
Studies in Computational Intelligence 557

Taras Kowaliw
Nicolas Bredeche
René Doursat Editors

Growing
Adaptive
Machines
Combining Development and Learning
in Artificial Neural Networks

Studies in Computational Intelligence

Volume 557

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/7092

http://www.springer.com/series/7092

About this Series

The series ‘‘Studies in Computational Intelligence’’ (SCI) publishes new devel-
opments and advances in the various areas of computational intelligence—quickly
and with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

Taras Kowaliw • Nicolas Bredeche
René Doursat
Editors

Growing Adaptive
Machines

Combining Development and Learning
in Artificial Neural Networks

123

Editors
Taras Kowaliw
Institut des Systèmes Complexes de Paris

Île-de-France
CNRS
Paris
France

Nicolas Bredeche
Institute of Intelligent Systems

and Robotics
CNRS UMR 7222
Université Pierre et Marie Curie
Paris
France

René Doursat
School of Biomedical Engineering
Drexel University
Philadelphia, PA
USA

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-642-55336-3 ISBN 978-3-642-55337-0 (eBook)
DOI 10.1007/978-3-642-55337-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941221

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our conviction that the means of construction of artificial neural network
topologies is an important area of research. The value of such models is potentially
vast. From an applied viewpoint, identifying the appropriate design mechanisms
would make it possible to address scalability and complexity issues, which are
recognized as major concerns transversal to several communities. From a funda-
mental viewpoint, the important features behind complex network design are yet to
be fully understood, even as partial knowledge becomes available, but scattered
within different communities.

Unfortunately, this endeavour is split among different, often disparate domains.
We started a workshop in the hope that there was significant room for sharing and
collaboration between these researchers. Our response to this perceived need was
to gather like-motivated researchers into one place to present both novel work and
summaries of research portfolio.

It was under this banner that we originally organized the DevLeaNN workshop,
which took place at the Complex Systems Institute in Paris in October 2011. We
were fortunate enough to attract several notable speakers and co-authors: H. Berry,
C. Dimitrakakis, S. Doncieux, A. Dutech, A. Fontana, B. Girard, Y. Jin, M. Joa-
chimczak, J. F. Miller, J.-B. Mouret, C. Ollion, H. Paugam-Moisy, T. Pinville,
S. Rebecchi, P. Tonelli, T. Trappenberg, J. Triesch, Y. Sandamirskaya, M. Sebag,
B. Wróbel, and P. Zheng. The proceedings of the original workshop are available
online, at http://www.devleann.iscpif.fr. To capitalize on this grouping of
like-minded researchers, we moved to create an expanded book. In many (but not
all) cases, the workshop contribution is subsumed by an expanded chapter in this
book.

In an effort to produce a more complete volume, we invited several additional
researchers to write chapters as well. These are: J. A. Bednar, Y. Bengio,
D. B. D’Ambrosio, J. Gauci, and K. O. Stanley. The introduction chapter was also
co-authored with us by S. Chevallier.

v

http://www.devleann.iscpif.fr

Our gratitude goes to our program committee, without whom the original
workshop would not have been possible: W. Banzhaf, H. Berry, S. Doncieux,
K. Downing, N. García-Pedrajas, Md. M. Islam, C. Linster, T. Menezes,
J. F. Miller, J.-M. Montanier, J.-B. Mouret, C. E. Myers, C. Ollion, T. Pinville,
S. Risi, D. Standage, P. Tonelli. Our further thanks to the ISC-PIF, the CNRS, and
to M. Kowaliw for help with the editing process. Our workshop was made possible
via a grant from the Région Île-de-France.

Enjoy!

Toronto, Canada, January 2014 Taras Kowaliw
Paris, France Nicolas Bredeche
Washington DC, USA René Doursat

vi Preface

Contents

1 Artificial Neurogenesis: An Introduction and Selective Review. . . . 1
Taras Kowaliw, Nicolas Bredeche, Sylvain Chevallier
and René Doursat

2 A Brief Introduction to Probabilistic Machine Learning
and Its Relation to Neuroscience . 61
Thomas P. Trappenberg

3 Evolving Culture Versus Local Minima . 109
Yoshua Bengio

4 Learning Sparse Features with an Auto-Associator 139
Sébastien Rebecchi, Hélène Paugam-Moisy and Michèle Sebag

5 HyperNEAT: The First Five Years . 159
David B. D’Ambrosio, Jason Gauci and Kenneth O. Stanley

6 Using the Genetic Regulatory Evolving Artificial Networks
(GReaNs) Platform for Signal Processing, Animat Control,
and Artificial Multicellular Development. 187
Borys Wróbel and Michał Joachimczak

7 Constructing Complex Systems Via Activity-Driven
Unsupervised Hebbian Self-Organization 201
James A. Bednar

8 Neuro-Centric and Holocentric Approaches
to the Evolution of Developmental Neural Networks 227
Julian F. Miller

9 Artificial Evolution of Plastic Neural Networks:
A Few Key Concepts . 251
Jean-Baptiste Mouret and Paul Tonelli

vii

http://dx.doi.org/10.1007/978-3-642-55337-0_1
http://dx.doi.org/10.1007/978-3-642-55337-0_2
http://dx.doi.org/10.1007/978-3-642-55337-0_2
http://dx.doi.org/10.1007/978-3-642-55337-0_3
http://dx.doi.org/10.1007/978-3-642-55337-0_4
http://dx.doi.org/10.1007/978-3-642-55337-0_5
http://dx.doi.org/10.1007/978-3-642-55337-0_6
http://dx.doi.org/10.1007/978-3-642-55337-0_6
http://dx.doi.org/10.1007/978-3-642-55337-0_6
http://dx.doi.org/10.1007/978-3-642-55337-0_7
http://dx.doi.org/10.1007/978-3-642-55337-0_7
http://dx.doi.org/10.1007/978-3-642-55337-0_8
http://dx.doi.org/10.1007/978-3-642-55337-0_8
http://dx.doi.org/10.1007/978-3-642-55337-0_9
http://dx.doi.org/10.1007/978-3-642-55337-0_9

Chapter 1
Artificial Neurogenesis: An Introduction
and Selective Review

Taras Kowaliw, Nicolas Bredeche, Sylvain Chevallier and René Doursat

Abstract In this introduction and review—like in the book which follows—we
explore the hypothesis that adaptive growth is a means of producing brain-like
machines. The emulation of neural development can incorporate desirable character-
istics of natural neural systems into engineered designs. The introduction begins with
a review of neural development and neural models. Next, artificial development—
the use of a developmentally-inspired stage in engineering design—is introduced.
Several strategies for performing this “meta-design” for artificial neural systems are
reviewed. This work is divided into three main categories: bio-inspired representa-
tions; developmental systems; and epigenetic simulations. Several specific network
biases and their benefits to neural network design are identified in these contexts.
In particular, several recent studies show a strong synergy, sometimes interchange-
ability, between developmental and epigenetic processes—a topic that has remained
largely under-explored in the literature.

T. Kowaliw (B)

Institut des Systèmes Complexes - Paris Île-de-France, CNRS, Paris, France
e-mail: taras@kowaliw.ca

N. Bredeche
Sorbonne Universités, UPMC University Paris 06,
UMR 7222 ISIR,F-75005 Paris, France
e-mail: nicolas.bredeche@upmc.fr

N. Bredeche
CNRS, UMR 7222 ISIR,F-75005 Paris, France

S. Chevallier
Versailles Systems Engineering Laboratory (LISV), University of Versailles,
Velizy, France
e-mail: sylvain.chevallier@uvsq.fr

R. Doursat
School of Biomedical Engineering, Drexel University, Philadelphia, USA
e-mail: rene.doursat@drexel.edu

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 1
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_1,
© Springer-Verlag Berlin Heidelberg 2014

2 T. Kowaliw et al.

This book is about growing adaptive machines. By this, we mean producing
programs that generate neural networks, which, in turn, are capable of learning. We
think this is possible because nature routinely does so. And despite the fact that
animals—those multicellular organisms that possess a nervous system—are stagger-
ingly complex, they develop from a relatively small set of instructions. Accordingly,
our strategy concerns the simulation of biological development as a means of gener-
ating, in contrast to directly designing, machines that can learn. By creating abstrac-
tions of the growth process, we can explore their contribution to neural networks
from the viewpoint of complex systems, which self-organize from relatively simple
agents, and identify model choices that will help us generate functional and useful
artefacts. This pursuit is highly interdisciplinary: it is inspired by, and overlaps with,
computational neuroscience, systems biology, machine learning, complex systems
science, and artificial life.

Through growing adaptive machines, our ambition is also to contribute to a radical
reconception of engineering. We want to focus on the design of component-level
behaviour from which higher-level intelligent machines can emerge. The success of
this “meta-design” [63] endeavour will be measured by our capacity to generate new
learning machines: machines that scale, machines that adapt to novel environments,
in short, machines that exhibit the richness we encounter in animals, but presently
eludes artificial systems.

This chapter and the book that it introduces are centred around developmental
and learning neural networks. It is a timely topic considering the recent resurgence
of the neural paradigm as a major representation formalism in many technological
areas, such as computer vision, signal processing, and robotic controllers, together
with rapid progress in the modelling and applications of complex systems and highly
decentralized processes. Researchers generally establish a distinction between struc-
tural design, focusing on the network topology, and synaptic design, defining the
weights of the connections in a network [278]. This book examines how one could
create a biologically inspired network structure capable of synaptic training, and
blend synaptic and structural processes to let functionally suitable networks self-
organize. In so doing, the aim is to recreate some of the natural phenomena that have
inspired this approach.

The present chapter is organized as follows: it begins with a broad description of
neural systems and an overview of existing models in computational neuroscience.
This is followed by a discussion of artificial development and artificial neurogenesis
in general terms, with the objective of presenting an introduction and motivation
for both. Finally, three high-level strategies related to artificial neurogenesis are
explored: first, bio-inspired representations, where network organization is inspired
by empirical studies and used as a template for network design; then, developmental
simulation, where networks grow by a process simulating biological embryogenesis;
finally, epigenetic simulation, where learning is used as the main step in the design
of the network. The contributions gathered in this book are written by experts in the
field and contain state-of-the-art descriptions of these domains, including reviews of
original research. We summarize their work here and place it in the context of the
meta-design of developmental learning machines.

1 Artificial Neurogenesis: An Introduction and Selective Review 3

1 The Brain and Its Models

1.1 Generating a Brain

Natural reproduction is, to date, the only one known way to generate true “intelli-
gence”. In humans, a mere six million (6 × 106) base pairs, of which the majority
is not directly expressed, code for an organism of some hundred trillion (1014) cells.
Assuming that a great part of this genetic information concerns neural development
and function [253], it gives us a rough estimate of a brain-to-genome “compression
ratio”. In the central nervous system of adult humans, which contains approximately
8.5×1010 neural cells and an equivalent number of non-neural (mostly glial) cells [8],
this ratio would be of the order of 104. However, the mind is not equal to its neurons,
but considered to emerge from the specific synaptic connections and transmission
efficacies between neurons [234, 255]. Since a neural cell makes contacts with 103

other cells on average,1 the number of connections in the brain reaches 1014, raising
our compression ratio to 108, a level beyond any of today’s compression algorithms.

From there, one is tempted to infer that the brain is not as complex as it appears
based solely on the number of its components, and even that something similar
might be generated via a relatively simple parallel process. The brain’s remarkable
structural complexity is the result of several dynamical processes that have emerged
over the course of evolution and are often categorized on four levels, based on their
time scale and the mechanisms involved:

level time scale change

phylogenic generations genetic: randomly mutated genes propagate or perish
with the success of their organisms

ontogenic days to years cellular: cells follow their genetic instructions, which
make them divide, differentiate, or die

epigenetic seconds to days cellular, connective: cells respond to external stimuli,
and behave differently depending on the environment;
in neurons, these changes include contact modifica-
tions and cell death

inferential milliseconds to seconds connective, activation: neurons send electrical signals
to their neighbours, generating reactions to stimuli

However, a strict separation between these levels is difficult in neural development
and learning processes.2 Any attempt to estimate the phenotype-to-genotype com-

1 Further complicating this picture are recent results showing that these connections might them-
selves be information processing units, which would increase this estimation by several orders of
magnitude [196].
2 By epigenetic, we mean here any heritable and non-genetic changes in cellular expression. (The
same term is also used in another context to refer strictly to DNA methylation and transcription-level
mechanisms.) This includes processes such as learning for an animal, or growing toward a light
source for a plant. The mentioned time scale represents a rough average over cellular responses to
environmental stimuli.

4 T. Kowaliw et al.

pression ratio must also take into account epigenetic, not just genetic, information.
More realistic or bio-inspired models of brain development will need to include
models of environmental influences as well.

1.2 Neural Development

We briefly describe in this section the development of the human brain, noting that the
general pattern is similar in most mammals, despite the fact that size and durations
vastly differ. A few weeks after conception, a sheet of cells is formed along the
dorsal side of the embryo. This neural plate is the source of all neural and glial cells
in the future body. Later, this sheet closes and creates a neural tube whose anterior
part develops into the brain, while the posterior part produces the spinal cord. Three
bulges appear in the anterior part, eventually becoming the forebrain, midbrain, and
hindbrain. A neural crest also forms on both sides of the neural tube, giving rise to
the nervous cells outside of the brain, including the spinal cord. After approximately
eight weeks, all these structures can be identified: for the next 13-months they grow
in size at a fantastic rate, sometimes generating as many as 500,000 neurons per
minute.

Between three to six months after birth, the number of neurons in a human reaches
a peak. Nearly all of the neural cells used throughout the lifetime of the individual
have been produced [69, 93]. Concurrently, they disappear at a rapid rate in various
regions of the brain as programmed cell death (apoptosis) sets in. This overproduction
of cells is thought to have evolved as a competitive strategy for the establishment
of efficient connectivity in axonal outgrowth [34]. It is also regional: for instance,
neural death comes later and is less significant in the cortex compared to the spinal
cord, which loses a majority of its neurons before birth.

Despite this continual loss of neurons, the total brain mass keeps increasing rapidly
until the age of three in humans, then more slowly until about 20. This second peak
marks a reversal of the trend, as the brain now undergoes a gradual but steady loss
of matter [53]. The primary cause of weight increase can be found in the connective
structures: as the size of the neurons increase, so does their dendritic tree and glial
support. Most dendritic growth is postnatal, but is not simply about adding more
connections: the number of synapses across the whole brain also peaks at eight
months of age. Rather, mass is added in a more selective manner through specific
phases of neural, dendritic, and glial development.

These phenomena of maturation—neural, dendritic, and glial growth, combined
with programmed cell death—do not occur uniformly across the brain, but regionally.
This can be measured by the level of myelination, the insulation provided by glial
cells that wrap themselves around the axons and greatly improve the propagation
of membrane potential. Taken as an indication of more permanent connectivity,
myelination reveals that maturation proceeds in the posterior-anterior direction: the

1 Artificial Neurogenesis: An Introduction and Selective Review 5

Fig. 1 Illustration of the general steps in neural dendritic development

spinal cord and brain stem (controlling vital bodily function) are generally mature
at birth, the cerebellum and midbrain mature in the few months following birth,
and after a couple of years the various parts of the forebrain also begin to mature.
The first areas to be completed concern sensory processing, and the last ones are the
higher-level “association areas” in the frontal cortex, which are the site of myelination
and drastic reorganization until as late as 18-years old [69]. In fact, development in
mammals never ends: dendritic growth, myelination, and selective cell death continue
throughout the life of an individual, albeit at a reduced pace.

1.2.1 Neuronal Morphology

Neurons come in many types and shapes. The particular geometric configuration of
a neural cell affects the connectivity patterns that it creates in a given brain region,
including the density of synaptic contacts with other neurons and the direction of sig-
nal propagation. The shape of a neuron is determined by the outgrowth of neurites, an
adaptive process steered by a combination of genetic instructions and environmental
cues.

Although neurons can differ greatly, there are general steps in dendritic and axonal
development that are common to many species. Initially, a neuron begins its life as a
roughly spherical body. From there, neurites start sprouting, guided by growth cones.
Elongation works by addition of material to relatively stable spines. Sprouts extend
or retract, and one of them ultimately self-identifies as the cell’s axon. Dendrites then
continue to grow out, either from branching or from new dendritic spines that seem to
pop up randomly along the membrane. Neurites stop developing, for example, when
they have encountered a neighbouring cell or have reached a certain size. These
general steps are illustrated in Fig. 1 [230, 251].

Dendritic growth is guided by several principles, generally thought to be controlled
regionally: a cell’s dendrites do not connect to other specific cells but, instead, are
drawn to regions of the developing brain defined by diffusive signals. Axonal growth

6 T. Kowaliw et al.

tends to be more nuanced: some axons grow to a fixed distance in the direction of
a simple gradient; others grow to long distances in a multistage process requiring
a large number of guidance cells. While dendritic and axonal development is most
active during early development, by no means does it end at maturity. The continual
generation of dendritic spines plays a crucial role throughout the lifetime of an
organism.

Experiments show that neurons isolated in cultures will regenerate neurites. It is
also well known that various extracellular molecules can promote, inhibit, or other-
wise bias neurite growth. In fact, there is evidence that in some cases context alone
can be sufficient to trigger differentiation into specific neural types. For example, the
introduction of catalysts can radically alter certain neuron morphologies to the point
that they transform into other morphologies [230]. This has important consequences
on any attempt to classify and model neural types [268].

In any case, the product of neural growth is a network possessing several key
properties that are thought to be conducive to learning. It is an open question in
neuroscience how much of neural organization is a result of genetic and epigenetic
targeting, and how much is pure randomness. However, it is known that on the meso-
scopic scale, seemingly random networks have consistent properties that are thought
to be typical of effective networks. For instance, in several species, cortical axonal
outgrowth can be modelled by a gamma distribution. Moreover, cortical structures in
several species have properties such as relatively high clustering along certain axes,
but not other axes [28, 146]. Cortical connectivity patterns are also “small-world”
networks (with high local specialization, and minimal wiring lengths), which pro-
vide efficient long-range connections [263] and are probably a consequence of dense
packing constraints inside a small space.

1.2.2 Neural Plasticity

There are also many forms of plasticity in a nervous system. While neural cell
behaviour is clearly different during development and maturity (for instance, the
drastic changes in programmed cell death), many of the same mechanisms are at
play throughout the lifetime of the brain. The remaining differences between devel-
opmental and mature plasticity seem to be regulated by a variety of signals, especially
in the extracellular matrix, which trigger the end of sensitive periods and a decrease
in spine formation dynamics [230].

Originally, it was Hebb who postulated in 1949 what is now called Hebbian learn-
ing: repeated simultaneous activity (understood as mean-rate firing) between two
neurons or assemblies of neurons reinforces the connections between them, further
encouraging this co-activity. Since then, biologists have discovered a great variety of
mechanisms governing synaptic plasticity in the brain, clearly establishing recipro-
cal causal relations between wiring patterns and firing patterns. For example, long-
term potentiation (LTP) and long-term depression (LTD) refer to ositiveor negative

1 Artificial Neurogenesis: An Introduction and Selective Review 7

changes in the probability of successful signal transmission from a resynapticaction
potential to the generation of a postsynaptic potential. These “long-term” changes can
last for several minutes, but are generally less pronounced over hours or days [230].
Prior to synaptic efficacies, synaptogenesis itself can also be driven by activity-
dependent mechanisms, as dendrites “seek out” appropriate partner axons in a process
that can take as little as a few hours [310]. Other types of plasticity come from
glial cells, which stabilize and accelerate the propagation of signals along mature
axons (through myelination and extracellular regulation), and can also depend on
activity [135].

Many others forms and functions of plasticity are known, or assumed, to exist.
For instance, “fast synaptic plasticity”, a type of versatile Hebbian learning on the
1-ms time scale, was posited by von der Malsburg [286–288]. Together with a neural
code based on temporal correlations between units rather than individual firing rates,
it provides a theoretical framework to solve the well-known “binding problem”, the
question of how the brain is able to compose sensory information into multi-feature
concepts without losing relational information. In collaboration with Bienenstock and
Doursat, this assumption led to a format of representation using graphs, and models
of pattern recognition based on graph matching [19–21]. Similarly, “spike-timing
dependent plasticity” (STDP) describes the dependence of transmission efficacies
between connected neurons on the ordering of neural spikes. Among other effects,
this allows for pre-synaptic spikes which precede post-synaptic spikes to have greater
influence on the resulting efficacy of the connection, potentially capturing a notion
of causality [183]. It is posited that Hebbian-like mechanisms also operate on
non-neural cells or neural groups [310]. “Metaplasticity” refers to the ability of
neurons to alter the threshold at which LTP and LTD occur [2]. “Homeostatic plas-
ticity” refers to the phenomenon where groups of neurons self-normalize their own
level of activity [208].

1.2.3 Theories of Neural Organization

Empirical insights into mammalian brain development have spawned several theories
regarding neural organization. We briefly present three of them in this section:
nativism, selectivism, and neural constructivism.

The nativist view of neural development posits a strong genetic role in the
construction of cognitive function. It claims that, after millions of years of evo-
lutionary shaping, development is capable of generating highly specialized, innate
neural structures that are appropriate for the various cognitive tasks that humans
accomplish. On top of these fundamental neural structures, details can be adjusted
by learning, like parameters. In cognitive science, it is argued that since children learn
from a relative poverty of data (based on single examples and “one-shot learning”),
there must be a native processing unit in the brain that preexists independently of
environmental influence. Famously, this hypothesis led to the idea of a “universal
grammar” for language [36], and some authors even posit that all basic concepts
are innate [181]. According to a neurological (and controversial) theory, the cortex

8 T. Kowaliw et al.

Fig. 2 Illustration of axonal outgrowth: initial overproduction of axonal connections and compet-
itive selection for efficient branches leads to a globally efficient map (adapted from [294])

is composed of a repetitive lattice of nearly identical “computational units”, typi-
cally identified with cortical columns [45]. While histological evidence is unclear,
this view seems to be supported by physiological evidence that cortical regions can
adapt to their input sources, and are somewhat interchangeable or “reusable” by other
modalities, especially in vision- or hearing-impaired subjects. Recent neuro-imaging
research on the mammalian cortex has revived this perspective. It showed that cor-
tical structure is highly regular, even across species: fibre pathways appear to form
a rectilinear 3D grid containing parallel sheets of interwoven paths [290]. Imaging
also revealed the existence of arrays of assemblies of cells whose connectivity is
highly structured and predictable across species [227]. Both discoveries suggest a
significant role for regular and innate structuring in cortex layout (Fig. 2).

In contrast to nativism, selectivist theories focus on competitive mechanisms as
the lead principle of structural organization. Here, the brain initially overproduces
neurons and neural connections, after which plasticity-based competitive mecha-
nisms choose those that can generate useful representations. For instance, theories
such as Changeux’s “selective stabilization” [34] and Katz’s “epigenetic popula-
tion matching” [149] describe the competition in growing axons for postsynaptic
sites, explaining how the number of projected neurons matches the number of avail-
able cells. The quantity of axons and contacts in an embryo can also be artificially
decreased or increased by excising target sites or by surgically attaching supernu-
merary limbs [272]. This is an important reason for the high degree of evolvabil-
ity of the nervous system, since adaptation can be easily obtained under the same
developmental mechanisms without the need for genetic modifications.

The regularities of neocortical connectivity can also be explained as a
self-organization process during pre- and post-natal development via epigenetic fac-
tors such as ongoing biochemical and electrophysiological activity. These princi-
ples have been at the foundation of biological models of “topographically ordered
mappings”, i.e. the preservation of neighborhood relationships between cells from
one sheet to another, most famously the bundle of fibers of the “retinotopic projec-
tion” from the retina to the visual cortex, via relays [293]. Bienenstock and Doursat
have also proposed a model of selectivist self-structuration of the cortex [61, 65],

1 Artificial Neurogenesis: An Introduction and Selective Review 9

showing the possibility of simultaneous emergence of ordered chains of synaptic
connectivity together with wave-like propagation of neuronal activity (also called
“synfire chains” [1]). Bednar discusses an alternate model in Chap. 7.

A more debated selectivist hypothesis involves the existence of “epigenetic
cascades” [268], which refer to a series of events driven by epigenetic population-
matching that affect successive interconnected regions of the brain. Evidence for
phenomena of epigenetic cascades is mixed: they seem to exist in only certain regions
of the brain but not in others. The selectivist viewpoint also leads to several intriguing
hypotheses about brain development over the evolutionary time scale. For instance,
Ebbesson’s “parcellation hypothesis” [74] is an attempt to explain the emergence
of specialized brain regions. As the brain becomes larger over evolutionary time,
the number of inter-region connections increases but due to competition and geo-
metric constraints, these connections will preferentially target neighbouring regions.
Therefore, the increase in brain mass will tend to form “parcels” with specialized
functions. Another hypothesis is Deacon’s “displacement theory” [51], which tries
to account for the differential enlargement and multiplication of cortical areas.

More recently, the neural constructivism of Quartz and Sejnowski [234] casts
doubt on both the nativist and selectivist perspectives. First, the developing cortex
appears to be free of functionally specialized structures. Second, finer measures of
neural diversity, such as type-dependent synapse counts or axonal/dendritic arboriza-
tion, provide a better assessment of cognitive function than total quantities of neu-
rons and synapses. According to this view, development consists of a long period of
dendritic development, which slowly generates a neural structure mediated by, and
appropriately biased toward, the environment.

These three paradigms highlight principles that are clearly at play in one form or
another during brain development. However, their relative merits are still a subject of
debate, which could be settled through modelling and computational experiments.

1.3 Brain Modelling

Computational neuroscience promotes the theoretical study of the brain, with the
goal of uncovering the principles and mechanisms that guide the organization,
information-processing and cognitive abilities of the nervous system [278]. A great
variety of brain structures and functions have already been the topic of many mod-
elling and simulation works, at various levels of abstraction or data-dependency.
Models range from the highly detailed and generic, where as many possible phenom-
ena are reproduced in as much detail as possible, to the highly abstract and specific,
where the focus is one particular organization or behaviour, such as feed-forward
neural networks. These different levels and features serve different motivations: for
example, concrete simulations can try to predict the outcome of medical treatment,
or demonstrate the generic power of certain neural theories, while abstract systems
are the tool of choice for higher-level conceptual endeavours.

http://dx.doi.org/10.1007/978-3-642-55337-0_7

10 T. Kowaliw et al.

In contrast with the majority of computational neuroscience research, our main
interest with this book, as exposed in this introductory chapter, resides in the potential
to use brain-inspired mechanisms for engineering challenges.

1.3.1 Challenges in Large-Scale Brain Modelling

Creating a model and simulation of the brain is a daunting task. One immediate
challenge is the scale involved, as billions of elements are each interacting with
thousands of other elements nonlinearly. Yet, there have already been several attempts
to create large-scale neural simulations (see reviews in [27, 32, 95]). Although it is a
hard problem, researchers remain optimistic that it will be possible to create a system
with sufficient resources to mimic all connections in the human brain within a few
years [182]. A prominent example of this trend is the Blue Brain project, whose
ultimate goal is to reconstruct the entire brain numerically at a molecular level. To
date, it has generated a simulation of an array of cortical columns (based on data
from the rat) containing approximately a million cells. Among other applications, this
project allows generating and testing hypotheses about the macroscopic structures
that result from the collective behaviours of instances of neural models [116, 184].
Other recent examples of large-scale simulations include a new proof-of-concept
using the Japanese K computer simulating a (non-functional) collection of nearly
2 × 109 neurons connected via 1012 synapses [118], and Spaun, a more functional
system consisting of 2.5×106 neurons and their associated connections. Interestingly,
Spaun was created by top-down design, and is capable of executing several different
functional behaviours [80]. With the exception of one submodule, however, Spaun
does not “learn” in a classical sense.

Other important challenges of brain simulation projects, as reviewed by Cattell
and Parker [32], include neural diversity and complexity, interconnectivity, plas-
ticity mechanisms in neural and glial cells, and power consumption. Even more
critically, the fast progress in computing resources able to support massive brain-like
simulations is not any guarantee that such simulations will behave “intelligently”.
This requires a much greater understanding of neural behaviour and plasticity, at
the individual and population scales, than what we currently have. After the recent
announcements of two major funded programs, the EU Human Brain Project and
the US Brain Initiative, it is hoped that research on large-scale brain modelling and
simulation should progress rapidly.

1.3.2 Machine Learning and Neural Networks

Today, examples of abstract learning models are legion, and machine learning as
a whole is a field of great importance attracting a vast community of researchers.
While some learning machines bear little resemblance to the brain, many are inspired
by their natural source, and a great part of current research is devoted to reverse-
engineering natural intelligence.

1 Artificial Neurogenesis: An Introduction and Selective Review 11

Fig. 3 Example of neural network with three input neurons, three hidden neurons, two output
neurons, and nine connections. One feedback connection (5→4) creates a cycle. Therefore, this is
a recurrent NN. If that connection was removed, the network would be feed-forward only

Chapter 2: A brief introduction to probabilistic machine learning and its
relation to neuroscience.

In Chap. 2, Trappenberg provides an overview of the most important ideas
in modern machine learning, such as support vector machines and Bayesian
networks. Meant as an introduction to the probabilistic formulation of machine
learning, this chapter outlines a contemporary view of learning theories across
three main paradigms: unsupervised learning, close to certain developmen-
tal aspects of an organism, supervised learning, and reinforcement learning
viewed as an important generalization of supervised learning in the temporal
domain. Beside general comments on organizational mechanisms, the author
discusses the relations between these learning theories and biological analo-
gies: unsupervised learning and the development of filters in early sensory cor-
tical areas, synaptic plasticity as the physical basis of learning, and research
that relates models of basal ganglia to reinforcement learning theories. He also
argues that, while lines can be drawn between development and learning to
distinguish between different scientific camps, this distinction is not as clear
as it seems since, ultimately, all model implementations have to be reflected
by some morphological changes in the syste [279].

In this book, we focus on neural networks (NNs). Of all the machine learning
algorithms, NNs provide perhaps the most direct analogy with the nervous system.
They are also highly effective as engineering systems, often achieving state-of-the-
art results in computer vision, signal processing, speech recognition, and many other
areas (see [113] for an introduction). In what follows, we introduce a summary of a
few concepts and terminology.

For our purposes, a neural network consists of a graph of neurons indexed by i . A
connection i → j between two neurons is directed and has a weight wi j . Typically,
input neurons are application-specific (for example, sensors), output neurons are
desired responses (for example, actuators or categories), and hidden neurons are
information processing units located in-between (Fig. 3).

http://dx.doi.org/10.1007/978-3-642-55337-0_2
http://dx.doi.org/10.1007/978-3-642-55337-0_2

12 T. Kowaliw et al.

Fig. 4 Two representations
for the neural network of Fig. 3

A neural network typically processes signals propagating through its units: a
vector of floating-point numbers, s, originates in input neurons and resulting signals
are transmitted along the connections. Each neuron j generates an output value v j

by collecting input from its connected neighbours and computing a weighted sum
via an activation function, ϕ:

v j (s) = ϕ

⎛
⎝ ⎜

i | (i→ j)

wi j vi (s)

⎞
⎠

where ϕ(x) is often a sigmoid function, such as tanh(x), making the output nonlinear.
For example, in the neural network of Fig. 3, the output of neuron 8 can be written
in terms of input signals v1, v2, v3 as follows:

v8(s) = ϕ(w28 v2 + w68 v6)

= ϕ(w28 v2 + w68 ϕ(w36 v3))

Graph topologies without cycles are known as feedforward NNs, while topologies
with cycles are called recurrent NNs. The former are necessarily stateless machines,
while the latter might possess some memory capacity. With sufficient size, even
simple feed-forward topologies can approximate any continuous function [44]. It is
possible to build a Turing machine in a recurrent NN [260].

A critical question in this chapter concerns the representation format of such a net-
work. Two common representations are adjacency matrices, which list every possible
connection between nodes, and graph-based representations, typically represented
as a list of nodes and edges (Fig. 4). Given sufficient space, any NN topology and set
of weights can be represented in either format.

Neural networks can be used to solve a variety of problems. In classification or
regression problems, when examples of input-output pairs are available to the net-
work during the learning phase, the training is said to be supervised. In this scenario,
the fitness function is typically a mean square error (MSE) measured between the

1 Artificial Neurogenesis: An Introduction and Selective Review 13

network outputs and the actual outputs over the known examples. With feedback
available for each training signal sent, NNs can be trained through several means,
most often via gradient descent (as in the “backpropagation” algorithm). Here, a
error or “loss function” E is defined between the desired and actual responses of the
network, and each weight is updated according to the derivative of that function:

wi j (t + 1) = wi j (t) − η
∂E

∂wi j

where η is the learning rate. Generally, this kind of approach assumes a fixed topology
and its goal is to optimize the weights.

On the other hand, unsupervised learning concerns cases where no output samples
are available and data-driven self-organization mechanisms are at work, such as
Hebbian learning. Finally, reinforcement learning (including neuroevolution) is con-
cerned with delayed, sparse and possibly noisy rewards. Typical examples include
robotic control problems, decision problems, and a large array of inverse problems
in engineering. These various topics will be discussed later.

1.3.3 Brain-Like AI: What’s Missing?

It is generally agreed that, at present, artificial intelligence (AI) is not “brain-like”.
While AI is successful at many specialized tasks, none of them shows the versatil-
ity and adaptability of animal intelligence. Several authors have compiled a list of
“missing” properties, which would be necessary for brain-like AI. These include:
the capacity to engage in a behavioural tasks; control via a simulated nervous sys-
tem; continuously changing self-defined representations; and embodiment in the real
world [165, 253, 263, 292]. Embodiment, especially, is viewed as critical because by
exploiting the richness of information contained in the morphology and the dynamics
of the body and the environment, intelligent behaviour could be generated with far
less representational complexity [228, 291].

The hypothesis explored in this book is that the missing feature is development.
The brain is not built from a blueprint; instead, it grows in situ from a complex
multicellular process, and it is this adaptive growth process that leads to the adap-
tive intelligence of the brain. Our goal is not to account for all properties observed
in nature, but rather to identify the relevance of a developmental approach with
respect to an engineering objective driven by performance alone. In the remainder of
this chapter, we review several approaches incorporating developmentally inspired
strategies into artificial neural networks.

2 Artificial Development

There are about 1.5 million known species of multicellular organisms, representing
an extraordinary diversity of body plans and shapes. Each individual grows from
the division and self-assembly of a great number of cells. Yet, this developmental

14 T. Kowaliw et al.

process also imposes very specific constraints on the space of possible organisms,
which restricts the evolutionary branches and speciation bifurcations. For instance,
bilaterally symmetric cellular growth tends to generate organisms possessing pairs
of limbs that are equally long, which is useful for locomotion, whereas asymmetrical
organisms are much less frequent.

While the “modern synthesis” of genetics and evolution focused most of the
attention on selection, it is only during the past decade that analyzing and under-
standing variation by comparing the developmental processes of different species,
at both embryonic and genomic levels, became a major concern of evolutionary
development, or “evo-devo”. To what extent are organisms also the product of self-
organized physicochemical developmental processes not necessarily or always con-
trolled by complex underlying genetics? Before and during the advent of genetics, the
study of developmental structures had been pioneered by the “structuralist” school
of theoretical biology, which can be traced back to Goethe, D’Arcy Thompson, and
Waddington. Later, it was most actively pursued and defended by Kauffman [150]
and Goodwin [98] under the banner of self-organization, argued to be an even greater
force than natural selection in the production of viable diversity.

By artificial development (AD), also variously referred to as artificial embryogeny,
generative systems, computational ontogeny, and other equivalent expressions (see
early reviews in [107, 265]), we mean the attempt to reproduce the constraints and
effects of self-organization in automated design. Artificial development is about
creating a growth-inspired process that will bias design outcomes toward useful forms
or properties. The developmental engineer engages in a form of “meta-design” [63],
where the goal is not to design a system directly but rather set a framework in which
human design or automated search will specify a process that can generate a desired
result. The benefits and effectiveness of development-based design, both in natural
and artificial systems, became an active topic of research only recently and are still
being investigated.

Assume for now that our goal is to generate a design which maximizes an objective
function, o: Φ → R

n , where Φ is the “phenotypic” space, that is, the space of
potential designs, and R

n is a collection of performance assessments, as real values,
with n ≥ 1 (n = 1 denotes a single-objective problem, while n > 1 denotes a
multiobjective problem). A practitioner of AD will seek to generate a lower-level
“genetic” space Γ , a space of “environments” E in which genomes will be expressed,
and a dynamic process δ that transforms the genome into a phenotype:

Γ × E
δ−→ Φ

o−→ R
n

In many cases, only one environment is used, usually a trivial or empty instance from
the phenotypic space. In these cases, we simply write:

Γ
δ−→ Φ

o−→ R
n

1 Artificial Neurogenesis: An Introduction and Selective Review 15

Fig. 5 Visualization of an L-System. Top-left a single production rule (the “genome”). Bottom-
left the axiom (initial “word”). Recursive application of the production rule generates a growing
structure (the “phenotype”). In this case, the phenotype develops exponentially with each application
of the production rule

The dynamic process δ is inspired by biological embryogenesis, but need not resem-
ble it. Regardless, we will refer to it as growth or development, and to the quadruple
(Γ, E, δ, Φ) as an AD system.

Often, the choice of phenotypic space Φ is dictated by the problem domain. For
instance, to design neural networks, one might specify Φ as the space of all adjacency
matrices, or perhaps as all possible instances of some data structure corresponding
to directed, weighted graphs. Or to design robots, one might define Φ as all pos-
sible lattice configurations of a collection of primitive components and actuators.
Sometimes there is value in restricting Φ, for example to exclude nonsensical or
dangerous configurations. It is the engineer’s task to choose an appropriate Φ and
to “meta-design” the Γ , E , and δ parts that will help import the useful biases of
biological growth into evolved systems.

A famous class of AD systems are the so-called L-Systems. These are formal
grammars originally developed by Lindenmayer as a means of generating model
plants [231]. In their simplest form, they are context-free grammars, consisting of a
starting symbol, or “axiom”, a collection of variables and constants, and at most one
production rule per variable. By applying the production rules to the axiom, a new
and generally larger string of symbols, or “word”, is created. Repeated application of
the production rules to the resulting word simulates a growth process, often leading
to gradually more complex outputs. One such grammar is illustrated in Fig. 5, where
a single variable (red stick) develops into a tree-like shape. In this case, the space
of phenotypes Φ is the collection of all possible words (collections of sticks), the
space of genotypes Γ is any nonambiguous set of context-free production rules, the
environment E is the space in which a phenotype exists (here trivially 2D space), and
the dynamic process δ is the repeated application of the rules to a given phenotype.

There are several important aspects to the meta-design of space of representations
Γ and growth process δ. Perhaps the most critical requirement is that the chosen enti-
ties be “evolvable”. This term has many definitions [129] but generally means that

16 T. Kowaliw et al.

Fig. 6 A mutation of the
production rule in Fig. 5, and
the output after four iterations
of growth

producion rule

Fig. 7 McCormack’s evolved
L-Systems, inspired by, but
exaggerating, Australian flora

the space of representations should be easily searchable for candidates that optimize
some objective. A generally desirable trait is that small changes in a representation
should lead to small changes in the phenotype—a “gentle slope” allowing for incre-
mental search techniques. In AD systems, however, due to the nonlinear dynamic
properties of the transformation process, it is not unusual for small genetic changes
to have large effects on the phenotype [87].

For instance, consider in Fig. 6 a possible mutation of the previous L-System.
Here, the original genome has undergone a small change, which has affected the
resulting form. The final phenotypes from the original and the mutated version are

1 Artificial Neurogenesis: An Introduction and Selective Review 17

similar in this case: they are both trees with an identical topology. However, it is
not difficult to imagine mutations that would have catastrophic effects, resulting in
highly different forms, such as straight lines or self-intersections. Nonlinearity of the
genotype-to-phenotype mapping δ can be at the same time a strength and a weakness
in design tasks.

There is an important distinction to be made here between our motivations and
those of systems biology or computational neuroscience. In AD, we seek means of
creating engineered designs, not simulating or reproducing biological phenomena.
Perhaps this is best illustrated via an example: McCormack, a computational artist,
works with evolutionary computation and L-Systems (Fig. 7). Initially, this involved
the generation of realistic models of Australian flora. Later, however, he continued
to apply evolutionary methods to create exaggerations of real flora, artefacts that
he termed “impossible nature” [187, 188]. McCormack’s creations retain salient
properties of flora, especially the ability to inspire humans, but do not model any
existing organism.

2.1 Why Use Artificial Development?

Artificial development is one way of approaching complex systems engineering,
also called “emergent engineering” [282]. It has been argued that the traditional
state-based approach in engineering has reached its limits, and the principles under-
lying complex systems—self-organization, nonlinearity, and adaptation—must be
accommodated in new engineering processes [11, 203]. Incorporating complex
systems into our design process is necessary to overcome our present logjam of
complexity, and open new areas of productivity. Perhaps the primary reason for the
interest in simulations of development is that natural embryogenesis is a practical
example of complex systems engineering, one which achieves designs of scale and
functionality that modern engineers aspire to. There are several concrete demonstra-
tions of importing desirable properties from natural systems into artificial counter-
parts. The key property of evolvability, which we have already discussed, is linked
to a notion of scalability. Other related properties include robustness via self-repair
and plasticity.

2.1.1 Scalability

Perhaps the best studied property of AD systems is the ability to scale to several sizes.
This is a consequence of a general decoupling of the complexity of the genome (what
we are searching for) from the phenotype (the final product). In many models, the
size of the phenotype is controlled via a single parameter, which can be the number of
repetitions of a module, the number of iterations in an L-System, or a single variable

18 T. Kowaliw et al.

controlling the amount of available resources. In these cases, a minimal change in
the size of the genome might have exponential effects on the size of the resulting
phenotype.

This property—the capacity to scale—brings to mind the notion of “Kolmogorov
complexity”, or the measurement of the complexity of a piece of data by the shortest
computer program that generates it. With the decision to use AD, we make the
assumption that there exists a short computer program that can generate our desired
data, i.e. that the Kolmogorov complexity of our problem is small. This implies that
AD will succeed in cases where the data to be generated is sufficiently large and
non-random. Unfortunately, in the general case, finding such a program for some
given data is an uncomputable problem, and to date there is no good approximation
other than enumerating all possible programs, a generally untenable solution [173].

In many highly relevant domains of application, the capacity for scaling has been
successfully demonstrated by AD systems. Researchers will often compare their
AD model to a direct encoding model, in which each component of the solution is
specified in the genome independently. Abstract studies have confirmed our intuition
that AD systems are often better for large phenotypes and nonrandom data [40,
108]. This has also been demonstrated in neural networks [86, 104, 153], virtual
robotics [161]; engineering design [127], and other domains [17, 243].

2.1.2 Robustness and Self-repair

Another desirable property of biological systems is the capacity for robustness. By
this, we mean a “canalization” or the fact that a resulting phenotype is resistant
to environmental perturbations, whether they are obstacles placed in the path of a
developing organism, damage inflicted, or small changes to external factors affecting
cellular expression, such as temperature or sources of nutrient. In biology, this ability
is hypothesized to result from a huge number of almost identical cells, a redundancy
creating tolerance toward differences in cellular arrangement, cell damage, or the
location of organizers [152]. Several AD systems have been shown to import robust-
ness, which can be selected for explicitly [18]. More interestingly, robustness is often
imported without the inclusion of selection pressure [86, 161, 243]. In many cases,
this property seems to be a natural consequence of the use of an adaptive growth
process as a design step.

An extreme example of robustness is the capacity for self-repair. Many authors
have conducted experiments with AD systems in which portions of an individual are
damaged (e.g. by scrambling or removing components). In these cases, organisms
can often self-repair, reconfiguring themselves to reconstruct the missing or altered
portions and optimize the original objective. For instance, this has been demonstrated
in abstract settings [5, 42, 145, 197], digital circuits [224], and virtual robotics [275].
Interestingly, in most of these cases, the self-repair capacity is not explicitly selected
for in the design stage.

1 Artificial Neurogenesis: An Introduction and Selective Review 19

2.1.3 Plasticity

Another property of AD systems is plasticity, also referred to as polymorphism or
polyphenism (although these terms are not strictly equivalent). By this, we mean the
ability of organisms to be influenced by their environment and adopt as a result any
phenotype from a number of possibilities. Examples in nature are legion [94], and
most striking in the tendency of plants to grow toward light or food, or the ability of
nervous systems to adapt to new stimuli. While robustness means reaching the same
genotype under perturbation, plasticity means reaching different phenotypes under
perturbation. Both, however, serve to improve the ultimate fitess of the organism in
a variety of environments.

In classical neural systems, plasticity is the norm and is exemplified by well-
known training methods: Hebbian learning, where connections between neurons are
reinforced according to their correlation under stimuli [114], and backpropagation,
where connection weights are altered according to an error derivative associated with
incoming stimuli [245]. These classic examples focus on synaptic structure, or the
weighting of connections in some predetermined network topology. While this is
certainly an element of natural self-organization, it is by no means a complete char-
acterization of the role that plasticity plays in embryogenesis. Environmental stimuli
in animal morphogenesis include other neural mechanisms, such as the constant re-
formation and re-connection of synapses. Both selectivist and constructivist theories
of brain development posit a central role for environmental stimuli in the generation
of neural morphology. Furthermore, plasticity plays a major role in other develop-
mental processes as well. In plants, the presence or absence of nutrients, light, and
other cues will all but determine the coarse morphology of the resulting form. In
animals, cues such as temperature, abundance of nutrients, mechanical stress, and
available space are all strong influences. Indeed, the existence of plasticity is viewed
as a strong factor in the evolvability of forms: for instance, plastic mechanisms in
the development of the vascular system allow for a sort of “accidental adaptation”,
where novel morphological structures are well served by existing genetic mecha-
nisms for vasculogenesis, despite never being directly selected for in evolutionary
history [99, 177].

Most examples of artificial neural systems exploit plasticity mechanisms to tune
parameters according to some set of “training” stimuli. Despite this, the use of envi-
ronmentally induced plasticity in AD systems is rare. Only a few examples have
shown that environmental cues can be used to reproduce plasticity effects com-
monly seen in natural phenomena, such as: virtual plant growth [87, 252], circuit
design [280], or other scenarios [157, 190]. In one case, Kowaliw et al. experimented
with the growth of planar trusses, a model of structural engineering. They initially
showed that the coarse morphology of the structures could be somewhat controlled
by the choice of objective function—however, this was also a difficult method of
morphology specification [163]. Instead, the authors experimented with external
constraints, which consisted of growing their structures in an environment that had
the shape of the desired morphology. Not only was this approach generally success-
ful in the sense of generating usable structures of the desired overall shape, but it

20 T. Kowaliw et al.

also spontaneously generated results indicating evolvability. A few of the discovered
genomes could grow successful trusses not only in the specific optimization envi-
ronment but also in all the other experimental environments, thus demonstrating a
capacity for accidental adaptation [162].

2.1.4 Other Desirable Natural Properties

Other desirable natural properties are known to occasionally result from AD systems.
These include: graceful degradation, i.e. the capacity for systems performance to fail
continuously with the removal of parts [18]; adaptation to previously unseen environ-
ments, thought to be the result of repetitions of phenotypic patterns capturing useful
regularities (see, for instance, Chap. 9 [206]); and the existence of “scafolding”, i.e.
a plan for the construction of the design in question, based on the developmental
growth plan [241].

2.2 Models of Growth

An AD system requires a means of converting a representation into a design. This
conversion typically involves a dynamic process that generates an arrangement of
“cells”, where these cells can stand for robotic components, structural members, neu-
rons, and so on. Several models of multi-component growth have been investigated
in detail:

• Induced representational bias: the designer adds a biologically inspired bias to an
otherwise direct encoding. Examples include very simple cases, such as mirroring
elements of the representation to generate symmetries in the phenotype [256], or
enforcing a statistical property inspired by biological networks, such as the density
of connections in a neural system [258].

• Graph rewriting: the phenotype is represented as a graph, the genome as a col-
lection of graph-specific actions, and growth as the application of rules from the
genome to some interim graph. Examples of this paradigm include L-Systems and
dynamic forms of genetic programming [109, 122].

• Cellular growth models: the phenotype consists of a collection of cells on a lattice
or in continuous space. The genome consists of logic that specifies associations
between cell neighbourhoods and cell actions, where the growth of a phenotype
involves the sum of the behaviours of cells. Cellular growth models are sometimes
based on variants of cellular automata, a well-studied early model of discrete
dynamics [161, 197]. This choice is informed by the success of cellular automata
in the simulation of natural phenomena [56]. Other models involve more plausible
physical models of cellular interactions, where cells orient themselves via inter-
cellular physics [25, 62, 76, 144, 249]

1 Artificial Neurogenesis: An Introduction and Selective Review 21

• Reaction-diffusion models: due to Turing [281], they consist of two or more
simulated chemical agents interacting on a lattice. The chemical interactions
are modelled as nonlinear differential equations, solved numerically. Here, sim-
ple equations quickly lead to remarkable examples of self-organized patterns.
Reaction-diffusion models are known to model many aspects of biological devel-
opment, including overall neural organization [172, 259] and organismal behav-
iour [47, 298].

• Other less common but viable choices include: the direct specification of
dynamical systems, where the genome represents geometric components such
as attractors and repulsors [267]; the use of cell sorting, or the simulation of ran-
dom cell motion among a collection of cells with various affinities for attraction,
which can be used to generate a final phenotype [107].

A major concern for designers of artificial development (and nearly all com-
plex systems) is how to find the micro-rules which will generate a desired macro-
scale pattern. Indeed, this problem has seen little progress despite several decades of
research, and in the case of certain generative machines such as cellular automata, it
is even known to be impossible [133]. The primary way to solve this issue is using a
machine learner as a search method. Evolutionary computation is the general choice
for this machine learner, mostly due to the flexibility of genomic representations
and objective functions, and the capacity to easily incorporate conditions and heuris-
tics. In this case, the phenotype of the discovered design solution will be an unpre-
dictable, emergent trait of bottom-up design choices, but one which meets the needs
of the objective function. Various authors have explored several means of ameliorat-
ing this approach, in particular by controlling or predicting the evolutionary output
[213, 214].

2.3 Why Does Artificial Development Work?

The means by which development improves the evolvability of organisms is a critical
question. In biology, the importance of developmental mechanisms in organismal
organization has slowly been acknowledged. Several decades ago, Gould (contro-
versially) characterized the role of development as that of a “constraint”, or a “fruit-
ful channelling [to] accelerate or enhance the work of natural selection” [99]. Later
authors envisioned more active mechanisms, or “drives” [7, 152]. More recently,
discussion has turned to “increased evolvability”, partly in recognition that no sim-
ple geometric or phenotypic description can presently describe all useful phenotypic
biases [115]. At the same time, mechanisms of development have gained in impor-
tance in theoretical biology, spawning the field of evo-devo [31] mentioned above,
and convincing several researchers that the emergence of physical epigenetic cellular
mechanisms capable of supporting robust multicellular forms was, in fact, the “hard”
part of the evolution of today’s diversity of life [212].

22 T. Kowaliw et al.

Inspired by this related biological work, practitioners of artificial development
have hypothesized several mechanisms as an explanation for the success of artificial
development, or as candidates for future experiments:

• Regularities: this term is used ambiguously in the literature. Here, we refer to the
use of simple geometrically based patterns over space as a means of generating or
biasing phenotypic patterns, for example relying on Wolpert’s notion of gradient-
based positional information [295]. This description includes many associated
biological phenomena, such as various symmetries, repetition, and repetition with
variations. Regularities in artificial development are well studied and present in
many models; arguably the first AD model, Turing’s models of chemical morpho-
genesis, relied implicitly on such mechanisms through chemical diffusion [281].
A recent and popular example is the Compositional Pattern Producing Network
(CPPN), an attempt to reproduce the beneficial properties of development without
explicit multicellular simulation [266] (see also Sect. 5.4 and Chap. 5).

• Modularity: this term implies genetic reuse. Structures with commonalities are
routine in natural organisms, as in the repeated vertebrae of a snake, limbs of a
centipede, or columns in a cortex [29]. As Lipson points out, modules need not
even repeat in a particular organism or design, as perhaps they originate from a
meta-processes, such as the wheel in a unicycle [174]. Despite this common con-
ception, there is significant disagreement on how to define modularity in neural
systems. In cognitive science, a module is a functional unit: a specialized and
encapsulated unit of function, but not necessarily related to any particular low-
level property of neural organization [89, 233]. In molecular biology, modules are
measured as either information-theoretic clusters [121], or as some measure of
the clustering of network nodes [147, 211, 289]. These sorts of modularity are
implicated in the separation of functions within a structure, allowing for greater
redundancy in functional parts, and for greater evolvability through the separa-
tion of important functions from other mutable elements [229]. Further research
shows that evolution, natural and artificial, induces modularity in some form, under
pressures of dynamic or compartmentalized environments [23, 24, 39, 121, 147],
speciation [82], and selection for decreased wiring costs [39]. In some cases, these
same measures of modularity are applied to neural networks [23, 39, 147]. Beyond
modularity, hierarchy (i.e. the recursive composition of a structure and/or function
[64, 124, 174]) is also frequently cited as a possibly relevant network property.

• Phenotypic properties: Perhaps the most literal interpretation of biological theory
comes from Matos et al., who argue for the use of measures on phenotypic space.
In this view, an AD system promotes a bias on the space of phenotypic structures
that can be reached, which might or might not promote success in some particular
domain. By enumerating several phenotypic properties (e.g. “the number of cells
produced”) they contrast several developmental techniques, showing the bias of
AD systems relative to the design space [185]. While this approach is certainly
capable of adapting to the problem at hand, it requires a priori knowledge of
the interesting phenotypic properties—something not presently existing for large
neural systems;

1 Artificial Neurogenesis: An Introduction and Selective Review 23

• Adaptive feedback and learning: Some authors posit adaptive feedback during
development as a mechanism for improved evolvability. The use of an explicit
developmental stage allows for the incorporation of explicit cues in the resulting
phenotype, a form of structural plasticity which recalls natural growth. These cues
include not only a sense of the environment, as was previously discussed, but
also interim indications of the eventual success of the developing organism. This
latter notion, that of a continuous measure of viability, can be explicitly included
in AD system, and has been shown in simple problems to improve efficacy and
efficiency [12, 157, 158, 190]. A specialized case of adaptive feedback is learn-
ing, by which is meant the reaction to stimuli by specialized plastic components
devoted to the communication and processing of inter-cellular signals. This impor-
tant mechanism is discussed in the next section.

3 Artificial Neurogenesis

By artificial neurogenesis, we mean a developmentally inspired process that gener-
ates neural systems for use in a practical context. These contexts include tasks such
as supervised learning, computer vision, robotic control, and so on. The definition of
developmentally inspired processes in this chapter is also kept broad on purpose: at
this early stage, we do not want to exclude the possibility that aspects of our current
understanding of development are spurious or replaceable.

An interesting early example of artificial neurogenesis is Gruau’s cellular encod-
ing [103]. Gruau works with directed graph structures: each neural network starts
with one input and one output node, and a hidden “mother” cell connected between
them. The representation, or “genome”, is a tree encoding that lists the successive
cell actions taken during development. The mother cell has a reading head pointed
at the top of this tree, and executes any cellular command found there. In the case of
a division, the cell is replaced with two connected children, each with reading heads
pointed to the next node in the genome. Other cellular commands change registers
inside cells, by adding bias or changing connections. A simple example is illustrated
in Fig. 8.

Through this graph-based encoding, Gruau et al. designed and evolved networks
solving several different problems. Variants of the algorithm used learning as a mid-
step in development and encouraged modularity in networks through the introduction
of a form of genomic recursion [103, 104]. The developed networks showed strong
phenotypic organization and modularity (see Fig. 9 for samples).

3.1 The Interplay Between Development and Learning

A critical difference between artificial neurogenesis and AD is the emphasis on learn-
ing in the latter. Through the modelling of neural elements, a practitioner includes

24 T. Kowaliw et al.

Fig. 8 Simple example of a neural network generated via cellular encoding (adapted from [103]).
On the left, an image of the genome of the network. On the right, snapshots of the growth of the
neural network. The green arrows show the reading head of the active cells, that is, which part
of the genome they will execute next. This particular network solves the XOR problem. Genomic
recurrence (not shown) is possible through the addition of a recurrence node in the genomic tree

Fig. 9 Sample neural networks generated via cellular encoding: left a network solving the 21-bit
parity problem; middle a network solving the 40-bit symmetry problem; right a network imple-
menting a 7-input, 128-output decoder (reproduced with permission from [103])

any number of plasticity mechanisms that can effectively incorporate environmental
information.

One such hypothetical mechanism requiring the interplay between genetics and
epigenetics is the Baldwin effect [9]. Briefly, it concerns a hypothesized process that
occurs in the presence of both genetic and plastic changes and accelerates evolution-
ary progress. Initially, one imagines a collection of individuals distributed randomly
over a fitness landscape. As expected, the learning mechanism will push some, or all,
of these individuals toward local optima, leading to a population more optimally dis-
tributed for non-genetic reasons. However, such organisms are under “stress” since
they must work to achieve and maintain their epigenetically induced location in the
fitness landscape. If a population has converged toward a learned optimum, then in
subsequent generations, evolution will operate to lower this stress, by finding genetic

1 Artificial Neurogenesis: An Introduction and Selective Review 25

means of reducing the amount of learning required. Thus, learning will identify an
optimum, and evolution will gradually adapt the genetic basis of the organism to fit
the discovered optimum. While this effect is purely theoretical in the natural world,
it has long been known that it can be generated in simple artificial organisms [120].
Accommodating developmental processes in these artificial models is a challenge,
but examples exist [72, 103]. Other theories of brain organization, such as displace-
ment theory, have also been tentatively explored in artificial systems [70, 71].

3.2 Why Use Artificial Neurogenesis?

There is danger in the assumption that all products of nature were directly selected
for their contribution to fitness; this Panglossian worldview obscures the possibility
that certain features of natural organisms are the result of non-adaptive forces, such
as genetic drift, imperfect genetic selection, accidental survivability, side-effects of
ontogeny or phylogeny, and others [100]. In this spirit, we note that while a computer
simulation might show a model to be sufficient for the explanation of a phenomenon,
it takes more work to show that it is indeed necessary. Given the staggering complex-
ity of recent neural models, even a successful recreation of natural phenomena does
not necessarily elucidate important principles of neural organization, especially if the
reconstructed system is of size comparable to the underlying data source. A position
of many practitioners working with bio-inspired neural models, as in artificial intel-
ligence generally, is that an alternative path to understanding neural organization
is the bottom-up construction of intelligent systems. The creation of artefacts capa-
ble of simple behaviours that we consider adaptive or intelligent gives us a second
means of “understanding” intelligent systems, a second metric through which we can
eliminate architectural overfitting from data-driven models, and identify redundant
features of natural systems.

A second feature of many developmental neural networks is the reliance on local
communication. Practitioners of AD will often purposefully avoid global information
(e.g. in the form of coordinate spaces or centralized controllers) in order to generate
systems capable of emergent global behaviour from purely local interactions, as is
the case in nature. Regardless of historic motivations, this attitude brings potential
benefits in engineered designs. First, it assumes that the absence of global control
contributes to the scalability of developed networks (a special form of the robust-
ness discussed in Sect. 2.1.1). Second, it guarantees that the resulting process can
be implemented in a parallel or distributed architecture, ideally based on physically
asynchronous components. Purely local controllers are key in several new engineer-
ing application domains, for instance: a uniform array of locally connected hardware
components (such as neuromorphic engineering), a collection of modules with lim-
ited communication (such as a swarm of robots, or a collection of software modules
over a network), or a group of real biological cells executing engineered DNA (such
as synthetic biology).

26 T. Kowaliw et al.

3.3 Model Choices

A key feature in artificial neurogenesis is the level of simulation involved in the
growth model. It can range from highly detailed, as is the case for models of cellular
physics or metabolism, to highly abstract, when high-level descriptions of cellular
groups are used as building blocks to generate form. While realism is the norm in
computational neuroscience, simpler and faster models are typical in machine learn-
ing. An interesting and open question is whether or not this choice limits the capacity
of machine learning models to solve certain problems. For artificial neurogenesis, rel-
evant design decisions include: spiking versus non-spiking neurons, recurrent versus
feed-forward networks, the level of detail in neural models (e.g. simple transmission
of a value versus detailed models of dendrites and axons), and the sensitivity of neural
firing to connection type and location.

Perhaps the most abstract models come from the field of neuroevolution, which
relies on static feed-forward topologies and nonspiking neurons. For instance, Stan-
ley’s HyperNEAT model [49] generates a pattern of connections from another lattice
of feed-forward connections based on a composition of geometric regularities. This
model is a highly simplified view of neural development and organization, but can
be easily evolved (see Chap. 5, [48]). A far more detailed model by Khan et al. [151]
provides in each neuron several controllers that govern neural growth, the synap-
togenesis of dendrites and axons, connection strength, and other factors. Yet, even
these models are highly abstract compared to other works from computational neu-
roscience, such as the modelling language of Zubler et al. [311]. The trade-offs
associated with this level of detailed modelling are discussed in depth by Miller
(Chap. 8, [198]).

Assuming that connectivity between neurons depends on their geometric loca-
tion, a second key question concerns the level of stochasticity in the placement of
those elements. Many models from computational neuroscience assume that neural
positions are at least partially random, and construct models that simply overlay pre-
formed neurons according to some probability law. For instance, Cuntz et al. posit
that synapses follow one of several empirically calculated distributions, and con-
struct neural models based on samples from those distributions [41]. Similarly, the
Blue Brain project assumes that neurons are randomly scattered: this model does, in
fact, generate statistical phenomena which resemble actual brain connectivity pat-
terns [116].

A final key decision for artificial neurogenesis is the level of detail in the simulation
of neural plasticity. These include questions such as:

• Is plasticity modelled at all? In many applications of neuroevolution (Sect. 4.3), it
is not: network parameters are determined purely via an evolutionary process.

• Does plasticity consist solely of the modification of connection weights or firing
rates? This is the case in most classical neural networks, where a simple, almost
arbitrary network topology is used, such as a multilayer perceptron. In other cases,
connection-weight learning is applied to biologically motivated but static network
topologies (Sects. 4.1 and 4.2, Chap.7 [13]).

1 Artificial Neurogenesis: An Introduction and Selective Review 27

• How many forms of plasticity are modelled? Recent examples in reservoir
computing show the value of including several different forms (Sect. 6.1).

• Does the topology of the network change in response to stimuli? Is this change
based on a constructive or destructive trigger (Sect. 6.2)? Is the change based on
model cell-inspired synaptogenesis (Sect. 5)?

The plethora of forms of plasticity in the brain suggests different functional roles in
cognition. For instance, artificial neural networks are prone to a phenomenon known
as “catastrophic forgetting”, that is, a tendency to rapidly forget all previously learned
knowledge when presented with new data sources for training. Clearly, such forget-
fulness will negatively impact our capacity to create multi-purpose machines [90].
Miller and Khan argue, however, that re-introducing metaphors for developmental
mechanisms, such as dendritic growth, overcomes this limitation [201].

3.4 Issues Surrounding Developmental Neural Network Design

The use of a developmentally inspired representation or growth routine in neural
network design implies a scale of network rarely seen in other design choices. Indeed,
development is associated with the generation of large structures and is not expected
to be useful below a minimal number of parts. This leads to several related issues for
practitioners:

• Large networks are difficult to train via conventional means. This is mainly due to
computational complexity, as training procedures such as backpropagation grow
with the number of connections in a network.

• A more specific issue of size, depth, refers to the number of steps between the
input and output of the network. It is known that there are exponentially more
local optima in “deep” networks than “shallow” ones, and this has important con-
sequences for the success of a gradient-descent technique in a supervised learning
task. Despite these difficulties, depth is found to be useful because certain problems
can be represented in exponentially smaller formats in deep networks [16].

These issues can be ameliorated via several new and highly promising neural tech-
niques. On such technique is reservoir computing, where only a small subset of a
large network is trained (Sect. 4.2). A second such technique is deep learning, where
a deep network is preconditioned to suit the data source at hand (Sect. 4.1).

In much of statistical learning, there is a drive toward finding the most parsimo-
nious representation possible for a solution. This is usually the case in constructive
and pruning networks (Sect. 6.2), in which a smaller network is an explicit metric
of success. Obviously, simpler solutions are more efficient computationally and can
be more easily understood. However, it is further claimed that parsimonious solu-
tions will also perform better on previously unseen data, essentially based on the
bias/variance trade-off argument by Geman et al. [92]. They show that for a simple,
fully connected network topology, the number of hidden nodes controls the level

28 T. Kowaliw et al.

of bias and variance in a trained classifier. Too many nodes lead to a network with
excessive variance and overfitting of the training data. They conclude that the hard
part of a machine learning problem is finding a representational structure that can
support a useful “bias” toward the problem at hand. It means that a heuristic architec-
tural search must precede the exploration and optimization of network parameters.
Perhaps inspired by this and similar studies on limited representations, and the hope
that smaller representations will have less tendencies to overfit, parsimony is often
an explicit goal in optimization frameworks. Yet, we take here a different view: for
us, certain forms of redundancy in the network might in fact be one of the archi-
tectural biases that support intelligence. In AD, redundancy is often celebrated for
increasing resilience to damage, allowing graceful degradation, and creating neutral
landscapes, or genetic landscapes that encourage evolvability [239, 248, 305].

4 Bio-Inspired Representations

Many neural models do not explicitly simulate any developmental process, yet they
are substantially informed by biology through the observation the network struc-
ture of natural neural systems (or systems from computational neuroscience), and
the inclusion of an explicit “bias” containing similar properties. Several of these
approaches have proven tremendously successful in recent years, contributing to the
so-called “second neural renaissance” that has reinvigorated research in artificial
neural networks. We summarize below some of these bio-inspired representations.

4.1 Deep Learning

With the advent of deep learning, neural networks have made headlines again both
in the machine learning community and publicly, to the point that “deep networks”
could be seen on the cover of the New York Times. While deep learning is primarily
applied to image and speech recognition [15, 46, 171], it is also mature enough today
to work out of the box in a wide variety of problems, sometimes achieving state-of-
the-art performance. For example, the prediction of molecular activity in the Kaggle
challenge on Merck datasets (won by the Machine Learning group of the University
of Toronto), or collaborative filtering and preference ranking in the Netflix movie
database [246] both used deep learning.

These impressive results can be explained by the fact that deep learning very
efficiently learns simple features from the data and combines them to build high-
level detectors, a crucial part of the learning task. The features are learned in an
unsupervised way and the learning methods are scalable: they yield the best results on
the ImageNet problem [52, 166, 170], a dataset comprising 1,000 classes of common
object images, after a training process that ran on a cluster of tens of thousands of
CPUs and several millions of examples. Even through purely unsupervised training

1 Artificial Neurogenesis: An Introduction and Selective Review 29

convolutionconvolution convolutionsubsampling subsampling

Input 4 feature maps 12 feature maps Output

Fig. 10 Architecture of a convolution neural network, as proposed by LeCun in [171]. The convo-
lutional layers alternate with subsampling (or pooling) layers

on YouTube images, the features learned are specialized enough to serve as face
detectors or cat detectors. A straightforward supervised tuning of these unsupervised
features often leans to highly effective classifiers, typically outperforming all other
techniques.

Deep networks are similar to the classical multilayer perceptrons (MLP). MLPs
are organized into “hidden layers”, which are rows of neurons receiving and process-
ing signals in parallel. These hidden layers are the actual locus of the computation,
while the input and output layers provide the interface with the external world. Before
deep learning, most multilayered neural nets contained only one hidden layer, with
the notable exception of LeCun’s convolutional network [171] (see below). One rea-
son comes from the theoretical work of Håstad [112], who showed that all boolean
circuits with ∂+1 layers could be simulated with ∂ layers, at the cost of an exponen-
tially larger number of units in each layer. Therefore, to make the model selection
phase easier, for example chosing the number of units per layer, a common practice
was to consider a single hidden layer. Another reason is that networks with more
than one or two hidden layers were notoriously difficult to train [274], and the very
small number of studies found in the literature that involve such networks is a good
indicator of this problem.

Pioneering work on deep learning was conducted by LeCun [171], who proposed
a family of perceptrons with many layers called convolutional networks (Fig. 10).
These neural networks combine two important ideas for solving difficult tasks: shift-
invariance, and reduction of dimensionality of the data. A convolution layer imple-
ments a filtering of its input through a kernel function common to all neurons of the
layer. This approach is also called weight sharing, as all neurons of a given layer
always have the same weight pattern. Convolution layers alternate with “pooling
layers”, which implement a subsampling process. The activation level of one neuron
in a pooling layer is simply the average of the activity of all neurons from the previ-
ous convolution layer. In the first layer, the network implements a filter bank whose
output is subsampled then convolved by the filter implemented in the next layer.

30 T. Kowaliw et al.

input

hidden

output

W1

WT
1

input

hidden

W2

hidden 2

hidden

W T
1

WT
2

W1

output

input

hidden 1

W1

hidden 2

W2

hidden 3

W 3

W4

output

Fig. 11 Layer-wise unsupervised training in a deep architecture: left training of the first hidden
layer, shown in black; center training of the second hidden layer, shown in black. Hidden layers
and associated weights that are not subject to learning are shown in grey

Therefore, each pair of layers extracts a set of features from the input, which in turn
feed into the next pair of layers, eventually building a whole hierarchy of features.
Interesting variants of convolutional networks include L2-pooling, in which the L2
norm of a neuron’s activation in the previous layer is used instead of the maximum
or the average [141], and contrast normalization, where the activities of the pooling
neurons are normalized.

Hierarchical combination of features is the key ingredient of deep networks. In
convolutional networks, the weight sharing technique allows learning a specific filter
for each convolution map, which drastically reduces the number of variables required,
and also explains why convolutional networks converge by simple stochastic gradient
descent. On the other hand, weight sharing also limits the expressivity of the network,
as each filter must be associated to a feature map and too many feature maps could
negatively affect the convergence of the learning algorithm.

To overcome this trade-off, the method proposed by deep learning is to build the
network step by step and ensure the learning of a feature hierarchy while maintaining
good expressivity [81]. This is implemented via layer-wise unsupervised training,
followed by a fine tuning phase that uses a supervised learning algorithm, such as
gradient descent (Fig. 11). The idea of relying on unsupervised learning to train a
network for a supervised task has been advocated by Raina et al. [235] in their
work about self-taught learning. It is known that adding unlabelled examples to the
training patterns improves the accuracy of the classifiers, an approach called “semi-
supervised” learning [217]. In self-taught learning, however, any example and any
signal can be used to improve the classifier’s accuracy.

The underlying hypothesis is that recurring patterns in the input signal can be
learned from any of the signal classes, and these typical recurrent patterns are helpful
to discriminate between different signal classes. In other words, when the signal space

1 Artificial Neurogenesis: An Introduction and Selective Review 31

is large, it is possible to learn feature detectors that lie in the region containing most
of the signal’s energy, and then, classifiers can focus on this relevant signal space.

The layer-wise unsupervised objective of a deep network is to minimize the recon-
struction error between the signal given on the input layer of the network and the
signal reconstructed on the output layer. In the autoencoder framework, this first
learning step, also called generative pretraining, focuses on a pair of parameters, the
weight matrix W and the bias b of an encoder-decoder network. The encoder layer
is a mapping f from the input signal x to an internal representation y:

y = f (x) = s(W x + b) (1)

where b is a bias vector and s is a non-linear function, usually a sigmoidal function.
The decoder is a mapping from the internal state to a reconstructed signal z:

z = g(y) = s(W T x + bT) (2)

In the left part of Fig. 11, the input vector x activates the neurons of the input layer,
the internal state y of the hidden layer is expressed by Eq. (2) and the output layer is
z = g(f (x)). The reconstructed error to minimize is then:

L(x, z) ∝ − log p(x |z) (3)

A deep network can be built by stacking networks on top of each other. The most
common are the autoencoders, also called auto-associators, which are often con-
strained to either ensure sparsity (sparse autoencoders) [15, 169, 236], or enforce
generalization by purposefully corrupting the input signals, as with denoising autoen-
coders [81, 285]. Another widely investigated type of network is the restricted
Boltzmann machine (RBM) [119], which is based on latent variables and a probabilis-
tic formulation. A bound on accuracy ensures that stacking RBMs could only improve
the accuracy of the whole architecture. Recent developments have shown that it is
possible to use many different classifiers as the building blocks of a deep architecture.
Nonetheless, the neural networks and their training have been sufficiently investi-
gated to be integrated into a toolbox and applied without prior knowledge to nearly
any pattern recognition problem.

The incremental method used in deep learning can be construed as a type of
simplified evolutionary process, in which a first layer is set up to process certain
inputs until it is sufficiently robust, then a second layer uses as input the output of the
first layer and re-processes it until convergence, and so on. In a sense, this mimics an
evolutionary process based on the “modularity of the mind” hypothesis [89], which
claims that cognitive functions are constructed incrementally using the output of
previous modules leading to a complex system. Another evolutionary perspective on
deep learning, in relation with cultural development, is proposed by Bengio [14].

32 T. Kowaliw et al.

Chapter 3: Evolving culture versus local minima.
In Chap. 3, Bengio [14] provides a global view of the main hypotheses

behind the training of deep architectures. It describes both the difficulties and
the benefits of deep learning, in particular the ability to capture higher-level and
more abstract relations. Bengio relates this challenge to human learning, and
proposes connections to culture and language. In his theory, language conveys
higher-order representations from a “teacher” to a “learner” architecture, and
offers the opportunity to improve learning by carefully selecting the sequence
of training examples—an approach known as Curriculum Learning. Bengio’s
theory is divided into several distinct hypotheses, each with proposed means of
empirical evaluation, suggesting avenues for future research. He further postu-
lates cultural consequences for his theory, predicting, for instance, an increase
in collective intelligence linked to better methods of memetic transmission,
such as the Internet.

From a computational viewpoint, signals acquired from natural observations
often reside on a low-dimension manifold embedded in a higher-dimensional space.
Deep learning aims at learning local features that characterize the neighbourhood
of observed manifold elements. A connection could be made with sparse coding
and dictionary learning algorithms, as described in [222], since all these data-driven
approaches construct over-complete bases that capture most of the signal’s energy.
This line of research is elaborated and developed in Chap. 4 by Rebecchi, Paugam-
Moisy and Sebag [236].

Chapter 4: Learning sparse features with an auto-associator.
In Chap. 4, Rebecchi, Paugam-Moisy and Sebag [236] review the recent

advances in sparse representations, that is, mappings of the input space to
a high-dimensional feature space, known to be robust to noise and facilitate
discriminant learning. After describing a dictionary-based method to build such
representations, the authors propose an approach to regularize auto-associator
networks, a common building block in deep architectures, by constraining the
learned representations to be sparse. Their model offers a good alternative to
denoising auto-associator networks, which can efficiently reinforce learning
stability when the source of noise is identified.

To deal with multivariate signals and particularly complicated time-series, several
deep learning systems have been proposed. A common choice is to replicate and
connect deep networks to capture temporal aspect of signals, using learning rules
such as backpropagation through time. However, since these networks are recurrent,
the usual gradient descent search does not converge. Consequently, “vanishing” or
“exploding” gradient descents have also been the subject of an intense research

http://dx.doi.org/10.1007/978-3-642-55337-0_3
http://dx.doi.org/10.1007/978-3-642-55337-0_3
http://dx.doi.org/10.1007/978-3-642-55337-0_4
http://dx.doi.org/10.1007/978-3-642-55337-0_4
http://dx.doi.org/10.1007/978-3-642-55337-0_4

1 Artificial Neurogenesis: An Introduction and Selective Review 33

Fig. 12 A time-series u(n)

is assigned to input neurons.
These input neurons are
connected to the “reservoir”,
a recurrent neural network
x(n). Only a subset of x(n)

is connected to the output
neurons y(n)

u(n)

x(n)

y(n)

inputs reservoir outputs

effort and have led to the development of reservoir computing approaches, which are
detailed in the next section.

