


Achim Zielesny

From Curve Fitting to Machine Learning



Intelligent Systems Reference Library,Volume 18

Editors-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Prof. Lakhmi C. Jain

University of South Australia

Adelaide

Mawson Lakes Campus

South Australia 5095

Australia

E-mail: Lakhmi.jain@unisa.edu.au

Further volumes of this series can be found on our

homepage: springer.com

Vol. 1. Christine L. Mumford and Lakhmi C. Jain (Eds.)

Computational Intelligence: Collaboration, Fusion

and Emergence, 2009

ISBN 978-3-642-01798-8

Vol. 2.Yuehui Chen and Ajith Abraham

Tree-Structure Based Hybrid

Computational Intelligence, 2009

ISBN 978-3-642-04738-1

Vol. 3.Anthony Finn and Steve Scheding

Developments and Challenges for
Autonomous Unmanned Vehicles, 2010

ISBN 978-3-642-10703-0

Vol. 4. Lakhmi C. Jain and Chee Peng Lim (Eds.)

Handbook on Decision Making: Techniques

and Applications, 2010

ISBN 978-3-642-13638-2

Vol. 5. George A.Anastassiou

Intelligent Mathematics: Computational Analysis, 2010

ISBN 978-3-642-17097-3

Vol. 6. Ludmila Dymowa

Soft Computing in Economics and Finance, 2011

ISBN 978-3-642-17718-7

Vol. 7. Gerasimos G. Rigatos

Modelling and Control for Intelligent Industrial Systems,

2011

ISBN 978-3-642-17874-0

Vol. 8. Edward H.Y. Lim, James N.K. Liu, and

Raymond S.T. Lee

Knowledge Seeker – Ontology Modelling for Information

Search and Management, 2011

ISBN 978-3-642-17915-0

Vol. 9. Menahem Friedman and Abraham Kandel

Calculus Light, 2011

ISBN 978-3-642-17847-4

Vol. 10.Andreas Tolk and Lakhmi C. Jain

Intelligence-Based Systems Engineering, 2011

ISBN 978-3-642-17930-3

Vol. 11. Samuli Niiranen and Andre Ribeiro (Eds.)

Information Processing and Biological Systems, 2011

ISBN 978-3-642-19620-1

Vol. 12. Florin Gorunescu

Data Mining, 2011

ISBN 978-3-642-19720-8

Vol. 13.Witold Pedrycz and Shyi-Ming Chen (Eds.)

Granular Computing and Intelligent Systems, 2011

ISBN 978-3-642-19819-9

Vol. 14. George A.Anastassiou and Oktay Duman

Towards Intelligent Modeling: Statistical Approximation

Theory, 2011

ISBN 978-3-642-19825-0

Vol. 15.Antonino Freno and Edmondo Trentin

Hybrid Random Fields, 2011

ISBN 978-3-642-20307-7

Vol. 16.Alexiei Dingli

Knowledge Annotation: Making Implicit Knowledge
Explicit, 2011

ISBN 978-3-642-20322-0

Vol. 17. Crina Grosan and Ajith Abraham

Intelligent Systems, 2011

ISBN 978-3-642-21003-7

Vol. 18.Achim Zielesny

From Curve Fitting to Machine Learning, 2011

ISBN 978-3-642-21279-6



Achim Zielesny

From Curve Fitting to Machine
Learning

An Illustrative Guide to Scientific Data Analysis
and Computational Intelligence

123



Prof. Dr.Achim Zielesny
Fachhochschule Gelsenkirchen

Section Recklinghausen

Institute for Bioinformatics and Chemoinformatics

August-Schmidt-Ring 10

D-45665 Recklinghausen

Germany

E-mail: achim.zielesny@fh-gelsenkirchen.de

ISBN 978-3-642-21279-6 e-ISBN 978-3-642-21280-2

DOI 10.1007/978-3-642-21280-2

Intelligent Systems Reference Library ISSN 1868-4394

Library of Congress Control Number: 2011928739

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in
any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable to prosecution under the
German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



To my parents



Preface

The analysis of experimental data is at heart of science from its beginnings.
But it was the advent of digital computers in the second half of the 20th
century that revolutionized scientific data analysis twofold: Tedious pencil
and paper work could be successively transferred to the emerging software
applications so sweat and tears turned into automated routines. In accor-
dance with automation the manageable data volumes could be dramatically
increased due to the exponential growth of computational memory and speed.
Moreover highly non-linear and complex data analysis problems came within
reach that were completely unfeasible before. Non-linear curve fitting, clus-
tering and machine learning belong to these modern techniques that entered
the agenda and considerably widened the range of scientific data analysis ap-
plications. Last but not least they are a further step towards computational
intelligence.

The goal of this book is to provide an interactive and illustrative guide to
these topics. It concentrates on the road from two dimensional curve fitting
to multidimensional clustering and machine learning with neural networks or
support vector machines. Along the way topics like mathematical optimiza-
tion or evolutionary algorithms are touched. All concepts and ideas are out-
lined in a clear cut manner with graphically depicted plausibility arguments
and a little elementary mathematics. Difficult mathematical and algorithmic
details are consequently banned for the sake of simplicity but are accessible
by the referred literature. The major topics are extensively outlined with ex-
ploratory examples and applications. The primary goal is to be as illustrative
as possible without hiding problems and pitfalls but to address them. The
character of an illustrative cookbook is complemented with specific sections
that address more fundamental questions like the relation between machine
learning and human intelligence. These sections may be skipped without af-
fecting the main road but they will open up possibly interesting insights
beyond the mere data massage.



VIII Preface

All topics are completely demonstrated with the aid of the commercial
computing platform Mathematica and the Computational Intelligence Pack-
ages (CIP), a high-level function library developed with Mathematica’s pro-
gramming language on top of Mathematica’s algorithms. CIP is open-source
so the detailed code of every method is freely accessible. All examples and
applications shown throughout the book may be used and customized by
the reader without any restrictions. This leads to an interactive environment
which allows individual manipulations like the rotation of 3D graphics or
the evaluation of different settings up to tailored enhancements of specific
functionality.

The book tries to be as introductory as possible calling only for a basic
mathematical background of the reader - a level that is typically taught in
the first year of scientific education. The target readerships are students of
(computer) science and engineering as well as scientific practitioners in in-
dustry and academia who deserve an illustrative introduction to these topics.
Readers with programming skills may easily port and customize the provided
code. The majority of the examples and applications originate from teaching
efforts or solution providing. They already gained some response by students
or collaborators. Feedback is very important in such a wide and difficult
field: A CIP user forum is established and the reader is cordially invited to
participate in the discussions. The outline of the book is as follows:

• The introductory chapter 1 provides necessary basics that underlie the
discussions of the following chapters like an initial motivation for the in-
terplay of data and models with respect to the molecular sciences, math-
ematical optimization methods or data structures. The chapter may be
skipped at first sight but should be consulted if things become unclear in
a subsequent chapter.

• The main chapters that describe the road from curve fitting to machine
learning are chapters 2 to 4. The curve fitting chapter 2 outlines the
various aspects of adjusting linear and non-linear model functions to ex-
perimental data. A section about mere data smoothing with cubic splines
complements the fitting discussions.

• The clustering chapter 3 sketches the problems of assigning data to dif-
ferent groups in an unsupervised manner with clustering methods. Unsu-
pervised clustering may be viewed as a logical first step towards supervised
machine learning - and may be able to construct predictive systems on its
own. Machine learning methods may also need clustered data to produce
successful results.

• The machine learning chapter 4 comprises supervised learning techniques,
in particular multiple linear regression, three-layer perceptron-type neural
networks and support vector machines. Adequate data preprocessing and
their use for regression and classification tasks as well as the recurring
pitfalls and problems are introduced and thoroughly discussed.



Preface IX

• The discussions chapter 5 supplements the topics of the main road. It
collects some open issues neglected in the previous chapters and opens up
the scope with more general sections about the possible discovery of new
knowledge or the emergence of computational intelligence.

The scientific fields touched in the present book are extensive and in addition
constantly and progressively refined. Therefore it is inevitable to neglect an
awful lot of important topics and aspects. The concrete selection always mir-
rors an author’s preferences as well as his personal knowledge and overview.
Since the missing parts unfortunately exceed the selected ones and people
always have strong feelings about what is of importance the final statement
has to be a request for indulgence.

Recklinghausen Achim Zielesny
April 2011



Acknowledgements

Certain authors, speaking of their works, say, "My book", "My commentary",
"My history", etc. They resemble middle-class people who have a house of
their own, and always have "My house" on their tongue. They would do better
to say, "Our book", "Our commentary", "Our history", etc., because there
is in them usually more of other people’s than their own.

Pascal

I would like to thank Lhoussaine Belkoura, Manfred L. Ristig and Dietrich
Woermann who kindled my interest for data analysis and machine learning
in chemistry and physics a long time ago.

My mathematical colleagues Heinrich Brinck and Soeren W. Perrey con-
tributed a lot - may it be in deep canyons, remote jungles or at our institute’s
coffee kitchen. To them and my IBCI collaborators Mirco Daniel and Rebecca
Schultz as well as the GNWI team with Stefan Neumann, Jan-Niklas Schäfer,
Holger Schulte and Thomas Kuhn I am deeply thankful.

The cooperation with Christoph Steinbeck was very fruitful and an excep-
tional pleasure: I owe a lot to his support and kindness.

Karina van den Broek, Mareike Dörrenberg, Saskia Faassen, Jenny Grote,
Jennifer Makalowski, Stefanie Kleiber and Andreas Truszkowski corrected
the manuscript with benevolence and strong commitment: Many thanks to
all of them.

Last but not least I want to express deep gratitude and love to my com-
panion Daniela Beisser who not only had to bear an overworked book writer
but supported all stages of the book and its contents with great passion.

Every book is a piece of collaborative work but all mistakes and errors are
of course mine.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation: Data, Models and Molecular Sciences . . . . . . . . 2
1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Iterative Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Iterative Local Optimization . . . . . . . . . . . . . . . . . . . 15
1.2.4 Iterative Global Optimization . . . . . . . . . . . . . . . . . . 19
1.2.5 Constrained Iterative Optimization . . . . . . . . . . . . . . 30

1.3 Model Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.1 Linear Model Functions with One Argument . . . . . 37
1.3.2 Non-linear Model Functions with One

Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.3 Linear Model Functions with Multiple

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3.4 Non-linear Model Functions with Multiple

Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.3.5 Multiple Model Functions . . . . . . . . . . . . . . . . . . . . . . 43
1.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.4 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4.1 Data for Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4.2 Data for Machine Learning . . . . . . . . . . . . . . . . . . . . . 44
1.4.3 Inputs for Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.4.4 Inspection of Data Sets and Inputs . . . . . . . . . . . . . . 46

1.5 Scaling of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.6 Data Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.7 Regression versus Classification Tasks . . . . . . . . . . . . . . . . . . . 49
1.8 The Structure of CIP Calculations . . . . . . . . . . . . . . . . . . . . . 51



XIV Contents

2 Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.1.1 Fitting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1.2 Useful Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.1.3 Smoothing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Evaluating the Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3 How to Guess a Model Function . . . . . . . . . . . . . . . . . . . . . . . 68
2.4 Problems and Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.4.1 Parameters’ Start Values . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.2 How to Search for Parameters’ Start Values . . . . . . 85
2.4.3 More Difficult Curve Fitting Problems . . . . . . . . . . . 89
2.4.4 Inappropriate Model Functions . . . . . . . . . . . . . . . . . 99

2.5 Parameters’ Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.5.1 Correction of Parameters’ Errors . . . . . . . . . . . . . . . . 104
2.5.2 Confidence Levels of Parameters’ Errors . . . . . . . . . 105
2.5.3 Estimating the Necessary Number of Data . . . . . . . 106
2.5.4 Large Parameters’ Errors and Educated

Cheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.5.5 Experimental Errors and Data Transformation . . . . 124

2.6 Empirical Enhancement of Theoretical Model Functions . . . 127
2.7 Data Smoothing with Cubic Splines . . . . . . . . . . . . . . . . . . . . 135
2.8 Cookbook Recipes for Curve Fitting . . . . . . . . . . . . . . . . . . . . 146

3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.2 Intuitive Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.3 Clustering with a Fixed Number of Clusters . . . . . . . . . . . . . 170
3.4 Getting Representatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
3.5 Cluster Occupancies and the Iris Flower Example . . . . . . . . 186
3.6 White-Spot Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.7 Alternative Clustering with ART-2a . . . . . . . . . . . . . . . . . . . . 201
3.8 Clustering and Class Predictions . . . . . . . . . . . . . . . . . . . . . . . 212
3.9 Cookbook Recipes for Clustering . . . . . . . . . . . . . . . . . . . . . . . 220

4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.2 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

4.2.1 Multiple Linear Regression (MLR) . . . . . . . . . . . . . . 234
4.2.2 Three-Layer Perceptron-Type Neural Networks . . . 236
4.2.3 Support Vector Machines (SVM) . . . . . . . . . . . . . . . . 241

4.3 Evaluating the Goodness of Regression . . . . . . . . . . . . . . . . . . 245
4.4 Evaluating the Goodness of Classification . . . . . . . . . . . . . . . 250
4.5 Regression: Entering Non-linearity . . . . . . . . . . . . . . . . . . . . . . 253
4.6 Classification: Non-linear Decision Surfaces . . . . . . . . . . . . . . 263
4.7 Ambiguous Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267



Contents XV

4.8 Training and Test Set Partitioning . . . . . . . . . . . . . . . . . . . . . 278
4.8.1 Cluster Representatives Based Selection . . . . . . . . . 280
4.8.2 Iris Flower Classification Revisited . . . . . . . . . . . . . . 285
4.8.3 Adhesive Kinetics Regression Revisited . . . . . . . . . . 296
4.8.4 Design of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.8.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 320

4.9 Comparative Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 320
4.10 Relevance of Input Components . . . . . . . . . . . . . . . . . . . . . . . . 332
4.11 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
4.12 Technical Optimization Problems. . . . . . . . . . . . . . . . . . . . . . . 356
4.13 Cookbook Recipes for Machine Learning . . . . . . . . . . . . . . . . 360
4.14 Appendix - Collecting the Pieces . . . . . . . . . . . . . . . . . . . . . . . 362

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
5.1 Computers Are about Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
5.2 Isn’t It Just ...? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

5.2.1 ... Optimization? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
5.2.2 ... Data Smoothing? . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

5.3 Computational Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
5.4 Final Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

A CIP - Computational Intelligence Packages . . . . . . . . . . . . . . 409
A.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
A.2 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

A.2.1 Temperature Dependence of the Viscosity of
Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

A.2.2 Potential Energy Surface of Hydrogen Fluoride . . . 412
A.2.3 Kinetics Data from Time

Dependent IR Spectra of the
Hydrolysis of Acetanhydride . . . . . . . . . . . . . . . . . . . . 413

A.2.4 Iris Flowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
A.2.5 Adhesive Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
A.2.6 Intertwined Spirals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
A.2.7 Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
A.2.8 Wisconsin Diagnostic Breast Cancer (WDBC)

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433



Chapter 1

Introduction

This chapter discusses introductory topics which are helpful for a basic understand-

ing of the concepts, definitions and methods outlined in the following chapters. It

may be skipped for the sake of a faster passage to the more appealing issues or only

browsed for a short impression. But if things appear dubious in later chapters this

one should be consulted again.

Chapter 1 starts with an overview about the interplay between data and models

and the challenges of scientific practice especially in the molecular sciences to mo-

tivate all further efforts (section 1.1). The mathematical machinery that plays the

most important role behind the scenes is dedicated to the field of optimization, i.e.

the determination of the global minimum or maximum of a mathematical function.

Basic problems and solution approaches are briefly sketched and illustrated (section

1.2). Since model functions play a major role in the main topics they are catego-

rized in an useful manner that will ease further discussions (section 1.3). Data need

to be organized in a defined way to be correctly treated by the corresponding al-

gorithms: A dedicated section describes the fundamental data structures that will

be used throughout the book (section 1.4). A more technical issue is the adequate

scaling of data: This is performed automatically by all clustering and machine learn-

ing methods but may be an issue for curve fitting tasks (section 1.5). Experimental

data experience different sources of error in contrast to simulated data which are

only artificially biased by true statistical errors. Errors are the basis for a proper

statistical analysis of curve fitting results as well as for the assessment of machine

learning outcomes. Therefore the different sources of error and corresponding con-

ventions are briefly described (section 1.6). Machine learning methods may be used

for regression or classification tasks: Whereas regression tasks demand a precise

calculation of the desired output values a classification task requires only the cor-

rect assignment of an input to a desired output class. Within this book classification

tasks are tackled as adequately coded regression tasks which is outlined in a specific

section (1.7). The Computational Intelligence Packages (CIP) which are heavily

used throughout the book offer a largely unified structure for different calculations.

This is summarized in a following section to make their use more intuitive and less

A. Zielesny: From Curve Fitting to Machine Learning, ISRL 18, pp. 1–51.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

subtle (section 1.8). With a short statement about Mathematica’s top-down program-

ming and proper initialization this chapter ends (section 1.9).

1.1 Motivation: Data, Models and Molecular Sciences

Essentially, all models are wrong, but some are useful.

G.E.P. Box

Science is an endeavor to understand and describe the real world out there to (at

best) alleviate and enrich human existence. But the structures and dynamics of the

real world are very intricate and complex. A humble chemical reaction in the lab-

oratory may already involve perhaps 1020 molecules surrounded by 1024 solvent

molecules, in contact with a glass surface and interacting with gases ... in the atmo-

sphere. The whole system will be exposed to a flux of photons of different frequency

(light) and a magnetic field (from the earth), and possibly also a temperature gra-

dient from external heating. The dynamics of all the particles (nuclei and electrons)

is determined by relativistic quantum mechanics, and the interaction between par-

ticles is governed by quantum electrodynamics. In principle the gravitational and

strong (nuclear) forces should also be considered. For chemical reactions in biolog-

ical systems, the number of different chemical components will be large, involving

various ions and assemblies of molecules behaving intermediately between solution

and solid state (e.g. lipids in cell walls) [Jensen 2007]. Thus, to describe nature,

there is the inevitable necessity to set up limitations and approximations in form of

simplifying and idealized models - based on the known laws of nature. Adequate

models neglect almost everything (i.e. they are, strictly speaking, wrong) but they

may keep some of those essential real world features that are of specific interest (i.e.

they may be useful).

The dialectical interplay of experiment and theory is a key driving force of mod-

ern science. Experimental data do only have meaning in the light of a particular

model or at least a theoretical background. Reversely theoretical considerations

may be logically consistent as well as intellectually elegant: Without experimen-

tal evidence they are a mere exercise of thought no matter how difficult they are.

Data analysis is a connector between experiment and theory: Its techniques advise

possibilities of model extraction as well as model testing with experimental data.

Model functions have several practical advantages in comparison to mere enu-

merated data: They are a comprehensive representation of the relation between the

quantities of interest which may be stored in a database in a very compact manner

with minimum memory consumption. A good model allows interpolating or ex-

trapolating calculations to generate new data and thus may support (up to replace)

expensive lab work. Last but not least a suitable model may be heuristically used to

explore interesting optimum properties (i.e. minima or maxima of the model func-

tion) which could otherwise be missed. Within a market economy a good model is

simply a competitive advantage.



1.1 Motivation: Data, Models and Molecular Sciences 3

The ultimate goal of all sciences is to arrive at quantitative models that describe

nature with a sufficient accuracy - or to put it short: to calculate nature. These

calculations have the general form

answer = f (question) or output = f (input)

where input denotes a question and output the corresponding answer generated by

a model function f. Unfortunately the number of interesting quantities which can

be directly calculated by application of theoretical ab-initio techniques solely based

on the known laws of nature is rather limited (although expanding). For the over-

whelming number of questions about nature the model functions f are unknown or

too difficult to be evaluated. This is the daily trouble of chemists, material’s sci-

entists, engineers or biologists who want to ask questions like the biological effect

of a new molecular entity or the properties of a new material’s composition. So in

current science there are three situations that may be sensibly distinguished due to

our knowledge of nature:

• Situation 1: The model function f is theoretically or empirically known. Then

the output quantity of interest may be calculated directly.

• Situation 2: The structural form of the function f is known but not the values of

its parameters. Then these parameter values may be statistically estimated on the

basis of experimental data by curve fitting methods.

• Situation 3: Even the structural form of the function f is unknown. As an ap-

proximation the function f may be modelled by a machine learning technique on

the basis of experimental data.

A simple example for situation 2 is the case that the relation between input and

output is known to be linear. If there is only one input variable of interest, denoted

x, and one output variable of interest, denoted y, the structural form of the function

f is a straight line

y = f (x) = a1 + a2x

where a1 and a2 are the unknown parameters of the function which may be statis-

tically estimated by curve fitting of experimental data. In situation 3 it is not only

the values of the parameters that are unknown but in addition the structural form

of the model function f itself. This is obviously the worst possible case which is

addressed by data smoothing or machine learning approaches that try to construct a

model function with experimental data only.

Situations 1 to 3 are widely encountered by the contemporary molecular sciences.

Since the scientific revolution of the early 20th century the molecular sciences have

a thorough theoretical basis in modern physics: Quantum theory is able to (at least in

principle) quantitatively explain and calculate the structure, stability and reactivity

of matter. It provides a fundamental understanding of chemical bonding and molecu-

lar interactions. This foundational feat was summarized in 1929 by Paul A. M. Dirac



4 1 Introduction

with famous words: The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are thus completely

known ... it became possible to submit molecular research and development (R&D)

problems to a theoretical framework to achieve correct and satisfactory solutions -

but unfortunately Dirac had to continue ... and the difficulty is only that the exact

application of these laws leads to equations much too complicated to be soluble.

The humble "only" means a severe practical restriction: It is in fact only the small-

est quantum-mechanical systems like the hydrogen atom with one single proton in

the nucleus and one single electron in the surrounding shell that can be treated by

pure analytical means to come to an exact mathematical solution, i.e. by solving the

Schroedinger equation of this mechanical system with pencil and paper. Nonetheless

Dirac added an optimistic prospect: It therefore becomes desirable that approximate

practical methods of applying quantum mechanics should be developed, which can

lead to an explanation of the main features of complex atomic systems without too

much computation [Dirac 1929]. A few decades later this hope begun to turn into

reality with the emergence of digital computers and their exponentially increasing

computational speed: Iterative methods were developed that allowed an approxi-

mate quantum-mechanical treatment of molecules and molecular ensembles with

growing size (see [Leach 2001], [Frenkel 2002] or [Jensen 2007]). The methods

which are ab-initio approximations to the true solution of the Schroedinger equa-

tion (i.e. they only use the experimental values of natural constants) are still very

limited in applicability so they are restricted to chemical ensembles with just a few

hundred atoms to stay within tolerable calculation periods. If these methods are

combined with experimental data in a suitable manner so that they become semi-

empirical the range of applicability can be extended to molecular systems with sev-

eral thousands of atoms (up to a hundred thousand atoms by the writing of this book

[Clark 2010]). The size of the molecular systems and the time frames for their sim-

ulation can be even further expanded by orders of magnitude with mechanical force

fields that are constructed to mimic the quantum-mechanical molecular interactions

so that an atomistic description of matter exceeds the million-atoms threshold. In

1998 the Royal Swedish Academy of Sciences honored these scientific achieve-

ments by awarding the Nobel prize in chemistry to Walter Kohn and John A. Pople

with the prudent comment that Chemistry is no longer a purely experimental science

(see [Nobel Prize 1998]). This atomistic theory-based treatment of molecular R&D

problems corresponds to situation 1 where a theoretical technique provides a model

function f to "simply calculate" the desired solution in a direct manner.

Despite these impressive improvements (and more is to come) the overwhelm-

ing majority of molecular R&D problems is (and will be) out of scope of these

atomistic computational methods due to their complexity in space and time. This

is especially true for the life and the nano sciences that deal with the most com-

plex natural and artificial systems known today - with the human brain at the top.

Thus the molecular sciences are mainly faced with situations 2 and 3: They are a

predominant area of application of the methods to be discussed on the road from

curve fitting to machine learning. Theory-loaded and model-driven research areas

like physical chemistry or biophysics often prefer situation 2: A scientific quantity



1.1 Motivation: Data, Models and Molecular Sciences 5

of interest is studied in dependence of another quantity where the structural form

of a model function f that describes the desired dependency is known but not the

values of its parameters. In general the parameters may be purely empirical or may

have a theoretically well-defined meaning. An example of the latter is usually en-

countered in chemical kinetics where phenomenological rate equations are used to

describe the temporal progress of the chemical reactions but the values of the rate

constants - the crucial information - are unknown and may not be calculated by

a more fundamental theoretical treatment [Grant 1998]. In this case experimental

measurements are indispensable that lead to xy-error data triples (xi,yi,σi) with an

argument value xi, the corresponding dependent value yi and the statistical error σi

of the yi value (compare below). Then optimum estimates of the unknown param-

eter values can be statistically deduced on the basis of these data triples by curve

fitting methods. In practice a successful model function may at first be only empiri-

cally constructed like the quantitative description of the temperature dependence of

a liquid’s viscosity (illustrated in chapter 2) and then later be motivated by more the-

oretical lines of argument. Or curve fitting is used to validate the value of a specific

theoretical model parameter by experiment (like the critical exponents in chapter 2).

Last but not least curve fitting may play a pure support role: The energy values of

the potential energy surface of hydrogen fluoride could be directly calculated by a

quantum-chemical ab-initio method for every distance between the two atoms. But

a restriction to a limited number of distinct calculated values that span the range of

interest in combination with the construction of a suitable smoothing function for

interpolation (shown in chapter 2) may save considerable time and enhance practical

usability without any relevant loss of precision.

With increasing complexity of the natural system under investigation a quantita-

tive theoretical treatment becomes more and more difficult. As already mentioned

a quantitative theory-based prediction of a biological effect of a new molecular en-

tity or the properties of a new material’s composition are in general out of scope

of current science. Thus situation 3 takes over where a model function f is simply

unknown or too complex. To still achieve at least an approximate quantitative de-

scription of the relationships in question a model function may be tried to be solely

constructed with the available data only - a task that is at heart of machine learning.

Especially quantitative relationships between chemical structures and their biologi-

cal activities or physico-chemical and material’s properties draw a lot of attention:

Thus QSAR (Quantitative Structure Activity Relationship) and QSPR (Quantita-

tive Structure Property Relationship) studies are active fields of research in the life,

material’s and nano sciences (see [Zupan 1999], [Gasteiger 2003], [Leach 2007] or

[Schneider 2008]). Chemoinformatics and structural bioinformatics provide a bunch

of possibilities to represent a chemical structure in form of a list of numbers (which

mathematically form a vector or an input in terms of machine learning, see below).

