Hoyer 2001). The previous Fig. 3.5 illustrates an overview of the development of 
QM in the manufacturing domain. The development describes the way QM took, 
from a very technical perspective towards a more customer oriented approach 
(Wannenwetsch 2010). According to DIN EN ISO 8402, QM includes all manage-
ment activities which define within the QM process the quality politics, goals and 
responsibilities as well as the measures like quality planning, control, assurance 
and improvement necessary to realize the former (Wannenwetsch 2010).

QM has a long history in both industrial application and academic research as 
elaborated above. That has led to a wide variation of available concepts,  methods 
and tools for companies to increase process, product and documentation  quality 
like Failure Mode and Effects Analysis (FMEA) to identify potential failure 
within a system (Tietjen et al. 2011) and Total Quality Management (TQM) to 
 continuously improve products and processes (Forza and Filippini 1998) are just 
two out of many available. Köksal et al. (2011) e.g., list “inspection (100 %), 
Statistical Quality Control (SQC), Total Quality Control (TQC), zero defects, 
[…] kaizen, ISO 9000 quality standards, quality award programs (Malcolm 

Fig. 3.5  Development of quality management (Wannenwetsch 2010)
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Baldrige, European Quality Award and so on), 6r, DFSS, lean six sigma have been 
among the most recognized ones (Fasser and Brettner 2002; Montgomery 2005)” 
(Köksal et al. 2011) as some of the most frequently used QM tools. Overall, most 
QM methods and tools are adjustable to various environments within the manu-
facturing industry and can be combined in order to realize the wanted outcome. 
Overarching approaches like Computer Aided Quality (CAQ) combine several of 
the quality philosophies with software tools in order to enhance the impact, sup-
port the practitioners without confusing them and create a companywide standard.

However, due to the diversified nature of manufacturing, manufacturing pro-
grammes, requirements and quality problems, etc. there is an almost endless vari-
ation of methods, tools and techniques available which can confuse practitioners. 
Partly due to the confusion and the lack of clear communication what quality 
means and which method, tool or technique is suitable, many of those quality ini-
tiatives produced mixed results often failing to reach the quality goal (Samson and 
Terziovski 1999; Kaynak 2003; Robinson and Malhotra 2005; Sitek 2012).

3.2.2  Quality Monitoring in Manufacturing Programmes3

Quality monitoring has strong ties and overlaps with process monitoring 
(Sect. 2.1.2) and QM in general. Certain tools like TQC and zero defects have an 
incremental need for quality monitoring in order to be employed effectively (Nebl 
2007). However, quality monitoring can focus on different areas, e.g., product 
quality and process quality. Again the ties to process monitoring are showing as 
e.g., machine health monitoring has an impact on quality monitoring of the pro-
cess and thus of the product itself. Quality monitoring checks if the quality of a 
product or process is within the accepted range at certain checkpoints (Nebl 2007), 
which is the basis for successful quality control in manufacturing. Köksal et al. 
(2011) state that the “process industries and discrete parts manufacturing indus-
tries have had a long history of these [quality monitoring] activities that aim to 
reduce variability. While quality monitoring tries to reduce variability by detection 
and removal of assignable causes, process control is based on the idea of process 
compensation and regulation to reduce variability.”

Whereas, quality and condition monitoring is already well established and 
to some part successfully implemented for monitoring only one  manufacturing 
 process/operation at a time (e.g., Silva 2009; Jenab and Ahi 2010), concepts 
 taking the importance of the system view, monitoring of the whole manufacturing 
 programme, into account are still rare. Additionally, some like Ding et al. (2002) 
 ecognize the importance of the system view for monitoring but focus on a specific 
characteristic, in that case diagnosing fixture faults. Other research, also taking the 

3The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2013a).

3.2 Quality Monitoring in Manufacturing
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whole manufacturing programme into account, focuses on the identification of the 
critical manufacturing process causing a deviation from the planed  characteristics 
(e.g., Zantek et al. 2006). Jiang et al. (2012) and Sukchotrat et al. (2009) are both 
presenting novel approaches tackling similar issues as this research to monitor 
multistage manufacturing programmes using either error propagation networks 
(Jiang et al. 2012) or multivariate control charts (Sukchotrat et al. 2009) on a still 
conceptual level with further research ongoing. Quality monitoring is  increasingly 
using modern AI and PR methods to improve the results. Among the used AI 
and PR tools and methods are: Artificial Neural Networks (ANN), Principal 
Component Analysis (PCA), Partial Least Squares (PLS), SVM, and Decision 
Trees (DTs), etc. (e.g., Zorriassatine and Tannock 1998; Hussain 1999; Ganesan 
et al. 2004; Köksal et al. 2011).

Common quality issues occurring in manufacturing programmes and a selection 
of solutions proposed by literature (see Annex Table A.3) show that the more detailed 
the manufacturing issues become, the more general are the proposed solutions. For 
specific and detailed issues there are many targeted solutions available, which are 
described in several case studies or implemented in industrial manufacturing pro-
grammes. However, there is an overall emphasis on information and data when it 
comes to (technical) manufacturing quality problems and how to tackle the issues.

In this section the other constant besides information and data is highlighted: 
quality. After the terms and definitions were introduced in the previous section, 
the important domain of quality monitoring is presented. Quality monitoring is 
expanding on the already introduced process monitoring as a framework on the 
product state concept and how successive states’ inherited set of relevant informa-
tion can be utilized. In order to understand industrial needs and challenges con-
cerning quality in manufacturing, a selection of quality issues is presented in a 
table (see Annex Table A.3). It can be concluded, that information and data are 
considered important for tackling manufacturing quality issues. Today, the focus 
area of most QM and quality monitoring tools is still very specific in contrast to 
the holistic nature of many manufacturing programmes. This is reflected directly 
in the product state concept’s holistic design as it is an information-based system 
with the goal of improving manufacturing quality.

In the next section the limitations of existing approaches for holistic infor-
mation management in manufacturing systems based on individual products are  
facing today is presented, highlighting aspects to be tackled by the developed 
product state concept which is described in later sections.

3.3  Limitations of Current Approaches for Holistic 
Information Management in Manufacturing Systems

In this section existing approaches to tackle the key challenges of modern MS 
are presented. The main concepts and methods introduced that focus on informa-
tion management in manufacturing are PDM, PLM, QM and quality monitoring. 
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After each subsection a short conclusion was presented that discussed the gaps 
of the specific approach when it comes to address the previous challenges and 
goals. Furthermore, the relation to the later product state concept and overlaps are 
shown.

PDM and PLM are both concepts that gained increasing attention over the last 
years. Especially PLM moved slowly away from being a mainly design focused 
tool towards a more holistic approach considering other phases of the  lifecycle. 
However, being in the focus of researchers and practitioners for over a  decade, 
data management in PLM still has to face the challenge of a gap between the 
existing reality and the expected features in data management (Fasoli et al. 2011). 
Especially in the area of item-level product data management along c omplex 
manufacturing chains are still many issues, such as a generally accepted and 
interchangeable format that contains all relevant information, to be solved. 
The  developed concept contributes to this development in the abstract way of 
 systemizing product information around the product state.

The later developed product state concept may be argued to be a sub-domain 
of item-level PLM or an extension of existing approaches as both concepts are 
looking at individual products over different phases or processes. The product 
state concept incorporates many principles of item-level PLM and faces similar 
 challenges, however the product state concept highlights the need of  understanding 
the process intra and inter relations between states and actively includes the means 
to identify those. Current PLM solutions do not take this issue into account.

Recalling how QM and quality monitoring addresses the key challenges of 
holistic information management identified before, the overall more specific 
nature of the methods and concepts surfaces. In QM, due to the diversified nature 
of manufacturing, manufacturing programmes, requirements and quality problems, 
etc. there is an almost endless variation of methods, tools and techniques avail-
able which can confuse practitioners. However, the various tools and methods can 
be successfully used in combination, but still present no conclusive approach in 
a sense of a holistic concept for the whole manufacturing programme as of now. 
Quality monitoring on the other hand, even so specific approaches exist in the 
 dozens has to be seen more as a philosophy than a method or approach. In this 
sense, the developed product state concept may be seen as a way to incorporate a 
holistic quality monitoring approach in manufacturing.

Concluding, the diversified challenges modern complex manufacturing oper-
ations have to face in order to improve their process and product quality is just 
partly addressed today by the above presented approaches. Most tools target a 
very specific area and have to be used in combination to effectively tackle the key 
challenges identified before. Especially the increasing complexity of large scale 
high-dimensional and multivariate product and process data involved in high-tech 
manufacturing and unknown cause-effect relations along the manufacturing pro-
gramme highlight the need for supporting concepts helping the companies to cope 
with their product information needs. Such a concept has to be able to reduce the 
inherent complexity of today’s manufacturing operations and provide relevant 
information about the individual product and process along the (manufacturing) 

3.3 Limitations of Current Approaches for Holistic Information …
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lifecycle. In this case the term relevant means relevant to all stakeholders involved 
in the manufacturing programme and not just focusing on independent single 
manufacturing process or operation. The product state concept which will be 
introduced in the next chapter is based on a set of relevant information about an 
individual product and process which can be used as a basis for newly developed 
systems for product quality improvement according to the principles by Kano and 
Nakagawa (2008). The main challenge within this concept lies in the identification 
of such a set of relevant product state information.

In the next section, first the key findings of Sects. 4.2 and 4.3 will be picked up 
in a detailed argumentation and to set the boundaries for the developed product 
state concept. A key point will be the question how to identify process intra- and 
inter-relations between states especially under the existing knowledge gap which 
will also be shown in detail in the next Sect. 4.4.
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In this section, the product state concept and its development will be illustrated from 
a theoretical perspective. The main intension is to provide a general understanding 
of the goals and basic pillars of the concept and its argumentation. Another major 
goal of this section is to discuss and present the challenges and limitations to the 
application of the presented theoretical approach in practice. This outcome is crucial 
for the selection of appropriate methods and the following approach to identify state 
drivers despite the knowledge gap concerning process intra- and inter-relations using 
ML which will bring the product state concept to life.

In this section, first, the rationale for developing the product state concept is 
presented based on the previously presented state of the art of intelligent manu-
facturing systems. The argumentation incorporates the identified challenges and 
requirements of modern manufacturing programmes towards information and data 
based approaches. The term product state is then defined for the manufacturing 
domain before the focus shifts onto product state characteristics and the challenge 
of how to distinguish which ones are relevant for a specific product and process.

In order to create a comprehensive concept, a complementary approach of 
applying a method to identify quality checkpoints in manufacturing, adapted 
from the stage gate model (Cooper 2010) briefly introduced (for details refer to 
Wuest et al. 2014b). This is essential as determining the checkpoints’ influences 
on the complexity of the system to be analyzed and monitored. Determining more 
than the necessary checkpoints means that more process intra- and inter-relations 
and data points have to be taken into consideration and this consequently may 
influence the ease of applicability of the product state concept. Process intra- and 
inter-relations between states and state characteristics along the manufacturing 
programme are discussed in detail, as they are considered fundamental within 
the concept for the identification of a set of relevant state characteristics. In this 
section process intra- and inter-relations of state characteristics in manufacturing 
programmes are not only described but also the limitations towards describing and 
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illustrating them are derived. Based on these important principles and  definition, a 
possible visualization of the product state concept is introduced, based on  bipartite 
graphs as well as Unified Modeling Language (UML) and Business Process 
Modeling Notation (BPMN) principles. In this section the challenges arising 
with the so far presented approach and the to a large part theoretical discussion 
are already visible and it seems questionable how the originally stated goal of this 
work can be reached.

Following, the challenges and limitations of an approach based largely on 
 process intra- and inter-relations are described, building a basis for the next step, 
the presentation of requirements towards supporting tools and methods for the iden-
tification of product state drivers. A brief analysis of the NP complete nature of the 
problem at hand paves the way towards ML techniques, which have a proven record 
of handling such issues rather well (e.g., Yang and Trewn 2004; Harding et al. 
2006). By identifying the requirements towards state drivers identification, the suit-
ability of modern ML approaches is discussed further. This leads over to the derived 
specific research hypotheses and approach to identify product state drivers of a 
manufacturing programme using SVM algorithm based feature selection presented 
in the following Chap. 5.

4.1  Rationale for the Product State Concept1

In the previous sections different domains’ importance for today’s MSs and their 
basic paradigms were discussed. In this section the rationale for the product state 
concept development is presented. The basic paradigms the argumentation follows 
are summarized in Fig. 4.1.

It has been established that a successive incremental improvement approach 
in  manufacturing can focus on an individual processes or operations or on a 
 manufacturing programme as a whole (see Sect. 2.2). It has to be noted that this is 
not a ‘black or white’ differentiation and there are overlapping areas, e.g., approaches 
looking into the whole manufacturing programme whilst at the same time focusing on 
selected processes. Both improvement approaches have their justification. A focused 
approach on individual manufacturing processes can bring forth significant improve-
ments in different areas like e.g., machining performance. New research results  indicate 
the importance of cross-process relations and their influence on product quality (Zoch 
and Lübben 2011). Looking at a manufacturing programme as a system with differ-
ent components, e.g., processes and operations, not being independent form each other 
and thus on the contrary, influence each other’s outcomes (quality) can  contribute to 
improvements. For example is it possible to induce reasons for quality  variations 
 during an early process of a manufacturing programme, which are triggered during a 

1The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2014a).

http://dx.doi.org/10.1007/978-3-319-17611-6_5
http://dx.doi.org/10.1007/978-3-319-17611-6_2
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later stage (Zoch 2012; Surm and Rath 2012). An example is internal stress allocations, 
induced during the operation ‘clamping’ in the machining process of a manufacturing 
programme, which may have no significant effect until the final heat treatment process, 
where they may influence the process and lead to distortion of the product (Sölter and 
Brinksmeier 2008; Sölter 2010; Surm 2011). Increasing the transparency and ability to 
support the understanding of such relations may support quality initiatives. However, 
the complexity of a manufacturing programme increases rapidly with its number of 
processes and operations, and this represents a challenge newly developed concepts 
and approaches have to deal with.

The development of the product state concept is based on the ‘system view’ and 
tries to contribute to generating increased understanding of co-relations within a 
manufacturing programme. It furthermore may contribute to the further develop-
ment by reducing the complexity by supporting the identification of relevant infor-
mation within this system. This way information not regarded as relevant does 
not have to be processed and the dimensionality can be reduced. The relations 
between the different processes or product states, which contribute to the com-
plexity, are actively taken into regard within the development of the product state 
concept. In this scenario, all available product and process data is used to identify 
relations, which accordingly may indicate relevance to certain state characteristics. 
This tactic utilizes basic Big Data principles combined with PR technologies to 
support the IM principle of just focusing on relevant information.

The second principle of the product state concept development is the focus on 
individual products instead of looking on product groups or families. This focus 
on individual products takes into account the high quality requirements towards 
highly stressed products. Variations between similar products can be the reason 
for quality problems during the manufacturing programme, and a resultant failure 

Fig. 4.1  Basic paradigms of the development of the product state concept

4.1 Rationale for the Product State Concept
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to comply with the final customers’ quality requirements. In order to respond to 
individual variations, which cannot be entirely avoided (Kaiser 1998), clearly 
predicates that a focus on individual products is necessary. This complies with the 
view taken in item-level PLM where the focus is on each individual product and 
its inherited information and data. The development of the product state concept 
adopts the item-level PLM perspective of looking at an individual product over the 
whole lifecycle, with the slight adaption of exchanging the focus domain from the 
whole lifecycle to the manufacturing programme. What makes the product state 
concept differ from existing approaches is that the individual item is not an iden-
tity attached to a raw material, work pieces and components, but from the start of 
the value adding processes of a manufacturing programme until the final stage, the 
individual item is considered being the same just changing its state.

Incorporating this focus on individual products throughout the  manufacturing 
programme leads to questions about tracking and tracing. This question, even 
though crucial for industrial application will not be the focus of this research as 
there are already existing solutions available to track and trace individual products 
throughout a manufacturing programme. However, in this context the question of 
determining the checkpoints for information capturing needs to be addressed. 
Choosing the right time during the manufacturing programme is just as important as 
the question what information needs to be captured and often interrelated. In order 
to create a comprehensive concept, an approach of how to determine suitable check-
points has been developed and is integrated within the product state concept. This 
approach, based on adapting the stage gate model and its principles from product 
development to manufacturing is described in detail in (Wuest et al. 2014b).

In the previous sections the importance of information and data for  quality 
improvements in manufacturing was highlighted. The development of the  product 
state concept focuses directly on the information and data layer and the indi-
vidual product’s data and information connection to corresponding processes. 
Additionally, the concept requires that information and data will be presented in 
a universally accepted manner (e.g., standardized formatting) to address upcom-
ing interface issues. As the information is mainly of descriptive nature, describ-
ing product state characteristics and process parameters, exiting standards (e.g., 
STEP) may be supported and information may be stored in Comma-Separated 
Values (CSV) format.

Quality is one of the main focal points of improvement initiatives in 
 manufacturing. According to the definition of quality the product has to fulfill 
the customer requirements. This in turn is the basis for fitness for purpose as a 
measure of  product quality. This is reflected throughout the product state concept 
development as the identification of the set of relevant information is based on 
quality considerations. Furthermore, the concept supports the quality idea for all 
types of customers, internal or external, e.g., in a collaborative network or  internal, 
e.g., another business unit or another process. In summary, by contributing to the 
 understanding of the mechanisms within a manufacturing programme and the 
increase of transparency, the product state concept may support product and pro-
cess quality improvement of manufacturing programmes.
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Related to the information and data management issues that have to be consid-
ered during the development of the product state concept, Sect. 2.3.2.1 presented 
information quality dimensions. The focus lies on the purpose-dependent dimen-
sions as they represent the main contribution of the product state concept towards 
information quality in manufacturing. These dimensions are related to customer 
requirements combined with a system support perspective. The five purpose-
dependent IQ dimensions (Rohweder et al. 2011) and how they are addressed by 
the product state concept development, is summarized in Table 4.1. A table with 
all 15 IQ dimensions and the connection to the product state concept is illustrated 
in Table A.2 (Annex). Overall it can be stated that a product focused concept needs 
an integrated management of all information connected to the product (Garetti and 
Terzi 2004; Taisch et al. 2011).

In this section the rationale behind the development of the product state  concept 
was introduced. The product state concept aims at reducing the complexity of a 
manufacturing programme by supporting the identification of relevant informa-
tion within the system. In order to achieve this goal, the product state concept is 
actively analysing exiting co-relations within the manufacturing programme, which 
consequential may contribute to transparency and support knowledge  acquisition. 
This increase in transparency and applicable knowledge may contribute to  product 
and process quality improvements of manufacturing programmes. The  product 
state concept is looking at individual items. This differs from most existing 
approaches by considering the individual item as ‘one product’ from the first value 
adding process to the last only by subsequent change(s) of its state. Each individ-
ual product migrates through the set of states along the manufacturing programme 

Table 4.1  Purpose-dependent IQ dimensions and their influence on the product state concept

Purpose-dependent IQ 
dimension

Addressed by product state concept

Timeliness The product state information and data properties are 
accurately stored and uniquely identifiable to an individual 
product through the checkpoint system and mapping

Value-added The goal of the product state concept is to derive new knowl-
edge and support the increase of transparency through the 
manufacturing chain in order to support process and product 
quality improvements

Completeness The product state information and data should be stored as 
complete as possible within the set of relevant information. 
However, this depends also on the external circumstances 
like sensors, etc.

Appropriate amount of data The product state concepts main objective is to identify a set 
of relevant information in order to reduce the amount  
of information and data to be handled

Relevancy The product state concepts main objective is to identify the 
set of relevant information. This contributes to ensure that 
the data and information captured is relevant for the chosen 
purpose

4.1 Rationale for the Product State Concept

http://dx.doi.org/10.1007/978-3-319-17611-6_2
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and thus the population of products relevant to each specific manufacturing 
 programme grows. This growing population of products represents product state 
 knowledge, which can be used for manufacturing monitoring and analysis. In order 
to achieve the goal of supporting transparency and reduce complexity, a method of 
 determining checkpoints for data capturing within the manufacturing programme 
has been developed as part of the product state concept (Wuest et al. 2014b).

In the next sections, different elements of the product state concept are developed, 
described and defined, starting with a definition of the product state itself.

4.2  Product State2

A manufacturing programme transforms raw material to final products through 
different value adding manufacturing processes in order to deliver to the customer 
the desired product. Consequently, the goal of every manufacturing programme is 
to add value to a product (Kalpakjian and Schmid 2009). Adding value in manu-
facturing implies physical transformation of the product (e.g., transformation of 
form, hardness, chemical composition, etc.) over the course of the manufactur-
ing programme. The specific purpose of every manufacturing process and opera-
tion is to execute a part of the physical transformation of the product. Thus, the 
state of the product is changed at least with every (value adding) process or opera-
tion. Looking at a product by its state has the advantage to being able to describe 
and/or monitor this transformation. Therefore, looking at the product state along 
the whole manufacturing programme accumulates a complete picture of realized 
measures and transforming processes. The product state is the core of the product 
state concept. In this section the term itself and its background will be described. 
For a comprehensive understanding the usage of the term product state and similar 
notions in other domains are briefly introduced.

The term product state itself is sporadically used in different fields. In  physics 
for example, the term product state is used in the research field of quantum sys-
tems (Verstraete et al. 2007; Chen et al. 2012; Haegeman et al. 2012). In the 
engineering domain, the term product state is generally accepted and adopted. 
However, certain researchers used the term in different domains, describing 
 different circumstances. All of which have an overlap to a certain extent with the 
definition of product state used in this work. Musa et al. (2013) are looking at 
product visibility from a supply chain perspective and mention the physical state 
of a product, which is important to be tracked during the product lifecycle. In 
principle in line with the understanding of product state in this work, they focus 
mostly on logistics operations. However, they mostly look at perishable goods 
like food items and not at manufacturing products going through value adding 

2The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2011a, 2012b, 2013a).
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manufacturing processes. Anderl et al. (2013), when looking into designing smart 
products, use the term to derive the description of functional behavior. Toenshoff 
and Denkena (2013) present an interesting view on states connected to a product 
in the production engineering domain. Though they do not talk directly about the 
product state by itself, but connect the term state to a work piece in the research 
domain of CAD and simulation. They connect certain state variables to the state 
of a work piece, describing it under different circumstances, like e.g., after hard-
ening. Together with Kumar (2002), who states “existing processes can be made 
intelligent by adding sensors to monitor and control the state of product being pro-
cessed” (Kumar 2002) these usages of the term are in principle in line with the 
sense as it is understood within the product state concept presented here. However, 
both do not go into detail how they define the “state of product” (Kumar 2002) or 
the state of a work piece (Toenshoff and Denkena 2013).

Next, a definition of the term product state is described. It has been noted before, 
that the manner of describing a manufacturing product, e.g., gear made of steel, will 
be different from the description-style of a product designed to fulfill an aesthetic 
purpose (in addition to the functional purpose) in mind, e.g., a plastic rear mirror. At 
the same time, the individual describing a product influences the description based 
on, among other things, its own background, knowledge and experience. Therefore, 
the approach of describing it through its product state will help to align the descrip-
tions in a commonly understood manner as well as increase transferability and 
 usability of accompanying information by the addressees.

At the moment, the term product state itself is not sufficiently defined for the 
use in manufacturing programmes as planed in the product state concept. Looking 
at literature, the term ‘state’ is frequently used in various areas like physics, 
 chemistry, medicine or even philosophy. However, the transfer and usability of 
these existing definitions to the context of industrial production processes is not 
easily achievable. Nevertheless, understanding what stands behind different defini-
tions and what the major differences are is important for the definition of product 
state in industrial production processes. One of the oldest and most common used 
definitions is the state of aggregation, which describes the simplified classification 
of material as solid, fluid and gaseous (Hüttig 1943). The example of the state of 
aggregation of water can help to understand two aspects which are universal over 
most state definition and will be important for the definition of product state at a 
later point. First, the state is time-dependent. Water can be at checkpoint A (t = 0) 
in a liquid state and at checkpoint B (t = 1) in a solid one (see Fig. 4.2).

Another aspect is the descriptive character of state. Within the research field 
of ICT the term state is used, for example, in UML to describe a constraint of an 
object during the lifecycle (Gogolla and Parisi-Presicce 1998; Schöning 2001). The 
state is then active when the constraint becomes true. Another way of using state in 

Fig. 4.2  Product state is 
time-dependent

4.2 Product State
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ICT is with finite-state machines. Within this theory, a new state (t = 1) depends 
always on an original state (t = 0) and an input. Again, the time-dependency of the 
state occurs, plus the dependency of state on external input or change.

A closely related concept is the so-called ‘state transition model’, describing an 
existing state and actions which transform the original state in a new one (Chander 
et al. 2001). The state transition model is applied in different domains, e.g., in 
medicine to describe e.g., changes in tumor growth by its state (Sonnenberg 
and Beck 1993; Mei et al. 2004) or in defense application like intrusion control 
(Goseva-Popstojanova et al. 2001). The descriptive character of common state 
 definitions is also pointed out within the field of thermodynamics in which the 
term state is clearly defined. In thermodynamics, the state of a system describes a 
situation in which all variables of the system can be allocated with a clear numer-
ical value. These variables are called state variables. The number of state varia-
bles, which is necessary for a definite determination of state, depends on the inner 
 structure and complexity of the system (Geller 2006).

This definition introduces variables with attributed certain numerical values. It 
also implies that the number of variables needed depends on the situation. In other 
definitions or descriptions of state, these variables are also known as properties, 
parameters, attributes, factors or characteristics. Within this dissertation, the term 
characteristics will be used from now on as a descriptive element of state. Looking 
at the thermodynamic literature on how characteristics can be defined, one can find 
them described as qualitatively definable and quantitatively measurable physical 
quantities (Geller 2006). Other fields take a more uncommitted approach and view 
characteristics as a qualitative describable value or appearance without the means 
to quantify it (Mayer-Bachmann 2007). For the product state in manufacturing, a 
combination of quantitative and qualitative characteristics will be used.

Based on elements of the above definitions combined with the requirements of 
the manufacturing domain, the product state can be defined as follows:

The product state describes a product at a certain time during the manufacturing 
programme or after through a combination of state characteristics. State characteristics 
are definable and ascertainable measures, which can be described in a quantitative or 
qualitative way, e.g., weight or chemical composition of the material. The product state 
changes due to external influence, for example machining or corrosion from check-
point A (t = 0) to checkpoint B (t = 1) when at least one descriptive state characteristic 
changes (see Fig. 4.3).

The external influence causing the change of product state along a manufacturing 
programme can be linked to manufacturing process parameters (Chryssolouris and 
Guillot 1988; Monostori 2002) and other factors like environmental parameters, e.g., 
humidity or vibrations. The change or transformation of product state can be cate-
gorized in different categories. To illustrate, during a manufacturing programme the 
state changes to a certain degree with every manufacturing process as value is added. 
This change is intentional, but it also involves the repercussion of unintentional 
changes. For example, when cutting a steel pipe the intension is to reduce the length 
to a certain degree. However, wanted or not, at the same time the weight of the pipe 
will be reduced due to the cutting of material. This is a simplified example. In reality 
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many more characteristics change with every process in a manufacturing programme. 
This issue and the different categories and their relations to one another are investi-
gated in the following Sect. 4.3.3.

A more complex example also emphasizing the importance of looking at a 
manufacturing programme as a whole is the straightening of steel bars after heat 
treatment in the steel mill. The changed geometry of steel bars due to distortion 
is often straightened out before delivery to customers. There are many reasons 
for this, such as ease of transportation, continued processing or simply the look 
and feel of the product. The main purpose is to clear the bending of the steel bars. 
Nevertheless, at the same time residual stress is caused which can lead to problems 
at a later stage of the manufacturing programme, e.g., after the final heat treatment. 
For this reason, it is important to think of what characteristics have to be known to 
describe the product state. This will be highlighted in the next section.

The product state concept allows for a description of the actual current state of a 
product during a manufacturing programme. The final goal of every manufacturing 
programme is to produce products of the desired quality and thus meet the customer 
requirements and expectations. The customer requirements for the final product may 
be seen as an ideal product state, the final product of the manufacturing programme 
has to reach. All final product states meeting this goal are ‘good states’ and all prod-
uct states that do not inherit the expected ideal product state may be considered of 
‘bad state’. As this is not a black or white matter, there are several ‘shades of grey’ 
in between, depending on the degree of fulfillment of the customer requirements. In 
this example this is solely focused on the final product state after the product went 
through all stages of the manufacturing programme.

Fig. 4.3  Schematic product state change due to external influence

4.2 Product State
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This may be overly simplified, as in reality the issue is more complex. First 
of all, there may be also “good states” and “bad states” including the gray areas 
in between, throughout the manufacturing programme, which represent not final 
product states, e.g., the product state a product inherits after operation XX before 
operation XY. Those and their implication on the final product state may be more 
challenging to distinguish. With the categorization as ‘good’ or ‘bad’ of the inter-
mediate states depends additionally on other factors as on whether or not the state 
has the potential to be transformed towards ‘good’ by the end of the manufacturing 
programme. This can be achieved e.g., by adjustment of the process parameters of 
following manufacturing processes. This of course adds further to the complexity.

The second issue is, that customer requirements may include factors of 
which the fulfillment by the product shows only over the usage phase and may 
not directly be measured after manufacturing at the current state of knowledge. 
However, applying customer feedback and item-level PLM principles, these cus-
tomer requirements may be included in the analysis of relations between states, 
intermediate states and state characteristics during the manufacturing programme. 
An approach how this information may be utilized and the newly generated 
knowledge be integrated in the product state concept is presented in Chap. 5 by 
applying supervised ML on product state data.

In this context the issue of selecting appropriate checkpoints for information 
capturing in manufacturing programmes represents a crucial prerequisite for the 
determination of states. It has been established that manufacturing systems are 
becoming more complex and with this development the challenges towards infor-
mation management increase. With each step along the manufacturing programme, 
with each value adding process or operation, the number of subsequent product 
states increases. The product state concept relies on the availability of relevant 
information and data (of the product state) along the manufacturing programme 
at the right time (use of data). There is a lot of research available on when the rel-
evant information must be available during a manufacturing programme. In certain 
areas of production with a specific purpose of monitoring, e.g., concerning cycle 
times, structured methods exist to determine checkpoints (Heinecke et al. 2011). 
However, determining the right time (capturing of data) within the manufacturing 
programme to capture the relevant information (product state) is more complex 
and is not yet sufficiently discussed by industry and academia. This theoretical 
background of information capturing timing in manufacturing programmes has 
been published in Wuest et al. (2013b).

Based on those findings, a more practical approach has been developed 
 transferring the well-established stage gate model (Cooper 2008, 2010) from the 
product development domain to the manufacturing domain (for further details 
Wuest et al. 2014b). Concluding, the findings indicate that the determination and 
positioning of checkpoints in a manufacturing programme is a very individual 
task. Despite many practitioners placing checkpoints in between processes and 
operations, this can be appropriate but is not the solution for all cases (Shetwan 
et al. 2011). The findings indicate that common sense, in-depth knowledge of the 
manufacturing programme assisted by following certain rules, as presented in 
(Wuest et al. 2014b) may help to choose relevant checkpoints.

http://dx.doi.org/10.1007/978-3-319-17611-6_5
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However, as in practice it is a continuous struggle to get enough data from 
manufacturing processes and given the computing power and Big Data develop-
ments, the question may have to be adapted from “how can we choose checkpoints 
in order to not get too much data” towards “how do we have to choose checkpoints 
in order to get as much data as possible”. This issue will also be addressed briefly 
in the later Chap. 5.

4.3  Relevant State Characteristics

In the definition of product state in the previous section, state characteristics were 
introduced as the determining factor of product state in combination. In this sec-
tion, product state characteristics are described in greater detail. Furthermore, a 
distinct focus is laid on state transformation, which occurs when at least one state 
characteristic changes due to external influence. Therefore, different categories are 
developed in order to categorize and further illustrate such state transformation in 
manufacturing programmes. Questions like ‘what are relevant state  characteristics’ 
and ‘how can they be identified’ are discussed within this section, before the 
next section discusses the important occurrence of co-relations between state 
 characteristics and their influence on state transformation.

4.3.1  Product State Characteristics3

The product state represents a combination of different state characteristics 
describing a product at a certain stage during the manufacturing programme. 
Product state characteristics are definable and ascertainable measures, which can 
be described in a quantitative or qualitative way, e.g., weight or chemical compo-
sition of the material. In this section, state characteristics are described in more 
detail. A categorization of state characteristics is presented for a technical product 
and an example including a selection of state characteristics is provided.

Theoretically all state characteristics describing a product one can think 
of could be included for a complete description of a products state at a certain 
time during a manufacturing programme. However, this is neither reasonable nor 
 practical. There are various reasons for a selection, important ones being summa-
rized under ‘technical’, ‘economical’ and ‘knowledge’ reasons. Therefore a selec-
tion is sensible under these circumstances. However, this does not mean, just as a 
state characteristic and/or its influence of others or the manufacturing programme 
is not known for example it is not important. The identification of relevant state 

3The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2011a), Knoke et al. (2012).

4.2 Product State
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characteristics, which describe a product as complete as possible at the time of 
description is one goal of this research and described in detail in the following 
Sect. 4.3.5. The identification is not a static process but a dynamic one, which 
implies that the set can change at all times. A trigger for such a change can for 
example be when new knowledge concerning the state characteristics, their rela-
tion, the manufacturing programme or the customer requirements is available. To 
create such new knowledge may be a result of the application of the product state 
concept, making it a continuous process.

State characteristics change, or transform, due to external influence. This can 
be through a manufacturing process or operation or environmental influence, like 
e.g., corrosion due to high humidity. When state characteristics are subjected to 
transformation through a process, the process parameters have a major influence. 
Whereas the process parameters are supposed to be planned and controlled, the 
environment is often not taken into consideration to the same extent. However, the 
environmental parameters can have a big influence on the output state as well, e.g., 
vibration during machining. In some manufacturing processes the environmental 
parameters are actively controlled, e.g., dust particles in chip manufacturing.

The process and environmental parameters are not the only influential factors 
when it comes to the transformation of state characteristics. Very important fac-
tors represent the relations between the state characteristics themselves. For one, 
the input state characteristic has a major influence on the output state character-
istic: directly, as it determines what can be achieved and indirectly, as it influ-
ences the impact of other parameters like process and environment on the output 
state. Another factor are process intra- and inter-relations between different state 
characteristics which influence the output directly and indirectly through other 
parameters. This aspect gains in importance when looking at the manufacturing 
programme with different processes and operations. The process intra- and inter-
relations of state characteristics and their influence on the product state concept 
are described in detail in the later Sect. 4.4.

Following, an example for state characteristics of a technical product is pre-
sented. The intention of this example is to present what state characteristics in an 
industrial environment and introduce the complexity inherit within just this single 
manufacturing process. Additionally, the example shall provide a perspective of 
the possible high number of possible state characteristics. A steel cylinder during 
the manufacturing process of machining is chosen to represent a simple example 
for such a technical product. It has to be noted that the more complex a product is, 
the more state characteristics and categories of state characteristics it may inherit. 
For the chosen example the product state characteristics can be clustered in three 
major categories (Brinksmeier 1991) (see Fig. 4.4):

•	 surface state characteristics: describe e.g., the geometry of the product
•	 peripheral-zone state characteristics: describe e.g., the structure of the periph-

eral layer which often differs form the internal structure
•	 internal state characteristics: describe e.g., the material and material related 

properties of the product



81

Surface state characteristics are defined by their form, their location and/or their 
dimension/measurement (in a coordinate system). Form and location elements are 
only required when the defined dimensions/measurements are not sufficient. This 
primarily applies to co-axiality, symmetry and running deviations (DIN EN ISO 
1101 according to Keferstein 2011).

A product can be described by form elements which are based on standard 
geometries, e.g., cylinder. Location elements are described by the positioning of 
elements towards each other, e.g., direction, location and running. In Fig. 4.5 a 
summary of form and location elements is summarized (DIN EN ISO 1101 
according to Keferstein 2011).

Dimensions and measurements of surface state characteristics can be linked to 
one or more form and location elements. In general there is a distinction between 
internal and external dimension. External dimensions e.g., describe the distance 
between two parallel plains or tangent planes, which represent external  boundaries 
of the product body. Internal dimensions describe e.g., the distance between 
two parallel plains or tangent planes, which represent internal boundaries of the 

Fig. 4.4  Categories of state 
characteristics applied to a 
steel cylinder (peripheral-
zone enlarged compared 
to reality for illustrative 
reasons)

Fig. 4.5  Summary of 
form and location elements 
(DIN EN ISO 1101 acc.  
to Keferstein 2011)

4.3 Relevant State Characteristics
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product body. Figure 4.6 illustrates the difference between external and internal 
dimensions using a cylinder with a drill hole as an example (Westkämper and 
Warnecke 2010).

The surface state characteristics form, location and dimension may be under-
stood as a rough description of a product and the micro geometry of the product 
surface as a more deliberate description. This is not a judgment on the importance 
but based on the dimensions of tolerances. The micro geometry focuses mainly on 
two characteristics: (surface) roughness and waviness.

The (surface) roughness derives mostly from a regular or irregular, short-wave 
deviation in shape whereas waviness derives in most cases from periodical long-
wave deviations in shape. In case of the exemplary machining process, (surface) 
roughness is triggered by process parameters like geometry and kinematic of the 
cutting tool and type of chipping. Waviness in this scenario is a consequence of 
e.g., disturbances and oscillations, which may occur during the machining pro-
cess (König and Klocke 2008). The (surface) roughness and its parameters can be 
illustrated through a profile, which can be compared to a lateral cut of the surface 
region (see Fig. 4.7) (Westkämper and Warnecke 2010). In Fig. 4.8, an exemplary 
selection of surface state characteristics is illustrated with no claim for complete-
ness presenting three groups: ‘coarse’ characteristics, micro geometry characteri-
stics and optical characteristics. There may be various other possible ways of 
grouping, additional groups and/or characteristics possible.

The peripheral-zone state characteristics and the internal state characteristics 
of a technical product influence various parameters, which are often relevant in 
accordance with customer requirements like endurance and reliability. In the 
 following paragraphs, these categories will be presented within a similar scenario 
of a cylinder during the manufacturing process of machining.

The peripheral-zone state characteristics of a technical product are determined 
by the entity of the physical and chemical characteristics of the peripheral-zone. 
Among those characteristics are the microstructure, hardness, cohesiveness and 
residual stress (Brinksmeier 1991).

The microstructure is a grain structure, which may have an influence on trans-
formations of mechanical strength and hardness. The hardness is e.g., being 
measured by a micro hardness test (DIN 55676) in the peripheral-zone (ca. 3 mm 
distance to the surface) using a test load of 1, 0.1 or 0.05 N (Vickers test). With 

Fig. 4.6  External and 
internal dimension 
(exemplary) (Westkämper 
and Warnecke 2010)
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increasing distance from the surface towards the core, the hardness is  decreasing. 
This is one of the reasons for the differentiation between peripheral-zone state 
characteristics and internal state characteristics. Residual stress is stress that 
comes into effect without influence of external force(s) and thus loading stress. 
The degree of oxidation resistance and/or corrosion resistance is to a large extent 
depending on the peripheral-zone of a product and describes the resistance 
against influence of external factors like e.g., air, water or chemicals. Among 
peripheral-zone state characteristics is one that may also be part of the surface 
and internal state characteristics or at least has an overlap depending on its size: 
the crack. A crack is a locally distributed separation with limited width but often 
of considerable length. It can be caused by e.g., internal and/or external stress 
(Söhner 2003).

Summarizing, peripheral-zone state characteristics may have an influence on 
the functional properties and therefore the functions and fulfillment of customer 
requirements of a product (König and Klocke 2008).

Fig. 4.7  Profile illustration of a product surface (ad. from Westkämper and Warnecke 2010)

surface state 
characteristics 

coarse‘ 
characteristics’ 

form  location dimension 

micro geometry 
characteristics 

(surface) 
roughness waviness 

optical 
characteristics 

colour brilliance 

Fig. 4.8  Selection of surface state characteristics with focus on machining processes
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Internal state characteristics are state characteristics located within a product. 
Products are composed of basic materials, being elements of the periodic table. 
The smallest parts of those elements are atoms, which consists of a certain amount 
of elementary particle, thus distinguishing the different elements. The atomic 
arrangement in a solid-state body can be amorphous or crystalline. In a crystal-
line state the atoms (molecules) are arranged in a periodical, spatial mesh (Seidel 
and Hahn 2010). Internal state characteristics reflect the characteristics of the basic 
material, which are comprised in a product. In a technical product like the chosen 
steel cylinder, these characteristics can be categorized in chemical, mechanical and 
physical characteristics (Brinksmeier 1991). In Fig. 4.9 the categories and selected 
internal state characteristics are illustrated.

Chemical state characteristics of a material can be described by the type, size, 
arrangement and orientation of the atoms or metallographic constituent (Schatt and 
Worch 2003). The chemical composition and structure of a solid-state body have a 
strong influence on other internal state characteristics. The mechanical and physical 
characteristics are determined by the base grid as well as by type, number and loca-
tion of grid imperfection/defects and grid contaminants (Seidel and Hahn 2010).

Mechanical state characteristics are determined by the behavior of the  material 
towards strain and stress by (external) forces and/or momentums, e.g., cohesive-
ness and viscosity. They are defined by specific values, which are established 
through e.g., a tensile test. Among the mechanical characteristics are e.g., stiffness, 
wear resistance and fatigue strength (Schatt and Worch 2003).

Fig. 4.9  Selection of internal state characteristics and categories
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Physical state characteristics represent substance-specific values, which are 
derived through measurements and experiments. The characteristics of the  material 
are not changed through the measurement or experiment. Among physical state 
characteristics are e.g., mass density [Kg/m3] and thermal conductivity [S/m] 
(Seidel and Hahn 2010).

Additional to the above-presented categories of internal state characteristics 
there are certain characteristics, which may be important for the manufacturing 
 programme and are based on the internal structure but do not fit the above  categories. 
Among those are e.g., sinter ability, weldability or castability (Reuter 2007).