4.2 Reservoir Computing

Reservoir computing is an approach and family of models that rely on a recurrent
neural network, called a reservoir, to generate a high-dimensional and dynamical
representation of a given input, often a time series. Typically, the connections and
weights in the network are randomly distributed and can produce a large number of
nonlinear patterns from an input stream. Rather than modifying the reservoir with a
supervised learning algorithm, however, the dynamical state of the reservoir is “read
out” by a simple classifier, for example a linear regression or support vector machine,
connected to a fraction of its neurons. This idea has been instantiated in different
neural models, the two best known being Jaeger’s Echo State Network (ESN) [137]
and Maass’ Liquid State Machine (LSM) [180, 210] (Fig. 12).

The ESN formulation uses a common sum of the weight / nonlinearity neurons
as a neural model for the reservoir, such as McCulloch and Pitts neurons [189] or
sigmoidal units. A good reservoir should produce a rich dynamics to facilitate the sep-
arability of its activity traces by the readout classifier, thus it is usually large, sparsely
and randomly connected. It should also possess the echo state property, meaning that
the effect of a previous state of the network should vanish asymptotically—in other
words, the network should “forget” its previous state in a finite amount of time. To
ensure this property, a common practice is to verify that the spectral radius |λmax| of
the weight matrix of the reservoir W is less than 1, and close to 1 for tasks requiring
long memories. Other strategies have also been explored, taking into account more
specialized neural types [303].

In other setups, the reservoir relies on more realistic neuronal models, such
as integrate-and-fire or spiking neurons. While such temporal models endow the
network with a richer dynamics, they also come at the expense of computational

34 T. Kowaliw et al.

efficiency, which can be noticeably reduced even in the case of simple spiking
neurons [27]. Nonetheless, this type of reservoir form the basis of LSMs [210] and
“cortical microcircuits” [180], which have been employed less frequently than ESNs.
In any case, both types have been applied to a great variety of tasks and are theoret-
ically linked [138].

One of the major difficulties of the LSM paradigm is the choice of the readout
classifier. A simple linear regression achieves correct results and has been used to
demonstrate theoretical characterizations [180], yet it ignores the fact that spiking
neurons convey information through precise spike timings. Several propositions have
been made to exploit this temporal information: encoding patterns with transient
synchrony, as shown by Hopfield and Brody [123], or applying a margin classifier
based on connection delays [226].

Whether LSMs or ESNs, another key element is the topology of the reservoir. The
spectral radius |λmax| of the weight matrix W plays a crucial role in determining the
dynamics that will take place in the recurrent network. Other factors, such as small-
world degree, scale-free regimes, and bio-inspired axonal growth patterns, have also
been shown to positively influence the capabilities of the reservoir [242]. On the other
hand, a recent theoretical analysis by Zhang et al. argues that all random reservoir
topologies asymptotically converge to the same distribution of eigenvalues, implying
that the topology is relatively indifferent after all [307]. Finer investigations of the
dynamics are also possible [226] but they have not yet been applied in this context.

Beyond fixed topologies, a topic of great relevance to this chapter concerns endow-
ing the reservoir with plasticity. Applying an unsupervised learning procedure to the
weights allows the reservoir to adapt to very constrained topologies, although a the-
oretical analysis in this case becomes problematic [250]. The use of plasticity in
reservoir computing will be discussed further in Sect. 6. Another widely investigated
aspect is the influence of an external loop, by which the readout classification results
are reinjected in the reservoir. This feedback adds another level of cognition to the
network, as the system can now utilize its own capacity for prediction in input. An in-
depth review of reservoir computing challenges and common practice can be found
in a special issue of Neural Network [139], and a comprehensive explanation of the
ongoing approaches is proposed in [179].

4.3 Neuroevolution

In evolutionary computation, there has been an long-standing interest in artificial
neural networks for classification and regression, as well as control problems. The
term “neuroevolution” is now well established and covers a large range of approaches
(evolving weights, evolving topologies, learning rules, developmental processes)
and applications. In this framework, the design of a particular neural network for
solving a task is driven by its performance with respect to the defined task. This
performance is itself described in terms of fitness value(s), and the evolutionary
algorithm targets incremental improvements of fitness evaluations. To this aim, it

1 Artificial Neurogenesis: An Introduction and Selective Review 35

produces new candidate solutions (i.e. particular configurations of neural networks)
from previously tried ones through the action of various mutation and recombination
operators [79].

For example, neural networks have long been the method of choice of evolutionary
robotics when performing “policy search” in reinforcement learning problems [219,
271, 273]. As a formalism for controller representation, they exhibit interesting
features such as robustness (with respect to noisy sensory inputs), evolvability (in
the sense that small weight changes give rise to small behavioral changes), and ease
of implementation (since update time varies only linearly with the number of links).
This is also true in situations with limited hardware specifications, such as onboard
robotic systems.

Three important decisions may impact the choice of a learning method to train
the network: (a) the definition of the neural network to be considered (with/without
recurrent connections), (b) the choice of variables to learn (the weights of a fixed
topology, and/or the topology), and (c) how these variables will be learnt (how to
encode such a network, how to navigate through the search space). While there exist
several methods in the literature for evolving weights only, such as classic multi-
layered perceptrons or echo state networks [110], things become more challenging
when evolving entire topologies. On the one hand, the choice of a particular search
space relies for a great part on the programmer’s expertise, and a poor guess may
hinder the whole process. On the other hand, learning both the weights and the
topology opens up a much larger search space and may well lead to performance
normally unreachable through pure synaptic modification. Due to the versatility and
robustness of evolutionary algorithms, they are considered promising candidates in
the exploration of configuration spaces.

Evolutionary algorithms (EAs) quickly appeared as a relevant approach toward
NN learning by the end of the 1990s (see [302] for a detailed survey). Although EAs
can be useful for the optimization of the weights of a feedforward NN, they have
instead been mainly used for their flexibility in handling complex search spaces.
Many algorithms modifying the structure of neural networks through dedicated vari-
ation operators have been proposed.

Notable works and models in this field include: GNARL [6], which uses a direct
encoding of the neural network to build a robot controller; EANT [148], which
evolves the structure and weights via distinct processes; SANE (Symbiotic Adaptive
Neuro-Evolution) [204] and ESP (Enforced Sub-Population) [96, 97], which evolve
a population of neurons (rather than a network) and combine these neurons to form
effective neural networks; and GASNET [132], which combines the optimization of
the position of neurons in an Euclidean space through diffusion of chemicals. More
recently, NEAT (Neuro Evolution of Augmenting Topologies) [264] has set new stan-
dards for neuroevolution algorithms in pure performance and speed of convergence
based on classical benchmarks from evolutionary robotics.

It has been known for a long time [194] that the choice of a representation, i.e.
search space, is crucial for the success of any evolutionary algorithm. This led to the
exploration of genotype-to-phenotype maps using a more compact representation,
which should theoretically enable the evolution of more complex neural networks.

36 T. Kowaliw et al.

One approach is the inclusion of an induced representational bias. In these cases,
forms of structural organization known to be employed by natural neural systems are
added to the otherwise directly encoded network. An illuminating study by Seys and
Beer considers the value of several forms of induced symmetry on the generation
of NNs [256]. Evolved genomes are “unpacked” by creating symmetric copies of
the evolved network substructure, and evaluated via the whole unpacked network.
The authors contrast their results against nonsymmetric networks, showing that the
inclusion of symmetry makes NNs more evolvable, even compared to nonsymmet-
ric networks of smaller size. A more practical example inspired by computational
neuroscience models comes from Doncieux et al. [59]. Finally, recent works have
explored the benefits of particular topological properties, such as regularity and mod-
ularity, whether a priori designed or evolved [33, 37, 284]. Another approach to the
genotype-to-phenotype map strategy consists of including a simulation of develop-
ment, a process that serves to construct the phenotype in a time-based fashion. The
next section covers these strategies in greater detail.

5 Developmental Systems

This section gives an overview of neural developmental systems, which are about the
abstraction of a developmental process to obtain artificial neural networks from sim-
pler representations. Since, in the vast majority of cases, adequate representations
(genomes) are optimized via evolutionary computation, we will use terminology
from that field. Due to their metaphorical inspiration from developmental biology,
developmental systems have received several names, including computational
embryogeny [17], artificial ontogeny [25] and artificial embryogeny [265]. While
all these terms emphasize the biological metaphor, we think that a broader phrasing
of “evolution of developmental neural networks”, or evo-devo-NN for short, would
be more appropriate for this section.

The idea of combining evolution and development for designing artificial neural
networks was first put to the test in 1990. Kitano [153] criticized direct encod-
ing methods and proposed exploring indirect encodings as a promising solution to
address the challenge of scalability. In this setup, the evolved genotypic description
of a solution undergoes a reformulation process (or mapping) in order to obtain a
usable phenotype. As noted in later works, this would enable it to evolve compact
representations and possibly exploit properties such as modularity and hierarchy.

The debate about the relevance of evolving developmental neural networks has
been, and still is, very much alive. In the first decade after Kitano’s original claim
regarding scalability, his results were first confirmed [75] (in a different context) then
challenged [258] (in the original context). We now review the various approaches
and works conducted in this area.

1 Artificial Neurogenesis: An Introduction and Selective Review 37

5.1 Grammar-Based Encoding

In his seminal work, Kitano [153] described the first approach with indirect encoding
for generating artificial neural networks. Kitano used a genetic algorithm to evolve
L-System grammar rules, a work which was later extended with lifelong neurogene-
sis [154]. His original contribution also fostered the emergence of a whole new field,
which explored various approaches to developmental neural networks and addressed
various challenges, some of them still open. Since then, evolutionary L-Systems
have been further applied to the generation of neural networks [22, 225] or the co-
evolution of artificial creatures [126]. While similar methods have been proposed to
evolve morphologies, Hornby’s GenRe system [126] relied on L-Systems for gener-
ating both body and brain (i.e. neural network) of virtual and real robots.

As previously discussed, in 1992 Gruau designed an original approach to the
evolution of graph-rewriting rules called Cellular Encoding [101, 102]. His model
was based on genetic programming to evolve a list of instructions that an original cell
could follow to determine its fate. This cell would undergo several transformations
(such as cell division) until a graph was built. A major contribution of this work was
to provide the first-ever neural controller of hexapodal robot gait [103]. It was further
extended [155, 178] and reused [25, 164] by several authors.

Other studies have explored the evolution of rewriting rules to generate neural
networks. In the early 1990s, Nolfi and Parisi evolved direct encodings of neu-
ron locations on a 2D substrate, then applied a heuristic for the simulation of
axon growth (using previously evolved parameters) to obtain full-grown networks
that were executing a robot navigation task. This work was later extended with
cell division and migration [30], and lifetime adaptation through environment-
triggered axon growth [218]. In 1994, Sims’ “virtual creatures” also relied on
evolved graph-rewriting rules both in the neural networks and in the morpholo-
gies [261]. Most recently, Mouret and Doncieux proposed Modular Encoding for
Neural Networks based on Attribute Grammars (MENNAG), a general approach to
evo-devo-NN based on the definition of grammar-based constraints [207], and the
EvoNeuro method [205], which takes inspiration from computational neuroscience in
order to generate large-scale and highly regular neural networks. Other applications
exist as well [3].

5.2 Genetic Regulatory Networks

A major topic of interest in theoretical biology todayf is the modelling of gene
regulatory networks (GRNs), which represent the interactions among genes and
transcription products (mainly DNA-binding proteins) governing cell behaviour and
maintenance. Generally, theoretical models are chosen based on their ability to

38 T. Kowaliw et al.

replicate specific patterns of expression found in natural systems [4, 150], or based
on approximations of the molecular mechanisms of gene regulation [10]. In all cases,
GRN simulations comprise a set of differential equations describing the dynamics of
a various product concentrations. These models have been explored for their com-
putational properties [144, 176, 215].

Offering a different approach to developmental systems, GRNs became a strong
source of inspiration for researchers in computer science for obvious reasons. Starting
from a relatively compact description such as a string of symbols, GRNs made it
possible to build an entire network topology and function by defining interaction
patterns among parts of the original representation. The possible benefits for control
systems were first explored in 1994 by Dellaert and Beer [55] and quickly used
to generate neural networks [54]. Their work combined a boolean GRN and a cell
division process, alternating regulation and division over N iterations, in order to
iteratively grow a full neural network. Although evolution was only discussed, some
of the resulting networks were tested on a simplified robot navigation task as a proof
of concept.

This first attempt was soon followed by others that had the same dual objective
of taking inspiration from biology to achieve compact representations and, at the
same time, addressing evolutionary robotics challenges. Jakobi [140] described a
method to evolve a bit-string, acting as a GRN to grow a neural network for robot
control. Eggenberger proposed a similar approach, stressing scalability as the main
motivation, and applied it to robot morphogenesis [76] and pattern recognition in
neural networks [78].

An interesting alternative came from Reisinger and Miikkulainen [238], who
used an evolved GRN structure directly as a neural network architecture. Applying
their system to game playing, the authors contrasted their GRN-based NN against
several non-developmental alternatives, and found favourable results. Their analysis
mentions several reasons for this success: their representation was significantly more
compact, more evolvable under a simple mutation operator, and pushed phenotypes
toward larger, more recurrent network motifs, typical of networks in nature.3

A more recent instance of GRN-inspired neural model is the AGE (Analog Genetic
Encoding) model by Mattiussi and Floreano [73, 186], in which a string of symbols
(rather than bits) represents a genotypic description, while the “coding” parts of the
genome (i.e. syntactically correct with respect to the gene definitions) build a neural
network. As with other GRN abstractions, the AGE process is a one-step transfor-
mation from the representation to the network, i.e. self-regulation is abstracted as
a one-pass process. Wróbel et al. later proposed a system called GReaNs (Genetic
Regulatory evolving artificial Networks), which shares many similarities with AGE.
Among several applications, GReaNs has been used to evolve spiking neural net-
works [296]. In this scope, each gene stands for a node, and the connection between

3 The authors point out a similarity between their developed NNs and natural networks, specifically
the existence of higher-order network triads. However, Milo et al. [202] attribute the existence of
such triads in natural networks to the minimization of information processing time, a factor which
was not relevant to the NNs. Hence, we consider this similarity unexplained.

1 Artificial Neurogenesis: An Introduction and Selective Review 39

nodes is determined by their relative euclidian distance to one another—as is the case
with AGE. The sign of this connection, however, is evolved seperately.

Chapter 6: Using the Genetic Regulatory evolving artificial Networks
(GReaNs) platform for signal processing, animat control, and artificial
multicellular development.

In Chap. 6, Wróbel and Joachimczak present their bio-inspired model of
pattern formation and morphogenesis, GReaNs, and show that it can support
an evo-devo approach to complex neural networks. The topology of a GReaN is
encoded in a linear genome composed of genetic modules, including regulatory
factors, regions of promoting or repressing elements, and inputs and outputs.
The resulting genetic network is evolved toward the control of the behaviour of
a cell, coupling the chemical simulation with mechanical outputs. The authors
review the results of previous experiments in which GReaNs have been used to
design single-celled animats, 2D soft-bodied animats, and 3D morphologies,
as well as more recent work where spiking neuron models emerge from the
GRNs. They conclude by laying out their vision for the evolution of plausible
neural control mechanisms from genetic origins [297].

5.3 Cellular Automata Models

Also inspired from biology, several authors have explored models of multicellular-
ity. Defined as a particular kind of cellular automaton (CA), each cell is capable of
processing information, either by triggering further growth of the network or by relay-
ing information as a neuronal cell. The seminal work from De Garis followed this
metaphor to design the CAM-brain (Cellular Automata Machine), a two-dimensional
CA in which a source cell could develop into a full organism capable of transmit-
ting and manipulating information like a regular neural network [50]. This kind of
approach raises the question of the halting problem, i.e. when and how development
should stop [57]. Astor and Adami applied a similar approach based on a hexagonal
grid, which addressed the halting problem by setting boundary cells to limit the total
number of possible neurons. Adding a self-limiting mechanism allowed development
to terminate before the environment was saturated with cells.

Early CA-based works were mostly limited to proof-of-concept experiments
where evolution was merely discussed but not exploited. By contrast, Federici et
al. designed a continuous CA implementation, which they termed cell chemistry, to
generate spiking neural networks for solving a robotic navigation task in a discrete
environment [84, 85]. In a later work, this approach was shown to outperform a direct
encoding approach on a pattern recognition task [244].

http://dx.doi.org/10.1007/978-3-642-55337-0_6
http://dx.doi.org/10.1007/978-3-642-55337-0_6

40 T. Kowaliw et al.

5.4 HyperNEAT

In 2007, Stanley et al. presented the first version of HyperNEAT (Hybercube-based
NeuroEvolution of Augmenting Topologies [49, 266]. Since then, it has become very
popular and has been applied in many domains, including the evolution of neural
networks. One of the key principles behind HyperNEAT is a high level of abstraction
that emphasizes the expressivity of the genotype-phenotype mapping in terms of
composed transformation functions, instead of a temporal development process.

Chapter 5: HyperNEAT: the first five years.
In Chap. 5, D’Ambrosio, Gauci, and Stanley summarize recent work on

generating patterns with properties such as regularity, symmetry, and repetition
with variations. This chapter successively considers spatial pattern generation
using CPPNs (compositional pattern-producing networks), NEAT (NeuroEvo-
lution of Augmenting Topologies), and neural connectivity pattern generation
using the many flavours of HyperNEAT (Hybercube-based NEAT). The basic
idea behind this work is to define the search space as a set of compositions of
simple functions, each function with particular behaviours (e.g. favouring sym-
metries, repetitions, etc.). To some extent, HyperNEAT is an abstraction of the
developmental process, mapping a compact representation to a possibly large
phenotype, but removing the temporal aspects of such a process. The benefits
of the HyperNEAT approach are presented and discussed: the compact encod-
ing of large networks which posses relevant structural properties, the ability to
generate solutions in various sizes and resolutions, and the exploitation of the
geometric properties of the problem at hand. Finally, a short review of existing
applications across several fields is given, from image generation to robotic
control, from visual discrimination to playing chess and Go [48].

HyperNEAT has also inspired other works in various ways. The HybridID
(“Hybridization of Indirect and Direct Encodings”) algorithm [38, 40] tries to inte-
grate the best of indirect encodings and direct encodings by successively applying
HyperNEAT and FT-NEAT to refine the last steps of evolution. The DSE (“Develop-
mental Symbolic Encoding”) model [270] takes inspiration both from HyperNEAT
and Cellular Encoding, retaining interesting properties such as the ability to create
neural networks with regularity, modularity and scalability. DSE also provides an
interesting complement to existing approaches as it focuses on specific problems for
which scale-free network topologies are relevant. Alternatively, the NEON (“Neuro-
Evolution with ONtogeny”) algorithm [134] extends the traditional NEAT algorithm
with a developmental process.

http://dx.doi.org/10.1007/978-3-642-55337-0_5
http://dx.doi.org/10.1007/978-3-642-55337-0_5

1 Artificial Neurogenesis: An Introduction and Selective Review 41

5.5 Beyond Artificial Neural Networks

From the start, there have been strong interactions among subfields of artificial
development and evolution: from evolvable hardware [175, 199, 200] to simu-
lated dynamics of genetic regulatory networks [10, 64, 237]; from artificial mod-
els of morphogenesis [57, 63, 158, 161] to agent control [191, 192]. In robotics
(virtual or real), the integration of development with morphofunctional machines
shows great promise toward faster and more innovative methodologies of automated
design. Under the name of brain-body co-evolution, an emerging trend of evolu-
tionary computation argues that structure and function should not be predefined
and optimized separately, but simultaneously as a whole, and based on the same
genome. The work of Sims offered the first results with simulated robots [261], and
was soon followed by researchers exploring various grammar-based encoding for
a similar purpose, such as the works lead by Eggenberger [77], Hornby [126] and
Bongard [23].

Recent research in this domain has also seen a division between works targeting
engineering and more fundamental research. On the one hand, developmental sys-
tems for morphogenesis is illustrated by physical systems from Hornby [125],
Hiller [117] and Rieffel [240], where more recent works benefit from the advent
of versatile 3D printing machines. On the other hand, several authors have either
explored virtual creatures [35, 66, 142, 143, 156, 193, 249], or considered a less
robot-oriented interpretation of simulated morphofunctional machines [43, 62, 63,
247]. Doursat et al. [67, 68] propose a new approach encompassing these trends:
“Morphogenetic Engineering” aims to reconcile engineering with decentralized com-
plex systems. It explores new methodologies to model and create precise architectures
that self-organize from a swarm of heterogeneous agents, in particular by develop-
ment. It can also describe brain representations based on dynamic “neural shapes”
in phase space, formed by myriads of correlated spikes [60].

From artificial neural networks to robotics, this shared interest in the
developmental paradigm can be explained by the need for features (such as mod-
ularity, regularity, or hierarchy) that are considered relevant for functional or
morphological reasons. Moreover, scalability stands as a critical issue in all these
domains, and the combination of a compact genotype with a dedicated develop-
mental process remains a promising track to achieve large phenotypes, as long as
evolvability as a property is successfully retained.

6 Epigenetic Simulation

In this section, we consider algorithms that rely primarily on the simulation of epi-
genetic mechanisms, in the sense that they build neural networks from transient
information provided by stimuli. From a certain perspective, this is already the norm

42 T. Kowaliw et al.

in artificial neural nets, where “classic” techniques involve simple and often fixed
network topologies trained via stimulus-based methods such as backpropagation.
Here, by contrast, we consider cases in which the structural design of the network
is strongly influenced by the environment, or where a more biologically motivated
synaptic plasticity mechanism has a significant effect on the topology.

Perhaps the best argumentation that development and epigenetics are both neces-
sary in artificial networks comes from a study by Valsalam et al. [283]. In this work,
the authors were concerned with exploring the role of prenatal and postnatal learning
on the generation of a network. Under this viewpoint, development is modelled by
non-environmentally induced stimuli, that is, patterns produced genetically rather
than coming from the task at hand. Valsalam et al. explored three groups of mod-
els, all applied to hand-written character recognition and relying on a simple static
network (terminology ours):

• learn: in the first group, networks were trained by competitive Hebbian learning
using input samples

• evo: in the second group, networks evolved through a simple neuro-evolutionary
technique

• pre-learn-evo: in the third group, networks were trained by competitive Heb-
bian learning, first using genetically defined pretraining samples, then using input
samples.

In summary, these three groups represented pure learning, pure genetic control, and
a technique combining prenatal development and learning. The authors found that
the two evolutionary models, “evo” and “pre-learn-evo”, were far superior to “learn”
in classifying hand-written characters. Furthermore, the “pre-learn-evo” type com-
pleted the task in a fraction of the time taken by “evo”. They argued that the prenatal
learning stage could be replaced with alternative forms of development for similar
results. Valsalam et al. concluded that their prenatal stage implemented a form of
bias on the space of neural models, which could be adjusted by evolution to adapt the
particular network to the problem at hand. A more recent study by Tonelli and Mouret
also shows that a combination of development (via map-based and HyperNEAT-like
encodings) and plasticity can lead to improved learning efficacy, which they attribute
to the increased propensity toward the generation of symmetric networks [277] (see
also Chap. 9).

These studies are perfectly in line with the view of development as a means of
achieving useful phenotypic biases, in this case via Hebbian learning. In a sense, some
of these algorithms pose a challenge to the existence of developmental modelling in
general, with the suggestion that very simple static topologies might be sufficient for
intelligent behaviour when subjected to proper epigenetic mechanisms. Perhaps one
of the most striking examples is given by the work of Bednar and colleagues:

http://dx.doi.org/10.1007/978-3-642-55337-0_9

1 Artificial Neurogenesis: An Introduction and Selective Review 43

Chapter 7: Constructing complex systems via activity-driven unsuper-
vised Hebbian self-organization.

In Chap. 7, Bednar summarizes his recent work on exploring the use of
Hebbian learning as a mechanism for the recreation of phenomena associated
with the visual cortex. Starting from highly regular topologies, a simple form
of Hebbian learning is applied. Through learning and the appropriate design of
simple and complex cell layers, the major functional properties of the primary
visual cortex emerge: receptive fields, selective topographic maps, surround
modulation, visual contrast, and temporal responses. This impressive array
of functional responses is notable for emerging simultaneously from a highly
simple neural model, a result which suggest that most of the development and
function of the first layer of the primary visual cortex can be viewed as an
instance of unsupervised learning. Bednar goes on to discuss the lessons avail-
able from his model for the design of complex data-processing systems [13].

As in biology, it is difficult to determine whether certain phenomena should con-
sidered “strictly” developmental (in the sense of genetic control), or whether they
depend on epigenetic processes. In reality, almost all scenarios integrate both mech-
anisms in a tight feedback loop. No amount of genetic information can control the
fate and behavior of each cell, therefore a great many details have to depend on their
interactions with one another and with environmental stimuli (which, for the most
part, arise from the cell assembly itself). This is why a combination of developmen-
tal and epigenetic mechanisms will also be necessary in the simulation of intelligent
networks. We summarize below three active areas of research that we characterize
as epigenetic models: Hebbian pretraining, constructive and pruning algorithms, and
epigenetic neuroevolution.

6.1 Hebbian Pretraining

Several recent models have explored the addition of Hebbian learning to
bio-inspired representations. These have used reservoir computing instead of simpler
feed-forward networks, and have concentrated on how to initialize and pretrain the
reservoir.

Self-Organizing Recurrent Neural Network (SORN) is a model by Lazar
et al. [168], which develops a recurrent neural network reservoir with a particular
connectivity for inhibitory neurons. It includes three plasticity mechanisms: intrin-
sic plasticity, STDP, and synaptic normalization. SORN is trained via an echo state
approach, and contrasted against static reservoirs and more limited forms of the
model. The authors show that the conjunction of the three forms of plasticity outper-
form other configurations on simple learning tasks: counting and occluding. There is
further suggestion that the organization of neural systems might be predictable from

http://dx.doi.org/10.1007/978-3-642-55337-0_7
http://dx.doi.org/10.1007/978-3-642-55337-0_7

44 T. Kowaliw et al.

the model. Zheng et al. [309] have constructed a version of SORN in which structure
was a result only of internal plasticity (i.e. no external inputs), and tested over a range
of parameters. They discovered that an emergent consequence of the model was a
log-normal weight distribution, which resembles the organization found in nature,
and has been implicated in the computational capacities of network in general. This
suggests that the plasticity mechanisms alone in the absence of environmental stimuli
are capable of generating useful organizational principles in a model cortex.

Yin et al. consider the addition of Hebbian learning mechanisms to a recurrent
reservoir approach [304]. In this model, a genetic regulatory network specifies Heb-
bian and anti-Hebbian learning to generate plasticity parameters. The role of the
genome here is to create a particular form of plasticity suitable for the problem
at hand. An initially complete reservoir is then pruned according to the interplay
between input and the GRN, leading to a sparse and pretrained reservoir. The net-
works are trained via “backpropagation through time” (BPTT), and evaluated on a
collection of vision-based tasks with favourable results. Similar work has also been
shown to have value in Liquid State Machines [220, 221].

6.2 Constructive and Pruning Algorithms

Closely related to the notion of using simulations of neural development are domains
such as constructive neural networks (CoNNs) and pruning networks. Both are fami-
lies of network design algorithms that operate by gradually changing a network struc-
ture in response to training data. They are designed to explore artificial versions of
neural organization starting from two opposite viewpoints: CoNNs instantiate a form
of constructivist process, whereas pruning networks illustrate a selectivist process.

In constructive algorithms, a small initial network (sometimes a single hidden
neuron) is gradually transformed into a large network in a series of iterations. The
network is trained until convergence or until some other stopping criterion has been
met. Based on output from this training, the algorithm either terminates or adds
more neurons or connections to the network. Once a global termination criterion is
reached, the final, larger network is returned, possibly for additional training.

Perhaps the most popular CoNN algorithm is the cascade-correlation architec-
ture [83], which has spawned numerous variants. In a recent review, Nicoletti et
al. [58] have compiled a list of models and design decisions which characterize
different CoNN approaches. More recent work has concentrated on network growth
based on sensitivity analysis [106], adaptive neural activation functions [257],
extreme learning machines [308], and extending CoNN to reinforcement
learning [131].

In contrast, pruning algorithms start with a large network and gradually remove
nodes. Initially, some large network is generated and trained. Next, particular neurons
are selected as unimportant, and those neurons are deleted or merged. This process
iterates until some global stopping criterion is reached, and finally, a smaller net-
work is returned. Pruning algorithms are less restrained than CoNN algorithms, as

1 Artificial Neurogenesis: An Introduction and Selective Review 45

pruning plays a role in many different forms of neural networks and at different times.
Deciding which neurons to prune can be made in many ways: for example, neurons
that are highly correlated, neurons connected via weak weights, neurons with little
influence over outputs, or neurons identified by more complex procedures, such as
Optimal Brain Damage [300] and the Optimal Brain Surgeon [111]. A general disad-
vantage to pruning is that the use of large networks as a starting point tends to require
significant computational effort. Recent work on pruning algorithms has included
decisions to prune based on sensitivity analysis [167], component analysis [216],
and competitive pressures [269]. Extensions to extreme learning machines [195] and
other applications [306] have also been tried.

In their simplest forms, both types of algorithms are greedy and can fall prey
to “architectural local optima” [6]. However, modern variants are more complex
and less easily characterized. One such example, AMGA (adaptive merging and
growing algorithm) comes from Islam et al. [136]. AMGA generates a network by
both construction and pruning, using adaptive rules as triggers. Between iterations,
a given network is trained via backpropagation. Construction occurs by splitting an
existing hidden node, which results in the preservation of the behavioural linkages
among neurons. Pruning occurs by merging highly correlated hidden nodes. AMGA
is highly effective at supervised learning, outperforming several other neural and
SVM techniques. The authors hypothesize that constructive-pruning hybrid tech-
niques successfully avoid the local optima that hindered previous algorithms. Many
such hybrid techniques have been explored [26, 105, 128, 130, 209, 232, 299].

CoNN and pruning algorithms are inspired by development, although motivations
differ somewhat from those of developmental systems. They generally target the most
parsimonious network possible, and show little interest for a parallel implementation
of the algorithms, since they often rely on global data structures such as inter-neural
correlations or Hessian matrices. Regardless, these techniques provide insight into
how to execute ontogenic and epigenetic processes simultaneously.

6.3 Epigenetic Neuroevolution

Other authors have explored techniques that could be characterized as epigenetic
neuroevolution as they offer a combination of evolutionary algorithms and learning
techniques operating in tandem. Researchers in this category hope that such com-
bination might return the best of both worlds: the high accuracy associated with
epigenetic training and the capacity to explore a wide space of possible networks
associated with neuroevolution, leading together to the ability to generalize to new
environmental stimuli. Some authors also hope to avoid the architectural local min-
ima generated by other non-evolutionary techniques4

4 Caveat: while neuroevolution is known to be more versatile than, for instance, classic CoNN
algorithms, it is also known that evolutionary computation will be often hindered by local optima
in the fitness landscape, suggesting a possibly different sort of suboptimality.

46 T. Kowaliw et al.

A simple early example of epigenetic neuroevolution is outlined in Yao and
Liu [301]. It is based on an evolutionary algorithm that controls the topology and
weights of a network (via a form of genetic programming), while a learning routine
is applied at mid-step to trigger the addition or deletion of neurons in the network.
Training accuracy was used as the fitness of an individual during evolution. As the
authors later argue, the issue with such a naive approach is that learning techniques
based on gradient descent, when initialized with random weights, tend to be very
noisy to the point of negatively affecting the evolutionary process. Using an averaged
success over several independent learning sessions may provide a solution, but also
tends to be too computationally expensive to serve as a fitness function [302].

To alleviate these problems, several authors including Yao and Liu have explored
hybrid algorithms where the evolutionary search is global while the learning methods
work on a local level. A recent example comes from Oong and Isa [223], who
evolved a direct representation of the network via an adjacency matrix. This matrix,
however, is augmented with a secondary genetic representation, a “node vector”,
which applies structural changes to the network topology. The interim success of
the network is used to compute a measure of generalization loss, which in turn
serves to control the weight of the evolutionary mutation. Thus, for Oong and Isa,
instead of letting epigenetic information directly control the change of a network, it
is a cue for the meta-process (evolution) to adjust the degree of exploration versus
exploitation. Other forms of hybrid evolutionary-epigenetic algorithms, including
the use of constructive techniques, have been explored [91].

Chapter 8: Neuro-centric and holocentric approaches to the evolution of
developmental neural networks.

In Chap. 8, Miller explores two strategies of generating neural networks via
neuroevolution. The first, a neurocentric approach, involves the detailed mod-
elling of cells in a dynamic, time-based process. In this case, several indepen-
dent control mechanisms are created, ones which emulate detailed sub-cellular
behaviours. The second strategy, a holocentric approach, operates on a whole
neural network. Here, network-specific operations make changes to sub-graphs
of neurons and connections. By contrasting these two approaches, the author
explores the value of the inclusion of a detailed and more plausible model of
growth and plasticity relative to the additional computational costs involved.
The chapter closes with design advice for practitioners [198].

In some cases, an explicit developmental process and a later epigenetic process are
both included, which can make development occur twice: as a genotype-phenotype
mapping process, and as a plastic property during operation, closely related to learn-
ing. Autonomous robotics is one prominent area of application, where neural net-
work controllers are grown from compact genotypes (Sect. 4), and modification to
the actual controller may occur during the robot’s lifetime, whether the objective
is long-term adaptation to the environment [151, 218], memorizing events [88], or
learning new capabilities [262, 276].

http://dx.doi.org/10.1007/978-3-642-55337-0_8
http://dx.doi.org/10.1007/978-3-642-55337-0_8

1 Artificial Neurogenesis: An Introduction and Selective Review 47

Chapter 9: Artificial evolution of plastic neural networks: a few key con-
cepts.

In Chap. 9, Mouret and Tonelli consider the use of neuroevolution to
find plastic neural networks for reinforcement learning. A neuroevolution-
ary process produces a network topology, which is then trained via Hebbian
learning in a (possibly reward-based) environment. Two key motivations for
this type of approach are the promotion of behavioural robustness and reward-
based behavioural change, concepts which suffer from inconsistent terminol-
ogy in the literature. The authors provide new definitions of both concepts,
and turn their attention to a key issue: the response of a neural network to
previously unseen scenarios. To promote research on the topic, they define
and discuss relevant concepts, such as the capacity for general and transitive
learning, then theorize about the benefits of a developmental stage in terms of
general learning [206].

7 Summary

In this introduction, we have explored the central hypothesis of this book that adap-
tive growth is a means of producing brain-like machines. The emulation of neural
development can incorporate desirable characteristics of natural neural systems into
engineered designs. We have reviewed several strategies for performing this “meta-
design”, which also involves identifying specific network biases and their benefits.
In particular, we have seen that several recent studies show a strong synergy, some-
times interchangeability, between developmental and epigenetic processes—a topic
that has remained largely under-explored in the literature. The chapters that follow
in this book describe some of the most important works in this area, offering a
state-of-the-art review of intelligent machine design.

Recent accelerating progress in observation and modelling techniques in neuro-
science, and systems biology in general, ensures the continued generation of novel
insights into brain organization. This new collection of “biases” should be further
explored and exploited in neural networks over the coming years, suggesting that
artificial neurogenesis is a promising avenue of research.

References

1. M. Abeles, Local Cortical Circuits: An Electrophysiological Study, vol. 6 (Springer, New
York, 1982)

2. W.C. Abraham, M.F. Bear, Metaplasticity: the plasticity of synaptic plasticity. Trends Neu-
rosci. 19(4), 126–130 (1996)

http://dx.doi.org/10.1007/978-3-642-55337-0_9
http://dx.doi.org/10.1007/978-3-642-55337-0_9

48 T. Kowaliw et al.

3. I. Aho, H. Kemppainen, K. Koskimies, E. Makinen, T. Niemi, Searching neural network
structures with l systems and genetic algorithms. Int. J. Comput. Math. 73(1), 55–75 (1999)

4. U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC
Press, Boca Raton, 2007)

5. T. Andersen, R. Newman, T. Otter, Development of virtual embryos with emergent self-repair.
in AAAI Fall Symposium (2006)

6. P.J. Angeline, G.M. Saunders, J.B. Pollack, An evolutionary algorithm that constructs recur-
rent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

7. W. Arthur, The effect of development on the direction of evolution: toward a twenty-first
century consensus. Evol. Dev. 6(4), 282–288 (2004)

8. F.A.C. Azevedo, L.R.B. Carvalho, L.T. Grinberg, J.M. Farfel, R.E.L. Ferretti, R.E.P. Leite,
W.J. Filho, R. Lent, S. Herculano-Houzel, Equal numbers of neuronal and nonneuronal cells
make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513(5),
532–541 (2009)

9. J.M. Baldwin, A new factor in evolution. Am. Nat. 30, 441–451 (1896)
10. W. Banzhaf, On the dynamics of an artificial regulatory network. in European Conference on

Artificial Life (ECAL 2003) (Springer, Berlin, 2003), pp. 217–227
11. W. Banzhaf, N. Pillay, Why complex systems engineering needs biological development.

Complexity 13(2), 12–21 (2007)
12. J. Beal, Functional blueprints: an approach to modularity in grown systems. Swarm Intell.

5(3–4), 257–281 (2011)
13. J.A. Bednar, Constructing Complex Systems Via Activity-Driven Unsupervised Hebbian Self-

organization. in ed. by Kowaliw et al. [160], pp. 216–241
14. Y. Bengio, Evolving Culture Versus Local Minima. in ed. by Kowaliw et al. [160], pp. 112–143
15. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep net-

works. in Advances in Neural Information Processing Systems (2007)
16. Y. Bengio, Y. LeCun, Scaling learning algorithms towards AI. in Large Scale Kernel Machines

(MIT Press, Cambridge, 2007)
17. P. Bentley, Three ways to grow designs: a comparison of embryogenies for an evolutionary

design problem. in Conference on Genetic and Evolutionary Computation (1999), pp. 35–43
18. P. Bentley, Investigations into graceful degradation of evolutionary developmental software.

Nat. Comput. 4(4), 417–437 (2005)
19. E. Bienenstock, R. Doursat, Spatio-temporal coding and the compositionality of cognition.

in Temporal Correlations and Temporal Coding in the Brain (1990), pp. 42–47
20. E. Bienenstock, C. von der Malsburg, A neural network for invariant pattern recognition.

Europhys. Lett. 4(1), 121–126 (1987)
21. E. Bienenstock, R. Doursat, A shape-recognition model using dynamical links. Netw. Comput.

Neural Syst. 5(2), 241–258 (1994)
22. E.J.W. Boers, H. Kuiper, Biological Metaphors and the Design of Modular Artificial Neural

Networks Technical report (Leiden University, 1992)
23. J.C. Bongard, Evolving modular genetic regulatory networks. in IEEE Congress on Evolu-

tionary Computation (CEC) (2002), pp. 1872–1877
24. J.C. Bongard, Spontaneous evolution of structural modularity in robot neural network con-

trollers. in Conference on Genetic and Evolutionary Computation (GECCO) (Springer, 2011)
25. J.C. Bongard, R. Pfeifer, Evolving complete agents using artificial ontogeny. in ed. by F. Hara,

R. Pfeifer Morpho-functional Machines: The New Species (Designing Embodied Intelligence)
(Springer, 2003), pp. 237–258

26. M. Bortman, M. Aladjem, A growing and pruning method for radial basis function networks.
IEEE Trans. Neural Netw. 20(6), 1039–1045 (2009)

27. R. Brette, M. Rudolph, N.T. Carnevale, M.L. Hines, D. Beeman, J. Bower, M. Diesmann, A.
Morrison, P. Goodman, F. Harris Jr, M. Zirpe, T. Natschläger, D. Pecevski, G.B. Ermentrout,
M. Djurfeldt, A. Lansner, O. Rochel, T. Viéville, E. Muller, A.P. Davison, S. El Boustani,
A. Destexhe, Simulation of networks of spiking neurons: A review of tools and strategies. J.
Comput. Neurosci. 23(3), 349–398 (2007)

1 Artificial Neurogenesis: An Introduction and Selective Review 49

28. D.J. Cahalane, B. Clancy, M.A. Kingsbury, E. Graf, O. Sporns, B.L. Finlay, Network structure
implied by initial axon outgrowth in rodent cortex: empirical measurement and models. PLoS
ONE 6(1), 01 (2011)

29. W. Callebaut, D. Rasskin-Gutman, Modularity: Understanding the Development and Evolu-
tion of Natural Complex Systems (MIT Press, 2005)

30. A. Cangelosi, D. Parisi, S. Nolfi. Cell division and migration in a genotype for neural networks.
Conf. Comput. Netw. 497–515 (1994)

31. S. Carroll, J. Grenier, S. Weatherbee, From DNA to Diversity: Molecular Genetics and the
Evolution of Animal Design 2nd edn (Blackwell Publishing, 2005)

32. R. Cattell, A. Parker, Challenges for brain emulation: why is it so difficult? Nat. Intell. INNS
Mag. 1(3), 17–31 (2012)

33. L. Cazenille, N. Bredeche, H. Hamann, J. Stradner, Impact of neuron models and network
structure on evolving modular robot neural network controllers. in Conference on Genetic
and evolutionary computation (GECCO), (ACM Press, New York, 2012), p. 89

34. J.P. Changeux, A. Danchin, Nature 264, 705–712 (1976)
35. N. Cheney, R. Maccurdy, J. Clune, H. Lipson, Unshackling evolution: evolving soft robots

with multiple materials and a powerful generative encoding. in Genetic and Evolutionary
Computation Conference (GECCO) (2013), pp. 167–174

36. N. Chomsky, Aspects of the Theory of Syntax (MIT Press, 1965)
37. J. Clune, B.E. Beckmann, P.K. McKinley, C. Ofria, Investigating whether hyperNEAT pro-

duces modular neural networks. in Conference on Genetic and Evolutionary Computation
(GECCO), (ACM Press, New York, 2010), pp. 1523–1530

38. J. Clune, B.E. Beckmann, R.T. Pennock, C. Ofria, HybrID: A hybridization of indirect and
direct encodings for evolutionary computation. in European Conference on Artificial Life
(ECAL) (2009), pp. 134–141

39. J. Clune, J.B. Mouret, H. Lipson, The evolutionary origins of modularity. Proc. Roy. Soc. B
Biol. Sci. 280(1755), 20122863 (2013)

40. J. Clune, K.O. Stanley, R.T. Pennock, C. Ofria, On the performance of indirect encoding
across the continuum of regularity. IEEE Trans. Evol. Comput. 15(3), 346–367 (2011)

41. H. Cuntz, F. Forstner, A. Borst, M. Häusser, One rule to grow them all: a general theory of
neuronal branching and its practical application. PLoS Comput. Biol. 6(e1000877), 08 (2010)

42. S. Cussat-Blanc, H. Luga, Y. Duthen, Cell 2Organ: Self-repairing artificial creatures thanks
to a healthy metabolism. in IEEE Congress on Evolutionary Computation (CEC) (2009), pp.
2708–2715

43. S. Cussat-Blanc, J. Pascalie, S. Mazac, H. Luga, Y. Duthen, A synthesis of the cell2organ
developmental model. in Doursat et al. [67], pp. 353–381

44. G. Cybenko, Approximations by superpositions of sigmoidal functions. Math. Control Sig.
Syst. 4(2), 303–314 (1989)

45. N.M. da Costa, K.A.C. Martin, Whose cortical column would that be? Front. Neuroanat.
4(16), (2010)

46. G. Dahl, M. Ranzato, A. Mohamed, G.E. Hinton, Phone Recognition with the mean-
covariance restricted Boltzmann machine. in Advances in Neural Information Processing
Systems (2010), pp. 469–477

47. K. Dale, P. Husbands, The evolution of reaction-diffusion controllers for minimally cognitive
agents. Artif. Life 16, 1–19 (2010)

48. D.B. DAmbrosio, J. Gauci, K.O. Stanley, HyperNEAT: the first five years. in ed. by Kowaliw
et al. [160], pp. 167–197

49. D.B. D’Ambrosio, K.O. Stanley, A novel generative encoding for exploiting neural net-
work sensor and output geometry. in Conference on Genetic and Evolutionary Computation
(GECCO) (ACM Press, New York, 2007), pp. 974–982

50. H. De Garis, Growing an artificial brain: the genetic programming of million-neural-net-
module artificial brains within trillion cell cellular automata machines. in Proceedings of the
Third Annual Conference on Evolutionary Programming (1994), pp. 335–343

51. T.W. Deacon, Rethinking mammalian brain evolution. Am. Zool. 30(3), 629–705 (1990)

50 T. Kowaliw et al.

52. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, A. Ng, Large scale distributed deep networks. in ed. by P. Bartlett,
F.C.N. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger. Advances in Neural Information
Processing Systems 25 (2012), pp. 1232–1240

53. A.S. Dekaban, D. Sadowsky, Changes in brain weights during the span of human life: Relation
of brain weights to body heights and body weights. Ann. Neurol. 4(4), 345–356 (1978)

54. F. Dellaert, R.D. Beer, Co-evolving Body and Brain in Autonomous Agents Using a Devel-
opmental Model. Technical report, Department of Computer Engineering and Science (Case
Western Reserve University, Cleveland, 1994)

55. F. Dellaert, R.D. Beer, Toward an evolvable model of development for autonomous agent
synthesis. in Proceedings of the fourth International Workshop on the Synthesis and Simulation
of Living Systems (ALIFE Workshop) (1994)

56. A. Deutsch, S. Dormann, Cellular Automaton Modelling of Biological Pattern Formation:
Characterization, Applications and Analysis (Birkhauser, 2005)

57. A. Devert, N. Bredeche, M. Schoenauer, Robustness and the halting problem for multicellular
artificial ontogeny. IEEE Trans. Evol. Comput. 15(3), 387–404 (2011)

58. M. do Carmo Nicoletti, J. Bertini, D. Elizondo, L. Franco, J. Jerez, Constructive neural network
algorithms for feedforward architectures suitable for classification tasks. in ed. by L. Franco,
D. Elizondo, J. Jerez. Constructive Neural Networks, Studies in Computational Intelligence,
vol. 258 (Springer, Heidelberg, 2009), pp. 1–23

59. S. Doncieux, J.-B. Mouret, T. Pinville, P. Tonelli, B. Girard, The evoneuro approach to neuro-
evolution. in Kowaliw et al. [159], pp. 10–14

60. R. Doursat, Bridging the mind-brain gap by morphogenetic neuron flocking: The dynamic
self-organization of neural activity into mental shapes. in 2013 AAAI Fall Symposium Series
(2013)

61. R. Doursat, Contribution à l’étude des représentations dans le système nerveux et dans les
réseaux de neurones formels. PhD thesis, Université Pierre et Marie Curie (Paris 6), 1991

62. R. Doursat, Facilitating evolutionary innovation by developmental modularity and variability.
in Conference on Genetic and Evolutionary Computation (GECCO) (ACM, 2009), pp. 683–
690

63. R. Doursat, Organically grown architectures: creating decentralized, autonomous systems
by embryomorphic engineering. in ed. by R.P. Würtz. Organic computing, Understanding
Complex Systems (Springer, 2008), pp. 167–199

64. R. Doursat, The growing canvas of biological development: multiscale pattern generation on
an expanding lattice of gene regulatory networks. InterJournal Complex Syst. 1809 (2006)

65. R. Doursat, E. Bienenstock, Neocortical self-structuration as a basis for learning. in 5th
International Conference on Development and Learning (ICDL 2006) (2006), pp. 1–6

66. R. Doursat, C. Sánchez, R. Dordea, D. Fourquet, T. Kowaliw, Embryomorphic engineering:
emergent innovation through evolutionary development. in ed. by Doursat et al. [67], pp.
275–311

67. R. Doursat, H. Sayama, O. Michel (eds.), Morphogenetic Engineering: Toward Programmable
Complex Systems. Understanding Complex Systems (Springer, 2012)

68. R. Doursat, H. Sayama, O. Michel, A review of morphogenetic engineering. Nat. Comput.
1–19 (2013)

69. J.E. Dowling, The Great Brain Debate: Nature or Nurture? (Princeton University Press, 2007)
70. K. Downing, A neural-group basis for evolving and developing neural networks. in AAAI-

Devp (2006)
71. K. Downing, Supplementing evolutionary developmental systems with abstract models of

neurogenesis. in 9th Genetic and Evolutionary Computation Conference (GECCO) (2007),
pp. 990–996

72. K. Downing, The Baldwin effect in developing neural networks. in Genetic and Evolutionary
Computation Conference (GECCO) (2010), pp. 555–562

73. P. Durr, C. Mattiussi, D. Floreano, Neuroevolution with analog genetic encoding. in Parallel
Problem Solving from Nature (PPSN) (2006), pp. 671–680

1 Artificial Neurogenesis: An Introduction and Selective Review 51

74. S.O.E. Ebbesson, The parcellation theory and its relation to interspecific variability in brain
organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue
Res. 213(2), 179–212 (1980)

75. P. Eggenberger Hotz, Creation of neural networks based on developmental and evolutionary
principles. in International Conference on Artificial, Neural Networks (1997), pp. 337–342

76. P. Eggenberger Hotz, Evolving morphologies of simulated 3D organisms based on differential
gene expression. in European Conference on Artificial Life (ECAL) (MIT Press, 1997), pp.
205–213

77. P. Eggenberger Hotz, Evolving morphologies of simulated 3D organisms based on differential
gene expression. in European Conference on Artificial Life (ECAL) (1997), pp. 205–213

78. P. Eggenberger Hotz, G. Gomez, R. Pfeiffer, Evolving the morphology of a neural network
for controlling a foveating retina and its test on a real robot. in Artificial Life 8 (2002), pp.
243–251

79. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Springer, 2003)
80. C. Eliasmith, T.C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, D. Rasmussen, A

large-scale model of the functioning brain. Science 338(20), 1202-1205 (2012)
81. D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, S. Bengio, Why does unsuper-

vised pre-training help dDeep learning? J. Mach. Learn. Res. 11, 625–660 (2010)
82. C. Espinosa-Soto, A. Wagner, Specialization can drive the evolution of modularity. PLoS

Comput. Biol. 6(3), e1000719 (2010)
83. S.E. Fahlman, C. Lebiere, The cascade-correlation learning architecture. in ed. by D.S. Touret-

zky. Advances in Neural Information Processing Systems 2, (Morgan Kaufmann, 1990), pp.
524–532

84. D. Federici, Evolving a neurocontroller through a process of embryogeny. in Proceeding of
Simulation of Adaptive Behavior (SAB) (2004), pp. 373–384

85. D. Federici, Evolving developing spiking neural networks. in IEEE Congress on Evolutionary
Computation (2005), pp. 43–550

86. D. Federici, K. Downing, Evolution and development of a multicellular organism: Scalability,
resilience, and neutral complexification. Artif. Life 12(3), 381–409 (2006)

87. J.D. Fernández, D. Lobo, G.M. Martín, R. Doursat, F.J. Vico, Emergent diversity in an open-
ended evolving virtual community. Artif. Life 18(2), 199–222 (2012)

88. D. Floreano, J. Urzelai, Neural morphogenesis, synaptic plasticity, and evolution. Theory
Biosci. 120(3–4), 225–240 (2001)

89. J.A. Fodor, Modularity of Mind: An Essay on Faculty Psychology (MIT Press, 1983)
90. R.M. French, Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–

135 (1999)
91. N. García-Pedrajas, D. Ortiz-Boyer, A cooperative constructive method for neural networks

for pattern recognition. Pattern Recogn. 40(1), 80–98 (2007)
92. S. Geman, E. Bienenstock, R. Doursat, Neural networks and the bias/variance dilemma. Neural

Comput. 4(1), 1–58 (1992)
93. S.F. Gilbert, Developmental Biology 8 edn. (Sinauer Associates, 2008)
94. S.F. Gilbert, D. Epel, Ecological Developmental Biology 1 edn. (Sinauer Associates, 2008)
95. B. Goertzel, R. Lian, I. Arel, H. de Garis, S. Chen, A world survey of artificial brain projects,

part II: biologically inspired cognitive architectures. Neurocomputing 74(1–3), 30–49 (2010)
96. F. Gomez, R. Miikkulainen, Solving non-markovian control tasks with neuro-evolution. in

IJCAI (1999), pp. 1356–1361
97. F. Gomez, R. Miikkulainen, Incremental evolution of complex general behavior. Adapt. Behav.

5, 317–342 (1997)
98. B.C. Goodwin, How the Leopard Changed Its Spots: The Evolution of Complexity (Scribner,

1994)
99. S.J. Gould, The Structure of Evolutionary Theory (The Belknap Press of Harvard University

Press, 2002)
100. S.J. Gould, R. Lewontin, The spandrels of san marco and the panglossian paradigm: a critique

of the adaptationist programme. Proc. Roy. Soc. London Ser. B Biol. Sci. 205(1161), 581–598
(1979)

52 T. Kowaliw et al.

101. F. Gruau, Cellular encoding as a graph grammar. in Grammatical Inference: IEE Colloquium
on Theory, Applications and Alternatives (1993), pp. 1–17

102. F. Gruau, Genetic synthesis of Boolean neural networks with a cell rewriting developmental
process. in Proceedings of COGANN-92: International Workshop on Combinations of Genetic
Algorithms and Neural Networks (IEEE Computer Society Press, 1992), pp. 55–74

103. F. Gruau, Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm
(PhD thesis, Université Claude Bernard-Lyon, 1994)

104. F. Gruau, D. Whitley, L. Pyeatt, A comparison between cellular encoding and direct encoding
for genetic neural networks. in Conference on Genetic Programming (1996), pp. 81–89

105. H.-G. Han, J.-F. Qiao, A structure optimization algorithm for feedforward neural network
construction. Neurocomputing 99, 347–357 (2012)

106. H.-G. Han, J.-F. Qiao, A repair algorithm for radial basis function neural network and its
application to chemical oxygen demand modeling. Int. J. Neural Syst. 20(01), 63–74 (2010)

107. S. Harding, W. Banzhaf, Artificial development. in Organic Computing, Understanding Com-
plex Systems (Springer, Heidelberg, 2008), pp. 201–219

108. S.L. Harding, J.F. Miller, The dead state: A comparison between developmental and direct
encodings (updated version). in Workshop on Complexity through Development and Self-
Organizing Representations (CODESOAR), Genetic and Evolutionary Computation Confer-
ence (GECCO) (2006)

109. S.L. Harding, J.F. Miller, W. Banzhaf, Self-modifying cartesian genetic programming, in ed.
by J.F. Miller Cartesian Genetic Programming, Natural Computing Series (Springer, Berlin,
2011), pp. 101–124

110. C. Hartland, N. Bredeche, M. Sebag, Memory-enhanced evolutionary robotics: the echo state
network approach. in IEEE Congress on Evolutionary Computation, 2009 (CEC) (2009), pp.
2788–2795

111. B. Hassibi, D.G. Stork, Second order derivatives for network pruning: Optimal brain surgeon.
in Advances in Neural Information Processing Systems (1993), pp. 164–164

112. J. Hastad, Almost optimal lower bounds for small depth circuits. in Proceedings of the Eigh-
teenth Annual ACM Aymposium on Theory of Computing, STOC ’86 (ACM, New York, 1986),
pp. 6–20

113. S. Haykin, Neural Networks and Learning Machines 3 edn. (Pearson Inc., 2009)
114. D.O. Hebb, The Organization of Behavior (Wiley, New York, 1949)
115. J.L. Hendrikse, T.E. Parsons, B. Hallgrímsson, Evolvability as the proper focus of evolutionary

developmental biology. Evol. Dev. 9(4), 393–401 (2007)
116. S.L. Hill, Y. Wang, I. Riachi, F. Schürman, H. Markram, Statistical connectivity provides a

sufficient foundation for specific functional connectivity in neocortical neural microcircuits.
vol. 18 Proceedings of the National Academy of Sciences (2012)

117. J. Hiller, H. Lipson, Automatic design and manufacture of soft robots. IEEE Trans. Robot.
28, 457–466 (2012)

118. R. Himeno, J. Savin, Largest neuronal network simulation achieved using K computer
@ONLINE. http://www.riken.jp/en/pr/press/2013/20130802_1/. Accessed: 09/2013

119. G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006)

120. G.E. Hinton, S.J. Nowlan, How learning can guide evolution. Complex Syst. 1, 495–502
(1987)

121. A. Hintze, C. Adami, Evolution of complex modular biological networks. PLoS Comput.
Biol. 4(2), 1–12 (2008)

122. T.-H. Hoang, R.I. McKay, D. Essam, N.X. Hoai, On synergistic interactions between evolu-
tion, development and layered learning. IEEE Trans. Evol. Comput. 15(3), 287–312 (2011)

123. J.J. Hopfield, C.D. Brody, What is a moment? transient synchrony as a collective mechanism
for spatiotemporal integration. Proc. Natl. Acad. Sci. 98(3), 1282–1287 (2001)

124. G.S. Hornby, Measuring, enabling and comparing modularity, regularity and hierarchy in
evolutionary design. in Conference on Genetic and Evolutionary Computation (GECCO)
(2007), pp. 1729–1736

http://www.riken.jp/en/pr/press/2013/20130802_1/

1 Artificial Neurogenesis: An Introduction and Selective Review 53

125. G.S. Hornby, H. Lipson, J.B. Pollack, Generative representations for the automated design of
modular physical robots. IEEE Trans. Robot. Autom. 19(4), 703–719 (2003)

126. G.S. Hornby, J.B. Pollack, Creating high-level components with a generative representation
for body-brain evolution. Artif. Life 8(3), 223–246 (2002)

127. P.E. Hotz, Comparing direct and developmental encoding schemes in artificial evolution: a
case study in evolving lens shapes. in Congress on Evolutionary Computation (CEC) (2004),
pp. 752–757

128. C.-F. Hsu, Adaptive growing-and-pruning neural network control for a linear piezoelectric
ceramic motor. Eng. Appl. Artif. Intell. 21(8), 1153–1163 (2008)

129. T. Hu, W. Banzhaf, Evolvability and speed of evolutionary algorithms in light of recent
developments in biology. J. Artif. Evol. Appl. 1–28, 2010 (2010)

130. D.-S. Huang, J.-X. Du, A constructive hybrid structure optimization methodology for radial
basis probabilistic neural networks. IEEE Trans. Neural Netw. 19(12), 2099–2115 (2008)

131. A. Huemer, M. Gongora, D. Elizondo, A robust reinforcement based self constructing neural
network. in International Joint Conference on Neural Networks (IJCNN) (2010), pp. 1–7

132. P. Husbands, T. Smith, N. Jakobi, M. O’Shea, Better living through chemistry: evolving
GasNets for robot control. Connection Sci. 10(3–4), 185–210 (1998)

133. A. Ilachinski, Cellular Automata: A Discrete Universe (World Scientific, 2001)
134. B. Inden, Neuroevolution and complexifying genetic architectures for memory and control

tasks. Theory Biosci. 127(2), 187–194 (2008)
135. T. Ishibashi, K. Dakin, B. Stevens, P. Lee, S. Kozlov, C. Stewart, R. Fields, Astrocytes promote

myelination in response to electrical impulses. Neuron 49(6), 823–832 (2006)
136. M.M. Islam, A. Sattar, F. Amin, Xin Yao, K. Murase, A new adaptive merging and growing

algorithm for designing artificial neural networks. IEEE Trans. Syst. Man Cyber. Part B
Cybern. 39(3), 705–722 (2009)

137. H. Jäeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in
wireless communication. Science 304(5667), 78–80 (2004)

138. H. Jäeger, M. Lukoševičius, D. Popovici, U. Siewert, Optimization and applications of echo
state networks with leaky- integrator neurons. Neural Netw. 20(3), 335–352 (2007)

139. H. Jäeger, W. Maass, J. Principe, Introduction to the special issue on echo state networks and
liquid state machines. Neural Netw. 20(3), 287–289 (2007)

140. N. Jakobi, Harnessing morphogenesis. in International Conference on Information Processing
in Cells and Tissues (1995), pp. 29–41

141. K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best multi-stage architecture for
object recognition? in Proceedings of International Conference on Computer Vision (ICCV)
(2009), pp. 2146–2153

142. M. Joachimczak, T. Kowaliw, R. Doursat, B. Wróbel, Brainless bodies: controlling the devel-
opment and behavior of multicellular animats by gene regulation and diffusive signals. in
Conference on the Simulation and Synthesis of Living Systems (ALife), (2012), pp. 349–356

143. M. Joachimczak, T. Kowaliw, R. Doursat, B. Wróbel, Controlling development and chemo-
taxis of soft-bodied multicellular animats with the same gene regulatory network. in Advances
in Artificial Life (ECAL) (MIT Press, 2013), pp. 454–461

144. M. Joachimczak, B. Wróbel, Processing signals with evolving artificial gene regulatory net-
works. in Conference on the Simulation and Synthesis of Living Systems (ALife) (MIT Press,
2010), pp. 203–210

145. M. Joachimczak, B. Wróbel, Evolution of robustness to damage in artificial 3-dimensional
development. Biosystems 109(3), 498–505 (2012)

146. M. Kaiser, C.C. Hilgetag, A. von Ooyen, A simple rule for axon outgrowth and synaptic
competition generates realistic connection lengths and filling fractions. Cereb. Cortex 19(12),
3001–3010 (2009)

147. N. Kashtan, U. Alon, Spontaneous evolution of modularity and network motifs. Proc. Natl.
Acad. Sci. 102(39), 13773 (2005)

148. Y. Kassahun, G. Sommer, Evolution of neural networks through incremental acquisition of
neural structures. Technical Report Number 0508, Christian-Albrechts-Universität zu Kiel,
Institut für Informatik und Praktische Mathematik, Juni 2005

54 T. Kowaliw et al.

149. M.J. Katz, R.J. Lasek, Evolution of the nervous system: Role of ontogenetic mechanisms in
the evolution of matching populations. Proc. Natl. Acad. Sci. 75(3), 1349–1352 (1978)

150. S.A. Kauffman, The Origins of Order: Self Organization and Selection in Evolution (Oxford
University Press, Oxford, 1993)

151. G.M. Khan, J.F. Miller, D.M. Halliday, Evolution of cartesian genetic programs for develop-
ment of learning neural architecture. Evol. Comput. 19(3), 469–523 (2011)

152. M.W. Kirschner, J.C. Gerhart, The Plausibility of Life: Resolving Darwin’s Dilemma (Yale
University Press, 2005)

153. H. Kitano, Designing neural networks using genetic algorithms with graph generation system.
Complex Syst. 4, 461–476 (1990)

154. H. Kitano, A Simple Model of Neurogenesis and Cell Differentiation based on Evolutionary
Large-Scale Chaos. Artif. Life 2, 79–99 (1995)

155. J. Kodjabachian, J.-A. Meyer, Evolution and development of neural networks controlling loco-
motion, gradient-following and obstacle avoidance in artificial insects. IEEE Trans. Neural
Netw. 9(5), 796–812 (1998)

156. M. Komosinski, The world of framsticks: simulation, evolution, interaction. in Virtual Worlds
(2000), pp. 214–224

157. T. Kowaliw, W. Banzhaf, Augmenting artificial development with local fitness. in ed. by A.
Tyrrell IEEE Congress on Evolutionary Computation (CEC) (2009), pp. 316–323

158. T. Kowaliw, W. Banzhaf, Mechanisms for complex systems engineering through artificial
development. in ed. by Doursat et al. [67], pp. 331–351

159. T. Kowaliw, N. Bredeche, R. Doursat (eds.), Growing Adaptive Machines: Combining Devel-
opment and Learning in Artificial Neural Networks (Springer, 2014)

160. T. Kowaliw, N. Bredeche, R. Doursat (eds.), Proceedings of DevLeaNN: A Workshop on
Development and Learning in Artificial Neural Networks (Paris, France, 2011)

161. T. Kowaliw, P. Grogono, N. Kharma, Bluenome: A novel developmental model of artificial
morphogenesis. in Conference on Genetic and Evolutionary Computation (GECCO) (2004),
pp. 93–104

162. T. Kowaliw, P. Grogono, N. Kharma, Environment as a spatial constraint on the growth of
structural form. in Conference on Genetic and Evolutionary Computation (GECCO) (2007),
pp. 1037–1044

163. T. Kowaliw, P. Grogono, N. Kharma, The evolution of structural form through artificial
embryogeny. in IEEE Symposium on Artificial Life (ALIFE) (2007), pp. 425–432

164. J.R. Koza, D. Andre, F.H Bennett III, M. Keane, Genetic Programming 3: Darwinian Invention
and Problem Solving (Morgan Kaufman, 1999)

165. J.L. Krichmar, G.M. Edelman, Brain-based devices for the study of nervous systems and the
development of intelligent machines. Artif. Life 11(1–2), 63–77 (2005)

166. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional
neural networks. in ed. by P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, K.Q. Wein-
berger Advances in Neural Information Processing Systems 25 (2012), pp. 1106–1114

167. P. Lauret, E. Fock, T.A. Mara, A node pruning algorithm based on a fourier amplitude sensi-
tivity test method. IEEE Trans. Neural Netw. 17(2), 273–293 (2006)

168. A. Lazar, G. Pipa, J. Triesch, SORN: a self-organizing recurrent neural network. Front. Com-
put. Neurosci. 3(23), 1–9 (2009)

169. Q. Le, A. Karpenko, J. Ngiam, A.Y. Ng, Ica with reconstruction cost for efficient overcomplete
feature learning. in ed. by J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, K.Q.
Weinberger Advances in Neural Information Processing Systems 24 (2011), pp. 1017–1025

170. Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, A. Ng, Building
high-level features using large scale unsupervised learning, in ed. by J. Langford, J. Pineau
Proceedings of the 29th International Conference on Machine Learning (ICML-12), ICML
’12 (Omnipress, New York, 2012), pp. 81–88

171. Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series. in The
Handbook of Brain Theory and Neural Networks (MIT Press, 1998)

1 Artificial Neurogenesis: An Introduction and Selective Review 55

172. J. Lefèvre, J.-F. Mangin, A reaction-diffusion model of human brain development. PLoS
Comput. Biol. 6(4) e1000749 (2010)

173. M. Li, P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications 3rd
edn. (Springer, 2008)

174. H. Lipson, Principles of modularity, regularity, and hierarchy for scalable systems. J. Biol.
Phys. Chem. 7, 125–128 (2007)

175. J. Lohn, G. Hornby, D. Linden, Evolutionary antenna design for a NASA spacecraft. in Genetic
Programming Theory and Practice II Chap. 18 (Springer, Ann Arbor, 2004), pp. 301–315

176. R.L. Lopes, E. Costa, The regulatory network computational device. Genetic Program. Evolv-
able Mach. 13, 339–375 (2012)

177. C.J. Lowe, G.A. Wray, Radical alterations in the roles of homeobox genes during echinoderm
evolution. Nature 389, 718–721 (1997)

178. S. Luke, L. Spector, Evolving graphs and networks with edge encoding : preliminary report.
in Late Breaking Papers at the Genetic Programming 1996 Conference (1996), pp. 117–124

179. M. Lukoševičius, H. Jaeger, Reservoir computing approaches to recurrent neural network
training. Comput. Sci. Rev. 3(3), 127–149 (2009)

180. W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new
framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–
2560 (2002)

181. J.M. Mandler, The Foundations of Mind: Origins of Conceptual Thought (Oxford University
Press, Oxford, 2004)

182. H. Markram, A brain in a supercomputer. www.ted.com. Accessed: 27/12/2012
183. H. Markram, J. Lübke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coinci-

dence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)
184. H. Markram, The blue brain project. Nat. Rev. Neurosci. 7(2), 153–160 (2006)
185. A. Matos, R. Suzuki, T. Arita, Heterochrony and artificial embryogeny: A method for ana-

lyzing artificial embryogenies based on developmental dynamics. Artif. Life 15(2), 131–160
(2009)

186. C. Mattiussi, D. Floreano, Analog genetic encoding for the evolution of circuits and networks.
IEEE Trans. Evol. Comput. 11(5), 596–607 (2007)

187. J. McCormack, Aesthetic evolution of L-Systems revisited. in Applications of Evolutionary
Computing (Evoworkshops) (2004), pp. 477–488

188. J. McCormack, Impossible Nature: the Art of Jon McCormack, Australian Centre for the
Moving Image (2004)

189. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5(4), 114–133 (1943)

190. N.F. McPhee, E. Crane, S.E. Lahr, R. Poli, Developmental plasticity in linear genetic pro-
gramming. in conference on Genetic and Evolutionary Computation (GECCO) (2009), pp.
1019–1026

191. T. Menezes, E. Costa, Artificial brains as networks of computational building blocks. in
European Conference on Complex Systems (2008)

192. T. Menezes, E. Costa, The gridbrain: an heterogeneous network for open evolution in 3d
environments. in IEEE Symposium on Artificial Life (2007), pp. 155–162

193. Y. Meng, Y. Zhang, Y. Jin, Autonomous self-reconfiguration of modular robots by evolving
a hierarchical mechanochemical model. IEEE Comput. Intell. Mag. 6(1), 43–54 (2011)

194. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs 1st–3rd edn.
(Springer, New-York, 1992–1996)

195. Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, Op-elm: Optimally pruned
extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)

196. K.D. Micheva, B. Busse, N.C. Weiler, N. O’Rourke, S.J. Smith, Single-synapse analysis of a
diverse synapse population: Proteomic imaging methods and markers. Neuron 68(4), 639–653
(2004)

197. J.F. Miller, Evolving a self-repairing, self-regulating, french flag organism. in Conference on
Genetic and Evolutionary Computation (GECCO) (Springer, 2004), pp. 129–139

56 T. Kowaliw et al.

198. J.F. Miller, Neuro-centric and holocentric approaches to the evolution of developmental neural
networks. in ed. by Kowaliw et al. [160], pp. 242–268

199. J.F. Miller, W. Banzhaf, Evolving the program for a cell:fFrom french flags to boolean circuits.
in On Growth, Form and Computers (2003), pp. 278–301

200. J.F. Miller, P. Thomson, A developmental method for growing graphs and circuits. in Evolvable
Systems: From Biology to Hardware (2003), pp. 93–104

201. J.F. Miller, G.M. Khan, Where is the brain inside the brain? Memetic Comput. 3, 217–228
(2011)

202. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, U. Alon,
Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

203. A.A. Minai, D. Braha, Y. Bar-Yam, Complex engineered systems: Science meets technology.
in ed. by D. Braha, Y. Bar-Yam, A.A. Minai Complex Engineered Systems: Science Meets
Technology, Chapter Complex Engineered Systems: A New Paradigm (Springer, 2006), pp.
1–21

204. D.E. Moriarty, Symbiotic Evolution of Neural Networks in Sequential Decision Tasks, Ph.D.
Thesis (University of Texas at Austin, USA, 1998)

205. J.-B. Mouret, S. Doncieux, B. Girard, Importing the computational neuroscience toolbox into
neuro-evolution-application to basal ganglia. in Conference on Genetic and Evolutionary
Computation (GECCO) (2010), pp. 587–595

206. J.-B. Mouret, P. Tonelli, Artificial evolution of plastic neural networks: a few key concepts.
en ed. by Kowaliw et al. [160], pp. 269–280

207. J.-B. Mouret, S. Doncieux, MENNAG: a modular, regular and hierarchical encoding for
neural-networks based on attribute grammars. Evol. Intell. 1(3), 187–207 (2008)

208. T.D. Mrsic-Flogel, S.B. Hofer, K. Ohki, R.C. Reid, T. Bonhoeffer, M. Hbener, Homeosta-
tic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
Neuron 54, 961–972 (2007)

209. P.L. Narasimha, W.H. Delashmit, M.T. Manry, J. Li, F. Maldonado, An integrated growing-
pruning method for feedforward network training. Neurocomputing 71(13–15), 2831–2847
(2008)

210. T. Natschläger, W. Maass, H. Markram, The “liquid computer”: A novel strategy for real-time
computing on time series. Spec Issue Found. Inf. Proc. TELEMATIK 8, 39–43 (2002)

211. M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci.
103(23), 8577–8582 (2006)

212. S.A. Newman, G. Forgacs, G.B. Müller, Before programs: the physical origination of multi-
cellular forms. Int. J. Dev. Biol. 50, 289–299 (2006)

213. S. Nichele, G. Tufte, Genome parameters as information to forecast emergent developmental
behaviors. in ed. by J. Durand-Lose, N. Jonoska Unconventional Computation and Natural
Computation (UCNC) (Springer, 2012), pp. 186–197

214. S. Nichele, G. Tufte, Trajectories and attractors as specification for the evolution of behaviour
in cellular automata. in IEEE Congress on Evolutionary Computation (CEC) (2010), pp. 1–8

215. M. Nicolau, M. Schoenauer, W. Banzhaf, Evolving genes to balance a pole. in ed. by A.
Esparcia-Alczar, A. Ekárt, S. Silva, S. Dignum, A. Uyar Genetic Programming, Lecture Notes
in Computer Science, vol. 6021 (Springer, Berlin, 2010), pp. 196–207

216. A.B. Nielsen, L.K. Hansen, Structure learning by pruning in independent component analysis.
Neurocomputing 71(10–12), 2281–2290 (2008)

217. K. Nigam, A.K. Mccallum, S. Thrun, T. Mitchell, Text classification from labeled and unla-
beled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)

218. S. Nolfi, O. Miglino, D. Parisi, Phenotypic plasticity in evolving neural networks. in From
Perception to Action (PerAc) (1994), pp. 146–157

219. S. Nolfi, D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and Technology of
Self-Organizing Machines (MIT Press/Bradford Books, Cambridge, 2000)

220. D. Norton, D. Ventura, Improving liquid state machines through iterative renement of the
reservoir. Neurocomputing 73, 2893–2904 (2010)

1 Artificial Neurogenesis: An Introduction and Selective Review 57

221. D. Norton, D. Ventura, Preparing more effective liquid state machines using hebbian learning.
in International Joint Conference on Neural Networks (IJCNN) (2006), pp. 8359–8364

222. B.A. Olshausen, D.J. Field, Sparse coding with an overcomplete basis set: a strategy employed
by V1? Vis. Res. 37(23), 3311–3325 (1997)

223. T.H. Oong, N.A.M.M. Isa, Adaptive evolutionary artificial neural networks for pattern clas-
sification. IEEE Trans. Neural Netw. 22, 1823–1836 (2011)

224. C. Öztürkeri, M.S. Capcarrere, Self-repair ability of a toroidal and non-toroidal cellular devel-
opmental model. in European conference on Advances in Artificial Life (ECAL) (Springer,
2005), pp. 138–148

225. M.E. Palmer, Evolved neurogenesis and synaptogenesis for robotic control: the L-brain model.
in Conference on Genetic and Evolutionary Computation (GECCO) (2011), pp. 1515–1522

226. H. Paugam-Moisy, R. Martinez, S. Bengio, Delay learning and polychronization for reservoir
computing. Neurocomputing 71(7–9), 1143–1158 (2008)

227. R. Perin, T.K. Berger, H. Markram, A synaptic organizing principle for cortical neuronal
groups. Proc. Natl. Acad. Sci. 108, 5419–5424 (2011)

228. R. Pfeifer, J. Bongard, How the Body Shapes the Way We Think: A New View of Intelligence
(Bradford Books, 2006)

229. M. Pigliucci, Is evolvability evolvable? Nat. Rev. Genet. 9, 75–82 (2008)
230. D.J. Price, A.P. Jarman, J.O. Mason, P.C. Kind, Building brains: an introduction to neural

development. 2nd edn. (Wiley, 2009)
231. P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants (Springer, 1990)
232. W.J. Puma-Villanueva, E.P. dos Santos, F.J. Von Zuben, A constructive algorithm to synthesize

arbitrarily connected feedforward neural networks. Neurocomputing 75(1), 14–32 (2012)
233. Z.W. Pylyshyn, Is vision continuous with cognition? the case for cognitive impenetrability of

visual perception. Behav. Brain Sci. 22, 341–423 (1999)
234. S.R. Quartz, T.J. Sejnowski, H. Hughes, The neural basis of cognitive development: a con-

structivist manifesto. Behav. Brain Sci. 20, 537–596 (1997)
235. R. Raina, A. Battle, H. Lee, B. Packer, A.Y. Ng, Self-taught learning: transfer learning from

unlabeled data. in ICML ’07: Proceedings of the 24th International Conference on Machine
Learning (ACM, New York, 2007), pp. 759–766

236. S. Rebecchi, H. Paugam-Moisy, M. Sebag, Learning sparse features with an auto-associator.
in ed. by Kowaliw et al. [160], pp. 144–165

237. T. Reil, Dynamics of gene expression in an artificial genome—implications for biological
and artificial ontogeny. in Proceedings of the 5th European Conference on Artificial Life
(ECAL99), Number 1674 in Lecture Notes in Artificial Intelligence (1999), pp. 457–466

238. J. Reisinger, R. Miikkulainen, Acquiring evolvability through adaptive representations. in 8th
Conference on Genetic and Evolutionary Computation (GECCO) (2007), pp. 1045–1052

239. J. Reisinger, R. Miikkulainen, Selecting for evolvable representations. in 7th Conference on
Genetic and Evolutionary Computation (GECCO) (2006), pp. 1297–1304

240. J. Rieffel, D. Knox, S. Smith, B. Trimmer, Growing and evolving soft robots. Artif. Life 1–20
(2012)

241. J. Rieffel, J. Pollack, The emergence of ontogenic scaffolding in a stochastic development envi-
ronment. in ed. by K. Deb Conference on Genetic and Evolutionary Computation (GECCO)
of Lecture Notes in Computer Science, vol. 3102 (Springer, 2004), pp. 804–815

242. B. Roeschies, C. Igel, Structure optimization of reservoir networks. Logic J. IGPL 18(5),
635–669 (2010)

243. D. Roggen, D. Federici, Multi-cellular development: is there scalability and robustness to
gain? in Parallel Problem Solving from Nature (PPSN) (2004), pp. 391–400

244. D. Roggen, D. Federici, D. Floreano, Evolutionary morphogenesis for multi-cellular systems.
Genet. Program. Evol. Mach. 8(1), 61–96 (2006)

245. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

246. R. Salakhutdinov, A. Mnih, G. Hinton, Restricted Boltzmann machines for collaborative
filtering. in Proceedings of the 24th International Conference on Machine Learning, ICML
’07 (ACM, New York, 2007), pp. 791–798

58 T. Kowaliw et al.

247. K. Sano, H. Sayama, Wriggraph: a kinetic graph model that uniformly describes ontogeny
and motility of artificial creatures. in Artificial life X: proceedings of the Tenth International
Conference on the Simulation and Synthesis of Living Systems, vol. 10 (MIT Press, 2006), p.
77

248. L. Schramm, Y. Jin, B. Sendhoff, Redundancy creates opportunity in developmental repre-
sentations. in IEEE Symposium on Artificial Life (IEEE-ALIFE)(2011)

249. L. Schramm, B. Sendhoff, An animat’s cell doctrine. in European Conference on Artificial
Life (ECAL) (MIT Press, 2011), pp. 739–746

250. B. Schrauwen, M. Wardermann, D. Verstraeten, J.J. Steil, D. Stroobandt, Improving reservoirs
using intrinsic plasticity. Neurocomputing 71(7–9), 1159–1171 (2008)

251. E.K. Scott, L.L. Luo, How do dendrites take their shape? Nat. Neurosci. 4(4), 359–365 (2001)
252. S.I. Sen, A.M. Day, Modelling trees and their interaction with the environment: A survey.