Each number or sequence of numbers is a specific structural descriptor that describes

a specific feature of a chemical structure in question, e.g. its molecular weight, its

topological connections and branches or electronic properties like its dipole mo-

ments or its correlation of surface charges. These structure-representing inputs alone

may be analyzed by clustering methods (discussed in chapter 3) for their chemical



6 1 Introduction

diversity. The results may be used to generate a reduced but representative subset

of structures with a similar chemical diversity in comparison to the original larger

set (e.g. to be used in combinatorial chemistry approaches for a targeted structure

library design). Alternatively different sets of structures could be compared in terms

of their similarity or dissimilarity as well as their mutual white spots (these topics

are discussed in chapter 3). A structural descriptor based QSAR/QSPR approach

takes the form

activity/property = f (descriptor1,descriptor2,descriptor3, ...)

with the model function f as the final target to become able to make model-based

predictions (the methods used for the construction of an approximate model func-

tion f are outlined in chapter 4). The extensive volume of data that is necessary for

this line of research is often obtained by modern high-throughput (HT) techniques

like the biological assay-based high-throughput screening (HTS) of thousands of

chemical compounds in the pharmaceutical industry or HT approaches in materials

science all performed with automated robotic lab systems. Among others these HT

methods lead to the so called BioTech data explosion that may be thoroughly ex-

ploited for model construction. In fact HT experiments and model construction via

machine learning are mutually dependent on each other: Models deserve data for

their creation as well as the mere heaps of data produced by HT methods deserve

models for their comprehension.

With these few statements about the needs of the molecular sciences in mind

the motivation of this book is to show how situations 2 (model function f known, its

parameters unknown) and 3 (model function f itself unknown) may be tackled on the

road from curve fitting to machine learning: How can we proceed from experimental

data to models? What conceptual and technical problems occur along this path?

What new insights can we expect?

1.2 Optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

At the beginning of each section or sub section the global Clear command clears all earlier variables and

definitions and thus cares for a proper initialization. Then the necessary CIP packages are loaded, e.g. the

Graphics package for this section. A proper initialization prevents possible code interferences due to earlier

definitions. Note that Mathematica has a top-down programming style: Once a variable is assigned it keeps its

value.

Optimization means a process that tries to determine the optima, i.e. the minima and

maxima of a mathematical function. A plethora of important scientific problems can



1.2 Optimization 7

be traced back to an issue of optimization so they are essentially optimization prob-

lems. Optimization tasks also lie at heart of the road from curve fitting to machine

learning: The methods discussed in later chapters will predominantly use mathemat-

ical optimization techniques to do their job. It should be noticed that the following

optimization strategies are also utilized for the (common) research situation where

no direct path to success can be advised and a kind of educated trial and error is the

only way to progress.

A mathematical function may contain ...

• ... no optimum at all. An example is a 2D straight line, a 3D plane (illustrated

below) or a hyperplane in many dimension. But also non-linear functions like the

exponential function may not contain any optimum.

pureFunction=Function[{x,y},1.0+2.0*x+3.0*y];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

All CIP based calculations are scripted as shown above: First all variables are defined with intuitive names

and then passed to specific CIP functions to calculate results or create graphical illustrations. All variables

remain valid until the next global Clear command. Note that Mathematica allows the definition of pure functions

which may be used like normal variables. If a specific function definition is to be passed to a CIP method

a pure function is commonly used. The CIP methods internally use pure functions for distinct function value

evaluations. Pure functions are a powerful functional programming feature of the Mathematica computing

platform to simplify many operations in an elegant and efficient manner.



8 1 Introduction

• ... exactly one optimum, e.g. a 2D quadratic parabola, a 3D parabolic surface

(illustrated below) or a parabolic hyper surface in many dimensions.

pureFunction=Function[{x,y},x^2+y^2];

xRange={-2.0,2.0};

yRange={-2.0,2.0};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

• ... multiple up to an infinite number of optima like a 2D sine function, a curved

3D surface (illustrated below) or a curved hyper surface in multiple dimensions.

pureFunction=Function[

{x,y},1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]*Sin[7.0*y])];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]



1.2 Optimization 9

The sketched categorization holds for functions with one argument

y = f (x)

as well as functions with multiple arguments

y = f (x1,x2, ...,xM) = f (x) with x = (x1,x2, ...,xM)

i.e. from 2D curves f (x) up to M-dimensional hyper surfaces f (x1,x2, ...,xM). If no

optimum exists there is obviously nothing to optimize. For a curve or hyper surface

that contains exactly one optimum the optimization problem is usually successfully

solvable by analytical methods which are able to calculate the optimum position

directly. It is the last category of non-linear functions with multiple optima that

cause severe problems - and unfortunately the overwhelming majority of practical

applications belong to this drama: The following sections try to reveal some of its

tragedy and ways to hold forth a hope again.

1.2.1 Calculus

Clear["Global‘*"];

<<CIP‘Graphics‘

The standard analytical procedure to determine optima is known from calculus:

An example function of the form y = f (x) with one argument x may contain one

minimum and one maximum:



10 1 Introduction

function=1.0+1.0*x+0.4*x^2-0.1*x^3;

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-2.0,5.0};

functionValueRange={0.0,6.0};

labels={"x","y","Function with one minimum and one maximum"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

Note that the function is defined twice for different purposes: First as a normal symbolic function and in addition

as a pure function. The normal function is used in subsequent calculations, the pure function as an argument of

the CIP method Plot2dFunction.

To calculate the positions of the optima the first derivative

firstDerivative=D[function,x]

1.+0.8x−0.3x2

D is Mathematica’s operator for partial differentiation to a specified variable which is x in this case.

and their (two) roots are determined:

roots=Solve[firstDerivative==0,x]

{{x →−0.927443},{x → 3.59411}}

Solve is Mathematica’s command to solve (systems of) equations. The Solve command returns a list in curly

brackets with two rules (also in curly brackets) for setting the x value to solve the equation in question, i.e.

assigning -0.927443 or 3.59411 to x solves the equation. Also note that the number of digits of the result values



1.2 Optimization 11

is a standard output only: A higher precision could be obtained on demand and is used for internal calculations

(usually the machine precision supported by the hardware).

Then the second derivative

secondDerivative=D[function,{x,2}]

0.8−0.6x

D may be told to calculate higher derivatives, i.e. the second derivative in this case.

is used to analyze the type of the two detected optima:

secondDerivative/.roots[[1]]

1.35647

roots[[1]] denotes the first expression of the roots list above, i.e. the rule {x → -0.927443}: This means that the

value -0.927443 is to be assigned to x. The /. notation applies this rule to the secondDerivative expression be-

fore, i.e. the x in secondDerivative gets the value -0.927443 and then secondDerivative is numerically evaluated

to 1.35647. These Mathematica specific notations seem to be a bit puzzling at first but they become convenient

and powerful with increased usage.

A value larger zero indicates a minimum at the first optimum position and

secondDerivative/.roots[[2]]

−1.35647

a value smaller zero a maximum at the second optimum position. The determined

minimum and maximum points

minimumPoint={x/.roots[[1]],function/.roots[[1]]};

maximumPoint={x/.roots[[2]],function/.roots[[2]]};

may be displayed for visual validation:

points2D={minimumPoint,maximumPoint};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

Method signatures may contain variables and options. Options are set with an arrow as shown in the

Plot2dPointsAboveFunction method above. In contrast to variables the options must not be specified: Then

their default values are used.



12 1 Introduction

Unfortunately this analytical procedure fails in general. Lets take a somewhat more

difficult function with multiple (or more precise: an infinite number of) optima:

function=1.0-Cos[x]/(1.0+0.01*x^2);

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-10.0,10.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Function with multiple optima"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

The first derivative may still be obtained

firstDerivative=D[function,x]

0.02xCos[x]

(1.+0.01x2)2 + Sin[x]

1.+0.01x2



1.2 Optimization 13

but the determination of the roots fails

roots=Solve[firstDerivative==0,x]

The equations appear to involve the variables to be solved for in an essentially non-algebraic way.

Solve

[

0.02xCos[x]

(1.+0.01x2)2 + Sin[x]

1.+0.01x2 == 0,x

]

since this non-linear equation can no longer be solved by analytical means. This

problem becomes even worse with functions that contain multiple arguments

y = f (x1,x2, ...,xM) = f (x)

i.e. with M-dimensional curved hyper surfaces. The necessary condition for an opti-

mum of a M-dimensional hyper surface y is that all partial derivatives become zero:

∂ f (x1,x2,...,xM)
∂xi

= 0 ; i = 1, ...,M

Whereas the partial derivatives may be successfully evaluated in most cases the re-

sulting system of M (usually non-linear) equations may again not be solvable by

analytical means in general. So the calculus-based analytical optimization is re-

stricted to only simple non-linear special cases (linear functions are out of question

since they do not contain optima at all). Since these special cases are usually taught

extensively at schools and universities (they are ideal for examinations) there is the

ongoing impression that the calculus-based solution of optimization problems also

achieves success in practice. But the opposite is true: The overwhelming majority of

scientific optimization problems is far too difficult for a successful calculus-based

treatment. That is one reason why digital computers revolutionized science: With

their exponentially growing calculation speed (known as Moore’s law which - suc-

cessfully - predicts a doubling of calculation speed every 18 months) they opened up

the perspective for iterative search-based approaches to at least approximate optima

in these more difficult and practically relevant cases - a procedure that is simply not

feasible with pencil and paper in a man’s lifetime.

1.2.2 Iterative Optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

In general the optima of curves and hyper surfaces may only be approximated by it-

erative step-by-step search procedures - but without any guarantee of success! There

are two basic types of iterative optimization strategies:



14 1 Introduction

• Local optimization: Beginning at a start position the iterative search method

tries to find at least a local optimum (which may not necessarily be the next

neighbored optimum to the start position). This local optimum is in general dif-

ferent from the global optimum, i.e. the lowest minimum or the highest maximum

of the function.

• Global optimization: The iterative search method tries to find the global opti-

mum inside an a priori defined search space.

Global iterative optimization is usually far more computational demanding than lo-

cal optimization and therefore slower. Both optimization strategies may fail due to

two sources of problems:

• Function related problems: The function itself to optimize may not contain any

optima (e.g. a straight line or a hyperplane) or may otherwise be ill-shaped.

• Iterative search related problems: The search algorithm may encounter numer-

ical problems (like division by zero) or simply not find an optimum of required

precision within the allowed maximum number of iterations. Whereas in the lat-

ter case an increase of the number of iterations should help this solution would

fail if the search algorithm is trapped in oscillations around the optimum. Prob-

lems are often caused by an inappropriate start position or search space, e.g. if

the search algorithm relies on second derivative information but the curvature of

the function to be optimized is effectively zero in the search region.

As an example for an unfavorable start position for a minimum detection consider

the following situation:

function=1.0/x^12-1/x^6;

pureFunction=Function[argument,function/.x -> argument];

xStart=6.0;

startPointForOptimization={xStart,pureFunction[xStart]};

points2D={startPointForOptimization};

argumentRange={0.5,7.0};

functionValueRange={-0.3,0.2};

labels={"x","y","Where to go for the minimum?"};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



1.2 Optimization 15

The start position (point) is fairly outside the interesting region that contains the

minimum: Its slope (first derivative)

D[function,x]/.x -> xStart

0.0000214326

and its curvature (second derivative)

D[function,{x,2}]/.x -> xStart

−0.0000250037

are nearly zero with the function value itself being nearly constant. In this situation it

is difficult for any iterative algorithm to devise a path to the minimum and it is likely

for the search algorithm to simply run aground without converging to the minimum.

In practice it is often hard to recognize what went wrong if an optimization fail-

ure occurs. And although there are numerous parameters to tune local and global

optimization methods for specific optimization problems that does not guarantee to

always solve these issues in general. And it becomes clear that any a priori knowl-

edge about the location of an optimum from theoretical considerations or practical

experience may play a crucial role. Throughout the later chapters a number of stan-

dard problems are discussed and strategies for their circumvention are described.

1.2.3 Iterative Local Optimization

Clear["Global‘*"];

<<CIP‘Graphics‘



16 1 Introduction

Iterative local optimization (or just minimization since maximizing a function f is

identical to minimizing − f or f−1) is in principle a simple issue: From a given start

position just move downhill as fast as possible by appropriate steps until a local min-

imum is reached within a desired precision. Thus local optimization methods differ

only in the amount of functional information they evaluate to set their step sizes

along their chosen downhill directions (see [Press 2007] for details). The evaluation

part determines the computational costs of each iteration whereas the directional

part determines the convergence speed towards a local minimum where both parts

often oppose each other: The more functional information is evaluated the slower a

single iteration is performed but the number of iterative steps may be reduced due

to more appropriate step sizes and directions.

• Some methods do only use function value evaluations at different positions to

recognize more or less intelligent downhill paths with adaptive step sizes, e.g.

the Simplex method.

• More advanced methods use (first derivative) slope/gradient information in

addition to function values which allows steepest descent orientations: The so

called Gradient method and the more elaborate Conjugate-Gradient and Quasi-

Newton methods belong to this type of minimization techniques: The latter two

families of methods can find the (one and global) minimum of a M-dimensional

parabolic hyper surface with at most M steps (note that this statement just

describes a characteristic feature of these algorithms since the optimum of a

parabolic hyper surface may simply be calculated with second derivative infor-

mation by analytical means).

• Also (second derivative) curvature information of the function to be minimized

may be utilized for a faster convergence near a local minimum as implemented

by the so called Newton methods (which were already invented by the grand old

father of modern science). If a parabolic hyper surface is under investigation a

Newton step leads directly to the minimum, i.e. the Newton method converges

to this minimum in one single step (in fact each Newton step assumes a hyper

surface to be parabolic and thus calculates the position of its supposed minimum

analytically. This assumption is the more accurate the nearer the minimum is

located. Since a Newton method has to evaluate an awful lot of functional in-

formation for each iterative step which takes its time it is only effective in the

proximity of a minimum).

For special types of functions to be minimized like a sum of squares specific combi-

nation methods like Levenberg-Marquardt are helpful that try to switch between gra-

dient steps (far from a minimum) and Newton steps (near a minimum) in an effective

manner. And besides these general iterative local minimization techniques there are

numerous specific solutions for specific optimization tasks that try to take advantage

of their specific characteristics. But note that in general there is nothing like the best

iterative local optimization method: Being the most effective and therefore fastest

method for one minimization problem does not mean to be necessarily superior for

another. As a rule of thumb Conjugate-Gradient and Quasi-Newton methods have

shown to exert a good compromise between computational costs (function and first



1.2 Optimization 17

derivatives evaluations) and local minimum convergence speed for many practical

minimization problems. For the already used multiple optima function

function=1.0-Cos[x]/(1.0+0.01*x^2);

pureFunction=Function[argument,function/.x -> argument];

argumentRange={-10.0,10.0};

functionValueRange={-0.2,2.2};

startPosition=8.0;

startPoint={startPosition,function/.x -> startPosition};

points2D={startPoint};

labels={"x","y","Function with multiple optima"};

CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

a local minimum may be found from the specified start position (indicated point)

with Mathematica’s FindMinimum command that provides a unified access to dif-

ferent local iterative search methods (FindMinimum uses a variant of the Quasi-

Newton methods by default, see comments on [FindMinimum/FindMaximum] in

the references):

localMinimum=FindMinimum[function,{x,startPosition}]

{0.28015,{x → 6.19389}}

FindMinimum returns a list with the function value at the detected local minimum and the rule(s) for the argu-

ment value(s) at this minimum

Start point and approximated minimum may be visualized (the arrow indicates the

minimization path):



18 1 Introduction

minimumPoint={x/.localMinimum[[2]],localMinimum[[1]]};

points2D={startPoint,minimumPoint};

labels={"x","y","Local minimization"};

arrowGraphics=Graphics[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

Show[functionGraphics,arrowGraphics]

Mathematica’s Show command allows the overlay of different graphics which are automatically aligned.

From a different start position a different minimum is found

startPosition=2.0;

localMinimum=FindMinimum[function,{x,startPosition}]

{0.,{x → 9.64816×10−12}}

again illustrated as before:

startPoint={startPosition,function/.x -> startPosition};

minimumPoint={x/.localMinimum[[2]],localMinimum[[1]]};

points2D={startPoint,minimumPoint};

arrowGraphics=Graphics[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

Show[functionGraphics,arrowGraphics]



1.2 Optimization 19

In the last case the approximated minimum is accidentally the global minimum since

the start position was near this global optimum. But in general local optimization

leads to local optima only.

1.2.4 Iterative Global Optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

An optimization of a function usually targets the global optimum of the scientifically

relevant argument space. An iterative local search may find the global optimum but

is usually only trapped in a local optimum near its start position as demonstrated

above. Global optimization strategies try to circumvent this problem by sampling a

whole a priori defined search space: They need a set of min/max values for each ar-

gument x1,x2, ...,xM of the function f (x1,x2, ...,xM) to be globally optimized where

it is assumed that the global optimum lies within the search space that is spanned

by these M min/max intervals [x1,min, x1,max] to [xM,min, xM,max]. The most straight-

forward method to achieve this goal seams to be a systematic grid search where the

function values are evaluated at equally spaced grid points inside the a priori defined

argument search space and then compared to each other to detect the optimum. This

grid search procedure is illustrated for an approximation of the global maximum of

the curved surface f (x,y) already sketched above

function=1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]* Sin[7.0*y]);

pureFunction=

Function[{argument1,argument2},

function/.{x -> argument1,y -> argument2}];

with a search space of the arguments x and y to be their [0, 1] intervals



20 1 Introduction

xMinBorderOfSearchSpace=0.0;

xMaxBorderOfSearchSpace=1.0;

yMinBorderOfSearchSpace=0.0;

yMaxBorderOfSearchSpace=1.0;

and 100 equally spaced grid points at z = 0 inside this search space (100 grid points

means a 10×10 grid, i.e. 10 grid points per dimension):

numberOfGridPointsPerDimension=10.0;

gridPoints3D={};

Do[

Do[

AppendTo[gridPoints3D,{x,y,0.0}],

{x,xMinBorderOfSearchSpace,xMaxBorderOfSearchSpace,

(xMaxBorderOfSearchSpace-xMinBorderOfSearchSpace)/

(numberOfGridPointsPerDimension-1.0)}

],

{y,yMinBorderOfSearchSpace,yMaxBorderOfSearchSpace,

(yMaxBorderOfSearchSpace-yMinBorderOfSearchSpace)/

(numberOfGridPointsPerDimension-1.0)}

];

The grid points are calculated with nested Do loops in the xy plane.

This setup can be illustrated as follows (with the grid points located at z = 0):

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

viewPoint3D={3.5,-2.4,1.8};

CIP‘Graphics‘Plot3dPointsWithFunction[gridPoints3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]



1.2 Optimization 21

The function values at these grid points are then evaluated and compared

winnerGridPoint3D={};

maximumFunctionValue=-Infinity;

Do[

functionValue=pureFunction[gridPoints3D[[i, 1]],

gridPoints3D[[i, 2]]];

If[functionValue>maximumFunctionValue,

maximumFunctionValue=functionValue;

winnerGridPoint3D={gridPoints3D[[i, 1]],gridPoints3D[[i, 2]],

maximumFunctionValue}

],

{i,Length[gridPoints3D]}

];

to evaluate the winner grid point

winnerGridPoint3D

{1.,0.222222,6.17551}

that corresponds to the maximum detected function value

maximumFunctionValue

6.17551

which may be visually validated (with the winner grid point raised to its function

value indicated by the arrow and all other grid points still located at z = 0):



22 1 Introduction

Do[

If[gridPoints3D[[i,1]] == winnerGridPoint3D[[1]] &&

gridPoints3D[[i,2]] == winnerGridPoint3D[[2]],

gridPoints3D[[i]] = winnerGridPoint3D

],

{i,Length[gridPoints3D]}

];

arrowStartPoint={winnerGridPoint3D[[1]],winnerGridPoint3D[[2]],0.0};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{arrowStartPoint,winnerGridPoint3D}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[

gridPoints3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

The winner grid point of the global grid search does only approximate the global

optimum with an error corresponding to the defined grid spacing. To refine the ap-

proximate grid search maximum it may be used as a start point for a following local

search since the grid search maximum should be near the global maximum which

means that the local search can be expected to converge to the global maximum (but

note that there is no guarantee for this proximity and the following convergence in

general). Thus the approximate grid search maximum is passed to Mathematica’s

FindMaximum command (the sister of the FindMinimum command sketched above

which utilizes the same algorithms) as a start point for the post-processing local

search



1.2 Optimization 23

globalMaximum=FindMaximum[function,{{x,winnerGridPoint3D[[1]]},

{y,winnerGridPoint3D[[2]]}}]

{6.54443,{x → 0.959215,y → 0.204128}}

to determine the global maximum with sufficient precision. The improvement ob-

tained by the local refinement process may be inspected (the arrow indicates the

maximization path from the winner grid point to the maximum point detected by

the post-processing local search in a zoomed view)

globalMaximumPoint3D={x/.globalMaximum[[2,1]],

y/.globalMaximum[[2,2]],globalMaximum[[1]]};

xRange={0.90,1.005};

yRange={0.145,0.26};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{winnerGridPoint3D,globalMaximumPoint3D}]}}];

points3D={winnerGridPoint3D,globalMaximumPoint3D};

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

and finally the detected global maximum (point in diagram below) may be visually

validated:



24 1 Introduction

xRange={-0.1,1.1};

yRange={-0.1,1.1};

points3D={globalMaximumPoint3D};

CIP‘Graphics‘Plot3dPointsWithFunction[points3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

Although a grid search seams to be a rational approach to global optimization it is

only an acceptable choice for low-dimensional grids, i.e. global optimization prob-

lems with only a small number of function arguments as the example above. This

is due to the fact that the number of grid points to evaluate explodes (i.e. grows

exponentially) with an increasing number of arguments: The number of grid point

is equal to NM with N to be number of grid points per argument and M the number

of arguments. For 12 arguments x1,x2, ...,x12 with only 10 grid points per argu-

ment the grid would already contain one trillion
(

1012
)

points so with an increasing

number of arguments the necessary function value evaluations at the grid points

would become quickly far too slow to be explored in a man’s lifetime. As an al-

ternative the number of argument values in the search space to be tested could be

confined to a manageable quantity. A rational choice would be randomly selected

test points because there is no a priori knowledge about any preferred part of the

search space. Note that this random search space exploration would be comparable

to a grid search if the number of random test points would equal the number of sys-

tematic grid points before (although not looking as tidy). For the current example

20 random test points could be chosen instead of the grid with 100 points:



1.2 Optimization 25

SeedRandom[1];

randomPoints3D=

Table[

{RandomReal[{xMinBorderOfSearchSpace,xMaxBorderOfSearchSpace}],

RandomReal[{yMinBorderOfSearchSpace,yMaxBorderOfSearchSpace}],

0.0},

{20}

];

CIP‘Graphics‘Plot3dPointsWithFunction[randomPoints3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

The generation of random points can be made deterministic (i.e. always the same sequence of random points is

generated) by setting a distinct seed value which is done by the SeedRandom[1] command.

The winner random point is evaluated

winnerRandomPoint3D={};

maximumFunctionValue=-Infinity;

Do[

functionValue=pureFunction[randomPoints3D[[i, 1]],

randomPoints3D[[i, 2]]];

If[functionValue>maximumFunctionValue,

maximumFunctionValue=functionValue;

winnerRandomPoint3D={randomPoints3D[[i, 1]],randomPoints3D[[i, 2]],

maximumFunctionValue}

],

{i,Length[randomPoints3D]}

];



26 1 Introduction

and visualized (with only the winner random point shown raised to its functions

value indicated by the arrow):

Do[

If[randomPoints3D[[i,1]] == winnerRandomPoint3D[[1]] &&

randomPoints3D[[i,2]] == winnerRandomPoint3D[[2]],

randomPoints3D[[i]] = winnerRandomPoint3D

],

{i,Length[randomPoints3D]}

];

arrowStartPoint={winnerRandomPoint3D[[1]],winnerRandomPoint3D[[2]],

0.0};

arrowGraphics3D=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{arrowStartPoint,winnerRandomPoint3D}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics3D=CIP‘Graphics‘Plot3dPointsWithFunction[

randomPoints3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics3D,arrowGraphics3D]

But if this global optimization result

winnerRandomPoint3D

{0.29287,0.208051,4.49892}



1.2 Optimization 27

is refined by a post-processing local maximum search starting from the winner ran-

dom point

globalMaximum=FindMaximum[function,

{{x,winnerRandomPoint3D[[1]]},{y,winnerRandomPoint3D[[2]]}}]

{4.55146,{x → 0.265291,y → 0.204128}}

only a local maximum is found (point in diagram below) and thus the global maxi-

mum is missed:

globalMaximumPoint3D={x/.globalMaximum[[2,1]],

y/.globalMaximum[[2,2]],

globalMaximum[[1]]};

points3D={globalMaximumPoint3D};

Plot3dPointsWithFunction[points3D,pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionViewPoint3D -> viewPoint3D]

This failure can not be traced to the local optimum search (this worked perfectly

from the passed starting position) but must be attributed to an insufficient number of

random test points before: If their number is raised the global sampling of the search

space would improve and the probability of finding a good test point in the vicinity

of the global maximum would increase. But then the same restrictions apply as

mentioned with the systematic grid search: With an increasing number of parameters



28 1 Introduction

(dimensions) the size of the search space explodes and a random search resembles

more and more to be simply looking for a needle in a haystack.

In the face of this desperate situation there was an urgent need for global opti-

mization strategies that are able to tackle difficult search problems in large spaces.