It is important to acknowledge that there is a very large number of state char-
acteristics available to describe the state of a product. However, it can be assumed 
that certain ‘higher level’ product characteristics exist among them. Their ‘impor-
tance’ or ‘relevance’ is based on their relation towards the final product state 
(‘good’ or ‘bad’). Various parameters, e.g., the aforementioned reliability, may 
influence the determination of relevance for these state characteristics. These 
 relevant state characteristics are discussed in further detail in Sect. 4.3.4. However, 
looking at the possible process intra- and inter-relations, it is important to distin-
guish between correlation, which is a statistical relationship between variables, 
and causation (causality), referring to an event (e.g., change of variable) being 
the consequence of another (e.g., process parameter). This is further detailed in 
Sect. 4.4. The influence of these relevant state characteristics for the application of 
subsequent application of ML techniques and the question of correlation or causa-
tion is further investigated in Sect. 5.3.

In this section product state characteristics were introduced as being part of 
a product state description. Next, the transformation of a product’s state along a 
manufacturing programme is illustrated. In order to make the theoretical construct 
more comprehensible, the example based on a manufacturing process ‘machining’ 
introduced above is being continued with a focus on state transformation.

4.3.2  Product State Transformation

The previous sections introduced the product state itself, state characteristics and 
briefly mentioned the change of state/state characteristics due to external influence 
during manufacturing programmes. It has been established before that the goal of 
every manufacturing programme is to add value to the product (Kalpakjian and 
Schmid 2009) with each process or operation by transforming its product state 
(see Fig. 2.2). In this section, this change of state, from now on referred to as 
transformation of state, will be described in detail.

At first the difference of the product state transformation and the transformation 
of individual state characteristics has to be discussed. Whereas the product state 
transforms as soon as a single, individual state characteristic changes according 
to the definition of product state, not every individual state characteristic changes 
when the product state transforms. The extent of how many state characteristics 

4.3 Relevant State Characteristics
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transform can vary theoretically from one to all of them. Most of the time the 
number of changing state characteristics will be in between these two extremes.

The state transformation is influenced by different factors. These factors can be 
internal or external. So can e.g., the environmental conditions of the  manufacturing 
process have an influence on the transformation of state. An important factor 
are the process parameters. They determine to a large extent the outcome of the 
 process. The influence can be directly or indirectly, which is detailed in Sect. 4.4.

Next, the influencing factors and their direct and indirect impact on state trans-
formation are presented based on an example. This is due to the otherwise sheer 
endless number of possible factors. A concrete example provides boundaries within 
the descriptions and allows the reader to connect the description to previous elab-
orated information. The example continues based on the previously introduced 
example around the manufacturing process ‘machining’. A selection of manufactur-
ing process parameters of ‘machining’ with an influence on the state characteristics 
and their transformation are presented in the following paragraphs. Even though the 
presented selection has no claim for completeness, it again provides an indication 
and highlights the complexity already inherited by a single manufacturing process. 
Projecting this example on a whole manufacturing programme with multiple pro-
cesses and operations and additional cross-process relations, the overall complexity 
and thus high-dimensionality of information needed can be envisioned.

Machinability is defined as the characteristic of a product to be machined under 
given conditions (DIN 6583). Therefore, machinability describes all characteristics 
of a product, which influence the machining process.

The machinability of a product has to be seen in relation to the chosen

•	 machining process (e.g., turning, drilling, milling, etc.),
•	 cutting material (e.g., HSS, carbide metal, etc.) and
•	 process parameters (e.g., cutting rate, feed rate, cooling, etc.).

The machining process realizes plastic and elastic deformation of the product. The 
cutting tool penetrates the surface under the application of energy and separates 
the chips from the product. There are different machining processes, in this case 
the machining process ‘turning’, a process with geometric defined cutting edges, 
will be used. The basic principles can be transferred to the similar other machining 
processes e.g., drilling, milling and broaching (Westkämper and Warnecke 2010).

In Fig. 4.10 a selection of influencing factors of the transformation are pre-
sented. The factors are firstly structured into input and output variables. Input 
variables summarize system variables and manipulating variables. The system vari-
ables consist of elements of the manufacturing process, which are fixed, at least 
for more than one iteration. This can be the model of the turning machine used or 
the type of clamping system (e.g., three jaw chuck). The manipulating variables on 
the other hand may change depending on the machining plan for the product. They 
may be adjusted manually or automatically through a programme. Output varia-
bles condense process variables and effect variables. Process variables are directly 
derived from the manufacturing process like occurring forces, the processing power 
or temperature. The effect variables present the results of the machining process 



87

concerning the product (the new product state/state characteristics), machine (e.g., 
wear, temperature), tool (e.g., wear) and cooling lubricant (e.g., temperature, 
 contamination and chemical transformation) (Denkena and Tönshoff 2011).

Looking at the different variables, the system variables, manipulating  variables, 
process variables and partly the effect variables are summarized under process 
parameters from this moment on. Only the product describing effect variables 
considered product state information. In Fig. 4.11, a selection of manufacturing 

Fig. 4.10  Variables of machining processes (based on Denkena and Tönshoff 2011)

Fig. 4.11  Example of process parameters with influence on turning process
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process parameters with a known influence on state transformation during the 
turning process are summarized. These process parameters with a known influence 
on the transformation of state during the turning process do not reflect all influ-
encing factors. Even so it would be ideal to only focus on independent variables 
and thus causation rather than correlation this currently not possible. For example, 
the product state prior to the focus manufacturing process influences the process 
parameters directly and indirectly, and thus the state transformation. It is important 
to note that with ‘prior to the manufacturing process’ not only the product state 
directly prior to the focus process, but also the various product states before that 
along the manufacturing programme may have an influence (Sect. 4.4).

4.3.3  Categorization of Product State Transformation4

After the previous section detailed the transformation of state and influencing 
external factors, this section presents the different categories of product state trans-
formation. Hereby, the focus is on possible challenges associated with the state 
transformation in manufacturing. Different categories of state transformation are 
established and illustrated. It is important to understand, that the categories are not 
exclusive. A state transformation and its influence on the different state characteri-
stics and the product state itself may be described by more than one  category. The 
categories of state transformation mostly focus on transformation of  individual 
state characteristics. The categories of state transformation are established from 
the perspective of the process manufacturing programme owner and not from a 
universal perspective, e.g., some state transformations may be known to  person 
A but not to person B. One has to understand that the aforementioned perspec-
tive is only valid for a certain point in time, as the population of state and the state 
transformation could be of dynamic nature and thus change over time. Also, as it 
is described later in this section, the knowledge of the population and state trans-
formation is rather limited today. These indicators present already at this stage 
arguments for the later application of ML algorithms within this context (see 
Sect. 4.5.2).

At first, a crucial category of state transformation directly connected to the main 
goal of a manufacturing programme, create added value to a product (Kalpakjian 
and Schmid 2009), is introduced. This category focuses on the issue if the state 
transformation is intentional or not. This is related to the agreed upon quality 
 definition for this research, connecting quality to the fulfillment of requirements. 
An example for this transformation categories is the following: In a  manufacturing 
programme as described in Fig. 2.11 the last manufacturing process, heat  treatment 
adds value to the product by changing the hardness of the product to meet the 

4The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2011a, b, 2012b, 2013a).

http://dx.doi.org/10.1007/978-3-319-17611-6_2
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customer requirements. The transformation of the state characteristic ‘hardness’ 
 during the manufacturing process is intentional as it represents the planned output, 
a product with a higher hardness than before. A change of geometry is not the main 
goal of the process ‘heat treatment’ but can occur nevertheless during the process. 
This may be considered a non-intentional state transformation. It may be the case 
that a manufacturing process has only one intentional state transformation. This 
especially is often the case for manufacturing operations. However, there are manu-
facturing processes, which target more than one intentional state transformation. An 
example for such a manufacturing process is ‘grind hardening’, which targets the 
state characteristics ‘hardness’ and ‘surface roughness’ simultaneously (Brinksmeier 
and Brockhoff 1996; Brockhoff 1999).

Another category, very closely related with the one described above as inten-
tional, can be described as planned. Planned state transformations are transfor-
mations of state characteristics, which are anticipated and thus ‘planned’ by the 
process owner. Whether or not these transformations are contributing to the goal 
of adding value to the product and fulfill the customer requirements is not in the 
focus of this category. The importance lies that the process owner is aware of the 
change and may thus reacts accordingly to reach the quality goal of the manufac-
turing process. As long as state transformation occurs as planned, the output is 
meeting the quality goal (for the state characteristic in the focus). As soon as a state 
transformation, which is not planned, occurs during a manufacturing process or 
operation, the outcome may vary from the quality requirements and thus jeopardize 
the quality goal. It has to be understood that this is an idealized scenario as when 
taking into account the other categories, the ‘planning’ based on e.g., customer 
requirements presents various pitfalls in itself. The customer requirements may 
be wrong, inaccurate or misunderstood. Also it may be that the transformation of 
customer requirements into a product concept can be wrong, inaccurate or misun-
derstood and thus the derived planned transformation may be problematic to begin 
with. Furthermore, the planned state transformations may not be possible discon-
nected from others, making this categorization a merely theoretical accentuation. 
Nevertheless the dynamic nature of state transformation is highlighted again.

Some state characteristics are not considered relevant and thus not part of the 
customer requirements. This is unveiled in a later section focusing directly on 
 relevant state characteristics. For an example of planned state transformation, the 
above example of the manufacturing process ‘heat treatment’ is utilized again. As 
stated above, the intentional state transformation of this process is to change the 
‘hardness’. If a state transformation is intentional, it is always planned. However, 
if a state transformation is planned, it is not necessarily, even mostly not, inten-
tional. During heat treatment, besides the hardness, other state characteristics may 
change. One of these is the geometry of the product, which may change during the 
heat treatment process and is not intentional. However, process planers are aware 
of the transformation, which will occur and thus plan it accordingly. This is for 
the ‘plan-able’ geometry change, which does not involve geometry changes due 
to distortion for example. As introduced before, distortion is a common challenge 
occurring regularly during heat treatment. However, state transformation, which is 

4.3 Relevant State Characteristics
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not planned, is not necessarily not desirable. An example for an unplanned state 
transformation, which is considered desirable, occurred while performing repairs 
on 30l beverage KEG containers. The case was that the top of the KEGs was 
deformed and was to be repaired by means of reinstating its original form by a 
specially designed machine preforming a rolling process. Whereas the planned 
state transformation was to change the geometry, the physical characteristics of 
the KEG where also transformed. Through the rolling process, the hardness of the 
material changed which was not planned but represented a desirable outcome of 
state transformation.

Today, many practitioners and academics are aware of challenges linked to 
distortion during heat treatment. The state transformation of geometry linked to 
distortion is known even so it is not planned. This represents the next transforma-
tion category. This category describes state transformations, which occurrence is 
known to the process owner. State transformations, which have no influence on 
the customer requirements, fall, e.g., under this category. This can be a change 
of color during the heat treatment process. The process owner knows a change 
of color may occur but he does not plan with it, as it does not have an effect on 
the product quality in this example. The known state transformations are the 
largest group and all planned and intentional ones are always also known. The 
unknown state transformations are a very important group and focus area within 
this research. As they are unknown, for whatever reasons, the amount cannot be 
quantified. However, it can be assumed that it is a very large number of state trans-
formations that happens which are unknown by the process owner. Within this 
group certain state transformations may be of potential benefit for the process and 
product quality if they were known, planned or even intentional. However, it is a 
challenge, especially by looking at the whole manufacturing programme and the 
cross-process/operation relations, to identify these state transformations with this 
potential. In the later sections, the identification of currently unknown state trans-
formations and their impact on the process and product quality will be investigated 
further.

As was established in the previous paragraphs, the few intentional state trans-
formations are a sub-group of the larger group of planned state transformations. 
Those are in turn a sub-group of the largest group of known state transformations 
(see Fig. 4.12). However, these groups are not fixed and the state transformation 
affiliation to a certain category can change depending on newly acquired knowl-
edge or changes in e.g., process, environment or customer requirements.

There are two additional categories, which are important to categorize state 
transformations. One is describing if a state transformation is measurable or 
not. It is implied that measurable in this sense means the state characteristic that 
changes can be measured and the delta between input and output value linked to 
the process. If a state characteristic is measureable depends on various factors, 
like economic (e.g., being to expensive to measure), technical (e.g., not possible 
to measure without destroying the product) or knowledge reasons (e.g., the state 
characteristic is unknown, therefore cannot be measured). Intentional state trans-
formations are mostly measurable as they represent the output defining the quality 
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of a process. The same stands true for planned state transformations; even so in 
this category it may be more often the case that the right output is assumed. For 
the rest of the known state transformations it is open it depends on the individ-
ual case if they are measurable or not. Interestingly, unknown state transforma-
tions may be measurable as well and may even be measured during the process. 
However, without knowledge of state transformation this information cannot be 
applied effectively.

The category ‘measurable’ is a very crucial one, as it represents a basic require-
ment of the next state transformation category controllable. Being measurable is a 
requirement in order to control a state transformation. Thus, every state transfor-
mation considered controllable is at the same time measurable. However, not every 
measurable state transformation is necessarily controllable. ‘Unknown’ state trans-
formations (to the process owner), even so they might be measurable and actually 
being measured during the process, are not controllable as the contextual knowl-
edge is missing which allows the process owner to connect the measurement to the 
state transformation.

The presumably large number of unknown state transformation (see Fig. 4.12) 
does not mean that these state transformations and the state characteristics 
involved are not relevant. Looking at the whole manufacturing programme may 
even increase the likelihood of a necessary change of the categorization of cer-
tain state transformations as the influence across process and operation bor-
ders increases the need for knowledge about occurring transformations and 
transparency.

The application of pattern recognition described in later sections contributes 
to the goal of identifying and re-categorizing certain state transformations form 
unknown to known, planed or even intentional from a manufacturing programme 
perspective. Given the large number of assumed unknown state transformations 

Fig. 4.12  Theoretical 
distribution and linkage 
of state transformation 
categories (idealized)
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and their potential impact on process and product quality this identification of cur-
rently unknown state transformations is one of the goals of the product state con-
cept and will be described in more detail in following sections.

4.3.4  Relevant State Characteristics5

The product state of an individual product within a manufacturing programme 
may be theoretically described at any time through a combination of state char-
acteristics. Despite this deterministic approach, holistic knowledge concerning 
all state characteristics of a product during a manufacturing programme is neither 
worthwhile nor feasible. The question remains how the different sets of informa-
tion can be described to distinguish them.

Looking at those product state information from a theoretical  perspective, 
three clusters of information/data sets can be identified: complete; relevant and 
 individual (see Fig. 4.13). The “complete” cluster resembles all information 
needed to describe every detail about the product and process, may it be relevant 
to achieve the desired outcome or not. This is however a purely theoretical set, as 
it contains a large amount of information with no impact on the manufacturing 
programme and thus the final product quality.

The “relevant” cluster on the other hand contains all information that is in one 
way or another relevant for the whole manufacturing programme. The challenge to 
identify a way to obtain this set of information is in the focus of this dissertation. 
The individual set of information is a subset of the relevant information set, repre-
senting the information relevant to the individual process. In order to simplify, in 
this and the following paragraph just the manufacturing programme and the manu-
facturing processes are used for illustration. Manufacturing operations, neverthe-
less just as important are not considered in this case to not increase complexity 
unnecessarily. However, the principle can be applied accordingly to operations.

The “individual” cluster resembles a subset of the relevant cluster as it is basi-
cally the relevant information for an individual process whereas the relevant 
 cluster contains all needed information for the whole manufacturing programme. 
The diverse nature of the individual cluster is highlighted by the different shapes 
of the cluster in different processes in Fig. 4.13. Individual information is impor-
tant for monitoring and control of manufacturing processes in practice (see 
Fig. 4.14). However, as this cluster is contained within the relevant information 
and the focus is on a holistic concept for a manufacturing system, within this 
 dissertation the focus remains on the relevant information.

Practical reasons for not considering a state characteristic can be divided into 
three groups. They can either be technical (e.g., not measurable or measurable 

5The content of this section has been partly published in accordance with Universität Bremen (2007) 
in Wuest et al. (2011a, b), Wuest and Thoben (2012), Wuest et al. (2012b), Knoke et al. (2012).
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by destroying the product), financial (e.g., measurement is too costly), or caused 
by a knowledge gap (e.g., state characteristic is not known). However, some state 
characteristics may be characterized as relevant regarding their impact on the 
 manufacturing process and the product state. It is therefore necessary to describe 
the product state based on an individual selection of relevant state characteristics. 
The accentuation is on individual because relevant state characteristics cannot be 
identified over all products and processes once and for all (Brinksmeier 1991).

One way to identify relevant state characteristics is whether they include  crucial 
information needed for each manufacturing process or operation. Therefore, a 
product state characteristic that neither impacts any manufacturing process or 

Fig. 4.13  Theoretical information/data clustering of product state concept

Fig. 4.14  Individual set of information for manufacturing process adjustment
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operation of the manufacturing programme nor influences other product state 
characteristics may be disregarded. Knowing what the relevant state characteris-
tics do may improve transparency and increase knowledge of the manufacturing 
programme itself. The state characteristics are often not independent, but relate to 
each other and form a complex (manufacturing) system.

There are many parameters influencing the relevance of state characteristics 
during a manufacturing process, e.g., type of product, type of material, type of 
production process, machinery used, application area of the product (e.g., low-cost 
or high-quality) and many more (see Fig. 4.15). Ideally, the relevance reflects not 
only the manufacturing programme, process and operation but the whole product-
life-cycle. The set of relevant information is derived for the whole manufacturing 
programme, not individual manufacturing processes or operations (see Fig. 4.13).

In the following section, an approach to identify a set of relevant state char-
acteristics is presented, before the next section focuses on the understanding and 
structure of relationships between product state characteristics, which represent a 
major challenge for the identification.

4.3.5  Identification of Relevant State Characteristics

In this section the question of how a set of relevant state characteristics may be 
identified given the previously illustrated understanding of product state, state 
characteristics and state transformation. The starting point is in accordance with 
the quality definition the goal of fulfilling the customer requirements (assumed 
they are transparent). As stated before, the set of relevant information has to incor-
porate the whole manufacturing programme (see Fig. 4.13).

Fig. 4.15  Exemplary parameters with influence on relevance of state characteristics (example, 
no claim for completeness)
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The first attempt to identify a set of relevant state characteristics of a manu-
facturing programme is focusing on deriving it by looking into customer require-
ments/quality of the product and the transformation through processes and 
operations. As it was mentioned before, there are different categories of state 
transformation, with the intentional transformation being the targeted one. 
However, with each intentional transformation a variation of other state transfor-
mations goes side by side. Therefore the first target-area of relevant state char-
acteristics is state characteristics, which transform at least once during the 
manufacturing programme. The reasoning behind this target-area is that the 
transformed state characteristics are relevant as they translate the manufacturing 
process effect and the development of the quality parameters.

The second target-area is connected to relations between state characteristics. 
State characteristics, which are related to the target state characteristics are 
considered relevant throughout the manufacturing programme. The reasoning is, 
that in order to reach the quality goal and thus the customer requirements, the tar-
get state characteristics (and thus target state) have to be met in a way to ensure 
the functionality expected from the customer. All state characteristics, which are 
related to these, have an influence on the transformation and the manufacturing 
programme output.

The third target-area is focusing on the process and its influence on the trans-
formation. State characteristics, which have an influence on process parameters, 
are considered relevant. State characteristics are also influenced by process param-
eters, however, that case is reflected in the first target-area ‘state transformation’. 
This reflects the importance of the process parameters on the transformation of 
state. As with the other target-areas, the perspective is the whole manufacturing 
programme and thus cross-process/operation relations.

In Fig. 4.16, the above-introduced target-areas used to identify relevant state 
characteristics are put into context to each other and all theoretically available 
state characteristics of a product throughout a manufacturing programme. The 
illustration of the figure suggests that the number of state characteristics in the dif-
ferent target areas is of equal number. This is not necessarily the case; the numbers 
may be of similar size or vary significantly. Also the boundaries between the set of 
relevant state characteristics are not fixed. As mentioned before, there are several 
circumstances where there may be a knowledge gap, which can lead to a smaller 
than theoretically possible selection. Especially given the complex cross-process/
operation intra-relations which will also be discussed in the following section. The 
figure is just a single snapshot in time before the boundaries change due to e.g., 
newly acquired knowledge about the process or a change in the set up.

To combine the state characteristics of the three target areas towards a set of rel-
evant state characteristics, a two-stage process is envisaged (Fig. 4.17). All known 
state characteristics are an input in the three target areas during stage 1. In target area 
1, the influencing factors are important to determine changing state characteristics. 
They may be mapped using a modified Ishikawa diagram (Fig. 4.18).

In order to identify a state characteristics that transform during the manufactur-
ing programme, the input state Xn(t=0) and output state Xn(t=1) are compared. If 
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Fig. 4.16  Theoretical framework of the set of relevant state characteristic

Fig. 4.17  Two-stage process to identify set of relevant state characteristics

Fig. 4.18  Ishikawa diagram in order to connect influencing factors to state characteristic
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they are not equal of value a transformation of state is assumed and the characteri-
stic is considered relevant in target area 1 (see Annex Fig. A.12).

Identifying relevant state characteristics according to target area 2 during stage 
1 involves the process intra- and inter-relations of the target state characteristics 
and other state characteristics along the manufacturing programme. This is done 
without adding a qualitatively (high—low) rating or quantifying the process 
intra- and inter-relations at this point. Just the existence of a process intra- and 
inter- relation is considered (see Annex Fig. A.13). However, given the existing 
knowledge gap of e.g., intra-relations (cross-process) between state characteristics, 
this task may be challenging.

Target area 3, identifying relevant state characteristics by their influence on 
process parameters along the manufacturing programme, is based the existence of 
process intra- and inter-relations. The difference to target area 2 is that the process 
intra- and inter-relation is not between state characteristics themselves but between 
state characteristics and process parameters. Again, given the existing knowledge 
gap of e.g., process intra- and inter-relation between state characteristics and pro-
cess parameters, this task may be considered challenging (see Annex Fig. A.14).

After identifying the relevant state characteristics for the different target areas 
in stage 1, the identified relevant state characteristics are combined in stage 2 to 
create a comprehensive set of relevant state characteristics for the specific manu-
facturing programme and product (see Annex Fig. A.15).

In this section a preliminary approach to identify relevant state  characteristics 
was presented. By doing so, the importance of the process intra- and inter- relations 
between states/state characteristics and states/state characteristics and  processes/
process parameters is highlighted. Understanding these process intra- and inter-
relations may be one lever to reach the set goal and increase the number of known 
relevant state characteristics and thus the transparency of the  manufacturing 
programme. In the following section the process intra- and inter-relations are 
 discussed in more detail before and different possible ways of describing and 
 illustrate them are presented.

It has to be made clear that the identification of relevant state characteristic is 
not a one-time process, but a continuous effort to create a more complete set of 
relevant state characteristics describing the product state of a certain product along 
a specific manufacturing programme.

4.4  Process Intra- and Inter-relations Among State 
Characteristics

In this section, the process intra- and inter-relations of state characteristics are 
 discussed. In this theoretical discussion, the term process intra- and inter-relations 
is chosen in order to reflect the general nature of the relationship in this context. 
The differentiation between the general relation, correlation and finally causation 
(causality) is not in focus here. Process inter-relation focuses on the relationship of 

4.3 Relevant State Characteristics
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state characteristics and/or process parameters within a process/operation, whereas 
process intra-relation highlights the cross-process relationships of the same kind 
occurring within multi-stage manufacturing programmes. However, this differenti-
ation comes into focus in the actual application of ML techniques in the following 
Chap. 5. In the previous section the importance these relations in regard to under-
standing the mechanics of product state transformation along a manufacturing pro-
gramme has been pointed out. In a manufacturing system the different components 
are related others. Thus, relations exist between states and consequently between 
state characteristics. These relations can be of various form and character, direct 
or indirect, of importance within a single manufacturing process/operation or just 
valid when looking at the whole manufacturing programme.

Just, imagine an illustration of relations between a whole selection of relevant 
state characteristics and processes (process parameters) that provide a solid base for 
an information management system supporting in process quality control (Dijkman 
2009). The more processes and operations and relevant state characteristics that 
have to be considered, the more a possible illustration becomes complicated. In 
other words, the dimensionality of the problem increases as the number of the state 
characteristics increases. As a result, this will increase complexity instead of helping 
to increase transparency.

Next, the occurring relations between state characteristics along a  manufacturing 
programme and ways of describing them are presented before visualization of 
 relations within a manufacturing programme are introduced.

4.4.1  Describing Process Intra- and Inter-relations  
of State Characteristics6

In this section, the different forms of describing relations between state charac-
teristics during a manufacturing programme are analyzed. At first the difference 
between an interrelation and a relation are depicted on in the following paragraphs.

Figure 4.19 shows product states and state characteristics (SC) along a multi-
stage manufacturing programme. Product states frame manufacturing processes 
responsible for the state transformation. The product is described by discrete 
product state characteristics. The term relation describes the general connec-
tions between state characteristics. These relations can either be one-directional 
(dependent) (see a, c, d in Fig. 4.19) or bi-directional (interdependent) (see b in 
Fig. 4.19). The parameters of the manufacturing processes (e.g., cutting speed, 
damping pressure) influence the transformation of state characteristics. As shown 
in Fig. 4.19 the manufacturing processes are framed by preceding and subsequent 
product states.

6The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2012b), Knoke et al. (2012).

http://dx.doi.org/10.1007/978-3-319-17611-6_5
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Interdependencies (see b in Fig. 4.19) can only occur within a definite product 
state while dependencies (see a, c, d in Fig. 4.19) cannot go against the process 
flow, so any potential shapes of the dependencies and interdependencies can be 
reduced. This is based on two axioms regarding the temporal restrictions of these 
connections:

•	 Dependencies can never go against process flow, since a state characteristic 
always has an existing value that only past or present effects can influence.

•	 Interdependencies can only exist between state characteristics of the same state 
and time, since a future effect cannot impact the past.

If a decision within the manufacturing process is considered because of an 
upcoming event, it is in fact not influenced by the future event but by expected 
requirements and other information existing at the present time of the decision. 
For example: A car within a manufacturing process is painted red not because a 
customer is expected to react positively to this specific color at the moment of 
exchange, but because he had ordered a red car in the past, and this information 
was already useable during the manufacturing process.

As described before, a state characteristic is dependent on state characteristics 
of previous states. These cross-state, and thus cross-process/cross-operation rela-
tions can add up and may become increasingly complex. From an analytical per-
spective, the relations of state characteristics may theoretically be characterized 
as mathematical functions. For example, the dependency of a state characteristic 
SC1 on another state characteristic SC2 is expressed in the term SC1 = f (SC2). If 
interdependency be-tween these two state characteristics exists, they are described 
by a common function f (SC1, SC2). These functions can be described either by a 
mathematical term (e.g., the mass of a cylinder: m = ρ * l * d2 * π) or a text (e.g., 
the overall error ratio is 3 % in the dayshift and 5 % in the nightshift).

If dependencies between three or more state characteristics exist, four different 
characteristics can be identified. These types are visualized in Fig. 4.20. In com-
plex models, these types may appear in combination:

Fig. 4.19  Visualization of process intra- and inter-relations between state characteristics

4.4 Process Intra- and Inter-relations Among State Characteristics
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State characteristics with discrete dependencies (see a in Fig. 4.20) have 
independent influence on another state characteristic. This occurs on the con-
dition of additional process parameters (x, y). Since SC3 within the func-
tions SC3 = f1(SC1) and SC3 = f2(SC2) could be eliminated, therefore 
f1(SC1) = f2(SC2) would imply a direct connection. This causes the need of 
additional process parameters, which influence each function SC3 = f1(SC1, 
x) and SC3 = f2(SC2, y). Linked dependencies (see b in Fig. 4.20) are another 
form of the connection between state characteristics. In this case, the combina-
tion of two or more state characteristics impacts another. If two state charac-
teristics SC1 and SC2 influence SC3 within a linked dependency, they share an 
interdependency f1(SC1, SC2), and SC3 can be described by the common func-
tion SC3 = f1(f2(SC1, SC2)). The sequence of multiple dependencies is defined 
as lined dependencies (see c in Fig. 4.20). If the dependencies SC2 = f1(SC1) 
and SC3 = f2(SC2) exist, they can be merged into a function SC3 = f2(f1(SC1)). 
Finally a state characteristic can also influence two or more other state characteri-
stics. These split dependencies (see d in Fig. 4.20) share a common origin and 

Fig. 4.20  Different forms of dependencies between state characteristics a discrete dependencies, 
b linked dependencies, c lined dependencies, d split dependencies

Fig. 4.21  Optional visualization possibilities of multiple interdependencies
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impact different state characteristics. E.g., the functions SC2 = f1(SC1) and 
SC3 = f2(SC1).

If three or more state characteristics share interdependencies, they may 
 theoretically be described by a common function. Following this approach, the 
 visualization of all connections is redundant and can be replaced by a chain of inter-
dependencies, as shown in Fig. 4.21. This may significantly simplify a model.

4.4.2  Visualization of Relations7

In this section, the development of a visualization model of existing relations 
between state characteristics in a manufacturing programme is presented. The 
resulting three-layer model is introduced, looking at the whole manufacturing 
programme, the process and the individual state characteristic. Based on this, the 
development of the visualization approach is briefly discussed. These results are 
the basis for the following discussions of limitations and challenges of the visu-
alization approach and consequently of the theoretical product state concept intro-
duced to this point. The findings of this discussion are accordingly used in the 
concluding sub-section to derive requirements towards finding a suitable method 
able to handle the challenges and limitations of the theoretical approach.

The visualization is based on the previously introduced concept of linked 
state characteristics. This structure of the linked state characteristic provides two 
 different approaches for application, both with a different perspective and goal. 
Whenever changes within a manufacturing process occur or have to be imple-
mented, the model of state characteristic relations, when transferred to a manu-
facturing programme, can be applied. If the value of a state characteristic exceeds 
the acceptable range, the system might be used to create a model with all rele-
vant influences on the state characteristic to identify the problem (‘cause’) (see a 
in Fig. 4.22). Alternatively, if a process parameter has to be changed, the visuali-
zation might be used for the opposite purpose: providing information about the 
‘effect’ of the change (see b in Fig. 4.23).

Next, the basic principles of the product state concept is translated into a three-
layer visualization before the application and benefits of the application of graph 
theory on the findings is briefly discussed based on the developed visualization 
model. First, the theoretical development and foundations of the complete three-
layer model and subsequently each individual layer is presented. In order to put 
it into perspective, a short industrial example of the application of the model is 
 discussed, which provides a first impression of the limitations, challenges and 
shortcomings of reaching the set goals in industrial practice of the theoretical 
product state concept modeling approach. These challenges and limitations are 

7The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2012b), Knoke et al. (2012), Wuest et al. (2014a).
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discussed in greater detail in the following section as a basis for the definition of 
requirements for the solution to-be developed.

The visualization model is developed following guiding modeling  principles 
(Becker 1998). Even though, these guidelines are sometimes criticized for its 
partly subjective criteria (Heinrich et al. 2007), they are established as a  supporting 
and guiding framework for process modeling in different domains (Kobler 
2010). The six main principles are: correctness, relevance, economic efficiency, 
 clarity, comparability and systematic composition (Rosemann and Schütte 1997; 

Fig. 4.22  Theoretical application of a modeling of relations between state characteristics depending 
on the direction of view a cause of state transformation, b effect of state transformation

Fig. 4.23  Relation of different model layers
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Becker 1998; Batini et al. 1992; Becker and Schütte 2004). For further detail refer 
to Annex Sect. A.3.1.

Besides the principle of clarity, the information density has a major impact on 
the systematic composition. The information density depends on the amount of 
to-be illustrated information (e.g., knots, edges, objects, notations) and the spatial 
dimensions of the model. As cutting information is not always possible without 
jeopardizing the goal of the model, the stated challenges may be faced by applying 
a cascading of information in respect of different diagrams with different levels of 
detail (Sarich et al. 2010). The visualization of the theoretical product state concept, 
contains the available information about the relation between state characteristics. 
Additionally is includes process parameters within a manufacturing programme. 
Therefore, the model may most likely become very complex and difficult to handle. 
To approach this issue, a model with three different hierarchical layers and accord-
ingly, levels of detail may support the applicability of such an attempt by cascading, 
according to the above stated principles.

One possible approach is to split the model into a meta-model and two sub-
models (see Fig. 4.23):

•	 A meta-model that provides a general overview on all states and process steps 
with the aligned process parameters and state characteristics, along with the 
general process structure.

•	 A state-model that focuses on the relations of a single state or process step, and 
shows the relations of all process parameters or state characteristics of the focal 
state or process step.

•	 A state characteristic-model that visualizes all relations of a single state char-
acteristic or process parameter, and may include the functions that describe its 
relations.

In the following elaboration, the focus is laid on the meta model (layer 1) as the 
main visualization option within the product state concept at this point. For further 
details on the state model (layer 1) and the state characteristics model (layer 3) 
refer to the Annex Sects. A.3.2.1 and A.3.2.2.

In accordance to the principle of systematic composition, a meta-model is cho-
sen to ensure the abstract overview of the model and its purpose/goal. The goal of 
the meta-model (layer 1) is to provide an overview over the manufacturing pro-
gramme structure and connect relevant state characteristics to the different states 
along the manufacturing programme. Additionally the meta-model is illustrating 
existing (known) process intra- and inter-relations. The visualization form is based 
largely on the BPMN (OMG 2010). This modeling annotation’s strength is the 
clarity and intuitive nature of its symbols. However, the focus is laid not on the 
processes itself but on the product states before (input) and after (output). As the 
illustration of states is not represented in the original BPMN model, the symbols 
of ‘events’ are used, with the result of a bipartite graph (Weisstein 2011).

The goal and purpose of the meta-model is mainly to provide an overview of 
the structure of the manufacturing programme and its processes/operations with 
the process intra- and inter-relations between the state characteristics in the focus. 

4.4 Process Intra- and Inter-relations Among State Characteristics



104 4 Development of the Product State Concept

Therefore, the activities and edges of the processes are represented in broken lines 
(see Fig. 4.24). Through this alternative symbol, the original symbol for activity 
of the BPMN model can be applied to the state characteristics in the focus and the 
process intra- and inter-relations can be illustrated through arrows. The operators 
for branch and merge can be applied accordingly.

The allocation of State Characteristics (SCs) and product states (states) is realized 
through a rectangular frame in the background. In this context, a colored contour is 
preferred to a framed contour as the additional lines may add to the inherit complexity 
within the model and the arrows. The size and position is dependent on the number 
and position of the state characteristics to be contained (see Fig. 4.25 left).

In case Process Parameters (PP) impact can be directly mapped to SCs, the pro-
cesses can be visualized in similar form (see Fig. 4.25 right). In order to distin-
guish product states and processes, a deviating color scheme should be chosen.

In Fig. 4.26, the previously theoretically discussed different forms of dependen-
cies between state characteristics (see Fig. 4.20) are visualized by the above stated 
principles of the meta-model. In this figure, relations (dependencies) are visualized 
by a single headed arrow, whilst inter-/intra-relations (interdependencies) use two 
headed arrows as a representation. In case the edges (arrows) have to overcome 
vertical levels, this shall be accomplished within the colored contour represent-
ing the state/process (see a in Fig. 4.26). It is important to distinguish between 
connected and independent relations (dependencies). If the dependencies are inde-
pendent, this shall be highlighted by including the number of overlaying relations 
(dependencies) (see c Figs. 4.26 and 4.27). In case a relation (dependency) skips 
a state, the representing arrow shall be directed underneath the colored contour of 
the skipped state (see Fig. 4.27). Thus, even with overlaying relations (dependen-
cies) the distinct meaning of the illustration is ensured, highlighting the independ-
ence of the relation (dependency) again with a number.

With increasing complexity it may be sensible to exclude the (inter-/intra-)rela-
tions ((inter-)dependencies) in the meta-model, reducing the meta-model purpose 
to providing only an overview of state characteristics, states and processes.

In Fig. 4.28 an exemplary manufacturing programme is illustrated applying the 
developed modeling annotations of the meta-model. The process structure is rep-
resented by the broken lined symbols and edges and the states accordingly by the 
previously introduced symbols. The color contours in the figure connect the state 
characteristics to the existing states and the process intra- and inter-relations are 
chosen randomly in this example.

It can already be observed that even in this comparably simple model with just 
four state characteristics connected to each state with a reduced relation density, 
that the illustrated edges cannot be distinctly assigned without additional coloring 
(compare SC(z3) to SC(v*1) (in red) and SC(z4) to SC(v*4) in Fig. 4.28) or that a rela-
tion, skipping a state, crosses other edges (compare SC(x3) to SC(z3) in Fig. 4.28). 
This highlights that the main purpose of the meta-model may mainly be to provid-
ing an overview over the manufacturing programme, positioning of states within 
and the assignment of state characteristics to states. For more detailed modeling 
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of the process intra- and inter-relations within the manufacturing programme a sub 
model needs to be developed.

After the meta model and its development was described previously, next 
a brief industrial example of the application of the theoretical product state 
framework and the developed model is presented. The industrial case is the 
 manufacturing programme of a SME, producing products for the automo-
tive industry (1st tier supplier). The main value adding processes are machining 
(turning and milling) and subsequent balancing. The company produces a large 

Fig. 4.24  Symbols used in meta-model

Fig. 4.25  Illustration of 
state/state characteristics and 
process/process parameters
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amount of identical products with high requirements towards product quality, as 
it is common in the automotive supply chain. The manufacturing programme and 
its processes are organized mainly in a job-shop production with a quality check 
at the end.

Before applying the visualization model, the process intra- and inter-relations 
and relevant state characteristics have to be analyzed. This demonstrates the first 
major limitation of the modeling approach in industry: the transparency and 
knowledge requirements towards the programme, the processes and the products 
are very high from the beginning. As in the case study, not all required informa-
tion was available to the process owner, the modeling was undertaken under this 

Fig. 4.26  Selection of occurring dependencies within the meta-model a split dependency, b 
inter-dependency, c discrete dependency, d linked dependency, e lined dependency

SC

state(x) process(n)

SC

state(y) process(n+1)

SC

State(z)

Fig. 4.27  Illustration of independent dependencies with skipped state
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information mismatch constraint. The goal was to analyze the manufacturing pro-
gramme with its three processes and four states and create a transparent visuali-
zation based on the developed modeling approach with the knowledge available 
from the process owner and existent in literature.

The result of the case analysis is depicted in Fig. 4.29. Even though limited 
knowledge about relevant state characteristics, process influence and existing pro-
cess intra- and inter-relations was available, the visualization became very com-
plex from the beginning. Applying the different layers of the three-model was 
partly a failure due to the missing knowledge and thus difficulties to create a com-
prehensive model at the different levels. Especially the transfer functions descrip-
tions were not available and thus the model was adapted to the local situation at 
the case company as can be seen in Fig. 4.29. The model was reduced and mainly 
the meta-model notation was applied.

Taken the above stated situation into account, the derived visualization is still 
very complex and it is questionable if it is clearly understandable. Due to the 
knowledge gap and thus incomplete nature of the model, its contribution towards 
increasing transparency of the manufacturing programme is questionable as well. 
The important finding within these limitations around the knowledge gap is, 
that just very few companies actually possess this kind of knowledge about their 
processes and products. The large majority, especially SMEs, will face similar 
 challenges, as did the company in this case study.

However, the following findings are worth mentioning despite the problematic 
nature of the case. The modeling approach is largely based on modeling process 

Fig. 4.28  Exemplary illustration of meta-model (layer 1)
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intra- and inter-relations, which could be either between state  characteristics 
within a state or in between different states along the manufacturing programme. 
As has been found, to model these relations in this context, large volumes of 
product and process data/information are needed beforehand and thus make 
this approach impractical, at best. Not all relations are known as discussed in 
 previous chapters, not to mention a possible quantification of the transfer  function. 
Furthermore, there are still various correlations unknown, especially when the 
whole manufacturing programme is in the focus (system view) as it is the case 
here and not just a single manufacturing process/operation. An example for such 
knowledge about correlation is the field of distortion engineering where after years 
of research still not all mechanisms are identified (Zoch 2012).

Much research and individual testing/experiments would be needed to get a 
first, partly satisfying result. At the same time this makes the approach inflexible, 
time-consuming and vastly expensive, thus, not applicable in a fast changing envi-
ronment like industrial manufacturing. Theoretically, assuming that most depend-
encies, basically cause-effect relationships, between states or state characteristics 
are known, it still is very resource intensive to integrate them all in a model (see 
Fig. 4.29). The feedback of the application was, that even so some knowledge gain 
and awareness was raised within the company, the process of deriving the relations 
and inter-/intra-relations and cumulating them in a visualization model was too 
time-consuming and prone to failure. As soon as one parameter of a process within 
the manufacturing programme is changed or the product itself or even the environ-
ment changes, the whole model may have to be redeveloped. And, if a company 
has different production lines with different products (variants), the model has to 
be developed for each individual product/production line.

Fig. 4.29  Exemplary ind. appl. of meta-model (adapted from Wuest et al. 2013a)
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The combination of unknown process intra- and inter-relations, fast increasing 
complexity and high-dimensionality in modern manufacturing and the time-con-
suming and resource binding process are not reflected adequately in the achievable 
results of the visualization model as presented above. These are some of the major 
limitation of the application of the theoretical product state concept, which will be 
derived in detail later within this section.

Within the development of the product state concept the utilization of graph 
theory as a suitable addition was analyzed. However, similar to the previously 
introduced visualization, graph theory application within this context has  certain 
limitations. The main limitation of applying graph theory in this context is the 
required level of understanding and knowledge about the manufacturing programme, 
its products and processes in greater detail. Unknown state characteristics and espe-
cially unknown process intra- and inter-relations may jeopardize any beneficial 
findings from the beginning as the initial model does not reflect the ‘real world’ in 
the detail needed. Another limitation is the effort needed to model all sub-graphs, 
depending on the complexity of the manufacturing programme, there can be a large 
number of sub-graphs needed, and the subsequent application of the algorithm. 
The algorithm design itself is a challenge but that is more a technical than a sys-
temic one. Partly based on the first limitation raised here, the challenge to obtain an 
accurate set of (manufacturing) data for the purpose of modeling the manufacturing 
system is more of a general challenge for most analysis in manufacturing domain. 
In this case the added difficulty is the partly missing knowledge about what data 
is really needed. For a more detailed presentation of the graph theory application 
within the product state concept, please refer to (Wuest et al. 2014a).

In the next sections the limitations and challenges of the product state concept 
including its visualization, partly presented previously, will be summarized and 
elaborated in detail as a basis for the development of requirements towards a solu-
tion in this respect concluding the chapter.

4.4.3  Limitations of Describing Process  
Intra- and Inter-relations8

This section will focus on the findings of the previous sections on the limitations 
and challenges of describing process intra- and inter-relations and, indirectly, of 
the theoretical product state concept are presented.