Comput. Graph. 29(5), 805–817 (2005)
253. B. Sendhoff, E. Körner, O. Sporns, Creating brain-like intelligence. in ed. by Sendhoff et al.

[255], pp. 1–14
254. B. Sendhoff, E. Körner, O. Sporns, H. Ritter, K. Doya (eds.), Creating Brain-Like Intelligence

vol. 5436 (Springer, 2009)
255. S.H. Seung, Neuroscience: towards functional connectomics. Nature 471(7337), 170–172

(2011)
256. C.W. Seys, R.D. Beers, Genotype reuse more important than genotype size in evolvability of

embodied neural networks. in 9th European Conference on Advances in Artificial Life (ECAL)
(2007), pp. 915–924

257. S.K. Sharma, P. Chandra, An adaptive slope sigmoidal function cascading neural networks
algorithm. in 2010 3rd International Conference on Emerging Trends in Engineering and
Technology (ICETET) (2010), pp. 531–536

258. A.A. Siddiqi, S.M. Lucas, Comparison of matrix rewriting versus direct encoding for evolving
neural networks. in IEEE International Conference on Evolutionary Computation, ICEC’98
(1998), pp. 392–397

259. M.S.M. Siddiqui, B. Bhaumik, Reaction-diffusion based model to develop binocular simple
cells in visual cortex along with cortical maps. in International Joint Conference on Neural
Networks (IJCNN) (2010), pp. 1–8

260. J. Šíma, P. Orponen, General-purpose computation with neural networks: a survey of com-
plexity theoretic results. Neural Comput. 15(12), 2727–2778 (2003)

261. K. Sims, Evolving virtual creatures. in Proceedings of SIGGRAPH (1994), pp. 15–22
262. A. Soltoggio, P. Durr, C. Mattiussi, D. Floreano, Evolving neuromodulatory topologies for

reinforcement learning-like problems. IEEE Congress on Evolutionary Computation (CEC)
(2007), pp. 2471–2478

263. O. Sporns, From complex networks to intelligent systems. in ed. by Sendhoff et al. [255], pp.
15–30

264. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies.
Evol. Comput. 10(2), 99–127 (2002)

265. K.O. Stanley, R. Miikkulainen, A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130
(2003)

266. K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based encoding for evolving large-
scale neural networks. Artif. Life 15(2), 185–212 (2009)

267. T. Steiner, Y. Jin, B. Sendhoff, Vector field embryogeny. PLoS ONE 4(12), e8177 (2009)
268. G.F. Striedter, Principles of Brain Evolution (Sinauer Associates, Sunderland, 2005)
269. J.L. Subirats, L. Franco, J.M. Jerez, C-mantec: a novel constructive neural network algorithm

incorporating competition between neurons. Neural Netw. 26, 130–140 (2012)
270. M. Suchorzewski, J. Clune, A novel generative encoding for evolving modular, regular and

scalable networks. in Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation - GECCO ’11 (2011), pp. 1523–2531

271. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, 1998)

1 Artificial Neurogenesis: An Introduction and Selective Review 59

272. H. Tanaka, L.T. Landmesser, Cell death of lumbosacral motoneurons in chick, quail, and
chick-quail chimera embryos: a test of the quantitative matching hypothesis of neuronal cell
death. J. Neurosci. 6(10), 2889–2899 (1986)

273. M.E. Taylor, S. Whiteson, P. Stone, Temporal difference and policy search methods for rein-
forcement learning: an empirical comparison. in Proceedings of the Twenty-Second Confer-
ence on Artificial Intelligence (AAAI-07) (2007)

274. G. Tesauro, Practical issues in temporal difference learning. Mach. Learn. 8(3), 257–277
(1992)

275. R. Thenius, M. Dauschanand, T. Schmickl, K. Crailsheim, Regenerative abilities in modular
robots using virtual embryogenesis. in International Conference on Adaptive and Intelligent
Systems (ICAIS) (2011), pp. 227–237

276. P. Tonelli, J.-B. Mouret, On the relationships between synaptic plasticity and generative sys-
tems. in Conference on Genetic and Evolutionary Computation (GECCO) (2011)

277. P. Tonelli, J.B. Mouret, On the relationshipd between generative encodings, regularity, and
learning abilities when encoding plastic artificial neural networks. PLoS One 8(11), e79138
(2013)

278. T. Trappenberg, Fundamentals of Computational Neuroscience 2nd edn. (Oxford University
Press, Oxford, 2009)

279. T. Trappenberg. A brief introduction to probabilistic machine learning and its relation to
neuroscience. in ed. by Kowaliw et al. [160], pp. 62–110

280. G. Tufte, P.C. Haddow, Extending artificial development: exploiting environmental informa-
tion for the achievement of phenotypic plasticity. in Conference on Evolvable Systems: from
Biology to Hardware (ICES) (Springer, 2007), pp. 297–308

281. A. Turing, The chemical basis of morphogenesis. Philosop. Trans. Roy. Soc. B 237, 37–72
(1952)

282. M. Ulieru, R. Doursat, Emergent engineering: a radical paradigm shift. Int. J. Auton. Adap.
Commun. Syst. 4(1), 39–60 (2011)

283. V. Valsalam, J.A. Bednar, R. Miikkulainen, Developing complex systems using evolved pat-
tern generators. IEEE Trans. Evol. Comput. 11(2), 181–198 (2007)

284. P. Verbancsics, K.O. Stanley, Constraining connectivity to encourage modularity in Hyper-
NEAT. in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO) (ACM Press, New York, 2011), pp. 1483–1490

285. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising autoen-
coders: learning useful representations in a deep network with a local denoising criterion. J.
Mach. Learn. Res. (2010)

286. C. von der Malsburg, Synaptic plasticity as basis of brain organization. in ed. by J.P. Changeux,
M. Konishi The Neural and Molecular Bases of Learning (Wiley, 1987), pp. 411–432

287. C. von der Malsburg, The correlation theory of brain function. in Models of Neural Networks
II: Temporal Aspects of Coding and Information Processing in Biological Systems (Springer,
1981), pp. 95–119

288. C. von der Malsburg, E. Bienenstock, Statistical coding and short-term synaptic plasticity. in
Disordered Systems and Biological Organization (Springer, 1986), pp. 247–272

289. G.P. Wagner, M. Pavlicev, J.M. Cheverud, The road to modularity. Nat. Rev. Genet. 8(12),
921–931 (2007)

290. V.J. Wedeen, D.L. Rosene, R. Wang, G. Dai, F. Mortazavi, P. Hagmann, J.H. Kaas, W.-Y.I.
Tseng, The geometric structure of the brain fiber pathways. Science 335(6076), 1628–1634
(2012)

291. J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, E. Thelen, Autonomous
mental development by robots and animals. Science 291(5504), 599–600 (2001)

292. J. Weng, A computational introduction to the biological brain-mind. Nat. Intell. INNS Mag.
1(3), 5–16 (2012)

293. D.J. Willshaw, C. von der Malsburg, How patterned neural connections can be set up by
self-organization. Proc. Roy. Soc. London Ser. B Biol. Sci. 194(1117), 431–445 (1976)

294. L. Wolpert, Developmental Biology (Oxford University Press, Oxford, 2011)

60 T. Kowaliw et al.

295. L. Wolpert, Positional information and the spatial pattern of cellular differentiation. J. Theor.
Biol. 1, 1–47 (1969)

296. B. Wróbel, A. Abdelmotaleb, M. Joachimczak, Evolving spiking neural networks in the GRe-
aNs (gene regulatory evolving artificial networks) plaftorm. in EvoNet2012: Evolving Net-
works, from Systems/Synthetic Biology to Computational Neuroscience Workshop at Artificial
Life XIII (2012), pp. 19–22

297. B. Wróbel, M. Joachimczak, Using the GReaNs (genetic regulatory evolving artificial net-
works) platform for signal processing, animat control, and artificial multicellular development.
in ed. by Kowaliw et al. [160], pp. 198–214

298. H. Yamada, T. Nakagaki, R.E. Baker, P.K. Maini, Dispersion relation in oscillatory reaction-
diffusion systems with self-consistent flow in true slime mold. J. Math. Biol. 54(6), 745–760
(2007)

299. S.-H. Yang, Y.-P. Chen, An evolutionary constructive and pruning algorithm for artificial
neural networks and its prediction applications. Neurocomputing 86, 140–149 (2012)

300. Yann LeCun, J.S. Denker, S. Solla, R.E. Howard, L.D. Jackel, Optimal brain damage. in ed.
by D. Touretzky NIPS’89 (Morgan Kaufman, 1990)

301. X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural networks. IEEE Trans.
Neural Netw. 8, 694–713 (1997)

302. X. Yao, Evolving neural networks. Proc. IEEE 87(9), 1423–1447 (1999)
303. I.B. Yildiz, H. Jaeger, S.J. Kiebel, Re-visiting the echo state property. Neural Netw. 35, 1–9

(2012)
304. J. Yin, Y. Meng, Y. Jin, A developmental approach to structural self-organization in reservoir

computing. IEEE Trans. Auton. Ment. Dev. 4(4), 273–289 (2012)
305. T. Yu, J. Miller, Neutrality and the evolvability of boolean function landscape. in ed. by J.

Miller, M. Tomassini, P.L. Lanzi, C. Ryan, A. Tettamanz, W.B. Langdon Genetic Programming
(Springer, 2001), pp. 204–217

306. C. Yu, M.T. Manry, J. Li, An efficient hidden layer training method for multilayer perceptron.
Neurocomputing 70(1–3), 525–535 (2006)

307. B. Zhang, D.J. Miller, Y. Wang, Nonlinear system modelling with random matrices: echo
state networks revisited. IEEE Trans. Neural Netw. Learn. Syst. 23(1), 175–182 (2012)

308. R. Zhang, Y. Lan, G.-B. Huang, Z.-B. Xu, Universal approximation of extreme learning
machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw. Learn. Syst. 23(2),
365–371 (2012)

309. P. Zheng, C. Dimitrakakis, J. Triesch, Network self-organization explains the distribution of
synaptic efficacies in neocortex. in ed. by Kowaliw et al. [159], pp. 8–9

310. N.E. Ziv, C.C. Garner, Principles of glutamatergic synapse formation: seeing the forest for
the trees. Current Opin. Neurobiol. 11(5), 536–543 (2001)

311. F. Zubler, A. Hauri, S. Pfister, A.M. Whatley, M. Cook, R. Douglas, An instruction language
for self-construction in the context of neural networks. Front. Comput. Neurosci. 5(57), 1–15
(2001)

Chapter 2
A Brief Introduction to Probabilistic Machine
Learning and Its Relation to Neuroscience

Thomas P. Trappenberg

Abstract My aim in this chapter is to give a concise summary of what I consider the
most important ideas in modern machine learning, and relate to one another different
approaches, such as support vector machines and Bayesian networks, or reinforce-
ment learning and temporal supervised learning. I begin with general comments on
organizational mechanisms, then focus on unsupervised, supervised and reinforce-
ment learning. I point out the links between these concepts and brain processes such
as synaptic plasticity and models of the basal ganglia. Examples for each of the
three main learning paradigms are also included to allow experimenting with these
concepts.

1 Evolution, Development and Learning

Development and learning are two crucial ingredients for the success of natural
organisms, and applying those concepts to artificial systems might hold the key
to new breakthroughs in science and technology. This chapter is an introduction to
machine learning that illustrates its links with neuroscientific findings. There has been
much progress in this area, in particular by realizing the importance of representing
uncertainties and the corresponding usefulness of a probabilistic framework.

1.1 Organizational Mechanisms

Before focusing on the main learning paradigms that dominate much of our recent
thinking in machine learning, I would like to briefly outline some of my views on

Available at http://projects.cs.dal.ca/hallab/MLreview2013.

T. P. Trappenberg (B)

Dalhousie University, Halifax, Canada
e-mail: tt@cs.dal.ca

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 61
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_2,
© Springer-Verlag Berlin Heidelberg 2014

http://projects.cs.dal.ca/hallab/MLreview2013

62 T. P. Trappenberg

the close relationships that exist among the organizational mechanisms discussed in
this volume. It seems to me that at least three levels of these mechanisms contribute
to the success of living organisms: evolutionary mechanisms, developmental mech-
anisms and learning mechanisms. Evolutionary mechanisms focus on the long-term
search for suitable architectures. This search takes time, usually many generations,
to establish small modifications that are beneficial for the survival of a species, and
even longer to branch off new species that can exploit niches in the environment. Evo-
lution is by essence adaptive, as it depends on the environment, the physical space,
and other organisms. A good basic organization and good choices by an organism
ultimately determine the survival of the individuals, hence the species in general.

While evolution works on the general architectural level of the population, a
precise architecture has to be realized in individuals, too. This is where development
comes into play. The genetic code is used to grow specific organisms from a mas-
ter plan (the genome) and environmental conditions. Thus, this mechanism is also
adaptive since the environment can influence the specific decoding of the master
plan. For example, the shape and metabolism of the sockeye salmon can change
drastically when environmental conditions allow migration from a freshwater envi-
ronment to the ocean—whereas this fish remains small and adapted to fresh water
if prevented from migrating, or if food sources are sufficient in the river. The ability
to grow specific architectures in response to the environment gives organisms a con-
siderable advantage, and these external stimuli seem to continually influence genetic
expression.

Having grown a specific architecture, the resulting organisms can continue to
respond to environmental conditions by learning about specific situations and how
to take appropriate actions. Learning is another type of adaptation of a specific
architecture that can take several forms. For example, it can be supervised by other
individuals, such as parents teaching their offspring behavioural patterns that they
find advantageous, or the organisms can learn from more general environmental
feedback by receiving reinforcement signals such as food reward or the accuracy
of anticipated outcomes. This chapter will focus for the most part on such learning
mechanisms.

The three different adaptive frameworks outlined above are somewhat abstract
at this level and it is important to be more precise about their meaning by showing
specific implementations. However, this is also when distinctions between these
mechanisms become somewhat blurred. For example, the emergence of receptive
fields (e.g. in the visual cortex) during the critical postnatal period is definitely an
important event at the developmental level, yet we will discuss such mechanisms as
a special form of “learning” in this chapter. For the sake of this volume it might be
useful to think about the learning processes described here as fine-tuning a system to
specific environmental conditions, as they can be experienced by an individual during
its lifetime. Other mechanisms discussed in this volume are aimed at developing
better learning systems in the long term, or growing specific individuals in response
to the environment.

While I will try to draw lines between development and learning, mainly to discuss
approaches from different scientific camps, it is debatable that such distinctions could

2 A Brief Introduction to Probabilistic Machine Learning 63

(a) Linear model (b) Quadratic model (c) 4th-order model

Fig. 1 Examples of underfitting (a) and overfitting (c)

even be made in the first place since, ultimately, all model implementations have to be
reflected by some morphological changes in the system. Thus it is quite appropriate
to bring together the modeling of different biological views into this volume.

1.2 Generalization

The general goal of the learning systems described here is to predict associations, or
“labels”, for future unseen data. The examples given during the learning phase are
used to choose the parameters of a model that represents certain hypotheses so that
a specific realization of this model can later make good predictions. The quality of
generalization from training data depends crucially on the complexity of the model
that is hypothesized to describe the data, as well as the number of training samples.

This is illustrated by Fig. 1. Let us think about describing the six data points shown
there with a linear model: the corresponding regression curve is shown in the left-
hand graph, while the other two graphs show the regression of a quadratic model and
a fourth-order polynomial. Certainly, the linear model seems too low-dimensional
since the data points deviate systematically, with the points in the middle trending
above the curve and the points at both ends laying below the curve. Such a systematic
bias is a clear indication that the model complexity is too low. In contrast, the curve
on the right fits the data perfectly. Indeed, we can always achieve a perfect fit for
a finite number of training points if the number of free parameters (one for each
order of the polynomial, in this example) approaches the number of training points.
But this could be overfitting the data in the light of possible noise. To evaluate
whether we are overfitting, we need additional validation examples. An indication
of overfitting is when the variance of this validation error grows with an increasing
model complexity.

What we just discussed, called the bias-variance tradeoff when choosing between
different potential hypotheses, is summarized in the left-hand graph of Fig. 2. Many
advances in machine learning have been made by addressing ways to choose good
models. While the bias-variance tradeoff has been well appreciated in the machine
learning community for some time now [1], many methods are still based on general
learning machines that have a large number of parameters. For such machines it is

64 T. P. Trappenberg

Training examples
Model complexity

Training

Generalization

Error

Bias Variance

Par
am

et
er

 le
ar

nin
g

Architectural learning

Error

Fig. 2 Bias-variance tradeoff and explorative learning. While a training error can always decrease
with increasing model complexity, minimizing the generalization error is what we are seeking. To
find the smallest possible generalization error we need to search in hypothesis space and optimize
in parameter space

now common to use meta-learning methods to address the bias-variance tradeoff,
such as cross-validation where some of the training data is used to evaluate the
generalization ability of the model.

We also need to consider if the model takes into account all the necessary factors
that influence the outcome. How about including new features not previously con-
sidered such as a temporal domain? I believe that genetic and developmental mecha-
nisms can address these issues by exploring a hypothesis space by ways of different
model architectures. Of course, the exploration of a hypothesis space (developmental
learning) must be accompanied by parameter optimization (behavioural learning) to
find the best possible generalization performance. Several of the contributions in this
volume represent good examples of this approach.

In summary, for the discussion in this volume it is useful to draw a distinction
between two main processes:

• Architectural exploration: This process explores the hypothesis space in terms
of global structures, such as what kind of features are relevant to build appropriate
models and what model structures (parameterized functions) can be used.

• Parameter optimization: This process is about finding solutions (appropriate
values of the parameters) within a specific architecture (a parameterized function).

Naturally, these processes are ultimately entwined and can be covered by common
mechanisms. It remains that both aspects need to be included to find good predicitve
systems, as illustrated in the right-hand graph of Fig. 2.

1.3 Learning with Uncertainties

Machine learning has recently revolutionized computer applications such as autono-
mous car driving or information searching. Two major ingredients have contributed
to this recent success. The first was building into the system the ability to adapt

2 A Brief Introduction to Probabilistic Machine Learning 65

to unforeseen events. In other words, we must build “machines that learn”, since
the traditional method of encoding appropriate responses for all future situations is
impossible. Like humans, machines should not be static entities that can only blindly
follow orders, which might be outdated by the time real situations are encountered.
Although learning machines have been studied for at least half a century, often
inspired by human capabilities, the field has matured considerably in recent years
through more rigorous formulations of the systems and the realization of the impor-
tance of predicting previously unseen events rather than only memorizing former
events. Machine learning is now a well established discipline within artificial intel-
ligence.

The second ingredient for the recent breakthroughs was the acknowledgment that
there were uncertainties in the world. Thus, rather than only following the most
likely explanation for a given situation, keeping an open mind and considering other
possible explanations has proven to be essential in systems that have to work in a
real-world environment, in contrast to a controlled lab environment. The language
of describing uncertainty, that of probability theory, has proven to be elegant and
tremendously simplify arguing in such worlds. This chapter is dedicated to an intro-
duction to the probabilistic formulation of machine learning.

In the following sections I outline a contemporary view of learning theories that
includes unsupervised, supervised and reinforcement learning. I begin with unsu-
pervised learning since it is likely less known and relates more closely to certain
developmental aspects of an organism. Then, I briefly review supervised learning in
a probabilistic framework. Finally, I present reinforcement learning as an important
generalization of supervised learning. In addition, I discuss some relations of these
learning theories with biological analogies. This includes the relations of unsuper-
vised learning with the development of filters in early sensory cortical areas, synaptic
plasticity as the physical basis of learning, and research that relates the basal ganglia
to reinforcement learning theories.

I thought important to include supervised, unsupervised and reinforcement
learning in a form that would correspond to an advanced treatment of these top-
ics in a course on machine learning. While there are now many good publications
that focus on specific approaches in machine learning (such as kernel methods or
Bayesian models), my aim is to link together and contrast several popular learning
approaches. Most discussions of machine learning start with supervised learning, but
I opted here for an initial discussion on unsupervised learning instead, as it logically
precedes supervised learning and is generally less known.

1.4 Predictive Learning

Since my main research focus is neuroscience, I would like to first clarify how
machine learning relates to this field. Machine learning can actually help neuro-
science in many ways, one of which certainly concerns data analysis, as learning
methods constitute the foundations of most advanced data mining techniques.
Another application area, and the one examined here, is to understand the main

66 T. P. Trappenberg

Fig. 3 The “anticipating
brain” contains a hierarchical
generative model of concepts
and a decision system that
guides behavior with the help
of an anticipatory world model

Sensation

Action

Causes Concepts Concepts Concepts

AGENT

ENVIRONMENT

Decision

problems and solutions in machine learning that can guide our understanding of
biological learning systems. That is, we can ask what essential methods for solv-
ing learning problems are available, in a way somewhat reminiscent of Marr and
Poggio’s view of a computational, and possibly algorithmic, level of neuroscience.
Similarly, many models discussed here can be construed as models of the brain on
a more abstract level. Within computational neuroscience, there are also models
that represent more mechanistic levels with specific representations and physical
implementations. The implementation of learning via synaptic plasticity, and a more
system-level model of the basal ganglia are a few of the examples mentioned later
in this chapter.

If pressed to summarize what the brain does, I would say that it is an organ
that represents a sophisticated decision system based on an adaptive world model.
The goal of learning as it is described here is anticipation, or prediction. A predictive
model can be used by an organism to make appropriate decisions to reach some goals.
I believe that increasingly complex nervous systems evolved to make increasingly
sophisticated predictions that could give them survival and evolutionary advantages.

A possible architecture of a predictive learning system resembling my high-level
view of the brain is outlined in Fig. 3. An agent must interact with the environment
from which it learns and receives a reward. This interaction has two sides: sensation
and action. The state of the environment is conveyed by sensations that are caused by
specific situations in the environment. A comprehension of these sensations requires
hierarchical processing in deep-learning systems. The hierarchical processes are
bidirectional so that the same structure can be used to generate expectations that
should ultimately yield appropriate actions. These actions have to be guided by a
decision system that itself needs to learn from the environment. This chapter reviews
the principal components of such a learning system.

2 Unsupervised Learning

2.1 Representations

An important requirement for a natural or artificial agent is to decide on an appropriate
course of action given specific circumstances, mainly the encountered environment.

2 A Brief Introduction to Probabilistic Machine Learning 67

We can treat the environmental circumstances as cues given to the agent. These
cues are communicated by sensors that specify the values of certain features. Let us
represent these feature values as a vector x. The goal of the agent is then to calculate
an appropriate response

y = f (x). (1)

In this review we use a probabilistic framework so that we can address uncertainties,
or different possible responses. The corresponding statement of the deterministic
function approximation of Eq. (1) is then to find a probability density function

p(y|x). (2)

A common example is object recognition where the feature values might be RGB
values of pixels in a digital image and the desired response might be the identity of a
person in this image. A learning machine for such a task is a model that is presented
with specific examples of feature vectors x and their corresponding desired labels y.
Learning under these circumstances mainly consists of adjusting the model’s para-
meters based on the given examples. A trained machine should be able to generalize
by predicting the appropriate labels of previously unseen feature vectors, where the
“appropriateness” usually depends on the task. Since this type of learning is based
on specific training examples with known labels, it is called supervised. We discuss
specific algorithms of supervised learning and corresponding models in the next
section. We start here with unsupervised learning since it is a more fundamental task
that precedes supervised learning.

As stated above, the aim of learning is to find a mapping function y = f (x)

or probability density function p(y|x). An important insight that we explore in this
section is that finding such relations is much easier if the representation of the feature
vector is chosen carefully [1]. For example, it is very challenging to use raw pixel
values to infer the content of a digital photo such as the recognition of a face. In con-
trast, if we possess useful descriptions of faces, such as the distance between the eyes
or other landmarks, the hair colour, nose length, and so on, it becomes much easier
to classify photographs into specific target faces. Finding a useful representation of
a problem is key to a successful application. When we use learning techniques for
this task we talk about representational learning. Representational learning mostly
exploits statistical characteristics of the environment without the need for labeled
training examples. This is therefore an important area of unsupervised learning.

Representational learning itself can be viewed as a mapping problem, for example
the mapping from raw pixel values to more direct features of a face. This is illus-
trated in Fig. 4: the raw input feature vector x is represented by a layer of nodes at
the bottom, which we will call the input layer, while the feature vector h supporting
higher order representations is represented by nodes in the upper layer of this net-
work, which we will call the representational layer or hidden layer. The connections
between the nodes represent the desired transformation between input layer and hid-
den layer. In line with our probabilistic framework, each node represents a random

68 T. P. Trappenberg

Fig. 4 A restricted Boltz-
mann machine is a proba-
bilistic two-layer network
with bidirectional symmetric
connections between the input
layer and the representational
(hidden) layer

Input layer
(visible nodes)

Representational layer
(hidden nodes)

X

h

Fig. 5 Logistic function with
different slopes and offsets

−5 0 5
0

0.5

1

X

y
1+exp(-2x)

1+exp(-2x+3)
1+exp(-x)

1

1
1

variable. The main idea behind the principle that we will employ to find “useful”
representations is that these representations should be useful inasmuch as they can
help reconstructing the input.

Before we discuss different variants of hidden representations, let us make the
functions of the model more concrete. Specifically, we consider binary random vari-
ables for illustration purposes. Given the values of the input nodes (indexed by j), we
choose to calculate the value of the hidden nodes (indexed by i), or more precisely
their probability of having a certain value, via the logistic function shown in Fig. 5:

p(hi = 1|x) = 1

1 + e− 1
T (wi x+bh

i)
, (3)

where T is a “temperature” parameter controlling the steepness of the curve, w are
the weight values of the connections between the input and hidden layers, and bh

i
is the offset of the logistic function, also called the bias of the hidden node. In this
model, which is called a “restricted Boltzmann machine” (RBM) [2], there are no
connections among the hidden nodes, so these nodes represent random variables that
are conditionally independent when the inputs are observed. In other words, the joint
density function with fixed inputs factorizes as follows:

p(h|x) =
⎛

i

p(hi |x). (4)

The connections here are bidirectional and symmetric, meaning that wi j = w ji ,
therefore this kind of model also represents an “undirected Bayesian network”, which
is a special case of the Bayesian networks that will be discussed later. Thus the state
of the input nodes can be generated by hidden activities according to

2 A Brief Introduction to Probabilistic Machine Learning 69

Fig. 6 Alternating Gibbs
sampling and the approxima-
tion of contrastive divergence

t=1 t=2 t=3 t= 8

Contrastive Divergence

Alternating Gibbs Sampling

p(x j = 1|h) = 1

1 + e− 1
T

⎝
i wi j hi +bv

j

p(x|h) =
⎛

j

1

1 + e− 1
T

⎝
i wi j hi +bv

j

(5)

where bv
j are the biases for each visible (input) node.

The remaining question is: how can we choose the parameters, specifically the
weights and biases of the model? Since our aim is to reconstruct the observed world,
we can formulate the answer in a probabilistic framework by minimizing the distance
between the world’s distribution (the density function of the visible nodes when set
to unlabeled examples from the environment) and the generated model of the world
when sampled from hidden activities. The difference between distributions is often
measured by the Kullbach-Leibler divergence, denoted by DKL, and minimizing this
objective function with a gradient method leads to a Hebbian-type learning rule:

Δwi j = η
∂ DKL

∂wi j
= η

1

2T

⎜→hi v j ≥clamped − →hi v j ≥free
⎞
. (6)

The angular brackets →.≥ denote sample averages, either in the clamped mode where
the inputs are fixed or in the free running mode where the input nodes’ activities
are determined by the hidden nodes. Unfortunately, in practice this learning rule
suffers from the long time it takes to produce an unbiased average from sequentially
sampled time series. However, it turns out that learning still works for a few steps in
the Gibbs sampling as illustrated in Fig. 6. This learning rule, which has finally made
Boltzmann machines applicable, is called contrastive divergence [3] (see also [4]).

An example of a basic restricted Boltzmann machine is given in Table 1. This
RBM has nh = 100 hidden nodes and is trained for nepochs = 150 epochs, where one
epoch consists of presenting all images once. The network is trained with contrastive
divergence in the next block of code. The training curve, which shows the average
error of recall of patterns, is shown on the left in Fig. 7. After training, 20 % of the
bits of the training patterns are flipped and presented as input to the network, then the
program plots the patterns after repeated reconstructions as displayed on the right
side of Fig. 7. Only the first 5 letters are shown here, but this number can be increased
to inspect more letters.

70 T. P. Trappenberg

Table 1 Basic restricted Boltzmann machine for learning letter patterns

This network is used to learn digitized letters of the alphabet that are provided in the file
pattern1.txt at http://www.cs.dal.ca/~/repository/MLintro2012 together with the other pro-
grams of this chapter

http://www.cs.dal.ca/~/repository/MLintro2012

2 A Brief Introduction to Probabilistic Machine Learning 71

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

epoch

av
ge

ra
ge

 e
rr

or

Fig. 7 Output of the example program for a restricted Boltzmann machine. Left learning curve
showing the evolution of the average reconstruction error. Right reconstructions of noisy patterns
after training

2.2 Sparse and Topographic Representations

In the previous section we reviewed a basic probabilistic network that implements
representational learning based on the reconstruction of inputs. There are many
other unsupervised algorithms that can achieve representational learning, such as
non-probabilistic recurrent networks (for example, see Rebecchi et al. in this vol-
ume). Also, many other representational learning algorithms originate from signal
processing, such as Fourier transform, wavelet analysis, or independent component
analysis (ICA). Indeed, most advanced signal processing methods include steps to
re-represent or decompose a signal into basis functions. For example, the Fourier
transform decomposes a signal into sine waves with different amplitudes and phases.
The original signal can then be reconstructed from the sum of individual sine waves
weighted by their amplitude parameters. An example is shown in Fig. 8. The signal
in the upper left is made out of three sine waves as revealed by the power spectrum
on the right, which plots the square of the corresponding coefficients.

The Fourier transform has been very useful in describing periodic signals, but
one problem with this representation is that an infinite number of basis functions are
needed to represent a signal that is localized in time. An example of a square signal
localized in time is shown in the lower left panel of Fig. 8 together with its power
spectrum on the right. In the case of the time-localized signal, the power spectrum
shows that a continuous interval of frequencies is necessary to accurately represent the
original signal. Thus, a better choice for applications with localized features would be
basis functions that are localized in time. Examples are wavelet transforms [5] or the
Huang-Hilbert transform [6]. The usefulness of a specific transformation depends of
course on the nature of the signals. Periodic signals with few frequency components,
such as the rhythm of the heart or yearly fluctuations of natural events, are well
represented by Fourier transforms, while signals with localized features, such as
objects in a visual scene, are often well represented with wavelets. The main reason
for calling a representation “useful” is that the original signal can be represented with

72 T. P. Trappenberg

0 50 100 150
−4
−2

0
2
4

0 50 100 150
0

0.5

1

0 5
0

1

2

3
x 106

0 5
0

10

20

30

Frequency

P
ow

er

Time

A
m

pl
itu

de

Fig. 8 Decomposition of signals into sine waves. The example signals are shown on the left side,
and the corresponding description of the power spectrum on the right. The power spectrum shows
the square of the amplitude for each contributing sine wave with specified frequency

only a small number of basis functions—in other words, when only a small number
of coefficients have significantly large values. Therefore, even if the dictionary is
large, each example of a signal from the specific environment can be represented
with a small number of components. Such representations are called sparse.

The importance of sparse representations in the visual system has long been
pointed out by Horace Barlow [7], and one of the best and probably first examples
that demonstrate such mechanisms was give by his student Peter Földiák [8] (see
also [9]). Another very influential article by Olshausen and Field [10] demonstrated
that sparseness constraints are essential in learning basis functions that resemble
receptive fields in the primary visual cortex, and similar concepts should also hold
for higher-order representations in deep-belief networks [11]. It is now argued that
such unsupervised mechanisms resemble receptive fields of simple cells.

The major question is then how to find good (sparse) representations for specific
environments. One solution is to learn representations by unsupervised training as
demonstrated above with the example of a Boltzmann machine. To learn sparse
representations we now add additional constraints that force the learning of specific
basis functions. In order to do this we can keep track of the mean activation of the
hidden nodes by setting

qi (t) = (1 − λ)qi (t − 1) + λhi (t), (7)

where parameter λ determines the averaging window. We then add to the learning
rule the constraint of minimizing the difference between the desired sparseness ρ

and the actual sparseness q, expressed by

Δwi j ∝ v j (hi + ρ − qi) − vr
j h

r
i . (8)

This works well in practice and has the extra advantage of preventing dead nodes [4].

2 A Brief Introduction to Probabilistic Machine Learning 73

Fig. 9 Examples of learned receptive fields of a RBM without (left) and with (right) sparse and
topographic constraints

In addition to the typical form of receptive fields, many brain areas show some
topographic organization in that neurons with adjacent features of receptive fields are
located in adjacent tissues. An example of unsupervised topographic representations
are “self-organizing projections” [12, 13] or “self-organizing maps” (SOMs) [14].
Topographic self-organization can be triggered by lateral interactions with local
facilitation and distant competition, as can be implemented with pairwise local exci-
tation and distant inhibition between neurons. Such interactions also promote sparse
representations. Along these lines, my student Paul Hollensen together with my col-
laborator Pitoyo Hartono and myself proposed to include lateral interactions within
the hidden layer [15] as follows:

p(ĥi |v) =
⎠

j

Ni j p(h j |v), (9)

where i, j both represent hidden units here, and Ni j is a kernel such as a shifted
Gaussian or a Mexican-hat function centered on hidden node i . For binary hidden
units the natural measure of the difference in distributions is the cross entropy, for
which the derivative with respect to the weights is simply (ĥi − hi) · v. Combining
this with the contrastive divergence update yields

Δwi j ∝ v j hi − vr
j h

r
i + v j (ĥi − hi) = v j ĥi − vr

j h
r
i . (10)

Figure 9 presents examples of receptive fields learned with (right) and without (left)
sparse topographic learning.

While purely bottom-up driven SOMs have dominated the thinking in this field,
it is also important to consider models with top-down guidance of self-organized
feature representations. An excellent example is the Adaptive Resonance Theory

74 T. P. Trappenberg

(ART) of Stephen Grossberg [13, 16], which is most relevant in a biological context
and even addresses the stability-plasticity dilemma. Further aspects of top-down
control in SOMs are discussed in [17].

2.3 Hierarchical Representations and Deep Learning

Before leaving our discussion about representational learning, I would like to mention
at least briefly the importance of hierarchical representations. So far we have only
considered one layer of internal representations that we called the hidden layer.
However, it is widely believed that representations that allow abstractions at different
levels are essential to enable the cognitive abilities displayed by humans.

An obvious example consists of stacking Boltzman machines so that the hid-
den layer of one Boltzman machine becomes the input layer to the next Boltzman
machine. This already has the advantage that more complex filters can be built from
filters learned in previous levels. For example, if a first layer represents edges in a
visual scene, a higher level could represent corners or more elaborate combinations
of edges.

However, just obtaining more elaborate filters might not be the only advantage
derived from hierarchical representations. In order to enable more advanced cognitive
abilities, such as exploiting more general concepts or making higher-level plans,
we need to enable more abstract representations of concepts. Such deep learning
algorithms are the subject of much recent research in machine learning, and the
chapter by Joshua Bengio is an excellent discussion of some of the challenges in this
area.

Deep learning structures also resemble better the situation of the brain as a learning
machine. We have mentioned above that filters in the early sensory areas and higher
levels of the cortex, such as neurons in the inferotemporal cortex [18], are known
to respond to more complex patterns. But it is also known that the prefrontal cortex
contributes to high-level cognition functions such as planning and other executive
functions that are often based on abstract concepts.

3 Supervised Learning

3.1 Regression

Representational learning is about learning a mapping function that transforms a
signal (input vector) into a new signal (hidden vector):

fh :x ⊂ h (given unlabeled examples and constraints). (11)

2 A Brief Introduction to Probabilistic Machine Learning 75

100 150 200 250 300
250

300

350

400

450

500

weight (pounds)

tim
e

of
 o

ne
−

m
ile

 r
un

 (
se

co
nd

s)
Fig. 10 Health data

The unsupervised learning of this mapping function typically exploits statistical reg-
ularities in the signals, and therefore depends on the nature of the input signals. This
learning process is also guided by principles such as good reconstruction abilities,
sparseness and topography. Supervised learning, on the other hand, is about learning
an unknown mapping function from labeled examples:

fy :h ⊂ y (given labeled examples). (12)

We have indicated in the formula above that supervised learning takes the hidden rep-
resentation of examples, h and maps them to a desired output vector y. This assumes
that representational learning is somewhat completed during a developmental learn-
ing phase, which is then followed by supervised learning with a teacher that supplies
desired labels (output values) for given examples. It may be argued that in natural
learning systems these learning phases are not as strictly separated as discussed here,
but for the purpose of this tutorial it is useful to make a distinction between these
two major learning components.

In our discussion of strictly supervised learning for this section, let us follow
the common nomenclature in denoting input values by x and output values by y. In
supervised learning we consider training data that consists of example inputs and
corresponding labels, that is, pairs of values (x(e), y(e)), where e = 1, ..., m indexes
the m training examples. For instance, Fig. 10 presents a partial list and plot of the
running records of 30 employees who were regular members of a company’s health
club [19]. Specifically, the data shows the relationship between the weight of these
persons and their time in a one-mile run.

Looking at the plot seems to reveal a systematic relation between the weights and
running times, with a trend for heavier individuals to be slower at running, although
this is not true for everyone. Moreover, the trend appears linear. This hypothesis can
be quantified as a parameterized function

h(x; θ) = θ0 + θ1x . (13)

76 T. P. Trappenberg

This notation means that hypothesis h is a family of functions of the quantity x
that includes all possible straight lines, where each line can have a different offset
θ0 (intercept with the y-axis) and slope θ1. We typically collect parameters in a
parameter vector denoted by θ . We only considered a single input feature x above,
but we can easily generalize this to higher-dimensional problems where more input
attributes are given. For example, there might be the amount of exercising each week
that might impact the results of running times. If we make the hypothesis that this
additional variable has also a linear influence on the running time, independently from
the other attribute that adds or reduces the time, we can express this new hypothesis
with

h(x; θ) = θ0 + θ1x1 + θ2x2. (14)

A useful trick to enable a compact notation in higher dimension with n attributes is
to introduce x0 = 1. We can then write the linear equations as

h(x; θ) = θ0x0 + ... + θn xn =
⎠

j

θ j x j = θTx. (15)

where vector θT is the transpose of vector θ .
At this point it would be common to fit the unknown parameters θ with methods

such as a least mean squares (LMS) regression. However, I would like to frame
this problem right away in a more modern probabilistic framework. The data already
shows that the relations between the weight and the running time is not strictly linear,
thus the main question is how we should interpret the differences. We could introduce
a more complicated nonlinear hypothesis to obtain a better fit. However, this could
lead to conclusions such as: increasing your weight from 180 to 200 pounds will make
you run faster. While we might wish this conclusion were true, it is most certainly
unwarranted. Thus, instead of making the hypothesis function more complex, we
should consider other possible sources that influence this data. One is certainly that
the ability to run does not only depend on the weight of a person but also on other
physiological factors. However, this data does not include information about such
other factors, and the best we can do (other than collecting more information) is to
treat these deviations as uncertainties.

There are many possible sources of uncertainties such as irreducible indetermi-
nacy or epistemological limitations. Irreducible indeterminacy might be called “true
noise”, as it comes from system limitations such as time constraints on measurements,
other sensors’ limitations, or simply laziness for collecting more information. For
us, it is actually not important where these uncertainties originate; rather, we must
only acknowledge the uncertain nature of the data. In this type of thinking, we treat
sampled data from the outset as fundamentally stochastic, that is, sensory data can
be different even in situations that we deem identical.

To model the uncertainties in this data, we look at the deviations from the mean.
Figure 11 shows a histogram of the differences between the actual data and the
hypothesized regression line. This histogram looks a bit like one sampled from

2 A Brief Introduction to Probabilistic Machine Learning 77

Fig. 11 Histogram of the
differences between the data
points and the fitted hypothe-
sis, (y − θ0 − θ1x)

−100 −50 0 50 100
0

2

4

6

8

10

Remainder
N

um
be

rs
 in

 b
in

Gaussian data, which is a frequent finding in many situations though not neces-
sarily the only one. In any case, let us just make this additional assumption that
there is noise in the data. With this conjecture, we should revise our hypothesis in
a probabilistic framework. More precisely, we acknowledge that we can only give
a probability of finding certain values. Specifically, we assume here that the data
follows a certain trend h(x; θ) with an additive noise denoted η,

p(y|x; θ) = h(x; θ) + η, (16)

where the random variable η comes from a Gaussian (normal) distribution N in the
above example, i.e.,

p(η) = N (μ, σ). (17)

We can then also write the probabilistic hypothesis in the above example as a Gaussian
model with a mean that depends on the variable x:

p(y|x; θ) = N (μ = h(x; θ), σ)

= 1

σ
√

2π
exp

(
− (y − θTx)2

2σ 2

⎟
. (18)

This function defines the probability of an y value, given an input x and parameters θ .
We have here treated the variance σ 2 as given, although it, too, could be part of the
model parameters that need to be estimated. Specifying a model with a density
function is an important step in modern modeling and machine learning.

We have thus far made a parameterized hypothesis underlying the nature of the
data. We now need to estimate values for the parameters to make real predictions.
Therefore, let us consider again the examples of input-output pairs, i.e. our training set
{(x (e), y(e)); e = 1, ..., m} (in 1D). The important principle that we will follow now
is to choose the parameter θ so that the examples we have are most likely covered by

78 T. P. Trappenberg

the model. This is called maximum likelihood estimation. To formalize this principle,
we need to think about how to combine probabilities for several observations. If the
observations are independent, then the joint probability of several observations is the
product of the individual probabilities:

p(Y1, Y2, ..., Ym |X1, X2, ..., Xm; θ) =
m⎛

e=1

p(Ye|Xe; θ). (19)

Note that the Yi ’s are still random variables in the above formula. We now use our
training examples as specific observations (point estimates) for each of these random
variables, and introduce the likelihood function

L(θ) =
m⎛

e=1

p̂(θ; y(e), x (e)). (20)

Here, on the right-hand side, p̂ is not a density function but a regular function of
parameter θ (with the same functional form as our parameterized hypothesis p) for
the given values y(e) and x (e). Instead of evaluating this large product, however, it is
common to use the logarithm of the likelihood function, so that we can use the sum
over the training examples:

l(θ) = log L(θ) =
m⎠

e=1

log(p̂(θ; y(e), x (e))). (21)

Since the log function is strictly monotonically increasing, the maximum of L is also
the maximum of l. The maximum (log-)likelihood estimate (MLE) of the parameter
can thus be calculated from the examples by

θMLE = arg max
θ

l(θ). (22)

In some cases, we can calculate this analytically or we can use a search algorithm to
find an approximation.

Let us now apply this strategy to the regression of a linear function with Gaussian
noise as discussed above. The log-likelihood function for this example is given by

p̂(θ; y(e), x (e)) = 1

σ
√

2π
exp

(
− (y(e) − θx (e))2

2σ 2

⎟

⇒ l(θ) = −m

2
log 2πσ −

m⎠
e=1

(y(e) − θx (e))2

2σ 2 . (23)

2 A Brief Introduction to Probabilistic Machine Learning 79

Since the first term on the right-hand side of Eq. (23) is independent of θ , and since
we considered here a model with a given variance σ 2 for the data, maximizing the
log-likelihood function is equivalent to minimizing a quadratic error term

E = 1

2
(y − h(x; θ))2 ⇔ p(y|x; θ) = 1√

2π
exp

(
− (y − h(x; θ))2

2

)
(24)

(switching the notation back to the multidimensional case). Thus, the MLE of a
Gaussian dataset corresponds to minimizing a quadratic cost function, as it was
commonly used in LMS regression. LMS regression is well motivated for Gaussian
data, but our derivation also shows that data with non-Gaussian noise should be fitted
with different cost functions. For example, a polynomial error function corresponds
more generally to a density model of the form

E = 1

p
||y − h(x; θ)||p ⇔ p(y|x; θ) = 1

2Γ (1/p)
exp(−||y − h(x; θ)||p). (25)

Later we will mention the ε-insensitive error function, where errors less than a
constant ε do not contribute to the error measure:

E = ||y − h(x; θ)||ε ⇔ p(y|x; θ) = p

2(1 − ε)
exp(−||y − h(x; θ)||ε). (26)

Since we already acknowledged that we expected noisy data, it is logical not to count
some amount of deviation from the expectation as error. It also turns out that this last
error function is often more robust than other error functions, especially for datasets
that contain outliers.

3.2 Classification as a Logistic Regression

We have grounded supervised learning in probabilistic function regression and
maximum likelihood estimation. An important special instance of supervised learn-
ing is classification, and the simplest case is binary classification which corresponds
to data that has only two possible labels, such as y ∈ {0, 1}.

More formally, let us consider a random number that takes value 1 with probability
φ and value 0 with probability 1 − φ. Such a random variable is called a Bernoulli
distribution. Tossing a coin is a good example of a process that generates a Bernoulli
random variable, and we can use maximum likelihood estimation to estimate the
parameter φ from such trials. For example, if we consider m tosses of a coin, the
log-likelihood of finding h heads (y = 1) and m − h tails (y = 0) is

l(φ) = log(φh(1 − φ)m−h)

= h log(φ) + (m − h) log(1 − φ). (27)

80 T. P. Trappenberg

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 12 Binary random numbers (stars) drawn from the density p(y = 1) = 1/(1+exp(−θ0−θ1x))

(solid line) with offset θ0 = −2 and slope θ1 = 4

To find the maximum of l with respect to φ, we set the derivative of l to zero:

dl

dφ
= h

φ
− m − h

1 − φ
= 0

⇒ φ = h

m
. (28)

As you might have expected, the MLE of parameter φ is the fraction of heads in m
trials.

Let us now discuss the case when the probability of observing a head or tail, the
parameter φ, depends on some attribute x , as usual in a stochastic way. An example
is illustrated in Fig. 12 with 100 examples plotted as star symbols. The data suggests
that it is far more likely that the class is y = 0 for smaller (possibly negative) values
of x , and y = 1 for larger values of x . They also show that the transition between
the low and high probability region is smooth. We can qualify this hypothesis by a
parameterized density function p known as a logistic (sigmoidal) function:

p(y = 1) = 1

1 + exp(−θTx)
. (29)

As before, we can then treat this density as a function of the parameters θ for the
given data values (likelihood function), and apply MLE to estimate the values of the
parameters for which the data is most likely.

How can we use the knowledge (estimate) of the density function to perform
classification? The obvious choice is to predict the class with the highest probability,
given the input attribute. This Bayesian decision point, denoted by xd , is character-
ized by

p(y = 1|xd) = p(y = 0|xd) = 0.5

⇔ θTxd = 0, (30)

where the last expression is called the dividing hyperplane.

2 A Brief Introduction to Probabilistic Machine Learning 81

We looked here at binary classification with linear decision boundaries as a logistic
regression, but we could also generalize this method to problems where hypotheses
have different functional forms, creating nonlinear decision boundaries. However,
coming up with specific functions for boundaries is often difficult in practice, and
we will discuss more practical methods for binary classification later in this chapter.

3.3 Multivariate Generative Models and Probabilistic Reasoning

We have so far only considered very simple hypotheses appropriate for the low
dimensional data given in the above examples. An important issue that has to be
considered in machine learning is generalizing to more complex nonlinear data in
high-dimension, that is, when many factors interact in a complicated way. This topic
is probably one of the most important when applying machine learning to real world
data. This section discusses a useful way of formulating more complicated stochastic
models with causal relations and how to use such models to argue, i.e. do inference.

Let us consider high-dimensional data and the corresponding supervised learning
problem which is simply a generalization of our discussions above. In the proba-
bilistic framework, this means making a hypothesis of joint density function for the
problem:

p(y, x) = p(y, x1, x2, ...|θ), (31)

where y, x1, ... are random variables and θ represents the parameters of the model.
With this joint density function we could argue about every possible situation in the
environment. For example, we could request classification or object recognition by
calculating the conditional density function

p(y|x) = p(y|x1, x2, ...; θ). (32)

Of course, the general joint density function and even this conditional density function
for high-dimensional problems typically have many free parameters that we need to
calculate with MLE. Thus it is useful to make more careful assumptions of causal
relations that would restrict the density functions.

The object recognition formulation above is sometimes called a discriminative
approach to object recognition because it tries to discriminate labels given the feature
values. Another approach is to consider modeling the inverse conditional density

p(x|y) = p(x1, x2, ...|y; θ). (33)

This is called a generative model as it can generate examples from a class, given its
label. To use generative models in classification or object recognition we can apply
Bayes’ rule and calculate a discriminative model. It means relying on class priors
(the relative frequencies of the classes) to calculate the probability that an item with
features x belongs to a class y:

82 T. P. Trappenberg

p(y|x; θ) = p(x|y; θ)p(y)

p(x)
. (34)

While using generative models for classification seems to be much more elaborate,
there are several reasons that make generative models attractive for machine learning.
For example, in many cases, features might be conditionally independent given a
label, i.e. they verify

p(x1, x2, ...|y) = p(x1|y)p(x2|y)... . (35)

where the indication of the parameter vector was dropped to make the formula less
cluttered. Even if the independence does not strictly hold, this naive Bayes assump-
tion is often useful and drastically reduces the number of parameters that must be
estimated. This can be seen by factorizing the full joint density function with the
chain rule

p(x1, x2, ..., xn |y) = p(xn|y, x1, ..., xn−1)p(x1, ..., xn−1|y)

= p(xn|y, x1, ..., xn−1)...p(x2|y, x1)p(x1|y)

=
n⎛

j=1

p(x j |y, x j−1, ..., x1). (36)

But what if the naive Bayes assumption is not appropriate? Then we need to
build more elaborate models, or causal models. This particular challenge has been
greatly simplified with graphical methods that specify the conditional dependencies
between random variables using graphs [20]. A well known example from one of the
inventors of graphical models, Judea Pearl, is shown in Fig. 13. In graphical models,
the nodes represent random variables, and the links between them represent causal
relations with conditional probabilities. In the case shown here, there are arrows on
the links and the graph contains no loops, which makes it an example of directed
acyclic graph (DAG). In contrast, the RBM discussed previously was an example of
undirected Bayesian network.

In Fig. 13, each of the five nodes stands for a random binary variable: Burglary
B = {yes, no}, Earthquake E = {yes, no}, Alarm A = {yes, no}, JohnCalls
J = {yes, no}, MaryCalls M = {yes, no}. In general, a joint distribution of several
variables can be factorized in various ways following the chain rule mentioned before
Eq. (36), for example:

p(B, E, A, J, M) = p(B|E, A, J, M)p(E |A, J, M)p(A|J, M)p(J |M)p(M). (37)

In this case, with binary random variables we need 24 + 23 + 22 + 21 + 20 = 31
parameters to specify the full joint density function. However, the model of Fig. 13
restricts causal relations between the random variables to represent only a subset of
the factorization of the joint probability function, namely

2 A Brief Introduction to Probabilistic Machine Learning 83

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

t
t
f
f

E

t
f
t
f

.95

.29

.001

.94

P(A|B,E)

A

t
f

.90

.05

P(J|A) A

t
f

.70

.01

P(M|A)

Fig. 13 Example of causal model with a two-dimensional probability density function (pdf) and a
few other marginal pdf’s

p(B, E, A, J, M) = p(B)p(E)p(A|B, E)p(J |A)p(M |A). (38)

Therefore, we only need 1 + 1 + 22 + 2 + 2 = 10 parameters to specify all the
knowledge in the system. Example parameters for a specific case are displayed in
the conditional probability tables (CPTs), which define the conditional probabilities
represented by the links between the nodes. The graphical representation makes is
very convenient to represent the particular hypotheses about causal relations.

The graph structure of the model also makes it easier to do inference (draw con-
clusions) on specific questions. For example, say we want to know the probability
that there was no earthquake or burglary when the alarm rings and both John and
Mary call. This is expressed by

p(B = f, E = f, A = t, J = t, M = t)

= p(B = f)p(E = f)p(A = t |B = f, E = f)p(J = t |A = t)p(M = t |A = t)

= 0.999 ∗ 0.998 ∗ 0.001 ∗ 0.9 ∗ 0.7

= 0.00063

where f stands for false and t for true. Although we have a causal model where parent
variables influence the outcome of child variables, we can also use evidence from
child variables to infer possible values for the parent variables. For example, let us
calculate the probability that the alarm rings given that John calls, p(A = t |J = t).
For this we should first calculate the probability that the alarm rings as we will need
this later. It is given by

p(A = t) = p(A = t |B = t, E = t)p(B = t)p(E = t)

+p(A = t |B = t, E = f)p(B = t)p(E = f)

+p(A = t |B = f, E = t)p(B = f)p(E = t)

+p(A = t |B = f, E = f)p(B = f)p(E = f)

84 T. P. Trappenberg

ut-1

zt-1

xt-1

ut

zt

xt

ut+1

zt+1

xt+1

ut-2

zt-2

xt-2

Fig. 14 A temporal Bayesian network called a Hidden Markov Model (HMM), with hidden states
xt , observations zt , and external influences ut

= 0.95 ∗ 0.001 ∗ 0.002 + 0.94 ∗ 0.001 ∗ 0.998

+0.29 ∗ 0.999 ∗ 0.002 + 0.001 ∗ 0.999 ∗ 0.998

= 0.0025.

We can then use Bayes’ rule to calculate the required probability:

p(A = t |J = t) = p(J = t |A = t)p(A = t)

p(J = t |A = t)p(A = t) + p(J = t |A = f)p(A = f)

= 0.9 ∗ 0.0025

0.9 ∗ 0.0025 + 0.05 ∗ 0.9975
= 0.043

We can similarly apply the rules of probability theory to calculate other quantities,
but these calculations can get cumbersome with larger graphs. It is therefore better to
resort to numerical tools for the inference, for example a Matlab toolbox for Bayesian
networks.1

I already mentioned the importance of learning in temporal sequences (antici-
patory systems), and Bayesian networks are easily extended to this domain, where
they are called dynamic Bayesian networks (DBN). An important example of DBN
is a hidden Markov model (HMM), as shown in Fig. 14. In this model, a state vari-
able xt is not directly observed and is called a hidden or latent random variable.
The “Markov condition” in this model means that each state only depends on the
previous state (or states), which can include external influences denoted here by ut .
A typical example is robot localization, where a robot is driven with some motor
command ut and the goal is to estimate the new state of the robot. We can use some
knowledge about the influence of the motor command on the system to calculate a
new expected location, and can also combine this in a Bayesian optimal way with
sensor measurements denoted by zt . Such Bayesian models are essential in many
robotics applications.

1 Available at http://code.google.com/p/bnt/, and used to implement Fig. 13; file at www.cs.dal.ca/
~tt/repository/MLintro2012/PearlBurglary.m.

http://code.google.com/p/bnt/
www.cs.dal.ca/~tt/repository/MLintro2012/PearlBurglary.m
www.cs.dal.ca/~tt/repository/MLintro2012/PearlBurglary.m

2 A Brief Introduction to Probabilistic Machine Learning 85

3.4 Nonlinear Regression and the Bias-Variance Tradeoff

While graphical models are great to argue about situations (doing inference), the role
of supervised learning is to determine the parameters of the model. We have only
considered binary models where each Bernoulli variable is characterized by a single
parameter φ. However, the density function can be much more complicated than
that and introduce many more parameters. Therefore, a major problem in practice
is to have enough labeled training examples to restrict useful learning appropriately.
This is one important reason for unsupervised learning, as we usually have a lot of
unlabeled data that can be used to learn how to represent the problem appropriately
in order to simplify the task. But we still need to understand the relations between
free parameters and the amount of training data.

We already discussed the bias-variance tradeoff in the first section. Finding the
right function that describes nonlinear data is one of the most difficult tasks in mod-
eling, and there is no single algorithm that can give us the answer. This is why more
general learning machines, which we will discuss in the next section, are popular.
To evaluate the generalization performance of a specific model, it is helpful to split
the training data into a training set, which is used to estimate the parameters of the
model, and a validation set, which is used to study the generalization performance
on data that has not been included during the training of the model.

A important question then becomes how much data we should keep for validation
vs. training. If we use too much data for validation, then we might end up with too
little data for accurate learning in the first place. On the other hand, if we have too
little data for validation, then it might not be very representative. In practice, we
often use some cross-validation technique to minimize the tradeoff, i.e. we use most
of the data for training but repeat the selection of the validation data several times to
make sure that the validation was not just a result of outliers. The repeated division
of the data into a training set and a validation set can be done in different ways.
For example, in random subsampling we merely use random subsamples for each
set and repeat the procedure with other random samples. More common is k-fold
cross-validation: in this technique, we divide the data set into k subsamples and use
k − 1 subsamples for training and 1 subsample for validation. In the next round, we
use another subsample to validate the training. A common choice for the number of
subsamples is k = 10. By combining the results for the different runs we can often
reduce the variance of our prediction while utilizing most data for learning.

We can sometimes help the learning process further. In many learning examples it
turns out that some data is easy to learn while other data is much harder. In particular
techniques called boosting, data that is hard to learn is oversampled in the learning
set so that the machine has more opportunities to learn these examples. A popular
implementation of such an algorithm is AdaBoost (adaptive Boosting).

Before proceeding to general nonlinear learning machines, I would like to outline
a point that was eloquently made by Doug Tweet in a course module that we
shared in the summer of 2012, part of a computational neuroscience program in
Kingston, Canada. As discussed above, supervised learning is best phrased in terms

86 T. P. Trappenberg

of regression and many applications are nonlinear in nature. It is common to make
a nonlinear hypothesis under the form y = h(θTx), where θ is a parameter vector
and h is a nonlinear function. A common example of such a model is an artificial
perceptron with a sigmoidal transfer function in 1D such as h(x; θ) = tanh(θx).
However, as stressed by Doug, there is no reason to make the functions nonlinear
in the parameters, which would result in a nonlinear optimization problem. Support
Vector Machines (SVM; reviewed next) are a good example where the optimization
error is simply quadratic in the parameters. The corresponding convex optimization
has none of the local minima that plague multilayer perceptrons.

In summary, these different strategies can be expressed through the following
optimization functions:

Linear Perceptron: E ∝
(

y − θTx
⎧2

(39)

Nonlinear Perceptron: E ∝ ⎜
y − h(x; θ)

⎞2 (40)

Linear in Parameters (LIP): E ∝
(

y − θTφ(x)
⎧2

(41)

Linear SVM: E ∝ αi α j yi y j xTx + constraints (42)

Nonlinear SVM: E ∝ αi α j yi y j φ(x)Tφ(x) + constraints (43)

The LIP model is more general than a linear model in that it considers functions of
the form y = θTφ(x) involving some mapping function φ(x). In light of this review,
the transformation φ(x) can thus be seen as re-coding a sensory signal into a more
appropriate form using unsupervised learning methods as discussed above.

3.5 General Learning Machines

Before we leave this discussion of basic supervised learning, I would like to mention
some methods that are very popular and often used in machine learning applications.
In the previous section we discussed the formulation of specific hypothesis functions.
However, finding an appropriate hypothesis function requires considerable domain
knowledge. To some extend, this is the “hard problem” in machine learning.

Finding general learning machines has long been on the minds of researchers,
and this area has been especially inspired by human abilities and the brain itself
as a learning machine. A good example are artificial neural networks, in particular
multilayer perceptrons, which became popular in the 1980’s although they had been
introduced much earlier. Boltzmann machines (discussed above) and support vector
machines, which I briefly describe in this section, are also examples of this category.
The overall concept behind these learning machines is to provide a very general
function with many parameters that are adjusted through learning. Of course, the
real problem then becomes to avoid “overfitting” the data with the model. This can

2 A Brief Introduction to Probabilistic Machine Learning 87

1

1

n

x

y

y

w h

2x

mx

w o 0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

Training steps

E
rr

or

Fig. 15 Multilayer perceptron with one hidden layer. The parameters are called weights w. The
graph on the right shows example training curves when trained on XOR data

be done by applying appropriate restrictions and making the learning efficient enough
so that it can be used for a larger problem size.

Scientists who design different models specially tailored to the different cognitive
functions and their applications point out that a general learning machine is always
at a disadvantage. There is “no free lunch”, they argue, meaning that we need to
create specific models for specific problems. While this is true in principle, general
learning machines can still be successful by providing answers where other methods
are not known. In fact, these methods are currently experiencing something like
a renaissance as they are now applied to massive data sets, whose size also help
alleviate overfitting issues (see [21] for a recent example).

Let us begin with a multilayer perceptron (MLP) as shown in Fig. 15. Each node
represents a simple calculation. The input layer relays the inputs, while the hidden
(resp. output) layer multiplies each input channel x j (resp. hi) by an associated
weight wh

i j (resp. wo
ki), sums these net inputs, then passes them through a transfer

function, generally nonlinear, often the sigmoid curve of the logistic function. This
reads:

yk = g

⎨
⎩⎠

i

wo
ki g

⎨
⎩⎠

j

wh
i j x j

 . (44)

A network of this type is a graphical representation of nested nonlinear functions
with parameters w. Applying a particular input results in a particular output y, which
can be compared to a desired output y′ in supervised learning. The parameters can
then be adjusted as usual in LMS regression, by minimizing the least square error
E = ||y − y′||2, typically via a gradient descent:

w ← w + α
∂ E

∂w
, (45)

88 T. P. Trappenberg

Table 2 A multilayer perceptron with backpropagation for solving the XOR problem

where α is a learning rate. Since y is a nested function of the parameters, this requires
the application of the chain rule. The resulting equations appear to be “propagating
back” an error term y − y′ from the output to the previous layers, and for this reason
this algorithm has been termed error-backpropagation [22]. An example program of
an MLP that learns to represent the Boolean logic XOR function is shown in Table 2,
and training curves in Fig. 15.

It is easy to see that such networks are universal approximators [23], i.e. the error
of the training examples can be made as small as desired by increasing the number
of parameters. This can be achieved by adding hidden nodes. However, the aim of
supervised learning is to make predictions, that is to minimize the generalization
error and not the training error. Thus, choosing a smaller number of hidden nodes
might be more appropriate for this goal. The bias-variance dilemma [1] reappears
here in this specific graphical model, and years of research have been investigated
in solving this puzzle. Good practical methods and research directions have been
proposed to counter overfitting, such as early stopping [24], weight decay [25] or
Bayesian regularization [26]. Also, transfer learning [27, 28] can be seen as biasing
models beyond the current data set.

A more recent general learning machine for classification are support vector
machines, which were introduced by Vapnik, Guyon and Boser in 1992 [29, 30].
These machines are fundamentally based on minimizing the estimated generaliza-
tion (called the “empirical error” in this community). The main idea behind SVMs for
binary classification is that the best linear classifier for a separable binary classifica-
tion problem is the one that maximizes the margin between a separating classification

2 A Brief Introduction to Probabilistic Machine Learning 89

Fig. 16 Illustration of linear
support vector classification

x

xx
x

x

x

x

x

x

x

x
ξ

γ {

X1

X2
w x+b=0

w

T

line (separating hyperplane in higher dimensions) and the nearest data points [31].
Since there are many lines that can separate the data, as shown in Fig. 16, the most
robust line is expected to be positioned as far from any data point as possible, since
we also expect new data to be more likely to fall near the clusters of the training
data—if the training data is indeed representative of the general distribution. In the
end, the separating line is determined only by a few close points that are the ones
called support vectors.

Vapnik’s important contributions did not stop there. He also formulated the margin
maximization problem in a form such that the formulas are quadratic in the para-
meters and only contain dot products of training vectors, xTx by solving the dual
problem cast in a Lagrangian formalism [30]. This has several important benefits.
The problem becomes a convex optimization challenge, which avoids the local min-
ima that have crippled MLPs. Furthermore, since only dot products between example
vectors appear in these formulations, it is possible to apply a so-called “kernel trick”
to efficiently generalize these approaches to nonlinear functions.

Let me illustrate the idea behind using kernel functions for dot products. To do
this, it is important to distinguish attributes from features as follows. Attributes are
the raw measurements, whereas features can be made up by combining attributes. For
example, the attributes x1 and x2 could be combined into a tentative feature vector
(x1, x2, x1x2, x2

1 , x2
2)T. This is a bit like trying to guess a better representation of the

problem, one that should be “useful” as discussed above in the part about structural
learning. Let us now denote this transformation by a function φ(x). The interesting
part in Vapnik’s formulation is that we actually do not even have to calculate this
transformation explicitly, but we can replace the corresponding dot products by a
kernel function

K (x, z) = φ(x)Tφ(z), (46)

which is often much easier to calculate. For example, a Gaussian kernel function
formally corresponds to an infinite-dimensional feature transformation φ. There are
some arguments from structural learning [30, 32] why SVMs are less prone to over-
fitting, and extensions have also been made to problems with overlapping data in the
form of soft margin classification [31]. These ideas have also been generalized to
regression problems [33], but their performance is often not as satisfactory. We will

90 T. P. Trappenberg

Table 3 Using LibSVM for classification

not dive more into the theory of Support Vector Machine but show instead an example
using the popular LibSVM [34] implementation. This implementation includes inter-
faces to many programming languages, such as MATLAB and Python. SVMs are
probably currently the most successful general learning machines for classification.

Table 3 gives an example of applying the LibSVM library to the data displayed
in Fig. 17. The plot on the left is the training data, which is produced from sampling
two distributions: the points in the first class (blue circles) are chosen within a ring
of radius 2.0–3.0, while the points in second class (red crosses) are distributed across
two quadrants. The examples are provided with their corresponding labels to the
training function svmtrain. Similarly, the plot on the right of Fig. 17 is test data.
The corresponding class labels are given to the function svmpredict only for the
purpose of calculating the cross-validation error. For true predictions, this vector can
be set to arbitrary values. The performance of this classification is around 97 % with
the standard parameters of the LibSVM package. However, it is advisable to tune
these parameters, for example with search methods [35].

While SVMs have had a large impact in application-oriented machine learning,
more recent research works are combining ideas from SVMs (in particular kernel
methods), Bayesian networks, and good old-fashioned neural networks. Such hybrid
methods are now taking off, too, and starting to have another great impact—not only
in research but also in many industrial domains.

4 Reinforcement Learning

As discussed above, a basic form of supervised learning is function approximation,
relating input vectors to output vectors, or more generally finding density functions

2 A Brief Introduction to Probabilistic Machine Learning 91

X1 X1

X2 X2

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

Fig. 17 Example of using training data on the left to predict the labels of the test data on the right

p(y, x) from examples (x(e), y(e)). However, in many applications we do not have
a teacher to tell us exactly at any time the appropriate response to a specific input.
Rather, feedback from a teacher is often delayed and given only in the form of general
feedback such as ‘good’ or ‘bad’, instead of a detailed explanation about what the
learner should have done.

We are now turning to these more general learning problems. Specifically, we
are interested in learning a sequence of appropriate actions to maximize an expected
payoff. More formally, let us learn a temporal density function

p
⎜
y(t + 1)|x(t), x(t − 1), ..., x(1)

⎞
. (47)

We have already encountered such models in the form of temporal Bayesian net-
works. We will now discuss this issue further within the realm of reinforcement
learning or learning from reward. While we mainly consider here the prediction of
a scalar utility function, most of this discussion can be applied directly to a more
graded environmental feedback.

4.1 Markov Decision Processes

Reinforcement learning is best illustrated in a Markovian world.2 As discussed
before, such a world is characterized by transition probabilities between states,
T (s′|s, a), that only depend on the current state s ∈ S and the action a ∈ A taken in
this state. We now consider feedback from the environment in the form of a reward
r(s) and ask what actions should be taken in each state to maximize future reward.
More formally, we define the value function or utility function

Qπ (s, a) = E
[
r(s) + γ r(s1) + γ 2r(s2) + γ 3r(s3) + ...

]
π
, (48)

2 Markov models are often a simplification or abstraction of a real world. In this section, however,
we discuss a “toy world” in which state transitions were designed to fulfill the Markov condition.

92 T. P. Trappenberg

as the expected future payoff (cumulative reward) for being in state s, then s1, s2,
etc. We introduce here the “discount factor” 0 ≤ γ < 1 to express that we value
immediate reward over later reward. This is a common treatment to keep the expected
value finite. An alternative scheme would be to consider only finite action sequences.
The policy π(a|s) describes what action can be taken in each state. In accordance
with our overall probabilistic world view, we consider the most general case of
probabilistic policies, i.e., we want to know with what probability a given action
should be chosen. If the policy was deterministic, then taking a specific action would
be determined by applying the policy to the current state, and the value function is
often denoted by V π (s).3 Our goal is to find the optimal policy π∗, i.e. the one that
maximizes the expected future payoff Qπ :

π∗(a|s) = arg max
π

Qπ (s, a). (49)

This search is called a Markov Decision Process (MDP).
MDPs have been studied since the mid 1950s, and Richard Bellman noted that

it was possible to calculate the value function for each state, and a given policy π ,
using a self-consistent equation now named the Bellman equation. He also called the
corresponding algorithm dynamic programming. Specifically, we can separate the
expected value of the immediate reward from the expected value of the reward from
visiting subsequent states as follows:

Qπ (s, a) = E
[
r(s)

]
π

+ γ E
[
r(s1) + γ r(s2) + γ 2r(s3) + ...

]
π
. (50)

The first expected value on the right-hand side is simply the immediate reward
received when reaching state s at this particular point in time. The second expected
value is the function of state s1. State s1 is related to state s, since s1 can be reached
from s when taking action a1 with a certain probability according to policy π (for
example by setting s1 = s + a1, or more generally sn = sn−1 + an). The state
actually reached can also depend on stochastic environmental factors encapsulated
in the matrix T (s′|s, a). Incorporating these factors into the equation yields

Qπ (s, a) = r(s) + γ
⎠

s′

(
T (s′|s, a)

⎠

a′

(
π(a′|s′) E

[
r(s′) + γ r(s′

1) + γ 2r(s′
2) + ...

]
π

⎧⎧
,

(51)
where s′

1 is the next state after state s′, etc. Thus the expression on the right is the
state-value-function of state s′. If we substitute it with the corresponding expression
on the left of Eq. (48), we get the Bellman equation for a specific policy, namely

Bellman-stoch-π : Qπ (s, a) = r(s) + γ
⎠

s′

(
T (s′|s, a)

⎠
a′

(
π(a′|s′)Qπ (s′, a′)

⎧⎧
.

(52)

3 V π (s) is usually called the state value function and Qπ (s, a) the state-action value function. Note,
however, that the value depends in both cases on the states and the actions taken.

2 A Brief Introduction to Probabilistic Machine Learning 93

The variant of this equation for deterministic policies is a bit simpler. Since in this
case an action a is uniquely specified by the policy, the value function Qπ (s, a)

reduces to V π (s) and the equation becomes4

Bellman-det-π : V π (s) = r(s) + γ
⎠

s′

(
T (s′|s, a)V π (s′)

⎧
. (53)

The Bellman equation is a set of N linear equations in an environment with N
states, one equation for each unknown value function of each state. The environ-
ment being given, i.e. having functions r and T , we can use well-known methods
from linear algebra to solve for V π (s). This can be formulated compactly by matrix
notation, in which s and s′ are the indices:

r = (I − γ T)Vπ , (54)

where r is the reward vector, I is the identity matrix, and T is the transition matrix.
To solve this equation we have to invert a matrix and multiply this with the reward
values,

Vπ = (I − γ T)−1rT, (55)

where rT is the transpose of r. We can also use the Bellman equation directly to
calculate a state-value-function iteratively. We can start with a guess V for the value
of each state, then calculate from this a better estimate:

V ← r + γ TV (56)

and so on, until this process converges. Either way, we get a value function for a
specific policy. To find the best policy, the one that maximizes the expected payoff,
we have to loop through different policies and find the maximal value function. This
can be done in different ways, most commonly by using the policy iteration, which
starts with a guess policy, iterates a few times the value function for this policy,
and then chooses a new policy that maximizes this approximate value function. This
process is repeated until convergence.