As a knight in shining armour a family of so called evolutionary algorithms emerged

that rapidly drew a lot of attention. These methods also operate in a basically ran-

dom manner comparable to a pure random search but in addition they borrow ap-

proved refinement strategies from biological evolution to approach the global opti-

mum: These are mutation (random change), crossover or recombination (a kind of

random mixing that leads to a directional hopping towards promising search space

regions) and selection of the fittest (amplification of the optimal points found so

far). The evolution cycles try to speed up the search towards the global optimum by

successively composing parts (schemata) of the optimum solution. Mathematica of-

fers an evolutionary-algorithm-based global optimization procedure via the NMini-

mize and NMaximize commands with the DifferentialEvolution method option (see

comments on [NMinimize/NMaximize] for details). The global maximum search

globalMaximum=NMaximize[{function,

{xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace,

yMinBorderOfSearchSpace<y<yMaxBorderOfSearchSpace}},

{x,y},

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{6.54443,{x → 0.959215,y → 0.204128}}

Note the deactivation of the PostProcess in the Method definition: NMaximize automatically applies a local

optimization method to refine the result of a global search - the same was done in the grid and random search

examples above. The deactivation suppresses this refinement to get the pure result of the evolutionary algorithm.

now directly leads to a result of sufficient precision (compare global maximum lo-

cation above). But it should be noted that evolutionary algorithms in spite of their

popularity belong to the methods of last resort: They may be extremely computa-

tionally expensive, i.e. time-consuming. Evolutionary algorithms are regarded to be

very effective since they imitate the successful biological evolution. This widespread

view neglects the fact that natural evolution needed eons to develop life - and liv-

ing organisms are by no means optimum solutions. If the evolutionary algorithm is

applied to the multiple-optima function already demonstrated above

function=1.0-Cos[x]/(1.0+0.01*x^2);

pureFunction=Function[argument,function/.x -> argument];

with an appropriate search space (not too small, not too large)

xMinBorderOfSearchSpace=-10.0;

xMaxBorderOfSearchSpace=15.0;



1.2 Optimization 29

the global minimum (point in diagram below) inside the search space (marked as a

background in diagram below)

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{5.16341×10−10 ,{x →−0.0000318188}}

is also approximated successfully:

minimumPoint={x/.globalMinimum[[2]],globalMinimum[[1]]};

points2D={minimumPoint};

argumentRange={-12.0,17.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Global minimization"};

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

searchSpaceGraphics=Graphics[{RGBColor[0,1,0,0.2],

Rectangle[{xMinBorderOfSearchSpace,functionValueRange[[1]]},

{xMaxBorderOfSearchSpace,functionValueRange[[2]]}]}];

Show[functionGraphics,searchSpaceGraphics]

But note: If the search space is inadequately chosen (i.e. the global minimum is

outside the interval)

xMinBorderOfSearchSpace=50.0;

xMaxBorderOfSearchSpace=60.0;

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.9619,{x → 50.2272}}



30 1 Introduction

or the search space is simply to large

xMinBorderOfSearchSpace=-100000.0;

xMaxBorderOfSearchSpace=100000.0;

globalMinimum=NMinimize[{function,

xMinBorderOfSearchSpace<x<xMaxBorderOfSearchSpace},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.805681,{x → 19.2638}}

the global minimum may not be found within the default maximum number of

iterations.

1.2.5 Constrained Iterative Optimization

Clear["Global‘*"];

<<CIP‘Graphics‘

With the global optimization examples of the previous section the field of con-

strained optimization was already touched since the a priori defined search space

was a constraint of the search (but in fact it was not intended to constrain the opti-

mization procedure: Defining a search space was just a precondition for the global

optimization methods to work at all). In general optimization tasks are called un-

constrained if they are free from any additional restrictions. If the optimization is

subject to one or several constraints the field of constrained optimization is entered.

If the function under investigation is not only to be globally minimized but the x

value is restricted to lie in an defined interval

function=1.0-Cos[x]/(1.0+0.01*x^2);

pureFunction=Function[argument,function/.x -> argument];

xMinConstraint=2.0;

xMaxConstraint=11.0;

constraint=xMinConstraint<x<xMaxConstraint;

constrainedGlobalMinimum=NMinimize[{function,constraint},x,

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.28015,{x → 6.19386}}

the constrained global minimum (point in diagram below) may differ from the

unconstrained one (the constraint is marked as a background in diagram below):



1.2 Optimization 31

constrainedMinimumPoint={x/.constrainedGlobalMinimum[[2]],

constrainedGlobalMinimum[[1]]};

points2D={constrainedMinimumPoint};

argumentRange={-12.0,17.0};

functionValueRange={-0.2,2.2};

labels={"x","y","Constrained global minimization"};

functionGraphics=CIP‘Graphics‘Plot2dPointsAboveFunction[points2D,

pureFunction,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange];

constraintGraphics=Graphics[{RGBColor[1,0,0,0.1],

Rectangle[{xMinConstraint,functionValueRange[[1]]},

{xMaxConstraint,functionValueRange[[2]]}]}];

Show[functionGraphics,constraintGraphics]

But not only may the unconstrained and constrained global optimum differ: The

constrained global optimum may in general not be an optimum of the unconstrained

optimization problem at all: This can be illustrated with the following example taken

from the Mathematica tutorials. The 3D surface

function=

-1.0/((x+1.0)^2+(y+2.0)^2+1)-2.0/((x-1.0)^2+(y-1.0)^2+1)+2.0;

pureFunction=Function[{argument1,argument2},

function/.{x -> argument1,y -> argument2}];

xRange={-3.0,3.0};

yRange={-3.0,3.0};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]



32 1 Introduction

contains two optima: A local and a global minimum. Depending on the start posi-

tion of the iterative local minimum search method initiated via the FindMinimum

command

startPosition={-2.5,-1.5};

localMinimum=FindMinimum[function,{{x,startPosition[[1]]},

{y,startPosition[[2]]}}]

{0.855748,{x →−0.978937,y →−1.96841}}

the minimization process approximates the local minimum

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.4]];

functionGraphics=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics,arrowGraphics]



1.2 Optimization 33

or (with another start point)

startPosition={-0.5,2.5};

localMinimum=FindMinimum[function,{{x,startPosition[[1]]},

{y,startPosition[[2]]}}]

{−0.071599,{x → 0.994861,y → 0.992292}}

arrives at the global minimum:

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=CIP‘Graphics‘Plot3dPointsWithFunction[points3D,

pureFunction,labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D];

Show[functionGraphics,arrowGraphics]



34 1 Introduction

If now the constraint is imposed that

x2 + y2 > 4.0

(the constraint removes a circular argument area around the origin (0,0) of the xy

plane) the constrained local minimization algorithm behind the FindMinimum com-

mand is activated (see comments on [FindMinimum/FindMaximum] for details).

The constrained local minimization process from the first start position

startPosition={-2.5,-1.5};

constraint=x^2+y^2>4.0;

localMinimum=FindMinimum[{function,constraint},

{{x,startPosition[[1]]},{y,startPosition[[2]]}}]

{0.855748,{x →−0.978937,y →−1.96841}}

still results in the local minimum of the unconstrained surface

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

regionFunction=Function[{argument1,argument2},

constraint/.{x -> argument1,y -> argument2}];

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=Plot3dPointsWithFunction[points3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D,

GraphicsOptionRegionFunction -> regionFunction];

Show[functionGraphics,arrowGraphics]



1.2 Optimization 35

but the second start position

startPosition={-0.5,2.5};

localMinimum=FindMinimum[{function,constraint},

{{x,startPosition[[1]]},{y,startPosition[[2]]}}]

{0.456856,{x → 1.41609,y → 1.41234}}

leads to a new global minimum since the one of the unconstrained surface is

excluded by the constraint:

startPoint={startPosition[[1]],startPosition[[2]],

function/.{x -> startPosition[[1]],y -> startPosition[[2]]}};

minimumPoint={x/.localMinimum[[2,1]],y/.localMinimum[[2,2]],

localMinimum[[1]]};points3D={startPoint,minimumPoint};

arrowGraphics=Graphics3D[{Thick,Red,{Arrowheads[Medium],

Arrow[{startPoint,minimumPoint}]}}];

functionGraphics=Plot3dPointsWithFunction[points3D,pureFunction,

labels,

GraphicsOptionArgument1Range3D -> xRange,

GraphicsOptionArgument2Range3D -> yRange,

GraphicsOptionPlotStyle3D -> plotStyle3D,

GraphicsOptionRegionFunction -> regionFunction];

Show[functionGraphics,arrowGraphics]



36 1 Introduction

An evolutionary-algorithm-based constrained global search in the displayed argu-

ment ranges via NMinimize directly approximates the constrained global minimum

Off[NMinimize::cvmit]

localMinimum=NMinimize[{function,constraint},

{{x,xRange[[1]],xRange[[2]]},{y,yRange[[1]],yRange[[2]]}},

Method -> {"DifferentialEvolution","PostProcess" -> False}]

{0.456829,{x → 1.41637,y → 1.41203}}

The Off[NMinimize::cvmit] command suppresses an internal message from NMinimize. Internal messages are

usually helpful to understand problems and they advise to interpret results with caution. In this particular case

the suppression eases readability.

with sufficient precision (compare above).

In general it holds that the more dimensional the non-linear curved hyper surface

is and the more constraints are imposed the more difficult it is to approximate a

local or even the global optimum with sufficient precision. The specific optimization

problems that are related to the road from curve fitting to machine learning will be

discussed in the later chapters where they apply.

1.3 Model Functions

Since model functions play an important role throughout the book a categorization

of model functions is helpful. A good starting point is the most prominent model

function: The straight line.



1.3 Model Functions 37

1.3.1 Linear Model Functions with One Argument

Clear["Global‘*"];

<<CIP‘Graphics‘

The well-known functional form of the straight line is

y = f (x) = a1 + a2x

pureFunction=Function[x,1.0+2*x];

argumentRange={0.0,5.0};

functionValueRange={0.0,12.0};

labels={"x","y","Straight line"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

The straight line is linear in two ways: It describes a linear relation between argu-

ment x and function value y and is itself linear in its parameters a1 and a2, i.e. a1

and a2 have exponent 1. A general model function which is linear in its parameters

can be defined as follows:

y = f (x) = a1g1(x)+ a2g2(x)+ ...+ aLgL(x) = ∑L
v=1 avgv(x)

This general linear function consists of Lparameters a1 to aL that are each multiplied

by a function gv(x). The functions gv(x) depend on x and do only have fixed and

known internal parameters. Note that the general linear function does not necessarily

describe a linear relation between argument x and function value y: This relation



38 1 Introduction

may be highly non-linear, e.g. for a gv(x) that is equal to ex. From the point of view

of the general linear function the straight line is just a special case with

L = 2 ; g1(x) = x0 = 1 ; g2(x) = x

that leads to

y = f (x) = a1 + a2x

Another well-known example of this type of linear model functions are polynomials

y = f (x) = a1 + a2x + a3x2 + ...+ aLxL−1 = ∑L
v=1 avxv−1

e.g. the quadratic parabola

y = f (x) = ∑3
v=1 avxv−1 = a1 + a2x + a3x2

pureFunction=Function[x,11.0-15.0*x+5.0*x^2];

argumentRange={0.0,3.0};

functionValueRange={-1.0,12.0};

labels={"x","y","Quadratic parabola"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]

Model functions that are linear in their parameters make up an important special

case for curve fitting procedures to experimental data: It can be shown that they lead

to optimization problems with only one global optimum which in principle may be



1.3 Model Functions 39

calculated with pencil and paper by means of analytic calculation strategies (e.g. see

[Hamilton 1964], [Barlow 1989], [Bevington 2002], [Brandt 2002] or [Press 2007]).

Again, note that the term linear model function denotes a function that is lin-

ear in its parameters only. It does not necessarily mean a linear dependence of

the function value y on the argument x. This subtle difference often causes some

misunderstandings in scientific practice as far as non-linear fits are concerned.

1.3.2 Non-linear Model Functions with One Argument

Clear["Global‘*"];

<<CIP‘Graphics‘

A model function that is not linear in its parameters is called a non-linear model

function, e.g.

y = f (x) = a1ea2x

To recognize the non-linearity in parameters of the example function a power series

expansion is helpful (in this case around x = 0 with a display up to the 4th power):

Series[Subscript[a, 1]*Exp[Subscript[a, 2]*x],{x,0,4}]

a1 +a1a2x+ 1
2

a1a2
2x2 + 1

6
a1a3

2x3 + 1
24

a1a4
2x4 +O[x]5

The cross terms like a1a2 or a1a2
2 and the higher powers of a2 like a2

2, a3
2, a4

2 etc. now

become directly obvious. A prominent example is the exponential decay model that

describes radioactive processes of disintegration or chemical first-order kinetics:

pureFunction=Function[x,1.0*Exp[-8.0*x]];

argumentRange={0.0,1.0};

functionValueRange={0.0,1.5};

labels={"x","y","Exponential decay"};

CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]



40 1 Introduction

Nature (fortunately) is not linear (otherwise living organisms would not exist) so

non-linear model functions play a predominant role in science. But compared to lin-

ear models non-linear model functions may cause severe problems in data analysis

procedures. They lead to optimization problems with multiple optima so analytic

calculation strategies are no longer applicable in general: Only iterative strategies

can be followed that may disastrously fail.

So far only one dimensional model functions with one argument x are discussed.

One dimensional model functions play the central part in curve fitting methods

where the structural form of the model function is often known but not the values of

its parameters (see chapter 2).

1.3.3 Linear Model Functions with Multiple Arguments

Clear["Global‘*"];

<<CIP‘Graphics‘

Model functions with multiple arguments x1 to xM may be linear in their parameters

and are generally written in the form (that utilizes the general linear function with

one argument from above):

y = f (x1,x2, ...,xM) =
(

∑L
v=1 a1vg1v (x1)

)

+ ...+
(

∑L
v=1 aMvgMv (xM)

)

y = f (x1,x2, ...,xM) = ∑M
u=1

(

∑L
v=1 auvguv (xu)

)

The multidimensional analog of the straight line is the hyperplane that is derived

from the general linear model function with

L = 2

y = f (x1,x2, ...,xM)= ∑M
u=1

(

∑2
v=1 auvguv (xu)

)

= ∑M
u=1 (au1gu1 (xu)+ au2gu2 (xu))

y = f (x1,x2, ...,xM) = ∑M
u=1 au1gu1 (xu)+ ∑M

u=1 au2gu2 (xu)



1.3 Model Functions 41

and

au = au1 ; gu1 (xu) = xu ; aM+1 = ∑M
u=1 au2 ; gu2 (xu) = 1

that leads to

y = f (x1,x2, ...,xM) = ∑M
u=1 auxu + aM+1

A 3D plane with M = 2

y = f (x1,x2) = a1x1 + a2x2 + a3

is visualized below:

pureFunction=Function[{x,y},1.0+2.0*x+3.0*y];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

What holds for one dimensional linear model functions still holds for their multidi-

mensional analogs: Model fitting procedures to experimental data lead to optimiza-

tion problems with one global optimum with analytic calculation strategies for its

position.



42 1 Introduction

1.3.4 Non-linear Model Functions with Multiple Arguments

Clear["Global‘*"];

<<CIP‘Graphics‘

Non-linear model functions with multiple arguments x1 to xM like

y = f (x1,x2, ...,xM) = a1 sin(x1)+ exp
{

∑M
u=2 aux2

u

}

(where exp{x} denotes ex) may be viewed as curved hyper surfaces with multiple

minima and maxima in comparison to linear hyperplanes. The already shown curved

3D surface may again be taken as an example:

pureFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]* Sin[7.0*y])];

xRange={-0.1,1.1};

yRange={-0.1,1.1};

labels={"x","y","z"};

CIP‘Graphics‘Plot3dFunction[pureFunction,xRange,yRange,labels]

It is these kinds of curved hyper surfaces that answer the most subtle questions

about nature but on the other hand they cause the worst data analysis problems.

Machine learning methods usually lead to this kind of surfaces to optimize (see

chapter 4): They require iterative optimization techniques which in turn need

considerable computational power to be applied with success.



1.3 Model Functions 43

1.3.5 Multiple Model Functions

In a last step multiple model functions may be collected together to generate an

output vector y (the answer) for an input vector x (the question)

y1 = f1 (x1,x2, ...,xM)
y2 = f2 (x1,x2, ...,xM)

...

yN = fN (x1,x2, ...,xM)

which may be written in an abbreviated vector notation:

y = f (x)

Note that the output vector y and the function vector f are of dimension N whereas

the input vector x is of (maybe different) dimension M. Model function collections

of this kind play the crucial role in machine learning methods where function col-

lections are constructed to describe experimental data in multiple dimensions (see

chapter 4).

1.3.6 Summary

The Holy Grail of the sciences to calculate nature with

output = f (input)

may now be written in mathematical detail:

y = f (x)

Questions about nature are asked with adequately defined input vectors x that are

submitted to model functions f to give the answer in form of an adequately defined

output vector y. This is a rather general scheme: Nearly everything can be adequately

coded in input/output vectors, e.g. molecules, pharmacological effects, material’s

properties etc. The details of this kind of coding may be subtle and difficult and are

the realm of specific areas of science like chemoinformatics or bioinformatics. The

proper coding is an essential precondition to any data analysis: If the interesting

parts of the world are not adequately coded then any association of them by model

functions must inevitably fail.



44 1 Introduction

1.4 Data Structures

Data structures describe the organization of data that will be used for the curve

fitting, clustering and machine learning throughout this book. In general algorithms

deserve adequate data structures and vice versa. The interplay of algorithms and

data structures is at heart of computer science.

1.4.1 Data for Curve Fitting

Clear["Global‘*"];

For curve fitting methods a xy-error data structure is used. This data structure con-

sists of xy-error data triples (xi,yi,σi) with an argument value xi, a corresponding

dependent value yi and the statistical error σi of the yi value. In Mathematica data are

stored in lists which are defined by curly brackets. The whole xy-error data struc-

ture is a single list with nested sublists that represent the single xy-error data triples.

Here is an example of a xy-error data structure with 3 xy-error data triples:

xyErrorData={{Subscript[x, 1],Subscript[y, 1],

Subscript[\[Sigma], 1]},{Subscript[x, 2],

Subscript[y, 2],Subscript[\[Sigma], 2]},

{Subscript[x, 3],Subscript[y, 3],Subscript[\[Sigma], 3]}}

{{x1,y1 ,σ1} ,{x2,y2,σ2} ,{x3,y3,σ3}}

1.4.2 Data for Machine Learning

Clear["Global‘*"];

<<CIP‘DataTransformation‘

<<CIP‘Utility‘

When it comes to machine learning a data set structure is used. A data set is a list of

input/output (I/O) pairs, e.g. the following data set with 3 I/O pairs:

dataSet={ioPair1,ioPair2,ioPair3};

Each I/O pair consists of an input vector (abbreviated input) and an output vector

(abbreviated output):

ioPair1={input1,output1};

ioPair2={input2,output2};

ioPair3={input3,output3};



1.4 Data Structures 45

Each input and each output is a vector with a defined number of components, e.g.

each input may consist of 3 components and each output of 2 components

input1={Subscript[in, 11],Subscript[in, 12],Subscript[in, 13]};

output1={Subscript[out, 11],Subscript[out, 12]};

input2={Subscript[in, 21],Subscript[in, 22],Subscript[in, 23]};

output2={Subscript[out, 21],Subscript[out, 22]};

input3={Subscript[in, 31],Subscript[in, 32],Subscript[in, 33]};

output3={Subscript[out, 31],Subscript[out, 32]};

where the first index indicates the I/O pair and the second index the component. The

whole data set combines to:

dataSet

{{{in11, in12, in13} ,{out11,out12}} ,{{in21, in22, in23} ,{out21,out22}} ,{{in31, in32, in33} ,{out31,out32}}}

Data sets do not contain statistical errors since the machine learning methods dis-

cussed in this book are not statistically based and therefore do not take errors into

account. But for a proper assessment of a machine learning result it is helpful to

know the errors of the data. The inputs of a data set can be isolated with

inputs=CIP‘Utility‘GetInputsOfDataSet[dataSet]

{{in11, in12, in13} ,{in21, in22, in23} ,{in31, in32, in33}}

and the outputs accordingly:

inputs=CIP‘Utility‘GetOutputsOfDataSet[dataSet]

{{out11,out12} ,{out21,out22} ,{out31,out32}}

A data set that contains outputs with more than one output component like the one

sketched above may be split in multiple data sets, i.e. a list of data sets

dataSetList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[dataSet];

where each split data set now contains a single output component:

dataSetList[[1]]

{{{in11, in12, in13} ,{out11}} ,{{in21, in22, in23} ,{out21}} ,{{in31, in32, in33} ,{out31}}}



46 1 Introduction

dataSetList[[2]]

{{{in11, in12, in13} ,{out12}} ,{{in21, in22, in23} ,{out22}} ,{{in31, in32, in33} ,{out32}}}

This splitting is used for several machine learning methods and graphical illustra-

tions. As a 3D data set those data sets are denoted that contain inputs with two

components and outputs with one component: They may be illustrated by three

dimensional graphics in contrast to data sets with higher dimensional inputs or

outputs.

1.4.3 Inputs for Clustering

Clear["Global‘*"];

The inputs of a data set are defined as the list of inputs of all I/O pairs:

input1={Subscript[in, 11],Subscript[in, 12],Subscript[in, 13]};

input2={Subscript[in, 21],Subscript[in, 22],Subscript[in, 23]};

input3={Subscript[in, 31],Subscript[in, 32],Subscript[in, 33]};

inputs={input1,input2,input3}

{{in11, in12, in13} ,{in21, in22, in23} ,{in31, in32, in33}}

The inputs data structure may be used for clustering tasks.

1.4.4 Inspection of Data Sets and Inputs

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Graphics‘

For inspection of data set and inputs CIP contains methods in the Graphics package.

As an example the adhesive kinetics data set and the iris flower inputs are sketched

(see Appendix A). Both are provided by the CIP ExperimentalData package: The

adhesive kinetics data set

dataSet=CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents"},dataSet]

Number of IO pairs = 73

Number of input components = 3

Number of output components = 1



1.6 Data Errors 47

consists of 73 I/O pairs. Each input vector is of dimension 3, the output vector is of

dimension 1. The iris flower inputs

inputs=CIP‘ExperimentalData‘GetIrisFlowerInputs[];

CIP‘Graphics‘ShowInputsInfo[{"InputVectors","InputComponents"},

inputs]

Number of input vectors = 150

Number of input components = 4

consist of 150 input vectors of dimension 4. When using CIP with deposited or

simulated data there is no reason to worry about data structures since everything

is set up correctly. Only if new data are inserted the described structures must be

obeyed.

1.5 Scaling of Data

In principal data values should be confined to an order of magnitude around 1 by

use of appropriate units, i.e. have values like 0.58, 1.47 or 3.61 but not 10255.24

or 0.00046. This not only makes them easier to comprehend it is also a virtue for

numeric computing since computers do only calculate with a finite number of digits:

Values that differ orders of magnitude may lead to severe calculation errors due to

numerical problems.

Curve fitting methods use xy-error data without any scaling throughout this book.

So all data should be reasonably scaled in advance. In contrast all clustering and ma-

chine learning methods scale the data as part of their algorithms, e.g. all minimum

and maximum values of all single components of inputs and outputs are determined

and then a linear transformation for each component from its [min, max] interval to

interval [0, 1] is performed (in fact interval [0.05, 0.95] is used in CIP to allow very

cautious extrapolations). If outputs of fitted models are calculated the inverse linear

transformation is performed. So there is no need for a data preprocessing as far as

clustering or machine learning is concerned.

An often neglected subtlety of data transformation may be noticed: If the x and

y values of xy-error data are transformed it is essential to also transform the errors

by correct error propagation. This is especially important for non-linear transforma-

tions. Since the neglect of errors belongs to the most frequently mistakes in practical

data analysis its consequences are outlined in the curve fitting chapter 2.

1.6 Data Errors

Experimental data are biased by errors in principal. There are three sources of errors

that may be distinguished in practice:



48 1 Introduction

• Gross errors: These kind of errors are introduced by experimental mistakes or

simply bad work. They are completely avoidable by proper performance. Nev-

ertheless gross errors are abundant in available experimental data. Usually it is

tried to identify affected data as outliers but this may be very difficult especially

for high dimensional data sets.

• Systematic errors: They introduce systematic shifts to data. Their cause may be

found in subtle calibration problems or specific data preprocessing procedures

(a scientific quantity is rarely measured directly). An example from the area of

chemical spectra analysis is given in Appendix A and chapter 2. Systematic er-

rors are often difficult to be detected, their avoidance needs a deep understanding

and careful inspection of the measurement process.

• Statistical errors: These errors originate from the nature of the specific measure-

ment process and can not be avoided in principal. They may only be reduced by

replacing a measurement process with an improved one. So statistical errors are

an intrinsic property of every measurement and therefore every measured datum

must be attributed with its statistical error.

On the contrary simulated data are artificially constructed to only contain de-

fined statistical errors without any systematic or gross errors. So they may play an

important role for a proper assessment of a data analysis method.

Somewhere in between experimental and simulated data are calculated data, e.g.

data that were produced with a fundamental theory of nature. These data do not con-

tain errors in the statistical sense but are somehow biased by the usually approximate

calculation method. In practice calculated data are treated like simulated data.

Experimental data for curve fitting tasks used to statistically estimate parameters

for model functions y = f (x) must provide their corresponding errors. This necessity

is embodied in the xy-error triple data structure for curve fitting. Each xy-error data

triple consists of an argument value xi, a corresponding dependent value yi and the

statistical error σi of the yi value: (xi,yi,σi). The errors of the xi values are usually

not taken into account, i.e. all xi values are considered to be error-free since their

errors propagate to corresponding bigger errors σi of the dependent yi values. The

errors σi are mandatory for the statistical assessment of curve fitting methods though

often neglected. The statistical error must be reported or at least be estimated since

every measurement is biased: There are no infinite precise measurements possible in

this universe. Before starting any data analysis procedure there should always be a

clear understanding of all related errors of all quantities. Machine learning methods

on the contrary do in general not take data errors explicitly into account since they

lack a thorough statistical basis due to the missing model function. But also for the

assessment of their results the knowledge of at least the approximate size of the

data’s errors is helpful. If a machine learning methods describes experimental data

better than expected from their errors the learning procedure failed: A simple so

called overtrained look-up table for the training data was constructed without any

power of predictability (see chapter 4).



1.7 Regression versus Classification Tasks 49

1.7 Regression versus Classification Tasks

Clear["Global‘*"];

<<CIP‘DataTransformation‘

If a machine learning technique is set up to perform a regression task it should build

model functions f that map input vectors x onto output vectors y

y = f (x)

where the output vectors y consists of continuous components with each having a

specific scientific meaning.

A classification setup is somewhat different: The machine learning method is

trained to assign an input vector x to a specific class i. To achieve this goal in terms

of the general regression formulation above there must be an adequate coding of

the output y. Throughout this book the following coding is chosen: The number of

components of the output vector y is set equal to the number of desired classes.