Modern multi-variate systems have considerable complexity with high- dimensional 
data (Apley and Shi 2001; Zhang and Wang 2009) with unknown or unclear cause-
effect relationships in the process(-es) and with non-Gaussian data distributions, 
at times exhibiting seeming chaotic behavior (Chou et al. 1998; Borror et al. 1999; 

8The content of this section has been partly published in accordance with Universität Bremen 
(2007) in Wuest et al. (2013a).
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Stoumbos and Sullivan 2002), categorical (Wang and Tsung 2007) or mixed (cate-
gorical and numerical) variables, and numerical data with different scales of measure-
ment. Overall, the complexity and uncertainty inherit in most modern manufacturing 
programmes, can be considered the major challenge and limitations of the previously 
presented approach and also most conventional control and (off-line, predictive) sched-
uling approaches (Monostori 2002). The product state concept and the visualization 
modeling have an inherent high complexity and high dimensionality (in this context 
high-dimensionality is understood as a multidimensional system with a large number 
of dimensions) (Suh 2005; Lu and Suh 2009; Elmaraghy et al. 2012). Optimization 
tools in this field need to be able to handle a large number of dimensions and vari-
ables in order to be useful in practice. And a monitoring technique without assump-
tions on the parametric forms of distributions is important in this context (Monostori 
et al. 2006).

The importance of understanding process intra- and inter-relations of the prod-
uct state for the theoretical product state concept was highlighted multiple times. 
However, even though the previous approaches were mainly just looking at the 
pure existence of process intra- and inter-relations, the identification is already 
complex. Given the experience with visualization and application of graph the-
ory, the need for a more detailed description, be it quantitative or functional, of 
the process intra- and inter-relations adds to that already existing complexity. 
Determining if a relation is a correlation (or even a causal relationship) is knowl-
edge hardly available, difficult to analyze but rather important to the concept.

Another limiting factor towards the successful application of the theoretical 
product state concept in practice it the matter of describing, mapping and illus-
trating the process intra- and inter-relations along a manufacturing programme is 
time consuming and may be considered un-flexible (Kano and Nakagawa 2008). 
With each change occurring within the manufacturing programme, the visualiza-
tion model needs to be adapted or at least checked for applicability. Taking into 
account the agile nature of modern manufacturing, manufacturing programmes 
change often and quickly, with constantly changing products (states), processes 
(parameters) and environmental conditions highlight the challenge this issue 
presents for practical application under financial and time restrictions. After all, 
“the performance of manufacturing companies ultimately hinges on their ability 
to rapidly adapt their production to current internal and external circumstances” 
(Monostori 2002). The future solution ideally possesses or at least supports the 
adaptability and flexibility needed in today’s manufacturing environment, maybe 
even in a (partly) automated processes.

A major limitation is the lack of ways to identify process intra- and inter-relations 
of importance, e.g., by adding a rating of the impact on the output quality. Especially 
as this is fundamental to the model generation and thus the generation of feasible 
results. The concept offers no support in identifying process intra- and inter-relations 
to this point. Availability of knowledge about existing process intra- and inter-rela-
tions is a pre-requirement. However, given the existing knowledge gap, this presents 
a major challenge when it comes to the applicability of the approach. This challenge 
is shared with many first principle models trying to explain why product quality 
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issues appear. Kano and Nakagawa (2008) present an example for the steel industry, 
where “the relationship of operating conditions to product defects such as surface 
flaws and internal defects is not clear. The product qualities have been usually main-
tained by skilled operators on the basis of their experience and intuition. Although 
much effort has been devoted to clarify the relationship between operating condi-
tions and product quality, the problem remains unsolved.” Even though, the prod-
uct state concept is not alone facing this challenge, a future solution should include 
ways to reduce the reliance on existing knowledge about process intra- and inter-
relations and ideally provide help in identifying existing process intra- and inter-rela-
tions continuously throughout the manufacturing programme run.

It was mentioned before, a major challenge of most monitoring and control 
approaches in manufacturing is obtaining an accurate (quality) and sufficient 
(amount) set of (manufacturing) data. While in theory the issue of having too 
much data and thus having trouble to handle it is valid, in manufacturing  practice, 
the lack of enough data represents a major issue. The reasons are manifold, 
 starting by on a first account profane arguments like security issues of companies, 
over technical reasons to financial reasons, arguing that to obtain the data is too 
costly given the estimated benefits. Often the only possibility to apply a model or 
concept is to use the available data. Therefore, the future solution ideally makes 
use of all available manufacturing data of the manufacturing programme.

The whole theoretical product state concept is built around the relevant state 
characteristics and the process intra- and inter-relations to each other over the 
whole manufacturing programme. While the arguments for such an approach are 
strong in theory, given that precise first principle models are considered “the most 
reliable approach to quality monitoring” (Kano and Nakagawa 2008), in today’s 
practice, with the limiting factors like knowledge gaps, complexity and high 
dimensionality as described previously, there are many challenges hindering the 
successful reach of the set goals with the theoretical concept.

Overall, describing relations between state characteristics along a manufacturing 
programme is very complex and, if applied in industry, requires in-depth  understanding, 
high levels of product and process knowledge and a high transparency of  product, 
 process and effects in order to realize its potential. Theoretically, if an  application 
of the approach is possible, it may help to increase the final product quality and 
 process  efficiency by supporting the early identification of problems and allocation 
of in- formation to the right addressee. However, establishing such a model is binding 
 significant resources if possible at all due to knowledge available. Furthermore, it is not 
very flexible which does not help justifying the resources needed to create it. Therefore, 
other means of identifying, evaluating and utilizing product state relations and their 
impact on product and process quality are needed.

Based on these findings it has to be researched how the knowledge gap can be 
attacked despite the limiting factors of high-dimensionality and complexity within the 
product state framework. Ideally a suitable methodology should contribute to solve 
or at least support the development of the product state concept in the theoretically 
sketched way, e.g., helping decrease the knowledge gap of state characteristics and 
process intra- and inter-relations between states and state characteristics. Following, 

4.4 Process Intra- and Inter-relations Among State Characteristics
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the requirements of such an approach and specific goals are discussed by first looking 
into the NP complete nature of the problem, followed by a discussion of the suitability 
of ML techniques based on the requirements.

4.5  Requirements of State Driver Identification

In this section the requirements for a future solution are discussed based on the 
previously determined challenges and limitations. Before the subsequent presen-
tation of the suitability of ML techniques for a future solution approach, the NP 
completeness of the product state concept and its fundamental description of 
state/state characteristics process intra- and inter-relations are analyzed. However, 
firstly the main requirements towards a future solution approach and their corre-
sponding limitations and challenges are summarized in Table 4.2.

Table 4.2  Limitations and challenges and resulting requirements of theoretical product state 
concept

Limitations/challenges Requirements towards future solution 
approach

High complexity of modern manufacturing 
programmes leading to high-dimensionality 
of data (in this context high-dimensionality is 
understood as a multidimensional system with 
a large number of dimensions)

Ability to handle high-dimensional problems 
and data sets with reasonable effort

High complexity of modern manufacturing 
programmes leading to multi-variate nature 
of data

Ability to handle multi-variate problems and 
data sets with reasonable effort

Lack of transparency and thus benefit for pro-
cess owners once the model is developed as of 
the complex visualization of the model

Ability to reduce the possibly complex nature 
of the results and present transparent and 
concrete advice for practitioners (e.g., monitor 
state characteristic XX and process parameter 
YY at checkpoint ZZ)

Fast changing processes/inputs (process 
parameters/input parameters/products/envi-
ronment) require constant adaptation and 
remodeling

Ability to adapt to changing environment with 
reasonable effort and cost. Ideally a degree auf 
‘automated’ adaptation to changing condition

Knowledge gap of correlation/causality from 
the beginning

Ability to further the existing knowledge by 
learning from results

Limited availability of relevant information 
(manufacturing data) and unlikelihood of com-
panies to initially add extra measuring points

Ability to work with the available manufactur-
ing data without special requirements towards 
capturing of very specific information at the 
start

Describing process intra- and inter-relations 
and ideally correlation or causality towards 
each other is required for a successful model

Ability to identify relevant process intra- and 
inter-relations and ideally correlation and/or 
even causality towards each other
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After presenting an overview of the limitations and challenges of the theoretical 
product state concept and the requirements for a future solution approach, the next 
section will focus on the NP complete nature of the product state concept.

4.5.1  NP Complete Nature of Product State Concept

Given the many challenges and limitations and the resulting requirements towards 
a future solution approach, in this section the NP (nondeterministic polynomial 
time) complete nature of the optimization problem is discussed. Furthermore, 
examples of developed approaches handling similar limitations and challenges are 
briefly presented, indicating towards a possibility of utilizing AI and ML methods.

Based on the inherent complexity and high dimensionality of todays manufac-
turing programmes, the question is, if today’s monitoring problems can be defined 
as NP-complete problems of complexity theory. Introduced by Cook (1971) in the 
paper “The complexity of theorem-proving procedures”, the NP-completeness 
 theory describes that NP-complete problems turn out to be not solvable in 
 polynomial time. No efficient algorithm has been found to prove the contrary. The 
scientific majority believes that there is no such algorithm.

Lewis et al. describe a NP problem as a problem for which a valid (in polyno-
mial time solvable) solution is being sought, but which may be solved (using the 
algorithms known so far) only in exponential time (Lewis et al. 1996). The trave-
ling salesman problem is a classic example of a NP-complete case. Angel uses the 
example of the traveling salesman to show that local search algorithms in manu-
facturing are NP-complete (Angel and Zissimopoulos 1998).

A literature review shows that many combinatorial optimization problems in 
production (Nearchou 2011), such as scheduling, can be seen as NP-complete 
problems (Baker 1988). The same can be said about issues in resource allocation 
(Udo 1992), as well in flow-line and job-shop protocols (Lewis et al. 1996). Crama 
and Klundert provides additional evidence for the NP-completeness of scheduling 
issues, in terms of lower and upper bounds of processing windows (Crama and 
Klundert 1997). NP-completeness can be thus also found in assembly line balanc-
ing (Nearchou 2011) and in the just-in-time manufacturing (Baker 1988). Tiwari 
et al. cover NP-completeness at the organizational level and addresses specifi-
cally the distribution of tasks (Tiwari et al. 2009). However, Lewis et al. shows 
that reentrant flow protocols are solvable in polynomial time, which is one of the 
few exceptions in production-issues (Lewis et al. 1996). In order to handle such 
NP-complete problems, different algorithms and ML tools have been applied and 
shown promising results. So are genetic and biologically inspired algorithms are 
presented as a possible tool to overcome the hurdles of optimization problems in 
production (Aytug et al. 2003; Pham and Afify 2005; Laili et al. 2011; Ponsignon 
and Mönch 2012; Shetwan et al. 2011). Additionally, e.g., Brun treats the issues 
of self-assembly and their NP-completeness using DNA-computation (Brun 2008).

4.5 Requirements of State Driver Identification
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It has been argued that the limitations and challenges the theoretical product 
state concept faces indicate the NP complete nature of the optimization prob-
lem and thus the inability of first-principle models, like the visualization model 
to reach tangible solution (Kano and Nakagawa 2008). Mapping complexities 
and relationships as they occur within this context is practically impossible and 
analyses without a real multi-variate approach has little to no chance of success. 
Therefore, in the next section, the suitability of techniques, known for their ability 
to handle such issues in many cases, namely AI and ML is discussed.

4.5.2  Suitability of Machine Learning Methods

Before looking into the suitability of ML based on the previously derived require-
ments towards a future solution approach, the used terms are briefly introduced 
(for more detailed description see Sect. 5.1). ML is known for its ability to handle 
many problems of NP-complete nature, which often appear in the domain of intel-
ligent manufacturing (Monostori et al. 1998; Srdoč et al. 2007).

The application of ML techniques increased over the last two decades due to 
various factors, e.g., the availability of large amounts of complex data with  little 
transparency (Smola and Vishwanathan 2008) and the increased usability and 
power of available ML tools (Larose 2005). Nevertheless, the main definition of 
ML, allowing computers (artificial systems) to solve problems without being spe-
cifically programmes to do so (Samuel 1959) is still valid today. ML is connected 
to other terms, like Data Mining (DM), Knowledge Discovery (KD), AI and others 
(Alpaydin 2010). Today, ML is already widely applied in different areas of manu-
facturing, e.g., optimization, control and troubleshooting (Pham and Afify 2005; 
Alpaydin 2010) (for further details refer to Sect. 5.1).

Many ML techniques (e.g., SVM) are designed to analyze large amounts of data 
and capable of handling high-dimensionality (>1000) very well. However, accom-
panying issues like possible over-fitting has to be considered (Widodo and Yang 
2007) during the application. If dimensionality proves to be an issue despite it being 
unlikely due to the power of the algorithms, there are methods to reduce the dimen-
sions available, which claim to reduce the impact of the reduction of the dimension-
ality on the expected results (Kotsiantis 2007; Manning et al. 2009). The importance 
of using ML, in this case SVM (see Sect. 5.2 for details) is that dimensionality 
is not a practical problem and therefore the need for reducing dimensionality is 
reduced. This implies the possibility of being more liberal in including seemingly 
irrelevant information available in the manufacturing data that may turn out to be 
relevant under certain circumstances. This may have a direct effect on the existing 
knowledge gap described previously (Pham and Afify 2005; Alpaydin 2010).

Besides the capability of ML to handle high-dimensionality, it is also capable 
of handling mutli-variate problems and data sets. Examples of successful applica-
tion include monitoring and control problems based on multi-variate data (Yang 
and Trewn 2004). The expected implications are similar to the ones described 

http://dx.doi.org/10.1007/978-3-319-17611-6_5
http://dx.doi.org/10.1007/978-3-319-17611-6_5
http://dx.doi.org/10.1007/978-3-319-17611-6_5
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above, allowing the usage of previously not considered data and information to 
identify new information and knowledge of the manufacturing programme.

Applying ML in manufacturing may result in deriving pattern from existing 
data sets, which can provide a basis for the development of approximations about 
future behavior of the system (Nilsson 2005; Alaydin 2010). This new informa-
tion (knowledge) may support process owners in their decision-making or used to 
automatically improve the system directly. In the end, the goal of certain ML tech-
niques is to detect patterns or regularities that describe relations (Alpaydin 2010).

Given the challenge of a fast changing environment in manufacturing, ML, 
being part of AI and inherit the ability to learn and adapt to changes “the sys-
tem designer need not foresee and provide solutions for all possible situations” 
(Alpaydin 2010). Therefore, ML provides a strong argument why its application in 
manufacturing may be beneficial given the struggle of most first-principle models 
to cope with the adaptability. Learning from and adapting to changing environ-
ments automatically is a major strength of ML (Simon 1983; Lu 1990).

ML techniques are designed to derive knowledge out of existing data (Alpaydin 
2010; Kwak and Kim 2012). Alpaydin (2010) emphasizes that “stored data 
becomes useful only when it is analyzed and turned into information that we can 
make use of, for example, to make predictions” (Alpaydin 2010). This is espe-
cially true for manufacturing, given the struggle of obtaining real-time data during 
a live manufacturing programme run with the technical, financial and knowledge 
restrictions. This may also have an impact on the previously discussed issue of 
positioning of checkpoints (Wuest et al. 2014b). Whereas, it makes sense to care-
fully select checkpoints under the perspective of what data is useful, it may be 
obsolete given the analytical power of ML techniques to derive information from 
formerly considered useless data. This may result in the ability to determine more 
states along the overall manufacturing programme. If this is beneficial is an open 
question, which has to be researched. Given the ability of ML to handle high-
dimensionality and multi-variate data, the technical side of analyzing the addi-
tional data provides no problem. However, in terms of capturing data it may still 
be a problem, specifically the ability to capture the data. Once the data is available, 
determining state drivers in very high-dimensionality situations is not considered 
problematic, nor is repeating it frequently. Table 4.3 provides a summary of the 
theoretical ability of ML techniques to meet the previously derived requirements 
of a future solution for the product state concept.

Overall, as Monostori et al. (1996) emphasize, “intelligence is strongly connected 
with learning, and learning ability must be an indispensable feature of IMSs”. ML 
provides strong arguments when it comes to the limitations and challenges the theo-
retical product state concept faces. Given the above stated analysis, ML techniques 
seem to provide a promising solution based on the derived requirements. Most of 
the requirements are directly addressed positively by ML. However, a more detailed 
analysis of available ML techniques as well as their strengths and limitations con-
cerning the requirements has to be provided. Most of all, the possible compatibility 
with the theoretical product state concept and its perspective on the  manufacturing 
programme has to be discussed further before a final judgment can be given. 

4.5 Requirements of State Driver Identification
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Furthermore, there are many questions to be answered like how ML techniques may 
handle qualitative information.

In the following section, the derived research hypothesis is introduced based 
on the presented findings. This is to be seen on a more conceptual level before a 
 suitable ML technique for the problem at hand is selected and the integration in 
the product state concept is developed and evaluated.

Table 4.3  Summary of theoretical suitability of ML methods based on derived requirements

Requirements Theoretical ability of ML approaches to meet 
requirements

Ability to handle high-dimensional problems 
and data sets with reasonable effort

Certain ML techniques (e.g., SVM) are capa-
ble of handling high-dimensionality (>1000) 
very well. However, accompanying issues 
like possible over-fitting has to be considered 
(Widodo and Yang 2007)

Ability to handle multi-variate problems and 
data sets with reasonable effort

ML is capable of handling mutli-variate 
problems and data sets. Examples of success-
ful application include monitoring and control 
problems based on multi-variate data (Yang 
and Trewn 2004)

Ability to reduce the possibly complex nature 
of the results and present transparent and 
concrete advice for practitioners (e.g., monitor 
state characteristic XX and process parameter 
YY at checkpoint ZZ)

ML may be able to derive pattern from exist-
ing data and derive approximations about 
future behavior (Alaydin 2010). This new 
information (knowledge) may support process 
owners in their decision-making or used to 
automatically improve a system

Ability to adapt to changing environment with 
reasonable effort and cost. Ideally a degree auf 
‘automated’ adaptation to changing condition

As ML is part of AI, and thus be able to learn 
and adapt to changes, “the system designer 
need not foresee and provide solutions for all 
possible situations” (Alpaydin 2010). Learning 
from and adapting to changing environments 
automatically is a major strength of ML 
(Simon 1983; Lu 1990)

Ability to further the existing knowledge by 
learning from results

ML can contribute to create new information 
and possibly knowledge by e.g., identifying 
patters in existing data (Pham and Afify 2005; 
Alpaydin 2010).

Ability to work with the available manufactur-
ing data without special requirements towards 
capturing of very specific information at the 
start

ML techniques are designed to derive 
knowledge out of existing data (Alpaydin 
2010; Kwak and Kim 2012). “The stored data 
becomes useful only when it is analyzed and 
turned into information that we can make 
use of, for example, to make predictions” 
(Alpaydin 2010)

Ability to identify relevant process intra- and 
inter-relations and ideally correlation and/or 
even causality towards each other

The goal of certain ML techniques is to detect 
certain patterns or regularities that describe 
relations (Alpaydin 2010)
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4.6  Derived Research Hypothesis of the Application  
of ML Within the Product State Concept

One Key Success Factor (KSF) of the application of the product state concept 
as described in the previous section is transparency of the existing process intra- 
and inter-relations between states. The nature of these process intra- and inter-
relations can be described as resembling a correlation and/or causation/causality. 
Correlation can be defined as the dependence between two random quantities, 
e.g., X and Y. Kent also argues that the concept of information gain can be used 
to define a measure of correlation, if the dependence between the two quantities 
is modeled parametrically (Kent 1983). Causation/causality on the other hand can 
be described, in simplest terms, as judging if X causes Y, with these cause-effect 
relations being fundamentally deterministic (Pearl 2000).

Ideally it would be possible to select only independent variables thus  focusing 
on causation/causality rather than correlation. However, that is not applicable 
given the existing knowledge gap, the large number of ‘unknown’ state transfor-
mations and the apparent complexity represented by high-dimensionality and 
multi-variate nature of the derived data. It is not even possible to identify all exist-
ing correlations between states and state characteristics within the manufacturing 
programme in reasonable time, making it applicable under the efficiency and flexi-
bility constraints modern manufacturing faces today. Adding the existing impact 
of manufacturing processes and/or operations, environmental factors, etc. on 
state transformation, the identification of correlations or even causation becomes 
even more unlikely. In the long run, the differentiation between correlation and 
 causation/causality may be relevant for the further interpretation and identifi-
cation of state drivers along the manufacturing programme. Under the current 
 circumstances, this objective is not achievable. However, in the long run it may be 
possible to arrange for the continuous learning of manufacturing programmes thus 
increasing the likelihood of discovering independent state variables and/or causal 
mechanism.

However, the previously introduced ML techniques, which allow for the anal-
ysis of such problems with similar constraints (limitations and challenges) offer 
a chance to reach the overall goal of increasing the transparency and increase 
the knowledge of the manufacturing programme. Applying supervised learning 
 methods like e.g., a multi-variate classification method (SVM), allows to a large 
extent to include all available variables without having to define and map (known) 
influence or (inter-/intra-)relation. Using such a method, it should be possible to 
incorporate existing process intra- and inter-relations, known and unknown, within 
the analysis implicitly.

Within this research, the goal is to identify state drivers (or ‘drivers of state’) 
within a manufacturing programme. State drivers define the weighting of 
 certain process parameters, state characteristics or events, which initiate a state 

4.6 Derived Research Hypothesis of the Application of ML …
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transformation from ‘good’ to ‘bad’ along the whole manufacturing programme. 
State drivers therefore are not only representing process intra- and inter-relations 
but all influencing factors causing a state to change (transform). Based on that, the 
main research hypotheses for this dissertation are presented.

(1) Hypothesis 1 ‘Capturing of process intra- and inter-relations by implication 
through ML’

Modern manufacturing programmes are complex and many process intra- and 
inter-relations between states, state characteristics and processes/ operations 
 cannot be mapped accurately due to increasing complexity and unknown 
 relationships. Hence, it is desirable to capture existing relationships by implica-
tion without having to model them and their influences. Through the application 
of Supervised ML main drivers of the product and process state can be identified 
throughout the whole manufacturing programme by capturing and utilizing  process 
intra- and inter-relations implicitly by incorporating all available product and 
 process state data. This will positively impact the currently existing  knowledge 
gap by furthering the understanding of the correlation mechanisms within the 
 manufacturing programme.

(2) Hypothesis 2 ‘Adaptability to changing conditions through ML’

Manufacturing programmes are set in constantly changing environments. 
Changing product and process parameters as well as shifting external  influences 
demand that successful optimization approaches are able to adapt to these 
 frequently changing conditions with minimal effort. Many of today’s ML tools are 
highly adaptable to changing conditions with, at the same time, reduced demands 
in (computational) resources. By applying ML, changes of product states,  process 
parameters and external factors can be continuously integrated in and thus, even-
tually reflected in the results of the analysis by contiguously updating the learn-
ing data set. This in turn will also contribute to the goal of reducing the existing 
knowledge gap about the manufacturing programme and its mechanisms by 
increasing the knowledge of the influence of changing conditions.

The above-presented hypotheses represent the general research direction which 
follows the identified requirements to bring the product state concept despite the 
identified limitations (e.g., lack of knowledge) to life. In the further course of the 
next section, the individual hypothesis are detailed further when the particular 
specification of the chose ML technique are defined (see Sect. 5.3).

Therefore, in the next sections a suitable ML technique is selected after a general 
introduction into the topic. Afterwards, a methodology for the application of SVM 
to identify state drivers in manufacturing programmes is developed. Subsequently, 
elaborating the evaluation of the application of the methodology, the derived specific 
research questions originated in the presented hypotheses are discussed in greater 
detail.

http://dx.doi.org/10.1007/978-3-319-17611-6_5
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It has been established in the previous sections that ML techniques may be 
 generally suitable for the identified challenges of applying the product state 
 concept. The successful identification of state drivers taking process intra- and 
inter- relations into account is essential for the application of the developed con-
cept. To reach that goal, distinct research hypotheses focusing on a promising 
approach of applying ML within the product state concept were derived in the 
 previous section.

In this section, the application of ML is investigated in further detail. First ML 
is briefly introduced in more detail with respect to the manufacturing domain. 
Based on this brief general elaboration, SVM algorithms are selected as a suitable 
ML technique to match the detailed requirements of the stated research problem. 
In the final subsection, the application of SVM is discussed towards its objective 
of identification of state drivers in manufacturing programmes. Within this last 
subsection, the application and evaluation approach of the SVM application are 
presented and the derived hypotheses are detailed based on the decision to use the 
SVM algorithm to conclude the section.

5.1  Machine Learning in Manufacturing

In this subsection the application of ML techniques in manufacturing is intro-
duced. ML has been successfully utilized multiple times in various process optimi-
zation, monitoring and control applications in manufacturing in different industries 
(Gardner and Bicker 2000; Pham and Afify 2005; Alpaydin 2010; Kwak and Kim 
2012). ML techniques were found to provide promising potential for improved 
quality control optimization in manufacturing systems (Apte et al. 1993), espe-
cially in “complex manufacturing environments where detection of the causes of 
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problems is difficult” (Harding et al. 2006). However, often ML applications are 
found to be limited focusing on specific processes instead of the whole manufac-
turing programme or manufacturing system (Doltsinis et al. 2012).

There are many different ML methods, tools and techniques available, each 
with distinct advantages and disadvantages. The domain of ML has grown to an 
independent research domain. Therefore, within this section the goal is to intro-
duce ML techniques briefly and select a suitable algorithm for the previously 
established problem. The purpose is not to develop new tools or techniques to 
further the ML development. In order to achieve that goal, first, a brief general 
introduction to ML with regard of manufacturing application is presented. The 
subsequently identified supervised ML technique, SVM, is then detailed and the 
rationale behind the selection is discussed in greater detail, relating the arguments 
to the previously identified requirements.

5.1.1  Machine Learning

The topic of ML firstly gained attention after Samuel (1959) published his paper 
“Some Studies in Machine Learning Using the Game of Checkers”. Since then, 
not only did the research field of ML grow continuously but also it grew more 
divers. Today ML is omnipresent in our daily lives, e.g., through the use of various 
google products or certain public transportation systems (Smola and Vishwanathan 
2008). There are several journals specifically targeted to ML research available, 
some actively publishing continuously for more than 25 years.

The research domain of ML looks into the practice of preparing computers or 
artificial systems to act or react to certain events without being specifically pro-
grammed to do so (Nilsson 2005; Smola and Vishwanathan 2008). ML aims to 
solve (manufacturing) problems by applying knowledge that was acquired from 
analysis of (data of) earlier problems of similar nature to the to be solved problem 
(Priore et al. 2006). This capability is desirable or may be even necessary in some 
cases for various reasons. Nilsson (2005) states the following list of some  existing 
reasons for the application of ML. All of those stated reasons can be directly 
mapped to the research problem at hand in this dissertation:

•	 Some tasks can only be defined by example without a complete understanding 
of the existing relationships (input–output). Therefore machines are required 
to adjust in order to succeed in creating correct outputs with given inputs by 
approximately ‘learn’ the implicit relationships.

•	 Possibility of hidden relationships and correlations in large piles of data, which 
ML may provide a tool to extract.

•	 Products are used in different environments and might not function as desired 
in some of them. This can be due to limited knowledge of the actual applica-
tion area at the time of design or due to changing environmental factors, etc. 
However, ML may enable products to adapt to some of those previously not-
anticipated circumstances.
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•	 In the age of cheap data storage and sensor technology, it is possible that the 
amount of data available exceeds the (economical and technical)  ability 
of humans to incorporate the contained information and knowledge in the 
 programming. Preparing the artificial system to learn from the available sources 
independently through ML allows designers to make use of that knowledge.

•	 The previous point can be extended to new information and knowledge discov-
ered during the utilization of a product. By incorporating ML techniques, the 
artificial system can make use of new developments and thus reduce the need 
for actively redesign or redevelop an existing system.

As mentioned before, the ML domain compromises several sub-domains and/
or closely related domains with large overlaps. For instance, AI represents the 
theoretical and methodological foundation for learning of systems (Negnevitsky 
2005) and thus being a crucial part of ML. However, not all AI methods inherit 
the capability of learning (Negnevitsky 2005). Whereas AI can be seen as the 
overarching domain, ML being a part of it (Whitehall et al. 1990), DM and KD/
Knowledge Discovery from Databases (KDD) are more sub-domains describing 
a certain area of ML techniques. Kotsiantis (2007) identifies DM as the most sig-
nificant application area of ML. MD and KD/KDD concepts focus on uncover and 
find hidden knowledge and information from (often large amounts) of available 
data. The unknown process intra- and inter-relations between states can be seen as 
such ‘hidden knowledge’. DM and KDD have been applied successful to various 
problems in the manufacturing domain (Kwak and Kim 2012). The areas of pre-
dictive maintenance, fault detection, condition monitoring, QM, operations, etc. 
are all examples where the ability of DM to identify hidden patterns is receiving 
increased attention (Harding et al. 2006). Within this dissertation, the term ML is 
used comprehensively instead of further differentiations in DM or KDD as the pre-
sented techniques all incorporate a learning component.

Within this dissertation, the focus will be laid on supervised methods described 
in more detail in the following subsection. Other methods like Reinforcement 
Learning (RL) (Wiering and Van Otterlo 2012) and unsupervised ML (Manning 
et al. 2009) are not considered further due to the specific nature of the problem. 
The main assumption is that knowledgeable experts can provide feedback on the 
classification of states to identify the learning set in order to train the algorithm. 
However, in some cases this might not be possible or, in the future, desirable.

5.1.2  Supervised Machine Learning

In manufacturing application, supervised ML techniques are mostly applied due 
to the data-rich but knowledge-sparse nature of the problems (Lu 1990). In addi-
tion, supervised ML may benefit from the established data collection in manufac-
turing for statistical process control purposes (Harding et al. 2006) and the fact 
that this data is mostly labeled. This is true also for the problem described in this 
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dissertation. Basically, supervised ML “is learning from examples provided 
by a knowledgeable external supervisor” (Sutton and Barto 2012). Supervised 
 learning is often applied in manufacturing. This is partly due to the availability of 
(a) expert feedback (e.g., quality) and (b) the labeled instances. Supervised ML 
is applied in different domains of manufacturing, with monitoring and control 
being very  prominent among them (e.g., Apte et al. 1993; Pham and Afify 2005; 
Harding et al. 2006; Alpaydin 2010; Kwak and Kim 2012). The general process of 
 supervised ML is illustrated in Fig. 5.1.

Based on a given problem, the required data is identified and (if needed) pre-
processed. An important aspect is the definition of the training set, as it influences 
the later classification results to a large extent. Even so in Fig. 5.1 it appears that 
the algorithm selection is always following the definition of the training data set, 
the definition of the training data also has to take the requirements of the algo-
rithm selection into account. This is to some extent also true for the identification 

Fig. 5.1  Generic process of supervised ML (Kotsiantis 2007)
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and pre-processing of the data as different algorithms have certain strength and 
weaknesses concerning the handling of different data sets (e.g., format, dimen-
sions, etc.). After an algorithm is selected, it is trained using the training data set. 
In order to judge the ability to perform the targeted task, the trained algorithm is 
then evaluated using the evaluations data set. Depending on the performance of 
the trained algorithm with the evaluation data set, the parameters can be adjusted 
to optimize the performance, in case the performance is already good. In case the 
performance is not satisfying, the process has to be started over at an earlier stage, 
depending on the actual performance. Reliant on the application case, a rule of 
thumb is that 70 % of the data set is used as a training data set, 20 % as an evalua-
tion data set (in order to adjust the parameters—e.g., bias) and the final 10 % as a 
test data set, however, in practice often a 70 % (training data) and 30 % (test data) 
split is utilized.

There are several established supervised ML algorithms available. Each of 
these algorithms has specific advantages and limitations concerning the applica-
tion in manufacturing (see Table 5.1).

A major challenge is to select a suitable algorithm for the requirements of the 
research problem. As described before, as a first step, a general applicability of 
a ML algorithm with the requirements may be derived from more general com-
parisons (e.g., presented by Kotsiantis (2007)). This may be conducted to rule out 
unsuitable ML algorithms. However, due to the individual nature of most research 
problems and the specific characteristics of ML algorithms as well as their adapted 
‘siblings’, it is not advisable to base the decision for a ML algorithm solely on 
such a theoretical and general selection. In order to identify a suitable ML algo-
rithm for the problem at hand, the next step involves a careful analysis of previous 
applications of ML algorithms on research problems with similar requirements. 
The research problems do not have to be located within the same domain. A major 
issue in this selection is the matching of the identified requirements, which in this 
case include the ability to handle multi-variate, high dimensional data sets and the 
ability to continuously adapt to changing environments (updating the learning set).

The selected ML algorithms to be applied to the identified research problem 
within this dissertation are SVM. The detailed argumentation and the identified 
comparable structured problems with matching requirements are presented in the 
following subsection in greater detail.

5.2  Selection of Suitable Machine Learning Technique

In this section, the ML technique SVM is presented as the algorithm of choice to 
apply on the identified research problem. Details concerning the choice and suit-
ability of SVM are illustrated in the later Sect. 5.2.2 (also see Wuest et al. 2013). 
Burbidge et al. (2001) found SVM to be a “robust and highly accurate intelligent 
classification technique well suited for structure–activity relationship analysis”. 
SVM can be understood as a practical methodology of the theoretical framework 
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Table 5.1  Comparing learning algorithms (Kotsiantis 2007)

Desicion 
trees

Neural 
networks

Naїve 
bayes

kNN SVM Rule-learners

Accuracy in 
general

** *** * ** **** **

Speed of 
learning with 
respect to 
number of 
attributes and 
number of 
instances

*** * **** **** * **

Speed of 
classification

**** **** **** * **** *** *

Tolerance to 
missing values

*** * **** * ** **

Tolerance 
to irrelevant 
attributes

*** * ** ** **** **

Tolerance to 
redundant 
attributes

** ** * ** *** **

Tolerance 
to highly 
 interdependent 
attributes 
(e.g. parity 
problems)

** *** * * *** **

Dealing with 
discrete/binary/
continuous 
attributes

**** *** (not 
discrete)

***(not 
continu-
ous)

*** (not 
directly 
discrete)

**(not 
discrete)

*** (not 
directly 
continuous)

Tolerance to 
noise

** ** *** * ** *

Dealing with 
danger of 
overfitting

** * *** *** ** **

Attempts for 
incremental 
learning

** *** **** **** ** *

Explanation 
ability/ 
transparency 
of knowledge/
classifications

**** * **** ** * ****

Model 
 parameter 
handling

*** * **** *** * ***

Explanatory remarks **** stars represent the best performance and * star represents the worst 
performance
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of Statistical Learning Theory (STL) (Cherkassky and Ma 2009). SVM have a 
proven track record for successfully dealing with non-linear problems (Li et al. 
2009). SVM can be combined with different kernels and thus adapt to different 
circumstances/requirements (e.g., Neural Networks; Gaussian) (Keerthi and Lin 
2003).

First, SVM, as a supervised ML algorithm is described in greater detail, pre-
senting the main principles, technical background and its main application fields. 
Following, the reasoning for the choice of SVM with regard to the identified 
requirements of the research problem is shown. As previously stated, in this sec-
tion, existing applications of SVM on similar problems (with regard to the require-
ments) are referred to within the argumentation. After introducing SVM and the 
rationale behind its choice, the application and evaluation approach of the tech-
nique is described in the following Sect. 5.3.

5.2.1  Support Vector Machines (SVM)

SVMs were introduced by Cortes and Vapnik (1995) as a new ML technique for 
two-group classification problems. The idea behind it is that input vectors are 
non-linearly mapped to a very high dimensional feature space (Cortes and Vapnik 
1995). Lately, SVM as a relatively new supervised ML algorithm (Kotsiantis 
2007) received increasing attention within the research community due to their 
ability to balance structural complexity and empirical risk (Khemchandani and 
Chandra 2009). The theoretical background of SVM is presented in the next 
subsection, followed by an introduction of different application fields of this 
algorithm.

5.2.1.1  Theoretical Background1

SVM as a classification technique has its roots in STL (Khemchandani and 
Chandra 2009; Salahshoor et al. 2010), has shown promising empirical results in a 
number of practical manufacturing applications (Chinnam 2002; Widodo and Yang 
2007) and works very well with high-dimensional data (Sun et al. 2004; Ben-hur 
and Weston 2010; Wu 2010; Salahshoor et al. 2010; Azadeh et al. 2013). Another 
aspect of this approach is that it represents the decision boundary using a subset of 
the training examples, known as the support vectors.

SVM are linear two-class classifiers (Ben-hur and Weston 2010). The basic 
idea behind SVM, is the concept of a maximal margin hyperplane. A linear SVM 
can be trained explicitly to look for this type of hyperplane in linearly separable 
data. However, the method can also be extended to non-linearly separable data 

1The content of this section has been partly published in accordance with (Universität Bremen 
2007) in (Wuest et al. 2012).
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using kernels. Through application of kernels, the former linear classifier can be 
extended to serve as a non-linear classifier. This will be explained later on.

A linear SVM is based on a decision boundary, called hyperplane that divides a 
set of data points into two classes. These two classes are described as either posi-
tive (+1) or negative (−1) examples. Figure 5.2 illustrates a decision boundary 
(wTx + b = 0) between two linear separate sets of positive (wTx + b > 0) and 
negative (wTx + b < 0) class (Ben-hur and Weston 2010).

The following technical definition of linear SVM follows Ben-hur and Weston 
(2010) if not indicated otherwise. In this example, x is understood as a vector with 
components xi. The term xi symbolizes the ith vector in a data set, {(xi, yi)}ni=1,  
with yi describing the label xi is associated with. The scalar product, which is 
required in order to define a linear classifier is defined as wT

x =
∑

i wixi. Based 
on this foundation, a linear classifier is built around the discriminant function:

In this function, vector w is defined as the weight vector whereas b is known as 
the bias. By considering b = 0, the set of points x such that wTx = 0 represent 
all points perpendicular to w which go through the origin. Hence it forms a line 
(two dimensions), a plane (three dimensions), and more generally, a hyperplane 
(n dimensions). The vector w in this aspect represents a decision hyperplane 
normal vector and is commonly named weight vector in SVM literature (Hamel 
2009; Manning et al. 2009). Thus both bold notations indicate vectors whereas T 
stands for transpose and the bias b translates the hyperplane away from the origin, 
when ≠ 0. Consequently, the hyperplane can be described as:

(5.1)f (x) = w
T
x+ b

(5.2)
{
x : f (x) = w

T
x+ b

}

Fig. 5.2  Linear classifier 
with decision boundary 
wTx + b = 0 (Ben-hur and 
Weston 2010)
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Dividing the space in two, this hyperplane allows to classify points by the sign of 
the discriminant function f(x) as positive and negative (Ben-hur and Weston 2010).

Figure 5.3 shows a data set containing examples that belong to two different 
classes, represented as squares and circles. The data set is also linearly separa-
ble; i.e., there is a hyperplane such that all the squares reside on one side of the 
hyperplane and all the circles reside on the other side. A linear decision boundary 
between regions (see Fig. 5.2) defines a classifier as linear. Inevitably such clear-
cut results are not always available in real applications and suitable compromise 
solutions are used in order to allow a certain amount of misclassification.

There are infinitely many hyperplanes possible. Although their training errors 
may be zero, there is no guarantee that the hyperplanes will perform equally well 
on previously unseen examples. The classifier must choose one of these hyper-
planes to represent its decision boundary, based on how well they are expected to 
perform on test examples.

SVM are utilizing the concept of a maximal margin separation (see Fig. 5.4) 
(Lessmann et al. 2009). The algorithm tries to maximize the distance between the 
decision surface and data points separating the two classes (circles and squares) 
(Cristianini and Shawe-Taylor 2000; Manning et al. 2009). The algorithm tries 
to place the decision surface maximally far away from the data points (Manning 
et al. 2009). In Fig. 5.4, the optimal decision surface B is assumed to be the cho-
sen decision surface with the largest margin. The supporting hyperplanes b(−1) and 
b(1) show the distance to the closest data points (support vectors).

The maximization of the margin reduces the upper bound of the (expected) gen-
eralization error, i.e., error of future data (Vapnik 1995; Kotsiantis 2007; Lessmann 
et al. 2009). The decision function is defined by a sub-set of the data (training 
data) defining the position of the hyperplane (Manning et al. 2009). “These points 
are referred to as the support vectors (in a vector space, a point can be thought of 

Fig. 5.3  Possible decision 
boundaries for a linear 
separable data set (based 
on Hamel 2009)
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as a vector between the origin and that point)” (Manning et al. 2009). As SVM is a 
supervised ML algorithm, this training data is generally selected by experts.

The problem with SVM classifiers is to establish relevant training/learning data 
for the case at hand so that the computation of the support vectors can be com-
pleted. Given that most process control and analysis task display a degree of dyna-
mism, the use of SVM is not immediately clear for such applications as it is likely 
that the generation of support vectors will have to be done frequently and without 
knowledge of detailed performance results of the process.

The geometric representation of the maximum margin is briefly described, 
mainly based on Ben-hur and Weston (2010). For this example, it is assumed that 
the data is separable. Therefore, for a given hyperplane, x+ and x− are defined as 
the nearest data points to the hyperplane of the two classes (positive and nega-
tive as mentioned earlier). Then the length of the weight vector w is denoted by 
its norm ‖w‖ and given by 

√
wTw. The unit vector ŵ in the direction of w can be 

obtained by w/‖w‖ having 
∥∥ŵ

∥∥ = 1. Based on these preconditions, the margin of 
hyperplane f within the data set D may be seen as:

Within this formula ŵ is representing a unit vector in the direction of w and the 
distance of x+ and x− are assumed to be equal. Therefore the following equations 
may be set up:

(5.3)mD(f ) =
1

2
ŵT (x+ − x−)

(5.4)f (x+) = wTx+ + b = 1

Fig. 5.4  Margin for decision 
boundary (based on Hamel 
2009)
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Adding the previous Eqs. (5.4, 5.5) in the decision function (5.3), and divide it by 
‖w‖, a function as follows can be obtained:

As mentioned before, the data set is assumed to be linearly separable so a hard 
margin SVM can be applied. Later in this section, this is modified in order to han-
dle non-separable data. A main functionality of SVM is the maximum margin 
classifier which is represented by a discriminant function maximizing the geomet-
ric margin 1/‖w‖. As maximizing 1/‖w‖ is the equivalent to minimizing 

∥∥w2
∥∥, the 

constrained optimization problem can be formulated as follows:

The resulting equation is based on the linear separability of the data set. However, 
in practice, data sets are not always linear separable. Additionally, when it hap-
pens to be linear separable, the achievable maximum margin is greater if the clas-
sifier allows misclassification of a certain number of data points, which is called 
soft margin SVM. In order to integrate a certain allowed classification error, the 
inequality constrain in (5.7) is replaced by

This addition allows certain points (called slack variables: ξi ≥ 0) to be either 
within the margin (called margin error: 0 ≤ ξi ≤ 1) or misclassified (ξi > 1). Hence,  
a data point is misclassified when the value of the slack variable is exceeding 1. 
This allows for calculating the total number of misclassified data points (

∑
i ξi). 