Table 4 provides an example program for a simple 1D state space consisting of a
chain of 10 states, as shown on the left of Fig. 18. The 10th state is rewarded with
r = 1, while the first state receives a large negative reward, r = −1. The intermediate

4 This formulation of the Bellman equation for an MDP [36–38] is slightly different from the for-
mulation of Sutton and Barto in [39], as these authors define the value function to be the cumulative
reward starting from the next state, not the current state. In their case, the Bellman equation reads
V π (s) = ⎝

s′ T (s′|s, a)(r(s′) + γ V π (s′)). This is only a matter of convention about when we
consider the prediction: just before getting the current reward of after taking the next step.

94 T. P. Trappenberg

Table 4 Program for the chain example using the policy iteration process

V

state

π

1.0− 1.0− 1.0− 1.0− 1.0− 1.0−−1 −0.1 1

2 4 6 8 10
−1

−0.5

0

0.5

1

0 0

Reward

Optimal Policy

2 2 2 2 22 2

Fig. 18 Example of using policy iteration on a chain of rewarded states. Left reward values and
optimal policy for each state, where a policy value 1 means “go left” (not present) and a value 2
means “go right”. No further action is taken in the end states

states receive a small negative reward to account for movement costs. After three
iterations, the policy reaches the optimal one (bottom left of figure). Actually, the
optimal policy is often found within just one or two iterations, so the extra iteration
was added to ensure that the value function was properly calculated for this policy.

2 A Brief Introduction to Probabilistic Machine Learning 95

It is also possible to derive a version of the Bellman equation for the optimal value
function itself:

Bellman-det-* V ∗(s) = r(s) + max
a

γ
⎠

s′
T (s′|s, a)V ∗(s′). (57)

The max function is a little more difficult to implement in the analytic solution, but
we can again easily use an iterative method to solve for this optimal value function.
This algorithm is called value iteration. The optimal policy can always be calculated
from the optimal value function with

π∗(s) = arg max
a

⎠
s′

T (s′|s, a)V ∗(s′). (58)

A policy tells an agents what action should be chosen, hence the optimal policy is
related to optimal control as long as the reward reflects the desired performance.

The previously discussed policy iteration has some advantages over value itera-
tion. In value iteration we have to try out all possible actions when evaluating the
value function, which can be time consuming when there are many possible actions.
In policy iteration, we choose only one specific policy, although we then have to
iterate over consecutive policies. In practice, it turns out that policy iteration often
converges fairly rapidly.

4.2 Temporal Difference Learning

In dynamic programming, we iterate repeatedly over every possible state of the
system. This only works if we have complete knowledge of the system. In that sce-
nario, the agent does not even have to ‘perform’ the actions physically, which would
be very time consuming. Instead, the agent can just ‘sit’ and calculate the solution
during a “planning phase”. However, in many cases we do not know the rewards
given in different states, and we usually have to estimate transition probabilities,
too, etc. One approach would be to estimate these quantities by interacting with the
environment before using dynamic programming. In contrast, the following methods
are more direct estimations of the state value function that determines the optimal
actions. These online methods assume that we still know exactly in which state the
agent is, and they can be generalized to partially observable situations by considering
probability maps over the state space.

A general strategy for estimating the value of states is to act in the environment
and thereby sample reward. This sampling should be done with some degree of
stochasticity to ensure sufficient exploration of the states. These methods are gen-
erally called Monte Carlo methods. Monte Carlo methods can be combined with
the bootstrapping ideas of dynamic programming, and the resulting algorithms are
called temporal difference (TD) learning, since they rely on the difference between
expected reward and actual reward.

96 T. P. Trappenberg

We start again by estimating the value function for a specific policy before moving
to schemes for estimating the optimal policy. The Bellman equations require the
estimation of future reward:

⎠
s′

T (s′|s, a)V π (s′) ≈ V π (s′). (59)

In this equation we introduced an approximation of the sum by the value of the state
that is reached in one Monte Carlo step. In other words, we replace the total sum
that we could build knowing the environment with a single sampling step. While this
approach is only an estimation, the idea is that it will still result in an improvement
of the estimation of the value function, and that other trials have the possibility to
evaluate other states that have not been reached in this trial. The value function should
then be updated carefully, by considering the new estimate only incrementally:

V π (s) ← V π (s) + α[r(s) + γ V π (s′) − V π (s)]. (60)

This is called temporal difference or TD learning. The constant α is a learning rate
and should be fairly small. This policy evaluation can then be combined with policy
iteration as already discussed in the section on dynamic programming.

We should now think a little more about what policy to follow. An obvious choice
is to take the action that leads to the largest expected payoff, also called greedy policy.
Applying this policy should be optimal when the value function is exact. However,
one problem with purely sticking to this strategy is that we might not be sufficiently
“exploring” the state space—as opposed to “exploiting” known returns. We address
this exploration-exploitation dilemma here by opting for stochastic policies. Thus we
need to go back to the notation of the state-action value function (although we will
drop the ‘*’ superscript for the optimal value function for convenience). To include
randomness in the policy we can, for example, follow the greedy policy most of the
time, and only choose another possible action with a small probability denoted by ε.
This probabilistic policy is called the ε-greedy policy and can be formulated as

π(a = arg max
a

Q(s, a)) = 1 − ε. (61)

A more graded approach employs the softmax policy, which chooses each action
proportionally to a Boltzmann distribution:

π(a|s) = e
1
T Q(s,a)

⎝
a′ e

1
T Q(s,a′)

. (62)

This policy chooses most often the action with the highest expected reward, followed
by the second highest, etc., where the temperature parameter T sets the relative
probability of these choices.

2 A Brief Introduction to Probabilistic Machine Learning 97

We can now use these policies to explore the state space and estimate the optimal
value function with temporal difference learning:

Q(s, a) ← Q(s, a) + α[r(s) + γ Q(s′, a′) − Q(s, a)], (63)

where the actions a′ is the action chosen according to the policy. This on-policy TD
algorithm is called Sarsa for state-action-reward-state-action [39]. A variant of this
approach uses the stochastic action above only when choosing the next state, but
estimates the value function by considering the other possible actions, too:

Q(s, a) ← Q(s, a) + α[r(s) + max
a′ γ Q(s′, a′) − Q(s, a)]. (64)

This is is called an off-policy TD algorithm, or Q-leaning [40]. These algorithms
have been instrumental in the success of reinforcement learning in many engineering
applications.

4.3 Function Approximation and TD(λ)

The large number of states in real-world applications makes these algorithms
unpractical. This was already noted by Richard Bellman himself, who coined the
phrase “curse of dimensionality”. We have only considered discrete state spaces,
while many applications involve a continuous state space. While discretizing a con-
tinuous state space is a common approach, increasing the resolution of the discretiza-
tion has the consequence of increasing the number of states exponentially. Another
major problem in practice is that the environment is not fully, or reliably, observable.
Thus we might not even know exactly in which state the agent finds itself when con-
sidering the value update. A common approach to a “partially observable Markov
decision process” (POMDP) is the introduction of a probability map. In the update
of the Bellman equation, we need then to consider all possible states that can be
reached from the current state, something which will typically increase the number
of calculations even further. We will not follow this approach here but rather con-
sider the use of function approximators to overcome these problems. A more general
discussion of reinforcement learning in continuous state and action spaces is given
in [41].

The idea behind the following method is to make a hypothesis of the relation
between sensor data and expected values in the form of a parameterized function as
in supervised learning5:

Vt = V (xt) ≈ V (xt ; θ), (65)

5 The same function name is used on both sides of this equation, but these are distinguished by
the inclusion of parameters. The value functions all refer to the parametric model, which should be
clear from the context.

98 T. P. Trappenberg

and to estimate the parameters by maximum likelihood as before. We use here a
time index to distinguish state sequences. In principle, one could build very specific
temporal Bayesian models for specific problems as discussed above, but in this
circumstance I will outline the use of general learning machines. In particular, let us
adjust the weights of a neural network using gradient-descent methods on a mean
square error (MSE) function:

Δθ j = α

m⎠
t=1

(r − Vt)
∂Vt

∂θ j
. (66)

We consider here the total change of the weights for a whole episode of m time
steps by summing the errors for each time step. One specific difference between
this situation and the supervised learning examples before is that the reward is only
received after several time steps in the future, at the end of an episode. One possible
approach to manage this situation is to keep a history of our predictions and make
the changes for the whole episode only after the reward is received at the end. This is
what we have done in Eq. (66) by providing the reward r as supervision signal in each
timestep. Another approach is to make incremental (online) updates by following the
TD learning philosophy, and replacing the supervision signal for a particular time
step by the prediction of the value of the next time step. Specifically, we can write
the difference between the received reward Vm+1 = r at the end of the sequence and
the prediction Vt at time t as

r − Vt =
m⎠

u=t

(Vu+1 − Vu) (67)

since the intermediate terms chancel out. Replacing this in Eq. (66) yields

Δθ j = α

m⎠
t=1

m⎠
u=t

(Vu+1 − Vu)
∂Vt

∂θ j
(68)

= α

m⎠
t=1

(Vt+1 − Vt)

t⎠
u=1

∂Vu

∂θ j
, (69)

which can be verified by developing the sums and reordering the terms. Of course,
this is only rewriting the original equation, Eq. (66). We still have to keep a memory
of all the gradients from the previous time steps, or at least a running sum of these
gradients.

While the rules portrayed in Eqs. (66) and (69) are equivalent, Richard Sutton [42]
suggested a modified version that multiplied recent gradients by stronger weights than
gradients in the more remote past. For this, he introduced a decay factor 0 ≤ λ ≤ 1.
The rule above corresponds to λ = 1 and is called the TD(1) rule, while the more
general TD(λ) rule is given by

2 A Brief Introduction to Probabilistic Machine Learning 99

Δtθ j = α(Vt+1 − Vt)

t⎠
u=1

λt−u ∂Vu

∂θ j
. (70)

It is also interesting to look at the other extreme, when λ = 0. The TD(0) rule is
given by

Δtθ j = α(Vt+1 − Vt)
∂Vt

∂θ j
. (71)

While this last rule gives in principle different results fom the original supervised
learning problem described by TD(1), it has the advantage that it is local in time, does
not require any memory, and often still works very well. The TD(λ) algorithm can
be implemented in a multilayer perceptron where the error term is back-propagated
to hidden layers. A generalization to stochastic networks has also been made within
the framework of free-energy formalism [43].

5 Some Biological Analogies

The brain seems to be a very successful learning machine, and it is therefore
not surprising that human capabilities have motivated much research in artificial
intelligence. Conversely, insights from learning theory are important, too, for our
understanding of brain processes. In this last section, I want to mention some inter-
esting relations that neuroscience has with learning theory. I already remarked on the
close links between unsupervised learning and receptive fields in the early sensory
areas of the cortex, which I believe is a wonderful example of underlying mecha-
nisms behind physiological findings. In the following, I would like to add comments
on two other subjects related to supervised learning and reinforcement learning. The
first is about synaptic plasticity, which appears to be an important mechanism for the
physical implementation of learning rules. The second is about the close relation of
reinforcement learning with classical conditioning and the basal ganglia. Classical
conditioning has been a major area in animal learning, and recent recordings in the
basal ganglia have helped relating these areas on a behavioural, physiological and
learning-theoretical level.

5.1 Synaptic Plasticity

As speculated by the Canadian scientist Donald Hebb [44], the leading theory of
the physical implementation of learning is that of synaptic changes, whereby the
synaptic efficacy varies in response to causally related pre- and postsynaptic firings.
Such correlation rules have first been made concrete by Eduardo Caianiello [45], and
have recently been refined in terms of “spike timing-dependent plasticity” (STDP;
see for example [46]). The main idea is that when a driving neuron participates in

100 T. P. Trappenberg

firing a subsequent neuron, then the connection strength between these neurons will
increase—whereas it will decrease in the absence of correlated firing. Many of the
learning rules of neural networks have followed this main association rule through
increment terms that are proportional to pre- and postsynaptic activity, such as

Δwi j ∝ xi x j . (72)

Synaptic plasticity is not only a fascinating area in neuroscience but also constitutes
an important medical issue, since neurodegenerative disorders, such as Alzheimer’s
disease and dementia, have synaptic effects and a great number of psychiatric med-
ications exert their action on the synaptic receptors.

There are many mysteries left that need to be understood if we want to make
progress in helping with neurological conditions and maybe even make progress
in machine learning. One basic fact that seems puzzling is that synapses are not
long-lasting compared to the time scale of human memories.6 Synapses consist of
proteins that have to be actively maintained by protein synthesis. Thus, one may
wonder how this maintenance can survive for years and support long-term memory,
such as returning to our place of birth after many years of absence, or meeting
friends whom we had not seen in ages. These are fundamental questions that, to my
knowledge, have not been sufficiently addressed.

While the Hebbian perspective on synaptic plasticity and learning is well
established, I would like to outline an aspect of synaptic plasticity that might be
less well-known. In particular, I would like to point out the findings of my friend
Alan Fine and his colleagues [47], which fit nicely with the probabilistic theme that
I have emphasized in this chapter. Fine and colleagues have performed classical
plasticity experiments that use high- or low-frequency stimulations of hippocampal
slices of rodents to induce measurable changes in synapses. Some of their results
are summarized in Fig. 19. To test the strength of the synapses, they stimulated them
with two pulses, as paired pulses facilitate synaptic responses (the second pulse
makes it easier to elicit a postsynaptic spike). The slices are then activated with
high-frequency stimulations inbetween these tests. As shown in Fig. 19a, the elec-
tric response of the postsynaptic neuron as measured by the excitatory post-synaptic
potential (EPSP) is higher after the high-frequency stimulation. This corresponds to
the classical findings by Bliss and Lømo [48] and is called long-term potentiation
(LTP), since this enhanced response to a presynaptic stimulus lasts relatively long
compared to the usual scale of neuronal dynamics. Of course, the EPSP is a mea-
sure that can depend on multiple synapses. But Fine and colleagues also imaged the
calcium-related optical luminance signal from individual synapses. This is shown in
Fig. 19b. Surprisingly, they observed that this luminance did not change despite the
fact the calcium-dependent mechanisms are generally associated with synaptic activ-
ity and plasticity. Instead, they found that the probability of eliciting a postsynaptic
spike varied nicely. Specifically, the probability of transmitter release increases with
high-frequency simulations that are usually associated with LTP. They could also

6 Julian Miller made this point nicely at the aforementioned workshop.

2 A Brief Introduction to Probabilistic Machine Learning 101

0 5 45 50 90 95

0

50

100

150

Time [min]

P = 0.96P = 0.76P = 0.4

E
P

S
P

 [m
V

}
ΔF

lu
or

es
ce

nc
e

[%
]

Time [ms]

0

100

100

0

3

100
Time [ms]

High-frequency stimulation
(a)

(b)

(c)

ΔF
lu

or
es

ce
nc

e
[%

]

Fig. 19 Plasticity experiment in hippocampal slices in which not only EPSPs were measured, but
additionally postsynaptic calcium-dependent fluorescence signals at single synapses were imaged
(data courtesy of Alan Fine and Ryosuke Enoki, after [47])

lower the probability of transmitter release with low-frequency stimulus that usually
elicits a decrease in EPSPs, called long-term depression (LTD; not shown in the
figure).

A manipulation of the probability of transmitter release could explain the
increased EPSP in such experiments. If there is a population of synapses that drive that
neuron, than a population of synapses with higher likelihood of transmitter release
would result in a larger EPSP than a population with smaller likelihood of transmitter
release. In this sense, the findings are still consistent with some of the consequences
of synaptic plasticity. But these findings also point to additional possibilities also
consistent with the view that brain processing might be based on probabilistic com-
putation rather than dealing with point estimates. Thus, the common view of a noisy
nervous system with noisy synapses might be misleading. If this is noise in the sense
of the “limitations” of a biological implementation, then why could the probability
of synaptic responses be modulated reliably?

From a theoretical perspective it is rather difficult for noise to survive thresholding
processes. For example, consider a biased random walk to a threshold as shown on
the left-hand side in Fig. 20. In this example we add 1 plus a Gaussian noise (mean
μ, standard deviation σ) to the signal at each time step, then the signal is reset when
crossing the threshold. The noise in the process leads to different times of threshold
crossings, and the variation of these times is related to the variations in the signal as
shown on the right-hand side of Fig. 20 where the coefficient of variation Cv = σ/μ

102 T. P. Trappenberg

4580 4600 4620 4640 4660
0

2

4

6

8

10

12

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

CV signal

C
V

 r
es

po
ns

e

time

si
gn

al

Fig. 20 Demonstration of the relation between variability in signal versus variability in spike timing
response. The graph on the left side shows a noisy accumulation toward a threshold. The graph on
the right shows how the coefficient of variation (Cv) varies with noise

is plotted. While there is a positive slope between them (higher noise leads to higher
variations in firing times), the proportionality factor is only around 1/

√
4π . Hence, if

noise is an issue, then one could use thresholding mechanisms to reduce it and through
repeated stages, as in the brain, the noise should become smaller. Or, in other words,
if noise is the problem then one should filter it out early in the process and higher
processes should be less noisy. In sum, it could be that signal variations in the brain
are not all undesirable noise but could play an important information processing role
such as representing the likelihood of sensory signals or the confidence in possible
actions. This conjecture is consistent with the probabilistic approaches to machine
learning.

5.2 Classical Conditioning and the Basal Ganglia

One of the important roles of computational neuroscience is to bridge the gap between
behavioural and physiological findings [49]. The following discussion is a good
example. Classical conditioning has been intensively studied in the psychological
discipline of animal learning at least since the studies by Pavlov. One of the most basic
findings of Pavlov is that it is possible to learn the fact that a stimulus is predicting
a reward, and that this prediction elicits the same behaviour as the primary reward
signal, such as salivation following a tone when the tone predicts food reward. Many
similar predictions have been summarized very successfully by the Rescorla-Wagner
theory [50]. In terms of the learning paradigms discussed above, this theory relates
the change in the value of a state ΔVi to the reward prediction error λ − Vi by the
formula

ΔVi = αiβ(λ − Vi), (73)

where factors αi and β describe the saliencies of the conditioned and unconditioned
stimulus, respectively, and λ represents the reward. This model is equivalent to

2 A Brief Introduction to Probabilistic Machine Learning 103

Stimulus A No reward

Stimulus A Reward

Fig. 21 Recordings by Schultz et al. [51] in a classical conditioning experiment, where a stimulus
was presented followed by a reward. Early in the trials the SN neurons responded after the animal
received a reward (top left), while the neurons responded to the predictor of the reward in later trials
(bottom left). The neurons even seem to indicate the absence of an expected reward after learning
(right)

temporal difference learning in a one-step prediction task where the reward follows
immediately the stimulus.

The Rescola-Wagner theory with its essential reliance on the reward prediction
error is very successful in explaining behaviour, and it was very exciting when Wol-
fram Schultz [51] and colleagues discovered neural signatures of reward prediction
errors. Schultz found these signals in the substantia nigra, which is part of a com-
plex of different nuclei in the midbrain called the basal ganglia. Its name means
“black substance”, and the dark aspect of this area is apparently due to a chemical
compound related to dopamine, which these neurons transmit to the input area of
the basal ganglia and to the cortex, and has been implicated in modulating learning.
Some examples of the response of these neurons are shown in Fig. 21.

We can integrate the Rescorla-Wagner theory with these physiological findings
in a neural network model, as shown in Fig. 22. The reward prediction error r̂ is
conveyed by the nigra neurons to the striatum, an input area of the basal ganglia, in
order to mediate the plasticity of cortical-striatal synapses. The synapses are thereby
assumed to contain an eligibility trace, since the learning rule requires the association
with the previous state. Many psychological experiments can be modeled by a one-
step prediction task where the actual reward follows a specific condition. The learning
rule can then be simplified to a temporal learning rule in which the term in γ can be
neglected, corresponding to the model in Fig. 22a. The implementation of the full TD
rule would require a fast side-loop as shown in Fig. 22b, which has been speculated
to be associated with the subthalamus [52].

Of course, the anatomy of the basal ganglia is more elaborate than this. My
student Patrick Connor and I have suggested a model with lateral interactions in the
striatum [53] that has some physiological grounding [54] and can explain a variety of
behavioral findings not covered by the Rescorla Wagner model [55]. Moreover, there

104 T. P. Trappenberg

Str Str Str StrStr

slow

r (t)

V(t −1)
slow

fast

(a) Temporal delta rule (b) Temporal difference rule

x (t-1)

V(t −1)

r (t)

r (t)r (t)

γ V(t)

x2x1 x3 (t)x4(t) (t) (t)

(t-1)x

V(t) V(t)

x2x1 x3 (t)x4(t) (t) (t)

Str

SNSN

STh

SN

 (b) SLIM model

Fig. 22 Implementation of reinforcement learning models through analogies with the basal ganglia.
a Single state of one-step reinforcement learning model (temporal delta rule) with cortical input, a
striatal neuron (Str), and a neuron in the substantia nigra (SN) that conveys the reward prediction
error to striatal spines. b Implementation of the temporal difference (TD) learning with a fast
subthalamic side-loop. c Basic version of the striatal-with-lateral-inhibition (SLIM) model

are two main pathways through the basal ganglia, a direct pathway and an indirect
one, with intermediate stages in distinct subregions of the basal ganglia (not shown
in Fig. 22). The direct pathway has a inhibitory effect on the output neurons of the
basal ganglia, while the indirect one has a facilitatory effect. Since the effect of the
output of the basal ganglia is itself to inhibit motor areas, it has been speculated
that the direct pathway could learn to inhibit non-rewarding actions, whereas the
indirect pathway could learn to facilite rewarding actions. Different alterations of
specific pathways have been suggested to relate to different neurological conditions
that are known to involve the basal ganglia, such as Parkinson decease, Tourette
syndrome, ADHD, schizophrenia and others [56]. Thus, modeling and understanding
this learning system has the potential to guide refined intervention strategies.

6 Outlook

Learning is an exciting field that has made considerable progress in the last few years,
specifically through statistical learning theory and its probabilistic embedding. These
theories have at least clarified what could be expected from ideal learning systems,
such as their ability to generalize. Much progress has also been made in unsuper-
vised learning and starting to tackle temporal learning problems. Most excitingly,
the advances in this area have enabled machine learning to find its way out of the
research labs and into commercial products that have recently revolutionized tech-
nologies, such as advanced gaming platforms and smarter recommendation systems.
Statistical learning theory has clarified general learning principles, such as optimal
generalizability and optimal (Bayesian) decision making in the face of uncertainties.

2 A Brief Introduction to Probabilistic Machine Learning 105

What are the outstanding questions, then? While machine learning has enabled
interesting applications, many of these applications are very focused in scope. The
complexity of the environments that humans face still appears far beyond the reach of
our models. Scaling up methods even farther is important to enable more applications.
Many believe that, to this goal, we require truly hierarchical systems [57], and more
specifically systems that process temporal data [58]. While there is exciting progress
in this field, learning to map simple features, such as pixels from an image, to high-
level abstract concepts, such as objects in a scene, is still challenging.

While Bayesian inference has been instrumental in the maturation of machine
learning, there are also severe limitations to such methods. Specifically, truly
Bayesian methods have an unbounded requirement for knowledge as we typically
have to sum over all possible outcomes with their likelihood of each event in order to
faithfully calculate posteriors. This seems not only excessive in its required knowl-
edge and processing demands, but also faces practical limitations in many applica-
tions. An alternative approach is bounded rationality, which could be underlying
a lot of human decision making [59]. Critical for the success of such methods are
fast and frugal heuristics that depend on the environment. Thus there is a major role
for learning in this domain on many different scales, including developmental and
genetic domains. Understanding learning and development is therefore crucial for
scientific reasons as well as technological advancements.

In this chapter, I tried to summarize and relate learning systems that sometimes
seem to form different camps. While the application of probability theory made a
strong impact on our understanding of learning systems in all camps, there has been
some divide between Bayesian modelers, on the one hand, and people in “general”
learning machine, on the other hand. The first point out that there is no such thing as a
“free lunch”, i.e. general learning machines can never become really good compared
to specific models for a particular problem. Yet, finding these specific models can
also be a major challenge that must be solved by domain experts. What kind of
learner does the brain represent? Many aspects of the brain seem to resemble general
learning machines such as the astonishing universality of neocortical architecture.
On the other hand, the ability of high-level inference seems at this point out of the
reach of such learning machines.

I believe that the brain might be somewhat inbetween, as it represents a biased
learning machine that already encapsulates specific strategies (learned through evo-
lution and development) in the specific environments typically encountered by the
organisms. Such restricted learning machines should be able to support the emer-
gence of Bayesian causal models that could be used by humans to argue about the
world. Such models would not only enable smarter applications but would also help
us in understanding more deeply the nature of cognition and the mind.

Acknowledgments I would like to express my thanks to René Doursat for careful edits, Christian
Albers, Igor Farkas, and Stephen Grossberg for useful comments of an earlier draft circulation, and
all the colleagues that have provided me with encouraging comments.

106 T. P. Trappenberg

References

1. S. Geman, E. Bienenstock, R. Doursat, Neural networks and the bias/variance dilemma. Neural
Comput. 4(1), 1–58 (1992)

2. P. Smolensky, Information Processing in Dynamical Systems: Foundations of Harmony The-
ory, in Parallel Distributed Processing: Volume 1: Foundations, ed. by D.E. Rumelhart, J.L.
McClelland (MIT Press, Cambridge, MA, 1986), pp. 194–281

3. G. Hinton, Training products of experts by minimizing contrastive divergence. Neural Comput.
14, 1711–1800 (2002)

4. G. Hinton, A Practical Guide to Training Restricted Boltzmann Machines. University of Toronto
Technical Report UTML TR 2010–003, 2010

5. A. Graps, An Introduction to Wavelets. http://www.amara.com/IEEEwave/IEEEwavelet.html
6. N. Huang et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear

and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)
7. H. Barlow (1961) Possible principles underlying the transformation of sensory messages. Sens.

Commun. 217–234, (1961)
8. P. Földiák, Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64,

165–170 (1990)
9. P. Földiák, D. Endres, Sparse coding. Scholarpedia 3, 2984 (2008)

10. B. Olshausen, D. Field, Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature 381, 607–609 (1996)

11. H. Lee, E. Chaitanya and A. Ng, Sparse deep belief net model for visual area V2, NIPS*2007
12. C. von der Malsburg, Self-organization of orientation sensitive cells in the striate cortex. Kyber-

netik 14, 85–100 (1973)
13. S. Grossberg, Adaptive pattern classification and universal recoding, I: Parallel development

and coding of neural feature detectors. Biol. Cybern. 23, 121–134 (1976)
14. T. Kohonen, Self-Organizing Maps (Springer, Berlin, 1994)
15. P. Hollensen, P. Hartono, T. Trappenberg (2011) Topographic RBM as Robot Controller, JNNS

2011
16. S. Grossberg, Adaptive resonance theory: how a brain learns to consciously attend, learn, and

recognize a changing world. Neural Netw. 37, 1–47 (2012)
17. T. Trappenberg, P. Hartono, D. Rasmusson, in Top-Down Control of Learning in Biological

Self-Organizing Maps, ed. by J. Principe, R. Miikkulainen. Lecture Notes in Computer Science
5629, WSOM 2009 (Springer, 2009), pp. 316–324

18. K. Tanaka, H. Saito, Y, Fukada, M. Moriya, Coding visual images of objects in the inferotem-
poral cortex of the macaque monkey. J. Neurophysiol. 66, 170–189 (1991)

19. S. Chatterjee, A. Hadi, Sensitivity Analysis in Linear Regression (John Wiley & Sons, New
York, 1988)

20. Judea Pearl, Causality: Models, Reasoning and Inference (Cambridge University Press, Cam-
bridge, 2009)

21. D. Cireşan, U. Meier, J. Masci, J. Schmidhuber, Multi-column deep neural network for traffic
sign classification. Neural Netw. 32, 333–338 (2012)

22. D. Rumelhart, G. Hinton, R. Williams, Learning representations by back-propagating errors.
Nature 323(6088), 533–536 (1986)

23. K. Hornik, Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2),
251–257 (1991)

24. A. Weigend, D. Rumelhart (1991) Generalization through minimal networks with application
to forecasting, ed. by E.M. Keramidas. in Computing Science and Statistics (23rd Symposium
INTERFACE’91, Seattle, WA), pp. 362–370

25. R. Caruana, S. Lawrence, C.L. Giles, Overfitting in neural nets: backpropagation, conjugate
gradient, and early stopping, in Proceedings of Neural Information Processing Systems Con-
ference, 2000. pp. 402–408

26. D.J.C. MacKay, A practical Bayesian framework for backpropagation networks. Neural Com-
put. 4(3), 448–472 (1992)

http://www.amara.com/IEEEwave/IEEEwavelet.html

2 A Brief Introduction to Probabilistic Machine Learning 107

27. D. Silver, K. Bennett, Guest editor’s introduction: special issue on inductive transfer learning.
Mach. Learn. 73(3), 215–220 (2008)

28. S. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. (IEEE TKDE)
22(10), 1345–1359 (2010)

29. B.E. Boser, I.M. Guyon, V. Vapnik, A training algorithm for optimal margin classifiers, in
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, (ACM, 1992),
pp. 144–152

30. V. Vapnik, The Nature of Statistical Learning Theory (Springer, Berlin, 1995)
31. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273–297 (1995)
32. C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl.

Disc. 2(2), 121–167 (1998)
33. A. Smola, B. Schölkopf, A tutorial on support vector regression. Stat. Comput. 14(3) (2004)
34. C.-C. Chang, C.-J. Lin, LibSVM: a library for support vector machines (2001), http://www.

csie.ntu.edu.tw/cjlin/libsvm
35. M. Boardman, T. Trappenberg, A heuristic for free parameter optimization with support vector

machines, WCCI 2006, pp. 1337–1344, (2006). http://www.cs.dal.ca/boardman/wcci
36. E. Alpaydim, Introduction to Machine Learning, 2e (MIT Press, Cambridge, 2010)
37. S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics (MIT Press, Cambridge, 2005)
38. S. Russel, P. Norvigm, Artificial Intelligence: A Modern Approach, 3rd edn. (Prentice Hall,

New York, 2010)
39. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge,

1998)
40. C.J.C.H. Watkins, Learning from Delayed Rewards. Ph.D. thesis, Cambridge University, Cam-

bridge, England, 1989
41. H. van Hasselt, Reinforcement learning in continuous state and action spaces. Reinforcement

Learn.: Adapt. Learn. Optim. 12, 207–251 (2012).
42. R. Sutton, Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9–44

(erratum p. 377) (1988)
43. B. Sallans, G. Hinton, Reinforcement learning with factored states and actions. J. Mach. Learn.

Res. 5, 1063–1088 (2004)
44. D.O. Hebb, The Organization of Behaviour (John Wiley & Sons, New York, 1949)
45. E.R. Caianiello, Outline of a theory of thought-processes and thinking machines. J. Theor. Biol.

1, 204–235 (1961)
46. T. Trappenberg, Fundamentals of Computational Neuroscience, 2nd edn. (Oxford University

Press, Oxford, 2010)
47. R. Enoki, Y.L. Hu, D. Hamilton, A. Fine, Expression of long-term plasticity at individual

synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal
analysis. Neuron 62(2), 242–253 (2009)

48. T. Bliss, T. Lømo, Long-lasting potentiation of synaptic transmission in the dentate area of
the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232(2), 331–56
(1973)

49. D. Heinke, E. Mavritsaki (eds.), Computational Modelling in Behavioural Neuroscience: Clos-
ing the gap between neurophysiology and behaviour (Psychology Press, London, 2008)

50. R. Rescorla, A. Wagner, in A Theory of Pavlovian Conditioning: Variations, in the Effectiveness
of Reinforcement and Nonreinforcement, ed. by W.F. Prokasy, A.H. Black, Classical Condi-
tioning, II: Current Research and Theory, (Appleton Century Crofts, New York, 1972), pp.
64–99

51. W. Schultz, Predictive reward signal of dopamine neurons. J. Neurophysiol. 80(1), 1–27 (1998)
52. J. Houk, J. Adams, A. Barto in A Model of How the Basal Ganglia Generate and Use Neural

Signals that Predict Reinforcement, ed. by J.C. Hauk, J.L. Davis, D.G. Breiser. Models of
Information Processing in the Basal Ganglia (MIT Press, Cambridge, 1995)

53. P. Connor, T. Trappenberg, in Characterizing a Brain-Based Value-Function Approximator, ed.
by E. Stroulia, S. Matwin, Advances in Artificial Intelligence LNAI 2056, (Springer, Berlin,
2011), pp. 92–103

http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.cs.dal.ca/boardman/wcci

108 T. P. Trappenberg

54. J. Reynolds, J. Wickens, Dopamine-dependent plasticity of corticostriatal synapses. Neural
Netw. 15(4–6), 507–521 (2002)

55. P. Connor, V. LoLordo, T. Trappenberg (2012) An elemental model of retrospective revaluation
without within-compound associations. Anim. Learn. 42(1), 22–38

56. T. Maia, M. Frank, From reinforcement learning models to psychiatric and neurological dis-
orders. Nat. Neurosci. 14, 154–162 (2011)

57. Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)
58. J. Hawkins, On Intelligence (Times Books, New York, 2004)
59. G. Gigerenzer, P. Todd and the ABC Research Group, Simple Heuristics that Make Us Smart

(Oxford University Press, Oxford, 1999)

Chapter 3
Evolving Culture Versus Local Minima

Yoshua Bengio

Abstract We propose a theory that relates difficulty of learning in deep architectures
to culture and language. It is articulated around the following hypotheses: (1) learning
in an individual human brain is hampered by the presence of effective local minima;
(2) this optimization difficulty is particularly important when it comes to learning
higher-level abstractions, i.e., concepts that cover a vast and highly-nonlinear span of
sensory configurations; (3) such high-level abstractions are best represented in brains
by the composition of many levels of representation, i.e., by deep architectures; (4) a
human brain can learn such high-level abstractions if guided by the signals produced
by other humans, which act as hints or indirect supervision for these high-level
abstractions; and (5), language and the recombination and optimization of mental
concepts provide an efficient evolutionary recombination operator, and this gives rise
to rapid search in the space of communicable ideas that help humans build up better
high-level internal representations of their world. These hypotheses put together
imply that human culture and the evolution of ideas have been crucial to counter
an optimization difficulty: this optimization difficulty would otherwise make it very
difficult for human brains to capture high-level knowledge of the world. The theory
is grounded in experimental observations of the difficulties of training deep artificial
neural networks. Plausible consequences of this theory for the efficiency of cultural
evolution are sketched.

Y. Bengio (B)

CIFAR Fellow, Department of computer science and operations research, University of Montréal,
Montreal, Canada
e-mail: yoshua.bengio@umontreal.ca

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 109
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_3,
© Springer-Verlag Berlin Heidelberg 2014

110 Y. Bengio

1 Introduction

Interesting connections can sometimes be made at the interface between artificial
intelligence research and the sciences that aim to understand human brains, cognition,
language, or society. The aim of this chapter is to propose and elaborate a theory
at this interface, inspired by observations rooted in machine learning research, on
so-called Deep Learning.1 Deep Learning techniques aim at training models with
many levels of representation, a hierarchy of features and concepts, such as can be
implemented with artificial neural networks with many layers. A deep architecture
typically has more than 2 or 3 trained levels of representation, and in fact a deep
learning algorithm can discover the appropriate number of levels of representation
based on the training data. The visual cortex is believed to have between 5 and 10 such
levels. Theoretical arguments have also been made to suggest that deep architectures
are necessary to efficiently represent the kind of high-level concepts required for
artificial intelligence [7]. This chapter starts from experimental observations of the
difficulties in training deep architectures [15], and builds a theory of the role of
cultural evolution to reduce the difficulty of learning high-level abstractions. The
gist of this theory is that training deep architectures such as those found in the brain
is difficult because of an optimization difficulty (apparent local minima), but that the
cultural evolution of ideas can serve as a way for a whole population of humans,
over many generations, to efficiently discover better solutions to this optimization
problem.

2 Neural Networks and Local Minima

2.1 Neural Networks

Artificial neural networks are computational architectures and learning algorithms
that are inspired by the computations believed to take place in the biological neural
networks of the brain [2]. The dominant and most successful approaches to train-
ing artificial neural networks are all based on the idea that learning can proceed by
gradually optimizing a criterion [37]. A neural network typically has free parame-
ters, such as the synaptic strengths associated with connections between neurons.
Learning algorithms formalize the computational mechanism for changing these
parameters so as to take into account the evidence provided by observed (training)
examples. Different learning algorithms for neural networks differ in the specifics of
the criterion and how they optimize it, often approximately because no analytic and
exact solution is possible. On-line learning, which is most plausible for biological
organisms, involves changes in the parameters either after each example has been

1 See [3] for a review of Deep Learning research, which had a breakthrough in 2006 [6, 22, 36].

3 Evolving Culture Versus Local Minima 111

seen or after a small batch of examples has been seen (maybe corresponding to a
day’s worth of experience).

2.2 Training Criterion

In the case of biological organisms, one could imagine that the ultimate criterion
involves the sum of expected future rewards (survival, reproduction, and other
innately defined reward signals such as hunger, thirst, and the need to sleep).2

However, intermediate criteria typically involve modeling the observations from the
senses, i.e., improving the prediction that could be made of any part of the observed
sensory input given any other part, and improving the prediction of future observa-
tions given the past observations. Mathematically, this can often be captured by the
statistical criterion of maximizing likelihood, i.e., of maximizing the probability that
the model implicitly or explicitly assigns to new observations.

2.3 Learning

Learners can exploit observations (e.g., from their sensors of the real world) in order
to construct functions that capture some of the statistical relationships between the
observed variables. For example, learners can build predictors of future events given
past observations, or associate what is observed through different modalities and
sensors. This may be used by the learner to predict any unobserved variable given
the observed ones. The learning problem can be formalized as follows. Let θ be a
vector of parameters that are free to change while learning (such as the synaptic
strengths of neurons in the brain). Let z represent an example, i.e., a measurement
of the variables in the environment which are relevant to the learning agent. The
agent has seen a past history z1, z2, . . . , zt , which in realistic cases also depends
on the actions of the agent. Let E(θ, z) be a measurement of an error or loss to
be minimized, whose future expected value is the criterion to be minimized. In the
simple case3 where we ignore the effect of current actions on future rewards but only
consider the value of a particular solution to the learning problem over the long term,
the objective of the learner is to minimize the criterion

C(θ) =
∫

P(z)E(θ, z)dz = E[E(θ, Z)] (1)

2 Note that the rewards received by an agent depend on the tasks that it faces, which may be different
depending on the biological and social niche that it occupies.
3 Stationary i.i.d case where examples independently come from the same stationary distribution
P .

112 Y. Bengio

which is the expected future error, with P(z) the unknown probability distribution
from which the world generates examples for the learner. In the more realistic setting
of reinforcement learning [43], the objective of the learner is often formalized as
the maximization of the expected value of the weighted sum of future rewards,
with weights that decay as we go further into the future (food now is valued more
than food tomorrow, in general). Note that the training criterion we define here is
called generalization error because it is the expected error on new examples, not the
error measured on past training examples (sometimes called training error). Under
the stationary i.i.d. hypothesis, the expected future reward can be estimated by the
ongoing online error, which is the average of rewards obtained by an agent. In any
case, although the training criterion cannot be computed exactly (because P(·) is
unknown to the learner), the criterion C(·) can be approximately minimized4 by
stochastic gradient descent (as well as other gradient-based optimization techniques):
the learner just needs to estimate the gradient ∂ E(θ,z)

∂θ
of the example-wise error E

with respect to the parameters, i.e., estimate the effect of a change of the parameters
on the immediate error. Let g be such an estimator (e.g., if it is unbiased then E[g] =
E[∂ E(θ,z)

∂θ
]). For example, g could be based on a single example or a day’s worth of

examples.
Stochastic gradient descent proceeds by small steps of the form

θ ← θ − ηg (2)

where η is a small constant called learning rate or gain. Note that if new examples
z are continuously sampled from the unknown distribution P(z), the instantaneous
online gradient g is an unbiased estimator of the generalization error gradient (which
is the integral of g over P), i.e., an online learner is directly optimizing generalization
error.

Applying these ideas to the context of biological learners gives the hypothesis
that follows.

2.4 What Do Brains Optimize?

Optimization Hypothesis. When the brain of a single biological agent learns,
it performs an approximate optimization with respect to some endogenous
objective.

Here note that we refer to a single learning agent because we exclude the effect of
interactions between learning agents, like those that occur because of communication

4 In many machine learning algorithms, one minimizes the training error plus a regularization
penalty which prevents the learner from simply learning the training examples by heart without
good generalization on new examples.

3 Evolving Culture Versus Local Minima 113

between humans in a human society. Later we will advocate that in fact when one
takes into account the learning going on throughout a society, the optimization is not
just a local descent but involves a global parallel search similar to that performed by
evolution and sexual reproduction.

Note that the criterion we have in mind here is not specialized to a single task, as
is often the case in applications of machine learning. Instead, a biological learning
agent must make good predictions in all the contexts that it encounters, and especially
those that are more relevant to its survival. Each type of context in which the agent
must take a decision corresponds to a “task”. The agent needs to “solve” many tasks,
i.e. perform multi-task learning, transfer learning or self-taught learning [11, 35].
All the tasks faced by the learner share the same underlying “world” that surrounds
the agent, and brains probably take advantage of these commonalities. This may
explain how brains can sometime learn a new task from a handful or even just one
example, something that seems almost impossible with standard single-task learning
algorithms.

Note also that biological agents probably need to address multiple objectives
together. However, in practice, since the same brain must take the decisions that can
affect all of these criteria, these cannot be decoupled but they can be lumped into
a single criterion with appropriate weightings (which may be innate and chosen by
evolution). For example, it is very likely that biological learners must cater both to a
“predictive” type of criterion (similar to the data-likelihood used in statistical models
or in unsupervised learning algorithms) and a “reward” type of criterion (similar to
the rewards used in reinforcement learning algorithms). The former explains curiosity
and our ability to make sense of observations and learn from them even when we
derive no immediate or foreseeable benefit or loss. The latter is clearly crucial for
survival, as biological brains need to focus their modeling efforts on what matters
most to survival. Unsupervised learning is a way for a learning agent to prepare itself
for any possible task in the future, by extracting as much information as possible from
what it observes, i.e., figuring out the unknown explanations for what it observes.

One issue with an objective defined in terms of an animal survival and reproduc-
tion (presumably the kinds of objectives that make sense in evolution) is that it is not
well defined: it depends on the behaviors of other animals and the whole ecology and
niche occupied by the animal of interest. As these change due to the “improvements”
made by other animals or species through evolution or learning, the individual animal
or species’s objective of survival also changes. This feedback loop means there isn’t
really a static objective, but a complicated dynamical system, and the discussions
regarding the complications this brings are beyond the scope of this chapter. How-
ever, it is interesting to note that there is one component of an animal’s objective
(and certainly of many humans’ objective, especially scientists) that is much more
stable: it is the “unsupervised learning” objective of “understanding how the world
ticks”.

114 Y. Bengio

2.5 Local Minima

Stochastic gradient descent is one of many optimization techniques that perform
a local descent: starting from a particular configuration of the parameters (e.g. a
configuration of the brain’s synapses), one makes small gradual adjustments which
on average tend to improve the expected error, our training criterion. The theory
proposed here relies on the following hypothesis:

Local Descent Hypothesis. When the brain of a single biological agent learns,
it relies on approximate local descent in order to gradually improve itself.

The main argument in favor of this hypothesis would be based on the assumption
that although our state of mind (firing pattern of neurons) changes quickly, synaptic
strengths and neuronal connectivity only change gradually.

If the learning algorithm is a form of stochastic gradient descent (as Eq. 2 above),
where g approximates the gradient (it may even have a bias), and if η is chosen small
enough (compared to the largest second derivatives of C), then C will gradually
decrease with high probability, and if η is gradually decreased at an appropriate rate
(such as 1/t), then the learner will converge towards a local minimum of C . The proofs
are usually for the unbiased case [9], but a small bias is not necessarily very hurtful,
as shown for Contrastive Divergence [10, 48], especially if the magnitude of the
bias also decreases as the gradient decreases (stochastic approximation convergence
theorem [48]).

Note that in this chapter we are talking about local minima of generalization
error, i.e., with respect to expected future rewards. In machine learning, the terms
“optimization” and “local minimum” are usually employed with respect to a training
criterion formed by the error on training examples (training error), which are those
seen in the past by the learner, and on which it could possibly overfit (i.e. perform
apparently well even though generalization error is poor).

2.6 Effective Local Minima

As illustrated in Fig. 1, a local minimum is a configuration of the parameters such that
no small change can yield an improvement of the training criterion. A consequence of
the Local Descent Hypothesis, if it is true, is therefore that biological brains would
be likely to stop improving after some point, after they have sufficiently approached
a local minimum. In practice, if the learner relies on a stochastic gradient estimator
(which is the only plausible hypothesis we can see, because no biological learner
has access to the full knowledge of the world required to directly estimate C), it
will continue to change due to the stochastic nature of the gradient estimator (the
training signal), hovering stochastically around a minimum. It is also quite possible
that biological learners do not have enough of a lifetime to get close to an actual

3 Evolving Culture Versus Local Minima 115

T
ra

in
in

g
cr

ite
rio

n

Synaptic configurations

T
ra

in
in

g
cr

ite
rio

n

Synaptic configurations

Local
minimum Global

minimum T
ra

in
in

g
cr

ite
rio

n

Synaptic configurations

Fig. 1 Illustration of learning that proceeds by local descent, and can get stuck near a local min-
imum (going from left figure to right figure). The horizontal axis represents the space of synaptic
configurations (parameters of the learner), while the vertical axis represents the training criterion
(expected future error). The ball represents the learner’s current state, which tends to go downwards
(improving the expected error). Note that the space of synaptic configurations is huge (number of
synaptic connections on the order of 100 trillion in humans) but represented here schematically
with a single dimension, the horizontal axis

local minimum, but what is plausible is that they get to a point where progress is
slow (so slow as to be indistinguishable from random hovering near a minimum).
In practice, when one trains an artificial neural network with a learning algorithm
based on stochastic gradient descent, one often observes that training saturates, i.e.,
no more observable progress is seen in spite of the additional examples being shown
continuously. The learner appears stuck near a local minimum. Because it is difficult
to verify that a learner is really near a local minimum, we call these effective local
minima. We call it effective because it is due to the limitations of the optimization
procedure (e.g., stochastic gradient descent) and not just to the shape of the training
criterion as a function of the parameters. The learner equipped with its optimization
procedure which is stuck in an effective local minimum will appear as if it is stuck
in an actual local minimum (it might also be an actual local minimum). It may
happen that the training criterion is a complicated function of the parameters, such
that stochastic gradient descent is sometimes practically stuck in a place in which it
is not possible to improve in most directions, but from where other more powerful
descent methods could escape [32].

2.7 Inference

Many learning algorithms involve latent variables, which can be understood as
associated with particulars factors that can contribute to “explain” each other and
“explain” the current and recent observations. These latent variables are encoded in
the activation of hidden units (neurons that are neither inputs nor outputs). One can
think of a particular configuration of these latent or hidden variables as corresponding
to a state of mind. In a Boltzmann machine [1, 18, 38], when an input is presented,
many configurations of these latent variables are possible and an inference mecha-
nism normally takes place in order to explore possible configurations of the latent
variables which “fit well” with the observed input. This inference is often iterative,

116 Y. Bengio

although it can be approximated or initialized in a single bottom-up pass [40] from
perception to state-of-mind. Inference can be stochastic (neurons randomly choose
their state with a probability that depends on the state of the others, and such that
more probable configurations of neuron activations are sampled accordingly more
often) or deterministic (through an iterative process that can sometimes correspond
to an optimization, gradually changing the configuration of neurons towards one that
agrees more with the observed input percept). Whereas learning in brains (besides
the simple memorization of facts and observed events) occurs on a scale of minutes,
hours or days, inference (changes in the state of mind) occurs on the scale of a frac-
tion of a second or few seconds. Whereas learning is probably gradual, stochastic
inference can quickly jump from one thought pattern to another in less than a sec-
ond. In models such as the Boltzmann machine, learning requires inference as an
inner loop: patterns of latent variables (hidden units, high-level concepts) that fit well
with the observed data are reinforced by the changes in synaptic weights that follow.
One should not confuse local minima in synaptic weights with local minima (or the
appearance of being stuck) in inference. Randomness or association with new stimuli
can change the state of our inference for past inputs and give us the impression that
we are not stuck anymore, that we have escaped a local minimum, but that regards
the inference process, not necessarily the learning process (although it can certainly
help it).

3 High-Level Abstractions and Deep Architectures

Deep architectures [3] are parametrized families of functions which can be used to
model data using multiple levels of representation. In deep neural networks, each
level is associated with a group of neurons (which in the brain could correspond to an
area, such as areas V1, V2 or IT of the visual cortex). During sensory perception in
animal brains, information travels quickly from lower (sensory) levels to higher (more
abstract) levels, but there are also many feedback connections (going from higher
to lower levels) as well as lateral connections (between neurons at the same level).
Each neuron or group of neurons can be thought of as capturing a concept or feature
or aspect, and being activated when that concept or feature or aspect is present in the
sensory input, or when the model is generating an internal configuration (a “thought”
or “mental image”) that includes that concept or feature or aspect. Note that very
few of these features actually come to our consciousness, because most of the inner
workings of our brains are not directly accessible (or rarely so) to our consciousness.
Note also that a particular linguistic concept may be represented by many neurons or
groups of neurons, activating in a particular pattern, and over different levels (in fact
so many neurons are activated that we can see whole regions being activated with
brain imaging, even when a single linguistic concept is presented as stimulus). These
ideas were introduced as central to connectionist approaches [19, 20, 37] to cognitive
science and artificial neural networks, with the concept of distributed representa-
tion: what would in most symbolic systems be represented by a single “on/off” bit

3 Evolving Culture Versus Local Minima 117

(e.g., the symbol for ’table’ is activated) is associated in the brain with a large number
of neurons and groups of neurons being activated together in a particular pattern. In
this way, concepts that are close semantically, i.e., share some attributes (e.g. repre-
sented by a group of neurons), can have an overlap in their brain representation, i.e.,
their corresponding patterns of activation have “on” bits in many of the same places.

3.1 Efficiency of Representation

Deeper architectures can be much more efficient in terms of representation of
functions (or distributions) than shallow ones, as shown with theoretical results where
for specific families of functions a too shallow architecture can require exponentially
more resources than necessary [3–5, 7, 16, 17, 47]. The basic intuition why this can
be true is that in a deep architecture there is re-use of parameters and sharing of
sub-functions to build functions. We do not write computer programs with a single
main program: instead we write many subroutines (functions) that can call other sub-
routines, and this nested re-use provides not only flexibility but also great expressive
power. However, this greater expressive power may come at the price of making the
learning task a more difficult optimization problem. Because the lower-level features
can be used in many ways to define higher-level features, the interactions between
parameters at all levels makes the optimization landscape much more complicated. At
the other extreme, many shallow methods are associated with a convex optimization
problem, i.e., with a single minimum of the training criterion.

3.2 High-Level Abstractions

We call high-level abstraction the kind of concept or feature that could be computed
efficiently only through a deep structure in the brain (i.e., by the sequential application
of several different transformations, each associated with an area of the brain or large
group of neurons). An edge detector in an image seen by the eye can be computed by
a single layer of neurons from raw pixels, using Gabor-like filters. This is a very low-
level abstraction. Combining several such detectors to detect corners, straight line
segments, curved line segments, and other very local but simple shapes can be done
by one or two more layers of neurons, and these can be combined in such a way as to
be locally insensitive to small changes in position or angle. Consider a hierarchy of
gradually more complex features, constructing detectors for very abstract concepts
which are activated whenever any stimulus within a very large set of possible input
stimuli are presented. For a higher-level abstraction, this set of stimuli represents
a highly-convoluted set of points, a highly curved manifold. We can picture such
a manifold if we restrict ourselves to a very concrete concept, like the image of a
specific object (the digit 4, as in Fig. 2) on a uniform background. The only factors
that can vary here are due to object constancy; they correspond to changes in imaging
geometry (location and orientation of the object with respect to the eye) and lighting,

118 Y. Bengio

Fig. 2 Example of a simple manifold in the space of images, associated with a rather low-level
concrete concept, corresponding to rotations and shrinking of a specific instance of the image of a
drawn digit 4. Each point on the manifold corresponds to an image which is obtained by rotating
or translating or scaling another image on the manifold. The set of points in the manifold defines a
concrete concept associated with the drawing of a 4 of a particular shape irrespective of its position,
angle and scale. Even learning such simple manifolds is difficult, but learning the much more
convoluted and higher-dimensional manifolds of more abstract concepts is much harder

and we can use mathematics to help us make sense of such manifolds. Now think
about all the images which can elicit a thought of a more abstract concept, such as
“human”, or even more abstract, all the contexts which can elicit a thought of the
concept “Riemann integral”. These contexts and images associated with the same
high-level concept can be very different from each other, and in many complicated
ways, for which scientists do not know how to construct the associated manifolds.
Some concepts are clearly higher-level than others, and often we find that higher-level
concepts can be defined in terms of lower-level ones, hence forming a hierarchy which
is reminiscent of the kind of hierarchy that we find current deep learning algorithms
to discover [31]. This discussion brings us to the formulation of a hypothesis about
high-level abstractions and their representation in brains.

Deep Abstractions Hypothesis. Higher-level abstractions in brains are repre-
sented by deeper computations (going through more areas or more computa-
tional steps in sequence over the same areas).

3 Evolving Culture Versus Local Minima 119

4 The Difficulty of Training Deep Architectures

There are a number of results in the machine learning literature that suggest that
training a deeper architecture is often more difficult than training a shallow one,
in the following sense. When trying to train all the layers together with respect to
a joint criterion such as the likelihood of the inputs or the conditional likelihood
of target classes given inputs, results can be worse than when training a shallow
model, or more generally, one may suspect that current training procedures for deep
networks underuse the representation potential and the parameters available, which
may correspond to a form of underfitting5 and inability at learning very high-level
abstractions.

4.1 Unsupervised Layer-Wise Pre-training

The first results of that nature appear in [6, 36], where the same architecture gives
very different results depending on the initialization of the network weights, either
purely randomly, or based on unsupervised layer-wise pre-training. The idea of the
layer-wise pre-training scheme [6, 22, 23, 36] is to train each layer with an unsu-
pervised training criterion, so that it learns a new representation, taking as input the
representation of the previous layer. Each layer is thus trained in sequence one after
the other. Although this is probably not biologically plausible as such, what would be
plausible is a mechanism for providing an unsupervised signal at each layer (group
of neurons) that makes it learn to better capture the statistical dependencies in its
inputs. That layer-local signal could still be combined with a global training cri-
terion but might help to train deep networks if there is an optimization difficulty
in coordinating the training of all layers simultaneously. Another indication that a
layer-local signal can help to train deep networks came from the work of [46], where
the unsupervised layer-local signal was combined with a supervised global signal
that was propagated through the whole network. This observation of the advantage
brought by layer-local signals was also made in the context of purely unsupervised
learning of a deep stochastic network, the Deep Boltzmann Machine [38]. By pre-
training each layer as a Restricted Boltzmann Machine (RBM)6 before optimizing a
Deep Boltzmann Machine (DBM) that comprises all the levels, the authors are able
to train the DBM, whereas directly training it from random initialization was prob-
lematic. We summarize several of the above results in the deep learning literature
with the following Observation O1: training deep architectures is easier if hints are
provided about the function that intermediate levels should compute [3, 22, 38, 46].
This is connected to an even more obvious Observation O2, from the work on

5 Although it is always possible to trivially overfit the top two layers of a deep network by memo-
rizing patterns, this may still happen with very poor training of lower levels, corresponding to poor
representation learning.
6 Which ignores the interaction with the other levels, except for receiving input from the level below.

120 Y. Bengio

Fig. 3 Effect of depth on generalization error, without layer-wise unsupervised pre-training (left)
and with (right). The training problem becomes more difficult for deeper nets, and using a layer-
local cue to initialize each level helps to push the difficulty a bit farther and improve error rates

artificial neural networks: it is much easier to teach a network with supervised learn-
ing (where we provide it examples of when a concept is present and when it is not
present in a variety of examples) than to expect unsupervised learning to discover
the concept (which may also happen but usually leads to poorer renditions of the
concept).

4.2 More Difficult for Deeper Architectures and More Abstract
Concepts

Another clue to this training difficulty came in later studies [15, 30] showing that
directly training all the layers together would not only make it difficult to exploit
all the extra modeling power of a deeper architecture but would actually get worse
results7 as the number of layers is increased, as illustrated in Fig. 3. We call this
Observation O3.

In [15] we went further in an attempt to understand this training difficulty and
studied the trajectory of deep neural networks during training, in function space.
Such trajectories are illustrated in Fig. 4. Each point in the trajectory corresponds
to a particular neural network parameter configuration and is visualized as a two-
dimensional point as follows. First, we approximate the function computed by a
neural network non-parametrically, i.e., by the outputs of the function over a large
test set (of 10,000 examples). We consider that two neural networks behave similarly
if they provide similar answers on these test examples. We cannot directly use the
network parameters to compare neural networks because the same function can be
represented in many different ways (e.g., because permutations of the hidden neuron

7 Results got worse in terms of generalization error, while training error could be small thanks to
capacity in the top few layers.

3 Evolving Culture Versus Local Minima 121

indices would yield the same network function). We therefore associate each network
with a very long vector containing in its elements the concatenation of the network
outputs on the test examples. This vector is a point in a very high-dimensional
space, and we compute these points for all the networks in the experiment. We
then learn a mapping from these points to 2-dimensional approximations, so as to
preserve local (and sometimes global) structure as much as possible, using non-linear
dimensionality reduction methods such as t-SNE [45] or Isomap [44]. Figure 4 allows
us to draw a number of interesting conclusions:

1. Observation O4. No two trajectories end up in the same local minimum. This
suggests that the number of functional local minima (i.e. corresponding to dif-
ferent functions, each of which possibly corresponding to many instantiations
in parameter space) must be huge.

2. Observation O5. A training trick (unsupervised pre-training) which changes
the initial conditions of the descent procedure allows one to reach much better
local minima, and these better local minima do not appear to be reachable by
chance alone (note how the regions in function space associated with the two
“flowers” have no overlap at all, in fact being at nearly 90 ◦ from each other in
the high-dimensional function space).

Starting from the Local Descent Hypothesis, Observation O4 and Observation
O5 bring us to the formulation of a new hypothesis regarding not only artificial neural
networks but also humans:

Local Minima Hypothesis. Learning in a single human learner is limited by
effective local minima.

We again used the phrase “single human learner” because later in this chapter we
will hypothesize that a collection of human learners and the associated evolution of
their culture can help to get out of what would otherwise be effective local minima.

Combining the above observations with the worse results sometimes observed
when training deeper architectures (Observation O3, discussed above), we come to
the following hypothesis.

Deeper Harder Hypothesis. The detrimental effect of effective local minima
tends to be more pronounced when training deeper architectures (by an opti-
mization method based on iteratively descending the training criterion).

Finally, the presumed ability of deeper architectures to represent higher-level
abstractions more easily than shallow ones (see [3] and discussion in Sect. 3.1) leads
us to a human analogue of the Deeper Harder Hypothesis, which refines the Local
Minima Hypothesis:

122 Y. Bengio

Fig. 4 Two-dimensional non-linear projection of the space of functions visited by artificial neural
networks during training. Each cross or diamond or circle represents a neural network at some
stage during its training, with color indicating its age (number of examples seen), starting from
blue and moving towards red. Networks computing a similar function (with similar response to
similar stimuli) are nearby on the graph. Top figure uses t-SNE for dimensionality reduction (insists
on preserving local geometry) while the bottom figure uses Isomap (insists on preserving global
geometry and volumes). The vertical crosses (top figure) and circles (bottom figure) are networks
trained from random initialization, while the diamonds (top figure) and rotated crosses (bottom
figure) are networks with unsupervised pre-training initialization

3 Evolving Culture Versus Local Minima 123

Abstractions Harder Hypothesis. A single human learner is unlikely to dis-
cover high-level abstractions by chance because these are represented by a deep
sub-network in the brain.

Note that this does not prevent some high-level abstractions to be represented in a
brain due to innate programming captured in the genes, and again the phrase single
human learner excludes the effects due to culture and guidance from other humans,
which is the subject of the next section.

5 Brain to Brain Transfer of Information to Escape Local
Minima

If the above hypotheses are true, one should wonder how humans still manage to
learn high-level abstractions. We have seen that much better solutions can be found
by a learner if it is initialized in an area from which gradient descent leads to a
good solution, and genetic material might provide enough of a good starting point
and architectural constraints to help learning of some abstractions. For example, this
could be a plausible explanation for some visual abstractions (including simple face
detection, which newborns can do) and visual invariances, which could have had the
chance to be discovered by evolution (since many of our evolutionary ancestors share
a similar visual system). Recent work on learning algorithms for computer vision
also suggest that architectural constraints can greatly help performance of a deep
neural network [27], to the point where even random parameters in the lower layers
(along with appropriate connectivity) suffice to obtain reasonably good performance
on simple object recognition tasks.

5.1 Labeled Examples as Hints

However, many of the abstractions that we master today have only recently (with
respect to evolutionary scales) appeared in human cultures, so they could not have
been genetically evolved: each of them must have been discovered by at least one
human at some point in the past and then been propagated or improved as they were
passed from generation to generation. We will return later to the greater question of the
evolution of ideas and abstractions in cultures, but let us first focus on the mechanics
of communicating good synaptic configurations from one brain to another. Because
we have a huge number of synapses and their values only make sense in the context
of the values of many others, it is difficult to imagine how the recipe for defining
individual abstractions could be communicated from one individual to another in a
direct way (i.e. by exchanging synaptic values). Furthermore, we need to ask how

124 Y. Bengio

Fig. 5 Illustration of the communication between brains, typically through some language, in a way
that can give hints to higher levels of one brain of how the concepts are represented in higher levels
of another brain. Both learners see shared input X , and say that A produces an utterance (from its
language related areas) that is strongly associated with A’s high-level state of mind as a representation
of X . B also sees this utterance as an input (that sets B’s current linguistic representation units), that
it tries to predict from its internal representations of X . Turns may change with B speaking and A
listening, so that both get a sense of the explanation of X that the other is forming in its respective
state of mind

the hypothesized mechanism could help to escape effective local minima faced by a
single learner.

The main insight to answering this question may come from Observation O1
and Observation O2. Training a single hidden layer neural network (supervised or
unsupervised) is much easier than training a deeper one, so if one can provide a
hint as to the function that deeper layers (corresponding to higher-level abstractions)
should capture, then training would be much easier. In the extreme, specifying how
particular neurons should respond in specific instances is akin to supervised learning.

Based on these premises, the answer that we propose relies on learning agents
exchanging bits of information in the presence of a shared percept. Communicating
about the presence of a concept in a sensory percept is something that humans do,
and benefit from since their youngest age. The situation is illustrated in Fig. 5.

5.2 Language for Supervised Training

A very simple schema that would help to communicate a concept8 from one brain to
another is one in which there are many encounters between pairs of learners. In each
of them, two learners are faced with a similar percept (e.g., they both see the same
scene) and they exchange bits of information about it. These bits can for example be

8 i.e., communicate the concept as a function that associates an indicator of its presence with all
compatible sensory configurations.

3 Evolving Culture Versus Local Minima 125

indicators of the presence of high-level concepts in the scene. These indicators may
reflect the neural activation associated with these high-level concepts. In humans,
these bits of information could be encoded through a linguistic convention that helps
the receiver of the message interpret them in terms of concepts that it already knows
about. One of the most primitive cases of such a communication scenario could
occur with animal and human non-verbal communication. For example, an adult
animal sees a prey that could be dangerous and emits a danger signal (that could be
innate) that a young animal could use as a supervised training signal to associate the
prey to danger. Imitation is a very common form of learning and teaching, prevalent
among primates, and by which the learner associates contexts with corresponding
appropriate behavior. A richer form of communication, which would already be
useful, would require simply naming objects in a scene. Humans have an innate
understanding of the pointing gesture that can help identify which object in the scene
is being named. In this way, the learner could develop a repertoire of object categories
which could become handy (as intermediate concepts) to form theories about the
world that would help the learner to survive better. Richer linguistic constructs involve
the combination of concepts and allow the agents to describe relations between
objects, actions and events, sequences of events (stories), causal links, etc., which
are even more useful to help a learner form a powerful model of the environment.

This brings us to another hypothesis, supported by Observation O2 and Obser-
vation O1 and following from the Abstractions Harder Hypothesis:

Guided Learning Hypothesis. A human brain can much more easily learn high-
level abstractions if guided by the signals produced by other humans, which act
as hints or indirect supervision for these high-level abstractions.

This hypothesis is related to much previous work in cognitive science, such as for
example cognitive imitation [42], which has been observed in monkeys, and where
the learner imitates not just a vocalization or a behavior but something more abstract
that corresponds to a cognitive rule.

5.3 Learning by Predicting the Linguistic Output of Other Agents

How can a human guide another? By encouraging the learner to predict the “labels”
that the teacher verbally associates with a given input configuration X . In the schema
of Fig. 5, it is not necessary for the emitter (who produces the utterance) to directly
provide supervision to the high-level layers of the receiver (who receives the com-
munication and can benefit from it). An effect similar to supervised learning can
be achieved indirectly by simply making sure that the receiver’s brain include in
its training criterion the objective of predicting what it observes, which includes
not just X but also the linguistic output of the emitter in the context of the shared
input percept. In fact, with attentional and emotional mechanisms that increase the

126 Y. Bengio

importance given to correctly predicting what other humans say (especially those
with whom we have an affective connection), one would approach even more the
classical supervised learning setting. Since we have already assumed that the training
criterion for human brains involves a term for prediction or maximum likelihood,
this could happen naturally, or be enhanced by innate reinforcement (e.g. children
pay particular attention to the utterances of their parents). Hence the top-level hid-
den units h of the receiver would receive a training signal that would encourage h
to become good features in the sense of being predictive of the probability distrib-
ution of utterances that are received (see Fig. 5). This would be naturally achieved
in a model such as the Deep Boltzmann Machine so long as the higher-level units
h have a strong connection to “language units” associating both speech heard (e.g.,
Wernicke’s area) and speech produced (e.g., Broca’s area), a state of affairs that is
consistent with the global wiring structure of human brains. The same process could
work for verbal or non-verbal communication, but using different groups of neurons
to model the associated observations. In terms of existing learning algorithms one
could for example imagine the case of a Deep Boltzmann Machine [39]: the linguis-
tic units get ’clamped’ by the external linguistic signal received by the learner, at
the same time as the lower-level sensory input units get ’clamped’ by the external
sensory signal X , and that conditions the likelihood gradient received by the hid-
den units h, encouraging them to model the joint distribution of linguistic units and
sensory units.

One could imagine many more sophisticated communication schemes that go
beyond the above scenario. For example, there could be a two-way exchange of
information. It could be that both agents can potentially learn something from the
other in the presence of the shared percept. Humans typically possess different views
on the world and the two parties in a communication event could benefit from a two-
way exchange. In a sense, language provides a way for humans to summarize the
knowledge collected by other humans, replacing “real” examples by indirect ones,
thus increasing the range of events that a human brain could model. In that context,
it would not be appropriate to simply copy or clone neural representations from
one brain to another, as the learner must somehow reconcile the indirect examples
provided by the teacher with the world knowledge already represented in the learner’s
brain. It could be that there is no pre-assigned role of teacher (as emitter) and student
(as receiver), but that depending on the confidence demonstrated by each agent for
each particular percept, one pays more or less attention to the communicated output
of the other. It could be that some aspects of the shared percept are well mastered
by one agent but not the other, and vice-versa. Humans have the capability to know
that some aspect of a situation is surprising (they would not have predicted it with
high probability) and then they should rationally welcome “explanations” provided
by others. A way to make the diffusion of useful knowledge more efficient is for
the communicating agents to keep track of an estimated degree of “authority” or
“credibility” of other agents. One would imagine that parents and older individuals
in a human group would by default get more credit, and one of the products of
human social systems is that different individuals acquire more or less authority and

3 Evolving Culture Versus Local Minima 127

credibility. For example, scientists strive to maximize their credibility through very
rigorous communication practices and a scientific method that insists on verifying
hypotheses through experiments designed to test them.

5.4 Language to Evoke Training Examples at Will

Even more interesting scenarios that derive from linguistic abilities involve our ability
to evoke an input scene. We do not need to be in front of danger to teach about it. We
can describe a dangerous situation and mention what is dangerous about it. In this
way, the diffusion of knowledge about the world from human brains to other human
brains could be made even more efficient.

The fact that verbal and non-verbal communication between animals and humans
happens through a noisy and very bandwidth-limited channel is important to keep in
mind. Because very few bits of information can be exchanged, only the most useful
elements should be communicated. If the objective is only to maximize collective
learning, it seems that there is no point in communicating something that the receiver
already knows. However, there may be other reasons why we communicate, such as
for smoothing social interactions, acquiring status or trust, coordinating collective
efforts, etc.

Note that it is not necessary for the semantics of language to have been defined a
priori for the process described here to work. Since each learning agent is trying to
predict the utterances of others (and thus, producing similar utterances in the same
circumstances), the learning dynamics should converge towards one or more lan-
guages which become attractors for the learning agents: the most frequent linguistic
representation of a given percept X among the population will tend to gradually
dominate in the population. If encounters are not uniformly random (e.g., because
the learning agents are geographically located and are more likely to encounter spa-
tially near neighbors), then there could be multiple attractors simultaneously present
in the population, i.e., corresponding to multiple spatially localized languages.

5.5 Connection with Curriculum Learning

The idea that learning can be improved by guiding it, by properly choosing the
sequence of examples seen by the learner, was already explored in the past. It was
first proposed as a practical way to train animals through shaping [34, 41], as a way to
ease simulated learning of more complex tasks [8, 14, 29] by building on top of easier
tasks. An interesting hypothesis introduced in [8] is that a proper choice of training
examples can be used to approximate a complex training criterion9 fraught with
local minima with a smoother one (where, e.g., only prototypical examples need to

9 The training criterion is here seen as a function of the learned parameters, as a sum of an error
function over a training distribution of examples.

128 Y. Bengio

be shown to illustrate the “big picture”). Gradually introducing more subtle examples
and building on top of the already understood concepts is typically done in pedagogy.
Bengio et al. [8] propose that the learner goes through a sequence of gradually more
difficult learning tasks, in a way that corresponds in the optimization literature to a
continuation method or an annealing method, allowing one to approximately discover
global minima (or much better local minima), as illustrated in Fig. 6. Interestingly, it
was recently observed experimentally that humans use a form of curriculum learning
strategy (starting from easier examples and building up) when they are asked to teach
a concept to a robot [28]. Khan et al. [28] also propose a statistical explanation why
a curriculum learning strategy can be more successful, based on the uncertainty that
the learner has about the relevant factors explaining the variations seen in the data. If
these theories are correct, an individual learner can be helped (to escape local minima
or converge faster to better solutions) not only by showing examples of abstractions
not yet mastered by the learner, but also by showing these well-chosen examples in
an appropriate sequence. This sequence corresponds to a curriculum that helps the
learner build higher-level abstractions on top of lower-level ones, thus again defeating
some of the difficulty believed to exist in training a learner to capture higher-level
abstractions.

6 Memes, Crossover, and Cultural Evolution

In the previous section we have proposed a general mechanism by which knowledge
can be transmitted between brains, without having to actually copy synaptic strengths,
instead taking advantage of the learning abilities of brains to transfer concepts via
examples. We hypothesized that such mechanisms could help an individual learner
escape an effective local minimum and thus construct a better model of reality, when
the learner is guided by the hints provided by other agents about relevant abstractions.
But the knowledge had to come from another agent. Where did this knowledge arise
in the first place? This is what we discuss here.

6.1 Memes and Evolution from Noisy Copies

Let us first step back and ask how “better10” brains could arise. The most plausible
explanation is that better brains arise due to some form of search or optimization (as
stated in the Optimization Hypothesis), in the huge space of brain configurations
(architecture, function, synaptic strengths). Genetic evolution is a form of parallel
search (with each individual’s genome representing a candidate solution) that occurs
on a rather slow time-scale. Cultural evolution in humans is also a form of search, in

10 “better” in the sense of the survival value they provide, and how well they allow their owner to
understand the world around them. Note how this depends on the context (ecological and social
niche) and that there may be many good solutions.

3 Evolving Culture Versus Local Minima 129

Fig. 6 A general strategy to reduce the impact of local minima is followed in continuation methods
and simulated annealing. The idea is to consider a sequence of optimization problems that start
with an easier one for which it is easy to find a global optimum (not corresponding to solving the
actual problem of interest, though), with the sequence of problems ending up in the problem of
interest, each time starting at the solution previously found with an easier problem and tracking local
minima along the way. It was hypothesized [3] and demonstrated with artificial neural networks
that following a curriculum could help learners thus find better solutions to the learning problem of
interest

the space of ideas or memes [12]. A meme is a unit of selection for cultural evolution.
It is something that can be copied from one mind to another. Like for genes, the
copy can be imperfect. Memes are analogous to genes in the context of cultural
evolution [13]. Genes and memes have co-evolved, although it appears that cultural
evolution occurs on a much faster scale than genetic evolution. Culture allows brains
to modify their basic program and we propose that culture also allows brains to go
beyond what a single individual can achieve by simply observing nature. Culture
allows brains to take advantage of knowledge acquired by other brains elsewhere
and in previous generations.

To put it all together, the knowledge acquired by an individual brain combines
four levels of adaptation: genetic evolution (over hundreds of thousands of years or
more), cultural evolution (over dozens, hundreds or thousands of years), individual
learning and discovery (over minutes, hours and days) and inference (fitting the state
of mind to the observed perception, over split seconds or seconds). In all four cases,
a form of adaptation is at play, which we hypothesize to be associated with a form of
approximate optimization, in the same sense as stated in the Optimization Hypoth-
esis. One can also consider the union of all four adaptation processes as a global form
of evolution and adaptation (see the work of [21] on how learning can guide evolu-
tion in the style of Baldwinian evolution). Whereas genetic evolution is a form of
parallel search (many individuals carry different combinations and variants of genes
which are evaluated in parallel) and we have hypothesized that individual learning
is a local search performing an approximate descent (Local Descent Hypothesis),

130 Y. Bengio

Synaptic configuration

 E
rr

or
 r

at
e

Fig. 7 Illustration of parallel search in the space of synaptic configurations by a population of
learners. Some learners start from configurations which happen to lead to a better solution when
descending the training criterion

what about cultural evolution? Cultural evolution is based on individual learning,
on learners trying to predict the behavior and speech output of individuals, as stated
in the Guided Learning Hypothesis. Even though individual learning relies on a
local descent to gradually improve a single brain, when considering the graph of
interactions between humans in an evolving population, one must conclude that cul-
tural evolution, like genetic evolution, is a form of parallel search, as illustrated in
Fig. 7.

The most basic working principle of evolution is the noisy copy and it is also at
work in cultural evolution: a meme can be noisily copied from one brain to another,
and the meme can sometimes be slightly modified in the process.11 A meme exists in
a human’s brain as an aspect of the dynamics of the brain’s neural network, typically
allowing the association of words in language (which are encoded in specific areas of
the brain) with high-level abstractions learned by the brain (which may be encoded in
other cortical areas, depending the semantics of the meme). The meme is activated
when neural configurations associated with it arise, and different memes are also
connected to each other in the sense of having a high probability of being associated
together and echoing each other through thoughts, reasoning, or planning.

Selective pressure then does the work of exponentially increasing the presence
of successful memes in the population, by increasing the chances that a successful
meme be copied in comparison with a competing less successful meme. This may
happen simply because a useful meme allows its bearer to survive longer, commu-

11 Remember that a meme is copied in a process of teaching by example which is highly stochastic,
due to the randomness in encounters (in which particular percepts serve as examples of the meme)
and due to the small number of examples of the meme. This creates a highly variable randomly
distorted version of the meme in the learner’s brain.