Each component yk of output vector y codes one class. As an example the coding of

3 classes leads to the following output vectors:

Class 1 : y =

⎛

⎝

1.0
0.0
0.0

⎞

⎠ ; Class 2 : y =

⎛

⎝

0.0
1.0
0.0

⎞

⎠ ; Class 3 : y =

⎛

⎝

0.0
0.0
1.0

⎞

⎠

If this coding is chosen a regression task may be performed with these output

vectors. A corresponding data set is called a classification data sets to indicate the

coding of its output vectors. To assign an input vector x to a specific class the max-

imum component of the output vector y is determined: The attributed class then

corresponds to the position of the maximum component in the output vector y: If a

trained machine learning method calculates the output vector

y =

⎛

⎝

0.2
0.5
0.3

⎞

⎠

for an input vector x then this input vector is assigned to class 2 since component 2

(0.5) is the maximum component of output vector y. Note that it is not necessary for

a correct classification that the machine learning method achieves a high precision

mapping onto the desired output vectors y for each class. It is sufficient when the

class detection component is the maximum component. The value of 0.5 of the

previous example differs considerably from the desired output component value of

1.0 but is absolutely sufficient for a correct classification in this case. Therefore in

general a classification task is somewhat less demanding than a regression task for



50 1 Introduction

a machine learning method. If a regression task fails it may be at least feasible to

classify the data onto different regions of interest.

The I/O pairs of classification data sets like

input1={Subscript[in, 11],Subscript[in, 12],Subscript[in, 13]};

output1={0.0,1.0};

ioPair1={input1,output1};

input2={Subscript[in, 21],Subscript[in, 22],Subscript[in, 23]};

output2={0.0,1.0};

ioPair2={input2,output2};

input3={Subscript[in, 31],Subscript[in, 32],Subscript[in, 33]};

output3={0.0,1.0};

ioPair3={input3,output3};

input4={Subscript[in, 41],Subscript[in, 42],Subscript[in, 43]};

output4={1.0,0.0};

ioPair4={input4,output4};

classificationDataSet={ioPair1,ioPair2,ioPair3,ioPair4};

MatrixForm[classificationDataSet]

⎛

⎜

⎝

{in11, in12, in13} {0.,1.}
{in21, in22, in23} {0.,1.}
{in31, in32, in33} {0.,1.}
{in41, in42, in43} {1.,0.}

⎞

⎟

⎠

may be sorted ascending according to their class memberships

sortResult=CIP‘DataTransformation‘SortClassificationDataSet[

classificationDataSet];

sortedClassificationDataSet=sortResult[[1]];

MatrixForm[sortedClassificationDataSet]

⎛

⎜

⎝

{in41, in42, in43} {1.,0.}
{in11, in12, in13} {0.,1.}
{in21, in22, in23} {0.,1.}
{in31, in32, in33} {0.,1.}

⎞

⎟

⎠

with information about the inputs to class relations:

classIndexMinMaxList=sortResult[[2]]

{{1,1},{2,4}}

classIndexMinMaxList contains two elements, i.e. there are two classes: Class 1 with min/max elements {1, 1}

and class 2 with min/max elements {2, 4}. In other words: Class 1 contains one input (with index 1), class 2

contains three inputs (with indices 2, 3 and 4).

Classification task are often connected to pattern recognition: The input vector x

codes a pattern (e.g. a MRI created digital image) that is mapped onto a specific

class with a specific meaning (e.g. tumor tissue): So the pattern may be recognized.

Machine learning methods provide strong pattern recognition abilities in principal

(see chapter 4).



1.8 The Structure of CIP Calculations 51

1.8 The Structure of CIP Calculations

The structure of calculations with the Computational Intelligence Packages (CIP)

is largely unified: With Get methods data are retrieved or simulated (with the CIP

ExperimentalData and CalculatedData package) that are then submitted to a Fit

method (of the CIP CurveFit, Cluster, MLR, SVM or Perceptron package). The

result of the latter is a comprehensive info data structure (curveFitInfo, cluster-

Info, mlrInfo, svmInfo or perceptronInfo) that can be passed to Show methods for

evaluation purposes like inspection of the goodness of fit or to Calculate meth-

ods for model related calculations. The straight forward and intuitive scheme Get-

Fit-Show-Calculate may easily be remembered and is used throughout the book.

Other CIP packages perform auxiliary tasks like the Graphics package that provides

standardized 2D and 3D diagrams.

CIP methods use a lot of default settings which are unfortunately necessary for

the algorithms to work but the important intricacies may be changed by options

which are outlined in detail throughout the book. This will be crucial for success

in data analysis applications since the default settings are not generally applicable:

They are adequate in one case and lead to a disastrous failure in another.

Note that CIP is open-source and thus available in source code: You may inspect

every detail of the implemented methods and even change or improve them. More

details about CIP are provided in Appendix A.

The Mathematica program code used throughout the book is initialized at the

beginning of each section with

Clear["Global‘*"];

which deletes all prior definitions. This has to be taken into account if code is

extracted since it works top-down only.



Chapter 2

Curve Fitting

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Two dimensional curve fitting starts with experimental xy-error data (points in di-

agram below) which consist of data triples (xi,yi,σi) with an argument value xi, a

corresponding dependent value yi and the (not illustrated) statistical error σi of the

yi value (again note that xy-error data are generated by experimental setups which

specify a xi value and measure a corresponding yi value for that fixed xi value where

the errors of all xi values are not taken into account, i.e. all xi values are considered

to be error-free since their errors propagate to corresponding bigger errors σi of the

dependent yi values):

pureModelFunction=Function[x,1.0+1.0*x+0.4*x^2-0.1*x^3];

argumentRange={-2.0,5.0};

numberOfData=100;

standardDeviationRange={0.5,0.5};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureModelFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

A. Zielesny: From Curve Fitting to Machine Learning, ISRL 18, pp. 53–147.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



54 2 Curve Fitting

Curve fitting tries to adjust a smooth and balancing model function f (x) (solid line

in diagram below)

modelFunction=a1+a2*x+a3*x^2-a4*x^3;

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,modelFunction,

argumentOfModelFunction,parametersOfModelFunction];

labels={"x","y","Curve fitting"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

that describes the data adequately (all details will be outlined in a minute). In more

mathematical terms curve fitting is a data analysis procedure which tries to construct

a linear or non-linear model function

y = f (x)



2 Curve Fitting 55

from experimental xy-error data. Besides the rare case that the model function f (x)
is completely known (then there is nothing to be fitted: The quantity of interest may

be directly calculated in this holy grail situation) three different scenarios may be

distinguished:

• Scenario 1: The structural form of the model function f (x) is theoretically or

empirically known but not the values of its parameters, e.g. the structural form

is known to be a straight line but the values of its parameters (i.e. of slope and

intercept) are unknown.

• Scenario 2: The structural form of the model function f (x) is unknown but it

may be somehow guessed.

• Scenario 3: The structural form of the model function f (x) is unknown and there

is no idea what it is about.

Scenario 1 demands a how-to procedure to estimate the unknown parameters of the

structurally known model function in an optimum way whereas scenario 2 needs a

construction strategy that combines trial and error as well as good guesses in ad-

dition (in two dimensions a good guess is quite often feasible in contrast to higher

dimensional machine learning problems). For scenario 3 at least some criteria may

be derived that allow the construction of something that is smooth and balancing.

For scenario 1 (and scenario 2 after the good guess) the estimation of optimum val-

ues for the unknown parameters of the model function is the essential step to achieve

a good fit. If the statistical distribution of the experimental xy-error data is known

this may be performed on a solely statistical ground which then defines the criterion

of optimization (see [Hamilton 1964], [Barlow 1989], [Bevington 2002] or [Brandt

2002]). For all further discussions a Gaussian (normal) distribution of experimental

errors is always assumed which is the most common case in practice (thanks to the

central limit theorem). In addition each data triple (xi,yi,σi) of the xy-error data is

assumed to be statistically independent of each other, i.e. the values of a data triple

are by no means influenced by the values of other data triples (which leads to a so

called maximum likelihood estimation). Note that this latter assumption is a seri-

ous and hard to achieve precondition since a lot of natural (and social) phenomena

are subtly correlated to each other. So special care has to be taken for experimental

setups to achieve true independence.

If the model function could be successfully fitted to the data it may be used

twofold: For interpolation purposes to calculate function values within the experi-

mental argument range [xmin, xmax] as well as for extrapolation purposes to calculate

function values outside this argument range. The latter is possible since the struc-

tural form of the model function is a priori known. This is a clear difference to

mere data smoothing or machine learning methods that have no initial idea about

the model function: Their constructed model functions can not be used for extrapo-

lation purposes in principle (multiple linear regression will be an exception but this

method is usually not accounted to fall into the machine learning reign).

When a model function is to be guessed (scenario 2) some general considerations

should be taken into account. First the number of parameters should be consider-

ably smaller than the number of data (of course this should apply to scenario 1 too):



56 2 Curve Fitting

Otherwise a simple look-up table would be easier to create. The number of parame-

ters should be as small as possible or in other words: The model function with fewer

parameters that describes the data satisfactorily is preferred to the model function

with more parameters. This is a well-known utilization of Occam’s razor - one of

the philosophical principles of scientific practice that states that the explanation of

any phenomenon should make as few assumptions as possible.

In the case that there is no idea of the functional form of a model function (sce-

nario 3) a convincing data smoothing procedure is outlined that uses smoothing

cubic splines. It should be clear that this smoothing model function can not be used

for extrapolation purposes as mentioned before.

Chapter 2 starts with an outline of necessary basics: The criteria and quantities

for curve fitting and data smoothing are intuitively derived with arguments of plau-

sibility only (section 2.1). To tackle scenario 1 quantities and diagrams to assess the

goodness of fit are illustrated by means of a perfect straight line fit to simulated data

(section 2.2). The empirical construction of a model function for real experimental

data on the basis of trial and error in combination with educated guesses is outlined

to illustrate scenario 2 as a next step. The extrapolation problem is addressed in

particular (section 2.3). Problems and pitfalls of curve fitting tasks are discussed in

detail afterwards: They are at heart of this chapter since they are often the hurdle

that prevents practitioners from successful data analysis. Fitting non-linear model

functions requires adequate start values for all parameters that allow the fitting pro-

cedure to succeed: Problems and search strategies are sketched. The extraction of a

model function from experimental data may be challenging up to ambiguous which

is discussed for difficult curve fitting problems. Model functions themselves may

be inappropriately constructed that may lead to fatal pitfalls. A more subtle kind of

inappropriateness of a model function is exemplified by an effort to extract infor-

mation from data that they simply do not contain (section 2.4). The estimation of

parameters’ errors, possible corrections and the influence of confidence levels are

demonstrated afterwards. Parameters’ errors are influenced by the precision of data

as well as their number: An iterative method for the estimation of the necessary

number of data to achieve a desired parameters’ precision is suggested. Experimen-

tal data of relatively low precision may lead to large parameter errors for specific

model functions: This prevents support or rejection of underlying theoretical con-

siderations. In this context there is a strong temptation for educated cheating which

means putting up unjustified statements that seem to be advised by the data analy-

sis procedure - an illustrative example is shown. The discussion of the influence of

experimental errors on the fitted optimum parameters’ values and the related pos-

sible problems of data transformations complement this topic (section 2.5). It is

often necessary to enhance theoretical model functions by empirical parameters to

successfully describe experimental data. An example is discussed that also makes

use of the dangerous removal of outliers (section 2.6). Mere data smoothing with-

out any knowledge of a model function (scenario 3) is demonstrated to create a

smooth and balancing description of data (section 2.7). Finally the whole chapter is

summarized with a few cookbook recipes for successful curve fitting and data

smoothing (section 2.8).



2.1 Basics 57

2.1 Basics

A curve fitting procedure may be derived with mathematical statistics (see [Hamil-

ton 1964], [Barlow 1989], [Bevington 2002], [Brandt 2002] and [Press 2007])

whereas this section follows an intuitive approach that only uses arguments of plau-

sibility - but of course comes to the same results: How is a model function to be fit?

How may data satisfactorily be smoothed?

2.1.1 Fitting Data

At first sight it is obvious that a good fit should minimize the so called residuals, i.e.

the deviations between experimental values yi and their corresponding calculated

function values f (xi):

yi − f (xi) −→ minimize!

Since positive and negative residuals should be treated equally they may be squared

to get rid of the sign:

(yi − f (xi))
2 −→ minimize!

The absolute value or a higher even power of the residuals could be taken as well

with respect to plausibility but this would lead to other statistics so the square is

taken for statistically independent and normally distributed deviations (behind the

scenes: The square stems from the square in the exponential term of a normal distri-

bution where the minimum postulation leads to maximum likelihood). The sum of

squared residuals of all K xy-error data triples

∑K
i=1 (yi − f (xi))

2 −→ minimize!

may be calculated as a quantity to be minimized for a good fit. But so far the errors

σi of the experimental values yi are neglected. The smaller a single error σi the

more precise its corresponding experimental value yi. If each residual is divided by

its corresponding error an individual weight is attributed: The resulting fraction

yi− f (xi)
σi

is the bigger the smaller the error σi is. With the weighted sum of squares

∑K
i=1

(

yi− f (xi)
σi

)

2 −→ minimize!



58 2 Curve Fitting

a plausible minimization quantity is finally achieved: It becomes smaller the smaller

the residuals are, i.e. the better the model function f (x) describes the data. Each

single residual is weighted with its error σi: The smaller an error σi the more the

corresponding residual (yi − f (xi)) is taken into account (i.e. the more it contributes

to the sum). This minimization process is known in statistics as the method of least

squares and the weighted sum of squares is called χ2 ("chi-square"):

χ2 = ∑K
i=1

(

yi− f (xi)
σi

)

2

If the L parameters a1 to aL of the model function f are explicitly written

χ2 (a1, ...,aL) = ∑K
i=1

(

yi− f (xi,a1,...,aL)
σi

)

2

it becomes obvious that the quantity χ2 is a function of these parameters: The pa-

rameters a1 to aL of the model function f are the variables of the quantity χ2 which

is to be minimized. Thus minimization of χ2 (a1, ...,aL) means finding values for the

parameters a1 to aL so that the value of χ2 (a1, ...,aL) becomes a global minimum

in parameters’ value regions that have scientific meaning. The values of the param-

eters a1 to aL at the global minimum of χ2 (a1, ...,aL) are then called the optimum

estimates for the true parameter values in a statistical sense. Note that the functional

form of f is assumed to be true as a precondition of all statistical procedures: Only

parameter values can be estimated but not the structural form of the function f itself.

In summary a linear or non-linear curve fitting procedure is a mere global min-

imization of the quantity χ2 (a1, ...,aL). The global minimum may be calculated

analytically in the case that the model function f is linear in its parameters: Then

χ2 (a1, ...,aL) is a parabolic hyper surface and possesses exactly one minimum. But

it may only be approximated with an iterative search strategy in the case that f is

non-linear in its parameters (compare chapter 1 and [FitModelFunction] in the ref-

erences). In the latter case the quantity χ2 (a1, ...,aL) may contain multiple minima

and the minimization procedure may fail (e.g. get stuck in a local minimum, exceed

the defined maximum number of iterations etc.). Failure will be explicitly explored

and discussed in subsequent sections.

2.1.2 Useful Quantities

There are a number of related statistical quantities that will prove to be useful for

further discussions. If the model function describes the data well the residuals (yi −
f (xi)) should be comparable in size to the errors σi on average (otherwise the errors

σi would not be true errors but systematically too large or too small on average).

This means that the fractions



2.1 Basics 59

yi− f (xi)
σi

≈ 1

should be close to 1 on average. So the sum of squares evaluates approximately to

χ2 = ∑K
i=1

(

yi− f (xi)
σi

)

2 ≈ ∑K
i=1(1)2 = ∑K

i=1 1 = 1 + 1 + ...+ 1 = K

With this result in mind a statistical quantity named χ2
red ("reduced chi-square") can

be defined as

χ2
red (a1, ...,aL) = χ2(a1,...,aL)

K−L
= 1

K−L ∑K
i=1

(

yi− f (xi,a1,...,aL)
σi

)

2 ≈ 1 for K ≫ L

which evaluates to a value close to 1 for a good fit since the number of data K should

be considerably larger than the number of parameters of the model function L, i.e.

K ≫ L. The denominator (K −L) is called degrees of freedom since the parameter

values are deduced from the data. The residuals of a fit may be condensed into the

single statistical quantity σfit called the standard deviation of the fit. If all errors σi

are identical (i.e. equal to σ ) the standard deviation of the fit is defined as

σfit =
√

1
K−L ∑K

i=1 (yi − f (xi,a1, ...,aL))2 for σi = σ ; i = 1, ...,K

In general with individual errors σi the standard deviation of the fit is expressed as

σfit =

√

1
K−L ∑K

i=1

(

yi− f (xi,a1,...,aL)
σi

)

2/
√

1
K ∑K

i=1
1

σ 2
i

where the latter equation reduces to the previous one in the case of equal σi. The

statistical standard deviation of the fit is similar to a purely empirical quantity called

the rrroot mmmean sssquared eeerror (RMSE). In this context the RMSE of a fit is simply

defined as

RMSE =
√

1
K ∑K

i=1 (yi − f (xi))2

A RMSE may readily be generalized to machine learning applications for problems

in multiple dimensions. The quantities χ2
red (a1, ...,aL), σfit and RMSE respectively

may be used to assess the goodness of a fit. As far as the data’s errors are concerned a

situation quite often encountered in practice is the following: The precise statistical

errors σi of the yi values are unknown, but weights wi for the yi values are available.

The relation of the weights wi and their corresponding statistical errors σi can be

written as



60 2 Curve Fitting

σi = α
wi

where the factor α is used to calculate a statistical error from its corresponding

weight. Weights are defined to be the heavier the bigger they are: Statistical errors

lead to higher weights the smaller they are. Therefore weights and errors are in-

versely proportional by the constant factor α . If only weights are known the factor

α is unknown. But a reasonable estimate of α may be obtained from the χ2
red value

(which should be close to 1 as mentioned before):

χ2
red (a1, ...,aL) = χ2(a1,...,aL)

K−L
= 1

K−L ∑K
i=1

(

yi− f (xi,a1,...,aL)
σi

)

2 ≈ 1

1
K−L ∑K

i=1

(

yi− f (xi ,a1,...,aL)
α
wi

)

2 = 1
α2(K−L) ∑K

i=1 w2
i (yi − f (xi,a1, ...,aL))

2 ≈ 1

α ≈
√

1
(K−L) ∑K

i=1 w2
i (yi − f (xi,a1, ...,aL))2

In practice it is common to correct the errors σi of the xy-error data with this method:

The original errors σoriginal,i of the xy-error data are assumed to be weights only

wi = 1
σoriginal,i

and are transformed after the fit into the corrected errors σcorrected,i:

σcorrected,i = α
wi

= α
1

σoriginal,i

= ασoriginal,i

These corrected errors σcorrected,i are then used for the derivation of further statistical

quantities related to the fit - above all the estimation of errors σa1
, ...,σaL

of the

model function’s parameters a1, ...,aL.

2.1.3 Smoothing Data

When it comes to mere data smoothing statistics is no longer helpful. As already

pointed out statistics is not able to guess a model function in principal - it may only

estimate optimum values of a structurally known model function’s parameters and

related quantities with a bunch of statistical preconditions (like independent and nor-

mally distributed data). Therefore data smoothing comprises a set of techniques that

somehow construct a smooth and balancing interpolating model function from ex-

perimental xy-error data (extrapolation is of course not possible). There is no objec-

tive way to smooth data so there is nothing like the best smoothing technique. With

data smoothing we are back to the jungle where everything is allowed that leads to

a satisfactory result. Among the numerous techniques for smoothing experimental



2.1 Basics 61

xy-error data the smoothing cubic splines method is sketched in the following (see

[Reinsch 1967] and [Reinsch 1971]). This method seems to produce satisfactory

results accepted by experimental scientists in general - but this technique is by no

means better or superior to others. Data smoothing with cubic splines, i.e. cubic

polynomials

y = f (x) = a1 + a2x + a3x2 + a4x3,

uses the already sketched χ2
red value

χ2
red = χ2

K
= 1

K ∑K
i=1

(

yi− f (xi)
σi

)

2

as a reasonable first control parameter: Good data smoothing should lead to a

smoothing model function with

χ2
red ≈ 1

For convenience the same notation is used for data smoothing as for statistically

fitting model functions. But data smoothing is not statistically based. Quantities like

χ2
red have no longer any statistical meaning but are simply used as helpful quantities

for the smoothing task. Therefore χ2
red is set to

χ2

K
since there are no statistical de-

grees of freedom for data smoothing. The same applies to quantities like σfit: They

also use the number of data K instead of the degrees of freedom within this con-

text. The cubic splines are constructed from data point to data point, i.e. for K data

points (K −1) cubic splines have to be used. These cubic splines must be adjusted

to achieve the initially defined χ2
red value together with the constraint of a criterion

of smoothness: The resulting smoothing model function (composed of the piece-

wise cubic splines) should posses the smallest overall curvature possible to achieve

the predefined χ2
red value. Since the curvature is measured by the second derivative

f ”(x) of the model function the integral of the square of the second derivative over

the argument interval [x1, xL] is to be minimized

∫ xL
x1

(

d2 f (x)
dx2

)2

dx −→ minimize!

where the xy-error data are assumed to be sorted ascending according to their argu-

ment values xi. The square of the second derivative is used for equal treatment of

positive and negative curvature. Both criteria are of course contradicting each other:

The smaller the χ2
red value the larger the curvature integral value and vice versa.

With this mutual interplay a satisfactory smooth and balancing model function may

be constructed.



62 2 Curve Fitting

2.2 Evaluating the Goodness of Fit

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

A simple example is used to demonstrate the curve fitting procedure and the evalu-

ation of the goodness of fit. One thousand (xi,yi,σi) data triples

numberOfData=1000;

are simulated around the straight line y = f (x) = 1 + 2x

pureOriginalFunction=Function[x,1.0+2.0*x];

in the argument range [2, 5]

argumentRange={2.0,5.0};

with a relative error of 5% of the function value (since the straight line is constantly

increasing a minimum argument value of 2.0 leads to a minimum function value

of 5.0: A relative error of 5% for 5.0 is an absolute value of 0.25. A maximum

argument value of 5.0 corresponds to a function value of 11.0 with a 5% relative

error of 0.55)

errorType="Relative";

standardDeviationRange={0.05,0.05};

using the CIP CalculatedData package. All data are normally distributed around

their function values, the relative error denotes the standard deviation of the normal

distribution used for the data generation (i.e. for a y value of 5 a standard deviation

of 0.25 is used, for a y value of 11 a standard deviation of 0.55 respectively):

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType];

Here is a plot of the mere simulated data:

labels={"x","y","Simulated data"};

pointSize=0.01;

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels,

GraphicsOptionPointSize -> pointSize]



2.2 Evaluating the Goodness of Fit 63

Curve fitting procedures are performed with the CIP CurveFit package. For a fit the

model function itself, the argument and the parameters of the model function must

be defined

modelFunction=a1+a2*x;

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

and submitted together with the xy-error data to the FitModelFunction method to

produce a result captured in a curveFitInfo data structure (see [FitModelFunction]

for algorithmic details):

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

If no error messages are thrown the fit procedure was successful and results can

be inspected. The function plot with the fitted straight line and the simulated data

painted above provides a first impression:

labels={"x","y","Simulated data and model function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,

GraphicsOptionPointSize -> pointSize,

CurveFitOptionLabels -> labels];



64 2 Curve Fitting

The fit looks perfect which is also affirmed by inspection of the residuals, i.e. the de-

viations between the data and the model function: The residuals plot for the relative

residuals

CIP‘CurveFit‘ShowFitResult[{"RelativeResidualsPlot"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

exhibits statistically distributed residuals predominantly in the expected value range

of ± 5% without any systematic deviation patterns. Residuals plots are probably the

most important goodness-of-fit visualizations: If they look good the fit in general

is good (but compare comments on educated cheating below). Note that the index

of an residual corresponds to the x value of its data triple: Residual with index 1

corresponds to the data triple with the smallest x-value, the residual with the highest

index to the data triple with the maximum x-value. The standard deviation of the fit

σfit



2.2 Evaluating the Goodness of Fit 65

CIP‘CurveFit‘ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 3.699×10-1

lies well within the range of (absolute) simulated errors from 0.25 to 0.55. The value

of χ2
red

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 9.955×10-1

is close to 1 as expected. The fitted model function is:

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

1.01901+1.98941x

Note that the estimated optimum parameter values are not identical to the true pa-

rameter value of 1.0 and 2.0 used for the data generation. The errors of the simulated

data are propagated to corresponding errors of the estimated optimum parameter’s

values so the latter are also not exact but biased by errors:

CIP‘CurveFit‘ShowFitResult[{"ParameterErrors"},xyErrorData,

curveFitInfo];

Value Standard error Confidence region

Parameter a1 = 1.01901 0.0454137 {0.973574, 1.06445}
Parameter a2 = 1.98941 0.014094 {1.9753, 2.00351}

The estimated optimum value of parameter a1 is 1.02, its standard error is 0.05:

So the parameter value lies with a standard statistical probability of 68.3% in the

confidence region 1.02 ± 0.05, i.e. interval [0.97, 1.07]. Within linear statistics an

awful lot of additional statistical quantities could be deduced. Within the scope of

this book the discussion is restricted to basic quantities that play the most important

role for evaluation and analysis purposes and those quantities and diagrams that may

readily be generalized to machine learning applications for problems with more

dimensions. The empirical root mean squared error RMSE should also lie within

the range of (absolute) simulated errors from 0.25 to 0.55



66 2 Curve Fitting

CIP‘CurveFit‘ShowFitResult[{"RMSE"},xyErrorData,curveFitInfo];

Root mean squared error (RMSE) = 4.044×10-1

and is similar to σfit as expected. The mean, median, standard deviation and max-

imum values of the (absolute) relative residuals do correspond perfectly to the

simulated errors:

CIP‘CurveFit‘ShowFitResult[{"RelativeResidualsStatistics"},

xyErrorData,curveFitInfo];

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 4.01 / 3.28 / 2.27×101

Out 1 means output component 1: In two dimensional curve fitting there is only one

output component whereas machine learning problems with more dimensions may

contain several output components. Another frequently used diagram is the model-

versus-data plot: The output (function value) of the model function is plotted against

the corresponding data value:

CIP‘CurveFit‘ShowFitResult[{"ModelVsDataPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

GraphicsOptionPointSize -> pointSize];

Out 1 : Correlation coefficient = 0.973565

A statistical (Pearson) correlation coefficient was calculated in addition that con-

denses the agreement between data and output values into a single quantity (where

a value closer to one means a desired high correlation between both quantities and a



2.2 Evaluating the Goodness of Fit 67

value closer to zero an unwanted low correlation which thus motivates a closer look

at the used model function with respect to its appropriateness). In an alternative dia-

gram all model function values are sorted in ascending order and are jointly plotted

with the corresponding data values above:

CIP‘CurveFit‘ShowFitResult[{"SortedModelVsDataPlot"},xyErrorData,

curveFitInfo];

The data line above should statistically/randomly crawl around the model line below

(the model function outputs) as shown in this perfect example. If the statistical dis-

tribution of relative residuals is approximated by the frequency of relative residuals

within a number of interval bins (default: 20 bins) that cover the whole range of rel-

ative residual values a normal distribution around zero is approximated as expected

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsStatistics"},xyErrorData,

curveFitInfo];



68 2 Curve Fitting

since a normal distribution was used to generate the data. The width of the

approximated Gaussian bell curve corresponds perfectly to the 5% value of the

standard deviation used for the data generation above. All plots reveal an excel-

lent and very convincing model function fit. In the next section it is shown how the

sketched quantities and diagrams may be utilized to construct a model function for

real experimental data.