Including this in Eqs. (5.7, 5.8) allows for representing a cost element (also known 
as penalizing element) in the maximum margin optimization function:

In this function (5.9), the relative importance of maximizing the margin and mini-
mizing the error is represented by the constant C > 0. By applying the Lagrange 
multiplier method, a dual formulation can be obtained, expressed by variables ∝i 
(Ben-hur and Weston 2010):

(5.5)f (x−) = wTx− + b = −1

(5.6)mD(f ) =
1

2
ŵT (x+ − x−) =

1

�w�

(5.7)

minimize
w,b

1

2
�w�2

subject to : yi

(
wTxi + b

)
≥ 1 i = 1, . . . , n

(5.8)subject to : yi

(
wTxi + b

)
≥ 1− ξi i = 1, . . . , n

(5.9)

minimize
w,b

1

2
�w�2 + C

∑

i

ξi

subject to : yi

(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0 i = 1, . . . , n
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Dual formulation, or duality, aims to convert “a linear model in the original (pos-
sibly infinite dimensional) ‘feature’ space into a dual learning model in the cor-
responding (finite dimensional) dual ‘sample’ space” (Zhang 2002). The dual 
formulation allows to expand the weight vector w in terms of input data:

Given ∝i> 0, the points xi are located on or within the margin in case a soft mar-
gin SVM is applied and are called support vectors. The number of data serving as 
support vectors with regard to the total number of data points is used as an upper 
bound of the error rate of the classifier (Ben-hur and Weston 2010).

SVM so far have been presented as a classifier for linearly separable data with 
the addition of slack variables. As previously mentioned, SVM can be also used 
on non-linear data sets. Actually, SVM have a proven track record for successfully 
dealing with non-linear problems (Li et al. 2009). It has been found that  non-linear 
classifiers provide better accuracy in many applications. However, they lack the 
advantage of linear classifiers, e.g., utilizing (relatively) simple training algo-
rithms and scaling with regard to the number of examples. It has been shown, that 
through dual formulation, the SVM optimization problem is depending on the data 
through dot products. This allows to replace the dot product through kernel func-
tion which is non-linear and thus performing large margin separation in the fea-
ture-space of the kernel (Ben-hur and Weston 2010). The dot product, also known 
as inner or scalar product, describes the generation of a single number out of two 
(equally long) sequences of numbers, e.g., a vector, through an algebraic operation 
(Manning et al. 2009).

As can be seen in Fig. 5.5a and b, a SVM with a polynomial kernel allows to 
separate two classes more accurately than a soft margin linear SVM in this exam-
ple. Through applying kernels, SVMs are able to “classify points by assigning 
them to one of two disjoint half spaces, either in the pattern space or in a higher-
dimensional feature space” (Khemchandani and Chandra 2009).

Through applying a more complex kernel, the potential to achieve better results 
may be increased (Chinnam 2002). On the other side, choosing the wrong kernel 
for the problem may reduce the performance of the classifier. As there are many 
different kernels for SVM available it is important to choose a suitable one, in 
accordance with the requirements of the data, in order to achieve the best classi-
fication results. A more complex kernel adds to the computation cost of the algo-
rithm compared to a linear SVM (Ulaş et al. 2012). However, given the recent 
development in ICT, most optimization problems of high-dimensionality, even 

(5.10)

maximize
∝

n∑

i=1

∝i −
1

2

n∑

i=1

n∑

j=1

yiyj ∝i ∝j x
T
i xj

subject to :
n∑

i=1

yi ∝i = 0, 0 ≤∝i ≤ C

(5.11)w =
n∑

i=1

yi ∝i xi
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with complex kernels, are mostly computable in a reasonable timeframe. Today, 
available software tools like ‘RapidMiner’ or ‘WEKA’ allow the user to apply 
different kernels within their solution without the need to do any programming 
themselves. Thus providing the opportunity to adjust the algorithm, including 
parameters and kernels, more easily based on the performance and requirements of 
a certain problem and the available data.

Overall, Ben-hur and Weston (2010) summarize the specific challenges for 
applying SVM in form of a list of decisions that have to be made prior to the appli-
cation: “how to preprocess the data, what kernel to use, and finally, setting the 
parameters of the SVM and the kernel” (Ben-hur and Weston 2010). For further 
in-depth reading on the technical background and a more detailed insight of the 
mathematical models behind the algorithm and kernels, the following publications 
are suggested (Burges 1998; Sánchez 2003; Larose 2005; Bishop 2006; Smola and 
Vishwanathan 2008; Hamel 2009; Manning et al. 2009; Alpaydin 2010).

5.2.1.2  Application Fields

SVM as a classifier technique has a very broad application field. Basically SVM 
can be applied wherever classification is needed. With regard to the research prob-
lem of this dissertation, certain domains where SVM was successfully applied are 
presented. While the focus is on manufacturing application, other domains with 
problems of similar nature are also included.

A major application area of SVM in manufacturing is monitoring (Chinnam 
2002). In particular within that domain, tool/machine condition monitoring, fault 
diagnosis and tool wear are domains where SVM is continuously and successfully 
applied (Azadeh et al. 2013; Sun et al. 2004; Widodo and Yang 2007; Salahshoor 
et al. 2010). Quality monitoring in manufacturing is another field where SVMs 
were successfully applied (Ribeiro 2005).

Fig. 5.5  a Soft margin SVM with a linear kernel. b SVM with a polynomial kernel (based on 
Ben-hur and Weston 2010)

5.2 Selection of Suitable Machine Learning Technique
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An application area of SVM with an overlap to manufacturing application is 
picture/image recognition (e.g., character and face recognition) (Salahshoor et al. 
2010; Widodo and Yang 2007; Wu 2010). In manufacturing, this application-
can be utilized to identify (classify) damaged products (e.g., surface roughness) 
(Çaydaş and Ekici 2010). Other application areas include handwriting classification 
(Scheidat et al. 2009). Time series forecasting is also a domain where SVM optimi-
zation is often applied (Tay and Cao 2002; Guo et al. 2008; Salahshoor et al. 2010).

Besides manufacturing and image recognition, SVMs are often used within the 
medicine domain. Among the many areas of application within this domain, the 
use of SVM in cancer research stands out (Furey et al. 2000; Guyon et al. 2002; 
Rejani and Selvi 2009). Other medical application areas are e.g., drug design 
(Burbidge et al. 2001) and detection of microcalcifications (El-naqa et al. 2002).

Further application areas include but are not limited to credit rating (Huang 
et al. 2004), food quality control (Borin et al. 2006), classification of polymers (Li 
et al. 2009) and rule extraction (Martens et al. 2007). These examples from various 
industries and optimization problems highlight the wide applicability and adapt-
ability of the SVM algorithm.

5.2.2  Rationale of SVM Application for Identification  
of State Drivers in Manufacturing Systems2

The previous section presented the SVM algorithm’s technical background and its 
different application fields. This section will focus on the suitability of SVM as 
a supervised ML algorithm for the previously stated research problem. First, the 
main advantages and challenges of SVM regarding the problem requirements are 
presented in more detail. Following, two research problems of similar nature to 
the one at hand and how SVM was successfully applied to solve their optimization 
problem are highlighted. This way the choice as well as the suitability and appli-
cability of an SVM algorithm on the identified problem of identification of state 
drivers in manufacturing are made comprehensible.

Before coming to the distinct advantages of SVM for the research problem, the 
main challenges one has to face when applying SVM are introduced. It has been 
found, that in order to achieve the high accuracy, a large sample size is required 
by SVM (Kotsiantis 2007). SVM are also known for obvious over prediction when 
the available number of data examples is too small (Sun et al. 2004). However, 
given the derived problem of identifying state drivers in manufacturing, the sam-
ple size may be considered to be large enough to not cause any problems in most 
cases. As has been stated in previous sections, for the product state concept, 
 continuous manufacturing with a large output is assumed. Therefore, this chal-
lenge may be considered as not relevant in this application scenario.

2The content of this section has been partly published in accordance with (Universität Bremen 
2007) in (Wuest et al. 2013).
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Over-fitting is commonly accepted as a draw back of SVMs under certain cir-
cumstances (Kotsiantis 2007). However, other researchers found no indication for 
over-fitting problems for SVMs (with simple dot product kernels) (Chinnam 2002). 
Thinking about over-fitting problems within this approach, it has to be considered 
that SVM is basically very resistant against over-fitting given that the training data 
has no massive class imbalance (Scheidat et al. 2009) and a specific hyperplane 
is chosen among the many separating the data (Vapnik 1998). The chosen kernel 
and the nature of the data influence the risk of over-fitting when applying SVM 
(Cawley and Talbot 2010). In this case, the training data may not be assumed to 
having a massive class imbalance, thus the over-fitting risk is assumed not to be 
problematic. However, once the individual application and its parameters are fixed, 
it has to be analyzed concerning the tendency to and risk of over-fitting.

As previously mentioned, another main problem of applying SVM algorithms 
is the large influence of choosing a suitable kernel and/or setting the right 
parameters. In both cases a non-suitable choice has a significant impact on the 
SVMs optimization performance (Azadeh et al. 2013). This is a very common 
challenge similar to most supervised ML algorithms. As the software tools become 
more user friendly and the computational efficiency increases, today it is possible 
to compare test runs with different kernels and parameter settings in order to select 
a suitable alternative which allows to achieve a high classification performance. 
The selection of and decision for a suitable configuration can be done by utilizing 
k-fold cross validation. Typically n = 10 provides good results with a reasonable 
effort. In order to do so, various configurations (e.g., different kernels, cost ele-
ments variations) are applied to the learning set and run through n-fold cross vali-
dation (n = 10) until a good solution is determined.

After presenting the major challenges of SVM application in the previous 
paragraphs, the following paragraphs introduce major advantages. Overall SVM 
are found to “find an optimal tradeoff between structural complexity and empiri-
cal risk” (Khemchandani and Chandra 2009). One major advantage of SVM over 
other supervised ML algorithms is that the solution of the classification problem 
is relatively straightforward and even though it may involve non-linear training, 
the output as an objective function is convex. In general the number of training 
points, still being relatively large and depending on the size of the training set, is 
larger than the number of basis functions (Bishop 2006). This highlights the high 
interpretability and comprehensibility of the results for the practitioner compared 
to other algorithms like NN (Pham and Afify 2005; Kotsiantis 2007). This factor 
presents an important argument when thinking about applying the algorithm in a 
manufacturing environment.

Besides the relatively easy to interpret results, SVMs are capable of  handling 
high-dimensional and multi-variate data (Sun et al. 2004; Kotsantis 2007; 
 Ben-hur and Weston 2010; Wu 2010; Salahshoor et al. 2010; Azadeh et al. 2013). 
Given that this is one of the major requirements of the identified research problem, 
this advantage is a strong argument for the choice of SVM as a classifier.

One, if not the most important, advantage is the proven high performance 
in practical applications of SVM algorithms. It has been found that “SVM 

5.2 Selection of Suitable Machine Learning Technique
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generalization performance either matches, or is significantly better than, that of 
competing statistical and machine learning methods” (Chinnam 2002). This is 
always an advantage for the application of SVM on classification problems.

Besides achieving high performance, the wide applicability of SVM algorithms 
is another advantage. SVM can be combined with different kernels and thus adapt 
to different circumstances/requirements (e.g., NN) (Chinnam 2002; Keerthi and 
Lin 2003). Furthermore, the wide applicability is supported by the factor that 
SVM inherit a high flexibility in modeling diverse sources of data (Ben-hur and 
Weston 2010). As noted in the manufacturing domain, more specific advantages 
of SVM are described in recent literature. So found Chinnam (2002) that “SVMs 
are extremely good at recognizing shifts in correlated and non-correlated manu-
facturing processes”. Burbidge et al. (2001) found SVM to be a “robust and highly 
accurate intelligent classification technique well suited for structure–activity rela-
tionship analysis”. The advantage of SVM of allowing to “take advantage of prior 
knowledge of tool wear and construct a hyperplane as the decision surface so that 
the margin of the separation between different tool state examples is maximized” 
(Sun et al. 2004), underlines the suitability of SVM. Adding the fact that the 
 “classification performance for every tool state can be adjusted” (Sun et al. 2004), 
presents a strong argument for SVM application.

After the main challenges and advantages have been discussed with regard to 
the identified research problem, existing problems of similar nature which have 
been approached using SVM are presented next. The goal is to highlight the suit-
ability of SVM algorithms for problems of such kind and identify lessons learned 
on the application in order to incorporate those in the application and evaluation 
approach described in the next subsection.

The selected publications are all looking into similar problems: selecting exam-
ples of importance, calling it feature selection or gene selection method. The gen-
eral idea is to identify ‘relevant’ factors which are either able to represent a system 
through generalization (feature selection) or are important to monitor as they may 
allow to predict a certain (future) outcome/behavior (gene selection). This corre-
sponds highly with the set goal of this dissertation to identify state drivers, which 
are in return relevant state characteristics within the product state concept.

The first publication identified with a similar research problem is “A gene 
selection method for cancer classification using Support Vector Machines” 
(Guyon et al. 2002). The research background of this publication is that DNA 
micro-arrays allow the screening of large amounts of genes simultaneously in 
order to determine genes, which are either active, hyperactive or silent in nor-
mal or cancerous tissue. This corresponds highly with the previously introduced 
concept of ‘good’ and ‘bad’ states (see Sect. 4.6) which applies to the ‘normal’ 
and ‘cancer’ tissue (with cancer tissue having different possible specifications). 
In this study, the research problem of selecting a small subset of genes from the 
large amount of available data using training examples from cancer and normal 
patients is addressed by applying SVM with Recursive Feature Elimination (RFE). 
The goal is to identify a set of genes, biologically relevant to cancer (Guyon et al. 
2002). In this study, linear SVM are applied as they correspond with the nature of 
the investigated data set, the DNA micro-arrays.

http://dx.doi.org/10.1007/978-3-319-17611-6_4
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The result of this research is that by applying SVM, it is possible to extract a 
small subset of relevant, highly discriminant genes as a basis for building a very 
 reliable cancer classifier. It has been proven that SVM perform very effective for 
discovering informative features or attributes. Compared to other available  methods 
for gene selection, the approach presented in the paper shows qualitative and 
 quantitative advantages and outperforms “other methods in classification perfor-
mance for small gene subsets while selecting genes that have plausible relevance 
to cancer diagnosis” (Guyon et al. 2002). During the study it has been found, that 
the experienced performance improvement of the SVM application are rooted 
in the SVM feature selection which provides the basis for the decision function 
whereas the way the decision function itself is trained, was found to be less impor-
tant. Another finding is that SVM achieves better performance than other methods 
given a smaller selection of examples (genes) and is able to deal with high-dimen-
sionality (number of features) and small number of training patterns (number of 
patients in this case). An important finding is the need for preprocessing of the 
data as it has a strong impact on SVM. In this case, the scales have been made 
comparable by subtracting the mean and dividing the result by the standard devia-
tion for every individual feature. The authors of the study cross checked the top 
ranked features selected by the SVM classifier and found that they are all known 
for their plausible relation to cancer (in contrast to other methods) in previous 
medical/biological research (Guyon et al. 2002).

Besides the advantages shown in the previous paragraph, two important findings 
that distinguish the application of SVM from other methods were found.

•	 SVM as multivariate classifiers make use of information between features. This 
is very important in the case of applying a similar approach on product state 
data as it has been shown in Sect. 4.4 that process intra- and inter-relations exist 
and have to be taken into consideration.

•	 With the applied method, the decision function is only based on support vec-
tors that are “borderline” cases (instead of all examples trying to map a typi-
cal case) (Guyon et al. 2002). In other words, the dominant parameters (drivers) 
that were found to have a significant influence on the classification (cancer/no 
cancer) are emphasized. This may also be a factor to consider in the following 
application within the product state concept.

Supporting the rationale behind this approach of applying SVM is that simi-
lar research also in the field of cancer research was undertaken by (Fung and 
Mangasarian 2006; Huanget al. 2013).

The second publication “Feature Ranking Using Linear SVM” (Chang and 
Lin 2008) is actually based on the first one. In this study, again a linear SVM is 
combined the (SVM specific) feature ranking method introduced in (Guyon et al. 
2002) and compared to a number of different feature ranking methods. The main 
advantage of feature ranking being that it supports the gain of knowledge about 
a data set and allows to identify relevant features (Chang and Lin 2008). The 
findings indicate that the performance of this (relatively) simple method is very 
high and even outperforms several more complicated casual discovery methods. 
However, the method used ranks features based on their relevance and does not 
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directly increase the knowledge on underlying causal relationships. Therefore, in 
this case the performance on non-manipulated data sets is found to be much better 
than on manipulated ones. Another important factor is that the study was under-
taken within the so called ‘causality challenge’ which provided the data set and 
goal of making predictions on manipulated testing sets. This again corresponds 
with the requirements of the research problem of this dissertation, the identi-
fication of state drivers within the product state concept. However, the currently 
 missing causality representation of this method may need to be addressed later.

Overall, it has to be stated that there are several other publication available 
besides the two previously presented ones looking into feature selection applying 
SVM (e.g., Bradley and Mangasarian 1998; Bi et al. 2003; Fung and Mangasarian 
2004; Mangasarian and Wild 2007; Abe 2010). These additional publications may 
also serve as argumentation for the selection of SVM for the given research prob-
lem, however, the author decided that the added benefits are marginal as the pre-
sented three can be considered sufficient in supporting the argument for the choice 
of SVM for the given research problem.

The rationale behind selecting SVM as a suitable approach for the given 
research problem of this dissertation was discussed in this section. It can be con-
cluded, that SVM, as a classification method based on maximizing the margin 
between two groups of data points is theoretically suitable for the task of iden-
tifying state drivers within a manufacturing programme. The maximum margin 
hyperplane (and its weight vector w), as a population separator and state classifier 
defining whether or not the xi is positively classified is the key advantage of the 
SVM algorithm.

In the product state application scenario, the challenge lies in transferring the 
(inherited) relationships of product and process state characteristics in the algo-
rithm and to interpret the results accordingly. The hyperplane, being constructed in 
the multidimensional space is able to reflect these relationships, meaning the time-
liness of operations/processes from early state to a final state. Thus, SVM utilizing 
the hyperplane allows for classification in multi-dimensional space and further-
more to derive the driving parameters (or features/attributes) which are responsible 
for a change in class (this directly related to hypothesis 1 and 2). When applied to 
a product state description of a manufacturing programme, these driving param-
eters may represent state drivers which are (partly) responsible (or have a strong 
impact) on a change in class, which in this case would translate to a change 
between desirable or undesirable state (‘good’/‘bad’). Following, the application 
of SVM to identify state drivers is presented in greater detail.

5.3  Application of SVM for Identification of State Drivers

This section is structured in two major parts, one presenting the conducted appli-
cation and evaluation and the second will provide an outlook on the derived 
results and how they may be interpreted. First, the previously introduced 
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hypothesis 1 is adapted and discussed in more detail leading to the formulation of 
two  sub-hypothesis, hypothesis 2 is adapted and hypothesis 3 is introduced. Next, 
the application of SVM on a manufacturing programme within a product state 
concept perspective is illustrated. This is structured around the previously adapted 
hypotheses and presents the structure of the research conducted in the subsequent 
section.

The second part looks at the expected outcomes of the application and evalu-
ation in order to create awareness from the beginning on what may be expected. 
This is important on the one hand to manage expectations and on the other to pro-
vide guidance on how the results are to be interpreted.

A crucial part of the approach is to evaluate the application of SVM on  product 
and process state data and the ability to identify (known and unknown) process 
intra- and inter-relations between states and state characteristics (hypothesis 1). In 
order to achieve this, the hypothesis has to be detailed further. Two distinct sub-
hypotheses can be derived from hypothesis 1 ‘Capturing of process intra- and 
inter-relations by implication through ML’. The overall hypothesis is updated to 
‘Capturing of process intra- and inter-relations by implication through applica-
tion of SVM’. Hereafter, these two sub-hypothesis are described in greater detail.

Hypothesis 1.1 ‘Application of SVM allows the identification of state drivers of 
individual processes’
In hypothesis 1.1 the focus is on individual processes or operations. Again, process 
is used comprehensively throughout this section to reduce complexity. The indi-
vidual process will be monitored using product and process state data based on the 
output of that process. The final result of the overall manufacturing programme is 
furthermore based upon the final quality assessment of the finished product. The 
manufacturing programme is seen as an entity of the manufacturing processes.

Within this hypothesis, the increasing complexity introduced to the progress-
ing product state from process to process is not reflected in the observation as it 
focuses on individual processes. Therefore, process intra-relations which may have 
a significant influence across process/operation borders may be overlooked. This 
may prohibit the ability to detect and identify state drivers and unacceptable pro-
cess drifts during intermediate stages of the process.

By analyzing the manufacturing programme using SVM, state drivers of an indi-
vidual process/operation can be identified. The created state vectors indicate their 
influence on the state change by crossing the hyperplane (change of prefix +/−).

This hypothesis’ focus on individual processes as a complementary approach is 
considered valid, in combination with, the following hypothesis 1.2. Hypothesis 
1.2 reflects the importance of cross-process (inter-)relations better, which is a fun-
damental pillar of the product state concept’s view on manufacturing systems.

Hypothesis 1.2 ‘Combining different processes allows the identification of 
 relevant drivers at different phases of the manufacturing programme’
Hypothesis 1.2 concentrates on identifying the process intra-relations across pro-
cess borders within the manufacturing programme. As established in Sect. 4.4, 
the states and state characteristics and their process intra- and inter-relations 
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have to be analysed from a systems perspective. The goal is to provide a  realistic 
 monitoring and control of the product’s progress towards its final product state and 
acceptable quality. The plan to achieve this is to make use of intermediate  quality 
observations collections which may be reflected in accumulating state vectors for 
different stages. For example, in a manufacturing programme with three processes, 
the accumulated vectors are {process 1}; {process 1; process 2}; {process 1; 
process 2; process 3}. It is assumed that operational quality influences are incor-
porated at each stage so that the increase in complexity is captured and can be 
analysed stage-by-stage. This utilizes the previously stated finding that dependen-
cies never go against the process flow and interdependencies between state char-
acteristics can only exist within a state (see Sect. 4.4). Concluding, hypothesis 1.2 
reflects the product state concept’s overall understanding of a manufacturing pro-
gramme and how it influences the final product’s quality.

By creating accumulated state vectors, combining individual processes along 
the manufacturing programme and applying SVM, relevant state drivers reflecting 
(ex- and implicit) process intra- and inter-relations (system view) can be identified.

As this hypothesis is assumed to incorporate intra-relations (cross-process) of 
states and state characteristics to a higher degree than hypothesis 1.1, hypothesis 1.2 
is considered the main research focus of this dissertation. However, there might be 
more sophisticated approaches of accumulating the state vectors throughout the 
 manufacturing programme. This will be looked into during this research.

Hypothesis 2 ‘Adaptability to changing conditions through ML’ is looking into 
how the proposed method reflects the need of a manufacturing programme for 
adaptability is not further divided as it is already focused enough to be evaluated 
in the following Chap. 6. By utilizing the SVM algorithm, the hyperplane is the 
learning mechanism which can be updated/re-computed with high frequency and 
low computational effort. Its major practical limitation is the need for updated 
learning data. So this hypothesis is updated to ‘Adaptability to changing condi-
tions through application of SVM’.

In addition to hypotheses 1 and 2, the following paragraph introduces hypoth-
esis 3. Hypothesis 3 reflects the future potential of the findings and is split in two 
sub-hypotheses similar to hypothesis 1. Hypothesis 3 states ‘Through application 
of the SVM approach, defect products can be identified’. This is further specified 
in hypothesis 3.1 stating ‘the trained SVM system is able to detect faulty prod-
ucts in the manufacturing programme’. Connecting this hypothesis to hypothesis 
1.1, hypothesis 3.2 states ‘a connection to the identified state drivers can be estab-
lished within the set of (within the manufacturing programme) identified defect 
products’.

Organizing the product and process data according to the product state con-
cept, in a cluster of subsequent states, is the basis for this research and thus the 
approach illustrated in the next section. As was described in previous sections, 
there is still a knowledge gap when it comes to the existing process intra- and 
inter-relations within a multi-stage manufacturing programme.

http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_6
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To test the previously identified hypotheses, three scenarios are analyzed in the 
following section. Two are based on publically available data sets, resembling a 
chemical manufacturing process (Kuhn and Johnson 2013) and a manufacturing 
programme for semiconductors (McCann et al. 2010). One scenario is based on 
a mechanical engineering manufacturing process from the aviation industry pro-
vided by Rolls-Royce. In this case, no further information concerning the param-
eters or products in focus can be provided due to anonymity requirements. Each 
result will be compared to the results of the other scenarios in order to verify the 
made assumptions concerning the wide applicability of the approach. In all sce-
narios, the approach will be tested within a ‘real world’ application to verify its 
applicability in practice.

It has been established that modern manufacturing programmes often display 
chaotic behavior (Monostori 2002). One reason for this can be that they tend to 
have very high dimensionality, at times extremely high dimensionality, and con-
sequently the cause-effect mechanisms are hidden and the important process 
 driving parameters are thus unknown and may indeed change with time such that 
parameters P which are important at time t will have changed to parameters P′ 
at time t + r. This may indeed happen where the complete manufacturing pro-
gramme is constructed from a number of interdependent processes/operations. 
Consequentially different process analysis and control methods are needed from 
the established orthodox ones. This in turn contributes to the chaotic nature of the 
manufacturing programme in that the process’ outputs (product state) seem to be 
varying inconsistently with expected values for the given inputs. It is highly likely 
that this is a perception by the observer and that the outputs in fact are driven by 
cause-effect mechanisms as yet undefined/un-discovered. The implication of 
this is that such processes will seem to enter and exit process states in a random 
 fashion and even the actual process states may seem to be random and undefined, 
adding to the chaotic perception by the observer (Fig. 5.6).

If it is possible to bring some order into the seemingly chaotic output, then it 
may be possible to identify the set of product and process state. If product and 
process states can be identified, then it would be possible to identify the associated 
inputs and from this determine the actual state ‘drivers’ (driving variables) which 

Fig. 5.6  Chaotic nature of manufacturing programmes
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are found to influence the process results (product states). Each process state is 
thus associated with input and output variables’ values and can then be classified 
as good or bad. Given that the drivers for each good or bad product state is known, 
the seemingly chaotic manufacturing programme could be perceived as ordered 
and thus controllable (Fig. 5.7).

The assumption is that processes are likely to operate across a relatively con-
stant set of process states. This means that one may assume that the product will 
enter a specific state dependent upon the input to the process. For complex chain 
of manufacturing programmes such input should include the human participants 
responsible for the effectuation of the process. The process concept would thus 
become (see Fig. 5.8):

The conceptual approach for the application of the approach on  manufacturing 
data is presented in the following paragraphs. As each of the three  evaluation 
scenarios is different and serves different purposes, each will vary to some 
extent from the following generic methodology. Also the different steps, though 
numbered in Fig. 5.9, are not followed strictly as they may be run parallel or in 
reverse order in the three scenarios. This is due to the nature of the data and the 
specific focus of the individual evaluation. For example, scenario I & II focus on 
 hypothesis 1.2 and have multiple processes within the manufacturing programme.

Fig. 5.7  Order manufacturing programme according to the product state concept

Fig. 5.8  Final product state is driven by previous product and process states of the manufacturing 
programme (based on Wuest et al. 2013)
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Each of the three scenarios is introduced briefly before the available data sets 
are organized according to the product state concept. In this first step, the three 
scenarios differentiate thus far, that scenarios I & II focus on the processes and 
their interconnection within the manufacturing programme whereas the third sce-
nario focuses on the individual and final product state.

The data sets are pre-processed so that the SVM algorithm may be applied. For 
more details refer to Sect. A.2 in the Annex. Again, the pre-processing is differ-
ent for each of the three scenarios and reflects the nature of the data and the goal 
of the evaluation. Important steps of data pre-processing include the replacement/
handling of missing values, creating synthetic process based on existing process 
parameters and standardization/normalization of the data set.

In a next step, first hyperplanes of the classifier may be computed. Of the 
a vailable selection the most suitable parameter (incl. kernel) configuration for 
the available data set is to be selected using n-fold cross-validation. The typical 

Fig. 5.9  General application approach for evaluation
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parameter for the cross-validation is n = 10. This provides a first impression of 
the classification power through a confusion matrix and individual weights of the 
w vectors. As soon as a suitable parameter configuration is chosen, the classifica-
tion power of the algorithm may be tested by use of the test data set by the trained 
(using the learning set) SVM algorithm.

After the data is prepared and the classifier is set up and running, the testing 
of the research hypotheses is executed. There will be different evaluations for 
each scenario. For example, in scenario I & II different accumulated vectors will 
be derived and analyzed by the SVM algorithm to test hypothesis 1.2. To do so, 
SVM feature evaluation according to Guyon et al. (2002) is applied to derive 
the weights for the individual features and rank them accordingly. However, the 
 specific approach is described in more detail within the evaluation scenario set up 
in Chap. 6.

Another part of the evaluation is described by the next activity. Here the com-
plete data set is split into a learning (70 %) and a test (30 %) set (Borovicka et al. 
2012). In this case there is no need for an evaluation set which is needed for 
some algorithms and in general accounts for around 10 % of the whole data set. 
The learning and test set are decided based on the specific situation. Depending 
on the available knowledge, different methods may be applicable. In this case, 
the  splitting is done randomly, however keeping the ratio of the original set con-
cerning the two classes. The goal of this evaluation is to show the  classification 
 performance of the classifier on formerly unknown examples. The general 
 methodology is  summarized in Fig. 5.59.

Next, the to be expected results will be briefly introduced in order to prepare 
the reader on what to expect. This will not entail any information on values or 
findings, but more the visual and information output of the applied approach. The 
structure is oriented on the previously presented hypothesis and the presented 
approach. The goal is to prepare the reader in what to expect from the following 
evaluation. However, it has to be understood that this section is not replacing the 
discussion of the results afterwards.

Overall, the reasoning behind the evaluation using three scenarios from 
 different domains with data sets of different complexity is to show the general 
applicability of the developed approach. Whereas scenario I, the Rolls-Royce 
manufacturing programme resembles the targeted area of mechanical  engineering, 
scenario II, the chemical manufacturing process gives a different perspective. 
Scenario III, the semiconductor manufacturing process, was chosen to show the 
challenges a real world data set may present regarding data pre-processing (e.g., 
missing values), classification and general structure of the data (hypothesis 2).

The results of the pre-processing may not provide additional arguments to 
answer the raised research question (hypotheses). Therefore they are not part 
of the main body of the dissertation and presented in the Annex (see Annex 
Sect. A.2). However, they provide a necessary step of every ML based approach.

The second area of results provides the classification performance of the dif-
ferent data sets. This part is crucial as it provides evidence that the approach is 
applicable to real life application cases. Part of these results is also the application 
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of a feature ranking/selection as described in Guyon et al. (2002). In this case, 
 feature selection is applied, reducing the number of attributes (features) of the data 
sets. Then the classification performance of the reduced (variations) data sets is 
analyzed. In this regard, especially the comparison of classification performance 
by means of cross-validation ‘pre-feature selection’ and ‘post-feature selection’ 
provides evidence that relevant state drivers can be identified by the approach 
(hypothesis 1.1).

After the previously sketched results show that it is possible to identify relevant 
features (state drivers) for individual processes, the next challenge is to show that 
it is also possible to identify relevant state drivers cross-process which reflect the 
process intra- and inter-relations highlighted in the previous sections. Those are a 
key point of the product state concept and thus it is essential that the approach is 
able to include them. This is done by applying feature ranking to combinations of 
processes in addition to the individual processes as described before. By doing so, 
the applied SVM feature weights indicate the important features the same way as 
they do for individual processes. However, this way they incorporate the (implicit 
and explicit) cross-process intra-relations which have an influence of the product 
state. The results are then different rankings showing the relevant features for both 
individual and combined processes (manufacturing programme) and by analyzing 
and comparing them, especially shifts of importance along the program, indicates 
the inclusion of important process intra- and inter-relations (hypothesis 1.2).

Looking at the classification performance of the model, trained by the learning 
set and applied to the test set, shows the ability of the approach to create a model 
which may be implemented in a manufacturing programme to identify quality 
problems at an early stage (hypothesis 3).
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In this section, the previously derived hypotheses are evaluated by developing and 
analyzing three scenarios. The section is structured as follows: at first the scenar-
ios are briefly introduced (for more detail refer to Annex Sect. A.2). The follow-
ing two subsections focus on the application of the previously introduced research 
plan on the three scenarios. However, it has to be noted that the scenarios were 
not evaluated following the presented sequence during the analysis phase. The pre-
sented sequence (scenarios I–III) does not resemble the timely sequence of evalua-
tion of the different scenarios. Therefore, it is possible that the background of and 
justification for some of the methods, tools and applications are explained in later 
sections even so they are applied beforehand. In such cases, reference is given to 
the more detailed explanation in later sections. The Chap. 7 presents and discusses 
the evaluation results and illustrates the limitations of the approach.

6.1  Introducing Scenarios I, II and III

In this section the three evaluation scenarios are introduced and the available data 
for each scenario is presented and analyzed. After the three processes and accom-
panying data sets are presented individually, necessary pre-processing steps were 
conducted. Since this is not part of the main application approach, this is expanded 
on in the Annex (see Sect. A.2). The pre-processing entails among other things, 
replacing missing values (scenarios II & III) and the generation of additional data 
(scenarios I & II). The result of the pre-processing are three data sets ready for the 
application of SVM algorithms in order to identify state drivers. The three data 
sets complement each other in terms of the evaluation focus areas and goals.

The first scenario ‘RR’ (details in Annex Sect. A.2.1) is based on a mechani-
cal manufacturing process of a highly stressed product. The scenario is set in the 
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aviation domain and is provided by Rolls-Royce. The ‘real world’ data set resem-
bles a complex process in the manufacturing programme. It is supplemented by 
two additional synthetic processes named ‘Dick’ and ‘Harry’ which are generated 
based on the characteristics of the original data set.

The second scenario ‘CHEM’ (details in Annex Sect. A.2.2) is similarly 
designed and set in the chemical manufacturing domain. The original data set is 
complemented by two additional synthetic processes, based on the characteristics 
of the original process. Both scenarios aim to show how the structuring according 
to the product state concept, intelligent combination of processes and application 
of SVM, allows the identification of state drivers throughout the manufactur-
ing programme (hypothesis 1.2). As can be seen in Fig. 6.1a, scenarios I and II 
focus on different areas of the manufacturing programme for the evaluation of the 
hypotheses. The data sets resemble the manufacturing programme as well as the 
individual processes. Therefore, different analyses can be conducted, e.g., com-
bining different process vectors to accumulated process vectors (e.g., process 1 & 
2—highlighted in dashed red line). Having distinct ‘real world’ scenarios from dif-
ferent domains allows to additionally evaluate the applicability of the approach in 
different environments of manufacturing. This is extended further by the following 
third scenario, set in the semiconductor manufacturing domain.

This scenario III ‘SECOM’ (details in Annex Sect. A.2.3) represents another 
‘real world’ manufacturing programme, based on process data from the semicon-
ductor manufacturing domain. The main purpose of this scenario is to apply the 
approach on a data set that presents a challenge for pre-processing and applica-
tion due to its highly imbalanced, high dimensional nature, additionally con-
taining a large amount of missing values. This is common in real world data 
sets and thus the developed approach needs to evaluate its applicability towards 
such data sets. However, this scenario shall also provide further evidence of the 
broad practical application potential of the develop approach given the different 
domain it is set in. Furthermore, scenario III will be used to support the evalua-
tion of hypothesis 1.1. The evaluation focus of this scenario is on the complete 
manufacturing programme (highlighted in continuous orange line) and partly on 
an individual process (highlighted in dashed orange line) (see Fig. 6.1b). The term 
‘partly’ describes the assumption that even though the complete data set describes 
a manufacturing programme, it can also be perceived as a process containing 

Fig. 6.1  Summary of focus areas of evaluation scenarios I, II & III. a Scenarios I & II—RR & 
Chem. b Scenario III—SECOM
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various operations. This may be of relevance for the later comparison of the results 
between this scenario and scenarios I & II.

For details of the data pre-processing, it is advised to refer to the Annex. The 
application of the developed approach is evaluated in the following subsections.

6.2  Scenario I—Rolls-Royce

In this section, the described approach of applying supervised ML (SVM algo-
rithm) to identify relevant information in form of state drivers (relevant features) 
within the Rolls-Royce data set as described within the approach is presented. 
At first the classification performance of the Rolls-Royce data set is evaluated 
using first a linear kernel and later an ANOVA kernel. This is done in detail for 
the TOM(RR) process as it represents real world data. For the synthetic and com-
bined vectors, a basic evaluation is applied in order to evaluate the suitability of 
the feature ranking method. Following, a feature ranking based on SVM weight 
vectors w is performed and the classification performance of the data set with  
different reduced feature sets is compared to the original full features data set based 
on the TOM(RR) process. Then a feature ranking is applied for the other synthetic 
processes as well as the combined vectors. Finally, the classification performance 
of the model on previously unknown data is analyzed using a (random) split in a 
learning (70 %) and test (30 %) set. However, for this scenario, the results of the 
analysis have specific limitations which will be specified in the respective section.

6.2.1  SVM Kernel and Parameters for Hyperplane  
by X-Validation

At first the classification performance of the data set is tested through tenfold 
cross-validation. For a more detailed description on how this is applied technically, 
refer to Sect. 6.4.1. In a first step, the basic linear kernel is applied with original 
parameters as provided by RapidMiner (v5.3).

The classification results of this test show acceptable results even so they are 
partly below a threshold of 80 % (see Fig. 6.2). The target threshold of 80 % over 

Fig. 6.2  Confusion matrix showing the classification performance of x-val. for TOM(RR) with a 
linear kernel (orig. parameters)

6.1 Introducing Scenarios I, II and III
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all class prediction and class recall percentages is used for the evaluation within 
this dissertation. This is deemed to represent a good classification results for the 
application case within the three presented scenarios. It is however not possible 
to judge a classification performance over all domain, data sets, etc. as the thresh-
old may vary significantly for what is deemed a good or a bad result. In general, 
this has to be determined based on the case at hand and the circumstances (Witten 
et al. 2011).

After some basic optimization of the linear kernel parameters (C 1.5) (see 
Fig. A.17 in Annex), the classification results improve considerably, nearing the 
target threshold (see Fig. 6.3). These acceptable classification results running with 
the basic linear kernel indicate that the later feature ranking based on SVM algo-
rithm determined weight w is applicable for this data set’s structure.

After this first run with the linear kernel, a parameter optimization is run to find 
the best fitting parameters for the data set and improve the classification perfor-
mance significantly. The identified parameter set with the best classification per-
formance is an ANOVA kernel with the following specs (different from orig.): 
kernel degree 3.0 and C 1.0. The results are significantly higher than the target 
threshold of 80 % for class recall as well as class precision (see Fig. 6.4).

After the original data set provided by Rolls-Royce is analyzed and shows good 
classification performance with the chosen SVM algorithm, the additional syn-
thetic data sets of the individual processes DICK(RR) and HARRY(RR) as well as 
the combined vectors TD(RR) and TDH(RR) are analyzed according to their clas-
sification performance with a linear kernel. This is also done to show the general 
suitability of the feature ranking based on the weight vectors w.

The results are summarized in the following Fig. 6.5 and show overall a very 
good classification performance for all processes and combined vectors. This was 
expected due to the chosen process of synthesizing the processes and combined 
vectors and assigning labels. Therefore, the later applied feature ranking method 

Fig. 6.3  Classification results of RR data set (TOM(RR)) by x-val. after basic parameter optimi-
zation on linear kernel (C 1.5)

Fig. 6.4  Classification results of RR data set (TOM(RR)) by x-val. after basic parameter optimi-
zation on ANOVA kernel (kernel degree 3.0; C 1.0)
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is assumed suitable for the complete data set (original and synthetic) of the Rolls-
Royce scenario.

The very good classification performance by cross-validation of all processes 
and combined vectors using a linear kernel shows that a feature ranking by the 
weight vector w using an SVM classifier is applicable. In the following sub- 
section, such a feature ranking method is applied for all processes and combined 
vectors.

6.2.2  Feature Ranking Using SVM Classifier

In this section, the features of the different processes and combined vectors are 
ranked according to their weight vector w. This method is based on Guyon et al. 
(2002) and described in greater detail in Sect. 6.3.4. As the WEKA1 feature rank-
ing function does not provide an output of the actual weight values, in this sce-
nario the feature ranking function of RapidMiner (v5.3) is additionally utilized as 
illustrated in Fig. 6.6. The feature ranking derived by the WEKA function is 
detailed subsequently in Table 6.1. Following a short comparison of the results of 
the two approaches (WEKA and RapidMiner) is described.

The RapidMiner (v5.3) function does not allow for the same customization 
as does the WEKA version. However, as has been previously established (see 
Fig. 6.3), the C value was identified as the optimizing lever for linear kernels and 
this parameters can be adjusted in the function (see Fig. 6.6).

The resulting feature ranking including the values of the weight vector w are 
depicted in Table A.7 in the Annex. The weight vector w values are normalized 

1WEKA 3: Data Mining Software in Java issued under the GNU General Public License 
(http://www.cs.waikato.ac.nz/~ml/weka/).

Fig. 6.5  X-val classification performance of the processes and combined vectors. a TOM(RR) 
(x-val; orig. para.; DOT kernel). b DICK(RR) (x-val; orig. para.; DOT kernel). c HARRY(RR) 
(x-val; orig. para.; DOT kernel). d TD(RR) (x-val; orig. para.; DOT kernel). e TDH(RR) (x-val; 
orig. para.; DOT kernel)

6.2 Scenario I—Rolls-Royce

http://www.cs.waikato.ac.nz/~ml/weka/
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[1;0]. Based on this ranking, the feature selection is done. The chosen variants are 
FS10; FS15; FS20; FS30 and FS50. The variants are chosen not based on their 
weight value at this point, but for the comparability within and between scenarios. 
The later discussed variant with 57 features is based on the weight value, as the 
values of the features ranking no. 58 to no. 85 is under 0.1. For the respective data 
sets the classification performance is tested by tenfold cross validation using the 
previously determined parameters (see Fig. 6.4). The results are illustrated in the 
following Fig. 6.7.