3 Evolving Culture Versus Local Minima 131

nicate with more individuals, or because better ideas are promoted.12 With genetic
evolution, it is necessary to copy a whole genome when the individual bearing it
is successful. Instead, cultural evolution in humans has mechanisms to evaluate an
individual meme and selectively promote it. Good ideas are more likely to be the
subject of discussion in public communication, e.g., in the public media, or even
better in scientific publications. Science involves powerful mechanisms to separate
the worth of a scientist from the worth of his or her ideas (e.g. through independent
replication of experimental results or theoretical proofs, or through blind reviewing).
That may explain why the pace of evolution of ideas has rapidly increased since
the mechanisms for scientific discovery and scientific dissemination of memes have
been put in place. The fact that a good idea can stand on its own and be selected for
its own value means that the selective pressure is much more efficient because it is
less hampered by the noisy evaluation that results when fitness is assigned to a whole
individual, that integrates many memes and genes.

In this context the premium assigned to novelty in some cultures, in particular in
scientific research, makes sense as it favors novel memes that are farther away from
existing ones. By increasing the degree of exploration through this mechanism, one
might expect that it would yield more diversity in the solutions explored, and thus
more efficient search (finding good ideas faster) may be achieved with appropriate
amounts of this premium for novelty.

6.2 Fast-Forward with Divide-and-Conquer from Recombination

But if evolution only relied on the noisy copy principle, then it could only speed-up
search at best linearly with respect to the number of individuals in a population.
Instead of trying N random configurations with N individuals and picking the best
by selective pressure, a population with M > N individuals would discover a good
selection M/N times faster in average. This is useful but we hypothesize that it would
not be enough to make a real dent in the optimization difficulty due to a huge number
of poor effective local minima in the space of synaptic configurations. In fact, evolu-
tion has discovered an evolutionary mechanism which can yield much larger speed-
ups, and is based on sexual reproduction in the case of genetic evolution. With sexual
reproduction, we have an interaction between two parent individuals (and their asso-
ciated candidate configurations), and we mix some of the genes of one with some of
the genes of the other in order to create new combinations that are not near-neighbors
of either parent. This is very different from a simple parallel search because it can
explore new configurations beyond local variations around the randomly initialized
starting stock. Most importantly, a recombination operator can combine good, previ-
ously found, sub-solutions. Maybe your father had exceptionally good genes for eyes
and your mother exceptionally good genes for ears, and with about 25 % probability

12 Selfish memes [12, 13] may also strive in a population: they do not really help the population
but they nonetheless maintain themselves in it by some form of self-promotion or exploiting human
weaknesses.

132 Y. Bengio

you could get both, and this may confer you with an advantage that no one had had
before. This kind of transformation of the population of candidate configurations
is called a crossover operator in the genetic algorithms literature [24]. Crossover
is a recombination operator: it can create new candidate solutions by combining
parts of previous candidate solutions. Crossover and other operators that combine
existing parts of solutions to form new candidate solutions have the potential for
a much greater speed-up than simple parallelized search based only on individual
local descent (noisy copy). This is because such operators can potentially exploit a
form of divide-and-conquer, which, if well done, could yield exponential speed-up.
For the divide-and-conquer aspect of the recombination strategy to work, it is best
if sub-solutions that can contribute as good parts to good solutions receive a high
fitness score. As is well known in computer science, divide-and-conquer strategies
have the potential to achieve an exponential speedup compared to strategies that
require blindly searching through potential candidate solutions (synaptic configura-
tions, here). The exponential speedup would be achieved if the optimization of each
of the combined parts (memes) can be done independently of the others. In practice,
this is not going to be the case, because memes, like genes, only take value in the
context and presence of other memes in the individual and the population.

The success rate of recombination is also important i.e., what fraction of the
recombination offsprings are viable? The encoding of information into genes has a
great influence on this success rate as well as on the fitness assigned to good sub-
solutions. We hypothesize that memes are particularly good units of selection in
these two respects: they are by definition the units of cultural information that can be
meaningfully recombined to form new knowledge. All these ideas are summarized
in the following hypothesis.

Memes Divide-and-Conquer Hypothesis. Language, individual learning, and
the recombination of memes constitute an efficient evolutionary recombination
operator, and this gives rise to rapid search in the space of memes, that helps
humans build up better high-level internal representations of their world.

6.3 Where Do New Ideas Come from?

Where do completely new ideas (and memes) emerge? According to the views stated
here, they emerge from two intertwined effects. On the one hand, our brain can eas-
ily combine into new memes different memes which it inherited from other humans,
typically through linguistic communication and imitation. On the other hand, such
recombination as well as other creations of new memes must arise from the opti-
mization process taking place in a single learning brain, which tries to reconcile
all the sources of evidence that it received into some kind of unifying theory. This
search is local in parameter space (synaptic weights) but can involve a stochastic
search in the space of neuronal firing patterns (state of mind). For example, in a

3 Evolving Culture Versus Local Minima 133

Boltzmann machine, neurons fire randomly but with a probability that depends on
the activations of other connected neurons, and so as to explore and reach more plau-
sible “interpretations” of the current and past observations (or “planning” for future
actions in search for a sequence of decisions that would give rise to most beneficial
outcomes), given the current synaptic strenghts. In this stochastic exploration, new
configurations of neuronal activation can randomly arise and if these do a better job
of explaining the data (the observations made), then synaptic strengths will change
slightly to make these configurations more likely in the future. This is already how
some artificial neural networks learn and “discover” concepts that explain their input.
In this way, we can see “concepts” of edges, parts of face, and faces emerge from a
deep Bolzmann machine that “sees” images of faces [31].

What this means is that the recombination operator for memes is doing much
more than recombination in the sense of cutting and pasting parts together. It does
that but it is also possible for the new combinations to be optimized in individual
brains (or even better, by groups who create together) so as to better fit the empirical
evidence that each learner has access to. This is related to the ideas in [21] where
a global search (in their case evolution) is combined with a local search (individual
learning). This has the effect of smoothing the fitness function seen by the global
search, by allowing half-baked ideas (which would not work by themselves) to be
tuned into working ones.

7 Conclusion and Future Work

To summarize, motivated by theoretical and empirical work on Deep Learning, we
developed a theory starting from the hypothesis that high-level abstractions are diffi-
cult to learn because they need to be represented with highly non-linear computation
associated with enough levels of representation, and that this difficulty corresponds
to the learner getting stuck around effective local minima. We proposed and argued
that other learning agents can provide new examples to the learner that effectively
change the learner’s training criterion into one where these difficult effective local
minima can be avoided. This happens because the communications from other agents
can provide a kind of indirect supervision to higher levels of the brain, which makes
the task of discovering explanatory factors of variation (i.e., modeling the rest of the
observed data) much easier. Furthermore, this brain-to-brain communication mech-
anism allows brains to recombine nuggets of knowledge called memes. Individual
learning corresponds to searching for such recombinations and other variations of
memes that are good at explaining the data observed by learners. In this way, new
memes are created that can be disseminated in the population if other learning agents
value them, creating cultural evolution. Like genetic evolution, cultural evolution
efficiently searches (in the space of memes, rather than genes) thanks to parallelism,
noisy copying of memes, and creative recombination and optimizations of memes.
We hypothesize that this phenomenon provides a divide-and-conquer advantage that

134 Y. Bengio

yields much greater speedup in the optimization performed, compared to the linear
speedup obtained simply from parallelization of the search across a population.

A lot more needs to be done to connect the above hypotheses with the wealth of data
and ideas arising in the biological and social sciences. They can certainly be refined
and expanded into more precise statements. Of central importance to future work
following up on this chapter is how one could go and test these hypotheses. Although
many of these hypotheses agree with common sense, it would be worthwhile verifying
them empirically, to the extent this is possible. It is also quite plausible that many
supporting experimental results from neuroscience, cognitive science, anthropology
or primatology already exist that support these hypotheses, and future work should
cleanly make the appropriate links.

To test the Optimization Hypothesis would seem to require estimating a criterion
(not an obvious task) and verifying that learning improves it in average. A proxy
for this criterion (or its relative change, which is all we care about, here) might be
measurable in the brain itself, for example by measuring the variation in the presence
of reward-related molecules or the activity of neurons associated with reward. The
effect of learning could be tested with a varying number of training trials with respect
to a rewarding task.

If the Optimization Hypothesis is considered true, testing the additional assump-
tions of the Local Descent Hypothesis is less obvious because it is difficult to mea-
sure the change in synaptic strengths in many places. However, a form of stability of
synaptic strengths is a sufficient condition to guarantee that the optimization has to
proceed by small changes.

There is already evidence for the Deep Abstraction Hypothesis in the visual and
auditory cortex, in the sense that neurons that belong to areas further away from the
sensory neurons seem to perform a higher-level function. Another type of evidence
comes from the time required to solve different cognitive tasks, since the hypothesis
would predict that tasks requiring computation for the detection of more abstract
concepts would require longer paths or more “iterations” in the recurrent neural
network of the brain.

The Local Minima Hypothesis and the Abstractions Harder Hypothesis are
ethically difficult to test directly but are almost corollaries of the previous hypotheses.
An indirect source of evidence may come from raising a primate without any contact
with other primates nor any form of guidance from humans, and measure the effect
on operational intelligence at different ages. One problem with such an experiment
would be that other factors might also explain a poor performance (such as the effect
of psychological deprivation from social support, which could lead to depression and
other strong causes of poor decisions), so the experiment would require a human that
provides warmth and caring, but no guidance whatsoever, even indirectly through
imitation. Choosing a more solitary species such as the orangutan would make more
sense here (to reduce the impacts due to lack of social support). The question is
whether the tested primate could learn to survive as well in the wild as other primates
of the same species.

The Guided Learning Hypothesis could already be supported by empirical evi-
dence of the effect of education on intelligence, and possibly by observations of

3 Evolving Culture Versus Local Minima 135

feral (wild) children. The important point here is that the intelligence tests chosen
should not be about reproducing the academic knowledge acquired during education,
but about decisions where having integrated knowledge of some learned high-level
abstractions could be useful to properly interpret a situation and take correspond-
ingly appropriate decisions. Using computational simulations with artificial neural
networks and machine learning one should also test the validity of mechanisms for
“escaping” local minima thanks to “hints” from another agent.

The Memes Divide-and-Conquer Hypothesis could probably be best tested by
computational models where we simulate learning of a population of agents that can
share their discoveries (what they learn from data) by communicating the high-level
abstractions corresponding to what they observe (as in the scenario of Sect. 5 and
Fig. 5). The question is whether one could set up a linguistic communication mech-
anism that would help this population of learners converge faster to good solutions,
compared to a group of isolated learning individuals (where we just evaluate a group’s
intelligence by the fitness, i.e. generalization performance, of the best-performing
individual after training). Previous computational work on the evolution of language
is also relevant, of course. If such algorithms would work, then they could also be
useful to advance research in machine learning and artificial intelligence, and take
advantage of the kind of massive and loose parallelism that is more and more avail-
able (to compensate for a decline in the rate of progress of the computing power
accessible by a single computer core). This type of work is related to other research
on algorithms inspired by the evolution of ideas and culture (see the Wikipedia entry
on Memetic Algorithms and [25, 26, 33]).

If many of these hypotheses (and in particular this last one) are true, then we
should also draw conclusions regarding the efficiency of cultural evolution and how
different social structures may influence that efficiency, i.e., yield greater group intel-
ligence in the long run. Two main factors would seem to influence this efficiency:
(1) the efficiency of exploration of new memes in the society, and (2) the rate of
spread of good memes. Efficiency of exploration in meme-space would be boosted
by a greater investment in scientific research, especially in high-risk high potential
impact areas. It would also be boosted by encouraging diversity it all its forms because
it would mean that individual humans explore a less charted region of meme-space.
For example, diversity would be boosted by a non-homogeneous education system,
a general bias favoring openness to new ideas and multiple schools of thought (even
if they disagree), and more generally to marginal beliefs and individual differences.
The second factor, the rate of spread of good memes, would be boosted by com-
munication tools such as the Internet, and in particular by open and free access to
education, information in general, and scientific results in particular. The investment
in education would probably be one of the strongest contributors of this factor, but
other interesting contributors would be social structures making it easy for every
individual to disseminate useful memes, e.g., to publish on the web, and the opera-
tion of non-centralised systems of rating what is published (whether this is scientific
output or individual blogs and posts on the Internet), helping the most interesting
new ideas to bubble up and spread faster, and contributing both to diversity of new
memes and more efficient dissemination of useful memes. Good rating systems could

136 Y. Bengio

help humans to detect selfish memes that “look good” or self-propagate easily for
the wrong reasons (like cigarettes or sweets that may be detrimental to your health
even though many people are attracted to them), and the attempts at objectivity and
replicability that scientists are using may help there.

Acknowledgments The author would like to thank Caglar Gulcehre, Aaron Courville, Myriam
Côté, and Olivier Delalleau for useful feedback, as well as NSERC, CIFAR and the Canada Research
Chairs for funding.

References

1. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann machines.
Cogn. Sci. 9, 147–169 (1985)

2. M.A. Arbib, The Handbook of Brain Theory and Neural Networks (MIT Press, Cambridge,
1995)

3. Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Lear. 2(1), 1–127 2009.
Also published as a book. Now Publishers, 2009

4. Y. Bengio, O. Delalleau, On the expressive power of deep architectures, in Proceedings of the
22nd International Conference on Algorithmic Learning Theory, 2011, ed. by J. Kivinen, C.
Szepesvári, E. Ukkonen, T. Zeugmann

5. Y. Bengio, O. Delalleau, C. Simard, Decision trees do not generalize to new variations. Comput.
Intell. 26(4), 449–467 (2010)

6. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks,
in Advances in Neural Information Processing Systems 19 (NIPS’06), ed. by B. Schölkopf, J.
Platt, T. Hoffman (MIT Press, Cambridge, 2007), pp. 153–160

7. Y. Bengio, Y. LeCun, Scaling learning algorithms towards AI. in Large Scale Kernel Machines,
ed. by L. Bottou, O. Chapelle, D. DeCoste, J. Weston (MIT Press, Cambridge, 2007)

8. Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum learning, in Proceedings of the
Twenty-sixth International Conference on Machine Learning (ICML’09), ed. by L. Bottou, M.
Littman (ACM, 2009)

9. L. Bottou, Stochastic learning, in Advanced Lectures on Machine Learning, number LNAI
3176 in Lecture notes in artificial intelligence, ed. by O. Bousquet, U. von Luxburg (Springer,
Berlin, 2004), pp. 146–168

10. M.A. Carreira-Perpiñan, G.E. Hinton, On contrastive divergence learning, in Proceedings of
the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS’05), ed.
by R.G. Cowell, Z. Ghahramani (Society for Artificial Intelligence and Statistics, 2005) pp.
33–40.

11. R. Caruana, Multitask connectionist learning, in Proceedings of the 1993 Connectionist Models
Summer School, 1993, pp. 372–379

12. R. Dawkins, The Selfish Gene (Oxford University Press, London, 1976)
13. K. Distin, The Selfish Meme (Cambridge University Press, London, 2005)
14. J.L. Elman, Learning and development in neural networks: the importance of starting small.

Cognition 48, 781–799 (1993)
15. D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Bengio, Why does unsuper-

vised pre-training help deep learning? J. Mach. Lear. Res. 11, 625–660 (2010)
16. J. Håstad, Almost optimal lower bounds for small depth circuits, in Proceedings of the 18th

annual ACM Symposium on Theory of Computing (ACM Press, Berkeley, 1986), pp. 6–20
17. J. Håstad, M. Goldmann, On the power of small-depth threshold circuits. Comput. Complex.

1, 113–129 (1991)

3 Evolving Culture Versus Local Minima 137

18. G.E. Hinton, T.J. Sejnowski, D.H. Ackley, Boltzmann machines: constraint satisfaction
networks that learn. Technical Report TR-CMU-CS-84-119, (Dept. of Computer Science,
Carnegie-Mellon University, 1984)

19. G.E. Hinton, Learning distributed representations of concepts, in Proceedings of the Eighth
Annual Conference of the Cognitive Science Society (Lawrence Erlbaum, Hillsdale, Amherst
1986, 1986), pp. 1–12

20. G.E. Hinton, Connectionist learning procedures. Artif. Intell. 40, 185–234 (1989)
21. G.E. Hinton, S.J. Nowlan, How learning can guide evolution. Complex Syst. 1, 495–502 (1989)
22. G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets. Neural

Comput. 18, 1527–1554 (2006)
23. G.E. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural networks.

Science 313(5786), 504–507 (2006)
24. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann

Arbor, 1975)
25. E. Hutchins, B. Hazlehurst, How to invent a lexicon: the development of shared symbols in

interaction, in Artificial Societies: The Computer Simulation of Social Life, ed. by N. Gilbert,
R. Conte (UCL Press, London, 1995), pp. 157–189

26. E. Hutchins, B. Hazlehurst, Auto-organization and emergence of shared language structure,
in Simulating the Evolution of Language, ed. by A. Cangelosi, D. Parisi (Springer, London,
2002), pp. 279–305

27. K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best multi-stage architecture
for object recognition? in Proceedings of IEEE International Conference on Computer Vision
(ICCV’09), 2009, pp. 2146–2153

28. F. Khan, X. Zhu, B. Mutlu, How do humans teach: on curriculum learning and teaching dimen-
sion, in Advances in Neural Information Processing Systems 24 (NIPS’11), 2011 pp. 1449–1457

29. K.A. Krueger, P. Dayan, Flexible shaping: how learning in small steps helps. Cognition 110,
380–394 (2009)

30. H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep
neural networks. J. Mach. Lear. Res. 10, 1–40 (2009)

31. H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations, in Proceedings of the Twenty-sixth Inter-
national Conference on Machine Learning (ICML’09), ed. by L. Bottou, M. Littman (ACM,
Montreal (Qc), Canada, 2009)

32. J. Martens. Deep learning via Hessian-free optimization, in Proceedings of the Twenty-seventh
International Conference on Machine Learning (ICML-10), ed. by L. Bottou, M. Littman
(ACM, 2010) pp. 735–742

33. E. Moritz, Memetic science: I–general introduction. J. Ideas 1, 1–23 (1990)
34. G.B. Peterson, A day of great illumination: B. F. Skinner’s discovery of shaping. J. Exp. Anal.

Behav. 82(3), 317–328 (2004)
35. R. Raina, A. Battle, H. Lee, B. Packer, A.Y. Ng, Self-taught learning: transfer learning from

unlabeled data, in Proceedings of the Twenty-fourth International Conference on Machine
Learning (ICML’07), ed. by Z. Ghahramani (ACM, 2007), pp. 759–766

36. M. Ranzato, C. Poultney, S. Chopra, Y. LeCun, Efficient learning of sparse representations with
an energy-based model, in Advances in Neural Information Processing Systems 19 (NIPS’06),
ed. by B. Schölkopf, J. Platt, T. Hoffman (MIT Press, 2007) pp. 1137–1144

37. D.E. Rumelhart, J.L. McClelland, and the PDP Research Group Parallel Distributed Processing
Explorations in the Microstructure of Cognition, (MIT Press, Cambridge, 1986)

38. R. Salakhutdinov, G.E. Hinton, Deep Boltzmann machines, in Proceedings of the Twelfth
International Conference on Artificial Intelligence and Statistics (AISTATS 2009), vol. 8, 2009

39. R. Salakhutdinov, G.E. Hinton, Deep Boltzmann machines. in Proceedings of The Twelfth
International Conference on Artificial Intelligence and Statistics (AISTATS’09), vol. 5, 2009,
pp. 448–455

40. R. Salakhutdinov, H. Larochelle, Efficient learning of deep Boltzmann machines, in Proceed-
ings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AIS-
TATS 2010), JMLR W&CP, vol. 9, 2010, pp. 693–700

138 Y. Bengio

41. B.F. Skinner, Reinforcement today. Am. Psychol. 13, 94–99 (1958)
42. F. Subiaul, J. Cantlon, R.L. Holloway, H.S. Terrace, Cognitive imitation in rhesus macaques.

Science 305(5682), 407–410 (2004)
43. R. Sutton, A. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998)
44. J. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimen-

sionality reduction. Science 290(5500), 2319–2323 (2000)
45. L. van der Maaten, G.E. Hinton, Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605

(2008)
46. J. Weston, F. Ratle, R. Collobert, Deep learning via semi-supervised embedding, in Proceedings

of the Twenty-fifth International Conference on Machine Learning (ICML’08), ed. by W.W.
Cohen, A. McCallum, S.T. Roweis (ACM, New York, NY, USA, 2008), pp. 1168–1175

47. A. Yao, Separating the polynomial-time hierarchy by oracles, in Proceedings of the 26th Annual
IEEE Symposium on Foundations of Computer Science, 1985, pp. 1–10

48. A.L. Yuille, The convergence of contrastive divergences, in Advances in Neural Information
Processing Systems 17 (NIPS’04), ed. by L.K. Saul, Y. Weiss, L. Bottou (MIT Press, 2005) pp.
1593–1600

Chapter 4
Learning Sparse Features
with an Auto-Associator

Sébastien Rebecchi, Hélène Paugam-Moisy and Michèle Sebag

Abstract A major issue in statistical machine learning is the design of a
representation, or feature space, facilitating the resolution of the learning task at
hand. Sparse representations in particular facilitate discriminant learning: On the
one hand, they are robust to noise. On the other hand, they disentangle the factors of
variation mixed up in dense representations, favoring the separability and interpreta-
tion of data. This chapter focuses on auto-associators (AAs), i.e. multi-layer neural
networks trained to encode/decode the data and thus de facto defining a feature space.
AAs, first investigated in the 80s, were recently reconsidered as building blocks for
deep neural networks. This chapter surveys related work about building sparse rep-
resentations, and presents a new non-linear explicit sparse representation method
referred to as Sparse Auto-Associator (SAA), integrating a sparsity objective within
the standard auto-associator learning criterion. The comparative empirical valida-
tion of SAAs on state-of-art handwritten digit recognition benchmarks shows that
SAAs outperform standard auto-associators in terms of classification performance
and yield similar results as denoising auto-associators. Furthermore, SAAs enable
to control the representation size to some extent, through a conservative pruning of
the feature space.

S. Rebecchi · M. Sebag
CNRS, LRI UMR 8623, TAO, INRIA Saclay, Université Paris-Sud 11, 91405 Orsay, France
e-mail: sebastien.rebecchi@lri.fr

M. Sebag
e-mail: michele.sebag@lri.fr

H. Paugam-Moisy (B)

CNRS, LIRIS UMR 5205, Université Lumière Lyon 2, 69676 Bron, France
e-mail: helene.paugam- oisy@liris.cnrs.fr

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 139
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_4,
© Springer-Verlag Berlin Heidelberg 2014

140 S. Rebecchi et al.

1 Introduction

A major issue in statistical machine learning is the design of a representation, or
feature space, facilitating the resolution of the learning task at hand. For instance,
binary supervised learning often considers linear hypotheses, although a hyper-plane
actually separating the two classes seldom exists for real-world data (non-separable
data). A standard approach thus consists of mapping the initial input space onto a
usually high-dimensional feature space, one favoring data separability. The feature
space can be (i) explicitly defined using hand-crafted features; (ii) implicitly defined
using the so-called kernel trick [32]; (iii) automatically learned by optimizing a crite-
rion involving the available data. In the former two cases, the feature space ultimately
relies on the user’s expertise and involves a trial-and-error process, particularly so
when dealing with high-dimensional data (e.g. images). In the third case, the feature
space optimization considers either a linear search space (dictionary learning [26])
or a non-linear one, through neural networks.

This chapter focuses on the trade-off between the expressiveness and the com-
putational efficiency of non-linear feature space optimization. On the one hand,
non-linear functions can be represented more efficiently and compactly (in terms of
number of parameters) by iteratively composing non-linear functions, defining deep
architectures where each layer defines a more complex feature space elaborated
on the basis of the previous one [3]. Indeed, the principle of hierarchically orga-
nized representations—corresponding to increasing levels of abstraction—is appeal-
ing from a cognitive perspective [31]. The direct optimization of deep architectures,
however, raises severe challenges in a supervised setting: while the standard back-
propagation of the gradient is effective for shallow neural architectures, the gradient
information is harder to exploit when the number of layers increases. The break-
through of deep neural architectures since the mid-2000s [4, 15] relies on a new
training principle, based on the layer-wise unsupervised training of each layer. Note
that the specific layer training depends on the particular setting, involving restricted
Boltzmann machines [15], auto-associators [4] or convolutional networks [22, 25].
Only at a later stage is the pre-trained deep neural network architecture optimized
(fine-tuned) using a supervised learning criterion (Fig. 1). The chapter focuses on
feature space optimization within the auto-associator-based deep neural network
setting.

Formally, an auto-associator (AA) is a one-hidden layer neural network imple-
menting an encoding-decoding process [5, 13]. The AA is trained by backpropaga-
tion to reconstruct the instances in the dataset. Its hidden layer thus defines a feature
space. In the context of deep networks, this first feature-based representation of the
data is used to feed another AA, which is likewise trained as an encoder/decoder,
thus defining a second layer feature space. The process is iterated in a layer-wise
manner, thus defining a deep neural architecture. At each layer, the feature space can
be assessed from its coding/decoding performance, a.k.a. the average reconstruction
error or accuracy on the one hand, and its size or complexity on the other hand. As

4 Learning Sparse Features with an Auto-Associator 141

Fig. 1 Layer-wise training scheme of deep neural networks (e.g. stacked auto-associators or stacked
RBMs) and overall fine-tuning

might be expected, the quality of k-th layer feature space dictates the quality of the
(k + 1)-th layer feature space, specifically so in terms of reconstruction error.

The sparsity of the feature space, that is, the fact that the coding of each
data instance involves only a few features, is highly desirable for several reasons
[3, 10, 28]. Firstly, sparse representations offer a better robustness w.r.t. the data
noise. Secondly, they facilitate the interpretation of the data by disentangling the
factors of variations mixed up in dense representations, and thus favor the linear
separability of the data. Along this line, the complexity of the feature space might
be assessed from its sparsity, i.e. the average number of features that are actively
involved in example coding.

Formally, let x denote an instance in R
n , let y → R

m denote its mapping onto the
feature space. Feature i (i = 1 . . . m) is said to be active in y iff its cancelling out
significantly decreases the ability to reconstruct x from y. Sparse coding, involving
a low percentage of active features on average from the data, has been intensively
studied in the last decade in relation with compressed sensing [6], signal decomposi-
tion [7] and dictionary learning [26]. The presented approach, referred to as Sparse
Auto-Associator (SAA), focuses on integrating a sparsity-inducing approach within
the auto-associator framework.

The chapter is organized as follows. Section 2 presents several points of view
related to learning sparse representations. The domain of sparse feature space learn-
ing has been advancing at a fast pace in the recent years, and the present chapter has
no intention of presenting an exhaustive survey. The standard auto-associator model
and its best known variant, the denoising auto-associator (DAA), are introduced in
Sect. 3. Section 4 describes the proposed SAA algorithm, based on an alternate non-
linear optimization process enforcing both accuracy and sparsity criteria. The Sparse

142 S. Rebecchi et al.

Auto-Associator is experimentally validated in Sect. 5 and discussed in Sect. 6.
Section 7 summarizes the contributions and presents some perspectives on non-linear
learning of sparse features.

2 Learning Sparse Representations of Data

Originated from signal processing, the sparse coding domain aims at expressing
signals using a (given or learned) dictionary. This section briefly reviews some recent
work related to sparse coding, in particular within the field of neural networks.

2.1 Dictionary-Based Sparse Coding

Sparse coding of an (n-dimensional) raw data signal x refers to the attempt at finding
a linear decomposition of x using a small number of atoms of a given dictionary D.
Formally, D is a (n ×m) real matrix, its m columns vectors D≥j denoting the atoms of
the dictionary. The sparse code y is obtained by solving a combinatorial optimization
problem, minimizing its L0-norm ∝.∝0 subject to the reconstruction constraint:

min
y→Rm

∝y∝0 subject to x =
m⎛

j=1

(D≥j y j), (1)

where y j denotes the j-th entry of y. An approximate resolution of Eq. (1) is yielded
by the greedy Orthogonal Matching Pursuit (OMP) algorithm [30], subject to upper
bounding ∝y∝0.

A convex relaxation of Eq. (1) is obtained by replacing the L0-norm by the L1-
norm and minimizing a weighted sum of the reconstruction loss and the sparsity:

min
y→Rm

⎝
⎜⎞

⎠⎠⎠⎠⎠⎠
x −

m⎛
j=1

(D≥j y j)

⎠⎠⎠⎠⎠⎠

2

2

+ λ ∝y∝1

⎟ , (2)

where λ > 0 is the trade-off parameter, ∝.∝1 and ∝.∝2 denote the L1-norm and L2-
norm, respectively. The minimization problem defined by Eq. (2) is known as Basis
Pursuit (BP) denoising [7]. Under some conditions [9], the unique solution of Eq. (2)
also is a solution of Eq. (1).

In both cases the objective is to find an approximate decomposition of x involving
a small number of atoms of D. The level of activity of D≥j relative to x is |y j |.
Cancelling the entry j , i.e. ignoring D≥j in the reconstruction process, consists in
setting y j to 0, thus incurring some additional reconstruction loss, the level of which

4 Learning Sparse Features with an Auto-Associator 143

increases with |y j |. Cancelling entries with very low levels of activity clearly entails
a small loss of accuracy.

As a given dictionary may not provide every example with a sparse decomposition,
it is natural to optimize the dictionary depending on the available examples [1, 26].
If sparsity is measured w.r.t. L1-norm then dictionary learning for sparse coding is
achieved by solving the following joint optimization problem:

min
D→Rn×m ,y→Rm×l

(
∝x − DY∝2

2 + λ

l⎛
k=1

∝Y≥k∝1

)
, (3)

with l the number of training examples, x the (n × l) real matrix storing the training
examples in columns and y the (m × l) real matrix storing the sparse representation
of the k-th training example X≥k in its k-th column Y≥k.

Besides the general merits of sparse coding, mentioned in Sect. 1, sparse dic-
tionary coding features specific strengths and weaknesses. On the positive side,
the minimization-based formulation in Eq. (3) yields a variable-size representation,
since some examples may be reconstructed from very few dictionary atoms (i.e.active
components) while other examples may require many more dictionary atoms. On the
negative side, dictionary learning defines an implicit and computationally expensive
sparse coding; formally, each new x requires a BP optimization problem (Eq. (2))
to be solved to find the associated code y. A second limitation of sparse dictionary
learning is to be restricted to linear coding.

2.2 Sparse Coding within a Neural Network

Aimed at overcoming both above limitations of dictionary learning, several neural
network-based architectures have been defined to achieve sparse coding through
considering additional learning criteria. The main merit of this is to yield a non-
linear coding, directly computable for unseen patterns without solving any additional
optimization problem. Another merit of such models is to accommodate the iterative
construction of sparse non-linear features within a Deep Network architecture.

As already mentioned, sparse coding within the deep learning framework is a hot
topic. While not an exhaustive review of the state of the art, this section summarizes
the main four directions of research, which will be discussed comparatively to the
proposed approach in Sect. 6.2.

Gregor and LeCun use a supervised approach to enforce sparse coding, where
each input example is associated its optimal sparse representation (obtained through
conventional dictionary-based methods). The neural encoder is trained to approxi-
mate this optimal code [12]. The proposed architecture interestingly involves a local
competition between encoding neurons; specifically, if two (sets of neurons) can
reconstruct an input equally well, the algorithm activates only one of them and deac-
tivates the other.

144 S. Rebecchi et al.

Another strategy for encouraging sparse codes in a neuron layer is to apply back-
propagation learning with an activation function that naturally favors sparsity, such
as proposed by Glorot et al. with the so-called rectifying functions [10]. Rectify-
ing neurons are considered more biologically plausible than sigmoidal ones. From
the engineering viewpoint, rectifying neurons can be used in conjunction with an
additional constraint, such as L1-norm regularization, to further promote sparsity.
Rectifying functions however raise several computational issues, adversely affecting
the gradient descent used for optimization. The authors propose several heuristics to
tackle these issues.

Lee et al. augment the Restricted Boltzmann Machine (RBM) learning rule [15] by
setting a temporal sparsity constraint on each individual encoding neuron [24]. This
constraint requires the average value ρ of encoding neuron activations to be close
to the minimum of the activation ρ̂i of each encoding neuron ni . In other words,
each encoding neuron is forced to be active for a small number of input examples
only. By limiting the average activity of each neuron, this selectivity property tends
to favor the code sparsity, as it makes it unlikely that many encoding neurons are
active for many examples. In particular, a method for updating selectivity consists
in minimizing the cross-entropy loss between ρ and ρ̂i [14].

Goh et al. propose another modification to the RBM learning rule in order to
simultaneously favor both the sparsity and the selectivity of the model [11]. The
method consists in computing a matrix M which stores the training example com-
ponents in its columns and the encoding neuron activations in its rows, so that the
selectivity (resp. sparsity) property can be evaluated horizontally (resp. vertically).
M is modified in order to fit some target distribution P before updating the model. P
encodes the prior knowledge about the problem domain: e.g. for image datasets, the
authors consider a distribution P which is positively skewed with heavy tails, since
similar characteristics of activity distribution for both selectivity and sparsity have
been observed from recordings in biological neural networks. Notably, this approach
requires batch learning.

After briefly introducing auto-associator (AA) learning for the sake of complete-
ness (Sect. 3), the rest of the chapter will present a new way of enforcing sparsity
within AA learning (Sect. 4) and report on its comparative validation (Sect. 5).

3 Auto-Associator and Denoising Auto-Associator

The AA model, auto-associator a.k.a. auto-encoder, is a two-layer neural network
trained for feature extraction [5, 13].

The first layer is the encoding layer or encoder and the second layer is the decoding
layer or decoder. Given an input example x, the goal of an AA is to compute a code
y from which x can be recovered with high accuracy, i.e. to model a two-stage
approximation to the identity function:

4 Learning Sparse Features with an Auto-Associator 145

Fig. 2 The training scheme
of an AA. The features y are
learned to encode the input
x and are decoded into x̂ in
order to reconstruct x

⎧⎨
⎩

y = f E(x) = aE(WEx + bE),

x̂ = f D(y) = aD(WDy + bD),

x̂ ⊂ x,

(4)

where f E and f D denote the function computed by the encoder and decoder,
respectively. Parameters are the weight matrices, bias vectors and activation func-
tions, respectively denoted by ΦE = {WE, bE} and aE for the encoder, and
ΦD = {WD, bD} and aD for the decoder. The weight matrix WD is often (although
not necessarily) the transpose of WE. Since the target output of an AA is the same
as its input, the decoder output dimension (number of neurons) equals the encoder
input dimension.

The training scheme of an AA (Fig. 2) consists in finding parameters Φ = ΦE√ΦD

(weights and biases) that minimize a reconstruction loss on a training dataset S, with
the following objective function:

φ(Φ) =
⎛
x→S

L(x, f D ⇒ f E(x)), (5)

where L denotes the loss function.
An AA is usually trained by gradient descent, applying standard back-propagation

of error derivatives [29] with x as target. Depending on the nature of the input
examples,L can either be the traditional squared error or the cross-entropy for vectors
of valued in [0, 1] interpreted as probabilities:

squared_error(x, x̂) =
n⎛

i=1

(x̂i − xi)
2, (6)

cross-entropy(x, x̂) =
n⎛

i=1

[
xi log(x̂i) + (1 − xi) log(1 − x̂i)

]
. (7)

With a linear encoding activation function aE, an AA actually emulates principal
component analysis [2]. When using non-linear aE (e.g. a sigmoid function), an AA
can learn more complex representations and has the ability to capture multi-modal
aspects of the input distribution [17].

146 S. Rebecchi et al.

Fig. 3 The training scheme
of a DAA. Input components
modified by the corruption
process are marked with a ⇔
cross

The denoising auto-associator (DAA) model is an AA variant that aims to remove
input noise, in addition to extracting a non-linear feature space [33]. To achieve the
denoising goal, the training example fed to a DAA is a corrupted version x̃ of x.
There exist many ways of corrupting x. The simplest corruption rule proceeds by
cancelling out some uniformly selected components of x. DAA thus involves an
additional hyper-parameter compared to AA, namely the input corruption rate ν.
The training scheme of a DAA is illustrated in Fig. 3.

The objective function is optimized by back-propagation, as in an AA:

φD(Φ) =
⎛
x→S

L(x, f D ⇒ f E(x̃)) with x̃ = corrupt(x). (8)

Compared to the standard AA, the DAA learning rule forces the encoding layer to
learn more robust features of the inputs, conducive to a better discriminative power.
DAA learning can be thought of as manifold learning: the encoding layer maps the
corrupted examples as close as possible to the manifold of the true examples.

4 Sparse Auto-Associator

The proposed sparse auto-associator (SAA) differs from standard AA only in that
its learning rule is modified to favor sparse representations on the encoding (hidden)
layer.

In numerical analysis and signal processing, a sparse vector is traditionally defined
as a vector with small L0-norm, i.e. involving few non-zero components. In the
following, an encoder representation will be termed sparse iff it involves few active
neurons, where an active neuron is one with activation value close to the maximum
of the activation function. For instance, if aE = tanh then the encoding neuron ni is
considered maximally active for x if yi = 1 and maximally inactive for x if yi = −1.

In contrast with [12], we do not require any training example x to be provided
with its target optimal sparse representation ỹ to achieve sparse encoding through
supervised learning. The working assumption used in the following is that the code y,
learned using standard AA to encode input x constitutes a non-sparse approximation
of the desired sparse ỹ. Accordingly, one aims at recovering ỹ by sparsifying y, i.e.by
cancelling out the least active encoding neurons (setting their activity to the minimal
activation value, e.g. −1 if aE = tanh). As summarized in Algorithm 1, for each

4 Learning Sparse Features with an Auto-Associator 147

Fig. 4 The training scheme of an SAA. Code components modified by the sparsification process
are marked with a ∈ cross

input x, SAA alternates the standard accuracy-driven weight update, aimed at the
reconstruction of x, and a sparsity-driven weight update applied to the encoding layer
only, with x as input and ỹ as target output (Fig. 4).

SAA thus iteratively and alternatively optimizes the accuracy and the sparsity
of the encoder, as follows. Let us denote by x(t) the training example fed to the
AA at time t in an online learning setting and y(t) the representation computed
by the encoding layer once the AA has been trained with the previous examples
x(1), . . . , x(t−1). By alternatively applying an accuracy optimization step followed
by a sparsity optimization step for each example, it is expected that the level of
sparsity of y(t) will increase with t , until code y consistently yields a “sufficiently
sparse” approximation of ỹ. At such a point, y reaches a high level of sparsity while
it still enables to reconstruct x with high accuracy, and the encoding layer achieves
a good compromise between coding sparsity and accuracy.

Algorithm 1: SAA alternate optimization learning rule.

for several epochs (training examples presented in random order) do1

foreach training example x(t) do2

Accuracy-driven learning rule: perform one step back-propagation for updating ΦE3

and ΦD with x(t) as input and x(t) as target
(see Fig.4, left);4

Run a forward pass on the encoding layer of the AA with x(t) as input to compute y(t);5

Sparsify y(t) to obtain ỹ(t);6
Sparsity-driven learning rule: perform one step back-propagation on the encoding7

layer only, for updating ΦE with x(t) as input and ỹ(t) as target 10mm (see Fig.4,
right);

The criterion for the accuracy-driven learning rule (line 3 in Algorithm 1) is the
same as the AA criterion (Eq. (5)):

φS,accuracy(Φ) = φ(Φ) =
⎛
x→S

L(x, f D ⇒ f E(x)), (9)

148 S. Rebecchi et al.

Fig. 5 The training scheme of an SDAA. Input components modified by the corruption process
are marked with a ⇔ cross and code components modified by the sparsification process are marked
with a ∈ cross

whereas the criterion for the sparsity-driven learning rule (line 6) only regards the
encoding parameters:

φS,sparsity(ΦE) =
⎛
x→S

L(f E(x), ỹ) with ỹ = sparsify ⇒ f E(x). (10)

Several sparsification rules have been considered to map y onto ỹ (line 5 of
Algorithm 1). The first two rules are deterministic, parameterized from a fixed num-
ber of neurons, or a fixed activation threshold. Formally, the first one proceeds by
cancelling out the α neurons with lowest activity, while the second one cancels out all
neurons with activation less than threshold τ . For instance, for τ = 0 and aE = tanh,
then ỹi = −1 if yi is negative and ỹi = yi otherwise. A third sparsification rule
proceeds stochastically, where the probability of canceling out an entry increases as
its activation decreases, e.g. P(ỹi = −1) = (e1−yi − 1)/(e2 − 1).

By construction, the deterministic size-driven sparsification rule results in a sparse
coding with the same size for all examples, which might over-constrain the sparse
coding solution. Indeed, many datasets involve examples with different information
content: some examples may need a large number of active neurons to be well
represented while some may only need a small number. The last two sparsification
rules achieve a variable-size coding.

In summary, the SAA framework involves the same hyper-parameters as the stan-
dard AA (chiefly the back-propagation learning rate), plus one hyper-parameter
controlling the sparsification step (line 5 of Algorithm 1), respectively α (for the
size-driven sparsification rule) or τ (for the threshold-driven sparsification rule).

Note also that integrating the sparsification steps within a denoising auto-
associator is straightforward, by replacing the AA update rule (line 3 of Algorithm 1)
with the DAA update rule, thus yielding a hybrid model referred to as sparse DAA
(SDAA). The training scheme of an SDAA is illustrated in Fig. 5, where the accuracy
and sparsity criteria are derived from Eq. (8) and Eq. (10) as follows:

φSD,accuracy(Φ) = φD(Φ) =
⎛
x→S

L(x, f D ⇒ f E(x̃)), (11)

4 Learning Sparse Features with an Auto-Associator 149

Fig. 6 Images of a digit in
class “8”, taken from each
dataset: MNIST-basic (left),
MNIST-bg-rand (middle) and
MNIST-bg-img (right)

φSD,sparsity(ΦE) = φS,sparsity(ΦE) =
⎛
x→S

L(f E(x), ỹ). (12)

The computational complexity of all above schemes (AA, DAA, SAA and SDAA)
are O(n × m) per training example, with n the input dimension and m the number
of encoding neurons.

5 Experiments

This section reports on the experimental validation of the sparse auto-associator
(SAA) and the sparse denoising auto-associator (SDAA), comparatively to the stan-
dard and denoising auto-associators (AA and DAA). After describing the experimen-
tal setting, the section discusses the trade-off between the size of the feature space
and the predictive accuracy of the classifier built on this feature space.

5.1 Experimental Setting

All experiments have been carried out on three handwritten digit recognition, variants
of the original MNIST dataset built by LeCun and Cortes.1 These variants due to
Larochelle et al. [20],2 differ from the original MNIST by the background image
(Fig. 6):

• MNIST-basic: white digits on a uniform black background;
• MNIST-bg-rand: white digits on a random grey-level background;
• MNIST-bg-img: white digits on grey-level natural images as a background.

Notably, MNIST-basic is a far more challenging learning problem than MNIST
due to its reduced size (10,000 example training set; 2,000 example validation set
and 50,000 example test set). Each dataset involves 10 classes, where each example
is given as a (28 × 28) grey-level pixel image and processed as a vector in R

784,

1 Original MNIST database: http://yann.lecun.com/exdb/mnist/.
2 MNIST variants site: http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVari-
ations.

http://yann.lecun.com/exdb/mnist/
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/Mnist Vari-ations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/Mnist Vari-ations

150 S. Rebecchi et al.

by scrolling the image in a left-to-right top-to-bottom fashion and recording each
visited pixel.

Let C , X train, Xval, X test, L train, Lval and L test be defined as follows:

• C = {1, . . . , c} is the set of class labels, with c the number of classes (c = 10 for
all datasets);

• X train is the sequence of training examples x(k), train → R
n ;

• L train is the sequence of the class label l(k),train → C for each x(k),train;
• Xval is the sequence of validation examples x(k), val → R

n ;
• Lval is the sequence of the respective class label l(k),val → C ;
• X test is the sequence of test examples x(k), test → R

n ;
• L test is the sequence of the respective class label l(k),test → C .

All AA variants will be comparatively assessed on the basis of their discriminant
power and their feature space dimension.

5.2 Discriminant Power

The discriminant power of an AA variant is measured as the predictive accuracy
of a classifier learned from the feature space built from this AA variant, along the
following procedure:

1. Unsupervised learning: from (X train, Xval) train an AA, a DAA, an SAA and
an SDAA, respectively denoted by A, AD, AS and ASD;

2. Classifier building: from A, AD, AS and ASD respectively, initialize the two-
layer neural network classifiers N , ND, N S and N SD by removing the decoders
and plugging c neurons at the output of the encoders, one for each class;

3. Supervised fine-tuning: from (X train, Xval) and (L train, Lval) train N , ND, N S

and N SD;
4. Performance measuring: from X test and L test estimate the classification accu-

racy of N , ND, N S and N SD.

Figure 7 comparatively displays the auto-associator architecture A and the asso-
ciated multi-layer classifier N . With architecture A, the AA is trained to build a
feature space by reconstructing its inputs on its output neurons. With architecture N ,
the feature space is further trained by back-propagation to yield the class associated
to the AA inputs, using c output neurons (one for each class).

The unsupervised feature extraction training phase and the supervised classifier
training phase (steps 1 and 3 of the above procedure) each involve 50 epochs of
stochastic back-propagation over X train and Xval, with the squared error as loss
function. At each epoch the examples are presented in random order. The encoding
dimension m of each AA variant has been set equal to the input dimension n, i.e.
m = 784 neurons in the encoding layer.

The activation function is tanh. The bias are initialized to 0 while the weights are
randomly initialized following the advice in [23]. The sparsification heuristics is the

4 Learning Sparse Features with an Auto-Associator 151

Fig. 7 From an auto-associator A (left) to the corresponding classifier N (right)

Table 1 Hyper-parameter range tested through the grid-search procedure

Name Candidate values Models

Learning rate η 0.0001, 0.0005, 0.001, All AA variants and
0.005, 0.01, 0.05, 0.1, 0.5 all classifier variants

Input corruption rate ν 0, 0.1, 0.2, 0.4 DAA and SDAA

one with the threshold3 (Sect. 4) where the threshold is set to 0. In other words, all
features with negative values are set to −1 (the minimum value of tanh). For inputs
normalized in [−1, 1], the input corruption process inAD andASD consists in setting
independently each input entry to −1 with probability ν.

The values of the back-propagation learning rate η and input corruption rate ν
have been selected by grid-search, where each hyper-parameter setting is assessed
from 10 runs (with different weight initialization and example ordering), learning on
X train and evaluating the performance on Xval. By consistency, both training phases
(steps 1 and 3) use the same η value. The candidate hyper-parameter values are
reported in Table 1.

Table 2 displays the classification error rates averaged over 10 independent runs.
Note that in some cases, the best ν value is 0, resulting in identical results for AA and
DAA, or SAA and SDAA. On all datasets, SAA is shown to significantly4 improve
on AA in terms of predictive accuracy. The feature space built by AS thus seems
to capture discriminant features better than the standard A. It must be emphasized
that both feature spaces have same size, are trained using unsupervised learning and
only differ in the sparsity step. These results suggest that the SAA approach does
take practical advantage of one of the more appealing theoretical assets of sparse
representations, namely their tendency to favor class separability compared to dense
representations.

Secondly, it is observed that DAA, SAA and SDAA do not offer any significant
difference regarding their predictive accuracies. A tentative interpretation for this fact
goes as follows. The denoising and sparsification heuristics respectively involved in

3 The probabilistic sparsification heuristics has been experimented too and found to yield similar
results (omitted for the sake of brevity).
4 All statistical tests are heteroscedastic bilateral T tests. A difference is considered significant if
the p-value is less than 0.001.

152 S. Rebecchi et al.

Table 2 Mean and standard deviation of the classification error rate when the encoding dimension
is set to the input dimension

Dataset Error rate (%)
AA DAA SAA SDAA

MNIST-basic 4.49 (0.06) 3.87 (0.04) 3.98 (0.09) 3.98 (0.08)
MNIST-bg-rand 22.4 (0.10) 19.5 (0.09) 19.5 (0.23) 19.5 (0.23)
MNIST-bg-img 25.6 (0.37) 23.6 (0.15) 23.4 (0.57) 23.0 (0.43)

Table 3 Mean and standard deviation of the classification error rate and encoding dimension as
obtained by removing useless neurons after AS or ASD training

Dataset Reduced encoding dimension Error rate (%)
SAA SDAA SAA SDAA

MNIST-basic 719 (7.9) 757 (7.7) 3.96 (0.07) 4.00 (0.16)
MNIST-bg-rand 634 (9.9) 634 (9.9) 19.3 (0.29) 19.3 (0.29)
MNIST-bg-img 248 (12.0) 761 (5.0) 23.3 (0.36) 23.0 (0.43)

DAA and SAA aim at comparable properties (namely coding robustness), although
through different ways. It seems that both ways are incompatible, in the sense that they
cannot be combined effectively. This interpretation is confirmed as the best ν value
selected for SDAA is close to 0 (0 or .1) whereas it is clearly higher for DAA (.2 or .4):
SDAA in such different conditions almost coincides with DAA. In other words, the
standard AA can hardly achieve at the same time a low reconstruction error, a good
robustness to noise, and sparsity. Further investigation could be performed to search
how the denoising and sparsity heuristics could be made more compatible through
simultaneously adjusting the input corruption rate and the sparsification threshold.

5.3 Pruning the Feature Space

It is natural to investigate whether all features in the feature space are active, i.e. if
there exist some encoding neurons which are never active during the unsupervised
SAA training. Such features could be removed from the feature space at no cost in
terms of reconstruction error, i.e. they would enable a pruning of the feature space—
although there is no evidence naturally that sparsity would favor such a pruning.

The pruning of the feature space has been investigated through considering an
additional pruning step on the top of learning the encoding layer of AS and ASD.
Formally, the pruning phase proceeds by removing all neurons whose activity is
consistently negative over all training examples. The approach considers the same
hyper-parameter values as previously selected by grid-search on AS and ASD.

The relevance of the pruning heuristics is empirically demonstrated in Table 3.
While the pruning heuristics strictly reduces the original feature space dimension

4 Learning Sparse Features with an Auto-Associator 153

Table 4 Mean and standard deviation of the classification error rate when the encoding dimension
is determined by the mean one obtained by the SAA in the previous experiment (see Table 3)

Dataset Encoding Error rate (%)
dimension AA DAA

MNIST-basic 719 4.53 (0.19) 3.80 (0.07)
MNIST-bg-rand 634 22.0 (0.07) 19.4 (0.20)
MNIST-bg-img 248 25.9 (0.22) 25.9 (0.22)

(set to m = n = 784 in all experiments), it does not hinder the predictive accuracy
(comparatively to Table 2). In other words, the neurons which have been removed
along the pruning step did not convey discriminant information and/or could not be
efficiently recruited in the supervised learning stage.

It can be observed that the efficiency of the pruning heuristics significantly varies
depending on the datasets, that is, depending on the background image. A constant
background (MNIST-basic, 719 features on average) entails more active features
than a random one (MNIST-bg-rand, 634 features on average) and considerably
more than a non-random one (MNIST-bg-img, 248 features on average). A tentative
interpretation for this result is that, the more informative the background, the larger
the number of neurons trained to reconstruct the background patterns, and conse-
quently the smaller the number of neurons trained to reconstruct the digit patterns.
The variability of the background patterns, higher than those of the digit patterns,
might explain why background-related neurons are more often silenced than the oth-
ers. Further investigation is required to confirm or infirm this conjecture, analyzing
the internal state of the AS and ASD architectures.

Interestingly, the pruning heuristics is ineffective in the SDAA case, where the
feature space dimension tends to be constant. This observation both confirms that
the sparsity and the denoising heuristics hardly cooperate together, as discussed in
the previous subsection. It also suggests that the sparsity heuristics is more flexible
to take advantage of the input data structure.

Notably, the pruning heuristics can be seen as a particular case of the common
sparsity profile constraint [27] involved in the dictionary learning field (Sect. 1),
penalizing the use of atoms which are seldom used.

For the sake of completeness, let us investigate how AA or DAA would withstand
the reduction of the feature space dimension as yielded by the pruning heuristics
above. The comparative assessment proceeds by setting the size of the coding layer
to the reduced mΓ obtained as above. The hyper-parameters are set by grid-search,
on the same candidate values (Table 1).

As shown in Table 4, the feature space reduction adversely affects the AA and DAA
accuracy, particularly so in the case of the MNIST-bg-img dataset. The fact that AA
and DAA yield the same accuracy is due to the fact that ν = 0. Indeed, the case of
an information-rich background makes it more difficult for DAA to achieve a low
reconstruction error and a high predictive accuracy, all the more so as the noise rate is
high. Overall, it is suggested that the DAA strategy is more demanding than the SAA

154 S. Rebecchi et al.

one in terms of the size of the feature space, as the former comprehensively aims at
coping with all encountered noise patterns in the example, whereas the latter follows
a destructive strategy ignoring all weak patterns in the features. These antagonistic
goals might further explain why the two strategies can hardly be combined.

6 Discussion

As mentioned in Sect. 1, the main contribution of this chapter has been to present
(Sects. 4 and 5) a sparsity-driven procedure to enforce the learning of sparse feature
space in the auto-associator framework. The use of this procedure within the standard
stochastic gradient AA learning procedure, referred to as sparse auto-association,
promotes codes which are both accurate in terms of representation, and sparse in
terms of the low number of encoding neurons activated by an input example on
average. A primary merit of SAA over the more popular sparse dictionary learning
is to yield a non-linear code. A second merit is that this code is explicit and can be
computed for any new example with linear complexity (that is, a feedforward pass
to compute the features, i.e. the hidden layer states), whereas it requires solving an
optimization problem in the dictionary case.

After summarizing the main benefits of SAA w.r.t. its accuracy for classification
purposes and its ability for sparse coding, the method will be viewed in light of the
four directions of research briefly presented in Sect. 2.2.

6.1 Benefits of the Sparse Auto-Associator

Accuracy-wise, SAA yields similar results as the denoising auto-associator on three
well-studied MNIST variants, involving different digit backgrounds (constant, uni-
form, or image-based). Both SAA and DAA significantly improve on AA, which is
explained from the regularization effect of respectively the sparsity- and denoising-
driven procedures. Both procedures implicitly take advantage of the fact that the
data live in a low-dimensional feature space. Uncovering this low-dimensional space
enforces the description robustness.

Interestingly, combining the sparsity- and denoising-driven procedures does
not help: experimentally, SDAA outperforms neither SAA nor DAA. Our tenta-
tive interpretation for this fact, the incompatibility of both procedures, is that the
denoising-driven procedure aims at getting rid of weak perturbation patterns on the
input layer, whereas the sparsity-driven procedure aims at getting rid of weak patterns
in the encoding layer.

Coding-wise, it seems that SAA can be made more efficient than DAA as far
as the size of the feature space is concerned. The pruning heuristics, removing all
features which are never activated by the training examples above a given threshold,
yields a significant reduction of the feature space dimension with no accuracy loss,

4 Learning Sparse Features with an Auto-Associator 155

even as it was implemented with a naive activity threshold.5 The use of this pruning
heuristics enables SAA to autonomously adjust the size of the feature space, starting
with a large number of features and pruning the inactive ones after the AA training,
thus yielding a sparse and compressed representation.

Admittedly, the effectiveness of the pruning rule depends on the dataset: exper-
imentally, it is best when the variability of the input patterns is neither too high
(random background) nor too low (constant background). Interestingly, the most
realistic cases (image background) are the most favorable cases, since SAA enables
a 3-fold reduction of the feature space size, actually uncovering the common sparsity
profile of the examples.

A main merit of the pruning heuristics is to yield an appropriate feature space
dimension for a given dataset. A second one, empirically demonstrated, is that it does
preserve the discriminant power of the feature space. Note, however, that directly con-
sidering the same feature space dimension with AA or DAA significantly degrades
the predictive accuracy.

6.2 Comparison with Related Work

Let us discuss the strengths and weaknesses of the SAA framework compared to the
sparse coding neural-based methods, presented in Sect. 2.2. It must first be empha-
sized that all sparse feature learning methods have a quite similar computational cost
that hardly scale up for big data, although recent achievements show that impressive
results can be obtained when increasing the size of the dataset by several orders of
magnitude [8].

On the positive side, SAA does not require any prior knowledge about the prob-
lem domain and the target optimal code, as opposed to [11] and [12]. SAA actually
uncovers the common sparsity profile of the examples, although it does not explic-
itly consider any selectivity property, as opposed to [11]. It accommodates online
learning, also as opposed to [11], through a simple stochastic gradient approach, one
which does not require any indicators about the neurons to be maintained, as opposed
to the average past activity used in [24] and [14]. Importantly, the straightforward
sparsity-driven procedure makes SAA easy to understand and implement, without
requiring any particular trick to make the standard back-propagation procedure to
work, as opposed to [10].

On the negative side, SAA needs to be given theoretical foundations, or could
be related to the theory of biological neuron computation as e.g. [10] or [11]. In
particular, further work will investigate how the sparsity-driven procedure can be
analyzed in terms of ill-posed optimization resolution.

5 Complementary experiments, varying the pruning threshold in a range around 0, yield same
performance (results omitted for brevity).

156 S. Rebecchi et al.

7 Conclusion and Perspectives

Focused on sparse and low-dimensional feature coding, this chapter has presented
the new sparse auto-associator framework. The main motivation for this framework
is rooted in information theory, establishing the robustness of sparse code w.r.t. trans-
mission noise. In the field of machine learning, sparse coding further facilitates the
separability of examples, which has made sparse coding a hot topic for the last decade
[6, 9, 27]. These properties of sparse representations have been experimentally con-
firmed in terms of predictive accuracy compared to the standard auto-associator.

SAA should be viewed as an alternative to sparse dictionary learning [26] in
several respects. On the one hand, it provides a non-linear feature space, more easily
able to capture complex data structures than linear coding. On the other hand, while
both SAA and dictionary-based codings are rather costly to be learned, the SAA
coding is explicit and computationally cheap in the generalisation phase: the coding
of a further example is computable by feed-forward propagation, whereas it results
from solving an optimization problem in the dictionary framework.

The SAA approach offers several perspectives for further research. A primary
perspective, inspired from the field of deep learning [3, 19], is to stack SAA in a
layer-wise manner, expectedly yielding gradually more complex and abstract non-
linear features. Preliminary experiments show that the direct stacking of an SAA
however is ineffective as the reconstruction of an already sparse coding derives a
degenerated optimization problem. Further work will be concerned with controlling
and gradually adapting the sparsity level along the consecutive layers, using an
appropriate sparsity criterion and schedule. Another possibility is to alternate SAA
layers, with subsequent pruning, and AA layers, without sparse coding, in layer-wise
building a deep architecture, thus taking inspiration from the alternative stacking of
convolutional and pooling layers promoted by LeCun et al. [18, 21].

Another promising perspective is to see SAA in the light of the dropout procedure
recently proposed by Hinton et al. [16], where some features are randomly omitted
during the back-propagation step. The dropout heuristics assuredly resulted in dra-
matic performance improvements on hard supervised learning problems, a result
attributed to the fact that this random perturbation breaks the spurious coalitions of
features, each covering for the errors of others. Indeed the sparsity-driven procedure,
especially in its stochastic form (Sect. 4) can be viewed as a dropout rule biased
to low-activity neurons. Extensive further experiments are required to see how the
sparsity-driven procedure can be best combined with the many other ingredients
involved in the dropout-based deep neural network architecture.

Acknowledgments This work was supported by ANR (the French National Research Agency) as
part of the ASAP project under grant ANR_09_EMER_001_04.

4 Learning Sparse Features with an Auto-Associator 157

References

1. M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)

2. P. Baldi, K. Hornik, Neural networks and principal component analysis: learning from examples
without local minima. Neural Networks 2, 53–58 (1989)

3. Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)
4. Y. Bengio, P. Lamblin, V. Popovici, H. Larochelle, in Neural Information Processing Systems

(NIPS). Greedy Layer-wise Training of Deep Networks (2007), pp. 1–8
5. H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular value decom-

position. Biol. Cybern. 59, 291–294 (1988)
6. E.J. Candès, The restricted isometry property and its implications for compressed sensing.

Comptes Rendus de l’Académie des Sci. 346, 589–592 (2008)
7. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J.

Sci. Comput. 20, 33–61 (1998)
8. A. Coates, A.Y. Karpathy, A. ans Ng, in Neural Information Processing Systems (NIPS). Emer-

gence of Object-Selective Features in Unsupervised Feature Learning (2012)
9. D.L. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries

via ∂1 minimization. Proc. Nat. Acad. Sci. U.S.A. 100, 2197–2202 (2003)
10. X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks. in International

Conference on Artificial Intelligence and Statistics (AISTATS) (2011), pp. 315–323
11. H. Goh, N. Thome, M. Cord, Biasing restricted Boltzmann machines to manipulate latent

selectivity and sparsity. in Neural Information Processing Systems (NIPS): Workshop on Deep
Learning and Unsupervised Feature, Learning (2010), pp. 1–8

12. K. Gregor, Y. LeCun, Learning fast approximations of sparse coding. in International Confer-
ence on Machine Learning (ICML) (2010), pp. 399–406

13. G.E. Hinton, Connectionist learning procedures. Artif. Intell. 40, 185–234 (1989)
14. G.E. Hinton, A practical guide to training restricted Boltzmann machines. Technical Report

UTML TR 2010–003, University of Toronto (2010)
15. G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural

Comput. 18, 1527–1554 (2006)
16. G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural

networks by preventing co-adaptation of feature detectors. in Neural information processing
systems (NIPS) (2012) arxiv.org/abs/1207.0580v1 [cs.NE] 3 July 2012

17. N. Japkowicz, S.J. Hanson, M.A. Gluck, Nonlinear autoassociation is not equivalent to PCA.
Neural Comput. 12, 531–545 (2000)

18. K. Kavukcuoglu, M.A. Ranzato, Y. LeCun, Fast inference in sparse coding algorithms with
applications to object recognition. in Neural Information Processing Systems (NIPS): Workshop
on Optimization for Machine Learning (2008) arXiv:1010.3467v1 [cs.CV] 18 Oct 2010

19. H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep
neural networks. J. Mach. Learn. Res. 10, 1–40 (2009)

20. H. Larochelle, D. Erhan, A. Courville, J. Bergstra, Y. Bengio. An empirical evaluation of
deep architectures on problems with many factors of variation. In International conference on
machine learning (ICML) (2007), pp. 473–480

21. Y. LeCun, Learning invariant feature hierarchies. in European Conference in Computer
Vision (ECCV). Lecture Notes in Computer Science, vol. 7583. (Springer, New York, 2012),
pp. 496–505

22. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

23. Y. LeCun, L. Bottou, G.B. Orr, K.-R. Müller, Efficient backprop. in Neural Networks: Tricks
of the Trade (1998). pp. 9–50

24. H. Lee, C. Ekanadham, A.Y. Ng, Sparse deep belief net model for visual area V2. in Neural
Information Processing Systems (NIPS) (2007), pp. 873–880

http://arxiv.org/abs/1010.3467v1

158 S. Rebecchi et al.

25. H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. in International Conference on Machine
Learning (ICML) (2009), p. 77

26. J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding. in Inter-
national Conference on Machine Learning (ICML) (2009), pp. 689–696

27. A. Rakotomamonjy, Surveying and comparing simultaneous sparse approximation (or group-
LASSO) algorithms. Signal Process. 91, 1505–1526 (2011)

28. M.A. Ranzato, F.-J. Huang, Y.-L. Boureau, Y. LeCun, Unsupervised learning of invariant
feature hierarchies with applications to object recognition. in Computer Vision and Pattern
Recognition (CVPR) (2007), pp. 1–8

29. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

30. J.A. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf.
Theory 50, 2231–2242 (2004)

31. P.E. Utgoff, D.J. Stracuzzi, Many-layered learning. Neural Comput. 14, 2497–2539 (2002)
32. V.N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998)
33. P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust

features with denoising autoencoders. in International Conference on Machine Learning
(ICML) (2008), pp. 1096–1103

Chapter 5
HyperNEAT: The First Five Years

David B. D’Ambrosio, Jason Gauci and Kenneth O. Stanley

Abstract HyperNEAT, which stands for Hypercube-based NeuroEvolution of Aug-
menting Topologies, is a method for evolving indirectly-encoded artificial neural
networks (ANNs) that was first introduced in 2007. By exploiting a unique indirect
encoding called Compositional Pattern Producing Networks (CPPNs) that does not
require a typical developmental stage, HyperNEAT introduced several novel capabil-
ities to the field of neuroevolution (i.e. evolving artificial neural networks). Among
these, (1) large ANNs can be compactly encoded by small genomes, (2) the size
and resolution of evolved ANNs can scale up or down even after training is com-
pleted, and (3) neural structure can be evolved to exploit problem geometry. Five
years after its introduction, researchers have leveraged these capabilities to produce
a broad range of successful experiments and extensions that highlight the potential
for future research to build further on the ideas introduced by HyperNEAT. This
chapter reviews these first 5 years of research that builds upon this approach, and
culminates with thoughts on promising future directions.

1 Introduction

HyperNEAT lies at the intersection of two research areas. One of these, neuroevo-
lution, aims to harness the power of evolutionary computation to evolve artificial
neural networks (ANNs) [33, 39, 82, 96]. The other area, called generative and
developmental systems (GDS), studies how compact encodings can describe large,

D. B. D’Ambrosio (B) · J. Gauci · K. O. Stanley
University of Central Florida, 4000 Central Florida Blvd. Orlando, Orlando, FL 32816, USA
e-mail: ddambro@eecs.ucf.edu

J. Gauci
e-mail: jgauci@eecs.ucf.edu

K. O. Stanley
e-mail: kstanley@eecs.ucf.edu

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 159
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_5,
© Springer-Verlag Berlin Heidelberg 2014

160 D. B. D’Ambrosio et al.

complex structures for the purpose of evolution [11, 13, 50, 83]. Such encodings
are sometimes called indirect encodings because each gene in the encoding does not
map to a single corresponding unit of structure in the phenotype. The hope in both
areas is that evolved artifacts will someday approach the complexity and power of the
products of evolution in nature. At their intersection is the idea that indirect encoding
might aid the evolution of ANNs by leveraging the properties of development.

Before 2006, most indirect encodings worked by triggering a process of develop-
ment that begins with a small embryonic structure that ultimately grows into the final
phenotypic form [13, 32, 50, 60, 64, 74, 83]. The connection between development
on the one hand and indirect encoding on the other is intuitive because natural DNA
itself maps to the human or animal phenotype through a process of development that
begins with the egg. However, in 2006 Stanley introduced a new kind of indirect
encoding called a Compositional Pattern Producing Network (CPPN) that does not
require an explicit developmental process to generate patterns [75, 76]. Instead it
encodes patterns through function composition, in effect building spatial patterns out
of the composition of groups of simple functions. Many interesting spatial patterns
(i.e. pictures) were evolved with CPPNs, not least of which were bred by users of
the Picbreeder online service [72, 73]. These patterns exhibit intriguing regulari-
ties reminiscent of patterns seen in nature, such as symmetry and repetition with
variation.

CPPNs were also well-suited to evolving with the existing NeuroEvolution of
Augmenting Topologies (NEAT) algorithm [82] because CPPNs are networks similar
to the ANNs traditionally evolved by NEAT. Thus it was clear that NEAT could
effectively evolve CPPNs that produce interesting patterns in space. However, at the
time that CPPNs were introduced in 2006, the big question occupying our research
group was whether CPPNs could encode connectivity patterns rather than just spatial
patterns. If they could, then all the promising geometric properties of the patterns
generated by CPPNs could also manifest in ANNs.

The question of how to interpret the output of a CPPN as an ANN was perplexing
because there was no obvious way that two-dimensional patterns in space should
describe a set of neural connections. HyperNEAT was the answer to this challenge
[26, 35, 79]. The key realization was that a connectivity pattern is isomorphic to a
spatial pattern in a higher-dimensional space. For example, four-dimensional spatial
patterns can be mapped easily to two-dimensional connectivity patterns. Or, more
generally, a spatial pattern in 2n dimensions can be viewed as a n-dimensional con-
nectivity pattern, where the two sets of n coordinates each represent the two endpoints
of the connection. In effect the connectivity pattern is encoded by a scalar field in
2n dimensions. Such a mapping also preserves all the regularities in the original
four-dimensional pattern; that is, if the four-dimensional spatial pattern exhibits a
regularity, so will the two-dimensional connectivity pattern. Therefore, the solution
to the problem of encoding ANNs with CPPNs is actually simple: The CPPN need
only generate patterns in four dimensions, which means nothing more than adding
two more inputs.

In effect, the CPPN paints a pattern inside a four-dimensional hypercube that is
interpreted as a two-dimensional connectivity pattern. (This principle works between

5 HyperNEAT: The First Five Years 161

six and three dimensions as well, or more generally, between 2n and n dimensions.)
This insight is why the method came to be called “HyperNEAT,” which stands for
Hypercube-based NEAT.

The ability to interpret high-dimensional spatial patterns as networks opened up a
range of novel capabilities for neuroevolution. For example, (1) networks encoded by
CPPNs can be much larger than the CPPNs themselves. In some early experiments,
CPPNs with only dozens of connections describe ANNs with millions [79]. Another
highly unusual capability is that (2) the size or resolution of an evolved ANN can be
increased after evolution yet still work by re-querying the CPPN to regenerate the
ANN at the higher resolution, yielding a new kind of post-training scalability. Also
intriguing is that (3) because CPPNs generate ANNs as functions of the geometry of
their neurons, HyperNEAT in effect sees the geometry of the problem domain and
can learn from that geometry. In other words, HyperNEAT can correlate left-sensors
to left-effectors because it knows they occupy the same side of the network, providing
a powerful new kind of domain knowledge. Thus, just as the neurons in the visual
cortex are arranged in a retinotopic pattern reflecting the positions of photoreceptors
in the retina, HyperNEAT can create neural structures that exploit and reflect the
geometry of their sensors and effectors.

Over the last 5 years, these new capabilities (as well as the ability to indirectly
encode ANNs without an explicit developmental stage) have led to a fertile new
research direction in neuroevolution through indirect encoding. From novel applica-
tions to extensions and enhancements, HyperNEAT has grown during this time into
a more mature method applied and extended by a diversity of researchers. While its
performance in a number of domains is notable, perhaps more important is that it
may serve as a stepping stone to further innovations in the field of neuroevolution. In
the hope of inspiring such continued innovation, this chapter reviews HyperNEAT
and much of the research on it since its inception.

2 Background

This section provides context for HyperNEAT by reviewing some of the key concepts
and approaches that preceded it.

2.1 Generative and Developmental Systems

A key similarity among many neuroevolution methods, including the NEAT method
that preceded HyperNEAT, is that they employ a direct encoding, that is, each part of
the solution’s representation maps to a single piece of structure in the final solution
[33, 39, 82, 96]. Yet direct encodings impose the significant disadvantage that when
the solution contains repeated or similar parts, those parts must be encoded sepa-
rately, and therefore discovered separately. In contrast, in biological genetic encod-
ing the mapping between genotype and phenotype is indirect, which means that the

162 D. B. D’Ambrosio et al.

phenotype typically contains orders of magnitude more structural components than
the genotype contains genes. For example, a human genome of about 30,000 genes
(about three billion amino acids) encodes a human brain with 100 trillion connec-
tions [28, 29, 53]. Thus the only way to discover structures with trillions of parts may
be through a mapping between genotype and phenotype that translates few dimen-
sions into many, i.e. through an indirect encoding. Because phenotypic structures
often occur in repeating patterns, each time a pattern repeats, the same gene group
can provide the specification. The numerous left/right symmetries of vertebrates
[65, p. 302–303], the receptive fields in the visual cortex [38, 51] and fingers and
toes are examples of repeating patterns in biology.

Inspired by such compression and regularity, HyperNEAT is among a new class
of methods that exploit the power of indirect encoding. In such an encoding, the
description of the solution is compressed such that information can be reused, allow-
ing the final solution to contain more components than the description itself. Indirect
encodings are often motivated by development in biology, in which the genotype
maps to the phenotype indirectly through a process of growth [11, 60, 83]. They
are powerful because they allow solutions to be represented as a pattern of pol-
icy parameters, rather than requiring each parameter to be represented individually.
This capability is the focus of the field called generative and developmental systems
[11, 13, 32, 50, 60, 64, 74, 76, 83]. The remainder of this section reviews the NEAT
method, and then explains the indirect encoding called compositional pattern pro-
ducing networks that is well-suited to NEAT and that ultimately became the basis
for HyperNEAT.

2.2 Neuroevolution of Augmenting Topologies

The NEAT method was first introduced over 5 years before HyperNEAT to evolve
ANNs to solve difficult control and sequential decision tasks through a direct encod-
ing [78, 82, 84]. The basic principles of NEAT, reviewed in this section, are preserved
even as they are extended to work with the indirect encoding in HyperNEAT.

Traditionally, ANNs evolved by NEAT control agents that select actions based on
their sensory inputs. NEAT is unlike many previous methods that evolved neural net-
works, i.e. neuroevolution methods, which historically evolved either fixed-topology
networks [40, 71], or arbitrary random-topology networks [3, 42, 96]. Instead, NEAT
begins evolution with a population of small, simple networks and increases the com-
plexity of the network topology into diverse species over generations, leading to
increasingly sophisticated behavior (Fig. 1). A similar process of gradually adding
new genes has been confirmed in natural evolution [63, 91] and shown to improve
adaptation in a few prior evolutionary [2] and neuroevolutionary [44] approaches.
However, a key feature that distinguishes NEAT from prior work in evolving increas-
ingly complex structures is its unique approach to maintaining a healthy diversity
of structures of different complexity simultaneously, as this section reviews. This
approach has proven effective in a wide variety of domains [1, 45, 46, 48, 49, 56,

5 HyperNEAT: The First Five Years 163

Fig. 1 Complexification in NEAT. The NEAT algorithm begins with simple ANNs with randomly
generated weights. Over evolution, complexity is gradually added to the networks, allowing for
increasingly diverse and sophisticated behaviors

70, 73, 77, 80, 81, 84–87]. Complete descriptions of the NEAT method, including
experiments confirming the contributions of its components, are available in Stanley
and Miikkulainen [82, 84] and Stanley et al. [78].

The NEAT method is based on three key ideas. First, to allow network structures
to increase in complexity over generations, a method is needed to keep track of
which gene is which. Otherwise, it is not clear in later generations which individual is
compatible with which in a population of diverse structures, or how their genes should
be combined to produce offspring. NEAT solves this problem by assigning a unique
historical marking to every new piece of network structure that appears through
a structural mutation. The historical marking is a number assigned to each gene
corresponding to its order of appearance over the course of evolution. The numbers
are inherited during crossover unchanged, and allow NEAT to perform crossover
among diverse topologies without the need for expensive topological analysis.

Second, NEAT speciates the population so that individuals compete primarily
within their own niches instead of with the population at large. Because adding new
structure is often initially disadvantageous, this separation means that unique topo-
logical innovations are protected and therefore have the opportunity to optimize their
structure without direct competition from other niches in the population. NEAT uses
the historical markings on genes to determine to which species different individuals
belong.

Third, many approaches that evolve network topologies and weights begin evo-
lution with a population of random topologies [42, 96]. In contrast, NEAT begins
with a uniform population of simple networks with no hidden nodes, differing only
in their initial random weights. Because of speciation, novel topologies gradually
accumulate over evolution, thereby allowing diverse and complex phenotype topolo-
gies to be represented. No limit is placed on the size to which topologies can grow.
New nodes and connections are introduced incrementally as structural mutations
occur, and only those structures survive that are found to be useful through fitness
evaluations. In effect, then, NEAT searches for a compact, appropriate topology by
incrementally adding complexity to existing structure.