2.3 How to Guess a Model Function

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

As a practical example a model function for the temperature dependence of the vis-

cosity of water is to be constructed. The viscosity of a liquid is a dynamic property

which is the result of the specific molecular interactions describable in the reign

of quantum theory. But the dynamics of these interactions is too complex to be

calculated ab-initio on the grounds of today’s science. Moreover water is not a

simple liquid in chemical terms although it is so well-known from everyday life:

The water molecules form specific dynamic supramolecular structures due to their

ability to create hydrogen bonds - specific weak quantum-mechanical interactions

that also hold our DNA strands together. The experimental data are provided by the

CIP ExperimentalData package (see Appendix A for reference):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

They describe the temperature dependence of the viscosity η of water in the tem-

perature range from 293.15 to 323.15 K (20 to 50 degree Celsius) with a very small



2.3 How to Guess a Model Function 69

estimated experimental error of 0.0001
(

10−4
)

cP (centi-Poise is the scientific unit

of viscosity) as is illustrated by the mere data plot:

labels={"T [K]","\[Eta] [cP]","Viscosity of water"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

The dependence of the viscosity on the temperature is distinct but not dramatically

non-linear as may be shown by an initial straight-line fit:

η = f (T ) = a1 + a2T

modelFunction=a1+a2*T;

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"T [K]","\[Eta] [cP]","Data above model function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];



70 2 Curve Fitting

But the residuals (i.e. the deviations between data and linear model) are orders of

magnitude larger than the experimental errors and they reveal a distinct systematic

deviation pattern:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.991451

Thus a linear straight line is only a poor model for the data. Note that the popular

correlation coefficient is very close to 1 which indicates a high correlation between

data and machine output: This is often cited by practitioners as a convincing good-

ness of fit criterion but it is a number which has to be judged with caution (see

discussion below). An improvement may be attempted by introduction of a third

parameter to build a (non-linear) quadratic parabola

η = f (T ) = a1 + a2T + a3T 2



2.3 How to Guess a Model Function 71

as a model function:

modelFunction=a1+a2*T+a3*T^2;

parametersOfModelFunction={a1,a2,a3};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

The function plot looks better and the residuals are reduced by an order of magnitude

but are still beyond acceptability:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999888



72 2 Curve Fitting

In principal the degree of the fit polynomial could be raised with additional param-

eters to improve the fit but this strategy is generally a poor one: The high-order

polynomials tend to oscillate and may not be predictive for extrapolation or even

interpolation purposes (also compare below). Since the viscosity is decreasing with

increasing temperature a two-parameter inversely proportional approach seems to

be a plausible alternative trial:

η = f (T ) = a1 + a2
T

modelFunction=a1+a2/T;

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

Unfortunately there is no real improvement but it might be a good idea to shift the

data along the T axis with a third parameter in addition:

η = f (T ) = a1 + a2
a3−T

modelFunction=a1+a2/(a3-T);

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.0},{a2,-10.0},{a3,250.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

Note that start parameters had to be introduced to perform a successful fit: This necessity is addressed in the

next sections to ease the current discussion.



2.3 How to Guess a Model Function 73

For the first time the function plot seems to be convincing. The residuals plot shows

a dramatic improvement

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999998

with residuals in the order of the experimental error. But an unlovely systematic

deviation pattern can still be detected: This indicates that the true functional form is

still missed. As another alternative a two-parameter decaying exponential function

may be tried

η = f (T ) = a1 exp{a2T}



74 2 Curve Fitting

modelFunction=a1*Exp[a2*T];

parametersOfModelFunction={a1,a2};

startParameters={{a1,0.1},{a2,-0.001}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

again with a poor result

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.998755



2.3 How to Guess a Model Function 75

so the use of an inverse argument in the exponential may be a choice

η = f (T ) = a1 exp
{

a2
T

}

modelFunction=a1*Exp[a2/T];

parametersOfModelFunction={a1,a2};

startParameters={{a1,0.1},{a2,1000.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

that actually offers a better outcome:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999704



76 2 Curve Fitting

The introduction of the exponential function with a reciprocal argument produced

the best two-parameter fit so far (this is also a historical result obtained by An-

drade, see [Andrade 1934]: Note that the fitted model function can be linearized by

a logarithmic transformation - the only feasible solution for non-linear problems in

the precomputing era). Since shifting along the T axis with a third parameter was

successful earlier it is tried again with the new functional form:

η = f (T ) = a1 exp
{

a2
a3−T

}

modelFunction=a1*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

From visual inspection the fit looks perfect and the residuals plot

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];



2.3 How to Guess a Model Function 77

Out 1 : Correlation coefficient = 1.

reveals residuals that satisfactorily correspond to the experimental error of 0.0001

cP (this model function was historically found by Vogel after laborious linearization

work, see [Vogel 1921]). Since a systematic pattern of deviations is still obvious

two nearby improvements are finally tested which do not increase the number of

parameters. First the initial factor is divided by T to try a combination with the

inversely proportional approach tested earlier

η = f (T ) = a1
T

exp
{

a2
a3−T

}

modelFunction=a1/T*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];



78 2 Curve Fitting

Out 1 : Correlation coefficient = 1.

ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 3.321×10-5

and in addition the shift along the T axis is generalized:

η = f (T ) = a1
a3−T

exp
{

a2
a3−T

}

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 1.

CIP‘CurveFit‘ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 2.937×10-5

The latter model function produces an absolutely convincing result: Systematic de-

viation patterns are vanished and the residuals are even below the estimated experi-

mental error. This is also revealed by the χ2
red value of



2.3 How to Guess a Model Function 79

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

which is considerably below 1 (this finding will be discussed in a subsequent chapter

in combination with the parameter errors). The optimum description of the data

achieved by empirical construction may now be stated:

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

− 19.3098e
− 200.831

179.802−T

179.802−T

For a satisfactory description of the data a three-parameter model function is nec-

essary compared to the two-parameter results (this view is also supported by the

historical trend from Andrade to Vogel, see above). The final model function may

be used for interpolation and extrapolation purposes. If the correlation coefficient is

again inspected for the sketched trial and error model generation procedure its rela-

tive value corresponds to the true goodness of fit of each model (the better the model

the closer is the correlation coefficient to one). But note that its absolute value is al-

ways very near to 1 so care has to be taken if a guessed model function is only cited

with its correlation coefficient (which quite often occurs in practice) without any

further information since this does not necessarily mean a good fit. For the water-

viscosity data it is finally possible to precisely show what is meant by reasonable

extrapolation with the following plot:

pureFunction=Function[x,CIP‘CurveFit‘CalculateFunctionValue[x,

curveFitInfo]];

argumentRange={263.0,383.0};

plotRange={0.0,3.0};

plotStyle={{Thickness[0.005],Black}};

labels={"T [K]","\[Eta] [cP]","Extrapolation problems"};

extrapolationGraphics=

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

{pureFunction},argumentRange,plotRange,plotStyle,labels];

intervalGraphics=Graphics[{RGBColor[0,1,0,0.2],

Rectangle[{273.15,0.0},{373.15,3.0}]}];

Show[extrapolationGraphics,intervalGraphics]



80 2 Curve Fitting

The model function does not know that liquid water undergoes phase transitions

if the temperature is lowered or raised beyond the illustrated background region in

the diagram: Below 273.15 K water is solid matter (ice) with a practically infinite

viscosity, above 373.15 K water is gaseous (vapor) with a dramatically reduced

viscosity. To calculate a viscosity at 260 K is possible

argument=260;

CIP‘CurveFit‘CalculateFunctionValue[argument,curveFitInfo]

2.94556

but this value is not of this world. Whereas extrapolations around the data argument

range may be helpful and sufficiently precise any large-scale extrapolations should

always be regarded with suspicion. In summary it should be noted that the outlined

construction strategy is very common for an educated guess of a model function.

A combination of experience with mere trial and error is very often successful in

two-dimensional curve fitting.

2.4 Problems and Pitfalls

Linear as well as non-linear curve fitting was shown to be an optimization task

(again note that the terms linear and non-linear denote the linearity or non-linearity

of the model function with regard to its parameters a1 to aL, not the linear or non-

linear dependence of the function value y on the argument value x): The global

minimum of the χ2 (a1, ...,aL) surface is to be found. As discussed in chapter 1

minimization procedures may fail. Failure leads to wrong estimates for the parame-

ters’ values and the parameters’ errors or even a crash (i.e. an internal termination)

of the whole fitting procedure.

Linear curve fitting implies the minimization of a parabolic χ2 (a1, ...,aL) hy-

per surface that contains only one global minimum which can be calculated directly



2.4 Problems and Pitfalls 81

by analytical means (see [Hamilton 1964], [Bevington 2002] or [Brandt 2002] for

details). But this calculation involves a matrix inversion which can be a numer-

ically ill-conditioned operation, i.e. problems may occur because computers can

only calculate with a finite number of digits. These numerical problems can be tack-

led with state-of-the-art algorithms so failure usually happens in consequence of

the implementation of deficient algorithms with missing safeguards against numeri-

cal instabilities. Since CIP is based on Mathematica which provides state-of-the-art

algorithms linear curve fitting almost always works without problems. But there

should be some awareness if alternative software applications are used as black

boxes for linear curve fitting to avoid unnoticed pitfalls: There is a lot of dangerous

stuff around - may it be commercial or free.

The situation with non-linear curve fitting is fundamentally different: Since

χ2 (a1, ...,aL) may be an arbitrarily difficult and complex curved hyper surface for a

non-linear model function it may possess a plethora of minima. There is no way

to directly calculate the global minimum by analytical means in principle. The

χ2 (a1, ...,aL) hyper surface can only be searched by iterative local minimization

procedures that start at user-defined parameters’ values and explore their surround-

ings (compare chapter 1 and [FitModelFunction] in the references). In addition to

these principal issues the numerical problems sketched for linear curve fitting may

be encountered as well or even in a more serious manner. So in practice there may be

an evil mixture of problems - some that can be avoided by state-of-the-art software

and others that can only be attributed to the nature of the fitting problem and may

be tackled by specific strategies. Some practical problems together with possible

solution strategies are outlined in the following.

2.4.1 Parameters’ Start Values

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

The necessity of adequate parameters’ start values may be illustrated by an example.

Fifty xy-error data triples

numberOfData=50;

are simulated around the non-linear Gaussian-peak shaped function

y = f (x) = 1
2
x + 3exp

{

−(x−4)2
}



82 2 Curve Fitting

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)^2]];

in the argument range [1.0, 7.0]

argumentRange={1.0,7.0};

with an absolute standard deviation of 0.5

standardDeviationRange={0.5,0.5};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

and finally plotted for visual inspection:

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

If the data are fitted with the corresponding model function with three parameters

and the CIP default settings

modelFunction=a1*x+a2*Exp[-(x-a3)^2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];



2.4 Problems and Pitfalls 83

Fitted model function:

5.53945e−(−25.4806+x)2 +0.681816x

the achieved result is simply wrong. What happened? Internally the FitModelFunc-

tion method generates random parameters’ start values for the local minimization

procedure - and these start values are simply inadequate in this case (but they may

work perfectly in other fitting procedures). So start values for the parameters must

be provided by hand. Since the true parameter values are 0.5, 3.0 and 4.0 (see above)

everything works fine if parameters’ start values are specified near the solution:

startParameters={{a1,0.4},{a2,3.1},{a3,3.9}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];



84 2 Curve Fitting

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

A perfect fit is the result. It is well-known to practitioners that fitting Gaussian-

peak shaped model functions requires a good guess for the parameter value in the

exponential term: This start value may be deduced from the mere data in this case:

The maximum is around x = 4 so use a value around 4 as a start value for parameter

a3.

The worst case occurs if a3 is chosen to be very unfavorable: Then the whole

fitting procedure may crash (i.e. may internally be terminated) as shown in the fol-

lowing example:

startParameters={{a1,0.4},{a2,3.1},{a3,-3.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

Underflow occurred in computation.

A value was calculated during the minimization process that was smaller than the

smallest allowed value of the Mathematica system and therefore an underflow error

message (and subsequent error messages) were generated. Note that this behavior

can not simply be traced to a bad algorithm: The default Levenberg-Marquardt al-

gorithm used by FitModelFunction for two dimensional non-linear curve fitting is

a state-of-the-art algorithm for this purpose. But it may fail in principle: It can not

safeguard every possible calculation. It might be a good idea to simply change the

minimization algorithm: An alternative minimization algorithm will usually gener-

ate a different outcome. That is why a library of algorithms is most often a severe ad-

vantage. But not in this case: If the algorithm is changed from Levenberg-Marquardt

to ConjugateGradient

method={"ConjugateGradient"};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionMethod -> method];

The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the norm of the residual.

a similar problem as before occurs in the line search subroutine of this algorithm.

Another switch to the mere Gradient algorithm

method={"Gradient"};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionMethod -> method];



2.4 Problems and Pitfalls 85

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

13.0817e−(1.36437+x)2 +0.681692x

does not help either: The minimization procedure seems to have converged (since

there are no error messages) but it stopped somewhere over the rainbow: The result

is simply wrong. So the only practical solution is to provide good parameters’ start

values by hand, i.e. by ...

• ... knowledge: Parameters may be known to lie within defined intervals by ex-

perience or they may have a scientific meaning (i.e. they are theoretically well-

defined) so that their values are approximately known in advance. In some cases a

start value for a parameter may be deduced by visual inspection as in the example

above for parameter a3 in the exponential term.

• ... trial and error: Not a promising strategy but often the only practical pos-

sibility: It may be very exhaustive and disappointing but science is often more

devoted to mere trial and error than scientists like to tell.

In the next section the trial and error case is tackled with more strategic approaches

but these also can not solve the problem in principle.

2.4.2 How to Search for Parameters’ Start Values

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

To get good parameters’ start values a global search of the parameter space is neces-

sary: A huge task! In chapter 1 different strategies for a global search were discussed

like a grid or a random search. CIP implements a purely random search strategy as an

option for the GetStartParameters method of the CIP CurveFit package with search

type "Random":

searchType="Random";

For the curve fitting task outlined of the last sub section



86 2 Curve Fitting

numberOfData=50;

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)^2]];

argumentRange={1.0,7.0};

standardDeviationRange={0.5,0.5};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

modelFunction=a1*x+a2*Exp[-(x-a3)^2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

a parameters’ search space is defined by the individual intervals of each parameter

parameterIntervals={{0.0,10.0},{0.0,10.0},{0.0,10.0}};

with a 100 random trial points:

numberOfTrialPoints=100;

If the GetStartParameters method is called with these settings

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,CurveFitOptionSearchType -> searchType,

CurveFitOptionNumberOfTrialPoints -> numberOfTrialPoints]

{{a1,0.670859},{a2,7.48994},{a3,8.29601}}

the resulting parameters’ start values correspond to the smallest value of χ2 (a1,a2,a3)
that was detected by random. These start values are now used as an input for the

model function fit by setting the CurveFitOptionStartParameters option with the

result:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];



2.4 Problems and Pitfalls 87

Fitted model function:

97.9599e−(−17.502+x)2 +0.681816x

The result is still not correct: 100 trial points do not lead to sufficiently precise

parameters’ start values since the random grid is too coarsely meshed. Therefore

their number is increased tenfold to 1000 and the search is repeated:

numberOfTrialPoints=1000;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,CurveFitOptionSearchType -> searchType,

CurveFitOptionNumberOfTrialPoints -> numberOfTrialPoints]

{{a1,0.679172},{a2,1.7166},{a3,4.48335}}

With the new start values

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];



88 2 Curve Fitting

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

a successful fit is finally obtained: The determined start values were precise enough

for the local minimization algorithm to converge to the global minimum of

χ2 (a1,a2,a3). Although this may seem promising it again should be noticed that

a random search in general is a rather limited option: Since the parameter space be-

comes really large with an increasing number of parameters a random search within

tolerable periods of time will be likely to fail. The glimmer of hope of chapter 1 in

this desperate situation were evolutionary algorithms. Method GetStartParameters

uses the differential-evolution algorithm via Mathematica’s NMinimize command

as its default global search strategy (see [NMinimize/NMaximize] in the references)

which also proofs to be successful for the current task:

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.460666},{a2,3.67567},{a3,4.12436}}

A fit with the obtained start parameters

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];



2.4 Problems and Pitfalls 89

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

shows that the evolutionary search was able to determine start values in the proxim-

ity of the global minimum of χ2 (a1,a2,a3) which were close enough for a success-

ful local refinement.

2.4.3 More Difficult Curve Fitting Problems

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Extracting the correct model function from experimental data may be arbitrarily dif-

ficult up to impossible due to the nature of the curve fitting problem. To demonstrate

an example fifty xy-error data triples

numberOfData=50;

with a very high precision (absolute standard deviation of 0.001)

standardDeviationRange={0.001,0.001};

are generated in an argument range [1, 8]

argumentRange={1.0,8.0};



90 2 Curve Fitting

around a model function with two Gaussian peaks in close proximity (around x = 4

and x = 5.5)

y = f (x) = 1
2
x + 3exp

{

−(x−4)2
}

+ 2exp
{

−(x−5.5)2
}

pureOriginalFunction=

Function[x, 0.5*x+3.0*Exp[-(x-4.0)^2]+2.0*Exp[-(x-5.5)^2]];

where the smaller one around x = 5.5 appears to be the shoulder of the other:

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

With the previous discussions in mind it should be obvious that a successful curve

fitting procedure needs very good start values for the parameters in this case. Again

at least start values for the parameters in the exponentials could be obtained by

mere visual inspection of the generated data (peaks around x = 4 and x = 5.5) but a

more general strategy is explored that uses the advised start-parameter search on the

basis of an evolutionary algorithm with the GetStartParameters method of the CIP

CurveFit package. With the 5-parameter model function

modelFunction=a1*x+a2*Exp[-(x-a3)^2]+a4*Exp[-(x-a5)^2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4,a5};

and a well defined parameters’ search space



2.4 Problems and Pitfalls 91

parameterIntervals=

{{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0}};

the proposed parameters’ start values for the fit procedure are:

maximumNumberOfIterations=10;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.443407},{a2,4.81041},{a3,4.83269},{a4,0.0454534},{a5,4.45465}}

A fit with these parameters’ start values

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

Fitted model function:

−0.173247e−(−42.6798+x)2 +3.33414e−(−4.38782+x)2 +0.584755x

leads to an unsatisfying result. Obviously the parameters’ start values search was

not successful - remember that there is no guarantee for an evolutionary strategy

to succeed. This failure might be attributed to the applied setting of the internal

number of iterations (i.e. the number of generations for evolution) to only 10. In

this particular case the parameter space should be explored more thoroughly with

an increased number of iterations (note that this number must always be restricted

to balance between accuracy and speed):



92 2 Curve Fitting

maximumNumberOfIterations=20;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.649778},{a2,3.08785},{a3,4.41973},{a4,0.141767},{a5,1.31172}}

With the improved parameters’ start values the curve fitting procedure

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

Fitted model function:

2.00039e−(−5.49993+x)2 +2.99947e−(−4.00006+x)2 +0.5x

is successful: A perfect fit is obtained. The sketched curve fitting problem will cer-

tainly become more difficult if the two Gaussian peaks are moved together, e.g.

y = f (x) = 1
2
x + 3exp

{

−(x−4)2
}

+ 2exp
{

−(x−4.5)2
}

pureOriginalFunction=

Function[x, 0.5*x+3.0*Exp[-(x-4.0)^2]+2.0*Exp[-(x-4.5)^2]];

where the two peaks now are closely neighbored around x = 4 and x = 4.5. After

xy-error data generation as before a visual inspection shows



2.4 Problems and Pitfalls 93

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above Original Function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

that the shoulder becomes invisible and only one merged peak appears. Note that

without an a priori knowledge about the two existing peaks (the data are artificial)

only one peak would be anticipated. If again the parameters’ start value search is

used with the increased number of iterations

maximumNumberOfIterations=20;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.554496},{a2,4.20733},{a3,4.10765},{a4,3.44001},{a5,9.99968}}

the results are dubious, i.e. values are too close to the search boundaries. A fit with

these start values give evidence for this assessment:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction",

"AbsoluteResidualsPlot"},xyErrorData,curveFitInfo];



94 2 Curve Fitting

Fitted model function:

158.045e−(−58.0059+x)2 +4.8003e−(−4.19422+x)2 +0.508776x

The second Gaussian peak is sent to infinity. This leads to a systematic deviation

pattern of the residuals which is a clear indication that something is missed. A fur-

ther refinement of the parameters’ space exploration becomes necessary with an

additional increase of the number of iterations:

maximumNumberOfIterations=100;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.505924},{a2,4.76675},{a3,4.18593},{a4,0.125418},{a5,5.46316}}

The following fit



2.4 Problems and Pitfalls 95

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction",

"AbsoluteResidualsPlot"},xyErrorData,curveFitInfo];

Fitted model function:

2.00853e−(−4.49914+x)2 +2.99136e−(−3.99927+x)2 +0.500001x

now leads to a satisfactory result. This successful outcome was invoked by a con-

tinuously intensified brute-force strategy that led to an enhanced thoroughness of

parameters’ space exploration. In summary it is a remarkable fact that data analysis

is able to reveal invisible peaks that would not be assumed by mere visual inspec-

tion but only if they are known to be there. On the other hand subtle interpretation

problems will emerge if things become slightly more difficult in the case of less pre-

cise data. For an illustration low-precision data are generated with a high absolute

standard deviation of 0.6 around the last example function:



96 2 Curve Fitting

standardDeviationRange={0.6,0.6};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

The thorough parameters’ start value search with again a large number of evolution-

ary steps

maximumNumberOfIterations=100;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.512016},{a2,4.55652},{a3,4.28594},{a4,0.302777},{a5,3.01461}}

and a following fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"SDFit","ModelFunction"},xyErrorData,curveFitInfo];



2.4 Problems and Pitfalls 97

Standard deviation of fit = 5.478×10-1

Fitted model function:

4.25758e−(−4.37855+x)2 +0.725734e−(−3.3966+x)2 +0.49908x

lead to a result of good quality with effectively two different peaks. But the pre-

cision of peak detection is no longer satisfying. Moreover this result is no longer

convincing if alternatives are taken into consideration. This can be shown with an

alternative fit of the corresponding model function with one Gaussian peak which

would be assumed by mere visual inspection:

modelFunction=a1*x+a2*Exp[-(x-a3)^2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

With adequate start values



98 2 Curve Fitting

parameterIntervals={{0.0,10.0},{0.0,10.0},{0.0,10.0}};

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.523746},{a2,5.85935},{a3,4.12508}}

the alternative one-peak fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"SDFit","ModelFunction"},xyErrorData,curveFitInfo];

Standard deviation of fit = 5.527×10-1

Fitted model function:

4.65303e−(−4.27207+x)2 +0.511526x



2.4 Problems and Pitfalls 99

leads to a result of comparable quality (the standard deviations of the fits are nearly

identical and the residuals patterns are equally good): The latter model function

should be preferred according to Occam’s razor since it contains less parameters

(unless the existence of two peaks is certainly known in advance). Depending on

the precision of the data and the nature of the fitting problem severe ambiguities can

appear in data analysis. In the last case peaks may be found or may be argued for

that can not be supported by the mere data in the light of alternative models. So all

data analysis procedures are prone to be misused for the sake of a scientist’s mere

opinion and not the truth (where the scientist is always assumed to pursue the most

noble intentions). As a rule of thumb an adequate distrust is indicated for statements

like it is clearly shown by thorough data analysis that ..Curve fitting should always

be data driven and it should not be tried to get more out of them than possible. The

old and latent tendency to overstretch data analysis once led to the famous sentence

by John von Neumann: With four parameters I can fit an elephant, and with five I

can make him wiggle his trunk ([Dyson 2004]).

2.4.4 Inappropriate Model Functions

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Model functions may be unfavorable up to simply wrong. An example of the latter

is demonstrated as follows: Fifty fairly precise data

numberOfData=50;

with an absolute standard deviation of 0.01

standardDeviationRange={0.01,0.01};

are generated in the argument range [1, 5]

argumentRange={1.0,5.0};

around function

y = f (x) = 2exp{−1.5x}



100 2 Curve Fitting

pureOriginalFunction=Function[x,2.0*Exp[-0.75*x]];

to give

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

For the fit we use an empirical model function constructed without to much medita-

tion:

y = f (x) = a1 exp{−a2x + a3}

modelFunction=a1*Exp[-a2*x+a3];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

The result

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ModelFunction"},xyErrorData,curveFitInfo];



2.4 Problems and Pitfalls 101

Fitted model function:

1.91781e0.0463659−0.752542x

appears to be a perfect fit. So what is wrong with the model function? The answer

is that it contains redundant parameters since parameters a1 and a3 essentially mean

the same: They are both mere prefactors to the exponential term

y = f (x) = a1 exp{−a2x + a3} = a1 exp{a3}exp{−a2x}

and therefore they are arbitrary. Only their product is the true prefactor used to gen-

erate the data. All infinite other combinations of values resulting to the same prefac-

tor would be valid as well. Although redundant parameters can always be avoided by

proper inspection of the model function they do occur easily if non-mathematicians

(i.e. the overwhelming majority of scientists) construct difficult empirical models.