The results show that even so the classification performance of the full features 
data set is the highest, even the data set with a significantly reduced feature set 
(10) reaches very good classification performance. The variations with 30 and 50 
highest ranking features reach almost the performance of the full data set. This 
confirms that the feature selection is able to select the state drivers rather accu-
rately. Looking at the weight values, one more evaluation is run with the 57 high-
est ranking features. Those features have a normalized weight value of 0.1 or 
above. Figure 6.8 shows that the results are nearing the results of the full feature 
set:

The results of the previously applied RapidMiner (v5.3) feature selection func-
tion are compared with the WEKA feature ranking function which is used in sce-
narios II & III. The WEKA tool is designed based on Guyon et al. (2002) and 

Fig. 6.6  Feature ranking by SVM in RapidMiner (v5.3)

Fig. 6.7  Comparison of classification performance by x-val for TOM(RR) with variations in no. 
of features (RapidMiner (v5.3)) (ANOVA; kernel gamma 1; kernel degree 3; C 1)
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thus directly applicable to the task at hand. Thereafter, the same evaluation is run 
with the feature ranking derived from the WEKA function for process TOM(RR) 
(see Table 6.1). A more detailed description of the WEKA feature ranking func-
tion and the fundamental method described by Guyon et al. (2002) is presented in 
Sect. 6.3.4.

As can be directly observed, the feature ranking derived by the WEKA func-
tion (see Table 6.1) is rather different to the one derived by RapidMiner (v5.3) (see 
Table A.7 Annex). Next, the classification performance during the same test con-
figurations as shown before are performed with the data set with reduced feature 
sets (based on the WEKA feature ranking). The results are presented in Fig. 6.9.

Table 6.1  Feature ranking of TOM(RR) by WEKA

Rank Feature Rank Feature Rank Feature Rank Feature

1 para.51 23 para.46 45 para.23 67 para.56

2 para.21 24 para.48 46 para.24 68 para.30

3 para.50 25 para.31 47 para.25 69 para.40

4 para.33 26 para.38 48 para.83 70 para.77

5 para.6 27 para.11 49 para.73 71 para.79

6 para.36 28 para.42 50 para.41 72 para.65

7 para.14 29 para.20 51 para.37 73 para.69

8 para.9 30 para.16 52 para.17 74 para.71

9 para.47 31 para.13 53 para.26 75 para.4

10 para.59 32 para.84 54 para.52 76 para.7

11 para.29 33 para.53 55 para.39 77 para.72

12 para.55 34 para.3 56 para.87 78 para.74

13 para.61 35 para.43 57 para.8 79 para.70

14 para.60 36 para.22 58 para.12 80 para.80

15 para.44 37 para.62 59 para.10 81 para.82

16 para.45 38 para.19 60 para.27 82 para.86

17 para.34 39 para.54 61 para.15 83 para.68

18 para.32 40 para.57 62 para.18 84 para.78

19 para.64 41 para.81 63 para.28 85 para.76

20 para.2 42 para.75 64 para.63

21 para.5 43 para.49 65 para.67

22 para.35 44 para.58 66 para.66

Fig. 6.8  X-val classification performance on TOM(RR) with 57 highest ranking features

6.2 Scenario I—Rolls-Royce
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When comparing the classification performance results of the different data sets 
with varying number of features, the tendency is similar for the feature ranking 
derived by RapidMiner (v5.3) (see Figs. 6.7 and 6.8) and WEKA (Fig. 6.9).

In Fig. 6.9 the classification performance of similar feature selection variations 
(10; 15; 20; 30; 50; 57 features) using tenfold cross-validation with an SVM clas-
sifier (ANOVA kernel) is evaluated. In this case the feature selection is based on 
the feature ranking derived with the feature ranking function of WEKA based on 
Guyon et al. (2002). Overall the results show also very good classification per-
formance results, similar to the previous evaluations of variants based on the 
RapidMiner (v5.3) feature selection function. It shows that the classification per-
formance improves the more features are employed by the data set. However there 
is a slightly better performance noticeable for the WEKA ranking for data sets 
with 15 and more features compared to the RapidMiner (v5.3) ranking. Just for the 
data set with 10 features the RapidMiner (v5.3) version outperforms the WEKA 
version by a fraction. Overall, the results of both variations can be considered very 
good.

In the following paragraphs, one more comparison analysis for the two differ-
ent feature ranking functions is conducted. For each version, a data set with the 
20 highest ranking features and the 20 lowest ranking features is compared (see 
Fig. 6.10). Interestingly for the RapidMiner (v5.3) version, it shows that the data 
set with the 20 lowest ranked features performs better than the version with the 
20 highest ranked features. This is rather unexpected. The WEKA version on the 
other hand shows a significantly better performance for the 20 highest ranked fea-
ture data set with an accuracy of 96 % over 74 % for the 20 lowest ranked feature 
data set.

Fig. 6.9  Comparison of classification performance by x-val for TOM(RR) with variations in the 
number of features (WEKA) (ANOVA; kernel gamma 1; kernel degree 3; C 1)

Fig. 6.10  Comparison of class. Perf. by x-val for TOM(RR) for WEKA and RapidMiner (v5.3) 
version with 20 highest and lowest ranked features (ANOVA; ker. gamma 1; ker. degree 3; C 1)
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Comparing the number of similar features contained in the different variations 
of the WEKA and RapidMiner (v5.3) ranking, the FS10 variant also stands out 
with a very low overlap percentage of 20 % followed by the ‘lowest FS20’ vari-
ant with 30 % whereas all other variants show overlaps of 40 % and above (see 
Fig. 6.11).

As for the original Rolls-Royce data set TOM(RR) expert knowledge is avail-
able, the ranking of features by WEKA was approved by the experts. The WEKA 
ranking was found to share a higher compliance with the existing expert knowl-
edge of the relevant process parameters than the Rapidminer (v5.3) ranking. This 
confirms the previous suspicion of the WEKA ranking method being superior to 
the Rapidminer (v5.3) one.

The WEKA analysis confirmed already known relevant process parameters for 
the TOM(RR) processes. More importantly the conducted analysis also identified 
a new and potentially most important influence by including the implicit process 
inter-relations. In this case the process intra-relations could not be confirmed in a 
similar fashion by the RR experts as the processes DICK(RR) and HARRY(RR) 
and the combined vectors TD(RR) and TDH(RR) are supplemented by synthetic 
data. The experts however acknowledged the potential those analyses promise and 
are interested in exploring the applicability within their manufacturing system 
further. Based on this results, for this scenario, the WEKA version is used in the 
throughout the following evaluation scenarios for feature ranking purposes.

6.2.3  Classification on Previously Unknown Data

As has been previously mentioned, the results of this sub-section, looking into  
the classification performance of previously unknown data for the RR data are  
not necessarily generable or comparable to those of scenarios II & III. The reason  
for this is that SMOTE oversampling was applied prior to the provision of the 
data set by Rolls-Royce. As SMOTE does add additional examples to the minority 
class that are inspired by the existing population, the data of the test set cannot be 
considered unknown.

However, as is discussed in the following results section (see Sect. 7.1.5), the 
classification performance on the test set may still indicate how the data set may 
behave when more examples of the minority class are available under the assump-
tion that the future minority examples are not too diverse.

Fig. 6.11  No. of features contained in both rankings of WEKA and Rapidminer (v5.3)

6.2 Scenario I—Rolls-Royce

http://dx.doi.org/10.1007/978-3-319-17611-6_7
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For the application of this method, the TOM(RR) data set is randomly split in 
a learning set (70 %), used to train the model and a test set (30 %) on which the 
model is applied subsequently. The feature selection in this section is based on the 
feature ranking done by the RapidMiner (v5.3) SVM weight function. For further 
details on the technical aspects of the process refer to Sect. 6.3.2.

The analysis of classification performance on previously unknown data, 
depicted in Fig. 6.12 show results that are similar to the ones obtained by cross-
validation (see Fig. 6.7). For the full feature set, all four percentages are in the 
mid- to high-nineties and thus have to be considered very good. The variations 
with different numbers of highest ranking features show that the classification per-
formance results are slightly lower than for the full feature set. Nevertheless, even 
the data set reduced to the 10 highest ranking features shows very good classifica-
tion results significantly higher than the target threshold of 80 %. This indicates 
that even with reduced features the outcome can be predicted with a high accuracy.  
The limitations of the RR data set for the learning/test evaluation as stated before 
also apply for this test. In the evaluation scenario the analysis of a chemical  
manufacturing programme is presented.

6.3  Scenario II—Chemical Manufacturing Process

In this section, the previously introduced chemical manufacturing process is evaluated 
with regard of the proposed research hypothesis. At first, the classification performance 
of the data set is evaluated using by applying a cross-validation (tenfold). Following, 
a suitable SVM classification algorithm is identified (regarding kernel and parameter 
choice) and if needed, additional measures are taken (e.g., oversampling of minority 
class, etc.) in order to optimize the classification performance. Then, the identifica-
tion of relevant attributes (features), the state drivers is applied by the feature selection 
method proposed by Guyon et al. (2002). In a first step a feature ranking is derived, 
sorting the features according to their weight vector w, reflecting their importance. In 

Fig. 6.12  Comparison of classification performance of previously unknown data for TOM(RR) 
with variations in no. of features (ANOVA; kernel gamma 1; kernel degree 3; C 1)
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order to evaluate the correct choice, the classification performance different variations 
concerning the amount of features of the data set is compared to the performance of the 
full data set. In order to analyze the applicability of the approach in practice and to eval-
uate the ability of the approach to identify formerly unknown failure examples, a per-
formance evaluation is conducted by splitting the data set in a learning (70 %) and test 
(30 %) subset. Finally, feature ranking is applied to all individual processes and com-
bined process vectors. The results of this will be evaluated in the following Chap. 7.

6.3.1  SVM Kernel and Parameters for Hyperplane  
by X-Validation

A tenfold cross-validation is applied on the TOM(CHEM) data set using 
RapidMiner (v5.3) as shown in Fig. 6.16. In the first run, the original settings 
of the SVM function is used (kernel type DOT). The classification performance 
results of the derived confusion matrix (see a in Fig. 6.13) show a low classifica-
tion performance of the minority class (negative). As can be observed, the results 
are uneven, but still significantly below the target threshold of 80 % for both class 
recall and class prediction.

To show that the synthetic processes are applicable to classification by SVM 
algorithms with linear kernels and thus for feature ranking as described later,  
the results of the tenfold cross-validation for DICK(CHEM), HARRY(CHEM), 
TD(CHEM) and TDH(CHEM) are presented in (b)–(e) in Fig. 6.13. The classifica-
tion performance of TD(CHEM) with a linear kernel is not very good. However, it 
is deemed acceptable within the scenario. The further application process is how-
ever based on TOM(CHEM) as it resembles real world data with all the challenges 
associated with real world data.

The next step in improving the classification model is to optimize the param-
eters of the SVM classifier applied. Optimizing parameters can improve the  
classification results significantly depending on the data set structure.

Fig. 6.13  Results of x-val classification performance of synthetic CHEM processes linear SVM. 
a TOM(CHEM) (x-val; orig. para.; DOT kernel). b DICK(CHEM) (x-val; orig. para.; DOT ker-
nel). c HARRY(CHEM) (x-val; orig. para.; DOT kernel). d TD(CHEM) (x-val; orig. para.; DOT 
kernel). e TDH(CHEM) (x-val; orig. para.; DOT kernel)

6.3 Scenario II—Chemical Manufacturing Process
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The optimization can either be done manually by continuously adapting the 
individual parameters, by observing and reacting to the changing results, or auto-
mated according to relevant parameters. In order to find the optimal classification 
model for the TOM(CHEM) data set, the automated optimization method was 
applied. The reasons are that the automated method allows for a structured and 
thorough testing of all parameter combinations with a direct feedback loop from 
the associated results.

RapidMiner (v5.3) allows to incorporate a parameter optimization including the 
cross-validation process (component “optimize parameter (Grid)”). The function 
acts like a shell around the cross-validation component as can be seen in Fig. 6.14, 
showing the overall process, Figs. 6.15 and 6.16 illustrating the containing compo-
nents within the optimization component.

The optimization component allows to select the parameters which shall be 
optimized for all components within the ‘shell’. In this case, the parameters of the 
SVM classifier are in focus. For each parameter to be optimized, the range of opti-
mization, number of steps and the scale (e.g., linear) may be chosen. Alternatively 
it is also possible to pre-define a list of values to be tested. As each parameter and 
each individual step adds to the number of calculations exponentially, it may be 
sensible to divide the optimization in several runs. This stands especially true as 
for each alternative n validations (n = 10) are calculated. In this case, first an opti-
mization finding the most suitable kernel type was conducted before the individual 
parameters were targeted. The final optimization routine calculated over 19,000 
operations to find the optimal combination of parameters for the data set.

The log routine (see Fig. 6.15) of the optimization routine tracks the differ-
ent combinations of parameters and their performance during the process (see 
Fig. 6.17). This is updated throughout the process in real time. The results of the 

Fig. 6.14  RapidMiner (v5.3) x-val process incl. optimization routine (top-level)
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Fig. 6.15  RapidMiner (v5.3) CHEM x-val process incl. log routine (second level)

Fig. 6.16  RapidMiner (v5.3) CHEM x-val process with SVM classifier (third level)

Fig. 6.17  Optimization of SVM parameter (ANOVA)

6.3 Scenario II—Chemical Manufacturing Process
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final optimization run are compromised by the parameter set found to realize the 
optimal classification performance for the tested data set (see Fig. 6.18) and a con-
fusion matrix highlighting the classification performance using the optimal param-
eters set (see Fig. 6.19). It can be observed that the classification performance 
improved compared to the first cross-validation (see Fig. 6.13). In particular, look-
ing at class recall performance of the negative class. However, the performance is 
still under the target threshold of 80 % for all indicators.

The difficulty of the classifier to correctly classify the minority class may be 
caused by the unbalanced data (minority ratio of 27.6 %). In such cases, there are 
several established methods available. One that was found explicitly powerful is 
oversampling of the minority class using the Synthetic Minority Oversampling 
TEchnique (SMOTE) method (Chawla et al. 2002; Tang et al. 2009; Chawla 2010; 
Farquad and Bose 2012). The advantage of this technique is that it is specifi-
cally designed to avoid overfitting when oversampling is used. SMOTE operates 
in a feature space instead of a data space (Chawla 2010). SMOTE oversampling 
by 200–500 % of the minority class shows promising results in improvement 

Fig. 6.18  Results of parameter optimization (ANOVA)

Fig. 6.19  Cross-validation performance with optimized parameters as shown in Fig. 6.18 
(ANOVA kernel type 3; kernel degree 3; C −1; Lpos 0.8; Lneg 1.8)
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of classification of unbalanced data sets (Chawla et al. 2002). In some applica-
tions, SMOTE oversampling of 1000 % and more showed good results in previ-
ous research (Akbani et al. 2004; Yun et al. 2011). The application of the SMOTE 
method in WEKA using the build in function is described in more detail in sce-
nario III SECOM (Sect. 6.4.1).

In this case the minority class was enhanced by 100 % using the SMOTE method 
as it is incorporated in WEKA. The results of the subsequent cross-validation of the 
enhanced data set show significantly improved results. All indicators are above the 
target threshold of 80 % (see Fig. 6.20).

However, the previous parameter optimization which is the basis for the cho-
sen parameters used for the cross-validation of the enhanced data set was based 
on another data set with need for a higher penalty for negative misclassification. 
The enhanced data set is more balanced and thus may profit from different param-
eter settings. Optimizing the parameters and subsequent cross-validation for the 
enhanced data set shows that the results improve further (see Fig. 6.21) presenting 
now a very good classification result.

6.3.2  Classification on Previously Unknown Data

In this scenario, three possible approaches to select the learning and test set are 
applied and illustrated in order to evaluate the classification performance on pre-
viously unknown data. First the learning and test set is selected using different 
approaches before their classification performance is compared.

Fig. 6.20  X-val of TOM(CHEM) with SMOTE (100 %) and same previously identified optimal 
parameters (ANOVA kernel type 3; kernel degree 3; C −1; Lpos 0.8; Lneg 1.8)

Fig. 6.21  X-val of TOM(CHEM) with SMOTE (100 %) and optimized parameters (ANOVA 
kernel type 3; kernel degree 3; C 1; Lpos 1; Lneg 1)

6.3 Scenario II—Chemical Manufacturing Process
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6.3.2.1  Definition of Learning Set—Random

The approach described in this subsection is based upon the annotation of the 
data set in positive (≥39 Yield) and negative (<39 Yield) examples. Two varia-
tions are utilized, one defining the learning set as 70 % of the positive and 70 % 
of the negative examples, chosen at random by a RapidMiner (v5.3) sampling 
process.

From the negative examples, the following 15 (out of 51; exact ratio 29.4 %) 
were chosen as the test data set: (example no.) 26; 29; 30; 62; 87; 105; 136; 139; 
141; 152; 154; 155; 157; 164; 165.

From the positive examples, the following 37 (out of 125; exact ratio 29.6 %) 
were chosen as the test data set: (example no.) 2; 7, 10; 11; 12; 14; 17; 19; 23; 31; 
40; 41; 46; 47; 53; 59; 61; 67; 70; 72; 83; 84; 97; 113; 118; 122; 128; 130; 140; 
142; 143; 144; 151; 168; 172; 174; 176.

The learning set is composed from the remaining positive and negative exam-
ples. The two separate tables (positive and negative examples) for each learning 
set are combined to a single one before proceeding to the next step.

The other uses the same process but the inverted ratio of 30 % for the learn-
ing set and 70 % for the test set. This reflects the reality in some application cases  
better. This allows using the same sets as before by just relabeling the test for 
learning and vice versa.

6.3.2.2  Definition of Learning Set—Timely

Resembling a manufacturing process, the learning and test set are selected in a 
timely manner (timely sequence in process) in this subsection (compare Fig. 6.34). 
The reasoning is that the first 70 % of all examples which are in timely succession, 
represent the learning set. As the classifier is trained by these, the following 30 % 
of the examples are the test set. This test set is representing new examples which 
are monitored based on the classifier model trained by the previous examples. In 
this case, the ratio of negative and positive examples is not the same as it is in the 
random selection.

The learning set consists of the first 119 examples, incorporating 22 nega-
tive examples (18.5 %). The test set resembles 51 examples following in timely  
succession. Of those, 25 are negative, leading to a ratio of 49 %. This shows 
that the smaller test set (30 %) includes more negative results than the learning 
set (70 %). This is representing an extra challenge for the classifier for identify-
ing negative results correctly as the learning set possibly does not represent a 
majority of the possible negative results. Therefore, the constructed hyperplane 
may have difficulties with correctly classifying previously unknown failure 
examples.
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6.3.2.3  Definition of Learning Set—Cluster Analysis

In this subsection the definition of the learning set by applying a cluster analysis 
is illustrated. The rationale behind this approach is that the two extreme clusters 
within a data set may present a good data set for the learning phase in case no 
expert knowledge is available to select suitable examples for the learning set.

The identified clusters within the data set are:

•	 Cluster one: (example no.) 136, 121, 153, 135, 165, 137, 166, 167.
•	 Cluster two: (example no.) 7, 23, 24, 36, 65.

It can be seen that the learning set (13 examples) is significantly smaller than the 
test set (163 examples). Which may have an influence on the classification results.

6.3.3  Compilation of SVM Operation and Output Data

In order to create the classifier model, the algorithm is trained using the selected 
learning set. The process is modeled in RapidMiner (v5.3) (see Fig. 6.22). After 
reading the learning data set, including the positive/negative labels in the systems, 
roles are assigned. In this case, the roles are the label (positive/negative) and the 
identifier (No. of example). Following, the SVM is applied to create the model  
(w vectors for hyperplane) and the model is exported in a *.mod file as well as  
forwarded to the results output of RapidMiner.

Fig. 6.22  RapidMiner (v5.3) model generation process

6.3 Scenario II—Chemical Manufacturing Process
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The selected parameters for the SVM algorithm are the same as were identi-
fied as optimal for the data set in the focus during the tenfold cross-validation 
described before. In this case, the cross-validation using the SVM classification 
was executed with the same parameter identified before (see Fig. 6.21).

Once the model is successfully generated and stored in the specified *.mod file, 
the next phase can be tackled. In order to evaluate the created model, it is applied 
to the test data set. In this case, the test data set has no labels and the examples 
are classified according to the created model. The process, modeled in RapidMiner 
(v5.3), is illustrated in Fig. 6.23.

It starts with loading the respective model (*.mod) and the test data set in form 
of an adjusted excel table with removed labels. The operator ‘apply model’ then 
classifies the examples according to the learned model and illustrated an output 
with the predicted classification for each example (see Fig. 6.24).

Additionally, an excel table is created as an output providing an extra column 
with the predicted classification (positive/negative). This allows to compare the 
prediction to the actual classification for each example. The results for the three 
variations are summarized in the following Fig. 6.25.

It can be observed that the classification results of all variations are sig-
nificantly worse than the cross-validations classification results. This was to be 
expected. As suspected, the variations with a smaller learning set did not perform 
as well as the ones using more examples to train the SVM classification algorithm 
model. This corresponds with the common practice of using a 70 % (learning) and 
30 % (test) split for evaluation purposes.

Another explanation why the variant using cluster analysis did not perform that 
strongly may be that it is due to the lack of expert knowledge which is needed to 
identify the relevant clusters. This is not available for this data set.

The results for the test of formerly unknown data (test set 30 %) indicate that 
an implementation of a SVM classification model implemented in a monitoring 
system may be possible. By constantly growing the learning set with an increasing 
number of negative results the performance is expected to improve over time.

Fig. 6.23  Applying the trained model on test data set
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In the next section, the identification of relevant state characteristics (state drivers)  
using feature selection for individual processes and combined process vectors is 
evaluated (hypotheses 1.1 & 1.2).

6.3.4  Feature Ranking Using SVM Classifier

After the classification performance is acceptable for the CHEM data set with 
the adjusted kernel settings and parameters, a feature selection is conducted. As 
described previously in Sect. 5.2.2, a SVM based feature selection (Guyon et al. 
2002) is applied to rank the features based on their importance. The importance is 
determined by the weight vector w of each feature.

The feature selection method is based on a linear kernel, therefore the classifica-
tion performance of such a kernel for the specific data set is relevant. The first result 
can be seen in Fig. 6.13. Applying some parameter adjustment, the classification 
results are acceptable (see Fig. 6.26). Hence, the applicability of the proposed feature 
selection method based on linear SVM on the CHEM data set is assumed.

Fig. 6.24  Exemplary results of the application of the trained model in RapidMiner (v5.3)

Fig. 6.25  Accuracy of SVM classifier models for learning/test set variations (ANOVA; kernel 
gamma 3; kernel degree 3; C 1)

6.3 Scenario II—Chemical Manufacturing Process
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The open source software toolkit WEKA includes an implemented feature eval-
uation function called ‘SVM Attribute Eval’ (see Fig. 6.27) (Witten et al. 2011; 
Eibe et al. 2014). This function resembles the methodology described by Guyon 
et al. (2002) and allows an easy application on available data sets. One limitation 
of the WEKA function is that the weight vectors w are not available as an output.

However, WEKA has different requirements when it comes to importing data 
sets. The data set needs to be in the *.arff format. RapidMiner however allows for 
easy transformation of *.csv and *.xlsx data sets in the respective format.

Once loaded, the software allows applying the feature evaluation with relative 
ease. A few steps are needed before the evaluation can be started. First, the exist-
ing special column ‘Identifier’, supplying a unique number to each example has to 
be removed before a feature ranking can be conducted. Furthermore, the attribute 
‘SVM’ has to be manually selected before application of the function as in this 
data set, the ‘SVM’ attribute is not at the end of the attribute list, which would 
allow for an automatic recognition.

There are two components which have to be selected together after choos-
ing ‘AttributeSelection’ in WEKA. One is the ‘SVMAttributeEval’ and the other 
is called ‘Ranker’. The former is responsible for determining the feature weights 
(= importance/relevance) and the latter for preparing the ranking based on the pre-
viously determined weights (see Fig. 6.27).

Fig. 6.26  Results x-val DOT kernel (SMOTE 100 %; C −1.0; conv. eps. 0.005; Lpos 1.8; Lneg 2.0)

Fig. 6.27  WEKA SVM feature evaluation function
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Once these pre-processing steps are done, the parameters of the function can 
be adjusted. One of the most important ones is the ‘numToSelect’. This parameter 
describes what number of the highest ranked features shall remain in the data set 
after the evaluation is completed. For ranking purposes this is set to ‘−1’, leading 
to a complete ranking by importance (weight) and no elimination of features. By 
doing so, all attributes are rearranged starting with the one of highest weight and 
ending with the least important one (lowest weight).

For the evaluation of the classification performance after feature selection, the 
ranker threshold is set to 5; 10; 15; 20 and 30 features. By doing so, different data 
sets are derived who’s classification performance in cross-validation is individu-
ally assessed (see Fig. 6.28). This allows to evaluate the performance of the fea-
ture selection in identifying the most relevant features (state drivers).

The comparison of classification performance of different settings (no. of fea-
tures and SMOTE oversampling) derived using cross-validation with an ANOVA 
kernel (orig. parameters) shows interesting results. So the best overall performance 
(accuracy) is reached not by the expected full feature set with 200 % SMOTE over-
sampling, but by the data set with 30 features and 100 % SMOTE oversampling. 
Surprising is that even a significantly reduced data set (5 features) performs rela-
tively well. The data set with 15 features outperforms the full data set (57 features) 
in the variation without SMOTE and SMOTE 100 %. This confirms that by select-
ing relevant features based on the Guyon et al. (2002) feature selection technique, 
the process may be described sufficiently to allow for good classification results.

Fig. 6.28  Matrix of results of x-val on different feature numbers and SMOTE oversampling

6.3 Scenario II—Chemical Manufacturing Process
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As stated before, the applied SVM based feature selection method utilizes the 
weight vector w as a ranking criterion. The weight vectors wi represent a distinct 
number (small fraction) of vectors of the training set used to construct the hyper-
plane (decision boundary). As described before (Sect. 5.2.1.1) the hyperplane is 
constructed to leave the largest (maximum) margin between the two classes. The 
so-called ‘support vectors’ (hence the name SVM) are located on the margin and 
define the hyperplane (decision boundary) (Guyon et al. 2002). The smaller the 
weight vector w value is, the less relevant is the feature for classification decisions.

Through Recursive Feature Elimination (RFE) based on the weight vector w 
value, the feature with the lowest w value is eliminated in each run (Guyon et al. 
2002). This is different to a ranking based on one run with the complete feature 
set. The RFE approach takes changing relevancy of features when the number 
of features I reduced into account. It is possible to eliminate multiple features 
simultaneously in each run if computing efforts make that necessary. The utilized 
WEKA function allows to specify the number of (lowest ranking) features to be 
eliminated in each run. In this dissertation the amount of to-be-eliminated features 
for each run is set to ‘1’ as originally suggested (Guyon et al. 2002).

As a test of the general accuracy of the feature ranking based on SVM weight 
vectors w, a basic evaluation of the classification performance using a data set with 
the lowest ranked 10 and 20 features with an ANOVA kernel (orig. parameters) 
is illustrated in the following Fig. 6.29a, b. The results confirm that the feature 
ranking is working probably as the two resulting confusion matrices show signifi-
cantly lower classification performance than the ones of the comparable set using 
the highest ranked 10 and 20 features.

Finally, the classification performance is tested by again dividing the data sets 
in learning (70 %) and test (30 %) set. This way the ability of a trained classifica-
tion model to identify classes in previously unknown data is evaluated after feature 
selection and compared to one another (incl. the performance of the complete set). 
The results are also compared to the previous classification performance as illus-
trated in Fig. 6.25.

The comparison of results (confusion matrix) of the trained model appli-
cation (learning 70% and test 30 %) in various settings show that the results of  
data sets with a reduced feature set can outperform the data set with a full feature 
set. The best accuracy is reached by a data set with 15 features, 100 % SMOTE 
oversampling on the learning set and an ANOVA kernel with original parameter 
settings almost even meeting the target threshold for cross-validation classification 

Fig. 6.29  X-val class. perf. of TOM(CHEM) with lowest ranking 10 and 20 features selected.  
a TOM(CHEM) (10 lowest ranked features). b DICK(CHEM) (20 lowest ranked features)

http://dx.doi.org/10.1007/978-3-319-17611-6_5
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performance. This is a very good result for classification on a new, formerly 
unknown data set. This confirms that the feature selection is able to identify  
relevant state drivers (Fig. 6.30).

The results describing the feature ranking for all processes and process combi-
nations are discussed in detail in Chap. 7. A complete illustration of the detailed 
ranking results is presented in Table A.12 in the Annex.

The effects of feature selection and SMOTE oversampling on the classification 
performance of formerly unknown data organized in timely sequence is also sub-
stantial. Comparing the results presented in Fig. 6.31 with the previous results pre-
sented in Fig. 6.25, it shows that the performance of the variation with 15 features 
and 200 % SMOTE oversampling can be considered good and significantly better 
than the one without this pre-processing steps.

Focusing on the best performing variant with 15 features and SMOTE 200 % 
oversampling applied on the learning set, a slight optimization is possible by 
changing the kernel gamma (Fig. 6.32).

When the predicted ‘fail’ examples are plotted in timely sequence (see 
Fig. 6.33), one can observe that the process seems relatively stable at the begin-
ning. However, then the process begins to become more unstable until it produces 
11 fail examples in a row (example 152 to example 162).

Fig. 6.30  Accuracy of SVM classifier models for learning/test set (random) variations with  
different feature selection variations

6.3 Scenario II—Chemical Manufacturing Process
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Comparing this predicted time plot with the original (see Fig. 6.34), it can  
be observed that the massive disruption between ‘example 152’ and ‘example  
162’ is correctly predicted by the classifier. Such a prediction, especially with a  
significantly reduced feature set may allow the process owner to preemptively adjust 
the process and reduce the risk of such a relatively long period of manufacturing 
products with not sufficient quality.

In the next sub-section, the presented approach is applied to scenario III, a highly 
complex, exemplary process from the semiconductor manufacturing domain.

Fig. 6.31  Accuracy of SVM classifier models for learning/test set (time sequence) variations 
with different feature selection and SMOTE variations

Fig. 6.32  Para. optimization for TOM(CHEM) FS15 & SMOTE 200 % (kernel gamma: 2)

Fig. 6.33  Time plot of predicted state change (‘pass’ = 1/‘fail’ = −1) of TOM(CHEM) process
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6.4  Scenario III—SECOM

In this section, the SVM algorithm is set up as a classifier and applied on the pre-
processed SECOM data set as described within the research plan. At first a suit-
able configuration of the SVM algorithm, given the specific nature of the SECOM 
data set, is identified through n-fold cross-validation (n = 10) in the following 
sub-section. Subsequently, a learning set is defined before the SVM algorithm is 
applied on test and evaluation set. The results are presented in Sect. 7.1.

6.4.1  SVM Kernel and Parameters for Hyperplane  
by X-Validation

Before the hyperplane can be constructed, a suitable SVM kernel method and cor-
responding parameter settings have to be identified. These factors depend strongly 
on the available data and its structure. The previously described splitting of the 
data set in training, evaluation and test set is automated by applying n-fold cross-
validation (n = 10) in RapidMiner (v5.3). This process automatically divides the 
data set in 9/10 and 1/10 packets n-times for evaluation.

The first step is importing the complete and normalized SECOM data set 
(approach 2 variant 2) in the process (component “Read Excel”) and mark the 
label (“good”/“bad”) and identifier (No. of example) (component “Set Role”). The 
results show that all 1209 examples and 528 features/attributes are successfully 
imported and the label and identifier are correctly assigned.

The process component “validation” is available as a pre-set building block in 
RapidMiner (v5.3). The building block has to be adapted. Therefore the classifica-
tion algorithm is set to “SVM”. The parameters for both, the cross-validation and 
the SVM classifier can be adjusted. For the cross-validation they are set to n = 10. 
For the SVM the standard parameters for a polynomial kernel are used.

The result of running the previously introduced cross-validation process is 
a confusion matrix. The confusion matrix illustrates how well the learning data 
can be separated by a hyperplane using various SVM kernels. Ideally, both classes 
should reach a result of 80 % or above. This indicates that the w values represent a 
set of good features (state drivers). If the results are significantly below 80 %, then 

Fig. 6.34  Original time plot of changing state (‘pass’ = 1/‘fail’ = −1) of TOM(CHEM) process

6.4 Scenario III—SECOM
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the SVM kernel choice does not correspond well with the structure of the data set 
and needs to be adapted. The same is true for the parameters of the chosen kernel, 
which may have to be adjusted to create a good fit and thus an assumingly good 
weight vector w.

In this case, the first results of the previously presented RapidMiner (v5.3) 
cross-validation process of the SECOM data set are significantly below the target 
threshold of 80 % over class recall as well as class precision (see Fig. 6.35). The 
kernel for the SVM was chosen as polynomial with all parameters used as pre-set, 
except the kernel degree, which was set to 3.0.

This results could not be improved significantly by changing the kernel and/or 
the SVM parameters. Therefore, a step back to pre-processing has to be taken.

6.4.1.1  Under- and Oversampling

In this case, it can be assumed that the bad performance was partly based on the 
SECOM data set’s highly unbalanced (ratio of fails/pass of 6.95 %) data (see 
Fig. 6.36. Unbalanced data is fairly common in many application areas (Provost 
2000; Evgeniou and Pontil 2001; Li et al. 2008). SVM algorithms may experience 
problems when it comes to classification tasks of some unbalanced data (Li and 
Shawe-Tayler 2003; Li et al. 2008; Tang et al. 2009; Wang and Japkowicz 2010; 
Choi 2010). As can be observed in Fig. 6.36, the negative examples are further-
more not equally distributed of the duration of the monitoring. The concentration 
of ‘fail’ examples (minority class) is higher during the early runs of the process.

There are different approaches to handle the problem suggested by literature. 
For example, Veropoulos et al. (1999) suggest to introduce weights (penalties) for 
the misclassification of the underrepresented class, whereas Wang et al. (2004) 
suggest to handle such classification task with a one-versus-one classifier rather 
than a one-versus-rest. A rather promising approach for handling unbalanced data 

Fig. 6.35  SECOM cross-validation with RapidMiner (v5.3) first results

Fig. 6.36  Time plot of changing state (‘pass’ = 1/‘fail’ = −1) of SECOM process



179

sets is under- or oversampling of the respective class (Chawla 2010). However, 
random under- and oversampling can lead to problems like deleting of important 
examples (random undersampling) or over-fitting (random oversampling) (Chawla 
2010). Next, first undersampling of majority class within the SECOM data set will 
be analyzed before oversampling of the minority class is looked into more closely.

Undersampling

In order to address this issue of unbalanced data by under-sampling, a new com-
ponent is added to the cross-validation process. It can be seen in the results (see 
Fig. 6.35), that the classification performance for the underrepresented class 
(‘1’/‘fail’) are not acceptable. Therefore, a sampling method is installed prior to 
the cross-validation of the classifier in order to even out the ratio of the learning 
set. The chosen sampling mechanism is based on the Kennard-Stone algorithm. 
The Kennard-Stone algorithm allows to identify outliers of the data set, which are 
assumed to be good representations of the class (De Groot et al. 1999). This sam-
pling method is just applied to the overrepresented class (‘−1’/‘non fail’).

In order to integrate the Kennard-Stone sampling algorithm in the previously 
introduced cross-validation process in RapidMiner (v5.3), the SECOM data set 
has to be divided in two. One data set containing all examples of class ‘1’ (‘fail’), 
84 examples in total and the other all examples of class ‘−1’ (‘non fail’), 1125 
examples in total. As described before, both data sets have to be imported and the 
respective roles have to be assigned (label and identifier). For the data set repre-
senting the over-represented class ‘−1’, the Kennard-Stone sampling is added, 
allowing to define the number of examples being sampled either absolute or rela-
tive. In this case the number is chosen absolute and set to 84, matching the num-
ber of examples of the other class. Conducted tests with different variations of the 
sampling number did not lead to improved classification results (Fig. 6.37). After 
this process step, the two data sets are merged again to one complete data set con-
taining both classes (component ‘append’).

After this addition, the cross-validation process was run again, setting the SVM 
kernel to polynomial and using the pre-set parameters except the kernel degree, 
which was set to 3.0.

It can be observed that the results are improved but still significantly below 
the target threshold. However, it was possible through parameter optimization, 
to reach the threshold. Despite that, during the later model development and 

Fig. 6.37  First results after integrating Kennard-Stone sampling in cross-validation process

6.4 Scenario III—SECOM
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evaluation utilizing the learning and test set, the classification performance of this 
approach was not acceptable. This leads to the application of the oversampling 
approach which is illustrated in the following subsection.

Oversampling

Before starting to assess the possible measures for oversampling, the deleted 
negative examples are assessed again if the feature eliminating conducted in pre-
processing may result in “complete” (no missing values) negative examples. The 
following 15 additional negative examples were identified and added to the exist-
ing data set: example 51; example 189; example 236; example 239; example 283; 
example 322; example 327; example 328; example 345; example 407; example 
442; example 602; example 606; example 635; example 710.

It has been stated that random oversampling may lead to overfitting (Chawla 
2010). In a first attempt, random oversampling was conducted to observe the 
effect it has on the results. In Fig. 6.38, the confusion matrix of random oversam-
pling of the minority class is illustrated. With tenfold oversampling the thresh-
old is almost reached. In this case, the original parameter settings of the Kernel 
choice in RapidMiner (v5.3) was used to allow a better comparability of the 
results. With optimized parameters, the results would most likely vary only mar-
ginally. Therefore, parameters optimization is applied after the best variation was 
identified.

In a next step, the parameters of the kernel are adjusted to improve the results 
and bring them over the threshold of 80 %. The results indicate an almost perfect 
classification performance (see Fig. 6.39). This result already indicates a possible 
overfitting of the generated model.

To test the performance of the random oversampling approach, a learning 
set (70 %) and test set (30 %) of the original data set is divided, holding up the 
original ratio of both classes. The learning set is then pre-processed by randomly 
oversampling the negative examples (minority class) ten times. Then a model is 

Fig. 6.38  Random oversampling of minority class x-val results in RapidMiner (v5.3). a No 
oversampling (x-val; orig. para. polyn. kernel). b Oversampl. neg. class x3 (x-val; orig. para. 
polyn. kernel). c Oversampl. neg. class x6 (x-val; orig. para. polyn. kernel). d Oversampl. neg. 
class x9 (x-val; orig. para. polyn. kernel). e Oversampl. neg. class x10 (x-val; orig. para. polyn. 
kernel)
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created with the learning set and the classification performance is evaluated using 
the test set in RapidMiner (v5.3). The results can be observed in Fig. 6.40.

The results show poor classification performance on previously unknown 
data. This may support the previous suspicion of a possible overfitting problem 
by applying random oversampling through multiplication of the minority class or 
again be a sign for a high diversity within the example population of the minority 
class. However, instead of random oversampling a rather promising oversampling 
technique called SMOTE is applied. The advantage of this technique is, as previ-
ously stated (Sect. 6.3.1) that it is specifically designed to avoid overfitting when 
oversampling is used.

SMOTE is an established method to handle unbalanced data sets. The method 
is implemented as a built in function in the WEKA toolkit. Before applying the 
SMOTE function on the SECOM data set, an additional 15 minority class exam-
ples are added to the SECOM data set. Those examples are derived after the pre-
processing step “attribute deletion” during which attributes containing missing 
values are eliminated. This step allowed for 15 minority class examples to be sub-
sequently added as they do not contain any missing values. The data set then con-
tains 1224 examples of which 99 examples fall under the ‘fail’ class.

After applying the SMOTE technique in WEKA, the ratio between the classes 
is now 34.6 %. This is still not a completely balanced data set but the ratio should 
allow for a better model development and thus classification performance.

A tenfold cross validation is then conducted on the now complete data set in 
RapidMiner (v5.3). The results are promising as they are all over or close to the 
target threshold of 80 % in a first run with the original parameters of an AVM 
algorithm with a DOT kernel (see Fig. 6.41). Similar as before, in this case the 
original parameter settings of the kernel choice in RapidMiner (v5.3) were 
applied to allow a better comparability of the results. With optimized parameters, 
the results would most likely improve further marginally. However, parameter 

Fig. 6.39  results x-val of tenfold random oversampling after parameter adjustment

Fig. 6.40  Classification 
performance of created model 
by random oversampling 
minority class

6.4 Scenario III—SECOM
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optimization is very individual for every data set. This reasoning is applied in all 
cases where original parameter settings are used without optimization.

The results of the DOT kernel are already good and, given that no parameter 
adjustment was yet conducted significantly better than with simple oversampling 
by multiplication of the minority class as illustrated previously. This shows that 
the following feature ranking based on linear SVM is applicable. However, it is 
possible that this may still represent a similar case of overfitting as the oversam-
pling by multiplication of the existing examples presents (see Fig. 6.38), espe-
cially in cases of SMOTE oversampling 500 % and higher.

In Fig. 6.42 the different results of tenfold cross-validation with AONVA ker-
nel (no parameter optimization conducted) and different SMOTE percentages 
are compared. The results indicate that the classification performance improves 
from 200 % SMOTE to 500 % SMOTE but then the improvement slows down for 
1000 % SMOTE and 1500 % SMOTE.

In a next step, the kernel parameters are optimized, finding a better setting to 
improve the classification performance in case of 200 % SMOTE oversampling.

The classification performance of the cross-validation using SVM algorithm 
with adjusted parameters shows that the results improve and come close for the 
SMOTE oversampled data set (200 %) which was previously not acceptable. In 
general, SMOTE oversampling is applicable for larger percentages (e.g., 300 or 
500 %) as well (Chawla et al. 2002). However, the author decided to only use a 
smaller percentage, 200 % in this case, which allows for good classification results 
(see Fig. 6.43) when parameter optimization is utilized.