The next section reviews compositional pattern producing networks, which com-
bine later with NEAT to make the HyperNEAT method.

164 D. B. D’Ambrosio et al.

(a) (b)Pattern Encoding CPPN

Fig. 2 CPPN Encoding. a The CPPN takes arguments x and y, which are coordinates in a two-
dimensional space. When all the coordinates are drawn with an intensity corresponding to the output
of the CPPN, the result is a spatial pattern, which can be viewed as a phenotype whose genotype is
the CPPN. b Internally, the CPPN is a graph that determines which functions are connected. As in
an ANN, the connections are weighted such that the output of a function is multiplied by the weight
of its outgoing connection. The CPPN in (b) actually produces the pattern in (a)

2.3 Compositional Pattern Producing Networks

Before CPPNs and HyperNEAT, indirect encodings ranged from low-level cell chem-
istry simulations to high-level grammatical rewrite systems [83]. CPPNs introduced
a novel abstraction of development (unlike these prior encodings) that can represent
sophisticated repeating patterns in Cartesian space [75, 76]. Unlike most generative
and developmental encodings, CPPNs do not require an explicit simulation of growth
or local interaction, yet still realize their essential functions. CPPNs also happen to
be represented as networks (similarly to ANNs), which makes them particularly
amenable to evolution through NEAT. This section reviews CPPNs, which are aug-
mented in the HyperNEAT method (Sect. 3) to represent the connectivity patterns
of ANNs.

To understand CPPNs, it helps to think of a phenotype as a pattern in space. This
pattern could be anything from a body morphology to a two-dimensional image. This
view of the phenotype as a spatial pattern is useful because it can then be considered
as a function of n dimensions, where n is the number of dimensions in physical
space. For each coordinate in that space, its level of expression is then an output of
the function that encodes the phenotype. Figure 2a shows how a two-dimensional
phenotype can be generated by a function of two parameters (x and y).

Stanley [75, 76] showed how simple canonical functions can be composed to
create an overall network that produces complex regularities and symmetries. Each
component function creates a novel geometric coordinate frame within which other
functions can reside. The main idea is that these simple canonical functions are
abstractions of specific events in development such as establishing bilateral symmetry
(e.g. with a symmetric function such as Gaussian) or the division of the body into

5 HyperNEAT: The First Five Years 165

Fig. 3 CPPN-generated Regularities. Spatial patterns exhibiting a bilateral symmetry, b imperfect
symmetry, and c repetition with variation (notice the nexus of each repeated motif) are depicted.
These patterns demonstrate that CPPNs effectively encode fundamental regularities of several dif-
ferent types

discrete segments (e.g. with a periodic function such as sine). Figure 2b shows how
such a composition can be represented by a network.

Such networks are called compositional pattern producing networks because they
produce spatial patterns by composing basic functions. Unlike ANNs, which often
contain only sigmoid functions (or sometimes Gaussian functions), CPPNs can
include both types of functions and many others. Furthermore,the term artificial
neural network would be misleading in the context of this research because ANNs
were so named to establish a metaphor with a different biological phenomenon,
i.e. the brain. The terminology should avoid making the implication that biological,
thinking brains are in effect the same as developing embryos or genetic encodings. In
this chapter, because CPPNs are ultimately used to encode ANNs in HyperNEAT, it
is especially important to differentiate these concepts.

Through interactive evolution, Stanley [75, 76] demonstrated that CPPNs can
produce spatial patterns with important geometric motifs that are expected from gen-
erative and developmental encodings and seen in nature. Among the most important
such motifs are symmetry (e.g. left-right symmetries in vertebrates), imperfect sym-
metry (e.g. right-hand-ed-ness), repetition (e.g. receptive fields in the cortex [98]),
and repetition with variation (e.g. cortical columns [41]). Figure 3 shows examples
of several such important motifs produced through interactive evolution of CPPNs.

The choice of available activation functions for a CPPN is guided by the desired
motifs. A sigmoid function is typically included in order to support non-linearities
and irregularities. A symmetric function, such as a Gaussian or absolute value can be
used to induce symmetry. Periodic functions such as sine or cosine are included to
facilitate repetition. These types of functions make up the canonical set of available
CPPN functions, but other functions can be added to the set depending on the problem
being solved.

It is fortuitous that CPPNs and ANNs are so similar from a structural perspec-
tive because it means that methods designed to evolve ANNs can also evolve
CPPNs. In particular, the NEAT method is a good choice for evolving CPPNs
because NEAT increases the complexity of evolving networks over generations,

166 D. B. D’Ambrosio et al.

allowing increasingly elaborate regularities to accumulate. The next section describes
how HyperNEAT combines CPPNs and NEAT to evolve ANNs with geometric
regularities.

3 Method: Hypercube-Based Neuroevolution of Augmenting
Topologies

After CPPNs were first introduced [75, 76], an important challenge remained to
be addressed before HyperNEAT could be realized. It was clear at the time that
CPPNs could encode promising regularities in spatial patterns (such as in Fig. 3),
and that if such regularities could also be realized in the connectivity patterns of
neural networks, a powerful neuroevolution method might result. However, what
was not known was how to best interpret the output of CPPNs to effectively encode
connectivity patterns. That is, the two-dimensional patterns produced in Fig. 3 present
a challenge: How can such spatial patterns describe connectivity? The advantage
of HyperNEAT is that it solved the problem of how to map such spatial patterns
generated by CPPNs to connectivity patterns while simultaneously disentangling
task structure from network dimensionality.

3.1 Mapping Spatial Patterns to Connectivity Patterns

It turns out that there is an effective mapping between spatial and connectivity patterns
that can elegantly exploit geometry. The main idea is to input into the CPPN the
coordinates of the two points that define a connection rather than inputting only the
position of a single point as in Sect. 2.3. The output is then interpreted as the weight
of the connection rather than as the intensity of a point. This way, connections can
be defined in terms of the locations that they connect, thereby taking into account
the network’s geometry.

The CPPN in effect computes a four-dimensional function CPPN
(x1, y1, x2, y2) = w, where the first node is at (x1, y1) and the second node is at
(x2, y2). This formalism returns a weight for every connection between every poten-
tial node in the network, including recurrent connections. By convention in the orig-
inal HyperNEAT, a connection is not expressed if the magnitude of its weight, which
may be positive or negative, is below a minimal threshold wmin . The magnitude of
weights above this threshold are scaled to be between zero and a maximum magni-
tude in the substrate. That way, the pattern produced by the CPPN can represent any
network topology (Fig. 4).

For example, consider a 5 × 5 grid of nodes. The nodes are assigned coordinates
corresponding to their positions within the grid (labeled substrate in Fig. 4), where
(0, 0) is the center of the grid. Assuming that these nodes and their positions are given

5 HyperNEAT: The First Five Years 167

Fig. 4 Hypercube-based Geometric Connectivity Pattern Interpretation. A collection of nodes,
called the substrate, is assigned coordinates that range from −1 to 1 in all dimensions. (1) Every
potential connection in the substrate is queried to determine its presence and weight; the dark
directed lines in the substrate depicted in the figure represent a sample of connections that are
queried. (2) Internally, the CPPN (which is evolved by NEAT) is a graph that determines which
activation functions are connected. As in an ANN, the connections are weighted such that the output
of a function is multiplied by the weight of its outgoing connection. For each query, the CPPN takes
as input the positions of the two endpoints and (3) outputs the weight of the connection between
them. In this way, connective CPPNs produce regular patterns of connections in space

a priori, a connectivity pattern among nodes in two-dimensional space is produced
by a CPPN that takes any two coordinates (source and target) as input, and outputs
the weight of their connection. The CPPN is queried in this way for every potential
connection on the grid. Because the connection weights are thereby a function of the
positions of their source and target nodes, the distribution of weights on connections
throughout the grid will exhibit a pattern that is a function of the geometry of the
coordinate system.

The connectivity pattern produced by a CPPN in this way is called the substrate so
that it can be verbally distinguished from the CPPN itself, which has its own internal
topology. Furthermore, CPPNs that are interpreted to produce connectivity patterns
can be called connective CPPNs to distinguish them from CPPNs that generate spa-
tial patterns, which are called spatial CPPNs. HyperNEAT means neural substrates
produced by connective CPPNs.

Because the connective CPPN is a function of four dimensions, the two-dimen-
sional connectivity pattern expressed by the CPPN is isomorphic to a spatial pattern
embedded in a four-dimensional hypercube (which is the origin of the Hyper part
of HyperNEAT). This observation is important because it means that spatial patterns
with symmetries and regularities correspond to connectivity patterns with related
regularities. Thus, because CPPNs generate regular spatial patterns (Sect. 2.3), by
extension they can be expected to produce connectivity patterns with corresponding
regularities. The next section demonstrates this capability.

168 D. B. D’Ambrosio et al.

(a) (b) (c) (d)

Fig. 5 Connectivity Patterns Produced by Connective CPPNs. These patterns, produced through
interactive evolution, exhibit several important connectivity motifs: a bilateral symmetry, b imper-
fect symmetry, c repetition, and d repetition with variation. That these fundamental motifs are
compactly represented and easily produced suggests the power of this encoding

3.2 Producing Regular Connectivity Patterns

Simple, easily discovered substructures in the connective CPPN produce important
connective regularities in the substrate. The key difference between connectivity
patterns and spatial patterns is that each discrete unit in a connectivity pattern has two
x values and two y values. Thus, for example, symmetry along x can be discovered
simply by applying a symmetric function (e.g. Gaussian) to x1 or x2 (Fig. 5a).

Imperfect symmetry is another important structural motif in biological brains.
Connective CPPNs can produce imperfect symmetry by composing both symmet-
ric functions of one axis along with an asymmetric coordinate frame such as the
axis itself. In this way, the CPPN produces varying degrees of imperfect symmetry
(Fig. 5b).

Similarly important is repetition, particularly repetition with variation. Just as
symmetric functions produce symmetry, periodic functions such as sine produce
repetition (Fig. 5c). Patterns with variation are produced by composing a periodic
function with a coordinate frame that does not repeat, such as the axis itself (Fig. 5d).
Repetitive patterns can also be produced in connectivity as functions of invariant
properties between two nodes, such as distance along one axis. Thus, symmetry,
imperfect symmetry, repetition, and repetition with variation, key structural motifs
in all biological brains, are compactly represented and therefore easily discovered
by CPPNs. The capability to produce such regularities easily is a key motivation for
applying HyperNEAT to evolving neural structures.

3.3 Substrate Configuration

The layout of the nodes that the CPPN connects in the substrate can take forms other
than the planar grid (Fig. 6a) discussed thus far. Different such substrate configura-
tions are likely suited to different kinds of problems.

5 HyperNEAT: The First Five Years 169

0,0 1,0-1,0

0,-1 1,-1-1,-1

0,1 1,1-1,1

0,0 1,0-1,0

0,-1 1,-1-1,-1

0,1 1,1-1,1

Source (x
1
,y

1
)

Target (x
2
,y

2
)(a) (b) (c) (d)

Fig. 6 Alternative Substrate Configurations. This figure shows a a two-dimensional grid, b a
three-dimensional configuration of nodes centered at (0, 0, 0), c a state-space projection configura-
tion in which a source sheet of neurons connects directly to a target sheet, and d a radial configuration.
Different configurations are likely suited to problems with different geometric properties

For example, CPPNs can also produce three-dimensional connectivity patterns, as
shown in Fig. 6b, by representing spatial patterns in the six-dimensional hypercube
CPPN(x1, y1, z1, x2, y2, z2). This formalism is interesting because the topologies
of biological brains, including the human brain, theoretically exist within this search
space.

It is also possible to restrict substrate configurations to particular structural motifs
to learn about their viability in isolation. One example is a single two-dimensional
sheet of neurons that connects to another two-dimensional sheet that acts as a state-
space projection [16, 92]. The projection is a restricted three-dimensional structure
in which one layer can send connections only in one direction to one other layer.
Thus, because of this restriction, it can be expressed by the single four-dimensional
CPPN(x1, y1, x2, y2), where (x2, y2) is interpreted as a location on the target sheet
rather than as being on the same plane as the source coordinate (x1,y1). In this
way, CPPNs can search for useful patterns within state-space projection substrates
(Fig. 6c).

Finally, the nodes need not be distributed in a grid. For example, nodes within a
substrate that controls a radial entity such as a starfish might be best laid out with radial
geometry, as shown in Fig. 6d, so that the connectivity pattern can be situated with
perfect polar coordinates. Many such alternate configurations have been explored
since HyperNEAT’s introduction [36, 79, 88].

3.4 Input and Output Placement

Part of substrate configuration is determining which nodes are inputs and which are
outputs. The flexibility to assign inputs and outputs to specific coordinates in the
substrate creates an opportunity to exploit geometric relationships advantageously.

In many ANN applications, the inputs are drawn from a set of sensors that exist
in a geometric arrangement in space. Unlike traditional ANN learning algorithms

170 D. B. D’Ambrosio et al.

that are not aware of such geometry, connective CPPN substrates are aware of their
inputs’ and outputs’ geometry, and thus can use this information to their advantage.

By arranging inputs and outputs in a sensible configuration on the substrate,
regularities in the geometry can be exploited by the encoding. There is room to be
creative and try different configurations with different geometric advantages.

Biological neural networks rely on exploiting such regularities for many of their
functions. For example, neurons in the visual cortex are arranged in the same retino-
topic two-dimensional pattern as photoreceptors in the retina [15]. That way, they
can exploit locality by connecting to adjacent neurons with simple, repeating motifs.
Connective CPPNs have the same capability. In fact, geometric information in effect
provides evolution with domain-specific bias, which is necessary if it is to gain an
advantage over generic black-box optimization methods [93].

3.5 Substrate Resolution

As opposed to encoding a specific pattern of connections among a specific set of
nodes, connective CPPNs in effect encode a general connectivity concept, i.e. the
underlying mathematical relationships that produce a particular pattern. The conse-
quence is that same connective CPPN can represent an equivalent concept at different
resolutions (i.e. different node densities).

For neural substrates, the important implication is that the same ANN functionality
can be generated at different resolutions. Without further evolution, previously-ev-
olved connective CPPNs can be re-queried to specify the connectivity of the substrate
at a new, higher resolution, thereby producing a working solution to the same problem
at a higher resolution. For example, the resolution of inputs to an “eye”-like network
could be increased without any need to retrain the network [79]. There is no upper
bound on substrate resolution, that is, a connectivity concept is infinite in resolution.
While the higher-resolution connectivity pattern may contain artifacts that were not
expressed at the lower resolution at which it was evolved, it will still embody a
good approximation of the general solution at the higher resolution. Thus, increasing
substrate resolution introduces a powerful new kind of complexification to ANN
evolution.

3.6 Evolving Connective CPPNs

Connective CPPNs are naturally evolved with NEAT. This approach is thus called
HyperNEAT because NEAT evolves CPPNs that represent spatial patterns in hyper-
space. Each point in the pattern, bounded by a hypercube, is interpreted as a connec-
tion in a lower-dimensional connected graph.

The HyperNEAT algorithm proceeds as shown in Algorithm 1.

5 HyperNEAT: The First Five Years 171

1. Choose substrate configuration (i.e. node layout and input/output assignments).
2. Initialize population of minimal CPPNs with random weights.
3. Repeat until solution is found:

a. For each member of the population:
i. Query its CPPN output for the weight of each possible connection in the substrate. If

the absolute value of that output exceeds a threshold magnitude, create the connection
with a weight scaled proportionally to the output value (Fig. 4).

ii. Run the substrate as an ANN in the task domain to ascertain fitness.
b. Reproduce the CPPNs according to the NEAT method to produce the next generation’s

population.

Algorithm 1: HyperNEAT

Evolving a connective CPPN is not very different than a normal evolutionary algo-
rithm. Fitness for a CPPN is determined by generating the weights for the substrate
to create an ANN that is then evaluated in the problem domain. The CPPNs are then
selected for reproduction based on their fitnesses and reproduced according the to
NEAT algorithm.

In effect, as HyperNEAT adds new connections and nodes to the connective CPPN
it is discovering new global dimensions of variation in connectivity patterns across
the substrate. Early on it may discover overall symmetry, whereas later it may discover
the concept of receptive fields. Each new connection or node in the CPPN represents a
new way that an entire pattern can vary, i.e. a new regularity. In this way, HyperNEAT
introduced a powerful new approach to evolving large-scale connectivity patterns and
ANNs.

The next sections review work since HyperNEAT’s introduction that has demon-
strated its promise and extended its capabilities.

4 Key Properties

Several key features of HyperNEAT make it attractive as a method for machine
learning. These features include the abilities to (1) compactly encode large networks
with regularities and symmetries, (2) scale the size and resolution of solutions, and
(3) leverage problem geometry. The initial HyperNEAT experiments in Stanley et al.
[79], reviewed next, demonstrated each of these properties.

These initial experiments covered two domains: visual discrimination and food
gathering. Both tasks are simple, but require clear regularities to solve. In visual
discrimination, a N × N grid of nodes receives an input signal that contains two
boxes, one large and one small. The network must identify the center of the large
box by outputting its position on another N × N grid of neurons. Food gathering
requires controlling a single agent that must efficiently collect food by exploiting
geometrically correlated sensors and effectors. A solution for both tasks is to repeat
the same connectivity pattern for all inputs, a concept that is easily captured by
HyperNEAT.

172 D. B. D’Ambrosio et al.

(a) (b)

Fig. 7 Preliminary Experiments. The visual discrimination task (a) is to identify the center of
the larger box. Example visual field activation patterns (top) and the corresponding correct target
fields (bottom) are depicted. The “X” in each target field denotes the point of highest activation,
which is how the ANN specifies the location of the center of the larger box. In the food gathering
task (b), a robot with eight sensors and eight corresponding effectors (that is, each effectors moves
the robot in the direction of a sensor) must detect and collect food that appears in the environment.
The main goal is for the robot to learn to efficiently activate its effectors so that it moves towards
the food as quickly as possible

Similarly, in both experiments the importance of geometry is clear: The location
of the boxes on the grid and the location of the sensors and effectors in the food
gathering robot are critical to the solution. By designing a substrate to exploit the
geometry of these tasks, HyperNEAT was able to discover effective solutions. In
both cases, an important concept is locality: Sensors should excite nearby effectors.
However, a direct encoding can have no understanding of the locations of sensors and
thus must discover this idea in a piece-wise, inefficient manner while HyperNEAT
can simply discover the concept once and repeat it throughout the substrate.

Both problems also require discovering key regularities: For example, in food
gathering, all inputs must excite a single output while inhibiting others. A direct
encoding would have to learn this pattern for each input individually, but for an
indirect encoding like HyperNEAT this concept need only be discovered once and
then it can be repeated as needed. Figure 8 gives an example of such regularities
discovered in the food-gathering domain.

Finally, both experiments showcased the ability to significantly scale up solutions
found on smaller networks to larger networks without additional learning. In the
case of visual discrimination, networks were trained on an 11 × 11 grid, but were
later scaled to 33 × 33 and 55 × 55 grids, requiring one million and nine million
connections, respectively. The resulting networks were still able to solve the problem,
as shown in Fig. 9. For food gathering, networks were trained with 8 sensors and

5 HyperNEAT: The First Five Years 173

Early Middle Final

Fig. 8 HyperNEAT Discovers Regularities in Food Gathering. Each column shows networks
for the food gathering tasks from two different substrate configurations. The best solution to this
problem is for a sensor to excite a corresponding effector and inhibit all other effectors (i.e. if it sees
a piece of food, go towards it and no other direction). Early-generation connective CPPNs for both
configurations typically produce simple connectivity patterns (a). Eventually, HyperNEAT begins
to exploit regularities (b), though they may not be the most fundamental ones. Finally, HyperNEAT
discovers the fundamental regularity that underlies the task for the given substrate configuration
(c). Thus, instead of optimizing individual connection weights, evolution is a process of gradually
discovering and exploiting holistic regularities

effectors, but were later scaled to 16, 32, 128, and 1,024 sensors and effectors (for
a maximum of over one million connections). The sensitivity of this task to precise
changes meant that while scaled agents could still solve the task when scaled, their
efficiency was reduced. However, if the agents were allowed to evolve further at
the new scale, perfect solutions were found rapidly, which means that the general
concept was retained and simply needed slight tweaking to work at the new size.
This capability to scale networks to new sizes, which was new to neuroevolution, is
possible because HyperNEAT represents solutions as patterns that can be sampled
at any resolution rather than one-to-one mappings as in direct encodings.

Beyond these initial experiments, there have been several other studies that focus
on the capabilities of HyperNEAT. [18–20] explored the effects of solution regu-
larity on the ability of HyperNEAT to solve a problem in several domains. These
experiments showed that the more regular a problem, the better HyperNEAT is at dis-
covering a solution. Results also showed that solutions found by HyperNEAT were
typically more general and exhibited more regularities in both phenotypic behav-
ior and ANN structure than the solutions discovered by direct encodings such as

174 D. B. D’Ambrosio et al.

(a)
(b) (c) (d)

Fig. 9 Activation Patterns of the Same Connective CPPN at Different Resolutions in the Boxes
Domain. Activation patterns on the target field of a substrate generated by the CPPN in (a) from
the input trial shown in (b) are displayed at resolution 11 × 11 in (c) and 55 × 55 in (d). Darker
color signifies higher activation and the position of highest activation is marked with a white “X.”
The same 26-connection CPPN generates solutions at both resolutions, with 10,328 and 8,474,704
connections, respectively, demonstrating the ability of the solution to scale significantly

regular NEAT. Coleman [22] also revisited the visual processing domain to further
explore the capabilities of HyperNEAT and found it beneficial across a variety of
more difficult visual tasks.

5 Applications of HyperNEAT

Since its introduction, HyperNEAT has been applied to a variety of problem domains,
which are reviewed in this section.

5.1 Game Playing

Board games are a popular domain for artificial intelligence because of their explicit
rules and the opportunity for looking ahead. HyperNEAT is a natural choice for learn-
ing strategies in many such games because of the inherent regularities of both their
rules and board structure. For example, Gauci and Stanley [36] trained HyperNEAT
to act as a board evaluator for a checkers player by inputting an entire board state
and outputting a score for that state (Fig. 10a). HyperNEAT was able to exploit the
regularities inherent in checkers (e.g. jumping a piece is good almost everywhere) to
create effective checkers players. This work was later extended to the more compu-
tationally challenging game of Go [37], wherein HyperNEAT-trained players were
again able to exploit geometry and repetition to quickly discover effective strate-
gies. More interestingly, like a human player learning to play Go, networks could
be trained on small board sizes (e.g. 5 × 5) and scaled up to larger sizes while still
maintaining knowledge gained at the smaller size. With additional training at the new

5 HyperNEAT: The First Five Years 175

(a)

(b)

(c)

Fig. 10 HyperNEAT Domains. The HyperNEAT approach has been applied to a variety of
domains including checkers (a), octopus arm control (b), and Robocup soccer (c) a Checkers;
reproduced from Gauci and Stanley [36] b Octopus Arm; reproduced from Woolley and Stanley
[95] c Robocup Soccer; reproduced from Verbancsics and Stanley [88]

sizes, such networks could further improve as they developed strategies only possi-
ble at the larger sizes. Bahceci and Miikkulainen [9] demonstrated similar results by
training a player in a simple board game to recognize patterns at small board sizes
and then scaling the size up.

5.2 Control

HyperNEAT is also an attractive option for learning autonomous agent controllers
because the worlds these agents inhabit (including the real world) typically include
regularities that can be exploited. Such domains also may contain a large number of
inputs (a strong suit of HyperNEAT), such as the Balanced Diet contest at GECCO
2008, which required an agent to navigate a complex world while collecting food.

176 D. B. D’Ambrosio et al.

The winner of this contest, NeuroHunter [52], took advantage of HyperNEAT’s abil-
ity to integrate large numbers of inputs to solve the task. Learning to drive simulated
cars is another control application of HyperNEAT, as shown by Drchal et al. [30,
31]. Their experiment demonstrated a group of simulated cars learning to drive on
the same side of the road to avoid collisions. In effect, the agents invented their own
traffic rules. Woolley and Stanley [94] applied HyperNEAT to the control of a simu-
lated octopus arm (Fig. 10b) that can dynamically scale the number of arm segments.
HyperNEAT has also been demonstrated in robot navigation [57]. Finally, Clune et
al.[19] and Yosinski et al. [97] applied HyperNEAT to evolving gaits for simulated
and real quadruped robots, demonstrating its real-world potential.

5.3 Robocup

HyperNEAT has also been applied to the Robocup simulated soccer domain of Keep-
away. Verbancsics and Stanley [89] employed a substrate configuration called the
Bird’s-Eye View (BEV) to simultaneously input entire soccer Keepaway scenarios
into an ANN as seen from above (Fig. 10c), resulting in the longest Keepaway bench-
mark holding time yet recorded at the time of it’s publication. This approach was
extended later to take skills learned in Keepaway and transfer them to other domains
[88], including harder versions of Keepaway. Additionally, Lowell et al. [61] also
demonstrated the effectiveness of HyperNEAT in the Robocup domain.

6 Extensions and Implementations

Perhaps the most significant contribution of HyperNEAT is that it opens up a new
research direction in evolving indirectly-encoded neural networks, which creates
many opportunities for extending the core idea. This section reviews several such
extensions introduced so far.

6.1 Plasticity: Adaptive HyperNEAT

Much research with HyperNEAT so far has focused on producing networks whose
weights are fixed. However, it has been shown previously that plastic networks, that
is, networks whose connection weights change over time, can solve problems more
efficiently than those whose with fixed weights [12, 34]. Risi and Stanley [66] thus
developed an extension to HyperNEAT that allows it to create such plastic networks,
with the advantage over traditional such systems that HyperNEAT can also learn
the learning rules that control how weights were updated. Another potential advan-
tage of HyperNEAT-encoded plasticity is that HyperNEAT can encode a pattern of

5 HyperNEAT: The First Five Years 177

learning rules (i.e. as opposed to only weights) across the geometry of the network.
Two approaches were tested: iterated, which means re-querying the CPPN for new
weights at every time step, and ABCD, in which the CPPN outputs parameters for a
generalized Hebbian rule in addition to the initial weight value of the network.

6.2 Indirect-then-Direct: HybrID

In an attempt to improve the performance of HyperNEAT in domains that are highly
irregular, Clune et al. [20, 21] introduced Hybridized Indirect and Direct encod-
ing (HybrID), an extension to HyperNEAT that combines the ability of an indirect
encoding to find and exploit regularities with a direct encoding’s ability to optimize
individual parameters. The approach works by running HyperNEAT for a fixed num-
ber of generations and then switching to regular NEAT to decide the weights of the
substrate (without allowing topological mutations) for the remainder of search. The
idea is that HyperNEAT can quickly find the gross regularities of the problem and
then NEAT can tweak the final weights. The following two extensions to Hyper-
NEAT also seek to address the issue of performance on problems with varying levels
of regularity.

6.3 Decoupling Topology and Weighting: HyperNEAT-LEO

The human experimenter must define the nodes that can be connected in a neural
network produced by HyperNEAT. However, the original HyperNEAT can choose not
to express a particular connection by outputting a value below a defined threshold. The
problem is, as shown by Clune et al. [17], that this simple rule creates an obstacle when
the domain requires specific discontinuities or modules in its neural architecture.
Verbancsics and Stanley [90] proposed a solution to this problem called the Link
Expression Output (LEO) that adds an output to the CPPN that determines whether
the currently-queried connection should be expressed or not, thereby decoupling link
expression and link weight. This approach was successful at solving a variant of the
retina problem [54] (which requires explicit modularity) that Clune et al. [17] earlier
showed was challenging for the original HyperNEAT (Fig. 11a).

6.4 Dynamic Substrate Design: ES-HyperNEAT

As shown in many HyperNEAT experiments, substrates allow the injection of knowl-
edge about a domain, such as the relationship of a sensor to an effector or the relative
positioning of inputs, which are typically intuitive and easy to define. What is less
clear to the experimenter, however, is the appropriate positions and number of hidden
nodes that should be available on the substrate. Typically the approach has been to

178 D. B. D’Ambrosio et al.

(a) (b) (c)

Fig. 11 HyperNEAT Extensions. The HyperNEAT approach has been extended in a variety of
ways. Some examples include: evolving modular networks (a), evolving the substrate layout (b), and
evolving multiagent teams (c). a HyperNEAT-LEO; reproduced from Verbancsics and Stanley [90]
b ES-HyperNEAT; reproduced from Risi and Stanley [67] c Multiagent HyperNEAT; reproduced
from D’Ambrosio et al. [24]

designate some number of hidden layers, each with the same number of nodes (usually
equal to the number of inputs or outputs). However, it is desirable that HyperNEAT,
like NEAT before it, can learn its internal node placement, while still exploiting
the relationships present in inputs and outputs. Risi and Stanley [67, 68] introduced
such an extension called Evolvable-Substrate HyperNEAT (ES-HyperNEAT). By
searching the pattern generated by a CPPN for clues to where nodes and connec-
tions should be placed, ES-HyperNEAT can determine the best locations to place
hidden nodes. Figure 11b shows an example network created by ES-HyperNEAT.
This approach was demonstrated to be more efficient than the original HyperNEAT
at solving a maze navigation task and a task that required switching sensors [67, 68].
ES-HyperNEAT has also been successfully combined with HyperNEAT-LEO [68]
and Adaptive HyperNEAT [69].

6.5 Morphological Evolution with CPPNs

Although not strictly an extension of HyperNEAT, Auerbach and Bongard [5] intro-
duced an approach wherein a CPPN determines the structure of a three-dimensional
body-plan morphology. This approach was extended [4, 6] also to allow the CPPN to
construct the control scheme for these morphologies, which leads to efficient body-
brain evolution. Auerbach and Bongard [7, 8] also recently introduced new ways for
CPPNs to generate morphology by creating creatures directly from shapes output
by the CPPN. Liapis et al. [59] also applied CPPNs to evolving morphologies of
spaceships.

5 HyperNEAT: The First Five Years 179

6.6 Replacing NEAT: HyperGP

Buk et al. [14] replaced the traditional CPPN in HyperNEAT with a genetic program-
ming tree. This idea demonstrates that any type of pattern generator may be used to
query the substrate to generate ANNs. It is likely that some patterns can be more
easily evolved with different representations than others. However, NEAT’s ability to
increase complexity over generations and the natural ability of CPPNs to encode arbi-
trary regularities (given enough hidden nodes) remain appealing advantages offered
by CPPNs.

6.7 Multiagent HyperNEAT

Another extension to HyperNEAT is the capability to evolve multiple, related neural
networks simultaneously. The benefit of this approach is that teams of agents typically
significantly overlap in their capabilities and can thus benefit from being generated by
the same source (Fig. 11c). Additionally, much as HyperNEAT can exploit geometry
in the layout of sensors and effectors, this extension can exploit geometry in the
structure of the team, either physically (i.e. their layout on a field) or conceptually
(i.e. based on capabilities). This approach has been applied successfully in several
domains including predator-prey [27], room-clearing [24], mobile sensor networks
[55], and patrol [25], where it was deployed in real robots. It has also been extended
to define the communication scheme for a team [23]. Additionally, both Hiller and
Lipson [47] and Haasdijk et al. [43] applied techniques reminiscent of multiagent
HyperNEAT to evolving the controller of modular robots.

7 Discussion and Future Directions

At the time HyperNEAT was introduced, most research in the GDS community
focused on the development process. However, HyperNEAT abstracts away this
complex and time-consuming system while still effectively capturing its benefits,
e.g. by generating regularities and patterns. The success of HyperNEAT across the
wide range of domains and applications that have followed, and the extensions it has
inspired, lend further credence to this choice.

The large number of extensions made to the basic HyperNEAT approach also
suggest that there is still a great deal to learn about the method. Many of these
extensions focus on the substrate, which is likely because topology-evolving neu-
roevolution methods such as the original NEAT have proven to be simpler and more
effective than methods that require the experimenter to define the topology a priori.
Another promising direction is to enable encoding different types of neurons, such as
the plastic neurons in [66]. Neural models like continuous time recurrent neural net-
works (CTRNNs) [10] and spiking neural networks (SNNs) [62] are not only more

180 D. B. D’Ambrosio et al.

biologically plausible than traditional ANNs, but also exhibit interesting properties
that may be facilitated by HyperNEAT.

HyperNEAT has made it possible to create very large and complex ANNs with
millions or more connections, yet few of the applications to date fully exploit this
capability. Researchers have not typically had the ability to work with and create
such large networks before, so it is understandable that we do not yet fully envision
how to best take advantage of them in nontrivial ways. It is also possible that the
kinds of control and decision-making problems that are being posed to HyperNEAT
so far are not sufficient to require such large networks; while one possible path to
complexity is through more challenging problems, another route may be through
more open-ended approaches like novelty search [58].

Thus HyperNEAT may be yet to reach its full potential. Interestingly, by combin-
ing the ability to encode very large and regular neural structures with sophisticated
neural models (such as plastic or spiking neurons), it is possible that in the future
HyperNEAT-like algorithms may eventually approach designs reminiscent of natural
brains.

Acknowledgments Much of the work on HyperNEAT at the Evolutionary Complexity Research
Group at the University of Central Florida was supported by DARPA through its Computer Science
Study Group program, including Phases 1, 2, and 3 (grants HR0011- 08-1-0020, HR0011-09-1-
0045 and N11AP20003). This chapter does not necessarily reflect the position or policy of the
government, and no official endorsement should be inferred.

Appendix: Implementations

Many researchers mentioned above have made their implementations of HyperNEAT
available:

• HyperSharpNEAT by David D’Ambrosio is an extension of Colin Green’s Sharp-
NEAT1, which is written in C#. HyperSharpNEAT contains an implementation of
multiagent HyperNEAT and has been augmented by Joel Lehman and Sebastian
Risi to contain the LEO, ES, and adaptive HyperNEAT extensions.

• SharpNEAT2 by Colin Green, which includes a different version of HyperNEAT,
is also written in C# and contains several example experiments as well as tutorials
on making new ones.

• Keepaway HyperNEAT C# by Philip Verbancsics is distributed with a C# imple-
mentation of the Robocup simulator.

• Another HyperNEAT Implementation (ANHI) by Oliver Coleman extends the
Java-based ANJI implementation of NEAT (itself by Derek James and Philip
Tucker). AHNI includes several visual processing experiments.

• HyperNEAT C++ by Jason Gauci comes with visual discrimination and checkers
experiments.

Links to all these software packages can be found at http://eplex.cs.ucf.edu/hyper
NEATpage/.

http://eplex.cs.ucf.edu/hyperNEATpage/
http://eplex.cs.ucf.edu/hyperNEATpage/

5 HyperNEAT: The First Five Years 181

References

1. T. Aaltonen et al., (over 100 authors). Measurement of the top quark mass with dilepton events
selected using neuroevolution at CDF. Phys. Rev. Lett. 102(15), 2001 (2009)

2. L. Altenberg, Evolving better representations through selective genome growth. in Proceedings
of the IEEE World Congress on Computational Intelligence (IEEE Press, Piscataway, NJ, 1994),
pp. 182–187

3. P.J. Angeline, G.M. Saunders, J.B. Pollack, An evolutionary algorithm that constructs recurrent
neural networks. IEEE Trans. Neural Networks 5, 54–65 (1993)

4. J.E. Auerbach, J.C. Bongard, Dynamic resolution in the co-evolution of morphology and con-
trol. in Proceedings of the 12th International Conference on the Synthesis and Simulation of
Living Systems (ALife XII) (2010)

5. J.E. Auerbach, J.C. Bongard, Evolving CPPNs to grow three dimensional structures. in Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010) (ACM
Press, New York, NY, 2010)

6. J.E. Auerbach, J.C. Bongard, Evolving complete robots with CPPN-NEAT: the utility of recur-
rent connections. in Proceedings of the 13th Annual Conference Companion on Genetic and
Evolutionary Computation (ACM, 2011)

7. J.E. Auerbach, J.C. Bongard, On the relationship between environmental and mechanical com-
plexity in evolved robots. in 13th International Conference on the Synthesis and Simulation of
Living Systems (ALife XIII) (ACM, 2012)

8. J.E. Auerbach, J.C. Bongard, On the relationship between environmental and morphological
complexity in evolved robots. in Proceedings of the 14th Annual Conference Companion on
Genetic and Evolutionary Computation (ACM, 2012)

9. E. Bahceci, R. Miikkulainen, Transfer of evolved pattern-based heuristics in games. in Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Games (CIG-2008) (IEEE
Press, Piscataway, NJ, 2008)

10. R.D. Beer, J.C. Gallagher, Evolving dynamical neural networks for adaptive behavior. Adapt.
behav. 1(1), 91–122 (1992)

11. P.J. Bentley, S. Kumar, Three ways to grow designs: a comparison of embryogenies for an
evolutionary design problem. in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999) (1999), pp. 35–43

12. J. Blynel, D. Floreano, Levels of dynamics and adaptive behavior in evolutionary neural con-
trollers. in Proceedings of the Seventh International Conference on Simulation of Adaptive
Behavior on From Animals to Animats (2002), pp. 272–281

13. J.C. Bongard, Evolving modular genetic regulatory networks. in Proceedings of the 2002
Congress on Evolutionary Computation (2002)

14. Z. Buk, J. Koutník, M. Šnorek, NEAT in HyperNEAT substituted with genetic programming.
in Adaptive and Natural Computing Algorithms (2009), pp. 243–252

15. D.B. Chklovskii, A.A. Koulakov, Maps in the brain: what can we learn from them? Annu. Rev.
Neurosci. 27, 369–392 (2004)

16. P.M. Churchland, Some reductive strategies in cognitive neurobiology. Mind 95, 279–309
(1986)

17. J. Clune, B.E. Beckmann, P.K. McKinley, C. Ofria, Investigating whether HyperNEAT pro-
duces modular neural networks. in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2010) (ACM Press, New York, NY, 2010)

18. J. Clune, C. Ofria, R.T. Pennock, How a generative encoding fares as problem-regularity
decreases. in Proceedings of the 10th International Conference on Parallel Problem Solving
From Nature (PPSN 2008) (Springer, Berlin, 2008), pp. 258–367

19. J. Clune, R.T. Pennock, C. Ofria. The sensitivity of HyperNEAT to different geometric represen-
tations of a problem. in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2009) (ACM Press, New York, NY, USA, 2009)

20. J. Clune, K.O. Stanley, R.T. Pennock, C. Ofria, On the performance of indirect encoding across
the continuum of regularity. IEEE Trans. Evol. Comput. 15(3), 346–367 (2011)

182 D. B. D’Ambrosio et al.

21. J. Clune, K.O. Stanley, R.T. Pennock, C. Ofria, On the performance of indirect encoding across
the continuum of regularity. IEEE Trans. Evol. Comput. 15(3), 346–367 (2011)

22. O.J. Coleman et al., Evolving neural networks for visual processing. Ph.D. thesis, BS Thesis.
The University of New South Wales, 2010

23. D.B. D’Ambrosio, S. Goodell, J. Lehman, S. Risi, K.O. Stanley, Multirobot Behavior Synchro-
nization Through Direct Neural Network Communication (Springer, New York, 2012)

24. D.B. D’Ambrosio, J. Lehman, S. Risi, K.O. Stanley, Evolving policy geometry for scalable
multiagent learning. in Proceedings of the Ninth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2010) (International Foundation for Autonomous
Agents and Multiagent System, 2010), pp. 731–738

25. D.B. D’Ambrosio, J. Lehman, S. Risi, K.O. Stanley, Task switching in multiagent learning
through indirect encoding. in Proceedings of the International Conference on Intelligent Robots
and Systems (IROS 2011) (IEEE, Piscataway, NJ, 2011)

26. D.B. D’Ambrosio, K.O. Stanley, A novel generative encoding for exploiting neural network
sensor and output geometry. in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2007) (ACM Press, New York, NY, 2007)

27. D.B. D’Ambrosio, K.O. Stanley, Generative encoding for multiagent learning. in Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2008) (ACM Press, New
York, NY, 2008)

28. F. Dellaert, Toward a biologically defensible model of development. Master’s thesis, Case
Western Reserve University, Clevekand, OH, 1995

29. P. Deloukas, G.D. Schuler, G. Gyapay, E.M. Beasley, C. Soderlund, P. Rodriguez-Tome, L.
Hui, T.C. Matise, K.B. McKusick, J.S. Beckmann, S. Bentolila, M. Bihoreau, B.B. Birren, J.
Browne, A. Butler, A.B. Castle, N. Chiannilkulchai, C. Clee, P.J. Day, A. Dehejia, T. Dibling,
N. Drouot, S. Duprat, C. Fizames, D.R. Bentley, A physical map of 30,000 human genes.
Science 282(5389), 744–746 (1998)

30. J. Drchal, O. Kapra, J. Koutnik, M. Snorek, Combining multiple inputs in HyperNEAT mobile
agent controller. in 19th International Conference on Artificial Neural Networks (ICANN 2009)
(Berlin, Springer, 2009), pp. 775–783

31. J. Drchal, J. Koutnik, M. Snorek, HyperNEAT controlled robots learn to drive on roads in
simulated environment. in Proceedings of the IEEE Congress on Evolutionary Computation
(CEC-2009) (IEEE Press, Piscataway, NJ, USA, 2009)

32. P. Eggenberger, Evolving Morphologies of Simulated 3D Organisms Based on Differential
Gene Expression (MIT Press, Boston, 1997), pp. 205–213

33. D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: from architectures to learning. Evol. Intell.
1, 47–62 (2008)

34. D. Floreano, J. Urzelai, Evolutionary robots with on-line self-organization and behavioral
fitness. Neural Netw. 13, 431–4434 (2000)

35. J. Gauci, K.O. Stanley, Generating large-scale neural networks through discovering geometric
regularities. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2007) (ACM Press, New York, NY, 2007)

36. J. Gauci, K.O. Stanley, Autonomous evolution of topographic regularities in artificial neural
networks. Neural Comput. 22(7), 1860–1898 (2010)

37. J. Gauci, K.O. Stanley, Indirect encoding of neural networks for scalable go. in Proceedings
of the 11th International Conference on Parallel Problem Solving From Nature (PPSN-2010)
(Springer, 2011), pp. 354–363

38. C.D. Gilbert, T.N. Wiesel, Receptive field dynamics in adult primary visual cortex. Nature 356,
150–152 (1992)

39. F. Gomez, R. Miikkulainen, Incremental evolution of complex general behavior. Adapt. Behav.
5, 317–342 (1997)

40. F. Gomez, R. Miikkulainen, Solving non-Markovian control tasks with neuroevolution (1999),
pp. 1356–1361

41. G.J. Goodhill, M.A. Carreira-Perpinn, Cortical Columns, in Encyclopedia of Cognitive Science,
volume 1, ed. by L. Nadel (MacMillan Publishers Ltd., London, 2002), pp. 845–851

5 HyperNEAT: The First Five Years 183

42. F. Gruau, D. Whitley, L. Pyeatt, in A Comparison Between Cellular Encoding and Direct
Encoding for Genetic Neural Networks, ed. by R. John Koza, D.E. Goldberg, D.B. Fogel, R.L.
Riolo. Genetic Programming 1996: Proceedings of the First Annual Conference (MIT Press,
1996), pp. 81–89

43. E. Haasdijk, A.A. Rusu, A.E. Eiben, HyperNEAT for locomotion control in modular robots.
in Proceedings of the 9th International Conference on Evolvable Systems (ICES 2010) (2010)

44. I. Harvey, The artificial evolution of adaptive behavior. Ph.D. thesis, School of Cognitive and
Computing Sciences, University of Sussex, Sussex, 1993

45. E. Hastings, R. Guha, K.O. Stanley, Evolving content in the galactic arms race video game.
in Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG-09)
(IEEE Press, Piscataway, NJ, 2009)

46. E.J. Hastings, R.K. Guha, K.O. Stanley, Automatic content generation in the galactic arms race
video game. IEEE Trans. Comput. Intell. AI Games 1(4), 245–263 (2010)

47. J.D. Hiller, H. Lipson, Evolving amorphous robots. in Proceedings of the Twelfth International
Conference on Artificial Life (ALIFE XII) (2010)

48. A.K. Hoover, Michael P. Rosario, K.O. Stanley, in Scaffolding for Interactively Evolving Novel
Drum Tracks for Existing Songs, ed. by M. Giacobini. Proceedings of the Sixth European Work-
shop on Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART
2008) (Springer, March 2008), pp. 412–422

49. A.K. Hoover, K.O. Stanley, Exploiting functional relationships in musical composition. Con-
nect. Sci. Spec. Issue Music Brain Cogn. 21(2 and 3), 227–251 (2009)

50. G.S. Hornby, J.B. Pollack, Creating high-level components with a generative representation
for body-brain evolution. Artif. Life 8(3), 223–246 (2002)

51. D.H. Hubel, T.N. Wiesel, Receptive fields and functional architecture in two nonstriate visual
areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)

52. W. Jaskowski, K. Krawiec, B. Wieloch, Neurohunter-an entry for the balanced diet contest
(2008)

53. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, 3rd edn. (Elsevier, New
York, 1991)

54. N. Kashtan, U. Alon, Spontaneous evolution of modularity and network motifs. Proc. Nat.
Acad. Sci. U.S.A. 102(39), 13773 (2005)

55. D.B. Knoester, H.J. Goldsby, P.K. McKinley, Neuroevolution of mobile ad hoc networks. in
Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (ACM,
2010), pp. 603–610

56. N. Kohl, K.O. Stanley, R. Miikkulainen, M. Samples, R. Sherony, Evolving a real-world vehicle
warning system. in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2006) (July 2006), pp. 1681–1688

57. J. Lehman, S. Risi, D.B. D’Ambrosio, K.O. Stanley, Rewarding Reactivity to Evolve Robust
Controllers Without Multiple Trials or Noise (MIT Press, Cambridge, 2012)

58. J. Lehman, K.O. Stanley, Abandoning objectives: evolution through the search for novelty
alone. Evol. Comput. 19(2), 189–223 (2011)

59. A. Liapis, G.N. Yannakakis, J. Togelius, Optimizing visual properties of game content through
neuroevolution. in Seventh Artificial Intelligence and Interactive Digital Entertainment Con-
ference (2011)

60. A. Lindenmayer, Adding Continuous Components to L-Systems, in Lecture Notes in Computer
Science 15, ed. by G. Rozenberg, A. Salomaa (Springer, Heidelberg, 1974), pp. 53–68

61. J. Lowell, S. Grabkovsky, K. Birger, Comparison of NEAT and HyperNEAT performance
on a strategic decision-making problem. in Fifth International Conference on Genetic and
Evolutionary Computing (ICGEC) 2011 (IEEE, 2011), pp. 102–105

62. W. Maass, C.M. Bishop, Pulsed Neural Networks (The MIT Press, Cambridge, 2001)
63. A.P. Martin, Increasing genomic complexity by gene duplication and the origin of vertebrates.

Am. Nat. 154(2), 111–128 (1999)
64. J.F. Miller, Evolving a self-repairing, self-regulating, French flag organism. in Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO-2004) (Springer, Berlin,
2004)

184 D. B. D’Ambrosio et al.

65. R.A. Raff, The Shape of Life: Genes, Development, and the Evolution of Animal Form (The
University of Chicago Press, Chicago, 1996)

66. S. Risi, K.O. Stanley, Indirectly encoding neural plasticity as a pattern of local rules. in Pro-
ceedings of the 11th International Conference on Simulation of Adaptive Behavior (SAB2010)
(Springer, Berlin, 2010)

67. S. Risi, K.O. Stanley, Enhancing ES-HyperNEAT to evolve more complex regular neural net-
works. in GECCO ’11: Proceedings of the 13th Annual Conference on Genetic and Evolution-
ary Computation (2011)

68. S. Risi, K.O. Stanley, An enhanced hypercube-based encoding for evolving the placement,
density and connectivity of neurons. Artif. Life 18(4), 331–363 (2012)

69. S. Risi, K.O. Stanley, A Unified Approach to Evolving Plasticity and Neural Geometry (IEEE,
Piscataway, 2012)

70. S. Risi, S.D. Vanderbleek, C.E. Hughes, K.O. Stanley, How novelty search escapes the decep-
tive trap of learning to learn. in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2009) (ACM Press, New York, NY, USA, 2009)

71. N. Saravanan, D.B. Fogel, Evolving neural control systems. IEEE Expert 10(3), 23–27 (1995)
72. J. Secretan, N. Beato, D.B. D’Ambrosio, A. Rodriguez, A. Campbell, J.T. Folsom-Kovarik,

K.O. Stanley, Picbreeder: a case study in collaborative evolutionary exploration of design space.
Evol. Comput. 19(3), 345–371 (2011)

73. J. Secretan, N. Beato, D.B. D’Ambrosio, A. Rodriguez, A. Campbell, K.O. Stanley, Picbreeder:
evolving pictures collaboratively online. in CHI ’08: Proceedings of the Twenty-Sixth Annual
SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, NY, USA,
2008), pp. 1759–1768

74. K. Sims, Evolving 3D Morphology and Behavior by Competition (MIT Press, Cambridge, MA,
1994), pp. 28–39

75. K.O. Stanley, Exploiting regularity without development. in Proceedings of the AAAI Fall
Symposium on Developmental Systems (AAAI Press, Menlo Park, CA, 2006)

76. K.O. Stanley, Compositional pattern producing networks: a novel abstraction of development.
Genet. Program. Evolvable Mach. Spec. Issue Dev. Syst. 8(2), 131–162 (2007)

77. K.O. Stanley, B.D. Bryant, R. Miikkulainen, Evolving neural network agents in the NERO
video game. in Proceedings of the IEEE 2005 Symposium on Computational Intelligence and
Games (2005)

78. K.O. Stanley, B.D. Bryant, R. Miikkulainen, Real-time neuroevolution in the NERO video
game. IEEE Trans. Evol. Comput. Spec. Issue Evol. Comput. Games 9(6), 653–668 (2005)

79. K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based indirect encoding for evolving
large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

80. K.O. Stanley, N. Kohl, R. Miikkulainen, Neuroevolution of an automobile crash warning sys-
tem. in Proceedings of the Genetic and Evolutionary Computation Conference (2005)

81. K.O. Stanley, R. Miikkulainen, Efficient reinforcement learning through evolving neural net-
work topologies. in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2002) (2002)

82. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol.
Comput. 10, 99–127 (2002)

83. K.O. Stanley, R. Miikkulainen, A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130
(2003)

84. K.O. Stanley, R. Miikkulainen, Competitive coevolution through evolutionary complexifica-
tion. J. Artif. Intell. Res. 21, 63–100 (2004)

85. K.O. Stanley, R. Miikkulainen, Evolving a roving eye for go. in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2004) (Springer, Berlin, 2004)

86. M.E. Taylor, S. Whiteson, P. Stone, Comparing evolutionary and temporal difference meth-
ods in a reinforcement learning domain. in GECCO 2006: Proceedings of the Genetic and
Evolutionary Computation Conference (July 2006), pp. 1321–1328

87. L. Trujillo, G. Olague, E. Lutton, F.F. de Vega, Discovering Several Robot Behaviors, through
Speciation. Applications of Evolutionary Computing: Evoworkshops, Evocomnet. Evofin, Evo-
hot, Evoiasp, Evomusart, Evonum, Evostoc, and Evotranslog (2008), p. 164

5 HyperNEAT: The First Five Years 185

88. P. Verbancsics, K.O. Stanley, Evolving static representations for task transfer. J. Mach. Learn.
Res. (JMLR) 11, 1737–1769 (2010)

89. P. Verbancsics, K.O. Stanley, Task transfer through indirect encoding. in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2010) (ACM Press, New York,
NY, 2010)

90. P. Verbancsics, K.O. Stanley, Constraining connectivity to encourage modularity in Hyper-
NEAT. in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computa-
tion (ACM, 2011), pp. 1483–1490

91. J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz, A.M. Weiner, Molecular Biology of the
Gene, 4th edn. (The Benjamin Cummings Publishing Company Inc, Menlo Park, 1987)

92. D.J. Willshaw, C. Von Der Malsburg, How patterned neural connections can be set up by
self-organization. Proc. R. Soc. Lond. B Biol. Sci. 194(1117), 431–445 (1976)

93. D.H. Wolpert, W. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1, 67–82 (1997)

94. B. Woolley, K.O. Stanley, Evolving a single scalable controller for an octopus arm with a
variable number of segments. in Proceedings of the 11th International Conference on Parallel
Problem Solving From Nature (PPSN-2010) (Springer, 2011), pp. 270–279

95. B.G. Woolley, K.O. Stanley, On the deleterious effects of a priori objectives on evolution and
representation. in GECCO ’11: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation (2011)

96. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)
97. J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J.C. Zagal, H. Lipson, Generating gaits for physical

quadruped robots: evolved neural networks vs. local parameterized search. in Proceedings of
the 13th Annual Conference Companion on Genetic and Evolutionary Computation (ACM,
2011), pp. 31–32

98. M.J. Zigmond, F.E. Bloom, S.C. Landis, J.L. Roberts, L.R. Squire (eds.), Fundamental Neu-
roscience (Academic Press, London, 1999)

Chapter 6
Using the Genetic Regulatory Evolving
Artificial Networks (GReaNs) Platform
for Signal Processing, Animat Control,
and Artificial Multicellular Development

Borys Wróbel and Michał Joachimczak

Abstract Building a system that allows for pattern formation and morphogenesis is
a first step towards a biologically-inspired developmental-evolutionary approach to
generate complex neural networks. In this chapter we present one such system, for
Genetic Regulatory evolving artificial Networks (GReaNs). We review the results
of previous experiments in which we investigated the evolvability of the encoding
used in GReaNs in problems which involved: (i) controlling development of mul-
ticellular 2-dimensional (2D) soft-bodied animats; (ii) controlling development of
3-dimensional (3D) multicellular artificial bodies with asymmetrical shapes and pat-
terning; (iii) directed movement of unicellular animats in 2D; and (iv) processing
signals at the level of single cells. We also report a recent introduction of spiking
neuron models in GReaNs. We then present a road map towards using this system
for evolution and development of neural networks.

1 Introduction

Biological development is a process that starts from one cell and, through multiple cell
divisions, results in a complex 3-dimensional multicellular structure. This process
is remarkably robust to variability in environmental conditions and to damage at
the genetic and cellular level. It is believed that this robustness stems from the fact

B. Wróbel (B) · M. Joachimczak
Systems Modelling Laboratory, IOPAS, Sopot, Poland
e-mail: wrobel@evosys.org

M. Joachimczak
e-mail: mjoach@gmail.com

B. Wróbel
Evolutionary Systems Laboratory, Adam Mickiewicz University in Poznan, Poznan, Poland

B. Wróbel
Institute for Neuroinformatics, University of Zurich/ETHZ, Zurich, Switzerland

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 187
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_6,
© Springer-Verlag Berlin Heidelberg 2014

188 B. Wróbel and M. Joachimczak

that in biological development the interactions are local and that the whole process is
modular and hierarchical [16, 22, 23]. The hope for biologically-inspired engineered
systems is that they will display similar properties. These properties include not only
robustness to noise and damage, but also a remarkable efficiency of the encoding
of complex multicellular structure in compact genomes, and—perhaps linked with
it—the fact that this encoding can be moulded by natural selection to allow quick
adaptation (the property of evolvability).

The process of biological development is shaped by pattern formation and mor-
phogenesis. Pattern formation allows for the laying out of a body plan according to
which cells differentiate in space. Morphogenetic mechanisms, which include dif-
ferential growth and cell migration, result in changes of the shape of the developing
embryo. These mechanisms are based on local interactions between cells. These
interactions can involve physical contact between cells or diffusive substances (mor-
phogens). Local interactions and morphogens allow for the expression of different
genes (and production of different proteins) in cells which share (in principle) the
same genome (the same DNA sequence). The set of proteins that are produced is
controlled by other proteins in the cell which act at various steps of gene expres-
sion. Because these regulatory genes do not need to lie in the genome physically
close to regulated genes, they are called trans-regulators. One important class of
trans-regulators are genes which code for proteins which act at the first step of gene
expression (transcription). Such proteins are called transcriptional factors (TFs). TFs
physically bind to the DNA, to regulatory sequences that are close to sequences of
regulated genes, often close to the regions where transcription starts (promoters).
Such regulatory sequences in DNA are sometimes called cis-regulators. A gene
regulatory network (GRN) is an abstract structure (a graph) that consists of nodes
connected by edges or links. Nodes correspond to regulatory units (cis-regulators
together with regulated genes, which may be trans-regulators). Links correspond
to regulatory interactions—for example, physical binding of transcription factors
to DNA.

Investigation of the general principles of evolution of development and of GRNs
in biological organisms is difficult because the time scales involved are very large.
Our knowledge of evolutionary relationships is incomplete because it is based on
imperfect fossil records or similarities between existing biological entities (genes,
genomes, or phenotypes of contemporary organisms). These similarities do not nec-
essarily stem from shared evolutionary history, and the phylogenetic signal (infor-
mation that allows one to infer evolutionary relationships) is often weakened by
the fact that some traits in some lineages may change in parallel, while other traits
may be affected by multiple changes, each obliterating the trace of the previous
one. Moreover, our knowledge about the development of contemporary organisms
is quite limited, even for several organisms (so called model organisms) for which
the development was investigated in more detail. Although the genomic sequence
is known for quite a number of multicellular organisms, it is difficult to decipher
the information there contained. Finding which DNA sequences encode products
(proteins or RNA) is a difficult endeavour, finding cis-regulators even more so. Our
knowledge of the connectivity of biological GRNs is even more limited.

6 Using the Genetic Regulatory Evolving Artificial Networks (GReaNs) Platform 189

One of the fields of theoretical biology, Artificial Life, provides a parallel approach
to the investigation of the general principles of evolution of life by proposing that
these principles can be inferred using artificial bio-inspired systems (Artificial Life
platforms). We have build such a platform, for Genetic Regulatory evolving artificial
Networks (GReaNs). We have shown that our platform allows for evolution of GRNs
that regulate asymmetrical 3D morphogenesis [10] and pattern formation [14]. We
have also investigated the computational abilities of evolving GRNs at the level of
single cells [12, 13]. GRN topology is encoded in a linear genome in a way that
is inspired by previous work by Eggenberger Hotz [7], but with some important
modifications. Similar models were recently used also by other authors (e.g., [20]),
and several other models were formulated for evolving artificial gene regulatory
networks regulating artificial embryogenesis [1, 3, 4, 6, 8, 18, 19]. An important
feature of our model is that we use no grid in 2D or 3D space in which the cells divide
(continuous space is used). Another feature is that we do not set any limit on the size
of the genome, and thus no limit on the number of nodes in the GRN or the number
of connections between nodes (in practice, the limit is, of course, imposed by the
available computer memory). We believe that removing such constraints allows for
the use of a model to test hypotheses about biological systems that are difficult to
address otherwise.

In this chapter we present our research portfolio by reviewing some results pre-
viously obtained when using GReaNs to control development of 3D multicellular
bodies [10], including the first successful attempt we are aware of at solving the so
called “French flag problem” [24] in 3D [14]. We have also recently used GReaNs
to evolve the development of body and control in 2D multicellular soft-bodied ani-
mats [9, 15]. We present also the results obtained when the regulatory networks in
GReaNs were evolved for computational and signal processing tasks at the level of
single cells [12, 13]. We finally mention the most recent extension to GReaNs—the
introduction of spiking neural models [25]. We conclude with a discussion of how
GReaNs could be extended further to evolve-develop complex neural networks in a
biologically-inspired manner.

2 Gene Regulatory Evolving Artificial Networks Encoded
in Linear Genomes

Artificial gene regulatory networks in GReaNs are specified by a linear genome.
A genome (Fig. 1) is a list of genetic elements grouped in regulatory units. Genetic
elements have several types. The most important division is between trans-regulators
(genes—elements that encode products) and cis-regulators (promoters). Trans-
regulators which have affinity to cis-regulators belonging to a regulatory unit regu-
late genes in this unit. In other words, they act like biological transcriptional factors.
In experiments on multicellular development we allow some products to diffuse
between cells. Such products are called morphogens. In addition, there are special

190 B. Wróbel and M. Joachimczak

Sin (0,0) 1

Sout (10,10) -1

C (0,1) 1

C (10,0.5) 1

T (10,10) -1

C (0,-4) 1

C (10,2) -1

T (10,0) -1

R
eg. unit #1

R
eg. unit #2

0

1

2

3

4

5

6

7
−5 0 5 10

−
5

0
5

10
●

●

●

●

3 (cis)
6 (cis)

2 (cis)

5 (cis)

●

●

4 (trans)
Sout

7 (trans)Sin

10.00

-6.00

2.00

0.40

4.00

Sin

Sout

2 3

4
Reg. unit #1

5 6

7
Reg. unit #2

Fig. 1 Schematic structure of the genome encoding a GRN. Each ‘genetic element’ in the genome
(left) is an ordered set of numbers: an integer specifying the type (‘cis-regulator’, C; ’trans-
regulator’, T ; or ‘special element’, S), real numbers that specify a point in space (which determines
trans-cis affinity), and a sign field (1 or −1, which determine if a trans-cis interaction is inhibitory
or activatory). A ‘regulatory unit’, a node in the ‘gene regulatory network’ (GRN), is at least one
cis-regulator followed by at least one trans-regulator. Special elements correspond to GRN inputs
and outputs. Once the distances between the elements are calculated (middle), the topology of the
regulatory network is determined (right)

elements. These elements correspond to inputs to the GRN (for example, maternal
factors, whose gradient helps cellular differentiation) and outputs, which can be spe-
cific cell actions, such as division, death or differentiation, cell colour, or cell actions
related to actuation.

Connectivity between the nodes in the GRN (nodes correspond to regulatory units)
is determined by the affinity between the trans-regulators and cis-regulators. Special
elements that are outputs can be seen as cis-elements hardwired to a gene coding one
product with a specific function (for example, cell division). Inputs can be seen as
special products whose concentration is determined externally to the cell.

Each genetic element (Fig. 1) corresponds to a point in abstract N -dimensional
space (N is a parameter in the model; we typically use N = 2; the role of this
parameter in the evolvability has been investigated in [11]). This space can be seen
as the abstraction of the space of chemical interactions between macromolecules in
biological space, in which the ‘distance’ (in terms of the similarity of 3D structure,
electrostatic charge, etc.) affects affinity between molecules. In GReaNs, Euclidean
distance between points corresponding to a cis-element and a trans-element deter-
mines product-promoter (trans-cis) affinity.

Concentrations of products in GReaNs change in each simulation step. In most
of our work ([9, 11–17, 26], but see below for the discussion of a model in which
the nodes in the network act as spiking neurons), these concentrations take a real
value in the interval [0,1] and depend on the balance between the production rates
calculated for each regulatory unit, and the degradation rate, equal for each product:

ΔL = (tanh
A

2
− L)Δt (1)

6 Using the Genetic Regulatory Evolving Artificial Networks (GReaNs) Platform 191

where Δt (the integration time step) determines how fast the concentrations change
in relation to the simulation time step, L is the current concentration of all product
encoded in a regulatory unit, and A is the summed activation of all cis-regulators in the
unit. The activation is calculated by taking into account concentrations which bind to
the cis-regulator, having multiplied the concentration of products by their respective
affinities, and taking into account if the interaction is inhibitory or activatory (in the
recent work only additively [15, 16], but see also [13, 14]).

We believe that our model is biologically plausible. For example, cis-elements in
many-to-many structure of regulatory units correspond to the biological reality of a
sometimes high number of regions regulating gene expression, coded ultimately in
the DNA, but which can act also at the level of RNA and/or after translation. The
fact that there can also be many trans-regulators in one regulatory unit corresponds
to the presence of co-expressed genes and/or genes coding multi-domain proteins in
biological genomes. Biologically plausible encoding allows for the introduction of
biologically plausible evolutionary mechanisms, which in turn opens up a possibility
to test hypotheses on the role of these mechanisms in the evolution of genomes and
biological networks.

In a typical evolutionary run in our experiments, the population is initiated with
random genomes, and the size of the population is fixed (for example, to 100 or
300 individuals). When a genetic algorithm is used, it typically takes a few thou-
sand generations, but we have recently investigated a more open-ended evolutionary
algorithm, novelty search, in GReaNS [17]. Genetic operators in GReaNs can act
either within a single genetic element or affect the number or order of elements in the
genome. Operators acting on the level of individual elements cause changes in the
numbers associated with the element. They can result in a modification of the element
type, of whether the element will take an inhibitory or activatory role, or of to coor-
dinates, which affects the affinity of the element (trans-cis interactions). Operators
acting on the level of the genome include duplications and deletions of several con-
tinuous elements and exchange of elements between two genomes (recombination).

3 Asymmetrical Morphogenesis/Pattern Formation
and Development of Multicellular Soft-bodied Animats

The embryogenesis model implemented in GReaNS allows for evolving the devel-
opment of relatively large, non-trivial 2D or 3D morphologies [9, 10, 14–17]. In our
model, development takes place in a continuous 3D (or 2D) fluid-like environment
with elastic cells. The embryo growth starts from a single cell and proceeds through
cell divisions. Each cell is controlled by the same genome and GRN, and has an
associated division vector. Division is asymmetric and can be seen as a creation of
a daughter cell by a mother in the direction of the mother’s division vector. The
daughter inherits product concentrations from the mother. At the time of division the
direction of the daughter’s division vector is set; it depends on the activation of spe-

192 B. Wróbel and M. Joachimczak

Fig. 2 Evolved 3D multicellular bodies with an asymmetrical shape (top) and patterning (bottom).
Right panels show evolved bodies; left panels show voxelized targets

cial genetic elements in the mother. When two cells are close enough, they adhere to
each other, but when they are too close they push one another away. At division, the
daughter cell is placed sufficiently close to the mother that these two cells push each
other away. Fluid drag is simulated to prevent erratic movements. Division occurs
when a cellular output (a product coded by a special element) responsible for division
crosses a pre-set threshold. The concentrations of morphogens perceived in a cell
depend on the distance from the cells which produce them. Otherwise, in terms of
their effects on promoters, they behave in the same way as internally produced TFs.

We use either a specific 3D (or 2D) target for development (see Fig. 2 for
examples), with a fitness function which measures similarity of the developed shape
or pattern of differentiation to the target, or—more recently—a more open-ended
approach in which the search is for multicellular structures which are different from
the structures obtained thus far (novelty search; [17]). This latter approach can be
used to investigate the repertoire of shapes which can evolve in an Artificial Embryol-
ogy system. When evolving embryos with asymmetrical patterning, special products
in the genome determine cell colour.

We have recently extended GReaNs [9, 15] with a transformation of the multi-
cellular structures into 2D soft-bodied animats. These animats are lacking, at this
stage of the development of the GReaNs platform, neuronal control of actuation.
Perhaps, however, this is what makes them interesting—they provide a possibility to
investigate the properties of other ways in which locomotion can be controlled (for
example, through diffusive factors, like in the locomotion of slime molds, see [9] for
discussion), possibly in comparison to neuronal control.

6 Using the Genetic Regulatory Evolving Artificial Networks (GReaNs) Platform 193

Fig. 3 Evolved 2D multicellular soft-bodied animats swimming in a fluid environment with dif-
ferent strategies. One strategy is based on undulation (top; evolved when the drag was high), in the
other a “tail” (moderate drag; middle), and symmetrical “appendages” (low drag; bottom) are used.
All animats move towards the right

The transformation of a multicellular structure to a soft-bodied animat takes sev-
eral steps. First neighbouring cells are connected by edges, then edges are converted
to springs and cells (vertices in the graph) to masses. After that, pressurized chambers
are formed from polygons delineated by the edges. Finally, the outmost edges form
the “skin” of the animat. The locomotion of the animats is possible because each cell
can contract or expand the springs that are connected to it, provoking changes of the
areas of chambers around that cell. The pressurized chambers act as a “hydrostatic
skeleton” of the animat. The animats move in a physical environment with stationary
fluid and drag force acting on each edge of the “skin”.

In the experimental setup explored thus far [9, 15], the fitness function does not
promote directly any particular body shape or mode of locomotion, only the distance
travelled by the centre of animat’s mass during a fixed time. Under such conditions,
various strategies of control of locomotion evolve, including undulation (Fig. 3, top),
the use of a “tail” (Fig. 3, middle) and of symmetrical protrusions (“appendages”;
Fig. 3, bottom). When the fluid drag is low, the use of “appendages” tends to evolve
more commonly (when independent evolutionary runs are considered), while undu-
latory movement evolves more often when the fluid drag is high, and a “tail” strategy
when it is moderate. All these swimming strategies rely on synchronous contraction
and expansion of the springs, with phase shifts along the animat’s front-back and/or
left-right axes.

194 B. Wróbel and M. Joachimczak

4 Towards Biologically-inspired Development
of Artificial Neural Networks

A model of 3D patterning of complex shapes is a first step towards a biological-
inspired approach to the generation of artificial neural networks with non-trivial
behaviour. A platform implementing such a model could aid in the understating
of how the environment shapes biological cognitive systems through evolution and
development. This issue has been thus far investigated to only a limited extent,
using models with apparently poor evolvability (e.g., [6]), lacking biological realism
(e.g., [1], in which genes are limited in number and body subunits do not correspond
to cells), or in which only the brain was evolved (e.g., [8]).

Our long-term plans include the introduction of developing and learning neural
networks in GReaNs and investigation of co-evolution/co-development of multicel-
lular brains and bodies. Before it is possible, our model will have to be extended to
allow cell differentiation into neurons. We hope that this can be achieved efficiently in
a manner similar to that used when investigating differentiation with coloured cells.
In other words, when a product coded by a special element will cross a concentration
threshold, the cell would become a neuron with specific properties (or a sensor, or
actuator). This can be achieved in a manner similar to differentiation into coloured
cells. The parameters of the particular neuron model would be then specified by the
concentrations of special products in the cell (using, for example, 4-parameter expo-
nential [2] or quartic [21] adaptive neurons; concentration of additional products
might influence synaptic properties, including learning).

A larger challenge is to find an appropriate way to specify the connections between
neurons. Our initial proposal will be to use the chemical affinity of special products
in each cell (this is inspired by the role of membrane proteins in determining the
connectivity in the nervous system) rather than to model the growth of neurites
(explicitly or by setting the direction/length of the neurites).

Perhaps the most important and difficult part of this future work will be defining
suitable targets for the evolutionary process. Evolution and development of brains
for artificial bodies requires building a model of the interaction of the bodies with the
physical world. A biologically-inspired approach to this, based on local interactions,
modularity etc., is a challenge in itself. It may be advisable to avoid trying addressing
several large challenges at once. We think that the question of building a model for
specifying the biophysical parameters of the neurons, and of specifying the connec-
tivity in the network, could be approached first using a simpler challenge, perhaps
by evolving artificial neural networks able to perform signal processing tasks.

We have previously investigated both the issue of animat control and signal
processing in GReaNs, but so far only at the level of single cells. In these exper-
iments, multicellular development is missing—a GRN is evolved to directly control
the movement of a unicellular organism in a gradient of chemical substances (chemo-
taxis; [12, 26]) or to process signals at the level of single cells [13].

In the experiments on uni-cellular chemotaxis, a cell is converted to a simple
animat with sensors for chemical substances at the front and actuators which work

6 Using the Genetic Regulatory Evolving Artificial Networks (GReaNs) Platform 195

Fig. 4 Evolved behaviour of unicellular animats controlled by GRNs. An animat (top) has two
sensors and two actuators (thrusters). The best evolved animat efficiently searches for one chem-
ical (“food”) and avoids the other (“poison”) on a random map (middle). Initially, blue sources
correspond to “food” and red to “poison”. After 5 “‘food” sources are reached (empty circles),
the function of the substances changes. The fitness function rewarded animats that searched for
“food” and avoided “poison” during both phases of the evaluation. The best individual obtained in
another independent evolutionary run (bottom) searches efficiently for the blue sources but uses a
suboptimal strategy for red

196 B. Wróbel and M. Joachimczak

0

1

0 200 400 600 800

IN

0

1

0 200 400 600 800

OUT
TGT

0

1

0 200 400 600 800

IN

0

1

0 200 400 600 800

OUT
TGT

0

1

0 200 400 600 800

IN

0

1

0 200 400 600 800

OUT
TGT

time time

0

1

0 100 200 300 400 500

IN1
IN2

0

1

0 100 200 300 400 500

OUT
TGT

0

1

0 100 200 300 400 500

IN1
IN2

0

1

0 100 200 300 400 500

OUT
TGT

0

1

0 100 200 300 400 500

IN1
IN2

0

1

0 100 200 300 400 500

OUT
TGT

0

1

0 100 200 300 400 500

IN1
IN2

0

1

0 100 200 300 400 500

OUT
TGT

0

1

0 100 200 300 400 500

IN1
IN2

0

1

0 100 200 300 400 500

OUT
TGT

time time

Fig. 5 Processing signals using evolving GRNs. Top three time courses (input-output pairs) of the
best GRN evolved for multiplication of the spikes in the concentration of the input substance by
two. Bottom the behaviour of a different GRN, evolved to add the spikes in two inputs, using five
input-output pairs. The fitness function rewarded the proximity of the output to target (dashed lines)
and changing concentration of the TF read as output

as thrusters at the back (Fig. 4 top). Animats are placed individually in a continu-
ous 2D environment with randomly placed sources from which chemical substances
diffuse. If the cell reaches the source, the source is removed together with all the
substance that diffused from this source. The fitness function during the genetic algo-
rithm rewards the individuals for reaching the sources, and thus collecting chemical
resources. It is also possible to reward the animats for searching for one substance
(“food”) and avoiding the other (“poison”), and to investigate the evolution of various
behaviours (which evolve because of the of the presence of suboptimal peaks in the
fitness landscape) in experiments in which the role of the substances switches (Fig. 4
middle) or in experiments in which some resources have a provisional role, while
others are important for reproduction (we have called this paradigm “the Search for
Beauty” [26]).

Our experiments on the evolution of chemotaxis show that the regulatory networks
in GReaNs are able to process simple sensory signals. But they can also be used for
more complex signal processing [12]. A genetic algorithm can be used to obtain
cells able to perform simple computational tasks, for example, multiplication by
two (Fig. 5 top), or addition (Fig. 5 bottom). In such experiments, input to a cell is

6 Using the Genetic Regulatory Evolving Artificial Networks (GReaNs) Platform 197

V [mV]

V [mV]

-70
-60
-50
-40
-30

0 50 100 150 200 250 300 350 400 450 500

-70
-60
-50
-40
-30

0 50 100 150 200 250 300 350 400 450 500

time [ms]

Fig. 6 Evolving spiking neural networks in GReaNs. A network of LIF neurons was evolved with
GReaNs so that the spikes produced by the output neuron (blue line) match the spikes of ‘one’
AdEx neuron (red dashed line), shifted by 10 ms (top) or 20 ms (middle) in response to a specific
Poisson spike train (green, bottom)

provided as an externally determined concentration of one or two substances, while
the concentration of one of products is read as the output. We do not permit direct
connections between the input(s) and the output.

Our most recent extension to GReaNs [25] is the introduction of spiking neural
models—the leaky integrate and fire model with a fixed threshold (LIF; [5]), and
the adaptive exponential model [2]. This is the one of the stepping stones towards
evolving, developing, and learning neural networks in GReaNs, but at this stage it
amounts to exchanging the equation governing the regulatory units (Eq. 1) for the
equations appropriate for a given neuron model (LIF or AdEx). In our preliminary
experiments, the network of such spiking computational units is evolved to approxi-
mate an arbitrary spike train or to process a specific input. An example of a latter task
is to match the spike train produced by one neuron (again, either LIF or AdEx) as a
response to a specific input (a Poission spike train) (Fig. 6). Since in these experi-
ments we do not permit direct connections between input and output regulatory units,
and because synaptic connections introduce delay, a perfect match is not possible
unless the fitness function rewards a match with a shifted desired pattern. The task
can be made more difficult by increasing the shift. Although it is possible in principle
to solve this task using a feed-forward network, our preliminary results indicate that
the evolved networks do not use this approach.