Usually the fitting algorithms simply crash if redundant parameters are defined in a

model function. It is only due to Mathematica’s algorithmic safeguards that lead to

an arbitrary but correct result. A more subtle problem occurs if the model function

is correct but simply inappropriate to the data since it tries to extract information



102 2 Curve Fitting

which is simply not there. This may be shown with fifty fairly precise data with an

absolute standard deviation of 0.1

standardDeviationRange={0.1,0.1};

in the argument range [1, 7]

argumentRange={1.0,7.0};

around one Gaussian peak:

y = f (x) = 1
2
x + 3exp

{

−(x−4)2
}

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)^2]];

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

A model function with two Gaussian peaks is prepared

modelFunction=a1*x+a2*Exp[-(x-a3)^2]+a4*Exp[-(x-a5)^2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4,a5};

which inevitably tries to extract two Gaussian peaks from the data which just contain

one peak. After an successful search for parameters’ start values



2.4 Problems and Pitfalls 103

parameterIntervals=

{{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0}};

startParameters=GetStartParameters[xyErrorData,modelFunction,

argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.533351},{a2,0.764096},{a3,4.36781},{a4,2.40032},{a5,3.9497}}

the following fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ModelFunction"},xyErrorData,curveFitInfo];

Fitted model function:

2.50893e−(−4.01878+x)2 +0.489941e−(−4.01878+x)2 +0.499246x



104 2 Curve Fitting

shows what happened: The same peak was found twice with arbitrary prefactors that

only have meaning as a sum. Again note: If alternative software to CIP/Mathematica

is used the fitting algorithms usually crash if a model function is inappropriate as

outlined in the latter example.

2.5 Parameters’ Errors

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘CurveFit‘

The second most important information that may be extracted from a successful

curve fitting procedure in accordance with the optimum estimates of the parameters’

values are the estimates of the parameters’ errors.

2.5.1 Correction of Parameters’ Errors

Since the xy-error data are biased by errors these errors propagate to the er-

rors of the estimated parameters’ values: The parameters’ errors therefore are de-

duced from the data’s errors. This is certainly the best procedure if the data’s er-

rors are true experimentally obtained errors, e.g. each y value is measured mul-

tiple times and then reported as the statistical mean yi with the statistical stan-

dard deviation of the mean σi for an argument value xi. But often the reported

errors σi can only be regarded as rough estimates of the true errors. Moreover

these estimates are usually overestimated since scientists tend to be cautious:

A bigger error is the better error if the error is not known precisely. Then of

course the resulting parameters’ errors of a model function fit are also overes-

timated. As an example the water-viscosity data are inspected again (compare

above):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2



2.5 Parameters’ Errors 105

Value Standard error Confidence region

Parameter a1 = -19.3098 0.108964 {-19.4208, -19.1989}
Parameter a2 = -200.831 1.86845 {-202.734, -198.929}
Parameter a3 = 179.802 0.445257 {179.348, 180.255}

The χ2
red value of 0.086 indicates that the fitted residuals are fair below the corre-

sponding errors σi of the yi values since χ2
red should be close to 1 for a good fit with

good data’s errors. Consequently the data’s errors should be decreased for a result-

ing χ2
red value near 1. A correction for the data’s errors may be calculated when

they are assumed to be only weights of the yi values and not their true statistical

errors (see above). The FitModelFunction method can be told to estimate param-

eters’ errors with the corrected and not the original errors by changing the option

CurveFitOptionVarianceEstimator from its default value to "ReducedChiSquare":

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

Value Standard error Confidence region

Parameter a1 = -19.3098 0.0320015 {-19.3424, -19.2772}
Parameter a2 = -200.831 0.548743 {-201.39, -200.272}
Parameter a3 = 179.802 0.130767 {179.669, 179.935}

The parameters’ standard errors and their confidence regions are reduced by more

than a factor of 3 in comparison to the result before. The outlined error correction is

often used as a standard procedure for curve fitting. But in practice it simply depends

on the problem and the scientist’s mood to use the cautious (higher) error estimates

for all subsequent derivations as well.

2.5.2 Confidence Levels of Parameters’ Errors

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘CurveFit‘

Another important option that may be modified for the estimation of parameters’ er-

rors is their level of confidence which affects the width of their confidence regions.

With the default setting of 68.3% the parameters’ confidence regions correspond to

the standard errors, i.e. a confidence region spans the interval [ai −σai
, ai + σai

]



106 2 Curve Fitting

where σai
is the standard error of parameter ai. In many cases a higher confidence

level of e.g. 95% or 99% is required. This may be specified with option CurveFi-

tOptionConfidenceLevel of method FitModelFunction. Here a confidence level of

99.9%

confidenceLevelOfParameterErrors=0.999;

is used for the water-viscosity fit for with the corrected errors (see previous section):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

Value Standard error Confidence region

Parameter a1 = -19.3098 0.0320015 {-19.4274, -19.1922}
Parameter a2 = -200.831 0.548743 {-202.847, -198.815}
Parameter a3 = 179.802 0.130767 {179.321, 180.282}

Note that the standard errors are not affected since they are related to the standard

confidence level of 68.3% but the confidence regions increased considerably: Now

it can be assured with a probability of 99.9% that the parameters’ values are within

the denoted regions.

2.5.3 Estimating the Necessary Number of Data

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

An practically important issue related to the parameters’ errors is the following:

A theoretical model function with well-defined parameters is known. A specific

measurement process with its intrinsic measurement errors is available. How many

experimental data in a defined argument range must be measured to get a reasonable

statement about a parameters’ value with a specific level of confidence? To get an

impression the Gaussian-peak shaped model function is taken again as an example.



2.5 Parameters’ Errors 107

If a measurement process imposes an absolute error of 0.5 on each measurement the

following parameters’ errors and confidence regions are obtained for fifty (xi,yi,σi)
data triples in the argument range [1.0, 7.0] with a confidence level of 68.3%:

numberOfData=50;

standardDeviationRange={0.5,0.5};

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)^2]];

argumentRange={1.0,7.0};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

modelFunction=a1*x+a2*Exp[-(x-a3)^2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,2.9},{a3,4.1}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

Reduced chi-square of fit = 8.17×10-1

Value Standard error Confidence region

Parameter a1 = 0.495279 0.0205374 {0.474521, 0.516038}
Parameter a2 = 3.01029 0.196361 {2.81182, 3.20877}
Parameter a3 = 4.09318 0.0528048 {4.0398, 4.14655}



108 2 Curve Fitting

If the number of data is increased the parameters’ values will become more precise

and the parameters’ errors and their related confidence regions are reduced:

numberOfData=1500;

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

pointSize=0.01;

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels,GraphicsOptionPointSize -> pointSize]

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

2.97527e−(−3.99917+x)2 +0.502659x

Reduced chi-square of fit = 9.819×10-1

Value Standard error Confidence region

Parameter a1 = 0.502659 0.00374083 {0.498917, 0.506401}
Parameter a2 = 2.97527 0.0352989 {2.93996, 3.01058}
Parameter a3 = 3.99917 0.00966191 {3.9895, 4.00883}

As a second alternative another measurement process may be available with a de-

creased intrinsic error that it imposes on the data (here the absolute error is reduced

by a factor of 10 from 0.5 to 0.05):

numberOfData=50;

standardDeviationRange={0.05,0.05};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];



2.5 Parameters’ Errors 109

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

2.99923e−(−4.00939+x)2 +0.499635x

Reduced chi-square of fit = 8.163×10-1

Value Standard error Confidence region

Parameter a1 = 0.499635 0.0020301 {0.497583, 0.501687}
Parameter a2 = 2.99923 0.01941 {2.97961, 3.01885}
Parameter a3 = 4.00939 0.00529798 {4.00403, 4.01474}

Improved estimates of the parameters’ values as well as decreased parameters’ er-

rors and smaller confidence regions are the result. Unfortunately the latter possi-

bility of an alternative measurement process with increased precision is only rarely

encountered in practice. So the only method of choice is usually to increase the

number of data which means more time and more money. To estimate this crit-

ical quantity in advance the simulation of the necessary number of experimental

data is always helpful and indicated. The CIP CurveFit package provides the Get-

NumberOfData method to fulfill this task: This method tries to detect the necessary

number of data necessary to achieve a desired width of the confidence region of

a specified parameter for a specified confidence level by an iterative process. If a

width of the confidence region of 0.01 for parameter a3 is desired



110 2 Curve Fitting

desiredWidthOfConfidenceRegion=0.01;

indexOfParameter=3;

the necessary number of data for the latter example would be

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters]

57

For a halved confidence region of 0.005

desiredWidthOfConfidenceRegion=0.005;

the number of data must be increased to about 221:

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters]

221

Note that there is a strong non-linear relation between the necessary number of data

and the width of a confidence region: To half the width of a confidence region in

value there is a considerable increase of the number of data necessary in general.

2.5.4 Large Parameters’ Errors and Educated Cheating

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘CurveFit‘

For specific model functions very precise experimental data are necessary to esti-

mate its parameters’ values with a sufficient precision. A good example are power

laws that play an important role in different areas of science like critical phenomena

or the analysis of biological (scale-free) networks. A power law of the form

y = f (x) = a1|x−a2|
−a3



2.5 Parameters’ Errors 111

that diverges at x = a2 with a so called critical exponent a3 will be discussed in the

following. Power law fits are often used to prove or reject a specific theoretical pre-

diction whereupon the critical exponent a3 enjoys the highest attention: Therefore

this parameter is to be estimated with an utmost precision. For a power law fit a

search for parameters’ start values is not necessary in most cases since all param-

eters are approximately known in advance from theory or visual inspection of the

data: The critical exponent a3 comes from theory, the location of the divergence a2

may be directly deduced from the data so only the prefactor a1 is in question. As an

example fifty high precision normally distributed data

numberOfData=50;

will be generated around the power law

y = f (x) = 2
∣

∣x−10|−0.63

pureOriginalFunction=Function[x,2.0*Abs[x-10.0]^(-0.63)];

in the argument range [8.0, 9.9]

argumentRange={8.0,9.9};

with a relative standard deviation of 0.1%:

errorType="Relative";

standardDeviationRange={0.001,0.001};

The arguments will be spaced by a logarithmic scale to push more data into the

divergence region (as is usually performed by a proper design of experiment):

argumentDistance="LogLargeToSmall";

The xy-error data are generated with method GetXyErrorData of the CIP Calcu-

latedData package:

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

The model function to fit is set in accordance



112 2 Curve Fitting

modelFunction=a1*Abs[x-a2]^(-a3);

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

The necessary start parameters are chosen to be near the true parameters:

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

A high confidence level of 99.9% is advised for the confidence region of the param-

eters:

confidenceLevelOfParameterErrors=0.999;

For these simulated data a perfect fit results:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];



2.5 Parameters’ Errors 113

Standard deviation of fit = 1.78×10-3

Reduced chi-square of fit = 8.514×10-1

Value Standard error Confidence region

Parameter a1 = 2.0006 0.000557139 {1.99864, 2.00255}
Parameter a2 = 10.0004 0.000295439 {9.99932, 10.0014}
Parameter a3 = 0.630468 0.000458764 {0.628857, 0.632078}

The critical exponent a3 is found to be in a small confined interval [0.629, 0.632]

around 0.63 with a high probability of 99.9%. If a theoretical model would predict

the value of 0.63 this fit would rightly be regarded as a strong experimental evidence

(by cautious scientists) up to a convincing experimental proof (by more enthusiastic

ones). Unfortunately experimental data for power law fits are often far less precise.

This has a dramatic influence on the confidence region of the critical exponent a3 as

shown in the next example. The relative error of the data is increased by a factor of

100 to 10%:

standardDeviationRange={0.1,0.1};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

The corresponding fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];



114 2 Curve Fitting

Standard deviation of fit = 1.779×10-1

Reduced chi-square of fit = 8.512×10-1

Value Standard error Confidence region

Parameter a1 = 2.0764 0.0830715 {1.78482, 2.36797}
Parameter a2 = 10.0444 0.043694 {9.89101, 10.1977}
Parameter a3 = 0.68482 0.0580304 {0.481139, 0.888501}

again looks perfect but the confidence region of the critical exponent a3 is found to

be nearly as large (0.89−0.48 = 0.41) as the absolute value of the parameter itself

(0.68): So its evidence for support or rejection of a specific theoretical prediction

almost vanished. The bitter truth is that simply nothing can be deduced from the

data - a result that most principal investigators hate since it means wasted time

and money. And that’s where the educated cheating starts. Let’s say the theoretical

prediction of the critical exponent a3 is 0.73 (remember that the data were generated

with a true value of 0.63): Simply fix parameter a3 to 0.73

modelFunction=a1*Abs[x-a2]^(-0.73);

parametersOfModelFunction={a1,a2};

startParameters={{a1,1.9},{a2,9.99}};



2.5 Parameters’ Errors 115

and fit parameters a1 and a2 only:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

Standard deviation of fit = 1.772×10-1

Reduced chi-square of fit = 8.445×10-1

Value Standard error Confidence region

Parameter a1 = 2.13617 0.0487269 {1.96538, 2.30696}
Parameter a2 = 10.0775 0.017931 {10.0146, 10.1403}



116 2 Curve Fitting

A very good looking fit is the result with a very convincing residuals plot which

may easily be published to be in perfect agreement with the theoretical prediction

of 0.73. But with about the same evidence it could be argued for a critical exponent

a3 of value 0.53:

modelFunction=a1*Abs[x-a2]^(-0.53);

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

Standard deviation of fit = 2.008×10-1

Reduced chi-square of fit = 1.083



2.5 Parameters’ Errors 117

Value Standard error Confidence region

Parameter a1 = 1.95121 0.0335399 {1.83365, 2.06877}
Parameter a2 = 9.95776 0.00900621 {9.92619, 9.98933}

The fit again is convincing and in perfect agreement with ... The situation becomes

only somewhat better if the number of data is increased. For a fivefold data boost

numberOfData=250;

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

and a fit with the complete 3-parameter model function

modelFunction=a1*Abs[x-a2]^(-a3);

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

pointSize=0.01;

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];



118 2 Curve Fitting

Standard deviation of fit = 1.92×10-1

Reduced chi-square of fit = 9.885×10-1

Value Standard error Confidence region

Parameter a1 = 1.96714 0.0222953 {1.89289, 2.0414}
Parameter a2 = 9.97971 0.0120999 {9.93941, 10.02}
Parameter a3 = 0.602932 0.0193802 {0.538389, 0.667475}

numberOfIntervals=10;

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsStatistics"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

the estimated value of the critical exponent a3 improves and its confidence region

inevitably shrinks. The distribution of the residuals looks like a distorted bell curve.

But the evidence for both false theoretical predictions with values 0.73 and 0.53

would still be convincing: Theoretical prediction 0.73



2.5 Parameters’ Errors 119

modelFunction=a1*Abs[x-a2]^(-0.73);

parametersOfModelFunction={a1,a2};

startParameters={{a1,1.9},{a2,9.99}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

Standard deviation of fit = 2.028×10-1

Reduced chi-square of fit = 1.103

Value Standard error Confidence region

Parameter a1 = 2.10871 0.0216214 {2.03671, 2.18072}
Parameter a2 = 10.067 0.00791856 {10.0406, 10.0934}



120 2 Curve Fitting

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsStatistics"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

looks approximately as good as the 3-parameter-fit and theoretical prediction 0.53:

modelFunction=a1*Abs[x-a2]^(-0.53);

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];



2.5 Parameters’ Errors 121

Standard deviation of fit = 1.991×10-1

Reduced chi-square of fit = 1.063

Value Standard error Confidence region

Parameter a1 = 1.92718 0.0147138 {1.87818, 1.97618}
Parameter a2 = 9.94512 0.00372884 {9.93271, 9.95754}

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsStatistics"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

So a lot more experimental data would be needed to really make clear decisions.

With the aid of the GetNumberOfData method of the CIP CurveFit package the

necessary number of data for a desired width of a parameters’ confidence region

may be estimated (see the previous section). For a desired confidence region width

of 0.04 for parameter a3



122 2 Curve Fitting

desiredWidthOfConfidenceRegion=0.04;

indexOfParameter=3;

the number of data must be increased to

modelFunction=a1*Abs[x-a2]^(-a3);

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance]

3344

The corresponding fit with this estimated number of data

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];



2.5 Parameters’ Errors 123

Standard deviation of fit = 1.912×10-1

Reduced chi-square of fit = 9.798×10-1

Value Standard error Confidence region

Parameter a1 = 1.99724 0.00747252 {1.97263, 2.02185}
Parameter a2 = 9.99805 0.00417287 {9.98431, 10.0118}
Parameter a3 = 0.628188 0.00604781 {0.60827, 0.648106}

numberOfIntervals=30;

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsStatistics"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

finally allows estimates within the required precision. For many experimental se-

tups however the necessary increase of data would be completely out of reach due

to restrictions in time and money. Therefore the sketched kind of educated cheat-

ing is unfortunately more widespread than it ought to be (and even worse is often



124 2 Curve Fitting

combined with an elimination of outliers after the fit: A "very successful strategy"

to tune the data). In most cases experimentalists do not even have a bad conscience

since the final plots look good. Therefore a clear trend can be detected for experi-

mental data analysis to follow theoretical predictions (this can be superbly shown in

the field of critical phenomena where the theoretical predictions changed over the

decades and the experimental data analysis with them in close accordance). But it

should not be forgotten that cheating simply has nothing to do with science - and in

the end someone will detect it regardless how educated it was hidden.

2.5.5 Experimental Errors and Data Transformation

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘CurveFit‘

The errors σi of the yi values do not only influence the errors of the parameters of

the fitted model function but they also influence the parameters’ values themselves.

This is often ignored but obvious if it is remembered that curve fitting means mini-

mization of χ2 (a1, ...,aL):

χ2 (a1, ...,aL) = ∑K
i=1

(

yi− f (xi,a1,...,aL)
σi

)

2 −→ minimize!

Since the errors σi are part of the sum of squares they contribute to the determination

of the minimum location of χ2 (a1, ...,aL). Only in the special case that all errors σi

are equal

σi = σ

they are a mere factor σ that can be factored out of the sum and therefore does not

influence the minimum. The influence of the errors σi can be illustrated with the

following (artificial) example of twenty simulated data

numberOfData=20;

around the function

y = f (x) = 2e−
1
x

pureOriginalFunction=Function[x,2.0*Exp[-1.0/x]];



2.5 Parameters’ Errors 125

in the argument range [1.0, 8.0]

argumentRange={1.0,8.0};

with a relative standard deviation of 5%

standardDeviationRange={0.05,0.05};

errorType="Relative";

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType];

that are fitted with corrected estimates of parameters’ errors for comparison pur-

poses:

modelFunction=a1*Exp[-a2/x];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","SDFit",

"ReducedChiSquare","ParameterErrors"},xyErrorData,curveFitInfo];

Standard deviation of fit = 7.272×10-2

Reduced chi-square of fit = 1.122

Value Standard error Confidence region

Parameter a1 = 1.93972 0.0396424 {1.89894, 1.98049}
Parameter a2 = 0.92742 0.051963 {0.873972, 0.980868}

If the errors σi are asymmetrically enlarged by different factors from 10.0 (tenfold

increase) to 1.0 (no change)



126 2 Curve Fitting

minFactor=1.0;

maxFactor=10.0;

errorTransformationFactors=Table[i,{i,maxFactor,minFactor,

-(maxFactor-minFactor)/(Length[xyErrorData]-1)}];

newXyErrorData=Table[{xyErrorData[[i,1]],xyErrorData[[i,2]],

xyErrorData[[i,3]]*errorTransformationFactors[[i]]},

{i,Length[xyErrorData]}];

the estimated optimum values of the parameters become clearly different:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[newXyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","SDFit",

"ReducedChiSquare","ParameterErrors"},xyErrorData,curveFitInfo];

Standard deviation of fit = 8.842×10-2

Reduced chi-square of fit = 1.659

Value Standard error Confidence region

Parameter a1 = 1.83037 0.0368555 {1.79246, 1.86828}
Parameter a2 = 0.787937 0.107727 {0.67713, 0.898743}

The parameter estimates changed by around 5-10% of their absolute values although

the xi and yi values were not changed at all. Also the values of corrected parameters’

errors increased due to the increase of the data’s errors.

As far as the popular data transformations are considered the outlined context

may play a more or less pronounced role. It is still common in lab data analysis

to linearize model functions to a straight line if possible (despite the existence of

non-linear curve fitting software). For the model function above linearization may

be easily performed by simple application of the natural logarithm

y = f (x) = a1e−
a2
x



2.6 Empirical Enhancement of Theoretical Model Functions 127

ln(y) = ln
(

a1e−
a2
x

)

= lna1 −a2
1
x

which results in a straight line

y = f (x) = a1 + a2x

with the necessary non-linear data transformations:

xi →
1
xi

; yi → ln(yi)

If data are transformed it is often forgotten that the errors σi must be transformed

too according to standard error propagation:

σi →

√

(

∂ ln(yi)
∂yi

)

2σ2
i =

(

∂ ln(yi)
∂yi

)

σi = σi
yi

Note that the neglect of this error transformation is perhaps the second most frequent

mistake in lab data analysis. The most frequent mistake is the lab journal’s report

of a mean in combination with the standard deviation of a single measurement and

not the (correct) standard deviation of the mean. In summary each data triple of the

xy-error data must be transformed as follows:

(xi,yi,σi) →
(

1
xi
, ln (yi) ,

σi
yi

)

Standard error propagation assumes vanishingly small errors since it belongs to lin-

ear statistics (with Taylor series expansions up to the first derivative only). Therefore

the transformed errors and the original errors do only correspond in an approxi-

mate manner. This may have more or less influence on the estimated values of the

parameters after linearization depending on the specific fit problem.

2.6 Empirical Enhancement of Theoretical Model Functions

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Suppose there is a well-defined theoretical model function but the x and y quanti-

ties it associates can not be measured directly. Preprocessing steps are necessary to

construct the data in question which may introduce systematic errors. An example



128 2 Curve Fitting

is outlined in Appendix A that shows the extraction of kinetics data for a chem-

ical reaction (in this case the hydrolysis of acetanhydride) from time dependent

infrared (IR) spectra: There are two different methods advised to extract the data:

One straight forward method denoted 1 and one more elaborate method denoted 2.

The results are provided by the CIP ExperimentalData package. The data produced

by method 1 are as follows:

xyData=

CIP‘ExperimentalData‘GetAcetanhydrideKineticsData1[

];

errorValue=1.0;

xyErrorData=CIP‘DataTransformation‘AddErrorToXYData[xyData,

errorValue];

labels={"Time [min]","Absorption",

"Kinetics of hydrolysis of acetanhydride 1"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

Note that a standard weight of 1.0 was added as an error to the xy data to obtain

xy-error data since the preprocessing method did not yield any error estimate. All

estimates for parameters’ errors thus need a correction deduced from χ2
red (see pre-

vious sections).

The hydrolysis of acetanhydride in water is a reaction of (pseudo) first-order

which is theoretically described by a simple exponential decay:

y = f (x) = a1e−a2x

But a direct fit of this model function

modelFunction=a1*Exp[-a2*x];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,



2.6 Empirical Enhancement of Theoretical Model Functions 129

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 1 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

fails completely. Due to preprocessing method 1 the data do not direct to a zero

absorption with increasing time (acetanhydride vanishes with reaction progress) but

to a constant value above zero (a so called background caused by the extraction

process, see Appendix A). Therefore the theoretical model function must be en-

hanced by (at least) an empirical constant background parameter a3 that takes this

deficiency into account:

y = f (x) = a1e−a2x + a3

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

The enhanced fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];



130 2 Curve Fitting

Value Standard error Confidence region

Parameter a1 = 0.378912 0.00979157 {0.368856, 0.388968}
Parameter a2 = 0.112982 0.00687499 {0.105921, 0.120043}
Parameter a3 = 0.168445 0.0051983 {0.163106, 0.173783}

leads to an improved description of the data but reveals a strong systematic deviation

pattern of the residuals. In contrast to method 1 the more elaborate preprocessing

method 2 tries to estimate the background contribution in advance (see details in

Appendix A):

xyData=

CIP‘ExperimentalData‘GetAcetanhydrideKineticsData2[

];

errorValue=1.0;

xyErrorData=CIP‘DataTransformation‘AddErrorToXYData[xyData,

errorValue];

labels={"Time [min]","Absorption",

"Kinetics of Hydrolysis of Acetanhydride 2"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]



2.6 Empirical Enhancement of Theoretical Model Functions 131

Now the absorption values seem to direct to zero. But a direct fit of the pure theo-

retical model

modelFunction=a1*Exp[-a2*x];

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 2 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];



132 2 Curve Fitting

Value Standard error Confidence region

Parameter a1 = 0.377157 0.0104281 {0.366413, 0.387901}
Parameter a2 = 0.121256 0.00534371 {0.11575, 0.126761}

still suggests the use of an additional constant background parameter a3

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];



2.6 Empirical Enhancement of Theoretical Model Functions 133

Value Standard error Confidence region

Parameter a1 = 0.38797 0.00863007 {0.379061, 0.396878}
Parameter a2 = 0.106077 0.00623914 {0.0996363, 0.112517}
Parameter a3 = -0.0174831 0.00606562 {-0.0237445, -0.0112218}

which results in a estimated value for a3 that is at least close to zero (so the back-

ground correction of the more elaborate preprocessing method was not in vain). The

visual inspection of the data also suggests to treat the first two points as outliers: If

they are removed from the xy-error data

xyErrorData=Drop[xyErrorData,2];

labels={"Time [min]","Absorption",

"Kinetics of Hydrolysis of Acetanhydride 2"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

the remaining data do not only look better but lead to an improved fit

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};



134 2 Curve Fitting

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 2 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

Value Standard error Confidence region

Parameter a1 = 0.453659 0.00879298 {0.444541, 0.462778}
Parameter a2 = 0.134134 0.00371886 {0.130277, 0.13799}
Parameter a3 = -0.00662982 0.00180625 {-0.00850296, -0.00475667}

with significantly smaller residuals and a further decreased background parameter

a3. There is still a clear systematic deviation pattern of the residuals but this is

probably the best we can get. Always keep in mind that the introduction of new

empirical parameters and the removal of apparent outliers are dangerous procedures

that are an ideal basis for educated cheating: In the end you can obtain (nearly) any



2.7 Data Smoothing with Cubic Splines 135

result you like to get and this is not the objective of science which claims to describe

the real world out there. But careful and considerate use of these procedures may

extract information from data that would otherwise be lost.