In order to evaluate the applicability of the classification model in a manufac-
turing environment, e.g., in monitoring (hypothesis 3), the classification perfor-
mance, model development and subsequent evaluation through learning and test 

Fig. 6.41  Results x-val SMOTE oversampling DOT kernel

Fig. 6.42  Results of x-val ANOVA kernel and different SMOTE oversampling percentages
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set is conducted with this kernel and parameters. In a first step, the original data 
set (pre-oversampling) is divided in learning (70 %) and test (30 %) set, upholding 
the same ratio of the two classes. This is done using the random function on two 
files, each containing one class in RapidMiner (v5.3). The separated class files are 
then merged to learning and test set. Then the learning set is subject to SMOTE 
oversampling (200 and 500 %) to create the classification model. Finally, the clas-
sification performance of this model is tested by applying it on the test set and 
evaluating the classification results.

It can be seen that even so the cross-validation performance is very good after 
the application of SMOTE oversampling, the low classification performance on 
previously unknown data persists. This may again be based on the overfitting 
problem. As the SMOTE approach is designed to avoid overfitting, the alternative 
suspicion is that the high diversity within the example population of the minor-
ity class is responsible for the poor classification results becomes more likely. The 
showing classification performance results are not acceptable (see Fig. 6.44) even 
so slightly better than with random oversampling (see Fig. 6.40). The reason for 
overfitting may be found in the fact that the overfitting problem is caused by two 
(independent) characteristics of the data set or the data structure does not allow for 
the classification of novel examples with a trained model. First, the unbalanced 
data set concerning the two classes which is enhanced by random oversampling.  

Fig. 6.43  Results x-val ANOVA kernel and 200 % SMOTE oversampling (parameters: kernel 
gamma: 2.0; kernel degree: 3.0; C: 2.6; convergence epsilon: 0.001)

Fig. 6.44  Classification results of test set applying 200 and 500 % SMOTE on learning set

6.4 Scenario III—SECOM
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A possible solution for this is the SMOTE oversampling method. However, there 
is the second cause of overfitting that may be found in the ratio of vectors (exam-
ples) and attributes (features) in the data set (Yu and Liu 2004). Therefore, in the 
next sub-section, this challenge is targeted.

6.4.1.2  Feature Ranking Using SVM Classifier

It was argued in previous sections during the original pre-processing stage that the 
goal is to keep as many features as possible. The reason is, that in theory, though 
this should provide more discriminant power (Yu and Liu 2004) and thus allow for 
detection of more process intra- and inter-relations between state characteristics. 
However, in practice, when only a limited amount of training examples (vectors) is 
available combined with a large amount of features (attributes), overfitting is com-
mon when there are irrelevant features in the learning set (Guyon et al. 2002; Yu 
and Liu 2004). Even so SVM algorithms are relatively robust towards overfitting, 
they profit from a feature reduction (Guyon et al. 2002).

At this point, the feature (attribute) size needs to be reduced in order to achieve 
a better ratio between examples and attributes/features in the data set. At this stage 
it can be assumed that the important features are selected in accordance with the 
objective of feature selection as presented by (e.g., Guyon et al. 2002; Yu and Liu 
2004; Chang and Lin 2008). Feature selection was found to have a positive impact 
on most learning algorithms (Waikowski and Chen 2010).

However, this might be problematic in cases where process steps, integrated 
in an overall manufacturing programme, are concerned. In such cases, the feature 
selection might deem features “not important” which may be ‘important’ (state 
drivers) within a larger context, e.g., a {process1; process2} combination as shown 
in scenarios I & II. In such a case, it may be possible to apply feature selection on 
the individual process but then the process is repeated from scratch for the com-
bined process vector (incl. all original features) to identify further ‘important fea-
tures’ (state drivers) for the overall manufacturing programme.

In a first step towards eliminating unimportant features for the SECOM pro-
cess, all the features with all (99.0 %—adjustable) similar values or largely 
varying values are removed using the WEKA function ‘RemoveUseless’ 
(Unsupervised; Attribute) (Bhuvaneswari and Dhulipala 2013). This is due to 
the assumption that those features do not support classification in the majority 
of cases. The application of this function removes 116 features (of 528) leaving 
412 features for further processing. In order to evaluate the assumption that those 
features are indeed ‘useless’ for classification purposes, eliminated features are 
compared to the later conducted feature ranking by SVM. During the later feature 
ranking by SVM evaluation, the 116 eliminated features are all deemed the least 
important by the classifier (see Tables A.13 and A.14 in the Annex) which supports 
the assumption made before.

In the following step, the feature selection function based on Guyon et al. 
(2002) incorporated in WEKA is applied in order to reduce the number of 
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features. The elimination can either be triggered by a fixed threshold given the 
number of “to-be-maintained” features or a threshold concerning the minimum 
weight of the weight vector w of the sustaining features. As previously described, 
the weight vector w represents the major ranking criterion for the SVM feature 
selection method (Guyon et al. 2002). This was previously described in more 
detail in Sect. 6.3.4.

In a first analysis, the SECOM data set undergoes feature selection with a hard 
threshold of 50; 80; 100 and 120 features. Each of those resulting data sets is 
then supplemented by oversampling using SMOTE 200, 500, 1000 and 1500 %. 
Figure 6.45 summarizes the results of the confusion matrix. In this case the cross-
validation is run with a SVM algorithm with an ANOVA kernel (orig. parameters).

The results show that for cases with a lower percentage of SMOTE oversam-
pling (200 %) the feature selection seems to improve the overall classification 
results. For the test runs with higher SMOTE oversampling, even the data set with 
a feature set reduced to 50 features produces classification examples above the 
threshold of 80 % for class recall and class prediction. One finding of this analysis 
is that the feature selection allows the reduction of the total amount of features to 
a set of relevant features, representing state drivers, responsible directly and indi-
rectly for the quality outcome. This confirms the assumption that a set of relevant 
state characteristics may be selected and used to describe the state comprehen-
sively as it is understood in the product state concept.

One has to bear in mind, that in this compression, no SVM classification 
parameter optimization was conducted. By adjusting the SVM parameters to the 
data structure, the results may improve further. With an optimized parameter set, 
the SECOM data set with 50 and 80 features and 200 % SMOTE oversampling 
meets the target threshold of 80 % (see Fig. 6.46). For the data set resembling 50 
remaining relevant features, an ANOVA kernel achieves a relatively evenly dis-
tributed result over the target threshold of 80 %. However, the 80 feature/attribute 

Fig. 6.45  Matrix comparing x-val performance (ANOVA—orig. parameters) of SECOM data in 
different variations of SMOTE and feature selection parameters

6.4 Scenario III—SECOM
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version achieves better classification performance results with the Polynomial ker-
nel. Figures 6.30 and 6.37

The final results with the optimized parameters show a confusion matrix with 
values significantly higher than the target threshold of 80 % for both versions (50 
and 80 features/attributes). These results confirm that applying feature selection 
allows the identification of relevant state drivers by which the quality of a product 
may be measured even for a challenging data set like the SECOM process.

To evaluate the impact the feature selection has on the classification perfor-
mance of a previously unknown data set, the previously used randomly selected 
learning (70 %) and test (30 %) set (see Fig. 6.44) is reduced to 50 features and 80 
features. The obsolete features were deleted manually from the previous data set 
to ensure the same examples are in the learning and test data set. This increases 
the comparability of the results. Afterwards, the model is generated by apply-
ing SOMTE (200 and 500 %) to the learning set with an ANOVA kernel (kernel 
gamma 2.0; kernel degree 3.0; C 2.6) before the test set is evaluated.

A second analysis concerning the classification results on previous unknown 
data is conducted. In this case, the learning and test set is selected in timely suc-
cession of the process. The first 70 % of the examples are used as the learning set 
and the latter 30 % as the test set. This resembles an industrial application sce-
nario as the latter 30 % resemble new examples which are to be classified based on 
historic data. However, in this case, the ‘fail’ ratio differs minimally between the 
test and the learning set. The pre-SMOTE learning set has an already low ratio of 
8.75 % whereas the test set has only 6.54 %.

The results of the cross-validation of the SVM classifier using an ANOVA ker-
nel (kernel gamma 2.0; kernel degree 3.0; C 2.6) similar to the previous test are 
not very promising (Fig. 6.48). The recognition rate for ‘fail’ examples is even 
worse than for the randomly divided data set (Fig. 6.47).

As can be observed in Figs. 6.17 and 6.48, the classification results are not 
satisfactory for previously unknown data even with sophisticated pre-processing 
measures like feature selection and SMOTE oversampling. This confirms the sus-
picion that the poor classification results are most likely based on the high diver-
sity within the example population of the minority class. In the results section 
(Sect. 7.1.5) this is picked up in more detail and additional evaluation results are 
provided that confirm the suspicion further.

Fig. 6.46  Results x-val after parameter optimization on SECOM after feature selection (50 and 
80) and SMOTE oversampling (200 %)

http://dx.doi.org/10.1007/978-3-319-17611-6_7
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However, the results do show that the classification results after feature selec-
tion, especially with 80 features remaining, are slightly better than without. As the 
difference is marginal, the question remains what conclusion can be drawn from 
that. This is also discussed in greater detail in the following section.

In the next section, the evaluation results are presented in a structured way and 
critically discussed. Furthermore, the limitations of the approach and the evalua-
tion are illustrated.
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The evaluation results derived from the previous application section are presented 
in a condensed fashion and critically discussed within this section. The critical 
 discussion is roughly structured along the previously presented research hypotheses.  
Following, the limitations identified during the evaluation and analysis including 
data pre-processing are highlighted. Within that section the implications of those 
limitations on the hypotheses and the research results are illustrated.

7.1  Evaluation Results

In this section the results of the application and evaluation conducted in the 
 previous section are presented in a condensed fashion. This provides a basis for 
the following critical discussion in the next sub-section. The results compromise 
not only results with an impact on the raised research question, but also additional 
findings that surfaced during the evaluation.

7.1.1  Data Pre-processing

All three scenarios include pre-processing the data sets which is detailed in 
Sect. A.2 in the Annex. Even so the pre-processing itself is not considered a main 
part of the dissertation, the subsequent limitations are regarded as highly relevant 
and thus presented within the main body of the thesis. Scenario I represents a spe-
cial case in this context as the data was provided by Rolls-Royce in anonymized 
form and thus already pre-processed to a certain extent (no missing values and 
normalized). However, the other scenarios illustrate the challenges data pre- 
processing represents in manufacturing. The CHEM data set, contained relatively 
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few missing values and with only 176 examples and 57 attributes/features can 
be considered small. This is reflected in the effort needed for preprocessing and 
 handling of missing values. Also the computing requirements are lower for this 
scenario than for the larger data sets of scenario I and III.

Scenario III provides an example of a very challenging data set when it comes 
to pre-processing. This is supported by the fact that it was published as part of the 
‘Causality Challenge’ (McCann and Johnston 2008). The data set with its originally 
1567 examples and 591 attributes/features contains a large amount of missing data. 
Not only is the ratio of missing data high, but the missing values are also distributed 
over almost all examples and attribute/features, making the handling challenging. The 
approach on how to handle the data was found to have an impact on the later behavior 
of the data during evaluation by comparing two of the variants presented in Sect. A.2.3.

As stated previously, the different data pre-processing approaches regarding the 
elimination of missing values differentiate themselves in the number of features 
and examples. ‘Approach 1’, deleting all features with missing data (see Fig. A.5) 
compared to ‘Approach 2 Variant 2 (plus 15)’, keeping all features with less than 
10 missing values show that the ranking of the relevant features (WEKA Attribute 
Evaluation) show that of the 485 features of the data set pre-processed according 
to ‘Approach 1’, 43 are not ranked within the top 485 features of the most relevant 
features of the data set according to ‘Approach 2 Variant 2 (plus 15)’. Comparing 
the classification performance of the two (see Fig. 7.1), the results are comparable 
showing a more even distribution for the data set containing more features (528) 
prior to feature ranking/elimination.

Fig. 7.1  Comparison of pre-processing approach 1 and approach 2 var. 2 (plus 15) by classifica-
tion performance after feature selection and SMOTE application
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Looking at the comparison of the two variations of approach 2, the  following 
features are eliminated in variant 1 during pre-processing as they contained more 
than 5 missing values: 20; 85; 156; 220; 291; 358; 429; 492. Looking in the 
ranking position of those features in the feature ranking during the evaluation of 
‘Approach 2 variant 1 (plus 15)’, it shows the following results: Feature 429 rank 
14 (528); Feature 156 rank 59 (528); Feature 492 rank 61 (528); Feature 20 rank 
114 (528); Feature 291 rank 127 (528); Feature 85 rank 149 (528); Feature 358 
rank 282 (528); Feature 220 rank 358 (528). The relatively high ranking position 
of feature no. 429 indicates that by deleting features during pre-processing, valu-
able information (state drivers) might get lost and with them potential knowledge/
information about the process and product state development.

These results indicate the existing influence that data pre-processing has on the 
later application of supervised ML algorithms and its results. In this case, there is 
no judgment made with regard of one approach being better. The main reason for 
presenting this result is to highlight the importance of data pre-processing and the 
possible influence on the results.

7.1.2  Cross-validation Performance of SVM Classifier

Overall it can be said that all scenarios showed acceptable to good performance in 
the cross-validation test, partly after significant optimization efforts.

The results of the evaluation of the classification performance through cross-
validation for the Rolls-Royce data set (scenario I) show very good results. This 
stands true for application of a linear kernel (important for the later feature selec-
tion approach) and even more so for the optimized algorithm sporting an ANOVA 
kernel. In this set up, the results are extremely good (see Fig. 6.3). Even so this 
is promising and shows that the data set’s structure/nature allows for classifica-
tion, this might present a previously induced bias. The data set was provided in 
anonymized form and by doing so the providing party, Rolls-Royce, applied 
SMOTE to a) alter the data set so no information can be extracted by competitors 
and b) to make it more balanced. However, as it is not known by how many per-
cent the minority class was extended, the classification results are to be interpreted 
with care. When comparing the difference a SMOTE application can make on a 
previously not ideal performing data set (from a classification perspective) like the 
SECOM one (see Fig. 6.42), it has to be assumed that the SMOTE application has 
an influence on the good results of the RR data set as well. Nevertheless, the per-
formance results still confirm that it is possible to identify the quality outcome of 
the process with a good accuracy using an SVM classifier algorithm.

In the second scenario, a chemical manufacturing process was analyzed. 
Originally this process was published as a regression data set. However, by select-
ing a threshold (Yield 39), the data set was transformed in a data set with two 
classes (‘pass’ and ‘fail’). The classification performance of the original data 
set was below the target threshold in the cross-validation evaluation, even with 

7.1 Evaluation Results
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optimized parameters. However, by applying the SMOTE method and  subsequent 
parameter optimization, the classification results following were very good 
and significantly higher than the target threshold. As the percentage of SMOTE 
enhanced minority class was rather low with 100 %, the results are good. The high 
classification performance results confirm that the CHEM data set, now used for 
classification, is applicable for this evaluation and the SVM algorithm is able to 
distinguish the product quality of the process with high accuracy (see Fig. 6.20).

The originally unsatisfactory classification performance results of the 
SECOM data in the cross-validation test (see Fig. 6.35) could be improved sig-
nificantly by different measures targeting the identified problematic areas of the 
data set. The reasons for the poor classification performance where identified 
to be based on the unbalanced data set. Overall, the minority class (‘fail’) was 
underrepresented and additionally, the large feature set (528 features) with only 
1224 examples was problematic. This was approached by under-/oversampling 
and features selection. The results of these applications are presented in the fol-
lowing sub-section.

As for scenario I and II, which also included synthetic and combined vec-
tors in the evaluation, the classification performance of those is briefly discussed 
here. For the RR manufacturing programme, the classes were assigned based on 
a previous conducted cluster analysis. This is different from the more random 
approach used for the synthetic processes of the CHEM manufacturing pro-
gramme. Different approaches have been chosen to reduce the possible bias pos-
sibly induced by either one. For the RR data set, the original process TOM(RR) 
shows acceptable classification results whereas the synthetic and combined vectors 
show very good classification results in cross-validation using a linear kernel (see 
Fig. 6.5). This was expected as the synthetic processes and combined vectors are 
designed in such a way with weak inherent clustering and standard deviation. This 
allows for a good application of the following feature ranking method in the data 
sets. For the CHEM manufacturing programme the synthetic and combined vec-
tors were evaluated with regard to their classification performance using a linear 
kernel and the original parameters as well. Similar to the RR manufacturing pro-
gramme, the reason is to see whether the feature ranking method is applicable to 
the vectors. With an exception of the TD(CHEM) vector, all other processes and 
TDH(CHEM) show very good classification results. This stands especially true 
given that a basic linear kernel has been used. The TD(CHEM) vector stands out 
as its performance is below the threshold. However, it was decided to not adjust it 
(e.g., repeat the random selection of class) to reproduce realistic circumstances as 
much as possible.

Overall, all scenarios and the respective ‘real world’ and synthetic data sets 
show at least acceptable classification performance with SVM algorithm classifi-
ers. After some adjustments have been made to improve the performance, mainly 
targeting the unbalanced nature of two of the three cases, and additional parameter 
optimization, the majority shows very good classification performance results.

http://dx.doi.org/10.1007/978-3-319-17611-6_6
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7.1.3  Unbalanced Data

Looking at the issue of unbalanced data sets, it shows that when working with 
‘real world’ manufacturing data sets this issue often surfaces. In scenario II and III 
the unbalanced nature of the data set had to be tackled by appropriate measures. 
The chosen methods, SMOTE oversampling and feature selection have shown 
good results (see Figs. 6.28 and 6.45).

For scenario I however, SMOTE oversampling was applied previously to the 
provision of the data set from Rolls-Royce with regard to the anonymity issues. 
Therefore, the received data set does not feature unbalanced ratio of ‘fails’ and 
‘pass’ examples. However, as SMOTE was applied previously, it suggests that 
the raw data set prior to anonymizing actions also faced unbalanced ratio of the 
minority and majority class.

It has to be noted that unbalanced data with a smaller minority class (hence the 
name) is actually desired in manufacturing even so it makes life harder for model 
generation. Ideally the ratio is as small as possible as this means the manufactur-
ing programme has very little quality issues (small ‘fail’ rate). However, this high-
lights the need to develop appropriate methods to select representative examples 
for model generation which counter the unbalanced data bias.

7.1.4  Feature Selection and Feature Ranking

In this section the results of the applied feature selection based on the feature rank-
ing following Guyon et al. (2002) of the three scenarios are presented. It has been 
shown that the classification performance, thus performance of correct judgment 
of quality in this case, is equally good or even better in some cases when feature 
ranking and selection is applied.

Looking at the results of the Rolls-Royce process (scenario I) it was found that 
for the original TOM(RR) process the feature selection has a rather small effect on 
the classification performance (cross-validation). In this case the feature ranking 
was conducted by two different programs. One feature ranking of the TOM(RR) 
process was conducted using the RapidMiner (v5.3) function ‘Weight by SVM’ 
which provides the actual weight vector w values (normalized) as an output. The 
classification performance of the reduced data set can be considered very good 
for all tested variations (FS10; FS15; FS20; FS30; FS50 & FS57). However,  
the results seem to show that the more features used, the better the results and the 
closer to the results of the full feature set. The best results were achieved by the 
full features data set without feature selection. On the other hand, the classification 
performance of the reduced feature set, even the smallest one with 10 features, 
shows good classification performance above the target threshold (see Fig. 6.7).

The second feature ranking variant was conducted with the WEKA function 
‘SVMAttributeEval’, which is designed based on the feature ranking method 

7.1 Evaluation Results
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developed by Guyon et al. (2002). The resulting feature ranking is  different 
from the one obtained by the RapidMiner (v5.3) SVM weight function. The 
 performance of the different variations with different amount of features by cross- 
validation show overall a better performance of the WEKA based feature selection 
(see Fig. 6.9).

Looking at a comparison of two variants, one with the top ranked 20 features 
and the other with the 20 lowest ranked features, the classification performance 
differs for each programme (RapidMiner & WEKA) (see Fig. 6.10). Whereas the 
RapidMiner (v5.3) variant surprises with a better classification performance for 
the lowest ranked features, the WEKA variant shows the expected result of signifi-
cantly better classification performance for the version with the 20 highest rank-
ing features. Based on these results, the overall better classification performance 
of variants with feature selection and the better documentation of the WEKA func-
tion, the ranking of the RR manufacturing programme is conducted based on the 
WEKA feature ranking. In the following, scenarios II and III, the WEKA function 
is also employed as the function of choice.

Looking at the individual and combined vectors of the manufacturing pro-
gramme, the results are interesting. Table 7.1 illustrates the change in rank of cer-
tain features along the manufacturing programme in an excerpt of the full feature 
ranking set up. The full ranking containing all features is provided in the Annex 
(see Annex Table A.11). The RR feature ranking evaluation results are similar to 
the ones obtained by the analysis of the CHEM scenario which is analyzed after.

The interesting development is that certain parameters (features) which are 
ranked rather high within the individual processes (TOM(RR), DICK(RR) & 
HARRY(RR)) feature rankings, are often not ranked as that relevant when it comes 
to the combined vectors TD(RR) and TDH(RR) and vice versa. For  example, 
‘para.51’, the highest ranked feature of process TOM(RR) (No.1) is ranked number 
103 in TD(RR) and even number 158 in TDH(RR). On the other hand, ‘para.77’, 
ranked rather low with number 77 in TOM(RR) is ranked number 11 in TDH(RR) 
but number 85 in TD(RR). Interestingly, for DICK(RR), three parameters which 
are ranked closely together in the individual ranking (no. 30; no. 31; no. 32)  
are all ranked within the top ten highest ranked features for both TD(RR) and 
TDH(RR). However, the top ranked feature ‘para.DICK.29’ during the individual 
process DICK(RR) is ranked number 32 in TD(RR) and number 136 in TDH(RR). 
For process HARRY(RR), two of the top ten ranked features (‘para.HARRY.67’; 
‘para.HARRY.11’) are also ranked within the top ten of TDH(RR). One of them, 
‘para.HARRY.67’ ranked the most important feature of TDH(RR). The top ranked 
feature of the individual process HARRY(RR), ‘para.HARRY.43’ is ranked lower 
at position 30 in TDH(RR). A feature, rather lowly ranked with number 54 in the 
individual process HARRY(RR), ‘para.HARRY.1’ is ranked the high number 10 in 
the combined vector TDH(RR).

The feature rankings of the CHEM manufacturing programme are obtained 
using the SVM evaluation (feature weights). This is applied according to Guyon 
et al. (2002) by using the WEKA function ‘SVMAttributeEval’. The features of 
the (individual/combined) vector are ranked by the square of the weight assigned 

http://dx.doi.org/10.1007/978-3-319-17611-6_6
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by the SVM classifier. The following Table 7.2 shows an excerpt of the resulting 
ranking for the different processes, combined processes and the complete manu-
facturing programme (to analyze cross-process intra-relations). In this table, the 30 
features ranked most important are displayed, expanded by selected additional fea-
tures chosen to illustrate the changing importance over the process. A full ranking 
containing all features is provided in the Annex (see Annex Table A.12).

In Table 7.2, it becomes apparent that in the combined state vectors 
TD(CHEM) and TDH(CHEM), different and/or additional state drivers (features) 
become relevant compared to those identified as relevant by feature ranking in the 
individual processes. Next, selected examples are discussed to analyze the findings 
further.

Table 7.1  Feature ranking RR manufacturing programme (selected)

7.1 Evaluation Results
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Looking at feature ‘BiologicalMaterial01’ of process TOM(CHEM), ranked as 
most important in the individual process, it can be observed that the importance 
decreases to rank no. 17 in the combined TD(CHEM) vector. In the ranking of 
the features for the complete manufacturing programme TDH(CHEM) the fea-
ture ‘BiologicalMaterial01’ is the least important feature of all, ranked as no. 137. 
This indicates that features which are highly relevant state drivers for individual 
 processes, may have little influence when the whole multi-stage manufacturing 
programme is concerned.

On the other hand, looking at feature ‘ManufacturingProcess42’ (rank no. 36 in 
TOM(CHEM)), the influence of features in individual processes may be insignifi-
cant. However, the same feature is the ranked no. 6 (TD(CHEM)) and no. 8 of the 
most influential features for the whole manufacturing programme TDH(CHEM), 
resembling the highest rank of all features from process TOM(CHEM) in the rank-
ing, surpassing all 35 features ranked higher individually.

Similar examples include ‘ManufacturingProcess16’, being ranked no. 51 
(TOM(CHEM)) and no. 1 (TD(CHEM)) and ‘BiologicalMaterial06’ ranked no. 45 
(TOM(CHEM)) and no. 5 (TD(CHEM)). However, both features rank significantly 

Table 7.2  Feature ranking CHEM manufacturing programme (selected)
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lower when analyzing the complete manufacturing programme TDH(CHEM) with 
rank no. 88 (‘ManufacturingProcess16’) and no. 31 (‘BiologicalMaterial06’). This 
indicates that the increase of importance of a feature within a manufacturing pro-
gramme is not necessarily increasing towards the final state but can have its peak 
at different checkpoints throughout the manufacturing programme.

On the other hand, looking at the two highest ranking features, ‘Parameter 
29’ and ‘Parameter 38’ of process DICK(CHEM), a steady decrease in impor-
tance can be observed. Here formerly highest ranking ‘Parameter 29’ is show-
ing a larger decrease with rank no. 40 (TD(CHEM)) and no. 129 (TDH(CHEM)) 
than ‘Parameter 38’ with rank no. 11 (TD(CHEM)) and no. 103 (TDH(CHEM)). 
However, both indicate that features considered important state drivers for indi-
vidual processes may have steadily decreasing impact considering the final state.

Another interesting observation of the ranking is that the individual processes 
seem to have different weights overall when it comes to the combined state vec-
tors. When looking at TD(CHEM), it can be observed that only one feature of 
process DICK(CHEM) is ranked within the top 30, this being ‘Parameter 38’. 
Looking further, in the complete manufacturing programmes vector TDH(CHEM), 
it is transparent that no feature representing process DICK(CHEM) is ranked 
within the top 30 most important features. Furthermore, only 8 features from 
process TOM(CHEM) are among the top 30, leaving 22 features from process 
HARRY(CHEM) dominating the feature ranking. Speculations that the impor-
tance of the processes increases over the sequence cannot be supported by the 
data as TOM(CHEM) is the first process before DICK(CHEM) in the manufac-
turing programme. It can be assumed that the processes have a rather individual 
influence.

In the third scenario, the SECOM process was analyzed. In this case the evalua-
tion was focusing on an individual process instead of a manufacturing programme 
with multiple processes. However, feature ranking and selection was applied to the 
SECOM process and the results show similar results to the ones obtained in the 
prior scenarios.

Overall the presented findings within the evaluation of feature ranking (feature 
selection) are considered important for answering the research question and the-
fore the hypotheses. The findings indicate that parameter relationships may vary 
considerably through the manufacturing programme’s process chain and may illu-
minate some of the known/unknown process intra- and inter-relations discussed 
earlier from a theoretical point of view. However, this is discussed in more detail 
in the following Sect. 7.2.

The classification results of the SECOM data set after feature selection is 
applied show that the results are equally good or better than with the full feature 
set (see Figs. 6.45 and 6.46). This confirms the results of the other two scenarios, 
that by applying feature selection, relevant state characteristics (state drivers) are 
selected which allow a judgment of the quality performance (final product state) of 
the product.

7.1 Evaluation Results
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7.1.5  Classification Performance on Previously  
Unknown Data

For the Rolls-Royce data set the test of classification performance has been 
 conducted. The results show very good classification performance on previously 
unknown data (learning 70 % and test 30 % split). However, these results might 
not be transferable/generable and thus evaluation may not be possible as SMOTE 
was applied previous to provision by Rolls-Royce. With SMOTE applied, the split 
of the data set does not guarantee that the test data is not (partly) incorporated 
in the learning set as SMOTE does create additional examples based on exist-
ing ones. Thus a bias is involved and the results are questionable in relevance. 
Thereafter, this question was evaluated using the SECOM data set and the results 
seem to confirm the suspicion (see Fig. 7.2).

The CHEM data set in scenario two showed poor classification performance 
when it comes to previously unknown data. However, after applying parameter 
optimization of the SVM algorithm, SMOTE oversampling of the minority class 
for the learning set and subsequent feature selection, the classification results of 
the minority class are acceptable (see Fig. 6.30). The best results show an over-
all accuracy of 88.5 % with three of the four percentages being significantly over 
the threshold of 80 % and just one being slightly below (76.5 %). Even so they 
are lower than the optimized cross-validation results, which is common and would 
raise suspicion if not so, the results show that it is possible to reach good classi-
fication performance with a trained model on previously unknown data. This is a 
prerequisite for an application of the approach within an industrial manufacturing 
environment for e.g., monitoring tasks.

The classification results of previously unknown data in a timely sequence 
along the process is conducted by using the first 70 % of examples as the train-
ing set and the latter 30 % of examples as the test set. The classification perfor-
mance is not as good as with the random split (see Fig. 6.25). As the distribution 
of ‘fail’ examples in the data set was found to be uneven (see Fig. 6.34) and more 

Fig. 7.2  Comparison of classification performance results on previously unknown data (split 
after SMOTE application)
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dense towards the end of the process, this was to be expected. The random split 
had a similar ‘fail’/‘pass’ ratio whereas in the timely split, the ratio of the learn-
ing set was significantly lower than that of the test set. This indicates that the 
trained model was not able to take the characteristics of most ‘fail’ examples into 
consideration which may explain the lower performance. By applying parameter 
optimization, feature selection and SMOTE oversampling of the learning set, the 
classification results improved further and thus resembled the tendency of the 
results from the random split case (see Fig. 6.32). However, similar to the random 
split, it can be assumed that the performance will improve even further with the 
increase of examples available for the model generation. Looking at the resulting 
time plot of the predicted product states (see Fig. 6.33), the classifier enables early 
identification of disruptions within the manufacturing process and thus allows the 
process owner to react. This, combined with the reduction of the feature set and 
thus identifying relevant state drivers, supports process control within the manu-
facturing system.

Furthermore, if expert knowledge is available, the examples for the learning set 
can be selected in a supervised fashion and possibly improve the results even fur-
ther. In this case, the examples within a class do not have such a wide spread and 
variety as they do in scenario three, making the task at hand very challenging.

The SECOM data set performs poorly when classification of previously 
unknown data is concerned based on the split of the data set in a learning (70 %) 
and test (30 %) set in two different cases. One case is based on a random split 
of learning and test set with a similar ratio in both. The second case is based on 
a split in timely succession, with the first 70 % of the examples resembling the 
learning set and the latter 30 % the test set. In the second case, the ratio is a little 
more uneven as the ‘fail’ examples are not distributed evenly throughout the pro-
cess. Even so a slight increase in performance could be observed in the first case 
(see Figs. 6.47 and 6.48), the difference is marginal, that it neither confirms nor 
negates the ability of feature selection to improve the classification of previously 
unknown data. At this point, the classification of previously unknown data has to 
be considered not applicable for the current SECOM data set.

In order to show how the increase in examples of the minority group will affect 
the performance of the classification results on previously unknown data the 
 following Fig. 7.2 depicts the results of a learning (70 %) and test (30 %) split 
after SMOTE is applied on the SECOM data set (‘Approach 2 Var. 2 plus 15’). 
The SVM algorithm has an ANOVA kernel, with the same optimized parameters 
identified previously (kernel gamma 2.0; kernel degree 3.0; C 2.6).

In this case it is assumed, that future minority examples are of similar nature as 
the previous ones. It has to be noted that the different SMOTE percentages are not 
completely comparable as the random split of the data was applied after enhanc-
ing the data set. Therefore the examples contained in learning and test set may 
vary. However the general direction of the results show significant improvements 
of the classification when more examples are available. Even with a small amount 
of SMOTE (200 %) applied, the results meet the target threshold for classifica-
tion performance of cross-validation. This indicates also that the assumption of not 

7.1 Evaluation Results

http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_6


200 7 Evaluation of the Developed Approach

comparing the classification of previously unknown data of the RR data set (split 
after SMOTE) to the ones achieved by the CHEM and SECOM data sets (split 
pre-SMOTE). The assumption that the SECOM data set minority class contains 
examples of very diverse nature is supported by this result. This may ease the pres-
sure of the previous assumption of overfitting to some extent.

In the following sub-section, the presented results are critically discussed based 
on the previously raised research hypotheses (see Sect. 5.3).

7.2  Discussion of Evaluation Results

The critical discussion of the evaluation results is based on the three application 
scenarios and structured around the three main hypotheses. However, this provides 
only a rough structure, with possible overlaps in argumentation due to the inter-
twined nature of the results.

Hypothesis 1
At first, the evaluation results relevant for hypothesis 1 are presented. The hypoth-
esis states that the ‘Capturing of process intra- and inter-relations by implica-
tion through application of SVM’ is possible. This hypothesis was split in two 
sub-hypothesis. Hypothesis 1.1 (‘Application of SVM allows to identify state driv-
ers of individual processes’) focusing on the individual process and hypothesis 
1.2 (‘Combining different processes allows to identify relevant drivers at different 
phases of the manufacturing programme’) focusing on intra-relations within the 
manufacturing programme.

The evaluation results show that by selecting relevant information as a rep-
resentation, in this case features/attributes by their weight vector w allows to 
describe the description of the product and process state. This is in accordance to 
the product state concept’s main idea to identify a set of relevant information by 
which the product’s state can be described comprehensively. As discussed previ-
ously, the challenge was to include the process intra- and inter-relations between 
the state characteristics, both within a process and across process borders as there 
exists a knowledge gap.

For the individual process (hypothesis 1.1 ‘Application of SVM allows the 
identification of state drivers of individual processes’), the equally good or 
improved classification performance of the reduced data set in comparison to the 
original (full featured) data set in all three scenarios confirms that it is possible 
to identify relevant state characteristics or state drivers by applying feature rank-
ing on manufacturing process data. The feature ranking method based on Guyon 
et al. (2002) utilized the process intra- and inter-relations between features (or in 
this case state characteristics/state drivers), and thus includes those  considerations 
in the selection process. As previously stated, the weight vector w is the basis of  
the feature selection method by Guyon et al. (2002). This emphasizes the role  
of the weight value of the support vectors in identifying the relevant state  drivers 
of the processes and combined vectors. However, it has to be noted, that the 
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 ranking does only rank all available features (using RFE) but does not provide 
information concerning the optimal threshold.

In this case, either expert knowledge needs to be included to select the set of 
relevant features or the set may be established by further experimentation. In sce-
nario II and III further experimentation was applied to chose a promising amount 
of features through comparing the classification performance by cross-validation. 
For scenario I, the results of feature selection based on the feature ranking show 
that the classification performance of a reduced set is very good but not as good 
as the full feature set. For scenario I, expert knowledge is available, but due to the 
confidentiality agreement, the experts were not able to provide detailed feedback of 
what features are already known as relevant process parameters and what features 
are potential new ones. In this case, the information regarding to what individual 
parameters mean, contain or measure is not available to the author. However, the 
qualitative feedback by experts confirms the accuracy of the identification of rel-
evant state drivers by applying SVM based feature selection on product state data.

Another difference of the feature ranking between scenario I and scenario II 
& III is that for scenario one it was done utilizing the RapidMiner (v5.3) function 
‘Weight by SVM’ which allows an export of the weight values (normalized) and 
the WEKA function, whereas in scenario II and III only the ‘SVMAttributeEval’ 
function based on Guyon et al. (2002) in WEKA was utilized. The WEKA ranking 
was showing more consistent results in the evaluation and according to the expert 
feedback in scenario I, the results are more compliant to the existing knowledge 
of the processes. Therefore, the WEKA ranking was utilized thereafter. However, 
both approaches show that good classification of acceptable (‘pass’) and unaccep-
table (‘fail’) is possible within a ‘real world’ manufacturing process by identifying 
and using relevant state drivers (features).

After confirming the statement of hypothesis 1.1, the following paragraphs 
focus on the evaluation results with relevance to hypothesis 1.2 ‘Combining dif-
ferent processes allows the identification of relevant drivers at different phases 
of the manufacturing programme’. Hypothesis 1.2 is focussed on the follow-
ing: the accumulating (combined) vectors are constructed from the TOM, DICH 
and HARRY vectors in scenario I and II. At stage 1, post process TOM, the state 
vector is the single process TOM’s vector. For each vector a quality assessment 
is available in the form of a ‘pass’ and ‘fail’ label. Similarly, for the second stage, 
post-process DICK, the state vector TD will be the concatenated vectors TOM and 
DICK. This is repeated for the final stage post-operation HARRY. In this way the 
state vectors increase their dimensionality by the number of features of the last 
process included for each process stage of the manufacturing programme TDH.

In the previous section, it has been shown (see Tables 7.1 and 7.2) that the fea-
ture selection applied to combined vectors show variations within the ranked fea-
tures. The combined vectors partly rank previously top ranked features (individual 
processes) rather low and previously low ranked (unimportant) features rather 
high. Given the established results of feature selection for individual processes by 
cross-validation performance, it is confirmed that the ranking reflects the relevancy 
of features correctly.

7.2 Discussion of Evaluation Results
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As the combined vectors do not reflect the ranking of features of the con-
tained individual processes, the variation can be retraced to the cross-process pro-
cess intra-relations and their influence on the results. It has to be noted that the 
ranking can only reflect the information available. Therefore, the combined vec-
tor has to include all available features of the original processes pre-elimination. 
This stands true also for information not available to the classifier. Projecting this 
on the previously used example, if there is no feature available indicating what 
clamping method was used, the influence on the heat treatment cannot be identi-
fied. Therefore it is utmost important to collect as much information as possible 
prior to feature selection.

It has been shown in previous applications of feature ranking and selection in 
different domains and has been confirmed by the three manufacturing evaluation 
scenarios that the identification of relevant information is possible. In conclusion, 
it was confirmed by the evaluation results that the stated hypothesis is confirmed 
given the assumption. The limitations of the evaluation approach that may have an 
impact on this judgment are presented in the final sub-section of this section.

The identification by feature selection and thus incorporation of implicit pro-
cess intra- and inter-relations on process and programme level supplements the 
three areas of relevant information identification of the product state concept 
(Sect. 4.3.5). The ML approach is intended to support experts who design the 
monitoring system for the manufacturing programme. It allows to benefit from 
previously unknown process intra- and inter-relations relations between state char-
acteristics within processes/operations and across process-borders. It has to be 
noted that it is not intended as a standalone and fully automated approach at this 
stage. The approach integrates not only in the previously introduced product state 
concept but supports the intelligent manufacturing vision.

Hypothesis 2
The discussion of hypothesis 2 ‘Adaptability to changing conditions through 
application of SVM’ is based on the results of the three different manufacturing 
scenarios. The adaptability may be viewed from two general perspectives, first, 
considering the application domain and second regarding changes in process and/
or environmental factors.

Looking at the adaptability of the proposed concept for different domains, the 
results of the three scenarios indicate that this is quite high within the overall man-
ufacturing domain. The concept was successfully applied to three different manu-
facturing domains:

•	 Scenario 1—mechanical manufacturing (see Sect. 6.2)
•	 Scenario 2—chemical manufacturing (see Sect. 6.3)
•	 Scenario 3—semiconductor manufacturing (see Sect. 6.4)

The three domains chosen as evaluation scenarios represent a wide variety of man-
ufacturing applications and thus allow the conclusion that the concept is applica-
ble and highly adaptable within the manufacturing domain. Even though the wide 
spread of the chosen scenarios may indicate that the concept may also be applica-
ble within other domains outside of manufacturing, this can neither be confirmed 
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nor negated based on the conducted evaluations. The adaptability of the concept 
on other processes/process chains, e.g., in the service domain has to be analyzed in 
future studies (see Sect. 8.2). Given that Guyon et al. (2002) successfully applied 
the feature selection method in the medical domain indicates a good chance for a 
successful transfer of the findings to different domains.

The second perspective, focusing on the adaptability of the concept based on 
changing process and/or environmental factors, can be confirmed. The concept is 
able to adapt to changing conditions rather quickly as the basic model generation 
of the SVM algorithm can be adapted as soon as new learning data is available, 
which allows a real time adaptation. This is supported by the small amount of 
time needed to train the classifier model with new training data and apply the new 
model on new classification tasks. However, in order to do that, expert input is 
necessary to evaluate when the model needs to be updated by new learning exam-
ples (supervised learning). Looking at the results of the SECOM data set (scenario 
3), the importance of having a meaningful learning set is eminent especially when 
the approach is supposed to classify formerly unknown date with high accuracy.

Partly related to the second perspective, the computing efforts can be con-
sidered reasonable once a set of suitable parameters for the model generation is 
established. This stands true even for big data sets like the SECOM or RR data set. 
The model generation and subsequent application of the trained model takes very 
little computing resources and effort. With regard to computing time, the train-
ing of the classifier model requires seconds/minutes rather than hours and can be 
considered almost real time. This is a significant advantage when it comes to the 
application within an industrial manufacturing environment.

Finding suitable parameters through optimization of cross-validation classifica-
tion performance however may require a certain amount of computing resources 
and effort. In particular for bigger data sets, an optimization run can easily take 
(significantly) more than 10 h in RapidMiner (v5.3), even when the optimizing 
parameters are split in different runs.1 This is due to the exponential increase of to-
be-calculated cases with every added optimization parameter. A complete optimi-
zation run is not required for every adjustment of the training data, therefore in 
established scenarios, the optimization runs are more likely to be located within a 
10–15 min timeframe.

Overall, the results confirm that the concept is indeed adaptable to different 
domains (of manufacturing) and changing conditions of the process and/or envi-
ronmental factors and thus hypothesis 2 can be regarded as confirmed.

Hypothesis 3
The third hypothesis ‘Through application of the SVM approach, defect products 
can be identified’ focuses on the evaluation of the ability to integrate the approach 
in a manufacturing programme in the current form in order to improve product and 
process quality in the sense of an intelligent manufacturing system.

1Specifications of machine used: Processor: 2.6 GHz dual-core Intel Core i5 processor (Turbo 
Boost up to 3.1 GHz) with 3 MB shared L3 cache (fourth generation Intel Haswell); Ram: 8 GB 
of 1600 MHz DDR3; SSD: 512 GB PCIe; Graphics: Intel Iris 1024 MB; OS: OS X 10.9.2.

7.2 Discussion of Evaluation Results
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In this case the overall hypothesis was split in two sub-hypothesis, hypothesis 3.1 
‘the trained SVM system is able to detect faulty products in the manufacturing 
programme’ and hypothesis 3.2 ‘a connection to the identified state drivers can 
be established within the set of (within the manufacturing programme) identified 
defect products’.

Overall, the issues raised in hypothesis 3 cannot be confirmed at this stage 
based on the evaluation conducted and the obtained findings. Whereas some find-
ings support the hypothesis others do not. For hypothesis 3.1, the findings of the 
classification performance on formerly unknown data are highly relevant. The 
three scenarios present very diverse feedback on this issue.