To sum up, it seems that we are now in a position to create such a multi-scale system
using GReaNs. This system would include evolution, development, and behaviour,
with the separation of these three time scales, and also a biologically-inspired model
of the genome, of the developmental process, and of the neural network. On the
road towards building this system, we plan to re-use parts of the existing software

198 B. Wróbel and M. Joachimczak

(the simulation platform that allows for development and interaction with artificial
physics, and the already implemented models of spiking neurons).

Of course, building such a platform always requires trading off some (or quite a
lot) of the biological realism for computational efficiency—efficiency at the level of
simulating cells, bodies, and the physical world, but also, and perhaps more impor-
tantly, in terms of the search space for the evolutionary process. In the platform we
plan to create there would be, similarly to biological organisms, two levels of con-
trol using regulatory networks—each cell would be controlled by a GRN, while the
behaviour of the whole animat would be controlled by the artificial neural network
formed by these cells.

5 Summary

Our Artificial Life/Artificial Embryogenesis platform, GReaNs, provides a
biologically-inspired approach towards the generation of multicellular bodies. The
properties of these bodies emerge from the local interactions between cells, and
the behaviour of the cells emerges from local molecular interactions at the level of
genes. We have previously used this approach to evolve development of multicellular
bodies with complex shapes and with simple cell differentiation. Recent extensions
to GReaNs include (i) a procedure to convert the multicellular structures to soft-
bodied animats, and (ii) two models of spiking neurons. We are now in a position
to integrate various elements in GReaNs into a multi-scale system for evolution of
development of multicellular bodies with brains which could process information
and which could possibly control these bodies in a simulated physical environment.

Acknowledgments The work in BW’s lab is supported by the Polish National Science Centre
(Project 2011/03/B/ST6/00399), with computational resources provided by the Tri-city Academic
Computer Centre (TASK) and the Interdisciplinary Centre for Molecular and Mathematical Model-
ing (ICM, University of Warsaw; Project G33-8). We are grateful to Rene Doursat, Taras Kowaliw
and Volker Steuber for discussions, and to Ahmed Abdelmotaleb for technical assistance in prepar-
ing Fig. 6.

References

1. J.C. Bongard, R. Pfeifer, Evolving complete agents using artificial ontogeny, in Morpho-
functional Machines: The New Species, ed. by F. Hara, R. Pfeifer (Springer, Japan, 2003),
pp. 237–258

2. R. Brette, W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description
of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)

3. A. Chavoya, I.R. Andalon-Garcia, C. Lopez-Martin, M.E. Meda-Campaña, Use of evolved
artificial regulatory networks to simulate 3D cell differentiation. Biosystems 102(1), 41–48
(2010)

6 Using the Genetic Regulatory Evolving Artificial Networks (GReaNs) Platform 199

4. S. Cussat-Blanc, H. Luga, Y. Duthen, From single cell to simple creature morphology and
metabolism, in Artificial Life XI: Proceedings of the 11th International Conference on the
Simulation and Synthesis of Living Systems (MIT Press, 2008), pp. 134–141

5. P. Dayan, L.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling
of Neural Systems (The MIT Press, 1st edition, Cambridge, 2001)

6. F. Dellaert, R.D. Beer, A developmental model for the evolution of complete autonomous
agents, in From Animals to Animats 4: Proceedings of the 4th International Conference on
Simulation of Adaptive Behavior (SAB 1996) (MIT Press, 1996), pp. 393–401

7. P. Eggenberger Hotz, Evolving morphologies of simulated 3D organisms based on differential
gene expression, in Proceedings of the 4th European Conference on Artificial Life (ECAL 1997)
(MIT Press, 1997), pp. 205–213

8. N. Jakobi, Harnessing morphogenesis, in Proceedings of Information Processing in Cells and
Tissues (1995), pp. 29–41

9. M. Joachimczak, T. Kowaliw, R. Doursat, B. Wróbel, Brainless bodies: controlling the develop-
ment and behavior of multicellular animats by gene regulation and diffusive signals, in Artificial
Life XIII: Proceedings of the 13th International Conference on the Simulation and Synthesis
of Living Systems (MIT Press, 2012), pp. 349–356

10. M. Joachimczak, B. Wróbel, Evo-devo in silico: a model of a gene network regulating mul-
ticellular development in 3D space with artificial physics, in Artificial Life XI: Proceedings
of the 11th International Conference on the Simulation and Synthesis of Living Systems (MIT
Press, 2008), pp. 297–304

11. M. Joachimczak, B. Wróbel, Complexity of the search space in a model of artificial evolution
of gene regulatory networks controlling 3D multicellular morphogenesis. Adv. Complex Syst.
12(03), 347–369 (2009)

12. M. Joachimczak, B. Wróbel, Evolving gene regulatory networks for real time control of foraging
behaviours, in Artificial Life XII: Proceedings of the 12th International Conference on the
Simulation and Synthesis of Living Systems (MIT Press, 2010), pp. 348–355

13. M. Joachimczak, B. Wróbel, Processing signals with evolving artificial gene regulatory net-
works, in Artificial Life XII: Proceedings of the 12th International Conference on the Simulation
and Synthesis of Living Systems (MIT Press, 2010), pp. 203–210

14. M. Joachimczak, B. Wróbel, Evolution of the morphology and patterning of artificial embryos:
scaling the tricolour problem to the third dimension, in Advances in Artificial Life. Darwin
Meets von Neumann: Proceedings of the 10th European Conference on Artificial Life (ECAL
2009), vol. 5777, Lecture Notes in Computer Science (Springer, 2011), pp. 35–43

15. M. Joachimczak, B. Wróbel, Co-evolution of morphology and control of soft-bodied multicel-
lular animats, in Proceedings of the 14th International Conference on Genetic and Evolutionary
Computation, GECCO ’12 (ACM, 2012), pp. 561–568

16. M. Joachimczak, B. Wróbel, Evolution of robustness to damage in artificial 3-dimensional
development. Biosystems 109(3), 498–505 (2012)

17. M. Joachimczak, B. Wróbel, Open ended evolution of 3D multicellular development controlled
by gene regulatory networks, in Artificial Life XIII: Proceedings of the 13th International
Conference on the Simulation and Synthesis of Living Systems (MIT Press, 2012), pp. 67–74

18. J.F. Knabe, C.L. Nehaniv, M.J. Schilstra, Evolution and morphogenesis of differentiated mul-
ticellular organisms: autonomously generated diffusion gradients for positional information,
in Artificial Life XI: Proceedings of the 11th International Conference on the Simulation and
Synthesis of Living Systems (MIT Press, 20080, pp. 321–328

19. S. Kumar, P.J. Bentley, Biologically inspired evolutionary development, in Proceedings of the
5th International Conference on Evolvable Systems: From Biology to Hardware (ICES 2003),
vol. 2606, Lecture Notes in Computer Science (Springer, 2003), pp. 57–68

20. L. Schramm, B. Sendhoff, An animat’s cell doctrine, in ECAL 2011: Proceedings of the 11th
European Conference on the Synthesis and Simulation of Living Systems (MIT Press, 2011),
pp. 739–746

21. J. Touboul, Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons.
SIAM J. Appl. Math 68(4), 1045–1079 (2008)

200 B. Wróbel and M. Joachimczak

22. A. Wagner, Robustness and evolvability: a paradox resolved. Proc. R. Soc. B: Biol. Sci.
275(1630), 91–100 (2008)

23. M.J. West-Eberhard, Developmental Plasticity and Evolution (Oxford University Press, 1st
edition, USA, 2003)

24. L. Wolpert, The French Flag problem: a contribution to the discussion on pattern development
and regulation, in The Origin of Life: Toward a Theoretical Biology ed. by C.H. Waddington
(Edinburgh University Press, Edinburgh, 1968), pp. 125–133

25. B. Wróbel, A. Abdelmotaleb, M. Joachimczak, Evolving spiking neural networks in the GRe-
aNs (gene regulatory evolving artificial networks) platform, in EvoNet2012: Evolving Net-
works, from Systems/Synthetic Biology to Computational Neuroscience Workshop at Artificial
Life XIII (2012) pp. 19–22

26. B. Wróbel, M. Joachimczak, A. Montebelli, R. Lowe, The search for beauty: evolution of
minimal cognition in an animat controlled by a gene regulatory network and powered by a
metabolic system, vol. 7426 (Springer, Berlin Heidelberg, 2012), pp. 198–208

Chapter 7
Constructing Complex Systems Via
Activity-Driven Unsupervised Hebbian
Self-Organization

James A. Bednar

Abstract How can an information processing system as complex and as powerful
as the human cerebral cortex be constructed from the limited information available
in the genome? Answering this scientific question has the potential to revolutionize
how computing systems for manipulating real-world data are designed and built.
Based on an extensive array of physiological, anatomical, and imaging data from
the primary visual cortex (V1) of mammals, we propose a relatively simple biolog-
ically based developmental architecture that accounts for most of the demonstrated
functional properties of V1 neurons. Given the overall similarity between cortical
regions, and the absence of V1-specific circuitry in the model architecture, we expect
similar principles to apply throughout the cerebral cortex. The architecture consists
of a network of simple artificial V1 neurons with initially unspecific connections
that are modified by Hebbian learning and homeostatic plasticity, driven by input
patterns from other neural regions and ultimately from the external world. Through
an unsupervised developmental process, the model neurons begin to display the
major known functional properties of V1 neurons, including receptive fields and
topographic maps selective for all of the major low-level visual feature dimensions,
realistic specific lateral connectivity underlying surround modulation and adapta-
tion such as visual aftereffects, realistic behavior with visual contrast, and realistic
temporal responses. In each case these relatively complex properties emerge from
interactions between simple neurons and between internal and external drivers for
neural activity, without any requirement for supervised learning, top-down feedback
or reinforcement, neuromodulation, or spike-timing dependent plasticity. The model
also unifies explanations of a wide variety of phenomena previously considered dis-
tinct, with the same adaptation mechanisms leading to both long-term development
and short-term plasticity (aftereffects), the same subcortical lateral interactions pro-
viding both gain control and accounting for the time course of neural responses,

J. A. Bednar (B)

Institute for Adaptive and Neural Computation, The University of Edinburgh,
10 Crichton St, Edinburgh EH8 9AB, UK
e-mail: jbednar@inf.ed.ac.uk

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 201
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_7,
© Springer-Verlag Berlin Heidelberg 2014

202 J. A. Bednar

and the same cortical lateral interactions leading to complex cell properties, map
formation, and surround modulation. This relatively simple architecture thus sets a
baseline for explanations of neural function, suggesting that most of the develop-
ment and function of V1 can be understood as unsupervised learning, and setting the
stage for demonstrating the additional effects of higher- or lower-level mechanisms.
The architecture also represents a simple, scalable approach for specifying complex
data-processing systems in general.

1 Introduction

Current technologies for building complex information processing machines, partic-
ularly for dealing with continuous and noisy real-world data, remain far behind those
of animals and particularly humans. Artificial neural networks originally inspired by
biological nervous systems are in wide use for some tasks, and indeed have been
shown to be able to perform any Turing-computable function in theory [48]. How-
ever, actually specifying and constructing a network capable of performing a par-
ticular complex task remains an open problem. With this in mind, it is important
to study how such networks are specified and developed in animals and humans, to
give us clues for how to build similarly powerful artificial systems. Understanding
how systems as complex as the human brain can be built has the potential to revolu-
tionize how computing systems for manipulating real-world data are designed and
constructed.

The cerebral cortex of mammals is a natural starting point for study, since the
cortex is the largest part of the human brain and serves a wide variety of sensory
and motor functions in mammals, yet has a relatively uniform structure. The cortical
surface can be divided into anatomically distinguishable cortical areas, of which there
are dozens in humans, but perhaps the most commonly studied is the primary visual
cortex (V1). After processing by circuitry in the retina, visual information travels
from the Retinal Ganglion Cells (RGCs) of the eye to the lateral geniculate nucleus
(LGN) of the thalamus, and from the thalamus goes directly to cells in V1. This
simple, direct pathway, along with the unparallelled ease with which visual patterns
can be controlled in the laboratory, means that V1 provides a unique opportunity for
running well-controlled experiments for determining neural function.

Like the rest of the cerebral cortex, V1 has a laminar and columnar structure, i.e.,
it is composed of multiple thin layers (typically numbered 1–6) parallel to the cortical
surface, with neurons at corresponding locations in each layer forming “columns”
that have similar functional properties, while more distant columns tend to differ
in their properties. This predominantly two-dimensional functional organization is
often measured using experimental imaging techniques that record activity across
the cortical surface in response to a visual image, which obscures any differences
in neural activity across the layers but does provide a useful large-scale measure
of neural organization. Complementary information about visual responses of indi-
vidual neurons or small groups (typically measured as firing rates, i.e., spikes per

7 Constructing Complex Systems Via Activity-Driven 203

second) can be measured using microelectrodes placed nearby, providing detailed
temporal responses but necessarily sampling from only a few neurons.

Studies using these techniques in monkeys, cats, ferrets, and tree shrews over the
past half century have established a wide range of properties of V1 neurons that
relate to their function in visual processing (reviewed in [7, 31]):

1. V1 neurons respond selectively, in terms of their average firing rate, to specific
low-level visual features such as the position, orientation, eye of origin, motion
direction, spatial frequency, interocular disparity, or color of a small patch of an
image.

2. V1 neurons in most laboratory-animal species are organized into smooth topo-
graphic maps for some or all of these visual features, with specific patterns of
feature preference variation (e.g. in orientation preference) across the cortical
surface, and specific interactions between these maps.

3. V1 neurons in these maps are laterally connected with connection strengths and
probabilities that reflect their selectivities (e.g. with stronger connections between
neurons preferring similar orientations).

4. Due in part to these lateral connections, V1 neuronal responses depend on activ-
ities of both neighboring and more distant V1 neurons, yielding complex but
systematic visual surround modulation effects.

5. V1 neurons exhibit contrast-invariant tuning for the features for which they are
selective, such that selectivity is preserved even for strong input patterns. This
property rules out most simple (linear) models of visual feature selectivity.

6. Many V1 neurons have complex spatial pattern preferences that cannot be char-
acterized using a simple template of their preferred pattern, e.g. responding to
similar patterns with some tolerance to the exact retinal position of the pattern.

7. Response properties of V1 neurons exhibit long-term and short-term plasticity and
adaptation, measurable psychophysically as visual aftereffects, which suggests
ongoing dynamic regulation of responses.

8. V1 neuron responses to changes in visual inputs exhibit a stereotyped temporal
pattern, with transiently high responses at pattern onset and offset and a lower
sustained response, which biases neural responses towards non-static stimuli.

These properties suggest a wide range of specific roles for V1 neurons in visual
processing, and explaining how V1 neurons come to behave in this way would be a
significant step towards understanding the cerebral cortex in general.

One way to account for the above V1 properties would be to build specific math-
ematical models for each property or a small set of them, and indeed many such
models have been devised to account for aspects of V1 visual processing in adult
animals. However, such an approach is unlikely to lead to a general explanation for
cortical function, both because such models cannot easily be combined into a full
visual processing system, and also because the models are specifically tailored by
the modeller to account for that particular function, and thus do not generalize to
arbitrary data processing tasks.

This chapter outlines and reviews results from an alternative “system building”
approach, focusing on providing a general domain-independent explanation for how

204 J. A. Bednar

all of the above properties of V1 could arise from a biologically plausible and initially
unspecific cortical circuit. Specifically, my colleagues and I have developed closely
interrelated models of V1 accounting for each property using only a small set of plau-
sible principles and mechanisms, within a consistent biologically grounded frame-
work:

1. Single-compartment (point neuron) firing-rate (i.e., non-spiking) retinal ganglion
cell, lateral geniculate nucleus, and V1 model neurons (see Fig. 1),

2. Hardwired subcortical pathways to V1, including the main LGN or RGC cell
types that have been identified,

3. Initially roughly retinotopic topographic projections from the eye to the LGN and
from the LGN to V1, connecting corresponding areas of each region,

4. Initially roughly isotropic (i.e., radially uniform) local connectivity to and
between neurons in layers in V1, connecting neurons non-specifically to their
local and more distant neighbors,

5. Natural images and spontaneous subcortical input activity patterns that lead to
V1 responses,

6. Hebbian (unsupervised activity-dependent) learning with normalization for syna-
pses on V1 neurons,

7. Homeostatic plasticity (whole-cell adaptation of excitability to keep the average
activity of each V1 neuron constant), and

8. Various modeller-determined parameters associated with each of these mecha-
nisms, eventually intended to be set through self-regulating mechanisms.

Properties and mechanisms not necessary to explain the phenomena listed above,
such as spiking, spike-timing dependent plasticity, detailed neuronal morphology,
feedback from higher areas, neuromodulation, reinforcement learning, and super-
vised learning have been omitted, to clearly focus on the aspects of the system most
relevant to those phenomena. The overall hypothesis is that much of the complex
structure and properties observed in V1 emerges from interactions between relatively
simple but highly interconnected computing elements, with connection strengths and
patterns self-organizing in response to visual input and other sources of neural activ-
ity. Through visual experience, the geometry and statistical regularities of the visual
world become encoded into the structure and connectivity of the visual cortex, leading
to a complex functional cortical architecture that reflects the physical and statistical
properties of the visual world.

At present, many of the results have been obtained independently in a wide variety
of separate projects performed with different collaborators at different times. How-
ever, all of the models share the same underlying principles outlined above, and all
are implemented using the same simulator and a small number of underlying com-
ponents. See [7] for an overview of each of the different models and how they fit
together; here we focus on two representative models that that account for the bulk of
the above properties. First, we present a simple example of a single-V1-layer GCAL
(gain-control adaptive laterally connected) model of the development of orientation
preferences and orientation maps for a single eye (Fig. 1). Second, we present some
results for a larger model that includes motion direction and ocular dominance as

7 Constructing Complex Systems Via Activity-Driven 205

ON

V1

OFF

Photoreceptors

Fig. 1 Basic GCAL model architecture. In the simplest case, GCAL consists of a greyscale matrix
representing the photoreceptor input, a pair of neural sheets representing the ON-center and OFF-
center pathways from the photoreceptors to V1, and a single sheet representing V1. Each sheet is
drawn here with a sample activity pattern resulting from one natural image patch. Each projection
between sheets is illustrated with an oval showing the extent of the connection field in that projection,
with lines converging on the target of the projection. Lateral projections, connecting neurons within
each sheet, are marked with dashed ovals. Projections from the photoreceptors to the ON and OFF
sheets, and within those sheets, are hardwired to mimic a specific class of response types found in
the retina and LGN, in this case monochromatic center-surround neurons with a fixed spatial extent.
Connections to and between V1 neurons adapt via Hebbian learning, allowing initially unselective
V1 neurons to exhibit the range of response types seen experimentally, by differentially weighting
each of the subcortical inputs (from the ON and OFF sheets) and inputs from neighboring V1
neurons

well (Fig. 2). Results for color, disparity, spatial frequency, complex cells, and sur-
round modulation require still larger models not discussed here, but implemented
using similar principles [3, 5, 7, 38, 40]. The goal for each of these models is the
same—to explain how a cortical network can start from an initially undifferentiated
state, to wire itself into a collection of neurons that behave, at a first approximation,
like those in V1. Because such a model starts with no specializations (at the cortical
level) specific to vision and would organize very differently when given different
inputs, it also represents a general explanation for the development and function of
any sensory or motor area in the cortex.

2 Architecture

All of the models whose results are presented here are implemented in the Topo-
graphica simulator, and are freely available along with the simulator from www.
topographica.org. Both the basic and large models are described using the same

www.topographica.org
www.topographica.org

206 J. A. Bednar

Fig. 2 Larger GCAL model architecture. Single-V1-sheet GCAL model for orientation, ocular
dominance, and motion direction. This model consists of 19 neural sheets and 50 separate projec-
tions between them. Again, each sheet is drawn with a sample activity pattern resulting from one
natural image, and all sheets below V1 are hardwired to cover a range of response types found in
the retina and LGN. In this model, V1 neurons can become selective along many possible dimen-
sions by various weightings for the incoming activity patterns. Other GCAL models add additional
subcortical inputs (e.g. for color cone types) or additional populations and layers in V1. Reprinted
from [13]

equations shown below, previously presented in Refs. [7, 29] but here extended to
include temporal calibration from the TCAL model [51]. The model is intended to
represent the visual system of the macaque monkey, but relies on data from studies
of cats, ferrets, tree shrews, or other mammalian species where clear results are not
yet available from monkeys.

2.1 Sheets and Projections

Each Topographica model consists of a set of sheets of neurons and projections (sets
of topographically mapped connections) between them. A model has sheets repre-
senting the visual input (as a set of activations in photoreceptor cells), sheets imple-
menting the transformation from the photoreceptors to inputs driving V1 (expressed
as a set of ON and OFF LGN cell activations), and sheets representing neurons in V1.
The simple GCAL model (Fig. 1) has 4 such sheets, the larger one (Fig. 2) has 19,
and the complete unified model described in [7] has 29, each representing different
topographically organized populations of cells in a particular region.

7 Constructing Complex Systems Via Activity-Driven 207

Each sheet is implemented as a two-dimensional array of firing-rate neurons. The
Topographica simulator allows parameters for sheets and projections to be speci-
fied in measurement units that are independent of the specific grid sizes used in a
particular run of the simulation. To achieve this, Topographica sheets provide multi-
ple spatial coordinate systems, called sheet and matrix coordinates. Where possible,
parameters (e.g. sheet dimensions or connection radii) are expressed in sheet coor-
dinates, expressed as if the sheet were a continuous neural field rather than a finite
grid. In practice, of course, sheets are always simulated using some finite matrix
of units. Each sheet has a parameter called its density, which specifies how many
units (matrix elements) in the matrix correspond to a length of 1.0 in continuous
sheet coordinates, which allows conversion between sheet and matrix coordinates.
When sizes are scaled appropriately [8], results are independent of the density used,
except at very low densities or for simulations with complex cells, where complexity
increases with density [4]. Larger areas can be simulated easily [8], but require more
memory and simulation time.

A projection to an m×m sheet of neurons consists of m2 separate connection
fields, one per target neuron, each of which is a spatially localized set of connec-
tions from the neurons in one input sheet that are near the location corresponding
topographically to the target neuron. Figures 1 and 2 show one sample connection
field (CF) for each projection, visualized as an oval of the corresponding radius on
the input sheet (drawn to scale), connected by a cone to the neuron on the target
sheet (if different). The connections and their weights determine the specific proper-
ties of each neuron in the network, by differentially weighting inputs from neurons
of different types and/or spatial locations. Each of the specific types of sheets and
projections is described in the following sections.

2.2 Images and Photoreceptor Sheets

The basic GCAL model (Fig. 1) has one input sheet, representing responses of pho-
toreceptors of one cone class in one retina, while the larger GCAL model considered
here has two, adding an additional set from another eye (Fig. 2). The full unified
GCAL model of all the input dimensions includes six input sheets (three different
cone types in each eye; not shown or analyzed further here). For the larger model,
input image pairs (left, right) were generated by choosing one image randomly from
a database of single calibrated images, selecting a random patch within the image, a
random direction of motion translation with a fixed speed (described in Ref. [10]),
and a random brightness difference between the two eyes (described in Ref. [31]).
These modifications are intended as a simple model of motion and eye differences, to
allow development of direction preference, ocular dominance, and disparity maps,
until suitable full-motion stereo calibrated-color video datasets of natural scenes
are available. Simulated retinal waves can also be used as inputs, to provide ini-
tial receptive-field and map structure before eye opening, but are not required for
receptive-field or map development in the model [11].

208 J. A. Bednar

2.3 Subcortical Sheets

The subcortical pathway from the photoreceptors to the LGN and then to V1 is
represented as a set of hardwired subcortical cells with fixed connection fields (CFs)
that determine the response properties of each cell. These cells represent the complete
processing pathway to V1, including circuitry in the retina (including the retinal
ganglion cells), the optic nerve, the lateral geniculate nucleus, and the optic radiations
to V1. Because the focus of the model is to explain cortical development given its
thalamic input, the properties of these RGC/LGN cells are kept fixed throughout
development, for simplicity and clarity of analysis.

Each distinct RGC/LGN cell type is grouped into a separate sheet, each of which
contains a topographically organized set of cells with identical properties but respond-
ing to a different topographically mapped region of the retinal photoreceptor input
sheet. Figure 1 shows the two main different spatial response types used in the GCAL
models illustrated here, ON (with an excitatory center) and OFF (with an excitatory
surround). All of these cells have Difference-of-Gaussian (DoG) receptive fields,
and thus perform edge enhancement at a particular size scale. Additional cell classes
can easily be added as needed for spatial frequency (with multiple DoG sizes) or
color (with separate cone types for the center and surround Gaussians) simulations.
Figure 2 shows additional ON and OFF cell classes with different delays, added to
allow development of motion preferences.

For the ON and OFF cells in the larger model, there are multiple copies with
different delays from the retina. These delays represent the different latencies in the
lagged versus non-lagged cells found in cat LGN [44, 59], and allow V1 neurons to
become selective for the direction of motion. Many other sources of temporal delays
would also lead to direction preferences, but have not been tested specifically.

2.4 Cortical Sheets

The simulations reported in this chapter use only a single V1 sheet for simplicity, but
in the full unified model, V1 is represented by multiple cortical sheets representing
different cell types and different V1 layers [3, 7]. In this simplified version, cells
make both excitatory and inhibitory connections (unlike actual V1 neurons), and all
cells receive direct input from LGN cells (unlike many V1 neurons). Even so, the
single-sheet V1 can demonstrate most of the phenomena described above, except for
complex cells (which can be obtained by adding a separate population of cells without
direct thalamic input [4]) and contrast-dependent surround modulation effects (which
require separate populations of inhibitory and excitatory cells [3]).

The behavior of the cortical sheet is primarily determined by the projections
to and within it. Each of these projections is initially non-specific other than the
initial rough topography, and becomes selective only through the process of self-
organization (described below), which increases some connection weights at the
expense of others.

7 Constructing Complex Systems Via Activity-Driven 209

2.5 Activation

The model is simulated in a series of discrete time steps with step size δt = 0.05
(roughly corresponding to 12.5 ms of real time). At time 0.0, the first image is drawn
on the retina, and the activation of each unit in each sheet is updated for the remaining
19 steps before time 1.0, when a new pattern is selected and drawn on the retina (and
similarly until the last input pattern is drawn at time 10,000). Each image patch on the
retina represents one visual fixation (for natural images) or a snapshot of the relatively
slowly changing spatial pattern of spontaneous activity (such as the well-documented
retinal waves [60]). Thus the training process consists of a constant retinal activation,
followed by recurrent processing at the LGN and cortical levels. For one input pattern,
assume that the input is drawn on the photoreceptors at time t and the connection
delay (constant for all projections) is defined as 0.05. Then at t + 0.05 the ON and
OFF cells compute their responses, and at t + 0.010 the thalamic output is delivered
to V1, where it similarly propagates recurrently through the intracortical projections
to the cortical sheet(s) every 0.05 time steps. As described in Sect. 3.4, a much smaller
step size of δt = 0.002 allows replication of the detailed time course of responses to
individual patterns, but this relatively coarse step size of 0.05 is more practical for
simulations of long-term processes like neural development.

Images are presented to the model by activating the retinal photoreceptor units.
The activation value Ψi,P of unit i in photoreceptor sheet P is given by the brightness
of that pixel in the training image.

For each model neuron in the other sheets, the activation value is computed based
on the combined activity contributions to that neuron from each of the sheet’s incom-
ing projections. The activity contribution from a projection is recalculated whenever
its input sheet activity changes, after the corresponding connection delay. For each
unit j in a target sheet and an incoming projection p from sheet sp, the activity contri-
bution is computed from activations in the corresponding connection field Fjp. Fjp

consists of the local neighborhood around j (for lateral connections), or the local
neighborhood of the topographically mapped location of j on sp (for a projection
from another sheet); see examples in Figs. 1 and 2. The activity contribution C jp to
j from projection p is then a dot product of the relevant input with the weights in
each connection field:

C jp(t + δt) =
∑

i∈Fjp

ηi (t)ωi j,p (1)

where unit i is taken from the connection field Fjp of unit j , ηi (t) is the activation
of unit i , and ωi j,p is the connection weight from i to j in that projection. Across
all projections, multiple direct connections between the same pair of neurons are
possible, but each projection p contains at most one connection between i and j ,
denoted by ωi j,p.

For a given cortical unit j , the activity η j (t + δt) is calculated from a rectified
weighted sum of the activity contributions C jp(t + δt):

210 J. A. Bednar

η j V (t + δt) = λ f

(∑
p

γpC jp(t + δt)

)
+ (1 − λ)η j V (t) (2)

where f is a half-wave rectifying function with a variable threshold point (θ) depen-
dent on the average activity of the unit, as described in the next subsection, and V
denotes one of the cortical sheets. λ is a time-constant parameter that defines the
strength of smoothing of the recurrent dynamics in the network, chosen to match the
transient behaviour of V1 neurons; here λ = 1 throughout except that λ = 0.01 for
the simulations of the detailed time course of responses (Sect. 3.4).

Each γp is an arbitrary multiplier for the overall strength of connections in pro-
jection p. The γp values are set in the approximate range 0.5–3.0 for excitatory
projections and −0.5 to −3.0 for inhibitory projections. For afferent connections,
the γp value is chosen to map average V1 activation levels into the range 0–1.0 by
convention, for ease of interconnecting and analyzing multiple sheets. For lateral and
feedback connections, the γp values are then chosen to provide a balance between
feedforward, lateral, and feedback drive, and between excitation and inhibition; these
parameters are crucial for making the network operate in a useful regime.

RGC/LGN neuron activity is computed similarly to Eq. 2, except to add divisive
normalization and to fix the threshold θ at zero:

η j L(t + δt) = λ f

(∑
p γpC jp(t + δt)

γSC j S(t + δt) + k

)
+ (1 − λ)η j L(t) (3)

where L stands for one of the RGC/LGN sheets. Projection S here consists of a
set of isotropic Gaussian-shaped lateral inhibitory connections (see Eq. 6, evaluated
with u = 1), and p ranges over all the other projections to that sheet. k is a small
constant to make the output well-defined for weak inputs. The divisive inhibition
implements the contrast gain control mechanisms found in RGC and LGN neurons
[2, 3, 17, 23]. Here again λ = 1 throughout except that λ = 0.03 for the detailed
simulations in Sect. 3.4.

Each time the activity is computed using Eq. 2 or 3, the new activity values are
sent to each of the outgoing projections, where they arrive after the projection delay.
The process of activity computation then begins again, with a new contribution
C computed as in Eq. 1, leading to new activation values by Eq. 2 or 3. Activity
thus spreads recurrently throughout the network, and can change, die out, or be
strengthened, depending on the parameters.

With typical parameters that lead to realistic topographic map patterns, initially
blurry patterns of afferent-driven cortical activity are sharpened into well-defined
“activity bubbles” through locally cooperative and more distantly competitive lateral
interactions [31]. Nearby neurons are thus influenced to respond more similarly, while
more distant neurons receive net inhibition and thus learn to respond to different
input patterns. The competitive interactions “sparsify” the cortical response into

7 Constructing Complex Systems Via Activity-Driven 211

patches, in a process that can be compared to the explicit sparseness constraints in
non-mechanistic models [26, 36], while the local facilitatory interactions encourage
spatial locality so that smooth topographic maps will be developed.

As described in more detail below, the initially random weights to cortical neu-
rons are updated in response to each input pattern, via Hebbian learning. Because
the settling (sparsification) process typically leaves only small patches of the cortical
neurons responding strongly, those neurons will be the ones that learn the current
input pattern, while other nearby neurons will learn other input patterns, eventually
covering the complete range of typical input variation. Overall, through a combina-
tion of the network dynamics that achieve sparsification along with local similarity,
plus homeostatic adaptation that keeps neurons operating in a useful regime, plus
Hebbian learning that leads to feature preferences, the network will learn smooth,
topographic maps with good coverage of the space of input patterns, thereby develop-
ing into a functioning system for processing patterns of visual input without explicit
specification or top-down control of this process.

2.6 Homeostatic Adaptation

For this model, the threshold for activation of each cortical neuron is a very important
quantity, because it directly determines how much the neuron will fire in response
to a given input. Mammalian neurons appear to regulate such thresholds automat-
ically, a process known as homeostatic plasticity or homeostatic adaptation [54]
(where homeostatic means to keep similar and stable). To set the threshold automat-
ically, each neural unit j in V1 calculates a smoothed exponential average of its own
activity (η j):

η j (t) = (1 − β)η j (t) + βη j (t − 1) (4)

The smoothing parameter (β = 0.999) determines the degree of smoothing in the
calculation of the average. η j is initialized to the target average V1 unit activity
(µ), which for all simulations is η j A(0) = µ = 0.024. The threshold is updated as
follows:

θ(t) = θ(t − 1) + κ(η j (t) − μ) (5)

where κ = 0.0001 is the homeostatic learning rate. The effect of this scaling mech-
anism is to bring the average activity of each V1 unit closer to the specified target.
If the average activity of a V1 unit moves away from the target during training, the
threshold for activation is thus automatically raised or lowered in order to bring it
closer to the target.

212 J. A. Bednar

2.7 Learning

Initial connection field weights are random within a two-dimensional Gaussian
envelope. E.g., for a postsynaptic (target) neuron j located at sheet coordinate (0, 0),
the weight ωi j,p from presynaptic unit i in projection p is:

ωi j,p = 1

Zωp
u exp

(
− x2 + y2

2σ 2
p

)
(6)

where (x, y) is the sheet-coordinate location of the presynaptic neuron i , u is a
scalar value drawn from a uniform random distribution for the afferent and lateral
inhibitory projections (p = A, I), σp determines the width of the Gaussian in sheet
coordinates, and Zω is a constant normalizing term that ensures that the total of all
weights ωi j,p to neuron j in projection p is 1.0, where all afferent projections are
treated together as a single projection so that their sum total is 1.0. Weights for each
projection are only defined within a specific maximum circular radius rp; they are
considered zero outside that radius.

Once per input pattern (after activity has settled), each connection weight ωi j

from unit i to unit j is adjusted using a simple Hebbian learning rule. (Learning
could instead be performed at every simulation time step, but doing so would require
significantly more computation time). This rule results in connections that reflect
correlations between the presynaptic activity and the postsynaptic response. Hebbian
connection weight adjustment for unit j is dependent on the presynaptic activity ηi ,
the post-synaptic response η j , and the Hebbian learning rate α:

ωi j,p(t) = ωi j,p(t − 1) + αη jηi∑
k

(
ωk j,p(t − 1) + αη jηk

) (7)

Unless it is constrained, Hebbian learning will lead to ever-increasing (and thus
unstable) values of the weights. The weights are constrained using divisive post-
synaptic weight normalization (denominator of Eq. 7), which is a simple and well
understood mechanism. All afferent connection weights from RGC/LGN sheets are
normalized together in the model, which allows V1 neurons to become selective for
any subset of the RGC/LGN inputs. Weights are normalized separately for each of
the other projections, to ensure that Hebbian learning does not disrupt the balance
between feedforward drive, lateral and feedback excitation, and lateral and feedback
inhibition. Subtractive normalization with upper and lower bounds could be used
instead, but it would lead to binary weights [32, 33], which is not desirable for a firing-
rate model whose connections represent averages over multiple physical connections.
More biologically motivated homeostatic mechanisms for normalization such as
multiplicative synaptic scaling [54] or a sliding threshold for plasticity [15] could be
implemented instead, but these have not been tested so far.

Note that some of the results below use the earlier LISSOM model [31], which fol-
lows the same equations but lacks gain control and homeostatic adaptation (equivalent

7 Constructing Complex Systems Via Activity-Driven 213

Fig. 3 Development of maps and afferent connections. Over the course of 20,000 input presen-
tations, GCAL model V1 neurons develop selectivity for typical features of the input patterns.
Here simulated retinal waves were presented for the first 6,000 inputs (modelling prenatal develop-
ment), and monochromatic images of natural scenes were presented for the remainder (modelling
postnatal visual experience). Connection fields to V1 neurons were initially random and isotropic
(bottom of Iteration 0; CFs for 8 sample neurons are shown). Neurons were initially unselective,
responding approximately equally to all orientations, and are thus black in the orientation map plot
(where saturated colors represent orientation-selective neurons whose preference is labeled with
the color indicated in the key). Over time, neurons develop specific afferent connection fields (bot-
tom of remaining iterations) that cause neurons to respond to specific orientations. Nearby neurons
respond to similar norientations, as in animal maps, and as a whole they eventually represent the
full range of orientations present in the inputs. Reprinted from [29]

to setting γS = 0 and k = 1 in Eq. 3 and κ = 0 in Eq. 5). Without these automatic
mechanisms, LISSOM requires the modeller to set the input strength and activation
thresholds separately for each dataset and to adjust them as learning progresses. As
long as these values have been set appropriately, previous LISSOM results can be
treated equivalently to GCAL results, but GCAL is significantly simpler to use and
describe, while being more robust to changes in the input distributions [29], so only
GCAL is described here.

3 Results

The following sections outline a series of model results that account for anatomical,
electrophysiology, imaging, psychophysical, and behavioral results from studies of
experimental animals, all arising from the neural architecture and self-organizing
mechanisms outlined in the previous section.

3.1 Maps and Connection Patterns

Figure 3 shows how orientation selectivity emerges in the basic GCAL model from
Fig. 1, whose subcortical pathway consists of a single set of non-lagged monochro-
matic ON and OFF LGN inputs for a single eye. Over the course of development,
initially unspecific connections become selective for specific patterns of LGN activ-
ity, including particular orientations. Hebbian learning ensures that each afferent

214 J. A. Bednar

(a) (b) (c)

Fig. 4 Lateral connections across maps. GCAL and LISSOM model neurons each participate in
multiple functional maps, but have only a single set of lateral connections. Connections are strongest
from other neurons with similar properties, respecting each of the maps to the degree to which that
map affects correlation between neurons. Maps for a combined orientation (OR), ocular dominance
(OD), direction (DR) simulation LISSOM model are shown above, with the black outlines indicating
the connections to the central neuron (marked with a small square black outline) that remain after
weak connections have been pruned. Model neurons connect to other model neurons with similar
orientation preference (a) (as in tree shrew, [18]) but even more strongly respect the direction map
(c). This highly monocular unit also connects strongly to the same eye (b), but the more typical
binocular cells have wider connection distributions. Reprinted from Ref. [13]

connection field shown represents the average pattern of LGN activity that has driven
that neuron to a strong response; each neuron prefers a different pattern at a specific
location on the retinal surface. Preferences from the set of all V1 neurons form a
smooth topographic map covering the range of orientations present in the input pat-
terns, yielding an orientation map similar to those from monkeys [16]. For instance,
the map shows iso-feature domains, pinwheel centers, fractures, saddle points, and
linear zones, with a ring-shaped Fourier transform. As in animals [46], orientation
selectivity is preserved over a very wide range of contrasts, due to the effect of lateral
inhibitory connections in the LGN and in V1 that normalize responses to be relative
to activation of neighboring neurons rather than absolute levels of contrast [29].

Similar results are found for models including each of the other low-level features
of images, with specific map patterns that match those found in animals. Figure 4
shows results from the larger orientation, ocular dominance, and motion direction
simulation from Fig. 2; each neuron becomes selective for some portion of this mul-
tidimensional feature space, and together they account for the variation across this
space that was seen during self-organization [13]. Other simulations not included
here show how color, spatial frequency, and disparity preferences and maps can
develop when appropriate information is made available to V1 through additional
RGC/LGN sheets [5, 7, 38, 40]. As described in the original source for each model,
the model results for each dimension have been evaluated against the available ani-
mal data, and capture the main aspects of the feature value coverage and the spatial
organization of the maps [31, 38]. The maps simulated together (e.g. orientation
and ocular dominance) also tend to intersect at right angles, such that high-gradient
regions in one map avoid high-gradient regions in others [13].

7 Constructing Complex Systems Via Activity-Driven 215

These patterns primarily emerge from geometric constraints on smoothly mapping
the range of values for the indicated feature, within a two-dimensional retinotopic
map [31]. They are also affected by the relative amount by which each feature varies in
the input dataset, how often each feature appears, and other aspects of the input image
statistics [12]. For instance, orientation maps trained on natural image inputs develop
a preponderance of neurons with horizontal and vertical orientation preferences,
which is also seen seen in ferret maps and reflects the statistics of contours found in
natural images [11, 20].

While the feature maps and afferent connections of neurons primarily represent
a decomposition of the image into commonly recurring local features, lateral con-
nections between these neurons store patterns of correlation between each neuron
that represent larger-scale structure and correlations. Figure 4 shows the pattern of
lateral connectivity for a neuron embedded in an orientation, ocular dominance, and
motion direction map. Because the lateral connections are also modified by Hebbian
learning, they represent correlations between neurons, and are thus strong for short-
range connections (due to the shared retinotopic preference of those neurons) and
between other neurons often coactivated during self-organization (e.g. those sharing
orientation, direction, and eye preferences). The lateral connections are thus patchy
and orientation and direction specific, as found in animals [18, 43, 50]. Neurons with
low levels of selectivity for any of those dimensions (e.g. binocular neurons) receive
connections from a wide range of feature preferences, while highly selective neurons
receive more specific connections, reflecting the different patterns of correlation in
those cases. These connection patterns represent predictions, as only a few of these
relationships have been tested so far in animals. The model strongly predicts that lat-
eral connection patterns will respect all maps that account for a significant fraction
of the response variance of the neurons, because each of those features will affect
the correlation between neurons.

Overall, where it has been possible to make comparisons, these models have been
shown to reproduce the main features of the experimental data, using a small set of
assumptions. In each case, the model demonstrates how the experimentally measured
map can emerge from Hebbian learning of corresponding patterns of subcortical and
cortical activity. The models thus illustrate how the same basic, general-purpose
adaptive mechanism will lead to very different organizations, depending on the geo-
metrical and statistical properties of that feature. Future work will focus on showing
how all the results so far could emerge simultaneously in a single model (as outlined
in Ref. [7]).

3.2 Surround Modulation

Given a model with realistically patchy, specific lateral connectivity and realistic
single-neuron properties, as described above, the patterns of interaction between neu-
rons can be compared with neurophysiological evidence for surround modulation—
influences on neural responses from distant patterns in the visual field. These studies

216 J. A. Bednar

can help validate the underlying model circuit, while helping understand how the
visual cortex will respond to complicated patterns such as natural images.

For instance, as the size of a patch of grating is increased, the response of a V1
neuron typically increases at first, reaches a peak, and then decreases [45, 47, 55].
Similar patterns can be observed in a GCAL-based model orientation map with
complex cells and separate inhibitory and excitatory subpopulations (figure from
Ref. [3]; not shown). Small patterns initially activate neurons weakly, due to low
overlap with the afferent receptive fields of layer 4 cells, but the response increases
with larger patterns. For large enough patterns, lateral interactions are strong and in
most locations net inhibitory, causing many neurons to be suppressed (leading to a
subsequent dip in response). The model demonstrates that the lateral interactions are
sufficient to account for typical size tuning effects, and also accounts for less com-
monly reported effects that result from neurons with different specific self-organized
patterns of lateral connectivity. The model thus accounts both for the typical pattern
of size tuning, and explains why such a diversity of patterns is observed in animals.
The results from these studies and related studies of orientation-dependent effects
[3] suggest both that lateral interactions may underlie many of the observed surround
modulation effects, and also that the diversity of observed effects can at least in part
be traced to the diversity of lateral connection patterns, which in turn is a result of
the various sequences of activations of the neurons during development.

3.3 Aftereffects

The previous sections have focused on the network organization and operation after
Hebbian learning can be considered to be completed. However, the visual system
is continually adapting to the visual input even during normal visual experience,
resulting in phenomena such as visual aftereffects [53]. To investigate whether and
how this adaptation differs from long-term self-organization, we tested LISSOM
and GCAL-based models with stimuli used in visual aftereffect experiments [9, 19].
Surprisingly, the same Hebbian equations that allow neurons and maps to develop
selectivity also lead to realistic aftereffects, such as for orientation and color (Fig. 5).
In the model, we assume that connections adapt during normal visual experience
just as they do in simulated long-term development, albeit with a lower learning rate
appropriate for adult vision. If so, neurons that are coactive during a particular visual
stimulus (such as a vertical grating) will become slightly more strongly laterally
connected as they adapt to that pattern. Subsequently, the response to that pattern
will be reduced, due to increased lateral excitation that leads to net (disynaptic) lateral
inhibition for high contrast patterns like those in the aftereffect studies. Assuming
a population decoding model such as the vector sum [9], there will be no change
in the perceived orientation of the adaptation pattern, but the perceived value of a
nearby orientation will be repelled away from the adapting stimulus, because the
neurons activated during adaptation now inhibit each other more strongly, shifting
the population response. These changes are the direct result of Hebbian learning

7 Constructing Complex Systems Via Activity-Driven 217

−90
o

−60
o

−30
o

0
o

30
o

60
o

90
o

Angle on Retina

−4
o

−2
o

0
o

2
o

4
o

A
fte

re
ffe

ct
 M

ag
ni

tu
de

Fig. 5 Tilt aftereffects from short-term self-organization. If the fully organized network is repeatedly
presented patterns with the same orientation, connection strengths are updated by Hebbian learning
(as during development, but at a lower learning rate). The net effect is increased inhibition, which
causes the neurons that responded during adaptation to respond less afterwards. When the overall
response is summarized as a “perceived value” using a vector average, the result is systematic shifts
in perception, such that a previously similar orientation will now seem very different in orientation,
while more distant orientations will be unchanged or go in the opposite direction (red line, with
error bars showing the standard error of measurement). These patterns are a close match to results
from humans [34] (e.g. the subject from [34] plotted here as a black line, with error bars showing the
standard error of measurement), suggesting that short-term and long-term adaptation share similar
rules. Reprinted from Ref. [9] and replotting data from Ref. [34].

of intracortical connections, as can be shown by disabling learning for all other
connections and observing no change in the overall behavior.

Interestingly, for distant orientations, the human data suggests an attractive effect,
with a perceived orientation shifted towards the adaptation orientation [34]. The
model reproduces this feature as well, and provides the novel explanation that this
indirect effect is due to the divisive normalization term in the Hebbian learning equa-
tion (Eq. 7). Specifically, when the neurons activated during adaptation increase their
mutual inhibition, the normalization term forces this increase to come at the expense
of connections to other neurons not (or only weakly) activated during adaptation.
Those neurons are thus disinhibited, and can respond more strongly than before,
shifting the response towards the adaptation stimulus.

Similar patterns occur for the McCollough Effect [30]; see Ref. [19]. Here the
adaptation stimulus coactivates neurons selective for orientation, color, or both, and
again the lateral interactions between all these neurons are strengthened. Subsequent
stimuli then appear different in both color and orientation, in patterns similar to the
human data. Interestingly, the McCollough effect can last for months, which suggests
that the modelled changes in lateral connectivity can become essentially permanent,
though the effects of short-term exposure typically fade in darkness or in subsequent
visual experience.

218 J. A. Bednar

Overall, the model suggests that the same process of Hebbian learning could
explain both long-term development and short-term adaptation, unifying phenomena
previously considered distinct. Of course, the biophysical mechanisms may indeed be
distinct, potentially operating at different time scales and this short-term adaptation
being largely temporary rather than the permanent changes found early in devel-
opment. Even so, the results here suggest that both early development and adult
adaptation may operate using similar mathematical principles. How mechanisms for
long- and short-term plasticity may interact, including possible transitions from long-
to short term plasticity during so-called “critical periods”, is an important area for
future modelling and experimental studies.

3.4 Time Course of Neural Responses

Visual aftereffects reflect changes in responses over the course of seconds and
minutes, but with a sufficiently short time step (i.e., neural connection delay), the
detailed subsecond time course of GCAL LGN and V1 neurons can also be inves-
tigated, before adaptation takes effect. Due to the recurrent nature of the GCAL
architecture, responses to inputs go through a stereotypical time course that serves
to highlight temporal differences in input patterns, just as the mechanisms outlined
above serve to highlight spatial differences (e.g. contrast edges). As part of an ongo-
ing project to understand temporal aspects of cortical processing [51], the temporal
response properties of the GCAL orientation map were adjusted to match experi-
mental data from [24] for the LGN, and to a fit of experimental data from [1], using a
time step size and projection delay of δt = 0.002 (roughly corresponding to 0.5 ms)
instead of the previous δt = 0.05. Remarkably, even though the model was origi-
nally built only to study spatial processing, we were able to match the time course at
both the LGN and V1 levels by adjusting only a single parameter in the model LGN
and V1: λ, which controls temporal smoothing of activity values in Eq. 3. Figure 6
compares the time course of GCAL responses to a step change in the visual input to
the experimental data.

At the LGN level, λ controls only how fast the neural response can change; the
underlying trends in the time course reflect the recurrent processing in the LGN,
i.e., there is initially a strong response due to the afferent connectivity, which is then
reduced by the divisive lateral inhibition in the LGN, with some ringing for this
particular λ value. Higher levels of damping (larger λ) would eliminate this ringing,
as suggested by some other experimental studies [51], but it has been retained here
to show the match to this study. These results are intriguing, because they show
how detailed and realistic temporal properties can arise from a circuit with elements
originally added for contrast gain control (i.e., the lateral inhibition in the LGN);
transient responses emerge as a natural consequence and will serve to highlight
temporally varying input.

The time courses of response at the V1 level are similar, and reflect both the time
course of its LGN input, and also that due to its own recurrent lateral connections,
again smoothed by a λ parameter (Eq. 2). The same conclusions also apply at the

7 Constructing Complex Systems Via Activity-Driven 219

(a) (b)

LGN V1

Fig. 6 Model LGN and V1 temporal responses. a The dashed red line shows experimental
measurements of a cat LGN peristimulus time histogram (PSTH) in response to a step input [24],
with a characteristic large onset response, some ringing, smaller sustained response, and eventual
offset. The blue line shows the best fit from adjusting the activity smoothing in a GCAL orientation
map; the fit is remarkably good considering that only a single GCAL parameter was varied (λ for
the LGN). b The dashed red line shows results from a simple mathematical model of experimental
measurements from monkey V1 [1], compared to the best fit response from GCAL from varying
λ for V1 (and using the above fit at the LGN level). Again, the fit is remarkably good given the
limited control provided by λ, indicating that the underlying dynamics of the model network are
already a good match to neural circuits. Reprinted from Ref. [51]

V1 level, with V1 responses higher for changing stimuli than for sustained inputs,
and reflecting the structure of the recurrent network in which neurons are embedded,
rather than complex single-neuron temporal properties.

4 Discussion and Future Work

The results reviewed above illustrate a general approach to understanding the
large-scale development, organization, and function of cortical areas, as a way of
understanding processing for real-world data in general. The models show that a
relatively small number of basic and largely uncontroversial assumptions and prin-
ciples may be sufficient to explain a very wide range of experimental results from
the visual cortex. Even very simple neural units, i.e., firing-rate point neurons, gener-
ically connected into topographic maps with initially random or isotropic weights,
can form a wide range of specific feature preferences and maps via unsupervised
normalized Hebbian learning of natural images and spontaneous activity patterns.
The resulting maps consist of neurons with realistic spatial and temporal response
properties, with variability due to visual context and recent history that explains sig-
nificant aspects of surround modulation and visual aftereffects. The simulator and

220 J. A. Bednar

example simulations are freely downloadable from www.topographica.org, allowing
any interested researcher to build on this work.

Although all the results listed above were from V1, the cortical architecture con-
tained no vision-specific elements at the start of the simulation, and is thus general
purpose. Similar models have already been used for other cortical regions, such as
rodent barrel cortex [57]. Combining the existing models into a single, runnable
visual system is very much a work in progress, but the results so far suggest that
doing so will be both feasible and valuable.

As previously emphasized, many of the individual results found with GCAL can
also be obtained using other modelling approaches, which can be complementary to
the processes modeled by GCAL. For instance, it is possible to generate orientation
maps without any activity-dependent plasticity, through the initial wiring pattern
between the retina and the cortex [37, 42] or within the cortex itself [25]. Such an
approach cannot explain subsequent experience-dependent development, whereas
the Hebbian approach of GCAL can explain both the initial map and later plasticity,
but it is of course possible that the initial map and the subsequent plasticity occur
via different mechanisms. Other models are based on abstractions of some of the
mechanisms in GCAL [22, 35, 58, 61], operating similarly but at a higher level.
GCAL is not meant as a competitor to such models, but as a concrete, physically
realizable implementation of those ideas, forming a prototype of both the biological
system and potential future artificial vision systems.

5 GCAL as a Starting Point for Higher-Level Mechanisms

At present, all of the models reviewed contain feedforward and lateral connections,
but no feedback from higher cortical areas to V1 or from V1 to the LGN, because
such feedback has not been found necessary to replicate the features surveyed. How-
ever, note that nearly all of the physiological data considered was from anesthetized
animals not engaged in any visually mediated behaviors. Under those conditions,
it is not surprising that feedback would have relatively little effect. Corticocortical
and corticothalamic feedback is likely to be crucial to explain how these circuits
operate during natural vision [49, 52], and determining the form and function of
this feedback is an important aspect of developing a general-purpose cortical model.
By clearly establishing which V1 properties do not require such feedback, GCAL
represents an excellent starting point for building and understanding models of these
phenomena.

Eventually, such models will need to be trained using input that reflects the com-
plete context in which an animal develops, rather than just the fixed and arbitrary
stream of training images used so far. Ideally, a model of visual system development
in primates would be driven by color, stereo, foveated video streams replicating typ-
ical patterns of eye movements, movements of an animal in its environment, and
responses to visual patterns. Collecting data of this sort is difficult, and moreover
cannot capture any causal or contingent relationships between the current visual input

www.topographica.org

7 Constructing Complex Systems Via Activity-Driven 221

and the current neural organization that can affect future eye and organism movements
that will then change the visual input. In the long run, to account for more complex
aspects of visual system development such as visual object recognition and optic
flow processing, it will be necessary to implement the models as embodied, situated
agents [39, 56] embedded in the real world or in realistic 3D virtual environments.
Building such robotic or virtual agents will add significant additional complexity,
however, so it is important first to see how much of the behavior of V1 neurons can
be addressed by the present “open-loop”, non-situated approach.

As discussed throughout, the main focus of this modelling work has been on
replicating experimental data using a small number of computational primitives and
mechanisms, with a goal of providing a concise, concrete, and relatively simple
explanation for a wide and complex range of experimental findings. A complete
explanation of visual cortex development and function would go even further, demon-
strating more clearly why the cortex should be built in this way, and precisely what
information-processing purpose this circuit performs. For instance, realistic recep-
tive fields can be obtained from “normative” models embodying the idea that the
cortex is developing a set of basis functions to represent input patterns faithfully,
with only a few active neurons [14, 26, 36, 41], maps can emerge by minimizing
connection lengths in the cortex [28], and lateral connections can be modelled as
decorrelating the input patterns [6, 21]. The GCAL model can be seen as a concrete,
mechanistic implementation of these ideas, showing how a physically realizable local
circuit could develop receptive fields with good coverage of the input space, via lat-
eral interactions that also implement sparsification via decorrelation [31]. Making
more explicit links between mechanistic models like GCAL and normative theories
is an important goal for future work. Meanwhile, there are many aspects of cortical
function not explained by current normative models. The focus of the current line
of research is on first capturing those phenomena in a general-purpose mechanistic
model, so that researchers can then build deeper explanations for why these compu-
tations are useful for the organism. The following section outlines the beginning of
such an explanation, in the context of data processing in general.

6 Building Complex Systems

If one steps back from cortical modelling to consider what the underlying circuits in
GCAL are doing, the simulations reported here suggest a relatively straightforward
process for building a circuit or device to process real-world input data:

1. Make sure your input data is organized into a meaningful two-dimensional spatial
arrangement. Such a representation comes for free with many types of input data,
reflecting the spatiotemporal ordering of the physical world, but for other types
of data (as in the olfactory system) the data must first be organized into a two-
dimensional pattern in some space (as for the odorant maps in the olfactory bulb
[27]). GCAL can perform such mapping itself for small-scale networks, but large

222 J. A. Bednar

enough networks would require a very extensive set of connections, and thus
establishing some initial mapping (as for retinotopy in animals and in GCAL)
can be considered a prerequisite.

2. Given this spatial representation, decompose your input data to be processed by
a large array of local processing units by mapping it to a set of simulated neurons
with topographically local afferent connection fields, so that each can compute
independently.

3. Connect your processing units laterally with a pattern that ensures that local
patches of neurons respond to similar inputs, and that more distant neurons
respond to different inputs. This type of network will generate “activity bub-
bles” in response to a strong input pattern, with bubbles in different locations
depending on the input pattern, to achieve coverage of the input pattern features.

4. Allow neural excitability to vary via homeostatic plasticity, so that neurons adapt
to the patterns of input strength over time.

5. Adjust all connections using Hebbian learning, to ensure that neurons become
selective for particular local patterns, while others become selective for other
patterns.

The resulting network will thus remap the inputs into a sparse representation that
covers the ranges of variability in the input data, with lateral connectivity that makes
neurons compete to represent a given input, while filling in expected patterns in cases
of weak inputs. Short-term adaptation following similar rules as self-organization will
make neurons respond most strongly to changes in the input statistics, again high-
lighting important events. At an even faster time scale, the temporal responses of these
recurrently connected neurons will again highlight moment-to-moment changes in
input patterns.

The resulting spatially and temporally decorrelated representation can then be
available as a substrate for higher-level processing such as reinforcement or super-
vised learning, acting on sparse patterns that reflect the underlying sources of vari-
ability in the environment rather than the initial dense and highly redundant pattern of
inputs that reflect the structure of the input receptors. In principle, this approach can
be used for any type of input data, potentially offering a starting point for building
complex systems for data processing in general.

7 Conclusions

The GCAL model results suggest that it will soon be feasible to build a single
model visual system that will account for a very large fraction of the visual response
properties, at the firing rate level, of V1 neurons in a particular species. Such a
model will help researchers make testable predictions to drive future experiments to
understand cortical processing, as well as determine which properties require more
complex approaches, such as feedback, attention, and detailed neural geometry and
dynamics. The model suggests that cortical neurons develop to cover the typical range

7 Constructing Complex Systems Via Activity-Driven 223

of variation in their thalamic inputs, within the context of a smooth, multidimensional
topographic map, and that lateral connections store pairwise correlations and use this
information to modulate responses to natural scenes, dynamically adapting to both
long-term and short-term visual input statistics.

Because the model cortex starts without any specialization for vision, it represents
a general model for any cortical region, and is also an implementation for a generic
information processing device that could have important applications outside of
neuroscience. By integrating and unifying a wide range of experimental results, the
model should thus help advance our understanding of cortical processing and real-
world information processing in general.

Acknowledgments Thanks to all of the collaborators whose modelling work is reviewed here,
and to the members of the Developmental Computational Neuroscience research group, the Insti-
tute for Adaptive and Neural Computation, and the Doctoral Training Centre in Neuroinformatics,
at the University of Edinburgh, for discussions and feedback on many of the models. This work
was supported in part by the UK EPSRC and BBSRC Doctoral Training Centre in Neuroinformat-
ics, under grants EP/F500385/1 and BB/F529254/1, and by the US NIMH grant R01-MH66991.
Computational resources were provided by the Edinburgh Compute and Data Facility (ECDF).

References

1. D.G. Albrecht, W.S. Geisler, R.A. Frazor, A.M. Crane, Visual cortex neurons of monkeys and
cats: temporal dynamics of the contrast response function. J. Neurophysiol. 88(2), 888–913
(2002)

2. H.J. Alitto, W.M. Usrey, Origin and dynamics of extraclassical suppression in the lateral genic-
ulate nucleus of the macaque monkey. Neuron 57(1), 135–146 (2008)

3. J. Antolik, Unified developmental model of maps, complex cells and surround modulation in
the primary visual cortex. Ph.D. thesis, School of Informatics, The University of Edinburgh,
Edinburgh, UK, 2010

4. J. Antolik, J.A. Bednar, Development of maps of simple and complex cells in the primary
visual cortex. Frontiers Comput. Neurosci. 5, 17 (2011)

5. C.E. Ball, J.A. Bednar, A self-organizing model of color, ocular dominance, and orientation
selectivity in the primary visual cortex. in Society for Neuroscience Abstracts. Society for
Neuroscience, www.sfn.org, Program No. 756.9 (2009)

6. H.B. Barlow, P. Földiák, Adaptation and decorrelation in the cortex, in The Computing Neuron,
ed. by R. Durbin, C. Miall, G. Mitchison (Addison-Wesley, Reading, 1989), pp. 54–72

7. J.A. Bednar, Building a mechanistic model of the development and function of the primary
visual cortex. J. Physiol. (Paris, 2012 in press)

8. J.A. Bednar, A. Kelkar, R. Miikkulainen, Scaling self-organizing maps to model large cortical
networks. Neuroinformatics 2, 275–302 (2004)

9. J.A. Bednar, R. Miikkulainen, Tilt aftereffects in a self-organizing model of the primary visual
cortex. Neural Comput. 12(7), 1721–1740 (2000)

10. J.A. Bednar, R. Miikkulainen, Self-organization of spatiotemporal receptive fields and laterally
connected direction and orientation maps. Neurocomputing 52–54, 473–480 (2003)

11. J.A. Bednar, R. Miikkulainen, Prenatal and postnatal development of laterally connected ori-
entation maps. in Computational Neuroscience: Trends in Research, (2004), p. 985–992

12. J.A. Bednar, R. Miikkulainen, Prenatal and postnatal development of laterally connected ori-
entation maps. Neurocomputing 58–60, 985–992 (2004)

224 J. A. Bednar

13. J.A. Bednar, R. Miikkulainen, Joint maps for orientation, eye, and direction preference in a
self-organizing model of V1. Neurocomputing 69(10–12), 1272–1276 (2006)

14. A.J. Bell, T.J. Sejnowski, The independent components of natural scenes are edge filters. Vision.
Res. 37, 3327 (1997)

15. E.L. Bienenstock, L.N. Cooper, P.W. Munro, Theory for the development of neuron selectivity:
orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982)

16. G.G. Blasdel, Orientation selectivity, preference, and continuity in monkey striate cortex. J.
Neurosci. 12, 3139–3161 (1992)

17. V. Bonin, V. Mante, M. Carandini, The suppressive field of neurons in lateral geniculate nucleus.
J. Neurosci. 25, 10844–10856 (2005)

18. W.H. Bosking, Y. Zhang, B.R. Schofield, D. Fitzpatrick, Orientation selectivity and the arrange-
ment of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127
(1997)

19. J. Ciroux, Simulating the McCollough effect in a self-organizing model of the primary visual
cortex. Master’s thesis, The University of Edinburgh, Scotland, UK, 2005

20. D.M. Coppola, L.E. White, D. Fitzpatrick, D. Purves, Unequal representation of cardinal and
oblique contours in ferret visual cortex. Proc. Nat. Acad. Sci. U.S.A. 95(5), 2621–2623 (1998)

21. D.W. Dong, Associative decorrelation dynamics: A theory of self-organization and optimization
in feedback networks, in Advances in Neural Information Processing Systems 7, ed. by G.
Tesauro, D.S. Touretzky, T.K. Leen (MIT Press, Cambridge, 1995), pp. 925–932

22. B.J. Farley, H. Yu, D.Z. Jin, M. Sur, Alteration of visual input results in a coordinated reorga-
nization of multiple visual cortex maps. J. Neurosci. 27(38), 10299–10310 (2007)

23. F. Felisberti, A.M. Derrington, Long-range interactions modulate the contrast gain in the lateral
geniculate nucleus of cats. Vis. Neurosci. 16, 943–956 (1999)

24. K. Funke, F. Wörgötter, On the significance of temporally structured activity in the dorsal
lateral geniculate nucleus (LGN). Prog. Neurobiol. 53(1), 67–119 (1997)

25. A. Grabska-Barwinska, C. von der Malsburg, Establishment of a scaffold for orientation maps
in primary visual cortex of higher mammals. J. Neurosci. 28(1), 249–257 (2008)

26. A. Hyvärinen, P.O. Hoyer, A two-layer sparse coding model learns simple and complex cell
receptive fields and topography from natural images. Vision. Res. 41(18), 2413–2423 (2001)

27. T. Imai, H. Sakano, L.B. Vosshall, Topographic mapping-the olfactory system. Cold Spring
Harb. Perspect. Biol. Med. 2(8), (2010)

28. A.A. Koulakov, D.B. Chklovskii, Orientation preference patterns in mammalian visual cortex:
a wire length minimization approach. Neuron 29, 519–527 (2001)

29. J.S. Law, J. Antolik, and J.A. Bednar. Mechanisms for stable and robust development of ori-
entation maps and receptive fields. Technical report, School of Informatics, The University of
Edinburgh, 2011. EDI-INF-RR-1404

30. C. McCollough, Color adaptation of edge-detectors in the human visual system. Science
149(3688), 1115–1116 (1965)

31. R. Miikkulainen, J.A. Bednar, Y. Choe, J. Sirosh, Computational Maps in the Visual Cortex
(Springer, Berlin, 2005)

32. K.D. Miller, A model for the development of simple cell receptive fields and the ordered
arrangement of orientation columns through activity-dependent competition between ON- and
OFF-center inputs. J. Neurosci. 14, 409–441 (1994)

33. K.D. Miller, D.J.C. MacKay, The role of constraints in Hebbian learning. Neural Comput. 6,
100–126 (1994)

34. D.E. Mitchell, D.W. Muir, Does the tilt after effect occur in the oblique meridian? Vision. Res.
16, 609–613 (1976)

35. K. Obermayer, H. Ritter, K.J. Schulten, A principle for the formation of the spatial structure
of cortical feature maps. Proc. Nat. Acad. Sci. U.S.A. 87, 8345–8349 (1990)

36. B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature 381, 607–609 (1996)

37. S.-B. Paik, D.L. Ringach, Retinal origin of orientation maps in visual cortex. Nat. Neurosci.
14(7), 919–925 (2011)

7 Constructing Complex Systems Via Activity-Driven 225

38. C.M. Palmer, Topographic and laminar models for the development and organisation of spa-
tial frequency and orientation in V1. Ph.D. thesis, School of Informatics, The University of
Edinburgh, Edinburgh, UK, 2009

39. Z.W. Pylyshyn, Situating vision in the world. Trends Cogn. Sci. 4(5), 197–207 (2000)
40. T. Ramtohul, A self-organizing model of disparity maps in the primary visual cortex. Master’s

thesis, The University of Edinburgh, Scotland, UK, 2006
41. M. Rehn, F.T. Sommer, A network that uses few active neurones to code visual input predicts

the diverse shapes of cortical receptive fields. J. Comput. Neurosci. 22(2), 135–146 (2007)
42. D.L. Ringach, On the origin of the functional architecture of the cortex. PLoS One 2(2), e251

(2007)
43. B. Roerig, J.P. Kao, Organization of intracortical circuits in relation to direction preference

maps in ferret visual cortex. J. Neurosci. 19(24), RC44 (1999)
44. A.B. Saul, A.L. Humphrey, Evidence of input from lagged cells in the lateral geniculate nucleus

to simple cells in cortical area 17 of the cat. J. Neurophysiol. 68(4), 1190–1208 (1992)
45. M.P. Sceniak, D.L. Ringach, M.J. Hawken, R. Shapley, Contrast’s effect on spatial summation

by macaque V1 neurons. Nat. Neurosci. 2, 733–739 (1999)
46. G. Sclar, R.D. Freeman, Orientation selectivity in the cat’s striate cortex is invariant with

stimulus contrast. Exp. Brain Res. 46, 457–461 (1982)
47. F. Sengpiel, A. Sen, C. Blakemore, Characteristics of surround inhibition in cat area 17. Exp.

Brain Res. 116(2), 216–228 (1997)
48. H.T. Siegelmann, E.D. Sontag, Turing computability with neural nets. Appl. Math. Lett. 4,

77–80 (1991)
49. A.M. Sillito, J. Cudeiro, H.E. Jones, Always returning: feedback and sensory processing in

visual cortex and thalamus. Trends Neurosci. 29(6), 307–316 (2006)
50. L.C. Sincich, G.G. Blasdel, Oriented axon projections in primary visual cortex of the monkey.

J. Neurosci. 21, 4416–4426 (2001)
51. J.-L. Stevens, A temporal model of neural activity and VSD response in the primary visual

cortex. Master’s thesis, The University of Edinburgh, Scotland, UK, 2011
52. A. Thiele, A. Pooresmaeili, L.S. Delicato, J.L. Herrero, P.R. Roelfsema, Additive effects of

attention and stimulus contrast in primary visual cortex. Cereb. Cortex 19(12), 2970–2981
(2009)

53. P. Thompson, D. Burr, Visual aftereffects. Curr. Biol. 19(1), R11–14 (2009)
54. G.G. Turrigiano, Homeostatic plasticity in neuronal networks: the more things change, the

more they stay the same. Trends Neurosci. 22(5), 221–227 (1999)
55. C. Wang, C. Bardy, J.Y. Huang, T. FitzGibbon, B. Dreher, Contrast dependence of center and

surround integration in primary visual cortex of the cat. J. Vis. 9(1), 20.1–15, (2009)
56. J. Weng, J.L. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, E. Thelen, Autonomous

mental development by robots and animals. Science 291(5504), 599–600 (2001)
57. S.P. Wilson, J.S. Law, B. Mitchinson, T.J. Prescott, J.A. Bednar, Modeling the emergence of

whisker direction maps in rat barrel cortex. PLoS One, 5(1), (2010)
58. F. Wolf, T. Geisel, Universality in visual cortical pattern formation. J. Physiol. Paris 97(2–3),

253–264 (2003)
59. J. Wolfe, L.A. Palmer, Temporal diversity in the lateral geniculate nucleus of cat. Vis. Neurosci.

15(4), 653–675 (1998)
60. R.O.L. Wong, Retinal waves and visual system development. Annu. Rev. Neurosci. 22, 29–47

(1999)
61. H. Yu, B.J. Farley, D.Z. Jin, M. Sur, The coordinated mapping of visual space and response

features in visual cortex. Neuron 47(2), 267–280 (2005)

Chapter 8
Neuro-Centric and Holocentric Approaches
to the Evolution of Developmental Neural
Networks

Julian F. Miller

Abstract In nature, brains are built through a process of biological development
in which many aspects of the network of neurons and connections change and are
shaped by external information received through sensory organs. From numerous
studies in neuroscience, it has been demonstrated that developmental aspects of the
brain are intimately involved in learning. Despite this, most artificial neural network
(ANN) models do not include developmental mechanisms and regard learning as
the adjustment of connection weights. Incorporating development into ANNs raises
fundamental questions. What level of biological plausibility should be employed?
In this chapter, we discuss two artificial developmental neural network models with
differing degrees of biological plausibility. One takes the view that the neuron is
fundamental (neuro-centric) so that all evolved programs are based at the level of
the neuron, the other carries out development at an entire network level and evolves
rules that change the network (holocentric). In the process, we hope to reveal some
important issues and questions that are relevant to researchers wishing to create other
such models.

1 Introduction

Although artificial neural networks (ANNs) are over 60 years old [1] few would argue
that they even approach the learning capabilities of relatively simple organisms. Yet,
over this period our understanding of neuroscience has increased enormously [2] and
computer systems have gained enormous improvements in speed. We suggest that
a major weakness of many ANNs models is that they follow the “synaptic dogma”
(SD) which encodes learned knowledge solely in the form of connection strengths

J. F. Miller (B)

Department of Electronics, University of York, York, UK
e-mail: julian.miller@york.ac.uk

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 227
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_8,
© Springer-Verlag Berlin Heidelberg 2014

228 J. F. Miller

(i.e. weights). SD gives rise to “catastrophic forgetting” (CF) [3–5]. This is where
trained ANNs when re-trained on a new problem, forget how to solve the original
problem. Interestingly, although Judd showed that learning the weights in a fixed
neural network is an NP-complete problem [6], Baum proved that if one allows the
addition of neurons and weighted connections, ANNs can solve learning problems in
polynomial time [7]. Shortly after Baum’s paper “constructive ANNs” were devised
[8, 9]. These use supervised learning, in which neurons and connections are added
gradually and weights adjusted incrementally until training errors are reduced. Quin-
lan discussed “dynamic networks” which he defined as “any artificial neural network
that automatically changes its structure through exposure to input stimuli” [10, 11].
He observed that “although there has been some work on the removal of weighted
connections, these schemes have not explored a general framework where the num-
ber of connections is both increased and decreased independently of the number of
processing units” [10]. Combining evolution with development is a way of exploring
the more dynamic networks that Quinlan discussed. However, despite the fact that the
original inspiration for ANNs came from knowledge about the brain, it still remains
that very few ANN models use both evolution and development, both of which are
fundamental to the construction of the brain [12].

Apart from the problem of catastrophic forgetting, there is much research that
undermines the notion that memory in brains is principally related to synaptic
strengths. Firstly, it is now known that most synapses are not static but are con-
stantly pruned away and replaced by new synapses and learning is related strongly to
this process [13]. Secondly, synaptic plasticity does not merely involve the increase
or decrease of the number of synapses, but is related also to the exact location of
the synapses on the dendritic tree and the actual geometry of the dendritic branches.
Thirdly, much research indicates that learning and environmental interaction are
strongly related to structural changes in neurons. Dark-reared mice when placed
in the light develop new dendrites in the visual cortex within days [14]. Animals
reared in complex environments involving active learning have an increased density
of dendrites and synapses [15, 16].1 Within the brains of songbirds in the breeding
season, it is has been found that the number, size and spacing of neurons increases
[18]. In a well-known study it was found that the hippocampi of London taxi drivers
who must remember large parts of central London, are significantly larger relative
to those of control subjects [19]. Rose is quite emphatic about the role of structural
change in memory and argues that after a few hours of learning the brain is perma-
nently altered “if only by shifting the number and position of a few dendritic spines
on a few neurons in particular brain regions” [20]. Another, almost obvious, aspect
supporting the view that structural changes in the brain are strongly associated with
learning, is simply that the most significant period of learning in animals happens in
infancy, when the brain is developing [21].

1 However, a recent study showed that environmental enrichment alone does not significantly
increase hippocampal neurogenesis or bestow spatial learning benefits in mice [17].

8 Neuro-Centric and Holocentric Approaches 229

Our view is that structural changes in a computational network will enhance
the learning capability of artificial neural networks and development appears to be
a promising way of acheiving this. The idea is that evolution will arrive at useful
developmental rules that result in enhanced learning ability. In this chapter we discuss
two models that attempt to do this. The first is neuro-centric and uses evolution to
build a collection of programs that represent many aspects of a neuron (i.e. dendritic
and axonal branches, soma, synapses and neuron firing) [22–28]. The advantage this
has is that many aspects of neuroscience can enrich and inform such an approach. The
second approach is holocentric, it uses evolution and development, however evolution
works at the whole system level. Most conventional ANNs are also holocentric as
learning mechanisms are employed at a whole network level. Holocentric models tend
to use a much higher level of abstraction of neural systems and consequently they are
simpler and computationally more efficient. The holocentric model we discuss here
uses a genotype which unfolds through self-modification and iteration to produce an
entire computational network. At each iteration a complete functioning network is
obtained and embedded self-modification operators dictate changes to the network so
that a new network is produced. In both models the computational network develops
at run time, so that if executed for sufficiently long periods of time, the networks
can become arbitrarily large and complex. This contrasts with other well known
developmental computational approaches such as HyperNEAT [29] and Cellular
Encoding [30] where the phenotype is fixed and defined by artificial evolution.