2.7 Data Smoothing with Cubic Splines

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

<<CIP‘ExperimentalData‘

<<FunctionApproximations‘

Data smoothing with cubic splines is controlled by the specified χ2
red value (see

above). Depending on the χ2
red value there are two smoothing extremes: A small

χ2
red value enforces small residuals and restricts the smoothing function to close

proximity of the data points whereas a high χ2
red value allows for larger resid-

uals but forces the curvature of the smoothing function to minimize towards a

straight line. This may be demonstrated with fifty simulated xy-error data around the

Gaussian-peak shaped function:

numberOfData=50;

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)^2]];

argumentRange={1.0,7.0};

standardDeviationRange={0.1,0.1};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above Original Function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData

,pureOriginalFunction,labels]



136 2 Curve Fitting

A small χ2
red value of 0.01

reducedChiSquare=0.01;

leads to mere interpolation between the data without smoothing

curveFitInfo=

CIP‘CurveFit‘FitCubicSplines[xyErrorData,reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.×10-2

Out 1 : Correlation coefficient = 0.999973

and small residuals. Note that the correlation coefficient that indicates the agree-

ment of data and machine output is (almost) one which means a perfect correlation:



2.7 Data Smoothing with Cubic Splines 137

Since the data are erroneous this outcome indicates a so called overfitting of the data

(which is to be avoided for convincing smoothing). A high χ2
red value of 100

reducedChiSquare=100.0;

leads to a straight line

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.×102

Out 1 : Correlation coefficient = 0.683152



138 2 Curve Fitting

without adequate data description and a small correlation coefficient (which is as

unfavorable as a perfect correlation for erroneous data). In practice a χ2
red value is

initially chosen that is around 1 to produce a smooth and balancing model function

with a convincing residuals plot

reducedChiSquare=1.0;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.001

Out 1 : Correlation coefficient = 0.997407

and a reasonable high correlation coefficient. Since the smoothing cubic splines

procedure tries to minimize the overall curvature over the whole argument range



2.7 Data Smoothing with Cubic Splines 139

the curved peak region of the current example is comparatively poorly described:

A systematic deviation pattern of positive residuals is visible in this middle region

of the residuals plot. In this case the χ2
red value should be lowered which enforces

smaller residuals to describe the peak region more precisely:

reducedChiSquare=0.6;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 6.×10-1

Out 1 : Correlation coefficient = 0.998401

This results in an overall acceptable fit. Note that the correlation coefficient is not

too valuable for a goodness-of-smoothing discussion since a higher value does not



140 2 Curve Fitting

imply better smoothing due to the increasing tendency towards overfitting. The

smoothing model function may be finally compared (overlayed) with the original

Gaussian-peak shaped function that was used for the simulated data generation

pureSmoothingFunction=Function[x,CalculateFunctionValue[x,

curveFitInfo]];

pureFunctions={pureOriginalFunction,pureSmoothingFunction};

plotRange={0.0,5.0};

plotStyle={{Thickness[0.005],Black},{Thickness[0.005],Blue}};

labels={"x","y","Original + smoothing cubic splines"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

to demonstrate their close proximity and thus a successful model approximation

by mere data smoothing. The cubic splines based smoothing model function may

be used for interpolating calculations of function values and derivatives. Calcu-

lations outside the data’s argument range are possible but useless since the cubic

splines may have an arbitrary value there: As already mentioned reasonable extrap-

olations are in principle out of reach if the structural form of the model function

is not known. For publishing purposes the internal representation of the smoothing

model function is somewhat lengthy: For each (xi,yi,σi) data triple of the xy-error

data a cubic polynomial with 4 parameters is constructed so that the 50 data triples

require 200 parameters for the cubic splines. To achieve a more condensed repre-

sentation the smoothing function may be approximated by a rational function which

is constructed by mere trial and error (in this case with a numerator of order 8 and a

denominator of order 4):

rationalFunction=FunctionApproximations‘RationalInterpolation[

CalculateFunctionValue[x,curveFitInfo],{x,8,4},

{x,argumentRange[[1]],argumentRange[[2]]}]

0.492884−0.61194x+0.646898x2−0.467755x3+0.204442x4−0.0524233x5+0.00768635x6−0.000597131x7+0.0000192755x8

1−0.866354x+0.295339x2−0.0462791x3+0.0028032x4



2.7 Data Smoothing with Cubic Splines 141

This condensed representation

pureRationalFunction=Function[argument,

rationalFunction/.x -> argument];

pureFunctions={pureOriginalFunction,pureSmoothingFunction,

pureRationalFunction};

plotStyle={{Thickness[0.005],Black},{Thickness[0.005],Blue},

{Thickness[0.005],Red}};

labels={"x","y","Original + splines + rational function"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

is of sufficient precision as shown by the final overlay. Another application of data

smoothing is the representation of calculated data. This sounds absurd since calcu-

lated data can be calculated so there seems to be no need for data smoothing. But

data calculation may be computationally very expensive in many cases. For exam-

ple ab-initio quantum-chemical calculations for molecular properties are very time-

consuming and therefore require a considerable percentage of the world’s overall

available computational power. If for example the potential energy surface (PES) of

the diatomic molecule hydrogen fluoride is to be described the Schroedinger equa-

tion has to be solved for every desired distance between hydrogen and fluoride:

Every single calculation may take from seconds up to minutes or hours depending

on the level of approximation. The CIP ExperimentalData package contains a set of

high precision single point calculations for hydrogen fluoride (see Appendix A):

xyErrorData=CIP‘ExperimentalData‘GetHydrogenFluoridePESXyErrorData[];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of hydrogen fluoride (HF)"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]



142 2 Curve Fitting

The data are reported with a very small absolute error of 10−6. So a very precise

model function that is very near a pure interpolating function is in need. The stan-

dard approach with high-degree polynomials

modelFunction=

A0+A1*R+A2*R^2+A3*R^3+A4*R^4+A5*R^5+A6*R^6+A7*R^7+A8*R^8+A9*R^9;

argumentOfModelFunction=R;

parametersOfModelFunction={A0,A1,A2,A3,A4,A5,A6,A7,A8,A9};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Polynom fit"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];



2.7 Data Smoothing with Cubic Splines 143

Reduced chi-square of fit = 3.262×104

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 1.4×10-4 / 1.35×10-4 / 5.97×10-4

Out 1 : Correlation coefficient = 0.999998

leads to the well-known systematic oscillations (compare above) around the data

that are beyond the required precision. A rational function fit is a little better

modelFunction=

A0+A1*R^-1+A2*R^-2+A3*R^-3+A4*R^-4+A5*R^-5+A6*R^-6+A7*R^-7+

A8*R^-8+A9*R^-9;

argumentOfModelFunction=R;

parametersOfModelFunction={A0,A1,A2,A3,A4,A5,A6,A7,A8,A9};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Rational function fit"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];



144 2 Curve Fitting

Reduced chi-square of fit = 5.16×103

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 5.69×10-5 / 5.55×10-5 / 2.35×10-4

Out 1 : Correlation coefficient = 1.

but also beyond acceptability. Data smoothing with cubic splines and a χ2
red value

of 1 however

reducedChiSquare=1.0;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Smoothing cubic splines"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];



2.7 Data Smoothing with Cubic Splines 145

Reduced chi-square of fit = 1.

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 1.92×10-7 / 1.99×10-8 / 7.57×10-6

Out 1 : Correlation coefficient = 1.

achieves an acceptable interpolation with residuals well within the required order of

magnitude: Deviations are only more pronounced in the divergence region at small

interatomic distances. Also note that a correlation coefficient of effectively one does

not indicate overfitting in this situation since the data errors are very small. A check

of the smoothing model function is a calculation of the minimum energy distance

between hydrogen and fluoride that is known to be 0.917 Angstrom:

argumentRange={0.65,1.3};

functionValueRange={-100.35,-100.2};

CIP‘Graphics‘Plot2dFunction[Function[arg,CalculateFunctionValue[arg,

curveFitInfo]],argumentRange,functionValueRange,labels]



146 2 Curve Fitting

FindMinimum[CIP‘CurveFit‘CalculateFunctionValue[x,curveFitInfo],

{x,0.5,1.5}]

{−100.343,{x → 0.917413}}

This correct result together with a vanishing derivative value at the minimum (which

ought to be 0)

CIP‘CurveFit‘CalculateDerivativeValue[1,0.917,curveFitInfo]

−0.000933712

assures an overall satisfactory model function that may be successfully used for

interpolation purposes.

2.8 Cookbook Recipes for Curve Fitting

As demonstrated in the previous sections curve fitting can be a challenging task. In

this last section some cookbook recipes for curve fitting and data smoothing sum-

marize different aspects outlined above.

• The data: Start with a thorough (visual) inspection of the data to avoid the GIGO

(garbage in -garbage out) effect. Data analysis is not magic, it can not extract in-

formation out of nothing. Are the data reasonably scaled and distributed? Are the

reported errors convincing? If no errors are available apply the standard weight

1.0 and correct errors with χ2
red. There are additional subtle problems with data

that contain outliers, i.e. single data points with extraordinarily large errors. Out-

liers usually indicate experimental failure. If outliers can be easily detected they

should always be removed from the data since they tend to mask themselves in a

fitting procedure (they draw the model towards them to become invisible). Data

which are known to be prone to contain outliers may deserve a completely dif-

ferent statistical treatment like the so called robust estimation which is beyond

this introduction (see [Hampel 1986] or [Rousseeuw 2003] for further reading).

• The model function: Is a well-defined model function available? Does the num-

ber of data well exceed the number of parameters? Then go on. If no model

function is known it might be worth to try to construct one by educated trial and

error: This is quite often successful. Avoid model functions with redundant or

highly similar parameters. If an educated guess seems to be unfeasible try data

smoothing.

• Linear or non-linear model function: Is the model function linear in its param-

eters? Then the fit will work without further considerations. If not: Are param-

eters’ start values approximately known in advance? Then try these values for

local minimization. Otherwise an extensive start values search may be advised.

Don’t give up too early if things are difficult. The parameters’ start values are

often the most difficult part of the game.



2.8 Cookbook Recipes for Curve Fitting 147

• Problems with the fitting procedure: If the fitting procedure crashes try to use

an alternative minimization algorithm. If nothing helps there seems to be a se-

vere problem with the model function or the parameters’ start values. Do you

use professional curve fitting software? A lot of programs do use (too) simple

algorithms without appropriate safeguards that fail needlessly.

• Goodness of fit: Are the fitted parameters’ value reasonable? Otherwise the min-

imization procedure sent you somewhere over the rainbow. Is the data plot above

the fitted model function convincing, i.e. smooth and balancing? If not the fit

failed. Is the residuals plot well within experimental errors and free of systematic

deviation patterns? Then probably everything worked well. Other goodness of fit

quantities may be used to support your assessment.

• Parameter errors: Is the χ2
red value close to 1? If not the reported experimen-

tal errors are poor and should be corrected. Do you need high confidence? Then

adjust the parameters’ confidence level in accordance. Are the parameters’ er-

rors too large to make any decisions? Try to avoid strategies of educated cheat-

ing unless your career or PhD is in danger (then you should at least provide a

convincing residuals plot because this is what most reviewers believe in).

• Data transformation for linearization: If possible simply avoid it and use non-

linear curve fitting software. Final diagrams may then be linearized for your

audience.

• Data smoothing: Adjust the set screws until you like the result with a convincing

residuals plot. Then apply the smoothing model for interpolation (but never for

extrapolation) purposes.

This chapter sketched general curve fitting issues with a broad range of application.

For many specific curve fitting tasks there are elaborate specific solutions that avoid

problems outlined in the previous sections. The scientific literature as well as the

Internet should always be consulted in advance: There are an awful lot of solutions

available that may perfectly meet specific needs.



Chapter 3

Clustering

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

A clustering method tries to partition inputs into different groups/clusters (see

chapter 1 for terminology). For an introductory example the following 1000 (two-

dimensional) inputs are clustered:

standardDeviation=0.05;

numberOfCloudInputs=500;

centroid1={0.3,0.7};

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition2];

inputs=Join[inputs1,inputs2];

labels={"x","y","Inputs to be clustered"};

plotStyle={PointSize[0.01],Blue};

points2DWithPlotStyle={inputs,plotStyle};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

A. Zielesny: From Curve Fitting to Machine Learning, ISRL 18, pp. 149–220.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



150 3 Clustering

By visual inspection two distinct clusters are visible. They may be (correctly

detected by a clustering method

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

which leads to a clustering result that can be illustrated by different coloring for each

detected cluster and the display of their particular centroids (points in the middle of

the two clouds):

indexOfCluster=1;

inputsOfCluster1=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

indexOfCluster=2;

inputsOfCluster2=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

properties={"CentroidVectors"};

centroids2D=

CIP‘Cluster‘GetClusterProperty[properties,clusterInfo][[1]];

centroids2DBackground={centroids2D,{PointSize[0.035],White}};

centroids2DWithPlotStyle1={centroids2D,{PointSize[0.03],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,centroids2DBackground,

centroids2DWithPlotStyle1};

labels={"x","y","Colored clusters and their centroids"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]



3 Clustering 151

The determined centroids

centroids2D

{{0.298944,0.69648},{0.698944,0.29648}}

are an optimum solution for this clustering task: The mean (euclidean) distance of all

inputs to their particular corresponding centroid becomes a minimum (compare next

section for details). Also note that the detected centroids are very close to the cen-

troids used for the (above) construction of the clouds of inputs. In principle there are

two extremes of clustering depending on the inputs and the clustering method used:

Either the clustering process results in one single cluster that contains all inputs or

the resulting number of clusters is equal to number of inputs, i.e. each cluster con-

tains one single input. In both extreme cases clustering does not make any sense. A

useful clustering result is somewhere in between: In general the number of clusters

should be considerably smaller than the number of inputs but at least two. Different

clustering methods differ in the way they try to achieve this goal and therefore may

lead to different outcomes.

Clustering techniques are usually attributed to the unsupervised machine learn-

ing methods since the method is not told in which cluster a specific input is to be

put: This decision is to be made by the clustering algorithm itself. If a method is

told in a supervised manner to which group a specific input belongs the process is

called (supervised) classification and the group is called a class. Classification tasks

are discussed at the end of this chapter and predominantly in the machine learn-

ing chapter 4. Within the scope of this book clustering methods are separated into

an own chapter since a clustering method does not really learn anything: It simply

partitions.

The final number of clusters may be specified in advance or may be left open for

the clustering method to decide itself. Open-categorical clustering without a fixed

number of clusters seems to be the natural choice but sometimes it is sensible to

assure a predefined number of clusters. If the number of clusters is not fixed a clus-

tering methods checks various numbers clusters according to an internal decision



152 3 Clustering

criterion to determine the optimum number. It should be noted that there is nothing

like the best or objective clustering since there is no objective way to partition in-

puts in general. Depending on the inputs to be clustered and the intentions of the

scientists there may be intuitively correct up to totally arbitrary clustering results.

This is outlined in the next sections.

Chapter 3 starts with an introduction on some basics of clustering: The partition-

ing of inputs into a fixed number of clusters is shown to be a global optimization

task. The heuristic k-means approach is sketched and a method for the determination

of an appropriate number of clusters is explained (section 3.1). Then three intuitive

situations for partitioning inputs are tackled: Unambiguous, reasonable and sense-

less clustering (section 3.2). The number of clusters may be a priori fixed: Cor-

responding examples are outlined and their consequences discussed (section 3.3).

Getting a small number of representatives from a large number of inputs is an im-

portant application of clustering methods. The advantages of cluster-based repre-

sentatives in comparison to randomly chosen ones are pointed out with different

examples (section 3.4). Cluster occupancies of joined sets of inputs and an applica-

tion to the famous iris flower inputs are described as a next step (section 3.5): They

also allow the detection of white spots (empty space regions) in comparing differ-

ent sets of inputs (section 3.6). Since there are numerous clustering methods in use

an alternative to the CIP k-medoids default method is demonstrated: ART-2a based

clustering. It leads to different results due to a different view of the world (section

3.7). Unsupervised learning may be used to construct a class predictor for new in-

puts. This aspect prepares the entry to real machine learning in chapter 4 (section

3.8). With final cookbook recipes for clustering this chapter ends (section 3.9).

3.1 Basics

As already indicated a clustering task is in fact an optimization task. This may be

motivated as follows: Consider a number N of inputs that are to be partitioned into

k clusters. What would be an optimum clustering result in this case?

Cluster number i with Ni inputs may be described by a so called centroid ci that

is the center of mass of its inputs input(i)
1

to input(i)
Ni

:

ci = 1
Ni

∑
Ni
u=1 input(i)

u
with u : Index of the input and i : Index of the cluster

The notation input(i)
u

denotes the uth input of cluster i. All inputs input(i)
1

, ..., input(i)
Ni

that are assigned to cluster number i possess the property that their (euclidean)

distances d
(i)
1,i , ...,d

(i)
Ni,i

to the clusters’ centroid ci

d
(i)
u,i =

∣

∣

∣
input(i)

u
− ci

∣

∣

∣
with u : Index of the input and i : Index of the cluster



3.1 Basics 153

is less than or equal to their distances to any other centroid c j of other clusters, i.e.

d
(i)
u,i ≤ d

(i)
u, j with j �= i and

j : Index of another cluster different from i and u : Index of the input

where d
(i)
u, j is the (euclidean) distance of the uth input of cluster i to another cluster’s

centroid c j:

d
(i)
u, j =

∣

∣

∣input(i)
u
− c j

∣

∣

∣ with j �= i and

u : Index of the input and i, j : Index of the cluster

Again: What would be an optimum clustering result for partitioning N inputs into k

clusters? The k centroids c1 to ck must be chosen to globally minimize the overall

mean distance of the inputs to their corresponding cluster centroids, i.e.

d̄i = 1
Ni

∑
Ni
u=1 d

(i)
u,i = 1

Ni
∑

Ni
u=1

∣

∣

∣input(i)
u
− ci

∣

∣

∣ with

u : Index of the input and i : Index of the cluster

d = ∑k
i=1 d̄i −→ minimize! with

d̄i : Mean distance of all inputs of cluster i to the centroid of cluster i

Optimum positions of the k centroids c1 to ck correspond to the global minimum of

d which thus is a function of the components of the centroids:

d = d (c1, ...,ck) = d
(

c1,1, ...,c1,v, ...,ck,1, ...,ck,v

)

−→ minimize!

with ci,v : vth component of centroid i

In practice this global optimization procedure is rarely performed since its overall

computational costs are considerable. To speed up clustering tasks mainly heuris-

tic local optimization methods are used. But increased speed leads to decreased

accuracy in general so these methods may fail to converge to the sketched global

optimum. A simple and widely used heuristic approach is the so called k-means

clustering (see [MacQueen 1967]). To partition inputs into k clusters this method

starts with k randomly chosen points in the input’s space, the initial centroids. Then

it alternates between two steps ...



154 3 Clustering

• Step 1: Assign each input to its nearest centroid. After all inputs are assigned k

clusters are formed.

• Step 2: Calculate the center of mass of the inputs of each cluster (see above).

These k center of mass points become the new centroids for the next iteration.

Return to Step 1.

... until the assignment of all inputs remains unchanged: In this case the algorithm is

deemed to have converged. Since k-means clustering converges quite fast in practice

it is usually run multiple times with different initial centroids to scan for an optimum

clustering result (which by no means is guaranteed to be equal to the real global opti-

mum described before). Note that there are lots of alternatives to k-means clustering

available, e.g. the more robust but slower partitioning around medoids method (ab-

breviated k-medoids) which is used as the default by the CIP GetClusters method

(see [Kaufman 1990] and [GetClusters] in the references).

After the problem of partitioning inputs into k clusters is solved the issue remains

how to choose k, i.e. what is the best or the optimum number of clusters for a given

set of inputs? A criterion is in need that allows to assess the overall clustering quality

for a chosen number of clusters. One such quality measure is the so called mean

silhouette width (see [Rousseeuw 1987]). Consider the following setup: The inputs

are clustered by some method (e.g. k-means or k-medoids) into k clusters. For a

single input u that is assigned to cluster i two quantities are calculated: The mean

(euclidean) distance au,i between this input u and all other inputs that are assigned

to the same cluster i

au,i = 1
Ni

∑
Ni
v=1

∣

∣

∣input(i)
u
− input(i)

v

∣

∣

∣

and the mean distance bu, j between this input u and all inputs that are assigned to

another cluster j which is nearest to input u

bu, j = 1
N j

∑
N j

v=1

∣

∣

∣input(i)
u
− input( j)

v

∣

∣

∣ where j �= i

i.e. the mean distance bu, j that is the smallest for any other cluster j. With these two

quantities au,i and bu, j the silhouette width s(u) is calculated for the single input u

according to:

s(u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1−
au,i

bu, j
if au,i < bu, j

0 if au,i = bu, j
bu, j

au,i
−1 if au,i > bu, j

The silhouette width s(u) may vary from −1 to 1. A s(u) value near 1 means that

au,i ≪ bu, j, i.e. the mean distance of input u to the other inputs of its own cluster is

far smaller than the mean distance to the inputs of its nearest cluster: This indicates

a good clustering. A s(u) value near −1 means the opposite: A poor clustering



3.2 Intuitive Clustering 155

because input u should be assigned to its nearest cluster and not to the currently

assigned cluster. A s(u) value around 0 means that input u is on the border between

its own and its nearest cluster. If the silhouette width is calculated for all inputs the

mean silhouette width s̄k for a partitioning approach with k clusters may be obtained:

s̄k = 1
N ∑N

w=1 s(w) with N : Number of inputs

The nearer the value of s̄k is to 1 the better the overall clustering of the inputs may

be appraised. And with the mean silhouette width s̄k the desired decision quantity

is obtained that may be used to compare clustering results for different numbers of

classes k1 and k2: If

s̄k1
> s̄k2

then k1 is the more appropriate number of classes. Silhouette widths and their in-

terpretation will be discussed throughout the whole chapter. Again note: Clustering

is an important issue so there are numerous families of clustering methods with an

even higher number of variants ready for use. The same holds for decision criteria

to obtain optimum cluster numbers. This introduction just scratched the surface.

3.2 Intuitive Clustering

Clear["Global‘*"];

<<CIP‘Cluster‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

Clustering is an intuitive task if the data can be visualized, i.e. in the case that the

inputs are of dimension two or three. In the following inputs of dimension two are

used for simplicity (but all results may be easily generalized to an arbitrary number

of dimensions: Just use the same CIP methods with higher dimensional inputs).

There are three situations for intuitive clustering that may be distinguished:

• Clustering is unambiguous or objective: The inputs are clearly structured or

grouped and may unambiguously assigned to separated clusters (like the intro-

ductory example above).

• Clustering is overall reasonable but ambiguous in detail: The distribution of

inputs still exhibits obvious structures and clusters of inputs can be detected.

But an unambiguous assignment of all inputs is no longer possible since the

clusters are too closely neighbored. The clustering method thus has to generate a

reasonable separation between the clusters to assign the inputs.

• The inputs are unstructured and do not reveal any reasonable clusters. This

may be the case if the inputs are uniformly or purely randomly distributed.



156 3 Clustering

Every clustering method must prove to generate convincing results in these three

situations. In the following clustering tasks are discussed with the help of so called

Gaussian clouds. A Gaussian cloud of arbitrary dimension consists of vectors that

are normally distributed around a center (centroid). Here is an example of a Gaussian

cloud in two dimensions: A centroid must be defined

centroid1={0.3,0.7};

together with a standard deviation of the normal distribution (which determines the

size of the cloud) and the number of random cloud inputs:

standardDeviation=0.05;

numberOfCloudInputs=5000;

The inputs of the cloud are generated with a CIP CalculatedData package method

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

and may be illustrated by the corresponding diagram:

labels={"x","y","Gaussian cloud in two dimensions"};

points2DWithPlotStyle={inputs1,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

Note that the distortions of the symmetrical cloud result from the unequal golden

aspect ratio of the diagram, i.e. one unit has different lengths on the x and the y axis.

It is often useful to inspect the frequency distribution of each single component of



3.2 Intuitive Clustering 157

the inputs: Therefore a number of intervals between the minimum and maximum

component values are defined and the frequency of the component values in each

interval bin is counted. This may be performed with a CIP Cluster package method:

indexOfComponentList={1,2};

numberOfIntervals=20;

CIP‘Cluster‘ShowComponentStatistics[inputs1,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals]

Min / Max = 1.13×10-1 / 5.01×10-1

Mean / Median = 3.×10-1 / 2.99×10-1

Min / Max = 5.4×10-1 / 8.99×10-1

Mean / Median = 7.×10-1 / 7.×10-1

"In 1" and "In 2" denote the first and the second component of an input vector.



158 3 Clustering

In the case of Gaussian clouds the frequency distribution of each component should

be a normal distribution: The above approximations would converge to a perfect

bell-shaped normal distribution if the number of cloud inputs and the number of

intervals would be increased to infinity.

As an example for unambiguous or objective clustering two clearly separated

Gaussian clouds are generated:

standardDeviation=0.05;

numberOfCloudInputs=500;

centroid1={0.3,0.7};

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

The two clouds are joined to form a single set of inputs

inputs=Join[inputs1,inputs2];

for the clustering process:

labels={"x","y","Inputs to be clustered"};

points2DWithPlotStyle={inputs,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

The euclidean distance of the centers of the Gaussian clouds is

EuclideanDistance[centroid1,centroid2]

0.565685



3.2 Intuitive Clustering 159

Clustering tasks are performed with the CIP Cluster package. Unsupervised open-

categorical clustering without an a priori specification of the number of desired clus-

ters with the default CIP GetClusters method (see [GetClusters] in the references for

details)

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

leads to the following (expected) result:

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 2

Cluster 1 : 500 members (50.%) with distance = 0.