As stated beforehand, even though tests of the classification performance of 
previously unknown data have been conducted with the RR data set, these results 
can neither be applied to confirm nor negate the raised hypothesis. This is due to 
the fact that SMOTE oversampling has been applied prior to provision of the data 
set. Thus the results may be biased as described in Sect. 7.1.5.

Initially showing low classification performance when it comes to previously 
unknown data, the TOM(CHEM) manufacturing process classification results 
improved during the evaluation. After applying parameter optimization of the 
SVM algorithm, SMOTE oversampling of the minority class for the learning set 
and feature selection, the classification results of the minority class can be consid-
ered acceptable (see Fig. 6.30). The best results show overall accuracy of 88.5 % 
with three of the four percentages being significantly over the threshold of 80 % 
and just one being slightly below (76.5 %). Even though they are lower than the 
optimized cross-validation results, the findings confirm that it is possible to reach 
good classification performance with a trained model on previously unknown 
data for the TOM(CHEM) data set. This is a prerequisite for an application of the 
approach within an industrial manufacturing environment e.g., monitoring tasks.

As stated before, looking at the split based on timely sequence of learning/test 
set, which is the most relevant for industrial application, the uneven distribution of 
‘fail’/‘pass’ examples over the process run made a comprehensive model genera-
tion difficult and may explain the classification results. By utilizing pre-processing 
steps similar to the randomly split variant, feature selection and SMOTE over-
sampling the classification performance on previously unknown data in a timely 
sequence split could be significantly improved (see Fig. 6.32). Given the chal-
lenging starting position, this can be regarded as a very good result. Looking at 
the time plot of the predicted product states, it can be observed that disruptions 
within the manufacturing process can be correctly predicted by the classifier at an 
early stage, allowing for preemptive measures to bring the process back on track. 
Such a prediction, especially with a significantly reduced feature set may allow 
the process owner to preemptively adjust the process and reduce the risk of such 
a relatively long period of manufacturing products without sufficient quality. This 
result of the evaluation of scenario II can be considered in favor of hypothesis 3 
and especially hypothesis 3.1.

It can be assumed that the performance of classification on previously unknown 
data will improve further with the increase of examples available for the model 
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generation. Furthermore, if expert knowledge is available, the examples for the 
learning set can be selected in a supervised fashion and possibly improve the 
results even further. In this case, the examples within a class have not had such a 
wide spread and variety as they do in scenario three, making the task at hand very 
challenging.

As previously stated, the poor classification results of the SECOM data set even 
after elaborate pre-processing through feature selection and SMOTE oversampling 
do not support the hypothesis. A possible reason may be that the negative exam-
ples (minority class) are very diverse in nature which do not allow the classifier 
to prepare the model accordingly to successfully classify new negative examples. 
It may be possible that over time the classification results of previously unknown 
data improve when a bigger selection of minority examples are available to train 
the model. However, at this point this is speculation and thus the results of sce-
nario three do not confirm the hypothesis.

For hypothesis 3.2, the results confirm that the approach takes implicit  process 
intra- and inter-relations into account and identifies the relevant state drivers. 
However, at this stage, the results allow no connection of process intra- and inter-
relations and individual state drivers to defects. In order to do that, expert input  
is needed. Furthermore, the SVM approach does take process intra- and inter- 
relations into consideration but does not allow to extract those. Therefore, this sub-
hypothesis cannot be confirmed at this stage.

Overall, it shows that in order to fully explore the questions raised in hypoth-
esis 3, further research, ideally in collaboration with industry directly in the pro-
cesses, is necessary. At this stage, the results from e.g., the predictive states in 
time plots of the TOM(CHEM) process indicate an outcome in favor of the raised 
hypothesis.

After the previous discussion of the evaluation results structured roughly 
around the raised hypotheses, Table 7.3 provides a summary of the findings.

7.3  Limitations

In this section, the limitations of the concept are illustrated and discussed.
First of all, the chosen approach proved useful with quantifiable parameters 

during the evaluation. However, theoretically the state can also be described by 
using qualitative parameters. Even if those are digitized, it may prove difficult 
to use qualitative parameters in methods, which depend upon the needs to calcu-
late distances between vectors like the chosen SVM. There are several methods 
available to transform qualitative measures in quantitative ones which can be uti-
lized with supervised learning methods (e.g., Bratko and Suc 2003). If such an 
approach is applicable within the developed concept, it needs to be studied in 
future research.

The synthetic data sets used for the evaluation in the first and second sce-
nario may not represent a ‘real world’ manufacturing data set in all nuances. 

7.2 Discussion of Evaluation Results
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Table 7.3  Summary of the results with regard to postulated hypotheses

Research hypotheses Result of evaluation

1 ‘Capturing of process intra- and 
inter-relations by implication through 
application of SVM’

The evaluation results confirm the hypothesis 
statement that by applying feature ranking 
based on SVM it is possible to capture process 
intra- and inter-relations by implication 
throughout the manufacturing programme

1.1 ‘Application of SVM allows the  
identification of state drivers of  
individual processes’

The performance of processes with a reduced 
feature set are equally good or better than the 
ones using the full feature set. This confirms 
that by selecting relevant information, the 
product and process state can be sufficiently 
described. Hence, hypothesis 1.1 is confirmed

1.2 ‘Combining different processes allows 
the identification of relevant drivers at 
different phases of the manufacturing 
programme’

Evaluation results of scenario I & II show that 
the combined vectors’ feature ranking  
differ from the individual rankings for specific 
features. This confirms that cross-process 
process intra-relations are reflected in the 
results and all relevant state characteristics of 
a manufacturing programme may be  
identified by applying the proposed method. 
This confirms hypothesis 1.2

2 ‘Adaptability to changing conditions 
through application of SVM’

The three scenarios describe very diverse 
domains and data sets. The approach was 
shown to be applicable to all three scenarios 
which shows its broad applicability and 
adaptability. The relative ease of adapting 
the learning set in case new examples, expert 
knowledge and/or attributes are available  
confirms the adaptability of the approach
Determining the classes of the synthetic  
processes in two different ways with  
comparable results, shows additionally the 
adaptability and broad applicability of the 
concept. Adaptability of the model based 
on the learning set and application does not 
require much computing effort and resources 
once suitable parameter configuration has 
been established. This allows for a fast  
creation and application of model-updates as 
soon as new examples for the learning set are 
available e.g., when process and/or  
environmental factors change over the  
course of a manufacturing programme
Therefore, hypothesis 2 can be considered 
confirmed for (manufacturing) processes with 
a similar structure of the data sets

(continued)
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Even though an effort was made to synthesize the data set as close to the realistic 
manufacturing “master data set” as possible, a complete (100 %) accurate simu-
lation of real world data may not be possible. To reflect two different extremes, 
the synthetic processes and combined vectors of scenario I and II are tailored to 
show a rather good classification performance (scenario I) and a more challenging 
classification performance (scenario II). This is only based on the assigned class 
labels, not on the process data itself. The synthetic processes resemble their ‘par-
ent’ real world processes by characteristics such as mean and standard deviation. 
An effort was made to change the definition of class (by cluster in scenario I and 
random in scenario II) in order to show that the results are comparable in different 
variations. However, the main findings are mostly of methodological benefit. The 
results show that such process intra- and inter-relations and driving states can be 
identified by the approach and how the results look like. Furthermore, the interpre-
tation is a main finding. It does not and is not intended to represent evidence that 
the same results may be obtained when applying the approach to a ‘real world’ 
manufacturing programme. It has been shown that even the three ‘real world’ data 
sets behave in different ways when it comes to applying classification algorithms. 

Table 7.3  (continued)

Research hypotheses Result of evaluation

3 ‘Through application of the SVM 
approach, defect products can be 
identified’

Hypothesis 3 could not be confirmed nor 
negated during the evaluation within this  
dissertation. Whereas some results indicate 
that the hypothesis is true, others do not 
entirely support the hypothesis at this stage. 
To fully elaborate this issue, further data 
and in process application and evaluation is 
necessary

3.1 ‘Trained SVM system is able to detect 
faulty products in the manufacturing 
programme’

Whereas the results of the classification 
performance on formerly unknown data 
partly support this sub-hypothesis, they do 
not confirm it beyond doubt over all evaluated 
scenarios. In this specific area, a collaborative 
evaluation in process with an industrial partner 
is necessary to answer the raised research 
question

3.2 ‘A connection to the identified state 
drivers can be established within the  
set of (within the manufacturing  
programme) identified defect  
products’

The results confirm that the approach takes 
implicit process intra- and inter-relations 
into account and identifies the relevant state 
drivers. However, at this stage, the results 
allow no connection of process intra- and 
inter-relations and individual state drivers to 
defects. In order to do that, expert input is 
needed. Furthermore, the SVM approach does 
take process intra- and inter-relations into 
consideration but does not allow to extract 
those. Therefore this sub-hypothesis cannot be 
confirmed at this stage

7.3 Limitations
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Nevertheless, the successful application of the approach on three different ‘real 
world’ data sets shows comparable and similar results over all scenarios.

The data set on which scenario II is based upon is published as a regression 
data set. Therefore, there are no two classes defined by design but a quality fea-
ture ‘Yield’. The approach of selecting a certain threshold (Yield 39) to divide the 
data set in ‘pass’ and ‘fail’ classes may be the reason for the partly low classifica-
tion accuracy. However, overall the data set behaved rather well and the results are 
comparable to the ones obtained within the other two scenarios. As ‘Yield’ is often 
used as an important quality measure, this is not surprising. Nevertheless, this lim-
itation has to be taken into consideration.

A rather basic limitation is the needed resources for the application of the 
approach. The resources needed to create a feature ranking may take time and 
computational effort. This stands especially true for large data sets with high num-
ber of examples and features (e.g., scenario III). However, the generation of the 
classification model and its application does not require significant resources. 
Therefore, the limitation based on needed (computational) resources does not 
effect the application of the approach but the efforts beforehand.

Using the built-in feature selection function based on Guyon et al. (2002) in 
WEKA for scenario II and III does not allow to extract the weight vector w val-
ues. This would allow to determine the threshold in a different way and the results 
could be evaluated based on the classification performance. In these cases, a vari-
ety of thresholds was tested and compared to identify a well performing set of 
features. However another limitation of the method is that it does not indicate an 
optimal number of features to be selected for the best classification performance. 
This has to be done by manual experimentation and thus represents a challenge.

Applying another function for SVM feature ranking (RapidMiner (v5.3)) 
instead of the WEKA function allows to extract the weight vector w values. 
However, the two functions are not completely comparable. Therefore, the results 
of scenario I and scenario II and III may be not 100 % comparable when it comes 
to feature ranking. In this case, the option to extract the weight value was regarded 
more important than complete comparability. In any case, the WEKA feature rank-
ing option is regarded the more applicable one as it is directly based on Guyon 
et al. (2002)’s approach.

By dividing the data set in learning (70 %) and test (30 %) set randomly, the 
comparability between different performance results is not guaranteed 100 %. 
Depending which examples are chosen randomly for each set, the training of the 
model may vary to some extent as does the to-be-classified test set. Depending on 
the amount of outliers among the examples within a set (learning or test) this may 
or may not influence the performance significantly. To reduce this effect, the same 
version of the split data set (same examples for each set) is utilized in the different 
evaluations in order to ensure comparability within the analysis.

Missing data or corrupted data represents a significant challenge and limita-
tion to the approach. In ‘real world’ manufacturing process/product data, missing 
values are a common problem accompanied by challenges like noise, redundancy 
and/or inconsistency (Zhang et al. 2009). For the presented approach, missing 
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values (incomplete) within the data set need to be removed/replaced in order to 
determine a learning set. However, as can be observed in the SECOM data set, 
missing values are often not distributed equally within a manufacturing data set. 
Often certain state characteristics (process parameters and features/attributes) 
contain a significantly higher number of missing values than others. Depending 
on the strategy to handle missing values within a data set, either information may 
get lost or a certain bias may be introduced. In the chosen approach to eliminate 
the missing values applying a 4-stage method (see Sect. A.2.3), the feature space 
was reduced to 528 (89, 49 %) from the original 590 features. A comparison of 
the results, identified ‘state drivers’ with the data sets obtained using ‘approach 1’ 
and ‘approach 2 variant 1’ show that when features are eliminated (reduction of 
dimension) also information is lost. For example feature 165 represents a relevant 
driver within the data set (Top 50, ranking no. 2, ‘Approach 2 Var. 2 plus 15’) but 
is not part of the top 50 ranked relevant features of ‘Approach 1’ data set due to 
the elimination process. This highlights the influence of the data pre-processing on 
the approach when handling ‘real world’ manufacturing data. This challenge will 
hopefully be decreasing in importance over time with sensor technology and other 
data capturing technologies developing at a fast pace and provide data sets with 
less missing values and noise.

Ideally all identified state characteristics may be included especially in com-
bined vectors (to identify cross-process process intra-relations) as the SVM algo-
rithm is able to handle large dimensionality (1000+). If it becomes necessary to 
limit dimensionality beforehand, then one will have to start selecting. In such a 
case, the presented dimension reducing methods can be used based on the fea-
ture weight rather than removing variable according to our limited knowledge. 
However, the effect of a selection of features prior to the feature ranking of com-
bined vectors has to be studied. The evaluation conducted within this dissertation 
did not include such variations.

A rather important limitation of the proposed concept, being mentioned before, 
is that if state characteristics (features) are not ‘measured’ (and thus included in 
data) they cannot be ranked and identified as important. Furthermore, possible 
process intra- and inter-relations between state characteristics cannot be taken 
into consideration and identified. However, this limitations leads to a potentially 
important benefit of the concept. By incorporating all possible measures, (even 
those which relations are not known or expected to have no impact) allows to 
identify relevant ones. This way, even formerly neglected state characteristics may 
prove important in one way or another. This may present a starting point for fur-
ther investigations on that particular state driver. This represents a chance at the 
same time where this concept may have a significant impact on the understand-
ing and transparency of manufacturing programmes. At the same time it has to be 
understood that the concept will not automatically identify and extract all impor-
tant (relevant) features and process intra- and inter-relations for all processes with-
out expert input. It presents a tool to support experts in their work and utilize their 
knowledge.

7.3 Limitations
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Overall, it can be stated that there are considerable limitations to the concept 
which may influence the applicability in practice to a certain extent. Some of the 
mentioned limitations may represent starting points for future research efforts.
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This section, structured in two subsections summarizes the research work and con-
cludes the findings before giving a short outlook into potential future directions in 
this research domain.

8.1  Conclusion

As initially stated, the manufacturing domain faces major challenges which may 
be summarized by increasing complexity and dynamics of products and processes 
as well as increasing requirements towards quality. The research problem of this 
thesis is set in multi-stage manufacturing programmes and focuses on the holis-
tic handling of information with the goal of improving product and process qual-
ity. Today, existing solutions focus mostly on individual processes instead of the 
whole manufacturing system and do not incorporate product and process inter- and 
intra-relations. It was found that these process inter- and intra-relations can have a 
significant and varying impact on the quality outcome of successive processes and 
thus on the whole manufacturing programme.

In the dissertation, the product state concept has been developed as a method to 
describe comprehensively a product by its states along a complete manufacturing 
programme. A core mechanism of this concept is the description of the product 
state by a set of state characteristics. The fundamental question of how to identify 
this set of state characteristics to allow a comprehensive description of the prod-
ucts state, set the foundation for the conducted research. A major aspect within 
the work was found to be process intra- and inter-relations between state charac-
teristics, later referred to as state drivers. Today, most manufacturing programmes 
lack sufficient knowledge and transparency with regard to process intra- and inter-
relations making a complete modeling of the system unrealistic. In order to be able 
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to incorporate this crucial element in the analysis, supervised machine learning 
was employed in form of SVM based feature ranking to incorporate successfully 
implicit process intra- and inter-relations of the manufacturing programme.

The evaluation of the research was conducted by using three different scenarios 
from distinctive manufacturing domains based on ‘real world’ data sets. The first 
scenario represented the mechanical manufacturing domain, blade manufacturing, 
with a case provided by Rolls-Royce. The second scenario focused on the chemi-
cal manufacturing domain and the third scenario resembled a semiconductor man-
ufacturing case. The purpose of choosing three different scenarios was to highlight 
the general applicability of the developed concept. The evaluation confirmed that 
it is possible to incorporate implicit process intra- and inter-relations on process as 
well as programme level as required by the product state concept through applying 
SVM based feature ranking. Even so the results confirm that the approach success-
fully utilizes the implicit process intra- and inter-relations between states and state 
characteristics, at this point the relations are not provided as an explicit output of 
the analysis. However, they are implicitly included within the section or relevant 
state drivers. In this regard, expert knowledge is still a crucial factor for the suc-
cessful application of the concept in manufacturing.

Concluding, the presented product state concept allows to identify relevant 
state drivers of complex manufacturing systems. The concept is able to utilize 
complex, diverse and high-dimensional data sets which often occur in manufac-
turing applications. This fits nicely with current initiatives like ‘Industrie 4.0’, 
‘Cyber Physical Systems’ in Europe and the ‘Industrial Internet’ and ‘Advanced 
Manufacturing Partnership’ in the US as well as the growing area of Big Data 
research. It can be safely said that in the near future, the amount of data derived 
from manufacturing operations will increase due to these developments. This 
offers both opportunities and challenges for manufacturing companies and manu-
facturing research. With the developed concept, the increasing data streams can 
be analyzed efficiently and applicable results can be derived. The analysis results 
present a direct benefit in form of the most important process parameters and 
state characteristics, the state drivers, of the manufacturing system. These can 
be directly utilized in, e.g., quality monitoring and advanced process control. 
Additionally, the results represent a first indication of what processes and param-
eters may benefit from a more in-depth analysis. This way, the product state con-
cept indirectly contributes to a sustainable growth of knowledge in manufacturing.

8.2  Outlook and Future Work

During the research conducted within the framework of this dissertation a variety 
of topics emerged which may be worthwhile to trigger further investigations. In 
this section, a short outlook is presented illustrating some of those areas of future 
research.
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One of the bigger aspects of future research is the possibility to apply and 
evaluate different approaches of feature selection. This includes a combination of 
other supervised and unsupervised ML methods with the previously applied SVM 
approach (e.g., random forest). This is expected to strengthen the focus vis-a-vis 
the importance of the state variables. The necessary tools are overall readily avail-
able in the RapidMiner (v5.3), R or WEKA suit. Another interesting aspect of 
feature ranking and feature selection is to investigate the optimal threshold for a 
feature set (feature selection). So far the optimal amount of features is not part of 
the feature selection technique (Guyon et al. 2002).

Going in the same direction, it may be worth investigating to apply a combina-
tion of ML algorithms when creating a monitoring model. Recent advances of e.g., 
RL show promising results in similar application scenarios. A possibility would be 
to utilize the developed approach to determine relevant state drivers of the man-
ufacturing programme and subsequently set up a RL model with those features. 
This would allow utilizing the advantages of both techniques.

Even though as of today it is not common practice in manufacturing to  consider 
the inner product state characteristics, technological development will provide more 
and advanced tools, which allow an efficient and economical capturing of more data 
points. In the wood market it is already possible to scan whole trunks through a 
computer tomography scanner in order to plan the following processes according to 
the given (internal) structure of the wood (e.g., knobs and knots). It can be assumed 
that in the near future it is possible to measure and collect more data that is not only 
more accurate but also requires lower investments. As stated earlier, the more data is 
available the more implicit process intra- and inter-relations may be incorporated by 
applying the proposed concept.

As mentioned before, knowledge about the customer requirements and the 
degree of fulfillment by the product is important to determine ‘good’ and ‘bad’ 
states within the concept. Looking into the usage (middle-of-life) in order to iden-
tify quality problems, which occur after the delivery to the customer, may help to 
identify additional state drivers and support process and product quality improve-
ment further. The authors developed a supporting concept to derive information 
about the usage of products during middle- and end-of-life from all stakeholders 
involved. The so-called product avatar concept may allow to access additional 
information and knowledge which is not easily accessible for the manufacturers by 
creating a digital counterpart for interaction purposed between different stakehold-
ers of a product (Wuest et al. 2012, 2013, 2014). However the integration of the 
two concepts has to be evaluated more closely in future research.

Another important aspect related to the presented research is to analyze the 
transferability of the findings, which are valid only for manufacturing, to other 
product lifecycle phases e.g., the usage phase (middle-of-life). Here an applica-
tion in maintenance (health) monitoring could be feasible and has to be investi-
gated further. Furthermore, a possible connection of identified state drivers from 
the manufacturing phase may prove useful in the design phase, more specifically, 
the conceptual design phase. Transferability of gained knowledge concerning 

8.2 Outlook and Future Work
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the relevancy of certain state characteristics into functional requirements and/or 
design parameters needs to be investigated further.

Studying the transferability of results to other domains than engineering could 
be beneficial, here especially, the health or education domain seem promising. 
Also an application within a service (“service state”) environment may allow new 
insights and improvements in the field. However, without further research no state-
ment of transferability can be given at this point. Apart from researching transfer 
possibilities of the findings to other lifecycle phases, the transfer to other domains 
may be beneficial as well. For example, the health care industry might profit from 
certain findings and ideas of the product state concept and an adaption towards a 
health state concept could be discussed in order to support transparency of health 
monitoring. One possible application within this domain might be to interpret dif-
ferent examinations/examination results as processes and combined process vec-
tors to utilize the implicit process intra- and inter-relations. Another lever may 
be to include environmental factors and different stages in the analysis of genes. 
However, this needs to be done in close collaboration with experts in the respec-
tive field.

A visionary goal may be a self-assessing/analyzing manufacturing system 
within the product state framework supported by the developments in AI, (super-
vised and unsupervised) ML and in sensor technology.
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In the Annex, additional content is presented to extend the previously presented 
research and results. There are two main parts, first the pre-processing of the 
evaluation data sets is described in detail. Not only the approach on how to deal 
with missing values is explained but also how the synthetic processes for scenarios  
I & II are created is shown in detail. A special focus in this part is laid on missing 
data (missing values) as it presents a common obstacle in data based manufactur-
ing operations. How to handle missing values my influence the outcome of further 
analysis conducted with the respective data sets to a large extent. Therefore, the 
first subsection gives an introduction into theory on how to handle missing data. 
Following, the conducted data pre-processing of the three evaluation scenarios is 
presented. The respective references used in this section are included in the previ-
ous reference list. Later different additional tables and figures are sub summarized 
under the section miscellaneous.

A.1 Theoretical Elaboration on Missing Data

As Kabacoff (2011) stated, “[…] in the real world, missing data are ubiquitous”. 
In research as well as in application the approach how to handle missing data and 
information represents an important issue. In this subsection the terms and differ-
ent kinds of missing data are described and established techniques to handle miss-
ing data and information are introduced.

It is important to understand that certain domains have to deal with different 
challenges when it comes to missing data. Where a lot of empirical research is 
conducted, e.g., business studies or psychology, missing data can be, among other 
things, unanswered questions in a questionnaire (Graham 2009). In more experi-
mental and observation oriented domains, e.g., engineering or environmental 
studies, missing data can be, among other things, based on technical failure, like 
failing recording equipment, bad connectivity or miscoded data (Alvo and Park 
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2002; Zhang et al. 2009). There are even reasons unknown to the stakeholders why 
certain data is missing. It can be assumed that in the future, regarding the fast pace 
development of sensor and communication technology, missing data will remain 
an important research area (Williams et al. 2007a, b).

The challenge, of how to analyze a data set with missing values depends on 
various factors. For example, Alvo and Park (2002) point out that missing data in 
multivariate data sets presents a different challenge than non-multivariate incom-
plete data sets and needs to be handled in a different way. In this research, the 
missing data problem can be considered is one of missing values in experimen-
tal and observing oriented domains, handling mostly technical reasons for missing 
values. Additionally, in ML, an important part of this research, data sets are often 
of high-dimensional and multivariate nature with complex patterns of missing val-
ues (Ghahramani and Jordan 1994). Therefore, the elaboration will exclusively 
focus on issue inherent to these problems, leaving aspects from other domains out.

Most analytical and statistical methods work under the assumption, that the data 
set the analysis is based on is complete. Some, like Neural Networks are known for 
their capability to handle data sets, which are noisy, imprecise and incomplete to a 
certain extent (Li and Huang 2009). It is important to understand the nature of the 
missing data and the preconditions of the method, which will be applied in order 
to be able to estimate the impact on the ability to answer the substantive research 
questions (Kabacoff 2011). In order to do so, a set of questions should be asked:

•	 “What percentage of the data is missing?
•	 Is it concentrated in a few variables, or widely distributed?
•	 Does it appear to be random?
•	 Does the covariation of missing data with each other or with observed data suggest 

a possible mechanism that’s producing the missing values?” (Kabacoff 2011)

Looking at the question whereas the missing data appears to be random or not, this 
is important for three central concepts in missing data theory: Missing Completely 
At Random (MCAR), Missing At Random (MAR) and Missing Not At Random 
(MNAR) (Graham 2012). This is important for an informed decision to delete or 
replace the data and if replace, what method is applicable.

Missing data and information can have various effects on analysis based on the 
data set in the focus, e.g., generate bias, affecting quality of (supervised) learning 
methods or classification (Zhang et al. 2009). Schafer and Graham (2002) high-
light, that ad-hoc editing of data sets leading to the appearance of completeness 
may do more harm than good. Among the effects of missing data and/or ineffec-
tive editing are the following: findings can be biased, e.g., indicate different prob-
lems, inefficient and unreliable (Schafer and Graham 2002).

Missing data can be generally divided in two categories (Graham 2012):

•	 item nonresponse: describes the case when some, but not all data from the mea-
surement session is available. Reasons can be e.g., loss during collection or 
storage, equipment malfunction

•	 wave nonresponse: describes the case when repeated measures are taken over time 
and all data for some sessions (measures at a point in time) are missing completely.
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Graham (2012) states that item nonresponse missing data can be handled reason-
ably well with available methods whereas wave nonresponse missing data is more 
challenging. Kabacoff (2011) postulates a generic, three step approach researchers 
should follow when dealing with incomplete data sets:

1. “Identify the missing data.
2. Examine the causes of the missing data.
3. Delete the cases containing missing data or replace (impute) the missing  values 

with reasonable alternative data values.”

Of the three steps, only the identification of missing values is considered unam-
biguous. Even step two can proof hard to elaborate in some cases, as it requires 
in depth knowledge of the process, e.g., manufacturing programme, and the 
technique and method used to capture the data. Step three raises a fundamental 
question of two general options of handling missing values that come to mind 
(Kabacoff 2011), both leading to a complete data set:

•	 Remove the measurements containing missing data from the data set
•	 Replace (complete) measurements with missing values with reasonable substi-

tute values.

Removing the missing cases seems to be the logical action. However, it is not 
always the best choice. For one, there are cases, especially dealing with data sets 
of high-dimensionality, when removing cases with missing values eliminates a sig-
nificant amount of the data available. This is when the missing values are spread 
over a large number of cases instead of multiple missing values per case. Another 
factor can be that valuable information can get lost when the cases with miss-
ing values are removed or a bias can be inserted in the data set (Wang and Wang 
2009).

For the other alternative action, replacing the missing values, there are a large 
number of methods available to complete data sets. Among those are e.g., tri-
angle inequality; complete-case analysis (listwise deletion); Multiple Imputation 
(MI) and Maximum Likelihood (MLH) (Hathaway and Bezdek 2002; Schafer and 
Graham 2002; Kabacoff 2011). Under the assumption of MAR, MI and MLH are 
presenting the state of the art today (Schafer and Graham 2002; Graham 2012). 
However, these approaches of replacing missing values to complete the data set 
have also certain risks of introducing bias, distorted, and unreliable conclusions, 
etc. (Feelders 1999; Dasu and Johnson 2003; Wang and Wang 2009; Kwak and 
Kim 2012). It is very important to decide on the right method for the available 
data, taking the product and process into account, and the analysis technique into 
account (Viharos et al. 2002; Wang and Wang 2009).

This section focuses on information and data issues in manufacturing. It is 
split in two factions. The first focuses on the information quality issue, which is 
relevant to every approach based on manufacturing information like the product 
state concept. The product state concept has to comply with the information qual-
ity dimensions and incorporate the principles presented here. The second fraction 
is looking at the common problem of missing data, which is omnipresent in all 
industrial applications where data capturing is involved. The product state concept 
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is dependent on product and process data and thus, missing values occur and have 
to be handled according to existing standards. In the evaluation section (Sect. 6.1) 
a real data set with missing data values is used and the above stated principles 
applied.

In the following subsection, the evaluation scenarios I–III are introduced indi-
vidually and the data pre-processing steps performed are described.

A.2 Pre-processing of Data Sets for Evaluation Scenarios

In this section the three evaluation scenarios are introduced in detail and the avail-
able data for each scenario is presented and analyzed. After the three processes 
and accompanying data sets are presented, individually necessary pre-process-
ing steps are described in detail. The pre-processing entails among other things, 
replacing missing values (scenarios II & III) and the generation of additional data 
(scenarios I & II). The result of this section are three data sets ready for the appli-
cation of SVM algorithms in order to identify state drivers. The three data sets 
complement each other in terms of the evaluation focus areas and goals.

A.2.1 Rolls-Royce (RR)—Data Set (Scenario I)

In this section a data set resembling a manufacturing process of a highly stressed 
product from the aviation domain provided by Rolls-Royce (RR) is introduced. 
Due to confidentiality requirements by Rolls-Royce, the data set is made anony-
mous and the tangible product manufactured and observed cannot be disclosed.

The major advantage of this data set is the access to expert knowledge about 
the process. This allows to specifically choose suitable examples for the learning/
training data set for the model generation of the classifier. This is assumed to be 
highly beneficial for the performance of the approach. This will be explained in 
more detail in Sect. 6.2.

A.2.1.1 Pre-processing of RR Data Set

The process described by the data set is named Tom(RR) and consists of a set of 
85 features (attributes) and 4195 examples (vectors). The parameters are labeled 
para.2, para.3,…,para.n and the real names and contexts are not provided to the 
researcher. The values of the different features are normalized between [−1;1] and 
the actual original values are not disclosed to the researcher. There are no known 
missing values within the provided data set. The data set ratio of ‘pass’ and ‘fail’ 
examples is balanced (50.0 %) with 2098 ‘fail’ and 2097 ‘pass’. To achieve this 

http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_6
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balance and to support the non-identifiable nature of the data set, the data sets 
minority class was enhanced by applying the SMOTE method (unknown percent-
age) by the providing agency. The examples in this scenario are also not in timely 
sequence but in random order. As the data set is pre-processed by Rolls-Royce, 
there is no need for further pre-processing within the setting of this dissertation.

A.2.1.2 Structure of RR Manufacturing Programme

As the data set is pre-processed by Rolls-Royce, the need for further pre- 
processing is minimal. The provided data set describes an individual process and 
not a whole manufacturing programme with several process instances. Therefore, 
additional process instances are added by generating synthetic data sets based on 
the specific characteristics of the original RR data set.

In order to simplify the illustrative nature of the approach it was decided to 
limit the resulting manufacturing programme (TDH(RR)) to three linked manu-
facturing processes. The processes are called ‘Tom(RR)’, ‘Dick(RR)’ and 
‘Harry(RR)’ (TOM(RR), DICK(RR) and HARRY(RR)) and they form a simple 
sequence as defined below in Fig. A.1.

Creating this three process manufacturing programme allows to focus on evalu-
ating hypothesis 1.2, by applying the approach on different combinations of sub-
sequent processes in order to identify state drivers within the programme. In the 
following paragraphs, the rationale and the generation of the data set is presented 
in more detail before the complete data set is presented.

The manufacturing programme thus represent a combination of real world 
process data and generic processes (synthetic data) onto which any specific set 
of manufacturing processes may be mapped. In the above Fig. A.1 the variables 
k, m and n indicate the numbers of quality observations (products) at each com-
pleted process stage (→ product state). In this case the number of examples for 

Fig. A.1  Manufacturing programme TDH(RR) and its three processes
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each inspection is identical for all processes and set to 4195 as provided by the 
initial RR data set. While i defines the number of process variables (→ state char-
acteristics), in this case set to 85 for TOM(RR), 56 for DICK(RR) and 68 for 
HARRY(RR).

For clarity the following terminology will be used. The sequence of TOM, 
DICK and HARRY is the manufacturing programme TDH(RR) while TOM(RR), 
DICK(RR) and HARRY(RR) are the processes of that programme. As was previ-
ously stated, the (complete) manufacturing programme TDH(RR) and also each 
individual process (TOM(RR), DICK(RR) or HARRY(RR)) (in Fig. 6.1 only pro-
cess T is highlighted in red to avoid confusion) may be compared to the manufac-
turing programme utilized in scenarios II and III, as they all have a final product as 
an outcome. Additionally, the combined state vector TD(RR), containing the pro-
cesses TOM(RR) and DICK(RR) is also analysed.

In the following sub-section the generation of synthetic instances for the RR 
manufacturing programme is illustrated.

A.2.1.3 Generation of Synthetic Processes

The use of synthetic data sets is common in the area of statistical learning and data 
mining applications, etc. (Lundin et al. 2002; Reiter 2004; Nonnemaker and Baird 
2009). The reasons are manifold, among others the need for confidentiality, test-
ing (Reiter 2004; Abowd and Lane 2004; Reiter and Raghunathan 2007) and/or 
comparability (Lundin et al. 2002) purposes are arguments for the use of synthetic 
data. There are concerns that synthetic data produces different results as ‘real data’ 
(Abowd and Lane 2004). However, multiple studies show that synthetic data has 
provided results and performed well in application (Nonnemaker and Baird 2009).

There are several ways to create synthetic data and several variations of syn-
thetic data composition (Lundin et al. 2002; Abowd and Lane 2004; Reiter and 
Raghunathan 2007; Jensen 2007; Nonnemaker and Baird 2009). Synthetic data 
has been successfully used in supervised classification, which is similar to the 
approach utilized in this research (Nonnemaker and Baird 2009). Synthetic data 
can represent a large variety of processes, from processes involving heavy human 
interaction to fully automated ones (Barse et al. 2003). A major advantage of 
synthetic data is that it can be used to demonstrate certain properties of a system 
(Barse et al. 2003).

In order to create a synthetic data set that replicates an existing authentic ‘real 
world’ data set, in this case the RR manufacturing process, certain (statistical) 
characteristics need to be derived. These characteristics provide the basis for the 
data generation.

In this case the process of generating complementary synthetic process data is 
designed as follows:

•	 Analyze standard deviation and mean for each feature (attribute) of the original 
data set (using Excel functions ‘AVERAGE’ and ‘STDEV’)

http://dx.doi.org/10.1007/978-3-319-17611-6_6


Annex 221221

•	 Create a probability for each vector (using Excel function ‘RAND’ for a 
Gaussian normal distribution)

•	 Create a probability for each attribute (using Excel function ‘RAND’ for a 
Gaussian normal distribution)

•	 Both probabilities are summarized and divided by 2 giving a unique probability 
for each vector/attribute combination

•	 Replace each value by the inverse normal cumulative distribution (using Excel 
function ‘NORMINV’(‘combined probability of vector/attribute’, ‘mean for 
feature’, ‘standard deviation of feature’) )

•	 The number of vectors is kept as it is given by the original authentic data set
•	 The number of features is varied, but the total number is always lower than the 

one in the original.
•	 The new data set is normalized using Range Transformation [−1;1]
•	 Additionally the class label is defined by identifying extreme clusters and deter-

mine the two which are furthest apart as the poles (determining the class) and 
serve as the learning set. The SVM model based on this learning set is used to 
assign the classes to the synthetic processes.

A.2.1.4 Cluster Analysis to Assign Classes to Synthetic Processes

In this section the process of assigning classes (‘fail’ and ‘pass’) to the synthetic 
processes is presented. In this case the labeling is based on a cluster analysis 
approach whereas in the later described scenario 2, a random approach is utilized 
(see Sect. A.2.2.3). This way the complementary processes resemble the main 
characteristics of manufacturing processes within the specific domain but also dis-
tinguish themselves enough from the original to constitute new and stand alone 
processes.

In a first step a cluster analysis done to identify the extreme clusters which 
resemble the learning set. This is done using the programme Cluster3.0.1 The pro-
gramme analyses the data set using Euclidean distance with an average linkage 
clustering method (see Fig. A.16).

The resulting ‘dendogram’ is then exported and analyzed using Java Treeview 
(v.1.1.6r4).2 This programme allows to identify the extreme clusters of a data set 
including their correlation (see Fig. A.2). The software also allows exporting the 
examples contained within a cluster. By exporting the two most extreme clusters 
and assigning the label ‘fail’ to one and ‘pass’ to the other, a learning set is cre-
ated. This learning set is then used to construct a hyperplane (train a SVM model). 
The labels for the complete synthetic process data set are then assigned by apply-
ing the created SVM model.

1http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm.
2http://jtreeview.sourceforge.net.

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net
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This way the resulting synthetic data set including labels are expected to show 
rather good classification performance in cross-validation. In this case this is wel-
come as it represents a different extreme to the second set of generated synthetic pro-
cesses in scenario 2. This allows to test the concept under different circumstances.

For the first synthetic process, DICK(RR), the cluster analysis shows two 
extreme clusters:

•	 Cluster 1 has a correlation factor of 0.9730 (653 examples)
•	 Cluster 2 has a correlation factor of 0.9938 (332 examples)

These two clusters are the furthest apart and represent the cluster on the extreme 
left (cluster 2) and extreme right (cluster 1). The classes are assigned as follows: 
cluster 1 is considered ‘fail’ and cluster 2 is considered ‘pass’. A cross-validation 
(DOT kernel, orig. parameters) of the learning set prior to model generation shows 
a perfect classification result with no misclassified examples indicating that the 
clusters allow a good separation by the constructed hyperplane.

The same procedure is applied to synthetic process HARRY(RR), identifying the 
two extreme clusters as follows:

•	 Cluster 1 has a correlation factor of 0.9958 (265 examples)
•	 Cluster 2 has a correlation factor of 0.9941 (330 examples)

These two clusters are the furthest apart and represent the cluster on the extreme 
left (cluster 2) and extreme right (cluster 1). The classes are assigned as follows: 
cluster 1 is considered ‘fail’ and cluster 2 is considered ‘pass’. A cross-validation 
(DOT kernel, orig. parameters) of the learning set prior to model generation shows 

Fig. A.2  Screenshot of Java Treeview to analyze cluster ‘dendogram’ and extract examples
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a perfect classification result with no misclassified examples indicating that the 
clusters allow a good separation by the constructed hyperplane.

The cluster analysis for the combined vector TD(RR) leads to three identified 
extreme clusters:

•	 Cluster 1 has a correlation factor of 0.5323 (1889 examples)
•	 Cluster 1.5 has a correlation factor of 0.3991 (4 examples)
•	 Cluster 2 has a correlation factor of 0.8933 (796 examples)

In this case, cluster 1.5 is the extreme cluster on the right side. However, due to 
the small size of cluster 1.5 it is combined with cluster 1, which is the next bigger 
cluster on the right hand side and assigned the label ‘fail’. Cluster 2 represent the 
cluster on the extreme left and is given the label ‘pass’. A cross-validation (DOT 
kernel, orig. parameters) of the learning set prior to model generation shows a per-
fect classification result with no misclassified examples indicating that the clusters 
allow a good separation by the constructed hyperplane.

The cluster analysis of TDH(RR) shows that 3 distinct extreme clusters can be 
identified:

•	 Cluster 1 has a correlation factor of 0.8693 (215 examples)
•	 Cluster 1.5 has a correlation factor of 0.3804 (3 examples)
•	 Cluster 2 has a correlation factor of 0.8666 (366 examples)

In this case, cluster 1.5 is the extreme cluster on the right side. However, due to 
the small size of cluster 1.5 it is combined with cluster 1, which is the next bigger 
cluster on the right hand side and assigned the label ‘fail’. Cluster 2 represent the 
cluster on the extreme left and is given the label ‘pass’. A cross-validation (DOT 
kernel, orig. parameters) of the learning set prior to model generation shows a per-
fect classification result with no misclassified examples indicating that the clusters 
allow a good separation by the constructed hyperplane.

The perfect classification results are to be expected as the classes were assigned 
based on previously developed SVM model. If the same results would show in a ‘real 
world’ data set, this could resemble a case of serious overfitting. In the case of sce-
nario I, the very good classification results are desired to provide an example case. 
The following manufacturing programme presented in scenario II does not sport such 
a perfect classification result to represent cases with a more challenging data basis.

A.2.1.5 Complete RR Data Set

The resulting process vectors (TOM(RR), DICK(RR) & HARRY(RR)), combined 
state vector (TD(RR)) and the manufacturing programme state vector (TDH(RR)) 
are presented in this sub-section.

The original process vector TOM(RR) entails 4195 examples with 85 descrip-
tive features/attributes. The data set is balanced with 2098 ‘fail’ and 2097 ‘pass’ 
examples (50.0 %).
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The synthetic process vector DICK(RR) comprises 4195 examples as well, 
each described by 56 descriptive features/attributes. The data set can still be con-
sidered rather balanced with 1500 ‘fail’ and 2695 ‘pass’ examples (35.8 %).

The last synthetic process vector HARRY(RR) contains 4195 examples with 68 
features/attributes. The ratio of 44.5 % makes the data set slightly less balanced 
than the original (2328 ‘pass’ & 1867 ‘fail’).

The combined state vector TD(RR) with its 4195 examples and 141 fea-
tures/attributes has a ratio of 55.1 % making it also slightly less balanced than 
TOM(RR) (1885 ‘pass’ & 2310 ‘fail’).

The manufacturing programme vector TDH(RR) consists of 4195 examples 
with a total of 209 features/attributes. With 2019 ‘fail’ examples and 2176 ‘pass’ 
examples, the ratio is 48.1 % and almost as balanced as the original data set.

In the following section, the data pre-processing of the second scenario, resem-
bling a chemical manufacturing process is presented.

A.2.2 CHEM—Data Set (Scenario II)

In this section, the second scenario based on a chemical manufacturing programme 
supplemented by synthetic processes, similar to the above example, is presented. 
The scenario and its defining characteristics and principles are illustrated below.

A.2.2.1 Structure of CHEM Manufacturing Programme

The data set describes a chemical manufacturing process is publically available 
as part of the ‘Applied Predictive Modeling’ package (CRAN-R 2014; Kuhn and 
Johnson 2013). In the manufacturing process described, a raw material is going 
through a sequence of 27 operations to manufacture a pharmaceutical product.