The neuro-centric method uses a form of genetic programming (GP) [31] called
Cartesian Genetic Programming (CGP) [32, 33] to represent the computational com-
ponents of the neuron. It is referred to as the CGP developmental network (CGPDN).
The other approach (holocentric) is based on a form of CGP called Self-Modifying
CGP (SMCGP)[34–40]. CGP is a method for evolving graph-based computational
structures so it naturally lends itself to representing ANNs. Indeed, ANNs can be
encoded directly by CGP and recent work suggests this is in itself a very promising
encoding [41–43]. CGP has been shown to offer advantages over other forms of GP,
in that it can evolve solutions in less genotype evaluations and solutions are more
compact than many other methods [44]. Like GP it is a general method for evolving
programs so that it provides a method for evolving many kinds of computational
structures (e.g. Boolean circuits, computer programs, sets of equations) including
artificial neural networks.

The plan of the chapter is as follows. Since CGP underlies the models discussed
here, we give an overview in Sect. 2. In Sect. 3 we outline a neuro-centric CGP devel-
opmental network (CGPDN). In Sect. 4 we discuss a developmental form of CGP
called self-modifying CGP. In the process we compare and contrast the develop-
mental CGP approach with the non-developmental approach. In Sect. 7 we discuss a
developmental holocentric approach to ANNs that uses SMCGP to develop ANNs.
We discuss and contrast the neuro-centric and holocentric approaches to ANNs in
Sect. 8. We end the chapter with some observations on requirements for acheiving
general learning in ANNs.

230 J. F. Miller

2 Cartesian Genetic Programming

For completeness we give a brief overview of CGP. A more detailed account is
available in the recently published book [45]. In CGP, programs are represented in the
form of directed acyclic graphs. These graphs are represented as a two-dimensional
grid of computational nodes (which may, or may not, be sigmoidal neurons). The
genes that make up the genotype in CGP are integers that represent where a node gets
its data, what operations the node performs on the data and where the output data
required by the user is to be obtained. When the genotype is decoded, some nodes
may be ignored. This happens when node outputs are not used in the calculation of
output data. When this happens, we refer to the nodes and their genes as ‘non-coding’.
We call the program that results from the decoding of a genotype a phenotype. The
genotype in CGP has a fixed length. However, the size of the phenotype (in terms of
the number of computational nodes) can be anything from zero nodes to the number
of nodes defined in the genotype. The types of computational node functions used in
CGP are decided by the user and are listed in a function look-up table. For instance, if
conventional ANNs are required there might be only one function, a sigmoid. In this
case function genes are not required as by default they are all sigmoid. However, in
general CGP can use any combination of functions desired. In [41–43] two functions
are used, sigmoid and hyperbolic tangent.

In CGP, each node in the directed graph represents a particular function and is
encoded by a number of genes. One gene is the address of the computational node
function in the function look-up table. We call this a function gene. The remaining
node genes say where the node gets its data from. These genes represent addresses
in a data structure (typically an array). We call these connection genes. Nodes take
their inputs in a feed-forward manner from either the output of nodes in a previous
column or from a program input. It should be noted that recurrent networks can also
be represented as in [41].

The number of connection genes a node has is chosen to be the maximum number
of inputs (often called the arity) that any function in the function look-up table has.
The program data inputs are given the absolute data addresses 0 to ni − 1 where ni is
the number of program inputs. The data outputs of nodes in the genotype are given
addresses sequentially, column by column, starting from ni to ni + Ln − 1, where
Ln is the user-determined upper bound of the number of nodes. The general form of
a Cartesian genetic program is shown in Fig. 1. If the problem requires no program
outputs, then no integers are generally added to the end of the genotype. In general,
there may be a number of output genes (Oi) which specify where the program outputs
are taken from. Each of these is an address of a node where the program output data
is taken from. Nodes in columns cannot be connected to each other. In many cases
graphs encoded are directed and feed-forward; this means that a node may only have
its inputs connected to either input data or the output of a node in a previous column.
The structure of the genotype is seen below the schematic in Fig. 1. All node function
genes fi are integer addresses in a look-up table of functions. All connection genes

8 Neuro-Centric and Holocentric Approaches 231

C0,0

C0,a

F0
n

F1
n+1

Cr−1,0

Cr−1,a

Fr−1
n+r−1

C1,0

C1,a

Cr,0

Cr,a

Fr
n+r

Fr+1
n+r+1

C2r−1,0

C2r−1,a

F2r−1
n+2r−1

Cr+1,0

Cr+1,a

Ccr,0

Ccr,a

Fcr
n+cr

Fcr+1
n+cr+1

C(c+1)r−1,0

C(c+1)r−1,a

F(c+1)r−1
n+(c+1)r−1

Ccr+1,0

Ccr+1,a

0

1

n−1

O0

Om

O1

F
0C0,0 C0,a

F
1C1,0 C1,a

F
(c+1)r−1

C(c+1)r−1,0 C(c+1)r−1,a O0O1 Om

Fig. 1 General form of CGP. It is a grid of nodes whose functions are chosen from a set of primitive
functions. The grid has nc columns and nr rows. The number of program inputs is ni and the number
of program outputs is no. Each node is assumed to take as many inputs as the maximum function
arity a. Every data input and node output is labeled consecutively (starting at 0), which gives it
a unique data address which specifies where the input data or node output value can be accessed
(shown in the figure on the outputs of inputs and nodes)

Cij are data addresses and are integers taking values between 0 and the address of
the node at the bottom of the previous column of nodes.

CGP programs which solve computational problems are found using a search
algorithm. The algorithm typically used is a simple kind of probabilistic hill-climber,
known as a 1 + λ evolutionary algorithm [46]. Usually λ is chosen to be 4. This has
the form shown in Algorithm 1.

Algorithm 1 The (1 + 4) evolutionary strategy

1: for all i such that 0 ≤ i < 5 do
2: Randomly generate individual i
3: end for
4: Select the fittest individual, which is promoted as the parent
5: while a solution is not found or the generation limit is not reached do
6: for all i such that 0 ≤ i < 4 do
7: Mutate the parent to generate offspring i
8: end for
9: Generate the fittest individual using the following rules:
10: if an offspring genotype has a better or equal fitness than the parent then
11: Offspring genotype is chosen as fittest
12: else
13: The parent chromosome remains the fittest
14: end if
15: end while

232 J. F. Miller

Fig. 2 An example of the
point mutation operator before
and after it is applied to
a CGP genotype, and the
corresponding phenotypes. A
single point mutation occurs
in the program output gene
(oA), changing the value from
6 to 7. This causes nodes
3 and 7 to become active,
whilst making nodes 2, 5 and
6 inactive. The inactive areas
are shown in grey dashes.
a Before mutation, b After
mutation

3 1 0 0 0 1

3 oA4

0 4 2 3 4 32 0 5 60 0 1

2 5 6 7

AND

NOR

AND

AND
OR

NOR

Input
A

Input
B

Output
A

2

3

4

5
6

7

(a)

(b)

AND

NOR

AND

AND
OR

NOR

Input
A

Input
B

Output
A

2

3

4

5
6

7

2 0 50 4 20 0 1 7

3 oA42 5 6 7

3 1 0 0 0 1 3 4 3

The mutation operator used in CGP is a point mutation operator. In a point muta-
tion, an allele at a randomly chosen gene location is changed to another valid random
value (see [45] for details). If a function gene is chosen for mutation, then a valid
value is the address of any function in the function set. In cases where are is only one
function allowed (e.g. all functions are sigmoidal neuron) then function genes are
not required. If an input gene is chosen for mutation, then a valid value is the address
of the output of any previous node in the genotype or of any program input. Also, a
valid value for a program output gene is the address of the output of any node in the
genotype or the address of a program input. The number of genes in the genotype
that can be mutated in a single application of the mutation operator is defined by the
user, and is normally a percentage of the total number of genes in the genotype.

When CGP programs are evolved, the connectivity, functionality and topology of
the encoded graphical structures can change dramatically from generation to gener-
ation. The evolutionary algorithm is optimizing all these aspects simultaneously.

An example showing the application of a point mutation operator is shown in
Fig. 2. In this example, the function nodes are all Boolean logic functions (with
two inputs). The example also highlights how a small change in the genotype can
sometimes produce a large change in the phenotype.

8 Neuro-Centric and Holocentric Approaches 233

On line 10 of the procedure there is an extra condition: that when an offspring
genotype in the population has the same fitness as the parent and there is no other
offspring that is better than the parent, in that case the offspring is chosen as the new
parent. This is a very important feature of the algorithm, which allows genotypes
to change even when the phenotype does not. Such genotypes have mutations in
genetic code that is inactive. Such inactive genes therefore have a neutral effect on
genotype fitness. CGP genotypes are dominated by redundant genes. For instance,
Miller and Smith showed that in genotypes having 4,000 nodes, the percentage of
inactive nodes is approximately 95 %! [47]. The influence of neutrality in CGP has
been investigated in detail [33, 47–49] and has been shown to be extremely beneficial
to the efficiency of the evolutionary process on a range of test problems. The neutral
drift of genotypes allows mutation to create many innovative variants of the current
best genotype, some of which will occasionally contain phenotypes which are fitter
than the parent.

3 A Neurocentric Model: The CGP Developmental Network

The CGPDN model has idealized the behaviour of a neuron in terms of seven main
processes. The reasons for this have been discussed in more detail in [12, 28].

1. Local interaction among neighbouring branches of the same dendrite.
2. Processing of signals received from dendrites at the soma and deciding whether

to fire an action potential.
3. Synaptic connections which transfer potential through axon branches to the neigh-

bouring dendrite branches.
4. Dendrite branch growth and shrinkage. Production of new dendrite branches,

removal of old branches.
5. Axon branch growth and shrinkage. Production of new axon branches, removal

of old branches.
6. Creation or destruction of neurons.
7. Updating the synaptic weights (and consequently the capability to make synaptic

connections) between axon branches and neighbouring dendrite branches.

Each aspect is incorporated with a separate chromosome (CGP program). The
advantage of having a compartmentalized model is that different aspects of the model
can be examined separately. Their utility to the whole can be assessed and if necessary
the different compartments of the model can be refined.

In the CGPDN, neurons are placed randomly in a two dimensional grid so that
they are only aware of their spatial neighbours (see Fig. 3). Each neuron is initially
allocated a random number of dendrites, dendrite branches, one axon and a random
number of axon branches. An integer variable that mimics electrical potential is used
for internal computation in neurons and communication between neurons. Neurons
receive information through dendrite branches, which is processed by the evolved

234 J. F. Miller

Fig. 3 On the top left a grid is shown containing a single neuron. The rest of the figure is an
exploded view of the neuron. The neuron consists of seven evolved computational functions. Three
are ‘electrical’ and process a simulated potential in the dendrite (D), soma (S) and axo-synapse
branch (AS). Three more are developmental in nature and are responsible for the ‘life cycle’ of
neural components (shown in grey). They decide whether dendrite branches (DBL), soma (SL) and
axo-synaptic branches (ASL) should die, change or replicate. The remaining evolved computational
function (WP) adjusts synaptic and dendritic weights and is used to decide the transfer of potential
from a firing neuron to a neighbouring neuron

dendrite program (D) and transferred to the evolved soma program (S). S determines
the final potential in the soma, which is compared to a threshold to determine whether
it should fire or not. Axon branches transfer information only to dendrite branches in
their proximity by passing the signals from all the neighbouring branches through a
CGP program (AS), acting as an electrochemical synapse, which in turn updates the
values of potential only in neighbouring branches. The weight processing chromo-
some (WP) adjusts the weights of potential connections to the synapse. The signal
is transferred to the postsynaptic neuron having the largest weight. External inputs
and outputs are also converted into potentials before being applied to the network.

3.1 Internal Neuron Variables

Four integer variables are incorporated into the CGPDN, representing either the
fundamental properties of the neurons (health, resistance, and weight) or as an aid
to computational efficiency (state-factor).

8 Neuro-Centric and Holocentric Approaches 235

D
Soma potential

Potential of
connected dendrite
branches

Updated
potential of
connected
dendrite
branchesD

Soma potential

Potential of
connected dendrite
branches

Updated
potential of
connected
dendrite
branches

S

Soma potential

Average
potential of
connected
dendrites

Updated soma
potential

feeds into
soma
thresholded
firing function

S

Soma potential

Average
potential of
connected
dendrites

Updated soma
potential

feeds into
soma
thresholded
firing function

AS

Soma potential Synapse potential

Potential of
neighbouring
dendrite
branches

Updated
potential of
neighbouring
dendrite
branches

AS

Soma potential Synapse potential

Potential of
neighbouring
dendrite
branches

Updated
potential of
neighbouring
dendrite
branches

Fig. 4 Electrical processing in a neuron, showing the CGP programs for a dendrite branch, the
soma and an axo-synaptic branch with their corresponding inputs and outputs

Associated with each dendrite branch and axo-synaptic connection are the vari-
ables health, resistance and weight. The values of these variables are adjusted by
the CGP programs (see below). The health variable is used to govern the replication
and/or death of dendrites and axon branches. A large value implicates replication a
low value implicates removal (death). The resistance variable controls the growth
and/or shrinkage of dendrites and axon branches. The weight variable is used in
calculating the potentials in the network. Each soma has only two variables: health
and weight.

The variable state-factor is used as a parameter to reduce the computational burden
by keeping some of the neurons and branches inactive for a number of cycles. When
the state-factor is zero, the neurons and branches are considered to be active and
their corresponding program is run. The value of state-factor is affected by the
CGP programs, as it is dependent on the outputs of the CGP electrical-processing
chromosomes.

3.2 Electrical Processing

The electrical-processing chromosomes (D, S and AS) are responsible for signal
processing inside neurons and communication between neurons. The inputs supplied
to the CGP programs are shown in Fig. 4.

236 J. F. Miller

Fig. 5 Weight processing in
an axo-synaptic branch, with
its corresponding inputs and
outputs

WP

Axosynapse
Weight

Weights of
neighbouring
dendrite
branches

Updated
Axosynaptic
Weight

Updates
weights of
neighbouring
dendrite
branches

WP

Axosynapse
Weight

Weights of
neighbouring
dendrite
branches

Updated
Axosynaptic
Weight

Updates
weights of
neighbouring
dendrite
branches

3.3 Weight Processing

The weight processing program (WP) is responsible for updating the weights of
branches. The weights of axon and dendrite branches are also used to modulate and
transfer the simulated potential [28].

Figure 5 shows the inputs and outputs to the weight-processing chromosome. The
CGP program encoded in this chromosome takes as input the weight of the axo-
synapse and the neighbouring dendrite branches of other neurons and produces their
updated values as output. The synaptic potential produced at the axo-synapse is
transferred to the dendrite branch having the highest weight after weight processing.

3.4 Developmental Aspects of Neurons

The DBL, ABL and SL CGP chromosomes (see Fig. 3) are responsible for increases
or decreases in the numbers of neurons and neurite branches and also the growth and
migration of neurite branches. The inputs and outputs of the programs encoded in
these chromosomes are shown in Fig. 6.

3.5 Inputs and Outputs

The inputs are applied to the CGPDN through axon branches by using axo-synaptic
electrical-processing chromosomes. The axon branches are distributed across the
network in a similar way to the axon branches of neurons as shown in Fig. 7. These
branches can be regarded as ‘input neurons’. They take an input from the environment
and transfer it directly to the axo-synapse input. When inputs are applied to the
system, the program encoded in the axo-synaptic electrical branch chromosome is
executed and the resulting signal is transferred to its neighbouring active dendrite
branches.

8 Neuro-Centric and Holocentric Approaches 237

Fig. 6 Life cycle of neuron, showing CGP programs for life cycles in a dendrite branch, the soma
and an axo-synapse branch, with their corresponding inputs and outputs

Similarly, there are output neurons which read the signal from the network through
output dendrite branches. These output dendrite branches are distributed across the
network as shown in Fig. 7. The branches are updated by the axo-synaptic chromo-
somes of the neurons in the same way as for other dendrite branches. The output
from the output neuron is taken without further processing after every five cycles.
The number of inputs and outputs can change at run time (during development), a
new input or output branch can be introduced into the network, or an existing branch
can be removed. This allows CGPDN to handle arbitrary numbers of inputs and
outputs at run time.

The number of programs, that are run and transfer the potential from all active
neurons to other active neurons is dependent on the number of active neural electrical
components. Developmental programs determine the morphology of the neural net-
work (i.e. the number of dendrite branches, axo-synapes and somae and how they are
connected). The number of dendrites on each neuron is fixed, however the number
of dendrite branches on each dendrite is variable and is determined by whether the
developmental dendrite branch programs (DBL) in the past decided to eliminate or
grow new branches. Every neuron is invested with a single axon, however, the num-
ber of axo-synapses attached to each axon is determined by whether the axo-synaptic
branch program (ASL) in the past decided to grow or eliminate new axo-synapses.
The number of neurons (initialized as a small randomly chosen number) is deter-
mined over time by whether soma developmental programs (SL) decided to replicate
neurons or not (Fig. 8).

Whatever the number of programs that are run in the developing neural net-
work, the size of the genotype is fixed and depends only on the sizes of the seven

238 J. F. Miller

Fig. 7 Schematic illustration of a CGPDN defined over a 3×4 grid. The grid contains five neurons;
each neuron has a number of dendrites with dendrite branches, and an axon with axon branches.
Inputs are applied at five random locations in the grid using input axo-synapse branches by running
axo-synaptic CGP programs. Outputs are taken from five random locations through output dendrite
branches. Each grid square represents one location; the branches and soma are shown spaced for
clarity. Each branch location is represented by where it terminates. Every location can have an
arbitrary number of neurons and branches; there is no upper limit

Initial CGPCN After 5-Steps After 10-Steps 15-Steps 20-Steps 25-Steps

30-Steps 40-Steps 50-Steps 60-Steps 70-Steps 80-Steps

Fig. 8 Structural changes in a CGPDN network of a Wumpus World agent at different time steps.
The network has five neurons at the start, and 21 neurons after completing 80 steps. Black squares
are somae, thick lines (red) are dendrites, yellowish green lines are axons, green lines are dendrite
branches, and blue lines show axon branches. Inputs and outputs are not shown

8 Neuro-Centric and Holocentric Approaches 239

chromosomes that give rise to a network. This is one of the advantages of the devel-
opmental approach. A relatively simple collection of evolved programs can define
an entire network of arbitrary complexity. The CGPDN model has been evaluated on
a number of problems in artificial intelligence. Wumpus world [23], checkers [22,
25, 26] and maze solving [50]. Results show that the CGPDN produces networks
that learn with experience (without further evolution). With structurally different net-
works they can recognize situations that have occurred before and cause the same
actions. For instance, we observed that in a series of games of checkers, CGPDN
players make appropriate, and often the same move, when a new game starts even
though the neural network is different from the network that existed at the start of a
previous game.

4 Self-Modifying CGP

Self-modifying Cartesian Genetic Programming (SMCGP) is a form of Genetic
Programming founded on Cartesian Genetic Programming that is developmental
in nature. In addition to the usual computational functions, it includes functions that
can modify the program encoded in the genotype. This means that programs can
be iterated to produce an infinite sequence of programs (phenotypes) from a single
evolved genotype. It also allows programs to acquire more inputs and produce more
outputs during this iteration.

Algorithm 2 gives a high-level overview of the process of mapping a genotype
to a phenotype in SMCGP. The first stage of the mapping is the modification of
the genotype. This happens through the use of evolutionary operators acting on
the genotype. The developmental steps in the mapping are outlined in lines 3–8 of
the algorithm. The first step is to make an exact copy of the genotype and call it
the phenotype at iteration 0. After this, the self-modification operators are applied
to produce the phenotype at the next iteration. Development stops when either a
predefined iteration limit is achieved or it turns out that the phenotype has no self-
modification operations that are active.

At each increment, the phenotype is evaluated and its fitness calculated. The
underlying assumption here is that one is trying to solve a series of computational
problems, rather than a single instance as is usual in GP. For instance, this might be
a series of parity functions, ever-closer approximations to pi, or the natural numbers
of the Fibonacci sequence. If the problem, however, has only a single instance (i.e. a
classification problem), we can take a fixed number of iterations (either a user-defined
parameter or evolved) and evaluate the single phenotype. Another possibility would
be to iterate until no self-modification rules are active.

It is important to note that there are various ways in which there may be no active
self-modification operations. Firstly, no self-modification operations may exist in
the phenotype. Secondly, self-modification operations may be present but be non-
coding. Thirdly, the self-modification operations may not be ‘activated’ when the

240 J. F. Miller

instructions encoded in the phenotype are executed. These various conditions will
be discussed in the detailed description in the following sections.

Algorithm 2 Overview of genotype, phenotype and development
1: Generate genotype
2: Copy genotype to phenotype. Iteration, i = 0
3: repeat
4: Apply self-modification operations to phenotype i
5: increment i
6: Calculate fitness increment, fi
7: until ((i equals number of iterations required) OR (No self-modification functions to do))
8: Evaluate phenotype fitness F from fitness increments, fi

5 The Relation of SMCGP to CGP

The genetic representation in SMCGP has much in common with the representation
used in CGP. The genotype encodes a graph (usually acyclic) that includes a list of
node functions used and their connections. The arity of all functions is chosen to be
equal to that of the largest-arity function in the function set. So, as in CGP, functions
of lower arity ignore extraneous inputs. Although the form of SMCGP described
here represents genotypes using a linear string of nodes, a two-dimensional form has
been recently proposed [51].

5.1 Self-Modification Functions

The most significant difference between SMCGP and CGP is the addition of self-
modification (SM) functions. These functions can be used in the genotype in the
same manner as the more conventional computational operators, but at run time they
provide different functionality. When the SMCGP phenotype is run, the nodes in
the graph are parsed in a similar way to CGP. The graph is executed recursively by
following nodes from the output nodes to the terminals (inputs). When computational
functions are called, then—as usual—they operate on the data coming into the node.

When an SM node is called, the process is as follows. If an SM node is ‘activated’;
then its self-modification instructions are added to a list of pending manipulations
which is called the To-Do list. The modifications in this list are then performed
between iterations. In some implementations of SMCGP SM nodes are ‘activated’
if some numerical condition of its input data is obeyed (i.e. the first input is larger
than the second). This makes the genotype-phenotype mapping data (and therefore
context) dependent. Such a concept could be useful in ANNs (see later) as SM

8 Neuro-Centric and Holocentric Approaches 241

Table 1 Examples of self-modification functions

Function name Description

Delete (DEL) Delete the nodes between (P0 + x) and (P1 + x)
Add (ADD) Add P1 new random nodes after (P0 + x).
Move (MOV) Move the nodes between (P0 + x) and (P1 + x) and insert after (P2 + x)
Overwrite (OVR) Copy the nodes between (P0 + x) and (P1 + x) to position (P2 + x),

replacing existing nodes
Duplication (DUP) Copy the nodes between (P0 + x) and (P1 + x) and insert after (P2 + x)
Change connection (CHC) Change the (P1 mod 3)th connection of node P0 to P2

Change function (CHF) Change the function of node P0 to the function associated with P1

Change argument (CHA) Change the (P1 mod 3)th argument of node P0 to P2

Pi are the evolved arguments of the self-modification functions; x represents the absolute position
of the node in the graph, where the leftmost node has position 0. All additions are taken modulo
(the number of nodes in the phenotype), this ensures they are always valid

operations could be activated, say, when the signal supplied to it was above a certain
threshold (rather like the firing behaviour).

Many SM operators are imaginable, and Table 1 lists a few examples. In the
table, we can see that the operators also require arguments. These come from the
genotype and are described in Sect. 5.3. It is also worth noting that the indices for
SM operations are defined relative to the current node.

5.2 Computational Functions

The computational functions used in SMCGP are typical of such functions in GP in
general. They may be arithmetic operations such as addition, subtraction, multipli-
cation, and division, or they may be mathematical functions such as sin, exp etc. In
neural models one might choose sigmoid or hyperbolic tangent functions.

5.3 Arguments

Each node in the SMCGP genotype contains three integers defined in the range 0
to the maximum number of nodes in the genotype.2 These numbers are evolved
and are used in several ways by the SMCGP phenotype. The SM functions require
several arguments to specify how graph modifications are to be carried out (see
Table 1). These arguments are integers, and their values are calculated from the
node’s arguments.

During iteration of the genotype, the arguments can be altered by the SM
function CHP (‘change parameter’). This, in principle, allows storing of the state
(i.e. a memory), since a phenotype could pass information to the phenotype at the
next iteration through a collection of constant values.

2 other reported implementations of SMCGP use floating point numbers.

242 J. F. Miller

5.4 Relative Addressing

The SM operators’ ability to move, delete and duplicate sections of the graph means
that the classical CGP approach of labelling nodes becomes cumbersome. Classical
CGP uses absolute addressing, so that each node has an address and nodes reference
each other using these addresses (this is what connection genes are—see Sect. 2).

To simplify the representation, absolute addresses were replaced with relative
addresses. Now, instead of a node containing an absolute address of another node, it
specifies how many nodes back from its position are required to make a connection.
The connections in the genotype are now defined as positive integers that are greater
than 0 (which prevents cycles).

When the graph is run, the interpreter can calculate where a node gets its input
values from by just subtracting the connection value from the current address of the
node. If the node addresses a value that is not in the graph (i.e. connects too far back),
then a default value is returned (in the case of numeric applications this is 0).

The arguments of SM operators are also defined relative to the current node (see
Table 1). The relative addressing allows subgraphs to be placed or duplicated in
the graph whilst retaining their semantic validity. This means that subgraphs could
represent the same subfunction, but act on different inputs. This can be done without
recalculating any node addresses, thus maintaining validity of the whole graph. So
subgraphs can be used as functions in the sense of the ADFs of standard GP.

5.5 Input and Output Nodes

Most, if not all, genetic programming implementations have a fixed number of inputs.
This certainly makes sense when there is a constant or bounded number of inputs
over the lifetime of a program. However, it prevents the program from scaling to
larger problem sizes by increasing the number of inputs it uses—and this in turn
may prevent general solutions from being found. Similarly, most GP systems have
a fixed number of outputs. In tree-based GP, there is typically a single output. In
classical CGP, a number of input nodes are placed at one end of the graph, and these
are used as the starting point for the recursive interpretation of the program. To allow
an arbitrary number of inputs and outputs, SMCGP introduces several new functions
into the basic function set. These are shown in Table 2.

The interpreter now keeps track of an input pointer, which points to a particular
input in the array of input values. Calling the function INPI returns the value that
the pointer is currently on, and then moves the pointer to the next value. When the
pointer runs out of inputs, it resets to the first input. Similarly, the DECI function
returns an input but then moves the pointer to the previous value. Sometimes it may
not be convenient or useful to move by only one input at a time, hence the SKPI
is included. It moves the pointer a number of places. The number is arrived at by
adding (modulo the number of program inputs) P0 to the input pointer and then

8 Neuro-Centric and Holocentric Approaches 243

Table 2 Input and output functions

Function Operation

INCI Return input pointed to by current_input,
increment current_input

DECI Return input pointed to by current_input,
decrement current_input

SKPI Return input pointed to by current_input,
current_input = current_input + P0

INCO write data to current_output element of output_register,
increment current_output

DECO write data to current_output element of output_register,
decrement current_output

SKPO write data to current_output element of output_register,
current_output = current_output + P0

P0 is the first argument gene; current_input wraps around so that when current_input equals the
number of program inputs, current_input is set to zero; current_output also wraps around and writes
outputs to an output register that has a number of elements equal to the number of program outputs.
The output register is initialized with zeros

returning that input. The output functions work in a similar manner except that they
write to an output register which has the same number of elements as the desired
program outputs at that iteration. The register is filled with defaults values of zero.
By duplicating any input and output functions the SMCGP phenotypes can acquire
more inputs and outputs when they are iterated.

6 SMCGP Performance and Applications

The performance of SMCGP, in terms of the average number of genotype evaluations
required to solve a problem, has been evaluated on a number of problems.3 It has
also been compared with other published results of other approaches [39] and also
compared with standard CGP and a form of CGP with ADFS [44]. In all cases
SMCGP solves easy instances of problems in a larger number of evaluations than
other approaches, however it scales much better so that it solves harder instances in
considerably less evaluations. Indeed it has also been shown to be able to produce
mathematically provable general solutions to some problems. This has been done
for parity, binary addition, and computing pi and e. Clearly SMCGP is a powerful
and flexible evolutionary technique. It is natural, therefore, to investigate its utility
in the evolution of developmental neural networks. We discuss this idea in the next
section.

3 This work has not involved ANNs.

244 J. F. Miller

Table 3 Suggested self-modification functions for ANNs

Function name Description

Add connection Add a random connection to nodes (P0 + x) to (P1 + x)
(ADDC)

Remove connection Remove a connection at random for all nodes (P0 + x) to (P1 + x)
(REMC)

Increase weight Increase weight by a fixed percentage for all nodes (P0 + x) to (P1 + x)
(INCW)

Derease weight Decrease weight by a fixed percentage for all nodes (P0 + x) to (P1 + x)
(DECW)

Pi are the evolved arguments of the self-modification functions; x represents the absolute position
of the node in the graph, where the leftmost node has position 0. All additions are taken modulo
(the number of nodes in the phenotype), this ensures they are always valid

7 A Holocentric Model: SMCGP Artificial Neural Networks

It is relatively straightforward to adapt the SMCGP approach so that it constructs
developmental neural networks. Here the function set can be a collection of con-
ventionally used neuron functions (i.e. sigmoidal, hyperbolic tangent). New SM
functions, in addition to those described in Table 1 need to be designed that are spe-
cific to ANNs. Suggested SM functions relevant to ANNs are shown in Table 3. With
the complete set of functions (and assuming say a sigmoid computational node func-
tion) shown in Tables 1 and 3 one would have genotypes which were valid ANNs,
that when iterated could produce ANNs with arbitrary topology and weight adjust-
ment. The topology of the network would change through the action of embedded
self-modification instructions (see Tables 1 and 2). Also weights at each iteration
could be changed in the network through the action of embedded weight altering
self-modification functions (see Table 3). This combined with the incremental fit-
ness function described in Algorithm 2 could allow conventional ANNs to develop
their own topology while performing a task. An additional attractive feature of the
SMCGP approach to ANNs is that it should be relatively easy to adopt other models
of artificial neurons, particularly spiking neural networks [52].

7.1 Process of Learning in SMCGP Artificial Neural Networks

The process of learning in SMCGP artificial neural networks would happen through
a combination of topological changes (numbers of neurons and connections) and
synaptic changes. It is important to note that evolved genotype would be
simultanenously both (a) a valid ANN and (b) a set of rules that would produce
an arbitrary sequence of ANNs. It would be a valid ANN because all computational
nodes would be a standard neuron function (e.g. sigmoid) and all connections would
have explicit weights in the genotype. However, on iteration (i.e. application of the
embedded self-modification instructions) a new network would be produced. It may

8 Neuro-Centric and Holocentric Approaches 245

turn out to be necessary to apply weight adjustment self-modification instructions
more frequently than topological change inducing instructions. This could be done
via a weight-adjustment algorithm (i.e. backpropagation or a search algorithm) oper-
ating within a single iteration (in the sense of Algorithm 2). However, by supplying
a series of learning problems of different types, it should be possible to evolve an
algorithm that when iterated, adjusts weights and makes topological changes in such
a way that effective learning takes place. For instance, a number of the fitness incre-
ments referred to in Algorithm 2 could be acrued during training on a particular
problem, before iterating the SMCGP phenotype on another learning problem. The
number of iterations that are devoted to a particular learning problem would be a
choice for the experimenter. In principle the manner in which fitness increments are
calculated on a particular learning problem could be similar to the way fitness is
evaluated in neuroevolutionary approaches to artificial neural networks. There are
many issues here that remain for future research.

8 Neuro-Centric Versus Holocentric ANNs

Perhaps the greatest problem with neuro-centric ANNs is the complexity of the neu-
rons. In the approach outlined above the neurons contained seven evolved chromo-
somes. The action of these chromosomes was to alter internal variables that resulted
in electrical and morphological changes in the neurons. The values of these variables
were used to determine increases in neural sub-component weights, neurite topology,
transfer of potential, neuron and neurite replication and death and so on. To do this
required a large number of additional rules many of which could be important for
the success of the technique. The scientific study of such complex models is conse-
quently difficult. If the model proves to be successful, what rules and assumptions
are essential to that success? Though it is true that neuro-centric models can benefit
from improvements in our understanding of neuroscience, this inevitably compounds
the computational complexity problem. Science has not hitherto attempted to build
models of complex systems using extremely complex primitives (i.e. a neuron), how-
ever it is clear that natural evolution has built a fundamental building block of life
that is of staggering complexity. This is the cell. Only time will tell as to whether
it is possible to extract from neuroscience a sufficiently simple and computationally
efficient model of a neuron.

Holocentric models are therefore very attractive as they do not simulate many
low level details of neurons. For instance, SMCGP can build a new computational
network by carrying out simple graph altering operations on the genotype. Hyper-
NEAT can generate whole neural networks by running a program that is a function
of four variables. This makes them computationally more efficient. The drawback
that these models have is that informing them from neuroscience is much more dif-
ficult. Holocentric models are much more abstract than neuro-centric models and
are founded on high level assumptions. One of these was historically, the idea that
synaptic weights were sufficient for general learning. The danger with making such

246 J. F. Miller

high-level assumptions is that they may produce models that have hitherto unknown
limitations. Despite this it appears that abstracting developmental aspects of neuro-
science and informing holocentric models with this appears to be a very promising
direction.

9 Conclusions and Future Outlook

In this chapter we have outlined two approaches to developmental neural networks.
One is neuro-centric and evolves complex computational models of neurons, the
other is holocentric and use evolution and development at a whole network level.
Both approaches have merits and potential drawbacks. The main issue with neuro-
centric models is related to keeping the model complexity to be as small as possible
and making the model computationally efficient. Holocentric models are simpler
and more efficient but make high level assumptions that may ultimately restrict their
power and generality. Both approaches are worthy of continued attention.

It is our view that one of the main aims of the neural networks should be to produce
networks that are capable of general learning. General learning refers to an ability to
learn in multiple task domains without the occurrence of interference. A fundamental
problem in creating general learning systems is the encoding problem. This is where
the data that is fed into the neural networks has to be specifically encoded for each
problem. Biological brains avoid this by using sensors to acquire information about
the world and actuators to change it. We suggest that such universal representations
will be required in order for developmental artificial neural networks to show general
learning. Thus we feel that general learning systems can only be arrived at through
systems that utilize sensory data from the world. Essentially this means that such
systems need to be implemented on physical robots. This gives us an even greater
incentive to construct highly efficient models of neural networks.

References

1. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophy. 5, 115–133 (1943)

2. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, 4th edn. (McGraw-Hill,
New York, 2000)

3. R.M. French, Catastrophic forgetting in connectionist networks: causes, consequences and
solutions. Trends Cogn. Sci. 3(4), 128–135 (1999)

4. M. McCloskey, N.J. Cohen, Catastrophic interference in connectionist networks: the sequential
learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989)

5. R. Ratcliff, Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychol. Rev. 97, 285–308 (1990)

6. S. Judd, On the complexity of loading shallow neural networks. J. Complex. 4, 177–192 (1988)
7. E.B. Baum, A proposal for more powerful learning algorithms. Neural Comput. 1, 201–207

(1989)

8 Neuro-Centric and Holocentric Approaches 247

8. S.E. Fahlman, C. Lebiere, The cascade-correlation architecture, ed. by D.S. Touretzky.
Advances in Neural Information Processing Systems (Morgan Kaufmann, San Mateo, 1990)

9. M. Frean, The upstart algorithm: a method for constructing and training feedforward neural
networks. Neural Comput. 2, 198–209 (1990)

10. P.T. Quinlan, Structural change and development in real and artificial networks. Neural Netw.
11, 577–599 (1998)

11. P.T. Quinlan (ed.), Connectionist Models of Development (Psychology Press, New York, 2003)
12. J.F. Miller, G.M. Khan, Where is the brain inside the brain? on why artificial neural networks

should be developmental. Memet. Comput. 3(3), 217–228 (2011)
13. J.R. Smythies, The Dynamic Neuron (MIT Press, Cambridge, 2002)
14. F. Valverde, Rate and extent of recovery from dark rearing in the visual cortex of the mouse.

Brain Res. 33, 1–11 (1971)
15. J.A. Kleim, E. Lussnig, E.R. Schwartz, T.A. Comery, W.T. Greenough, Synaptogenesis and

fos expression in the motor cortex of the adult rat after motor skill learning. J. Neurosci 16,
4529–4535 (1996)

16. J.A. Kleim, K. Vij, D.H. Ballard, W.T. Greenough, Learning-dependent synaptic modifications
in the cerebellar cortex of the adult rat persist for at least four weeks. J. Neurosci 17, 717–721
(1997)

17. M.L. Mustroph, S. Chen, S.C. Desai, E.B. Cay, E.K. Deyoung, J.S. Rhodes. Aerobic exercise
is the critical variable in an enriched environment that increases hippocampal neurogenesis and
water maze learning in male C57BL/6J mice. Neuroscience (2012), Epub ahead of print

18. A.D. Tramontin, E. Brenowitz, Seasonal plasticity in the adult brain. Trends Neurosci. 23,
251–258 (2000)

19. E.A. Maguire, D.G. Gadian, I.S. Johnsrude, C.D. Good, J. Ashburner, R.S.J. Frackowiak,
C.D. Frith, Navigation-related structural change in the hippocampi of taxi drivers. PNAS 97,
4398–4403 (2000)

20. S. Rose, The Making of Memory: From Molecules to Mind (Vintage, London, 2003)
21. A.S. Dekaban, D. Sadowsky, Changes in brain weights during the span of human life. Ann.

Neurol. 4, 345–356 (1978)
22. G.M. Khan, J.F. Miller, Evolution of cartesian genetic programs capable of learning, ed. by F.

Rothlauf. Conference on Genetic and Evolutionary Computation (GECCO) (ACM, 2009) pp.
707–714

23. G.M. Khan, J.F. Miller, D.M. Halliday, Coevolution of intelligent agents using Cartesian genetic
programming. Conference on Genetic and Evolutionary Computation (GECCO) (2007), pp.
269–276

24. G.M. Khan, J.F. Miller, D.M. Halliday, Breaking the synaptic dogma: Evolving a neuro-inspired
developmental network, ed. by X. Li, M. Kirley, M. Zhang, D.G. Green, V. Ciesielski, H.A.
Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K.C. Tan, J. Branke, Y. Shi. Simulated Evolution
and Learning, 7th International Conference, SEAL 2008, Melbourne, Australia, December 7–
10, 2008. Proceedings, volume 5361 of Lecture Notes in Computer Science (Springer, 2008),
pp. 11–20

25. G.M. Khan, J.F. Miller, D.M. Halliday, Coevolution of neuro-developmental programs that
play checkers, ed. by G. Hornby, L. Sekanina, P.C. Haddow. Evolvable Systems: From Biology
to Hardware, 8th International Conference, ICES 2008, Prague, Czech Republic, September
21–24, 2008. Proceedings, volume 5216 of Lecture Notes in Computer Science (Springer,
2008), pp. 352–361

26. G.M. Khan, J.F. Miller, D.M. Halliday, Developing neural structure of two agents that play
checkers using cartesian genetic programming, ed. by C. Ryan, M. Keijzer. Conference on
Genetic and Evolutionary Computation (GECCO) Companion Material (ACM, 2008), pp.
2169–2174

27. G.M. Khan, J.F. Miller, D.M. Halliday, In search of intelligent genes: the cartesian genetic
programming computational neuron (cgpcn), in Proceedings of the IEEE Congress on Evo-
lutionary Computation, CEC 2009, Trondheim, Norway, 18–21 May, 2009 (IEEE, 2009), pp.
574–581

248 J. F. Miller

28. G.M. Khan, J.F. Miller, D.M. Halliday, Evolution of cartesian genetic programs for development
of learning neural architecture. Evol. Comput. 19(3), 469–523 (2011)

29. K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based encoding for evolving large-scale
neural networks. Artif. Life 15, 185–212 (2009)

30. F. Gruau, Automatic definition of modular neural networks. Adapt. Behav. 3, 151–183 (1994)
31. J.R. Koza, Genetic Programming: On the Programming of Computers by Natural Selection

(MIT Press, Cambridge, 1992)
32. J.F. Miller, An Empirical Study of the Efficiency of Learning Boolean Functions using a Carte-

sian Genetic Programming Approach. Conference on Genetic and Evolutionary Computation
(GECCO) (Morgan Kaufmann, 1999), pp. 1135–1142

33. J.F. Miller, P. Thomson, Cartesian Genetic Programming, in Proceedings of the European
Conference on Genetic Programming, vol. 1802 of LNCS (Springer, 2000), pp. 121–132

34. S. Harding, J.F. Miller, W. Banzhaf, A survey of self modifying CGP, ed. by R. Riolo, T.
McConaghy, E. Vladislavleda. Genetic Programming Theory and Practice VIII, 2010 (Springer,
2010) pp. 91–107

35. S. Harding, J.F. Miller, W. Banzhaf, Self-modifying Cartesian Genetic Programming, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference (2007), pp. 1021–1028

36. S. Harding, J.F. Miller, W. Banzhaf, Evolution, development and learning using self-modifying
cartesian genetic programming, ed. by F. Rothlauf. Conference on Genetic and Evolutionary
Computation (GECCO) (ACM, 2009), pp. 699–706

37. S. Harding, J.F. Miller, W. Banzhaf, Self modifying cartesian genetic programming: Fibonacci,
squares, regression and summing, ed. by L. Vanneschi, S. Gustafson, A. Moraglio, I. De
Falco, M. Ebner. Genetic Programming, 12th European Conference, EuroGP 2009, Tübingen,
Germany, April 15–17, 2009, Proceedings, volume 5481 of Lecture Notes in Computer Science
(Springer, 2009), pp. 133–144

38. S. Harding, J.F. Miller, W. Banzhaf, Self modifying cartesian genetic programming: Parity,
in Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim,
Norway, 18–21 May, IEEE, 2009 (2009), pp. 285–292

39. S. Harding, J.F. Miller, W. Banzhaf, Developments in cartesian genetic programming: self-
modifying cgp. Genet. Program. Evolvable Mach. 11(3–4), 397–439 (2010)

40. S. Harding, J.F. Miller, W. Banzhaf, Self modifying cartesian genetic programming: finding
algorithms that calculate pi and e to arbitrary precision, ed. by M. Pelikan, J. Branke. Con-
ference on Genetic and Evolutionary Computation (GECCO) (ACM, 2010), pp. 579–586

41. M.M. Khan, G.M. Khan, J.F. Miller, Efficient representation of recurrent neural networks for
Markovian/Non-Markovian non-linear control problems, ed. by A.E. Hassanien, A. Abraham,
F. Marcelloni, H. Hagras, M. Antonelli, T.-P. Hong, in Proceedings of the International Con-
ference on Intelligent Systems Design and Applications (IEEE, 2010), pp. 615–620

42. M.M. Khan, G.M. Khan, J.F. Miller, Evolution of neural networks using cartesian genetic
programming, in Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010,
Barcelona, Spain, 18–23 July 2010 (IEEE, 2010)

43. M.M Khan, G.M. Khan, J.F. Miller, Evolution of optimal anns for non-linear control problems
using cartesian genetic programming, ed. by H.R. Arabnia, D. de la Fuente, E.B. Kozerenko,
J.A. Olivas, R. Chang, P.M. LaMonica, R.A. Liuzzi, A.M.G. Solo, in Proceedings of the 2010
International Conference on Artificial Intelligence, ICAI 2010, July 12–15, 2010, Las Vegas
Nevada, USA, vol. 2 (CSREA Press, 2010), pp. 339–346

44. J.A. Walker, J.F. Miller, The automatic acquisition, evolution and reuse of modules in cartesian
genetic programming. IEEE Trans. Evolut. Comput. 12(4), 397–417 (2008)

45. J.F. Miller (ed.), Cartesian Genetic Programming. Natural Computing Series (Springer, Berlin,
2011)

46. I. Rechenberg, Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Ph.D. thesis, Technical University of Berlin, Germany, (1971)

47. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic program-
ming. IEEE Trans. Evolut. Comput. 10(2), 167–174 (2006)

8 Neuro-Centric and Holocentric Approaches 249

48. V.K. Vassilev, J.F. Miller, The Advantages of Landscape Neutrality in Digital Circuit Evolution.
International Conference on Evolvable Systems, vol. 1801 of LNCS (Springer, 2000), pp. 252–
263

49. T. Yu, J.F. Miller, Neutrality and the evolvability of Boolean function landscape, in Proceedings
of the European Conference on Genetic Programming, vol. 2038 of LNCS (Springer, 2001),
pp. 204–217

50. G.M. Khan, J.F Miller, Solving mazes using an artificial developmental neuron, in Proceedings
of the Conference on Artificial Life (ALIFE) XII (MIT Press, 2010), pp. 241–248

51. S. Harding, J.F. Miller, W. Banzhaf, SMCGP2: Self-modifying Cartesian Genetic Programming
in Two Dimensions. Conference on Genetic and Evolutionary Computation (GECCO) (ACM,
2011), pp. 1491–1498

52. W. Gerstner, W.M. Kistler, Spiking Neuron Models (Cambridge University Press, Cambridge,
2002)

Chapter 9
Artificial Evolution of Plastic Neural
Networks: A Few Key Concepts

Jean-Baptiste Mouret and Paul Tonelli

Abstract This chapter introduces a hierarchy of concepts to classify the goals and
the methods used in articles that mix neuro-evolution and synaptic plasticity. We pro-
pose definitions of “behavioral robustness” and oppose it to “reward-based behavioral
changes”; we then distinguish the switch between behaviors and the acquisition of
new behaviors. Last, we formalize the concept of “synaptic General Learning Abil-
ities” (sGLA) and that of “synaptic Transitive learning Abilities (sTLA)”. For each
concept, we review the literature to identify the main experimental setups and the
typical studies.

1 Introduction

The abilities of animals to adapt to new environments is one of the most fascinating
aspects of nature and it may be what most clearly separates animals from current
machines. Natural adaptive processes are classically divided into three main cat-
egories, each of them having been a continuous source of inspiration in artificial
intelligence and robotics [8]: evolution, development and learning. While studying
each of these processes independently have been widely successful, there is a growing
interest in understanding how they benefit from each other.

In particular, a large amount of work has been devoted to understanding both the
biology of learning (e.g. [19, 29]) and the design of learning algorithms for artificial
neural networks (e.g. [9]); concurrently, evolution-inspired algorithms have been

J.-B. Mouret (B)

Institut des Systèmes Intelligents et de Robotique (ISIR), UMR 7222,
Sorbonne Universités, UPMC Univ Paris, 06, F-75005 Paris, France
e-mail: mouret@isir.upmc.fr

P. Tonelli
UMR 7222, ISIR, F-75005 Paris, France
e-mail: tonelli@isir.upmc.fr

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 251
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_9,
© Springer-Verlag Berlin Heidelberg 2014

252 J.-B. Mouret and P. Tonelli

Fig. 1 The artificial evolution of plastic neural networks relies on the classic evolutionary loop
used in neuro-evolution. The algorithm starts with a population of genotypes that are thereafter
developed into plastic neural networks. The topology of the neural network is sometimes evolved
[17, 18, 21–24, 28]. Typical plastic neural networks use a variant of the Hebb’s rule to adapt the
weight during the “lifetime” of the agent. The fitness of the agent is most of the time evaluated in
a dynamic environment that requires the agent to adapt its behavior. The agent is therefore usually
directly selected for its adaptive abilities

successfully employed to automatically design small “nervous systems” for robots
[7, 10, 12, 13, 25, 26], sometimes by taking inspiration from development processes
[10, 13, 16, 25]. A comparatively few articles proposed to combine the artificial
evolution of neural networks with synaptic plasticity to evolve artificial agents
that can adapt their “artificial nervous system” during their “lifetime” [7, 15–18,
21–23, 28, 30] (Fig.1). However, the analysis of these articles shows that they often
address different challenges in very different situations, while using the same termi-
nology (e.g. “learning”, “robustness” or “generalization”).

The goal of the present article is to provide a set of definitions to make as clear as
possible current and future work that involve the evolution of such plastic artificial
neural networks (ANNs) to control agents (simulated or real robots). While some
definitions and some distinctions are novel, the main contribution of the present
chapter is to isolate each concept and to present them in a coherent framework.
For each definition, we will provide examples of typical setups and current results.
Figure 2 displays the hierarchy of the concepts that will be introduced; it can serve
as a guide to the chapter.

2 Synaptic Plasticity

In neuroscience, plasticity (or neuroplasticity) is the ability of the brain and nervous
systems to change structurally and functionally as a result of their interaction with

9 Artificial Evolution of Plastic Neural Networks 253

Fig. 2 Hierarchy of concepts described the present chapter. See text for a definition of each grey
box

the environment. Plasticity is typically observed during phases of development and
learning. Trappenberg [29] defines two kinds of plasticity: structural plasticity and
synaptic (or functional) plasticity.

Definition 1 (Structural plasticity) Structural plasticity is the mechanism describing
generation of new connections and thereby redefining the topology of the network.

Definition 2 (Synaptic plasticity) Synaptic plasticity is the mechanism of chang-
ing strength values of existing connections. It is sometimes termed “functional
plasticity” [29].

Nolfi et al. [16] investigated structural plasticity in a system in which the geno-
type contained developmental instructions for the construction of a neural network.
Genes specified (1) the position of each neuron and (2) instructions that described
how axons and branching segments grew. These instructions were executed when
a neuron was sufficiently stimulated by its surrounding neurons and by the agent’s
environment. The authors observed different phenotypes when the same genotype
was used in two different environments and concluded that their approach increased
the adaptive capabilities of their organisms. Several other authors evolved neural
networks while letting them grow axons depending on their location (e.g. [10, 25])
but the environment was not taken into account.

Most research on the evolution of plastic neural networks instead focused on
synaptic plasticity [2, 6, 14, 30], maybe because of the prominence of learning
algorithms that only adapt weights in the machine learning literature. Most of the
works that do not rely on machine learning algorithms (e.g. the backpropagation

254 J.-B. Mouret and P. Tonelli

algorithm) [3, 15] use variants of the “Hebb’s rule” [2, 6, 17, 28, 30], which posits
that the simultaneous activation of two neurons strengthens the synapse that link
them.

Definition 3 (Hebb’s rule) Let us denote by i and j two neurons1, ai and a j their
respective activation level, wi j the synaptic weight of the connection from i to j and
Φ a learning rate that describes how fast the change occurs. According to Hebb’s rule,
wi j should be modified as follows:

wi j (t + 1) = wi j (t) + Γwi j (1)

Γwi j = Φ · ai · a j (2)

Hebb’s rule is often extended to include more complex combinations of pre- and
post-synaptic activities [2, 6, 17, 29, 30].

Definition 4 (Extended Hebbian rule)

Γwi j = f (ai , a j , wi j) (3)

Many different f () have been investigated; one of the simplest extended Hebbian
rule consists in linearly combining pre- and post-synaptic activities [14, 17, 21]:

Γwi j = A · ai · a j + B · ai + C · a j + D (4)

where A,B, C and D are four real numbers. Several rules can be mixed in the same
neural networks, as Urzelai and Floreano did it when let evolve the kind of rules for
each synapse in a fully connected, fully plastic neural networks [30].

A synapse can also be strengthened or weakened as a result of the firing of a
third, modulatory inter-neuron (e.g. dopaminergic neurons) [1, 14, 22]. To reflect
this phenomenon, two kinds of neurons can be distinguished: modulatory neurons
and modulated neurons. Inputs of each neuron are divided into modulatory inputs
and signal inputs; the sum of the modulatory inputs of j governs the modulation of
the all non-modulatory connections to j :

Definition 5 (Modulated Hebbian rule) Let us denote by I (m)
j the set of modulatory

inputs of neuron j and by I (j)
s the set of non-modulatory inputs. Each incoming

connection of neuron j is modified as follows:

1 We focus our discussion on classic neurons (as used in classic machine learning) and population-
based models of neurons (e.g. leaky integrators) because they are the neuron models that are used
by most of the community. Spiking neuron models can make use of other plasticity mechanisms
(e.g. STDP) that will not be described here.

9 Artificial Evolution of Plastic Neural Networks 255

m j = tanh

⎛
⎝⎜

⎞

k∈I (m)
j

wk j ak

⎠
⎟ (5)

∀ i ∈ I (j)
s ,∂wi j = m j · f (ai , a j , wi j) (6)

In addition to its biological realism, this weight adaptation rule makes easier to use
rewards signals (for instance, plasticity could be enabled only when a reward signal
is on). It also leads to networks in which only a part of the synapses are changed
during the day-to-day life of the agent. These two features make such networks match
more closely some of the current actor-critic models of reinforcement learning used
in computational neuroscience [19].

Modulated Hebbian plasticity has been used several times when evolving plastic
neural networks [11, 14, 18, 21, 22]. In these simulations, experiments in reward-
based scenarios where modulatory neurons were enabled achieved better learning in
comparison to those where modulatory neurons were disabled [21].

3 Robustness and Reward-Based Scenarios

A major goal when evolving neuro-controllers is to evolve neural networks that keep
performing the same optimal (or pseudo-optimal) behavior when their morphology
or their environment change. For instance, a robot can be damaged, gears can wear
out over time or the light conditions can change: in all these situations, it is desirable
for an evolved controller to compensate these changes by adapting itself; we will call
this ability behavioral robustness.

Definition 6 (Behavioral robustness) An agent displays behavioral robustness when
it keeps the same qualitative behavior, notwithstanding environmental and morpho-
logical changes. Behavioral robustness does not usually involve a reward/ punishment
system.

In a typical work that combines synaptic plasticity, evolution and behavioral
robustness, Urzelai and Floreano [30] evolved neuro-controllers with plastic synapses
to solve a light-switching task in which there was no reward; they then investigated
whether these controllers were able to cope with four types of environmental changes:
new sensory appearances, transfer from simulations to physical robots, transfer across
different robotic platforms and re-arrangement of environmental layout. The plastic
ANNs were able to overcome these four kinds of change, contrary to a classic ANN
with fixed weights.

However, as highlighted by Urzelai and Floreano, “these behaviors were not
learned in the classic meaning of the term because they were not necessarily retained
forever”. Actually, synaptic weights were continuously changing such that the robot
performed several sub-behaviors in sequence; the evolutionary algorithm therefore
opportunistically used plasticity to enhance the dynamic power of the ANN. These

256 J.-B. Mouret and P. Tonelli

high-frequency changes of synaptic weights appear different from what we observe
in natural system (in particular in the basal ganglia), in which synaptic weights tend
to hold the same value for a long period, once stabilized [5, 27].

Besides robustness, an even more desirable property for an evolved agent is the
ability to change its behavior according to external stimuli and, in particular, accord-
ing to rewards and punishments. For instance, one can imagine a robot in a T-maze
that must go to the end of the maze where a reward has been put [17, 18, 21]. The
robot should first randomly try different trajectories. Then, once the reward has been
found a few times, the robot should go directly to the reward. Nonetheless, if the
reward is moved somewhere else, the robot should change its behavior to match
the new position of the reward. Once the robot has found the optimal behavior (the
behavior that maximizes the reward), the synaptic weights of its controller should
not change anymore. This ability to adapt in a reward-based scenario can be more
formally defined as follows:

Definition 7 (Behavioral change) A plastic agent is capable of behavioral changes
in a reward-based scenario if and only if:

• a change of reward makes it adopt a qualitatively new behavior;
• the synaptic weights do not significantly change once an optimal behavior has

been reached.

Notable setups in which authors evolved plastic neuro-controllers for behavioral
changes are the T-maze [17, 18, 21], the bumblebee foraging task [14], the “danger-
ous foraging task” [24] and the Skinner box [28, 29].

4 Learning Abilities in Discrete Environment

The main challenge when evolving plastic agents for behavioral change is to make
them able to learn new behaviors in unknown situations and, in particular, in situations
that have never been encountered during the evolutionary process. Put differently,
selecting agents for their abilities to switch between alternatives is not sufficient; the
evolved agent must also be placed in completely new situations to assess its ability
to find an optimal behavior in a situation for which it has never been selected.

We previously introduced a theoretical framework to characterize and analyze
the learning abilities of evolved plastic neural networks [28, 29]; we will rely on
this framework in the remainder of this chapter. For the sake of simplicity, we focus
on a discrete world, with discrete stimuli and discrete actions. The canonical setup,
inspired by experiments in operant conditioning, is the Skinner Box [20]: an agent is
placed in a cage with n stimuli (lights), m actions (levers), positive rewards (food) and
punishments (electric shocks). The goal of the agent is to learn the right associations
between each stimulus and each action. This task encompasses most discrete reward-
based scenarios (Fig. 3). For instance, the discrete T-maze experiment [17, 18, 21–23]
can be described as a special case of a Skinner box.

9 Artificial Evolution of Plastic Neural Networks 257

Fig. 3 Learning the best-rewarding behavior in a discrete T-maze is equivalent to a Skinner box
(Operant Conditioning Chamber, left): in both cases, the challenge is to associate the right stimulus
to the right action

More formally, an evolved neural network N (I, λ) must adapt several synaptic
weights λ ∈ R

z such that each input pattern I ∈ [0, 1]n is associated to the best
rewarded output vector K ∈ [0, 1]m . The adaptation is performed by a learning
function such that λ = g(λr , I, RI,K), where λr is a random vector in R

z and RI,K

the reward function. These notations lead to the following definitions:

Definition 8 (Association set) An association set A = {
(I1, K1), . . . , (In, Kn)

}
is a

list of associations that covers all the possible input patterns. The set of all association
sets is denoted A.

Definition 9 (Fitness association set) The fitness association set FA = {A1 · · · Ak}
is the set of the association sets that are used during the fitness evaluation.

For a given topology, some association sets may not be learnable by only chang-
ing synaptic weights. This case occurs in particular when the topology of neural
networks are evolved: if there is no selective pressure to maintain a connection, it
can easily disappear; but this connection may be required to learn a similar but dif-
ferent association set. Some association sets may also be not learnable because they
require specific topologies. For instance, the XOR function requires a hidden layer
of neurons to be computed.

Definition 10 (Learnable set) Given a suitable reward function RI,K , an association
set A ∈ A is said to be learnable by the neural network N , if and only if ∀ λr ∈ R

z

and ∀ (I, K) ∈ A, ∃ λ = g(λr , I, RI,K) such that N (I, λ) = K . The set of all
learnable sets for N is denoted LN .

Definition 11 (sGLA) A plastic ANN is said to possess synaptic General Learning
Abilities (sGLA) if and only if ∀ A ∈ A, A ∈ LN .

Although it does not use Hebbian learning, the multi-layer perceptron with the back-
propagation algorithm is an example of a neural network with synaptic General

258 J.-B. Mouret and P. Tonelli

Learning Abilities. At the opposite end, a neural network in which each input is
connected to only one output can learn only one association set.

To evolve a plastic ANN with sGLA, the simplest method is to check the learn-
ability of each association set during the fitness evaluation; that is, to set the fitness
association set equal to the set of all the association sets (FA = A). This approach
has often been followed by authors who evolved agents to solve the T-maze task
[17, 18, 21–23]. We propose to call such approaches the evolution of behavioral
switches to distinguish it from the evolution of more general learning abilities.

Definition 12 (Evolution of behavioral switches) FA = A.

However, a plastic ANN that can cope with unknown situations must have sGLA
while only a subset of the possible association sets (i.e. a subset of problems from
the same problem class) has been used during the evolutionary process.

Definition 13 (Evolution of sGLA for unknown situations) |FA| < |A| and ∀ A ∈ A,
A ∈ LN .

At first sight, nature relies on the long lifetime of animals (compared to the
“lifetime” of artificial agents) and on the large size of the populations to obtain
a stochastic evaluation of virtually every possible scenarios. This probably explains
why most authors tried to obtain agents with sGLA by using a large, often randomized
subset of the association sets in the fitness association set. In supervised learning,
Chalmers [3] assessed how well an evolved plastic ANN can cope with situations
never encountered during the evolution. In his experiments, he evolved the learning
rule for a small single-layer ANN (five inputs, one output) and his analysis showed
that at least 10 sets of input/output patterns (among 30 possible sets) were required
to evolve an algorithm that correctly learns on 10 unknown sets. In reinforcement
learning, Niv et al. [14] evolved plastic ANNs to solve a bumblebee-inspired forag-
ing task in which simulated bees must select flowers by recognizing their color. To
promote general learning abilities, they randomly assigned rewards to colors at each
generation and they showed that the resulting ANNs successfully learned unknown
color/reward associations. In the “dangerous foraging task”, Stanley et al. [24] sim-
ilarly randomized the parameters of the fitness function to avoid overspecialized
behaviors.

However, the encoding and the development process may also play a key role
in allowing the adaptation to situations which have never been encountered before
[28, 29]. Intuitively, a very regular network may repeat the same adaptation structure
many times whereas it was only required once by the fitness; it could therefore “prop-
agate” the adaptation structure. Since most developmental encoding are designed to
generate very regular structures [4, 13, 28, 29], using such encodings could substan-
tially reduce the number of evaluations required to obtain general learning abilities.
In the ideal case, we should be able to show that the developmental process implies
that if a few association sets have been successfully learned, then all the other sets
have a high probability of being learnable. Such networks will be said to possess
“synaptic Transitive Learning Abilities”.

9 Artificial Evolution of Plastic Neural Networks 259

Definition 14 (sTLA) Let us denote by TN a subset of the learnable association set
A. A plastic ANN is said to possess synaptic Transitive Learning Abilities (sTLA)
if and only if ∃ TN ⊂ A such that the following implication is true:

TN ⊂ LN ⇒ LN = A

p = |TN | will be called the “sTLA-level”.

Definition 15 (Optimal-sTLA) A plastic ANN is said to possess Optimal synaptic
Transitive Learning Abilities (optimal-sTLA) if and only if it possesses sTLA and
|TN | = 1.

The sTLA-level of certain families of topologies (i.e. topologies generated by
a specific genetic encoding) can possibly be computed theoretically. It can also be
easily evaluated by a succession of evolutionary experiments: (1) select p association
sets; (2) evolve ANNs that successfully learns the p association sets; (3) check the
sGLA of optimal ANNs; (4) if optimal ANNs do not possess sGLA, then increase p
and start again.

Using this method, Tonelli and Mouret [28, 29] showed that a very regular map-
based encoding proposed in [13] have a TLA-level or 1 or 2. Preliminary experiments
suggest that other generative encodings such as HyperNEAT [4, 25] could also
possess a low TLA-level [29]. Overall, the concept of sTLA highlights how evolution,
learning and development are interwoven.

Last, the authors are not aware of any definition that would of an equivalent of
the concept of GLA for continuous world and behaviors.

5 Concluding Remarks

With the rise of computing power, it is now easy to simulate artificial agents for
enough time for them to learn and to evolve; this allows the study of well-defined
scientific questions with modern experimental and statistical techniques. Neverthe-
less, future work in this direction will have to precisely define what they work on:
Do they aim at behavioral robustness or at behavioral change? How do they evaluate
the general learning abilities of the evolved agents? Do the evolved neural network
manage to learn in unknown situations? What is the role of the encoding in the final
result? The definitions proposed in the present chapter will hopefully help to design
a methodology to answer such questions.

The present work also highlights open questions and avenues for future research:

• Should future work focus more on structural plasticity? This approach to plasticity
may be more complex but it may also allow agents to learn new skills without
forgetting the old ones (because the previous structure is not deleted).

• How to evaluate learning abilities in continuous world and with continuous
behaviors?

• What are the links between encodings, plasticity and learnability? [28, 29] provides
first answers but only for simple and discrete scenarios.

260 J.-B. Mouret and P. Tonelli

Acknowledgments This work was funded by the EvoNeuro project (ANR-09-EMER-005-01) and
the Creadapt project (ANR-12-JS03-0009).

References

1. C.H. Bailey, M. Giustetto, Y.Y. Huang, R.D. Hawkins, E.R. Kandel, Is heterosynaptic mod-
ulation essential for stabilizing Hebbian plasticity and memory? Nature Rev. Neurosci. 1(1),
11–20 (2000)

2. J. Blynel, D. Floreano, Levels of dynamics and adaptive behavior in evolutionary neural con-
trollers, in Conference on Simulation of Adaptive Behavior (SAB) (2002), pp. 272–281

3. D.J. Chalmers, The Evolution of Learning: An Experiment in Genetic Connectionism (Con-
nectionist Models Summer School, 1990)

4. J. Clune, K.O. Stanley, R.T. Pennock, C. Ofria, On the performance of indirect encoding across
the continuum of regularity. IEEE Trans. Evol. Comput. 15(3), 346–367 (2011)

5. N.D. Daw, Y. Niv, P. Dayan, Uncertainty-based competition between prefrontal and dorsolateral
striatal systems for behavioral control. Nature Neurosci. 8(12), 11–1704 (2005)

6. D. Floreano, Evolution of plastic neurocontrollers for situated agents, in Conference on Simu-
lation of Adaptive Behavior (SAB) (1996)

7. D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: from architectures to learning. Evol. Intell.
1(1), 47–62 (2008)

8. D. Floreano, C. Mattiussi, Bio-inspired Artificial Intelligence: Theories, Methods, and Tech-
nologies (The MIT Press, 2008)

9. S. Haykin, Neural networks: a comprehensive foundation (Prentice Hall, Upper Saddle River,
1999)

10. J. Kodjabachian, J.-A. Meyer, Evolution and development of neural controllers for locomotion,
gradient-following, and obstacle-avoidance in artificial insects. IEEE Trans. Neural Networks
9(5), 796–812 (1998)

11. T. Kondo, Evolutionary design and behavior analysis of neuromodulatory neural networks for
mobile robots control. Appl. Soft Comput. 7(1), 189–202 (2007)

12. J.-B. Mouret, S. Doncieux, Using behavioral exploration objectives to solve deceptive problems
in neuro-evolution, in Conference on genetic and evolutionary computation (GECCO) (2009)

13. J.-B. Mouret, S. Doncieux, B. Girard, Importing the computational neuroscience toolbox into
neuro-evolution—application to basal ganglia, in Conference on genetic and evolutionary com-
putation (GECCO) (2010)

14. Y. Niv, D. Joel, I. Meilijson, E. Ruppin, Evolution of reinforcement learning in uncertain
environments: a simple explanation for complex foraging behaviors. Adapt. Behav. 10(1),
5–24 (2002)

15. S. Nolfi, How learning and evolution interact: the case of a learning task which differs from
the evolutionary task. Adapt. Behav. 4(1), 81–84 (1999)

16. S. Nolfi, O. Miglino, D. Parisi, Phenotypic plasticity in evolving neural networks. in From
Perception to Action Conference (IEEE, 1994), pp. 146–157

17. S. Risi, K.O. Stanley, Indirectly encoding neural plasticity as a pattern of local rules, in Con-
ference on Simulation of Adaptive Behavior (SAB) (2010)

18. S. Risi, S.D. Vanderbleek, C.E. Hughes, K.O. Stanley, How novelty search escapes the deceptive
trap of learning to learn, in Conference on genetic and evolutionary computation (GECCO)
(2009)

19. W. Schultz, P. Dayan, P.R. Montague, A neural substrate of prediction and reward. Science
275(5306), 1593–1599 (1997)

20. B.F. Skinner, Operant behavior. Am. Psychol. 18(8), 503 (1963)
21. A. Soltoggio, J.A. Bullinaria, C. Mattiussi, P. Dürr, D. Floreano, Evolutionary advantages of

neuromodulated plasticity in dynamic, reward-based scenarios. Artif. Life 11, 569 (2008)

9 Artificial Evolution of Plastic Neural Networks 261

22. A. Soltoggio, P. Dürr, C. Mattiussi, D. Floreano, Evolving neuromodulatory topologies for
reinforcement learning-like problems, in IEEE Congress on Evolutionary Computation (CEC)
(2007)

23. A. Soltoggio, B. Jones, Novelty of behaviour as a basis for the neuro-evolution of operant
reward learning, in Conference on genetic and evolutionary computation (GECCO) (2009)

24. K.O. Stanley, B.D. Bryant, R. Miikkulainen, Evolving adaptive neural networks with and
without adaptive synapses, in IEEE Congress on Evolutionary Computation (CEC) (2003)

25. K.O. Stanley, D. D’Ambrosio, J. Gauci, A hypercube-based indirect encoding for evolving
large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

26. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol.
Comput. 10(2), 99–127 (2002)

27. R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction (The MIT press, 1998)
28. P. Tonelli, J.-B. Mouret, On the relationships between synaptic plasticity and generative sys-

tems, in Conference on genetic and evolutionary computation (GECCO) (2011)
29. P. Tonelli, J.-B. Mouret, On the relationships between generative encodings, regularity, and

learning abilities when evolving plastic artificial neural networks. PLoS One. 8(11), e79138
(2013)

30. J. Urzelai, D. Floreano, Evolution of adaptive synapses: robots with fast adaptive behavior in
new environments. Evol. Comput. 9(4), 495–524 (2001)

	Preface
	Contents
	1 Artificial Neurogenesis: An Introduction and Selective Review
	1 The Brain and Its Models
	1.1 Generating a Brain
	1.2 Neural Development
	1.3 Brain Modelling

	2 Artificial Development
	2.1 Why Use Artificial Development?
	2.2 Models of Growth
	2.3 Why Does Artificial Development Work?

	3 Artificial Neurogenesis
	3.1 The Interplay Between Development and Learning
	3.2 Why Use Artificial Neurogenesis?
	3.3 Model Choices
	3.4 Issues Surrounding Developmental Neural Network Design

	4 Bio-Inspired Representations
	4.1 Deep Learning
	4.2 Reservoir Computing
	4.3 Neuroevolution

	5 Developmental Systems
	5.1 Grammar-Based Encoding
	5.2 Genetic Regulatory Networks
	5.3 Cellular Automata Models
	5.4 HyperNEAT
	5.5 Beyond Artificial Neural Networks

	6 Epigenetic Simulation
	6.1 Hebbian Pretraining
	6.2 Constructive and Pruning Algorithms
	6.3 Epigenetic Neuroevolution

	7 Summary
	References

	2 A Brief Introduction to Probabilistic Machine Learning and Its Relation to Neuroscience
	1 Evolution, Development and Learning
	1.1 Organizational Mechanisms
	1.2 Generalization
	1.3 Learning with Uncertainties
	1.4 Predictive Learning

	2 Unsupervised Learning
	2.1 Representations
	2.2 Sparse and Topographic Representations
	2.3 Hierarchical Representations and Deep Learning

	3 Supervised Learning
	3.1 Regression
	3.2 Classification as a Logistic Regression
	3.3 Multivariate Generative Models and Probabilistic Reasoning
	3.4 Nonlinear Regression and the Bias-Variance Tradeoff
	3.5 General Learning Machines

	4 Reinforcement Learning
	4.1 Markov Decision Processes
	4.2 Temporal Difference Learning
	4.3 Function Approximation and TD(λ)

	5 Some Biological Analogies
	5.1 Synaptic Plasticity
	5.2 Classical Conditioning and the Basal Ganglia

	6 Outlook
	References

	3 Evolving Culture Versus Local Minima
	1 Introduction
	2 Neural Networks and Local Minima
	2.1 Neural Networks
	2.2 Training Criterion
	2.3 Learning
	2.4 What Do Brains Optimize?
	2.5 Local Minima
	2.6 Effective Local Minima
	2.7 Inference

	3 High-Level Abstractions and Deep Architectures
	3.1 Efficiency of Representation
	3.2 High-Level Abstractions

	4 The Difficulty of Training Deep Architectures
	4.1 Unsupervised Layer-Wise Pre-training
	4.2 More Difficult for Deeper Architectures and More Abstract Concepts

	5 Brain to Brain Transfer of Information to Escape Local Minima
	5.1 Labeled Examples as Hints
	5.2 Language for Supervised Training
	5.3 Learning by Predicting the Linguistic Output of Other Agents
	5.4 Language to Evoke Training Examples at Will
	5.5 Connection with Curriculum Learning

	6 Memes, Crossover, and Cultural Evolution
	6.1 Memes and Evolution from Noisy Copies
	6.2 Fast-Forward with Divide-and-Conquer from Recombination
	6.3 Where Do New Ideas Come from?

	7 Conclusion and Future Work
	References

	4 Learning Sparse Features with an Auto-Associator
	1 Introduction
	2 Learning Sparse Representations of Data
	2.1 Dictionary-Based Sparse Coding
	2.2 Sparse Coding within a Neural Network

	3 Auto-Associator and Denoising Auto-Associator
	4 Sparse Auto-Associator
	5 Experiments
	5.1 Experimental Setting
	5.2 Discriminant Power
	5.3 Pruning the Feature Space

	6 Discussion
	6.1 Benefits of the Sparse Auto-Associator
	6.2 Comparison with Related Work

	7 Conclusion and Perspectives
	References

	5 HyperNEAT: The First Five Years
	1 Introduction
	2 Background
	2.1 Generative and Developmental Systems
	2.2 Neuroevolution of Augmenting Topologies
	2.3 Compositional Pattern Producing Networks

	3 Method: Hypercube-Based Neuroevolution of Augmenting Topologies
	3.1 Mapping Spatial Patterns to Connectivity Patterns
	3.2 Producing Regular Connectivity Patterns
	3.3 Substrate Configuration
	3.4 Input and Output Placement
	3.5 Substrate Resolution
	3.6 Evolving Connective CPPNs

	4 Key Properties
	5 Applications of HyperNEAT
	5.1 Game Playing
	5.2 Control
	5.3 Robocup

	6 Extensions and Implementations
	6.1 Plasticity: Adaptive HyperNEAT
	6.2 Indirect-then-Direct: HybrID
	6.3 Decoupling Topology and Weighting: HyperNEAT-LEO
	6.4 Dynamic Substrate Design: ES-HyperNEAT
	6.5 Morphological Evolution with CPPNs
	6.6 Replacing NEAT: HyperGP
	6.7 Multiagent HyperNEAT

	7 Discussion and Future Directions
	References

	6 Using the Genetic Regulatory Evolving Artificial Networks (GReaNs) Platform for Signal Processing, Animat Control, and Artificial Multicellular Development
	1 Introduction
	2 Gene Regulatory Evolving Artificial Networks Encoded in Linear Genomes
	3 Asymmetrical Morphogenesis/Pattern Formation and Development of Multicellular Soft-bodied Animats
	4 Towards Biologically-inspired Development of Artificial Neural Networks
	5 Summary
	References

	7 Constructing Complex Systems Via Activity-Driven Unsupervised Hebbian Self-Organization
	1 Introduction
	2 Architecture
	2.1 Sheets and Projections
	2.2 Images and Photoreceptor Sheets
	2.3 Subcortical Sheets
	2.4 Cortical Sheets
	2.5 Activation
	2.6 Homeostatic Adaptation
	2.7 Learning

	3 Results
	3.1 Maps and Connection Patterns
	3.2 Surround Modulation
	3.3 Aftereffects
	3.4 Time Course of Neural Responses

	4 Discussion and Future Work
	5 GCAL as a Starting Point for Higher-Level Mechanisms
	6 Building Complex Systems
	7 Conclusions
	References

	8 Neuro-Centric and Holocentric Approaches to the Evolution of Developmental Neural Networks
	1 Introduction
	2 Cartesian Genetic Programming
	3 A Neurocentric Model: The CGP Developmental Network
	3.1 Internal Neuron Variables
	3.2 Electrical Processing
	3.3 Weight Processing
	3.4 Developmental Aspects of Neurons
	3.5 Inputs and Outputs

	4 Self-Modifying CGP
	5 The Relation of SMCGP to CGP
	5.1 Self-Modification Functions
	5.2 Computational Functions
	5.3 Arguments
	5.4 Relative Addressing
	5.5 Input and Output Nodes

	6 SMCGP Performance and Applications
	7 A Holocentric Model: SMCGP Artificial Neural Networks
	7.1 Process of Learning in SMCGP Artificial Neural Networks

	8 Neuro-Centric Versus Holocentric ANNs
	9 Conclusions and Future Outlook
	References

	9 Artificial Evolution of Plastic Neural Networks: A Few Key Concepts
	1 Introduction
	2 Synaptic Plasticity
	3 Robustness and Reward-Based Scenarios
	4 Learning Abilities in Discrete Environment
	5 Concluding Remarks
	References