The data set consist of 176 examples (vectors) with 57 attributes (features). 
Of those 57 attributes, 12 represent measures of the raw material (input product 
state) and 45 measures of the manufacturing process. The measures of the manu-
facturing process include but are not limited to: temperature, drying time, washing 
time, and concentrations of by-products during different operations. The vectors 
are not all independent as some resemble form a batch of the raw material (Kuhn 
and Johnson 2013). The quality criteria in this case are the values of the ‘Yield’ 
attributes, measured at the end of the process. As this data set is also used for 
regression analysis, for this application the yield threshold dividing the data set in 
‘pass’/‘fail’ examples is set at 39. All examples with a yield of equal or greater 39 
are considered ‘pass’ (good state) and all examples with a yield of lower than 39 
are considered ‘fail’ (bad state). Choosing this threshold allows for a realistic and 
not too unbalanced data set considering both classes.



Annex 225225

The chemical manufacturing data set is available in an R data format (*.RData). 
This is extracted and saved as a *.csv file and imported to Excel. The first analysis 
using RapidMiner (v5.3) shows the following characteristics:

•	 127 examples are of ‘pass’ quality (72.2 %)
•	 27 (15.3 %) of all examples contain missing values
•	 109 values are missing from all attributes (1.1 % of all values)
•	 No missing values in the classification attribute (‘Yield’)

A.2.2.2 Pre-processing of CHEM Data Set

The first step in pre-processing of the CHEM data set is to align the seemingly 
chaotic usage of commas and dots for decimal points. This is done by importing 
and exporting the data set in RapidMiner (v5.3).

The second step in pre-processing the CHEM data set is to focus on the missing 
values. Like most ‘real’ manufacturing process data (Kabacoff 2011), the CHEM 
data set contains also a certain amount of missing data (null values) (Mccann 
et al. 2010). Being a key step of every ML or DM approach, data pre-process-
ing can make up for a significant amount of the overall effort (Cios and Kurgan 
2002). However, the CHEM data set can be considered relatively clean as the 
total amount of missing values makes up for 1 % of all values and is limited to 
27 (out of 176) examples. The SECOM data set, illustrated in the following sec-
tion, presents a more challenging example for a data set in need of significant 
pre-processing.

In this case, the choice is to eliminate 6 examples who contain more than 10 
missing values and replace the missing values of the remaining examples instead 
of eliminating all examples which contain missing values (see Table A.6). The rea-
sons are two-fold: firstly, the total amount of examples in this data set is already 
limited with 176, further elimination would create an even larger discrepancy 
(ratio) between the number of examples and the number of attributes. Secondly, 
the number of missing values is considerably small with 1.1 % of all values and 
0.4 % of remaining values after elimination of the 6 examples containing more 
than 10 missing values. The remaining data set contains 123 ‘pass’ (72.4 %) and 
47 ‘fail’ (27.6 %) examples.

In order to replace the missing values, first, all ‘Na’ are replaced by empty cells 
in excel. This way the missing values named ‘Na’ and the missing values already 
represented by empty cells are equalized. RapidMiner (v5.3) contains different 
functions for replacing missing values in data sets. The most commonly used one 
is using the average of an attribute. In a majority of cases the average function is 
applied. The respective attributes resembling the cases are listed in brackets.

•	 Case 1: Attributes where missing values are replaced using the average func-
tion as the values are diverse and resemble the wide variety of possible values 
(BiologicalMaterial01; ManufacturingProcess03; ManufacturingProcess06; 
ManufacturingProcess14).
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•	 Case 2: Attribute where missing values are replaced using the MinMax function 
as within this process, the values alternate between extremes. In such a case, 
using the average function may introduce some previously not used values and 
thus a bias (ManufacturingProcess02).

•	 Case 3: Attribute where missing values are replaced by a manually defined 
value using the Value function as in this case the variation between very high 
and very small numbers jumped between extremes (ManufacturingProcess10; 
ManufacturingProcess11).

With eliminating or replacing missing values, the data pre-processing is not yet 
completed for the following application of the SVM algorithm. The next step is 
a normalization (also known as ‘standardization’) process which has to be exe-
cuted in order to standardize the data set. This means ensuring the values within 
the different features/attributes are made comparable by adjusting the scale. As in 
“many applications, the available features are continuous values, where each fea-
ture is measured in a different scale and has a different range of possible values. 
In such cases, it is often beneficial to scale all features to a common range” (Ben-
hur and Weston 2010). Normalization plays an important role in the preparation 
of data sets prior to many data analysis and ML algorithms (Herbrich and Graepel 
2001). For SVM application it has been found that pre-processing, especially nor-
malization of the input space is of great importance (Graf and Borer 2001). The 
accuracy of SVM can suffer if no normalization step is executed within the data 
pre-processing stage (Ben-hur and Weston 2010). Graf and Borer (2001) show that 
it is possible to apply normalization within the feature space through normalized 
kernel functions. However, in this research the input will be normalized.

For the data pre-processing before application of SVM algorithms, the use of 
the normalization method ‘range transformation’ is widely accepted (Graf and 
Borer 2001; Abe 2003). The range may be set to [0;1] or [−1.0;1.0] without hav-
ing an effect on the performance of results of the SVM analysis (Abe 2003). This 
normalization method will be applied to the CHEM data set, which was previ-
ously cleaned from missing values. The normalization is executed by utilizing 
RapidMiner (v5.3). It allows for an easy design of data processing processes for 
various purposes. In this case the process for normalizing the CHEM data sets 
contained three main elements:

•	 Data input: The process element reads the source file, in this case a Microsoft 
Excel *.xlsx file

•	 Normalization: The process elements normalizes the data file according to cer-
tain parameters

•	 Data output: The process element provides an output of the normalized data set, 
in this case in from of a Microsoft Excel *.xlsx file.

The parameter settings for the normalization task of the designed process are set 
to the method of range transformation [min;max] [0;1] for all features/attributes in 
the data set. This method normalizes all values of the selected features/attributes 
within the specified range.



Annex 227227

After the data set is normalized, the labels ‘SVM’ and ‘Identifier’ are added. 
‘SVM’ adds the classes with value ‘positive’ for each example with Yield equal or 
over 39 and ‘negative’ for Yield lower than 39. ‘Identifier’ replaces the heading for 
the numbering of the examples (original ‘A’). At the same time the Yield attribute 
is eliminated.

After assigning classes to the examples different analyses can be conducted. 
Looking at the distribution of ‘fail’ examples over time by organizing the exam-
ples in timely succession (see Fig. 6.34) it can be seen that they are not equally 
distributed. This may indicate a change of raw material during the end of the suc-
cession or wear of machines which influences the quality. Even though, this is 
not directly relevant for the following analysis, it indicates the importance of the 
research as the diagram shows a certain timely accumulation of failures within the 
process. If an early identification of problematic states can be utilized, the param-
eters may be adjusted to prevent the following failures. However, at this point that 
has to be considered speculative.

With this last step the data set pre-processing of the CHEM manufacturing pro-
cess is finalized. In the next sub-section the generation of synthetic complemen-
tary processes and their combination to a manufacturing programme is illustrated.

A.2.2.3 Structure of Complete CHEM Manufacturing Programme  
and Generation of Synthetic Processes

Similar to the generation of synthetic processes in the previously described RR 
scenario, the CHEM process is supplemented by two additional synthetic pro-
cesses based on the characteristics of the original real world process. As the pro-
cess was already described in detail in the Sects. A.2.1.2, in this section just the 
main parameters are presented. As can be observed in Fig. A.3, the manufactur-
ing programme consists of three processes with 170 examples (vectors) each 

Fig. A.3  Manufacturing programme TDH(CHEM) and its three processes

http://dx.doi.org/10.1007/978-3-319-17611-6_6
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and different number of attributes (Tom(CHEM) = 57; Dick(CHEM) = 48; 
Harry(CHEM) = 32).

The created synthetic process Dick(CHEM), the second process within the 
manufacturing programme, contains 28 (of 170) (16.5 %) negative examples and 
48 attributes (features) plus the classifying attribute (‘positive’/‘negative’) based 
on ‘yield’ and the Identifier.

The third process, Harry(CHEM) contains 22 (of 170) (12.9 %) negative val-
ues and 32 attributes (features) plus the classifying attribute (‘positive’/‘negative’) 
based on ‘yield’ and the Identifier.

The combined state vector TD(CHEM), containing the processes TOM(CHEM) 
and DICK(CHEM) resembles 170 examples with 105 attributes. Of those 170 
examples, 63 are negative (37.1 %).

Thus, the overall manufacturing programme TDH(CHEM) 170 examples and 
137 attributes (features) plus the classifying attribute (‘positive’/‘negative’) based 
on ‘yield’ and the Identifier. The final ratio is made up from 30 negative examples 
at the final quality control (17.6 %).

The results of the cross-validation of the different processes and combined vec-
tors are summarized in the later Sect. 6.3 (see Fig. 6.13). The classification per-
formance is significantly lower for the CHEM data than it was for the RR data. 
For the synthetic and combined vectors that is due to the different approaches in 
designing the data sets and thus the desired outcome to evaluate different exam-
ples during the evaluation.

In the next section, the SECOM manufacturing programme is introduced and 
analyzed. This data set is considered very challenging given its nature. This cor-
responds with it being posted as part of the ‘Causality Challenge’ (McCann et al. 
2010). The goal is to show that the approach is also applicable in challenging real 
world manufacturing examples.

A.2.3 SECOM—Data Set (Scenario III)

In this section the third scenario, also based on a ‘real world’ data set, utilized to 
evaluate the hypotheses of this dissertation is introduced. The data set resembles a 
manufacturing programme from the semiconductor industry (McCann et al. 2010) 
available in the UCI ML repository called SECOM (McCann and Johnston 2008). 
The evaluation with the SECOM data set has three main purposes: (a) show if 
main results of the theoretical (synthetic) data set, introduced in the following sub-
section, are comparable; (b) test the applicability of the developed approach in a 
‘real world’ problem, represented in the ‘real’ manufacturing data set and (c) show 
that the approach is indeed able to handle high-dimensional data.

Semiconductor manufacturing involves a multi-stage, highly complex manu-
facturing programme with high quality requirements and advanced monitoring 
is often in place for fault detection and semiconductor yield improvement pur-
poses (Harding et al. 2006; Li and Huang 2009; Kim et al. 2012; Arif et al. 2013).  

http://dx.doi.org/10.1007/978-3-319-17611-6_6
http://dx.doi.org/10.1007/978-3-319-17611-6_6
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The complexity and quality requirements are expected to increase further as e.g., 
device dimensions continue to shrink and the number of chips per wafer is expected 
to increase as well (May and Spanos 2006). In semiconductor manufacturing it is 
possible to have a large number of operations within a process, often >500 which 
leads to large amounts of monitoring data (McCann et al. 2010). This factor pres-
ents an interesting option for the question raised in hypothesis 1.2, as it allows for 
various options to combine different operations to accumulated state vectors.

The SECOM data set consists of 1567 example products with 590 features (591 
incl. the quality assessment). All of these examples are additionally tagged with 
a time stamp and a quality assessment (ok/not-ok). Of these 1567 examples, 104 
are not-ok (represented by ‘1’) which means they fail to meet the quality require-
ments (6.64 % failure rate). That means the data set is unbalanced. However, that 
is common for ‘real world’ data sets. The products passing the quality examination 
are marked with ‘−1’ in the data set. The features represent process data (mea-
surements) taken form the manufacturing programme (McCann et al. 2010). Each 
feature is understood as being a ‘state characteristic’ or potential state ‘driver’ dur-
ing the manufacturing programme. Information about the checkpoints capturing 
the process measurements/features and thus determining different processes/oper-
ations (product states) along the manufacturing programme are not available for 
this data set due to privacy concerns of the issuing company (see Fig. A.4).

Therefore, just the complete manufacturing programme can be analyzed 
applying the presented method. However, given the assumption that the data set 
could constitute a process with various operations the results can be interpreted 
as those of an individual process. This is comparable to the first (individual pro-
cess) and last (complete manufacturing programme) step of the three process 
manufacturing programmes TDH(RR) (with its processes ‘Tom(RR)’, ‘Dick(RR)’ 
and ‘Harry(RR)’) and TDH(CHEM) (with its processes ‘Tom(CHEM)’, 
‘Dick(CHEM)’ and ‘Harry(CHEM)’) analysis in the previous sections. Analyzing 
different subsequent states along the developing manufacturing programme is con-
ducted, given the objective of presenting a challenging real world data set and how 
to pre-process such.

Fig. A.4  Production cycle (based on McCann et al. 2010)
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The SECOM data set, like many ‘real’ manufacturing process data (Kabacoff 
2011), contains also a certain amount of missing data (null values) (Mccann et al. 
2010). Being a key step of every ML or DM approach, data pre-processing can 
make up for a significant amount of the overall effort (Cios and Kurgan 2002). 
Ciao et al. (2007) summarize in their review the estimated effort for data prepara-
tion to 45–60 % of the total effort in knowledge discovery. This reflects the fact 
that real world data, especially manufacturing data is often incomplete, redundant, 
inconsistent, and/or noisy (Zhang et al. 2009). In the following section, the miss-
ing data challenge of the SECOM data set is discussed in more detail.

A.2.3.1 Pre-processing of SECOM Data Set

In this section the SECOM data set is analyzed for its missing values to under-
stand the challenge presented. In case of the SECOM data set, missing data is 
represented by ‘NaN’ as per MatLab (McCann and Johnston 2008). This has to 
be considered for the data pre-processing and in the discussion of the results as it 
might affect the outcome depending on the algorithm used. Following, appropri-
ate measures are discussed and applied to create a data set ready for the proposed 
application and evaluation approach.

Analyzing the SECOM data set and its missing data shows the following 
numbers:

•	 In total 41951 data points or 4.54 % of the data is missing (‘NaN’).
•	 0 examples (0 %) are missing the quality assessment results.
•	 104 examples (6.64 %) do not pass the quality assessment (‘1’).
•	 1567 examples (100 %) contain missing values.
•	 0 examples (0 %) contain more than 50 % missing data.
•	 3 examples (0.19 %) contain more than 20 % missing data.
•	 34 examples (2.17 %) contain more than 10 % missing data.
•	 328 examples (20.93 %) contain more than 6 % missing data.
•	 473 examples (30.19 %) contain more than 5 % missing data.
•	 1205 examples (76.90 %) contain more than 3 % missing data.
•	 1558 examples (99.46 %) contain more than 1 % missing data.
•	 538 features (91.19 %) contain missing values.
•	 28 features (4.75 %) contain more than 50 % missing data.
•	 32 features (5.42 %) contain more than 20 % missing data.
•	 52 features (8.81 %) contain more than 10 % missing data.
•	 52 features (8.81 %) contain more than 5 % missing data.
•	 60 features (10.17 %) contain more than 2 % missing data.
•	 103 features (17.46 %) contain more than 1 % missing data.
•	 0 features (0 %) show identical values for all examples (e.g., 0, 100, etc.).
•	 117 features (19.83 %) show identical values for all examples (e.g., 0, 100, etc.) 

incl. missing data.
•	 126 features (21.36 %) show identical values for 98 % of the examples (e.g., 0, 

100, etc.) incl. missing data.
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In the following subsection, the challenge which missing values within a data set 
present, is elaborated and a method to create a complete data set is chosen.

A.2.3.2 Adding Missing Values

In a first step of data pre-processing, all examples containing more than 6 % of 
missing values are removed in order to minimize the risk of inflicting a possible 
bias through replacing missing values. This reduces the data set to 1239 examples/
vectors. The reduced data set contains 86 (6.94 %) examples/vectors which do not 
pass the quality assessment (‘1’). Compared to the 6.64 % of non-pass examples 
in the original data set ‘pre-reduction’, this distribution is acceptable and indicates 
no direct bias being introduced by deleting examples/vectors with more than 6 % 
of missing values. The eliminated examples are summarized in Table A.8. This is 
a common process when handling data sets with large amounts of missing data. In 
this case the choice was to first reduce the amount of vectors rather than replacing 
features directly. By first eliminating features as e.g., Kerdprasop and Kerdprasop 
(2011) do in their study, the dimensionality would be reduced and this may alter 
the characteristics of the manufacturing programme and/or its processes more 
than it is absolutely necessary. Especially considering the feature selection that is 
applied within the evaluation sections. This is considered too important within this 
research and thus the feature space is reduced a selection of vectors containing too 
much missing values is eliminated. Next, the process of eliminating missing val-
ues is described in more detail.

To further reduce the number of missing values in the data set, for the features, 
showing missing values and are part of the 117 features (19.83 %) showing identi-
cal values for all examples (e.g., 0, 100, etc.) incl. missing data the missing val-
ues are replaced by the same value as the remaining identical values for the other 
examples show (Feature No.: 6; 142; 179; 277; 314; 315; 415; 450; 451).

After this first measures to reduce missing values, the data set contains 3.70 % 
(27057 data points) of missing values (‘NaN’) compared to 4.54 % before. 
Furthermore, the previous number of 538 features (91.19 %) containing missing 
values is reduced to only 95 features (17.79 %) containing missing values.

After theses previous measures reduced the missing values, now the features 
containing missing values are targeted. Basically two approaches are applicable. 
First, all features containing missing values may be eliminated. Or secondly, all 
features containing more than 5 (variant 1) or 10 (variant 2) missing values are 
eliminated and the missing values of the remaining features (with less than 5 or 10 
missing values each) are eliminated by identifying and eliminating the examples 
still containing missing values (see Fig. A.5).

The second approach was selected over the possibility to replacing missing val-
ues through existing data replacement methods (e.g., Provost 1990; Schafer and 
Graham 2002; Williams et al. 2007a, b; Grzymala-Busse et al. 2007; Li and Huang 
2009; Kabacoff 2011; Graham 2012) as it is less likely to induce a bias to the data 
set. Furthermore does the application of methods to replace missing values require 
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in depth knowledge (e.g., by engineers) of the manufacturing process and the 
application of statistical tools (Kwak and Kim 2012). As the SECOM data set is 
provided with limited information concerning the process layout, in depth knowl-
edge is not available. Hence, applying advanced data replacement methods like 
MAR is not possible without a considerable risk of inducing a bias and altering the 
results.

The first approach applied to the data set leads to 1239 examples (79.06 % of 
the original data set) with 485 features (82.2 % of the original data set) without 
any missing values. The ratio ‘pass’ to ‘non-pass’ stays the same with 6.95 %. 
However, by deleting 95 features (for a list of deleted features see Table A.9) in 
the process, this may have a significant impact on the results as some of these fea-
tures may be relevant for the identification of state drivers. Basically by deleting 
examples important support-vectors may be deleted and thus the whole knowledge 
picture be altered.

The second approach, eliminating all features that contain more than 5 miss-
ing values (variant 1) leads to 1239 examples with 520 features. A list of the 
eliminated features is illustrated in Table A.10. This brings the ratio of missing 
values (‘NaN’) to 0.010 % (67 data points) with a total of 14 examples still con-
taining missing values whereas 1225 examples are now complete data vectors. 
By eliminating the aforementioned 14 examples still containing missing data, the 
resultant complete data set consists therefore of 1225 examples (78.17 % of the 
original data set) with 520 features (88.14 % of the original data set). The ratio 
of ‘pass’/‘non-pass’ examples in this complete data set is 6.85 % (85 examples 

Fig. A.5  Schematic illustration of chosen approach to generate a complete data set (SECOM)
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with ‘non-pass’/‘1’). Compared to the first stage reduced data set (containing 86 
(6.94 %) examples/vectors which do not pass the quality assessment (‘1’)) and 
the 6.64 % of non-pass examples in the original data set ‘pre-reduction’, this dis-
tribution is acceptable and indicates no direct bias. The additionally eliminated 
examples are: Example No. 22; 67; 118; 232; 570; 726; 886; 1085; 1219; 1223; 
1305; 1321; 1373; 1461.

Applying the second approach with a slightly adjusted parameter of eliminat-
ing features with more than 10 missing values (variant 2), 1239 examples and 528 
features contain 131 missing values (ratio: 0.020 %). The list of the eliminated 
features of variant 1 illustrated in Table A.10 is still valid for variant 2 except 
features No. 20; 85; 156; 220; 291; 358; 429; 492 are not eliminated initially. Of 
those 1239 examples, 1209 contain no missing values in this scenario. After elimi-
nating the 30 examples still containing missing values that results in a complete 
data set containing 1209 examples (77.15 % of the original data set) with 528 fea-
tures (89.49 % of the original data set) and a ‘pass’/‘non-pass’ ratio of 6.95 % (85 
examples with ‘non-pass’/‘1’). The additionally eliminated examples are: Example 
No. 22; 65; 67; 103; 106; 108; 112; 118; 121; 124; 153; 192; 232; 390; 426; 483; 
570; 625; 693; 726; 886; 1085; 1165; 1196; 1219; 1223; 1305; 1321; 1373; 1461.

When comparing the two variations of the second approach, the resulting data 
sets are considered equally distributed with regard to ‘pass’/‘non-pass’ ratio. The 
difference lies in the number of examples and features. Whereas variant 1 contains 
a larger amount of examples/vectors (1225 vs. 1209), the second variant manages 
to keep more features (520 vs. 528). As the features represent so to speak state 
characteristics or potential state drivers, the benefit of having a larger number of 
features succeeds over a slight increase in examples/vectors for the purpose of this 
analysis. Therefore, the data set of variant 2 is selected as the primary data set for 
the first scenario (see Fig. A.5).

After the challenge of handling missing values within the SECOM data set is 
successfully taken care of with the creation of a complete data set in different vari-
ations, necessary further pre-processing steps are described in the next section.

A.2.3.3 Further Pre-processing Measures (SECOM)

The normalization of the completed SECOM data sets (‘approach 1’; ‘approach 
2 var. 1’; ‘approach 2 var. 2’) is executed by utilizing Rapidminer (v5.3) as 
described in the previous scenarios. The parameter settings for the normaliza-
tion task of the designed process are set to the method of range transformation 
[min;max] [−1.0;1.0] for all features/attributes in the data set. This method nor-
malizes all values of the selected features/attributes within the specified range.

The resultant complete SECOM data sets have the following specifications 
after all data pre-processing steps are finalized (incl. the later added appr. 1 var.2 
plus 15) (see Table A.1).
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It has to be noted that the SECOM data set represents a very challenging data 
set. It was published as part of the “causality challenge” which suggests that clas-
sification will not be an easy task. The baseline results of classification perfor-
mance published in accordance with the SECOM data set by McCann et al. (2010) 
show the difficulty of achieving good classification results with this data set. This 
corresponds with the findings of Kerdprasop and Kerdprasop (2011) investigating 
classification performance of the same data set.

A.3 Miscellaneous

A.3.1 Principles of Modeling

The six main principles of modeling are:

•	 correctness: in order to comply to the principle of correctness, the model needs to 
be following syntactic rules of modeling annotations (Rosemann and Schütte 1997) 
and additionally be semantically correct. However, the semantically correctness is 
often not formally provable (Becker 1998).

•	 relevance: just elements which are of relevance for the modeling goal are 
included (Becker 1998). A model is minimal, when no more elements can be 
eliminated without losing information important for the goal (Batini et al. 
1992).

•	 economic efficiency: connected to the principle of relevance is the economic 
efficiency, which has an effect on all other principles (Rosemann and Schütte 
1997). The detail and effort has to be judged also by economic parameters. It 
may prove reasonable to use reference models in order to reduce the economic 
effort to create a model.

•	 clarity: this principle is targeting the understandability or comprehensibility. 
The goal is to create a clear arrangement and an intuitive illustration (Becker 
and Schütte 2004).

Table A.1  Summary of SECOM data sets after pre-processing

Name No. of examples/
vectors

No. of features/
attributes

Normalization 
method [range]

No. of missing 
values

Approach 1 1239 485 Range transfor-
mation [−1;1]

0

Approach 2 
var. 1

1225 520 Range transfor-
mation [−1;1]

0

Approach 2 
var. 2

1209 528 Range transfor-
mation [−1;1]

0

(Approach 2 var. 
2 plus 15)

(1224) (528) (Range transfor-
mation [−1;1])

(0)
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•	 comparability: is targeting the compatibility of models created with differ-
ent tools. This is especially important when reference models are utilized 
(Rosemann and Schütte 1997). Generally it is advised to use as little as pos-
sible different tools and modeling annotations for process illustrations in order 
to reduce comparability problems (Becker 1998; Becker and Schütte 2004).

•	 systematic composition: is focusing on the structural consistency of the model 
(Becker and Schütte 2004). This means that in case a modeling annotations 
allows different perspectives, the one is to be chosen which represents the to be 
modeled context. In case more than one perspective is chosen, a meta-model is 
to be utilized to ensure the abstract overview (Becker 1998; Becker and Schütte 
2004).

A.3.2 Visualization Models of Product State Concept

A.3.2.1 State Model (Layer 2)

The goal of the sub model, called state-model (layer 2), is to illustrate all process 
intra- and inter-relations of an individual state within a manufacturing programme 
and characterize these process intra- and inter-relations through a transfer func-
tion. The transfer function or its placeholder shall be integrated in the modeling 
notation.

In respect of the chosen symbols of the state-model, the elements of the meta-
model are applied as well (see Fig. A.6). In order to increase the readability, the 
visualization of the process structure and process parameters can be excluded from 
the model. However, if the visualization of the processes, process parameters and 
their influence on state characteristics desired, the visualization principles and 
symbols of the meta-model are to be applied in the state-model.

Within the state-model, the states are separated from the manufacturing pro-
gramme structure and positioned next to each other. Within this model, only one 
state is in the focus at a time. This focus state should be highlighted within the 
model by choosing a deviant color for the color contour (see state(z) in Fig. A.7). 
Different from the meta-model visualization, only the state characteristics con-
nected through relations to the focus state (through its state characteristics) are 
included in the visualization.

For describing the relations, rectangular boxes are placed on the edges, repre-
senting relations. This is similar to captions in BONAPART notations (Krallmann 
et al. 2007; Hoyer 1988). Besides the exclusion of processes/process parameters, 
the focus on one state at a time and a reduced number of state characteristics, the 
state-model differentiates itself from the meta-model through the visualization of 
overlaying, independent relations. Whereas in the meta model a number indicated 
the number of independent relations represented, in the state model, the differ-
ent transfer functions are highlighted by individual boxes on top of the edge (see 
SC(x1) and SC(y1) to SC(z1) in Fig. A.7).
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Transfer functions can be of various natures in the state-model, e.g., a math-
ematical equation like the mass of a cylinder (m = ρ * l * d2 * π). More complex 
transfer functions may be describable as well, be it through a differential equation 
or even in written form, e.g., the failure rate is in average 5 % in the morning shift 
and 7 % in the late shift. Such complex transfer functions shall be replaced by a 
placeholder in the state-model and connected to the relation underneath the model 
(see (a) and (b) in Fig. A.7).

In Fig. A.7 an exemplary application of the state-model including randomly 
selected relations and inter-/intra-relations. All previously described varieties of 
process intra- and inter-relations (see Figs. 4.26 and 4.27) are included in order 
to present the example in a comprehensive way. The focus state (state(z)) is high-
lighted by a green contour in the middle of the figure. The exemplary applica-
tion shows that transfer-functions within the state-model have to be replaced by 
placeholders even at this low level of inherit complexity the model represents. 
It might be necessary to split the model in parts, when a large number of state 

Fig. A.6  Symbols used in state-model

Fig. A.7  Exemplary illustration of state-model layer (layer 2)

http://dx.doi.org/10.1007/978-3-319-17611-6_4
http://dx.doi.org/10.1007/978-3-319-17611-6_4
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characteristics have to be summarized under the states and if a gap between parts 
(no existing process intra- and inter-relations) is given (see between SC(z4) and 
SC(z5) in Fig. A.7).

A.3.2.2 State Characteristic Model (Layer 3)

Looking at individual state characteristics, there may be a need to reduce the com-
plexity of the model even further under some circumstances. In order to comply 
with these requirements, the state characteristics model (layer 3) is developed. 
Next, the model and the rationale behind its development is introduced.

The state characteristics model has a single state characteristic in the focus 
and illustrates all existing process intra- and inter-relations of that individual state 
characteristic with other state characteristics of the manufacturing programme. 
The goal is to visualize all existing process intra- and inter-relations comprehen-
sively in a clear well-arranged way. It is further important to be able to distinguish 
relations and inter-/intra-relations within the state characteristics model.

In order to achieve the above stated goals and requirements, the model is devel-
oped on the basis of an adapted cause-effect diagram (also known as Ishikawa-
diagram) (Kern 2008). The cause-effect diagram is not known originally as a 
process-modeling notation but as a tool for failure analysis. The model represents 
various influences of a problem. Those influences are structures in main causes 
and sub-causes, which leads to a so-called ‘fishbone’ structure (Kamiske and 
Brauer 2008). The clear structure presents a chance to clearly visualize the stated 
goal of all process intra- and inter-relations of a single state characteristic once 
adapted from the original description. The adaptation starts by replacing the main 
focus from the ‘problem’ (original) to the ‘focus state characteristic’ (see SCz2 in 
green in Fig. A.8). ‘Influences’ (original) are replaced by process intra- and inter-
relations respectively their transfer functions or placeholders in the state char-
acteristics model (see blue boxes in Fig. A.8). The state characteristics with an 
influence on the transfer function are replacing the ‘main causes’ (original) in the 
fishbone structure (see Fig. A.8). It has to be distinguished between:

•	 Relations of state characteristics of current or previous states, which have an 
influence on the state characteristic in the focus. These relations are represented 
by an arrow coming form the left side towards the focus state characteristic.

•	 Inter-/intra-relations with other state characteristics, which occur necessarily 
within the same state, are represented by a two-headed arrow, positioned above 
and/or below the state characteristic in the focus.

•	 Relations to other state characteristics from the state characteristic in the focus 
are represented by an arrow heading to the right from the focus state charac-
teristic. It is important that state characteristics, which have a combined rela-
tion with the state characteristic in the focus on another state characteristic are 
illustrated by a line without an arrowhead. Arrows heading away represent state 
characteristics being influenced.
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Shall elements of lined dependencies be illustrated without direct connection to 
the focus state characteristic, this relation needs to be addressed in the transfer 
function. At the same time, such associated influences shall be represented as state 
characteristics or process parameters in form of replacing ‘sub-causes’ (original) 
in the diagram.

The exemplary illustration of the state characteristics model in Fig. A.8 gives 
an impression of the visualization. Depending on the complexity and possible ana-
lytical description of the transfer functions, they may need to be substituted by 
placeholders and described in detail at another location. In case the influences are 
quantifiable and the state characteristic in the focus is a stock figure with its value 
being time dependent, the application of the System Dynamics modeling notation 
(Sterman 1992; Krallmann et al. 2007) might be appropriate. As this represents a 
special case and the methodology is adaptable to a large extent, this will not be 
elaborated in detail within this thesis.

A.3.3 Application of SMOTE in WEKA

A first step in applying the SMOTE technique is loading the SECOM data set in 
the WEKA software. As WEKA only accepts *.arff format, RapidMiner (v5.3) is 
used to convert the *.xlsx file to an *.arff file. Once the file is loaded into WEKA, 
the two classes can be observed (see Fig. A.9).

In a next step the to be applied SMOTE technique is chosen as a filter and 
the parameter adjusted (see Fig. A.10). In this case the classValue = 0 defines 
the minority class to be oversampled. The percentage (in this case 500 %) pre-
defines the resulting number of examples in the minority class after the SMOTE 
application.

Fig. A.8  Exemplary illustration of state characteristic model (layer 3)
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After applying SMOTE in WEKA, a few more steps are necessary (see 
Fig. A.11). At first the numbering of the additional examples of the minority class 
has to be adjusted. WEKA does not continue the numbering of the existing exam-
ples but uses existing numbers. As WEKA adds the additional examples to the 
end of the data set, this is done manual in Excel after converting the *.arff file 
to an *.xlsx file. The numbering of the additional examples is chosen to start at 
 ‘example 1600’.

Fig. A.9  SECOM data set before applying SMOTE oversampling technique in WEKA

Fig. A.10  Parameter  
of SMOTE filter in WEKA
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A.3.4 Tables and Graphs

See Tables A.2 and A.3; Figs. A.12, A.13, A.14 and  A.15; Tables A.4 and A.5;  
Fig. A.16; Table A.6; Fig. A.17; Tables A.7, A.8, A.9 and A.10; Figs. A.18 and 
A.19; Tables A.11, A.12, A.13 and A.14.

Fig. A.11  Randomizing the SECOM data set after SMOTE oversampling in WEKA
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Table A.2  15 information quality dimensions and their influence on the product state concept

IQ dimension Addressed by product state concept

Accessibility The product state information and data represents product inher-
ited information and data in universally accepted formats. This 
way the information can be processed, exchanged and transferred 
as needed

Ease of manipulation The product state information and data is structured according to 
the product and process requirements and can be used for various 
purposes despite the goals of the product state concept

Reputation Different systems can be used to derive the needed informa-
tion and data. The reputation is based on the used system and it 
has to be ensured that the chosen system complies with this IQ 
dimension

Free of error This is out of the scope of the product state concept but methods 
and tools to cope with eventual errors in information and data are 
available

Objectivity Product state information and data represents not-interpreted 
information and (raw) data with in the defined set of relevant 
information

Believability Depending of the company and manufacturing programme, qual-
ity certifications can be used to ensure the processes

Understandability The product state information and data is directly understandable 
as it is connected to processes and products of a specific manufac-
turing programme

Concise representation Product state information and data is stored in universally 
accepted formats

Consistent representation The product state information and data is stored in a structured 
way based on the product and processes of the manufacturing 
programme

Interpretability Product state information and data represents raw data, which 
is descriptive to product and process and thus inherits a high 
interpretability

Timeliness The product state information and data properties are accurately 
stored and uniquely identifiable to an individual product through 
the checkpoint system and mapping

Value-added The goal of the product state concept is to derive new knowledge 
and support the increase of transparency through the manu-
facturing chain in order to support process and product quality 
improvements

Completeness The product state information and data should be stored as com-
plete as possible within the set of relevant information. However, 
this depends also on the external circumstances like sensors, etc.

Appropriate amount  
of data

The product state concepts main objective is to identify a set of 
relevant information in order to reduce the amount of information 
and data to be handled

Relevancy The product state concepts main objective is to identify the set of 
relevant information. This contributes to ensure that the data and 
information captured is relevant for the chosen purpose
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Fig. A.12  Relevant state characteristics (target area 1)

Fig. A.13  Relevant state characteristics (target area 2)
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Fig. A.14  Relevant state characteristics (target area 3)

Fig. A.15  Combining relevant state characteristics of the three target areas in stage 2
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Table A.4  Specific advantages of ML algorithms in manufacturing appl. derived from literature

Advantage ML algorithm Application area References

More complex knowl-
edge bases can be 
built in shorter time 
with less engagement 
of experts

Learning from 
examples/decision 
trees/rules

Decision making in 
machining processes

Filipic and Junkar 
(2000)

Successful supporting 
sensor integration, 
signal processing, 
uncertainty handling, 
real-time and adap-
tive functioning

ANN [Artificial 
Neural Networks]

Intelligent 
manufacturing

Monostori (2003)

Efficient classifica-
tion of new prob-
lem instances with 
unknown classes and 
represent domain 
concepts in a compact 
and transparent way 
suitable for human 
inspection presenting 
new insights

Learning from 
examples/decision 
trees/rules

Decision making in 
machining processes

Filipic and Junkar 
(2000)

Machine learning 
analysis has proved 
beneficial in detecting 
inconsistencies and 
suggesting correc-
tions of existing 
prescriptions

Learning from 
examples/decision 
trees/rules

Decision making in 
machining processes

Filipic and Junkar 
(2000)

Machine learning 
methods […] support 
transfer of relevant 
information to the 
technology planning 
level

Learning from 
examples/decision 
trees/rules

Decision making in 
machining processes

Filipic and Junkar 
(2000)

Savings in both the 
operating time and 
the investments into 
wheel stock

Learning from 
examples/decision 
trees/rules

Decision making in 
machining processes

Filipic and Junkar 
(2000)

Fast (compared to 
other techniques), 
simple and their 
generated models are 
easy to understand

Inductive learning Manufacturing Pham and Afify 
(2005)

Successfully 
employed to detect 
multi-modal distribu-
tions as well as non-
linear distributions

Novelty detection 
methods

Faulty wafer detec-
tion (semiconductor 
manufacturing)

Kim et al. (2012)

(continued)
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Table A.4  (continued)

Advantage ML algorithm Application area References

Overcame the major 
problems of statistical 
process control: lin-
earity and unimodal-
ity of data

FDC (Fault Detection 
and Classification)

Faulty wafer detec-
tion (semiconductor 
manufacturing)

Kim et al. (2012)

No need for assump-
tions of distribu-
tion, and nonlinear 
problems can be 
addressed

FDC (Fault Detection 
and Classification)

Faulty wafer detec-
tion (semiconductor 
manufacturing)

Kim et al. (2012)

Formulation of NN or 
k-NN algorithms is 
very simple

Nearest 
neighbour/k-NN

Dynamic scheduling 
in flexible manufac-
turing systems

Priore et al. (2006)

Most well-known 
and widely used 
as pattern classi-
fiers and function 
approximators

Back propagation 
Neural networks

Dynamic scheduling 
in flexible manuf. 
Systems

Priore et al. (2006)

Provide lowest test 
error

Nearest neighbour 
(k-NN)

Dynamic scheduling 
in flexible manuf. 
systems

Priore et al. (2006)

Reduce the effort 
involved in determin-
ing the knowledge 
required to make 
decisions

ML (inductive 
learning or neural 
networks)

Dynamic schedul-
ing (semiconductor 
manuf.)

Priore et al. (2001)

Useful when input 
buffer size is limited 
and small, and there 
is a great variation in 
processing times for 
parts in the bottleneck 
machines

Inductive learning, 
C4.5

Dynamic schedul-
ing (semiconductor 
manuf.)

Priore et al. (2001)

Provides the most 
adequate dispatching 
rule

Back-propagation 
neural network

Dynamic schedul-
ing (semiconductor 
manuf.)

Priore et al. (2001)

Superior performance Competitive neural 
networks

Dynamic schedul-
ing (semiconductor 
manuf.)

Priore et al. (2001)

Deals with noise in 
data more efficiently

Inductive learning, 
C4.5

Dynamic schedul-
ing (semiconductor 
manuf.)

Priore et al. (2001)

Advantage of gen-
erating rules that are 
intelligible to humans 
(compared with neu-
ral networks)

Inductive learning, 
fuzzy logic

Dynamic schedul-
ing (semiconductor 
manuf.)

Priore et al. (2001)

(continued)
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Table A.4  (continued)

Advantage ML algorithm Application area References

Very efficient at 
classification, despite 
their simplicity

Case based reasoning Dynamic schedul-
ing (semiconductor 
manuf.)

Priore et al. (2001)

Inductive learning 
classifiers obtain 
similar and some-
times better accura-
cies compared with 
other classification 
techniques

Inductive learning Manufacturing Pham and Afify 
(2005)

Rule sets extracted 
were more accu-
rate and compact 
than those obtained 
using its immediate 
predecessor

RULES-5 Manufacturing Pham and Afify 
(2005)

Ability to model 
complex target con-
cepts and the fact that 
information present in 
the training instances 
is never lost

Instance based 
methods

Manufacturing Pham and Afify 
(2005)

Well-suited to 
problems in which 
the training data 
correspond to noisy, 
complex sensor 
data, such as inputs 
from cameras and 
microphones

Neural networks Manufacturing Pham and Afify 
(2005)

Wide applicability Neural networks Manufacturing Pham and Afify 
(2005)

Potentially greater 
ability to avoid 
local minima than 
is possible with the 
simple greedy search 
employed by most 
learning techniques

Genetic algorithm 
(GA)

Manufacturing Pham and Afify 
(2005)

Natural platform for 
combining domain 
knowledge and 
empirical learning

Bayesian networks Manufacturing Pham and Afify 
(2005)

Improved to 
handle large data sets 
efficiently

Decision-tree 
algorithms

Manufacturing Pham and Afify 
(2005)

(continued)
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Table A.4  (continued)

Advantage ML algorithm Application area References

Flexible and can be 
applied to a number 
of other design 
and manufacturing 
processes to reduce 
costs and improve 
productivity

C4.5 algorithm Manufacturing Pham and Afify 
(2005)

Adding hidden layers 
to a feed-forward 
network enlarges the 
space of hypotheses 
that can be repre-
sented by the network

Neural Networks Scheduling Mönch et al. (2006)

Simple and power-
ful form of learning 
algorithms

Inductive decision 
trees

Scheduling Mönch et al. (2006)

Functional dependen-
cies between input 
and output variables 
can be described by 
rules

Inductive decision 
trees

Scheduling Mönch et al. (2006)

Successful training 
phase is possible 
within seconds

Inductive decision 
trees

Scheduling Mönch et al. (2006)

Computational effort 
is much smaller 
by following the 
machine learning 
approach

ML (inductive deci-
sion trees, neural 
networks)

Scheduling Mönch et al. (2006)

CBR with the 
‘Activity’ weighting 
method had a better 
prediction rate, out-
performing the CBR-
alone and all other 
weighting methods

Hybrid (neural net-
works and case-based 
reasoning)

Yield management 
in semiconduc-
tor manufacturing 
companies

Lee and Ha (2009)
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Fig. A.17  Optimization results x-val with linear kernel TOM(RR)

Fig. A.16  Screenshot of Cluster3.0 software to create the cluster Dendogram

Table A.6  Eliminated 
examples incl. no. of missing 
values and label

No. of example ‘Positive’/‘Negative’ No. of missing 
values

1 negative (Yield 38) 16

172 positive (Yield 39.66) 11

173 positive (Yield 39.68) 11

174 positive (Yield 42.23) 11

175 negative (Yield 38.48) 11

176 positive (Yield 39.49) 11
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Table A.7  Feature ranking of TOM (RR) incl. weight values by RapidMiner (v5.3)
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Table A.8  Eliminated examples/vectors with more than 6 % of missing values (SECOM data set)
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Table A.8  (continued)
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Table A.9  Eliminated features with missing values on reduced SECOM data set 1239 examples

Table A.10  Eliminated features containing more than 5 (>5) missing values on reduced 
SECOM data set (1239 examples)
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Fig. A.19  SECOM x-val results (parameters—last optimization cycle)

Fig. A.18  SECOM data set x-val result (accuracy)
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Table A.13  Feature ranking SECOM 412 & 528 Part I
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Table A.14  Feature ranking SECOM 412 & 528 Part II
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