Cluster 2 : 500 members (50.%) with distance = 0.565685

Two clusters are detected with each containing exactly 50% of the inputs: The de-

tected euclidean distance of the center of mass centroids of both clusters perfectly

agrees with the predefined centers used for cloud generation. The result may also be

visualized in the space of the inputs with differently colored clusters:

indexOfCluster=1;

inputsOfCluster1=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]



160 3 Clustering

The number of detected clusters is the result of a scan with different clustering ap-

proaches where each approach used a different predefined fixed number of clusters:

The different clustering results were then evaluated according to an internal decision

criterion to determine the optimum number of clusters which in this case is obvi-

ously 2 (GetClusters uses the mean silhouette width as a default decision criterion

- compare the previous section). This scan with different fixed numbers of clusters

may be illustrated by a silhouette plot to visualize the optimization procedure:

minimumNumberOfClusters=2;

maximumNumberOfClusters=10;

silhouettePlotPoints=CIP‘Cluster‘GetSilhouettePlotPoints[

inputs,minimumNumberOfClusters,maximumNumberOfClusters];

CIP‘Cluster‘ShowSilhouettePlot[silhouettePlotPoints]

For two clusters the highest value is obtained with a mean silhouette width over

0.7 which indicates strongly structured inputs that may be well partitioned into



3.2 Intuitive Clustering 161

separated clusters. We may also have a look at the different silhouette widths of

each of the two optimum clusters. A plot of the sorted individual silhouette widths

of each input of cluster 1

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

and cluster 2

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



162 3 Clustering

confirm the assessment of good clustering (note that the number of displayed indi-

vidual silhouette widths is reduced for a better overview). The height of the rect-

angle corresponds to the mean silhouette width of the cluster and indicates with a

mean value greater 0.7 a well separated good cluster. The demonstrated unambigu-

ous clustering is no longer possible if two enlarged Gaussian clouds are generated

that overlap each other to a certain extent:

centroid1={0.3,0.7};

standardDeviation=0.175;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

inputs=Join[inputs1,inputs2];

labels={"x","y","Input Vectors"};

points2DWithPlotStyle={inputs,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

The euclidean distance between the cloud centers is unchanged

EuclideanDistance[centroid1,centroid2]

0.565685

and a structured distribution of the inputs is still visible but each input may no longer

be unambiguously assigned to its specific cloud:

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]



3.2 Intuitive Clustering 163

Number of clusters = 2

Cluster 1 : 507 members (50.7%) with distance = 0.

Cluster 2 : 493 members (49.3%) with distance = 0.574959

There are two clusters detected with the first cluster being a little bigger than the

second. The euclidean distance between the centers of mass is also a little different

from the predefined center distance used for the inputs generation. The separation

between the two clusters becomes visible by different coloring of the different clus-

ters:

indexOfCluster=1;

inputsOfCluster1=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]



164 3 Clustering

The silhouette plot confirms

silhouettePlotPoints=CIP‘Cluster‘GetSilhouettePlotPoints[inputs,

minimumNumberOfClusters,maximumNumberOfClusters];

CIP‘Cluster‘ShowSilhouettePlot[silhouettePlotPoints]

that two clusters are still the best number of clusters but note that the value of the

mean silhouette width decreased in comparison to the unambiguous clustering ex-

ample before: This demonstrates a deteriorated overall clustering because of the

ambiguities due to the two overlapping clouds. But a mean silhouette width be-

tween 0.5 and 0.7 still indicates reasonably structured inputs where clustering is

useful. If the individual silhouette widths of the two optimum clusters are inspected

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



3.2 Intuitive Clustering 165

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

the minimum values around zero attract attention: Silhouette widths around zero

correspond to inputs that are at the borderline between the clusters and thus may

not unambiguously be assigned. This finding nicely confirms the intuition and the

above statements in a more quantitative manner. For a mean silhouette value be-

tween 0.5 and 0.7 clustering is still helpful. If the two Gaussian clouds are further

enlarged so that they nearly completely overlap the distribution of the inputs looses

any structure:



166 3 Clustering

centroid1={0.3,0.7};

standardDeviation=0.5;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

inputs=Join[inputs1,inputs2];

labels={"x","y","Input Vectors"};

points2DWithPlotStyle={inputs,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

Clustering leads to

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 3



3.2 Intuitive Clustering 167

Cluster 1 : 353 members (35.3%) with distance = 0.

Cluster 2 : 327 members (32.7%) with distance = 0.932919

Cluster 3 : 320 members (32.%) with distance = 0.99795

a somewhat arbitrary result with 3 clusters of similar size

indexOfCluster=1;

inputsOfCluster1=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

indexOfCluster=3;

inputsOfCluster3=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyle3={inputsOfCluster3,{PointSize[0.01],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]



168 3 Clustering

due to a silhouette plot that reveals a first maximum at 3 clusters:

silhouettePlotPoints=CIP‘Cluster‘GetSilhouettePlotPoints[inputs,

minimumNumberOfClusters,maximumNumberOfClusters];

CIP‘Cluster‘ShowSilhouettePlot[silhouettePlotPoints]

From an intuitive view this clustering result does not make sense. This view is sup-

ported by the small value of the mean silhouette width around 0.33. A mean sil-

houette width between 0.25 and 0.50 indicates only weakly or artificially structured

inputs where clustering can not reveal any structural insights (a value below 0.25

simply means no structure). Only higher values indicate an overall reasonable clus-

tering as was shown in the examples before. This assessment is also supported by

the individual cluster inspection

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



3.2 Intuitive Clustering 169

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



170 3 Clustering

that indicates an enlarged fraction of inputs tending towards a silhouette width

around zero where clustering becomes arbitrary.

3.3 Clustering with a Fixed Number of Clusters

Clear["Global‘*"];

<<CIP‘Cluster‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

A clustering process may be forced to produce an a priori fixed number of clusters.

To get an impression of the consequences of this forced clustering a few examples

are outlined. If the two truly separated input clouds of the last section

standardDeviation=0.05;

numberOfCloudInputs=500;

centroid1={0.3,0.7};

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

inputs=Join[inputs1,inputs2];

labels={"x","y","Inputs to be clustered"};

points2DWithPlotStyle={inputs,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]



3.3 Clustering with a Fixed Number of Clusters 171

with two optimum or natural clusters are forced to be partitioned into 3 clusters

numberOfClusters=3;

clusterInfo=

CIP‘Cluster‘GetFixedNumberOfClusters[inputs,numberOfClusters];

the following result is obtained:

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 3

Cluster 1 : 500 members (50.%) with distance = 0.

Cluster 2 : 271 members (27.1%) with distance = 0.561643

Cluster 3 : 229 members (22.9%) with distance = 0.573776



172 3 Clustering

The inputs are split into one large and two smaller neighbored clusters of similar

size:

indexOfCluster=1;

inputsOfCluster1=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=3;

inputsOfCluster3=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyle3={inputsOfCluster3,{PointSize[0.01],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

In fact the second optimum or natural cluster has simply been split in two halves.

The silhouette widths inspection reveals one good cluster

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



3.3 Clustering with a Fixed Number of Clusters 173

with a high mean silhouette width which is identical to the first natural cluster and

two poor clusters

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



174 3 Clustering

with only small mean silhouette widths (compare the discussion in the previous

section). If the inputs are partitioned into 4 clusters

numberOfClusters=4;

clusterInfo=

CIP‘Cluster‘GetFixedNumberOfClusters[inputs,numberOfClusters];

the result may already be anticipated:

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 4

Cluster 1 : 282 members (28.2%) with distance = 0.

Cluster 2 : 218 members (21.8%) with distance = 0.0842652

Cluster 3 : 265 members (26.5%) with distance = 0.568283



3.3 Clustering with a Fixed Number of Clusters 175

Cluster 4 : 235 members (23.5%) with distance = 0.587472

The inputs are split into four small clusters of similar size

indexOfCluster=1;

inputsOfCluster1=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=2;

inputsOfCluster2=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=3;

inputsOfCluster3=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

indexOfCluster=4;

inputsOfCluster4=

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo];

labels={"x","y","Clusters in different colors"};

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.01],Red}};

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.01],Green}};

points2DWithPlotStyle3={inputsOfCluster3,{PointSize[0.01],Black}};

points2DWithPlotStyle4={inputsOfCluster4,{PointSize[0.01],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3,

points2DWithPlotStyle4};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

which are each the half of the two optimum natural clusters. The silhouette widths

now reveal 4 poor clusters:

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



176 3 Clustering

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



3.4 Getting Representatives 177

indexOfCluster=4;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

The demonstrated partitioning of inputs into an increasing number of clusters seems

to be useless since the clustering quality simply decreases the more unnatural the

clustering becomes. But the next section outlines an important application of this

procedure.

3.4 Getting Representatives

Clear["Global‘*"];

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘CalculatedData‘



178 3 Clustering

One important application of forced clustering with a fixed number of clusters is the

generation of a reduced number of representatives of a full set of inputs with a sim-

ilar spatial diversity as the full set: This means that the few representatives should

cover a similar input space as the full set of inputs. A purely random distribution of

5000 inputs is used for an introductory example:

SeedRandom[1];

inputs=Table[{RandomReal[{0.05,0.95}],RandomReal[{0.05,0.95}]},

{5000}];

argumentRange={0.0,1.0};

functionValueRange={0.0,1.0};

labels={"x","y","Inputs"};

allInputVectorsWithPlotStyle={inputs,{PointSize[0.01],Green}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

A look at the statistics for each component of the inputs with the corresponding CIP

Cluster package method

indexOfComponentList={1,2};

numberOfIntervals=5;

argumentRange={0.0,1.0};

functionValueRange={0.0,30.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



3.4 Getting Representatives 179

Min / Max = 5.01×10-2 / 9.5×10-1

Mean / Median = 5.06×10-1 / 5.06×10-1

Min / Max = 5.01×10-2 / 9.5×10-1

Mean / Median = 4.99×10-1 / 5.01×10-1

shows an approximated uniform distribution. If a number of 20 representatives is

desired (0.4 % of the total inputs) it seems to be a good choice to simply select

twenty inputs by chance. This can be performed by a corresponding method of the

CIP Cluster package:

numberOfRepresentatives=20;

randomRepresentatives=CIP‘Cluster‘GetRandomRepresentatives[inputs,

numberOfRepresentatives];

labels={"x","y","Random representatives"};

argumentRange={0.0,1.0};

functionValueRange={0.0,1.0};

randomRepresentativesBackground={randomRepresentatives,

{PointSize[0.025],White}};



180 3 Clustering

randomRepresentativesWithPlotStyle={randomRepresentatives,

{PointSize[0.02],Black}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle,

randomRepresentativesBackground,

randomRepresentativesWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

The chosen random representatives (enlarged points) are a satisfactory description

of the input’s space in this example. Note that randomly chosen inputs are not strictly

equally spaced (this would be a single specific random result of very low probabil-

ity), i.e. randomly chosen inputs always seem to cluster a little bit. An alternative

to random selection is the application of a cluster-based selection. Forced clustering

seems to be a sensible method: The inputs are partitioned to a number of clusters

that is equal to the desired number of representatives. Then for each cluster an input

is chosen that is closest to the center of mass centroid of that cluster:

clusterRepresentatives=CIP‘Cluster‘GetClusterRepresentatives[inputs,

numberOfRepresentatives];

labels={"x","y","Cluster representatives"};

clusterRepresentativesBackground={clusterRepresentatives,

{PointSize[0.025],White}};

clusterRepresentativesWithPlotStyle={clusterRepresentatives,

{PointSize[0.02],Black}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle,

clusterRepresentativesBackground,

clusterRepresentativesWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



3.4 Getting Representatives 181

The forced clusters may in addition be visualized by different coloring:

numberOfClusters=numberOfRepresentatives;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

inputsOfClusterList=Table[

GetInputsOfCluster[inputs,indexOfCluster,clusterInfo],

{indexOfCluster,

First[GetClusterProperty[{"NumberOfClusters"},clusterInfo]]}];

colorList={Blue,Green,Red,Yellow,Pink,Orange,Cyan,Magenta};

colorIndex=Length[colorList];

points2DWithPlotStyleList=Table[

colorIndex++;If[colorIndex>Length[colorList],colorIndex=1];

{inputsOfClusterList[[i]],

{{PointSize[0.01],colorList[[colorIndex]]}}},

{i,Length[inputsOfClusterList]}];

points2DWithPlotStyleList=Join[points2DWithPlotStyleList,

{clusterRepresentativesBackground,

clusterRepresentativesWithPlotStyle}];

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



182 3 Clustering

The cluster-based representatives seem to be more equally spaced as it is desired for

representatives. But for this example the random and the cluster-based selection of

representatives provide comparable results with the cluster-based selection just to

be a bit favorable. This finding fundamentally changes if the full set of inputs has

different densities in the input’s space. Here is an illustrative example:

centroid1={0.3,0.7};

standardDeviation=0.05;

numberOfCloudInputs=470;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

centroid3={0.5,0.5};

standardDeviation=0.05;

numberOfCloudInputs=10;

cloudDefinition3={centroid3,numberOfCloudInputs,standardDeviation};

inputs3=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition3];

centroid4={0.8,0.8};

cloudDefinition4={centroid4,numberOfCloudInputs,standardDeviation};

inputs4=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition4];

centroid5={0.2,0.2};

cloudDefinition5={centroid5,numberOfCloudInputs,standardDeviation};

inputs5=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition5];

inputs=Join[inputs1,inputs2,inputs3,inputs4,inputs5];

labels={"x","y","Inputs"};

allInputVectorsWithPlotStyle={inputs,{PointSize[0.01],Green}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



3.4 Getting Representatives 183

The majority of inputs (97%) is confined to 2 natural clusters. The component statis-

tics of the inputs also show a distribution with two distinct peaks in both dimensions:

indexOfComponentList={1,2};

numberOfIntervals=25;

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals]

Min / Max = 1.7×10-1 / 8.77×10-1

Mean / Median = 5.×10-1 / 5.06×10-1

Min / Max = 1.12×10-1 / 8.76×10-1

Mean / Median = 4.97×10-1 / 5.26×10-1

If 20 representatives are randomly chosen



184 3 Clustering

numberOfRepresentatives=20;

randomRepresentatives=CIP‘Cluster‘GetRandomRepresentatives[inputs,

numberOfRepresentatives];

labels={"x","y","Random representatives"};

randomRepresentativesBackground={randomRepresentatives,

{PointSize[0.025],White}};

randomRepresentativesWithPlotStyle={randomRepresentatives,

{PointSize[0.02],Black}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle,

randomRepresentativesBackground,

randomRepresentativesWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

it is very likely that they are only taken from these two natural high density re-

gions as shown above. Thus the data space with a lower density of inputs will be

completely neglected with a high probability. In this case a cluster-based selection

becomes a distinct advantage

clusterRepresentatives=CIP‘Cluster‘GetClusterRepresentatives[inputs,

numberOfRepresentatives];

labels={"x","y","Cluster representatives"};

clusterRepresentativesBackground={clusterRepresentatives,

{PointSize[0.025],White}};

clusterRepresentativesWithPlotStyle={clusterRepresentatives,

{PointSize[0.02],Black}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle,

clusterRepresentativesBackground,

clusterRepresentativesWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



3.4 Getting Representatives 185

since it leads to representatives that cover the whole space of inputs:

numberOfClusters=numberOfRepresentatives;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

inputsOfClusterList=Table[

GetInputsOfCluster[inputs,indexOfCluster,clusterInfo],

{indexOfCluster,

First[GetClusterProperty[{"NumberOfClusters"},clusterInfo]]}];

colorList={Blue,Green,Red,Yellow,Pink,Orange,Cyan,Magenta};

colorIndex=Length[colorList];

points2DWithPlotStyleList=Table[

colorIndex++;If[colorIndex>Length[colorList],colorIndex=1];

{inputsOfClusterList[[i]],

{{PointSize[0.01],colorList[[colorIndex]]}}},

{i,Length[inputsOfClusterList]}];

points2DWithPlotStyleList=Join[points2DWithPlotStyleList,

{clusterRepresentativesBackground,

clusterRepresentativesWithPlotStyle}];

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



186 3 Clustering

Again note: In two dimensions the representation problem is comparatively simple

and could be solved by mere visual inspection. For inputs of higher dimensions this

possibility is completely lost but a random or cluster-based selection is still possible

with the same methods outlined above. The required number of representatives that

are necessary for a good representation of a full set of inputs depends on number

of issues: How diverse is the full data space? Which representation accuracy is in

demand? How many representatives can be handled in further processing steps?

These issues will be addressed in the cross validation oriented discussion in the

machine learning chapter 4.

3.5 Cluster Occupancies and the Iris Flower Example

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Cluster‘

<<CIP‘Graphics‘

Another important application of clustering is the comparison of the spatial diversity

of different sets of inputs. To compare the spatial diversity the different sets of inputs

are joined and clustered as a union. Then the occupancy of a cluster with respect

to each set of inputs is evaluated. As an example the famous iris flower data are

used (see Appendix A). They consist of three sets of inputs for three iris flower

species under investigation: Iris setosa (species 1), iris versicolor (species 2) and

iris virginica (species 3). Each set of inputs consists of fifty measurements of the

sepal length and width and the petal length and width so each input is of dimension

four. Therefore the inputs can not simply be visually inspected. To get a feeling

for the data the sepal and petal length and width components are analyzed. The iris

flower data are available with the CIP ExperimentalData package:

inputsOfSpecies1=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies1[];

inputsOfSpecies2=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies2[];

inputsOfSpecies3=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies3[];

To get the full 150 iris flower inputs the single inputs of the three species (with 50

inputs each) are joined:

inputs=Join[inputsOfSpecies1,inputsOfSpecies2,inputsOfSpecies3];

For later use a list of the minimum and maximum index of each species in the full

set of inputs is defined. Inputs 1 to 50 belong to species 1 (or class 1), inputs 51 to

100 to species 2 (or class 2) and inputs 101 to 150 to species 3 (or class 3):

classIndexMinMaxList={{1,50},{51,100},{101,150}};



3.5 Cluster Occupancies and the Iris Flower Example 187

The first 2 components of an input are sepal length and sepal width. The frequency

distributions of these first two components are as follows: The sepal length (In 1)

shows one wide peak

indexOfComponentList={1};

numberOfIntervals=6;

argumentRange={40.0,80.0};

functionValueRange={0.0,30.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals->numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

Min / Max = 4.3×101 / 7.9×101

Mean / Median = 5.84×101 / 5.8×101

and the same is true for the sepal width (In 2):

indexOfComponentList={2};

argumentRange={20.0,45.0};

functionValueRange={0.0,45.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals->numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



188 3 Clustering

Min / Max = 2.×101 / 4.4×101

Mean / Median = 3.06×101 / 3.×101

Both components alone will not be able to differentiate between the three species.

A plot of the sepal width (In 2) against the sepal length (In 1) reveals more insight:

labels={"In 1","In 2","Iris flower species 1, 2, 3"};

points2DWithPlotStyle1={inputsOfSpecies1[[All,{1,2}]],

{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputsOfSpecies2[[All,{1,2}]],

{PointSize[0.02],Green}};

points2DWithPlotStyle3={inputsOfSpecies3[[All,{1,2}]],

{PointSize[0.02],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]



3.5 Cluster Occupancies and the Iris Flower Example 189

The species 1 inputs fill the upper left part and are separated from the other two

species whereas the species 2 and 3 inputs occupy nearly the same space on the

lower right. This finding becomes more pronounced by the analysis of the latter

two components: The petal length and width. The petal length (In 3) shows two

frequency peaks:

indexOfComponentList={3};

argumentRange={10.0,70.0};

functionValueRange={-2.0,35.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

Min / Max = 1.×101 / 6.9×101

Mean / Median = 3.76×101 / 4.35×101

One sharp peak at the left and a wider peak at the right. The petal width (In 4) is

similarly distributed:

indexOfComponentList={4};

argumentRange={0.0,25.0};

functionValueRange={-2.0,35.0};

CIP‘Cluster‘ShowComponentStatistics[inputs,indexOfComponentList,

ClusterOptionNumberOfIntervals -> numberOfIntervals,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



190 3 Clustering

Min / Max = 1. / 2.5×101

Mean / Median = 1.2×101 / 1.3×101

A plot of the petal width (In 4) against the petal width (In 3)

labels={"In 3","In 4","Iris flower species 1, 2, 3"};

points2DWithPlotStyle1={inputsOfSpecies1[[All,{3,4}]],

{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputsOfSpecies2[[All,{3,4}]],

{PointSize[0.02],Green}};

points2DWithPlotStyle3={inputsOfSpecies3[[All,{3,4}]],

{PointSize[0.02],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

shows that the inputs of species 1 are clearly separated from the others but the inputs

of species 2 and 3 do have overlap. So it can be deduced that clustering methods will



3.5 Cluster Occupancies and the Iris Flower Example 191

not be able to differentiate perfectly between the three species. If the full inputs of

all three species are clustered by the CIP default method

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 2

Cluster 1 : 99 members (66.%) with distance = 0.

Cluster 2 : 51 members (34.%) with distance = 39.6076

two clusters are detected. The bigger cluster 1

indexOfCluster=1;

CIP‘Cluster‘GetIndexListOfCluster[indexOfCluster,clusterInfo]

{51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,76,77,78,79,80,81,82,

83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,

110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,

133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150}

consists of all indices of inputs that belong to species 2 and species 3 except one.

The smaller cluster 2

indexOfCluster=2;

CIP‘Cluster‘GetIndexListOfCluster[indexOfCluster,clusterInfo]

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,

35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,74}



192 3 Clustering

contains all indices of inputs that belong to species 1 and 1 input from species 2

(index 74). This finding may be graphically illustrated by so called cluster occupan-

cies. For each cluster the percentage of inputs of the three species is obtained

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,98.,100.},{100.,2.,0.}}

and may be visualized by a bar chart:

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

Cluster 1 contains 100% of the inputs from species 3 and 98% from species 2: One

input (2%) is missing. Cluster 2 contains 100% of the inputs from species 1 and the

single input from species 2 (the 2%). The silhouette plots for both clusters

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



3.5 Cluster Occupancies and the Iris Flower Example 193

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

show that cluster 2 is a good cluster with only one exceptionally small silhouette

value (that should correspond to the single input from species 2) in comparison to

the acceptable cluster 1 (from the viewpoint of silhouettes). If the number of clusters

is forced to be 3 (the natural choice for 3 species)

numberOfClusters=3;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]



194 3 Clustering

Number of clusters = 3

Cluster 1 : 57 members (38.%) with distance = 0.

Cluster 2 : 43 members (28.6667%) with distance = 17.5241

Cluster 3 : 50 members (33.3333%) with distance = 33.0051

the resulting cluster occupancies are:

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,90.,24.},{0.,10.,76.},{100.,0.,0.}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]



3.5 Cluster Occupancies and the Iris Flower Example 195

The clustering process now partitions the full inputs into three groups that mainly

represent the three species: But whereas cluster 3 now consists only of inputs from

species 1 (the species that was expected to separate) the clusters 1 and 2 are domi-

nated by species 2 and 3 respectively but still consist of inputs from the other species

due to the overlap of their inputs in space. An inspection of the cluster’s silhouette

widths

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



196 3 Clustering

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

confirms that cluster 3 is a good cluster and clusters 1 and 2 are only poor. The

situation remains similar if the number of fixed clusters is further increased:

numberOfClusters=6;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 6

Cluster 1 : 29 members (19.3333%) with distance = 0.



3.5 Cluster Occupancies and the Iris Flower Example 197

Cluster 2 : 19 members (12.6667%) with distance = 6.94575

Cluster 3 : 27 members (18.%) with distance = 13.4926

Cluster 4 : 25 members (16.6667%) with distance = 14.305

Cluster 5 : 28 members (18.6667%) with distance = 40.1159

Cluster 6 : 22 members (14.6667%) with distance = 41.9742

Two clusters (5 and 6) are spatially more separated from the others with larger

distances

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,14.,44.},{0.,38.,0.},{0.,0.,54.},{0.,48.,2.},{56.,0.,0.},{44.,0.,0.}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

and contain all inputs of species 1. Two other cluster (2 and 3) do only contain

inputs of one species: Cluster 2 only inputs from species 2 and cluster 3 only those

of species 3. But there are still two overlap clusters (1 and 4) that contain inputs from

species 2 as well as species 3. In summary it becomes clear that simple clustering is

not able to distinguish between the iris flower species 2 and 3 due to their overlap.



198 3 Clustering

3.6 White-Spot Analysis

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

Cluster occupancies may be used to systematically reveal white spots in a specific

set of inputs in comparison to an alternative set, i.e. spatial areas where a specific set

of inputs does not contain a relevant number of data but the alternative set of inputs

does. The following example shows two set of inputs (A and B) of different size and

different spatial distribution:

centroid1={0.3,0.7};

standardDeviation=0.05;

numberOfCloudInputs=200;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.7,0.3};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

centroid3={0.3,0.3};

cloudDefinition3={centroid3,numberOfCloudInputs,standardDeviation};

inputs3=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition3];

inputsA=Join[inputs1,inputs2,inputs3];

centroid1={0.35,0.65};

standardDeviation=0.05;

numberOfCloudInputs=50;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition1];

centroid2={0.75,0.25};

cloudDefinition2={centroid2,numberOfCloudInputs,standardDeviation};

inputs2=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition2];

centroid3={0.7,0.7};

cloudDefinition3={centroid3,numberOfCloudInputs,standardDeviation};

inputs3=

CIP‘CalculatedData‘GetDefinedGaussianCloud[cloudDefinition3];

inputsB=Join[inputs1,inputs2,inputs3];

argumentRange={0.0,1.0};

functionValueRange={0.0,1.0};

labels={"x","y","Inputs A and B"};

inputsAwithPlotStyle={inputsA,{PointSize[0.01],Green}};

inputsBwithPlotStyle={inputsB,{PointSize[0.01],Red}};

points2DWithPlotStyleList={inputsAwithPlotStyle,

inputsBwithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



3.6 White-Spot Analysis 199

If the input sets A and B are joined

inputs=Join[inputsA,inputsB];

classIndexMinMaxList={{1,Length[inputsA]},{Length[inputsA]+1,

Length[inputsA]+Length[inputsB]}}

{{1,600},{601,750}}

the first 600 inputs belong to inputs A and the next 150 inputs to inputs B. If the

joined inputs are partitioned into four clusters (the natural choice from visual in-

spection)

numberOfClusters=4;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Number of clusters = 4



200 3 Clustering

Cluster 1 : 250 members (33.3333%) with distance = 0.

Cluster 2 : 50 members (6.66667%) with distance = 0.385247

Cluster 3 : 200 members (26.6667%) with distance = 0.390721

Cluster 4 : 250 members (33.3333%) with distance = 0.565685

the expected result is obtained: Two of the four clusters are equally occupied (cluster

1 and 4)

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{33.3,33.3},{0.,33.3},{33.3,0.},{33.3,33.3}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

whereas clusters 2 and 3 do only contain inputs of one set. An inputs set is said to

contain a white spot if it occupies a detected cluster less than a threshold value in

comparison to another set of inputs. With a white spot threshold of 80% a white spot

is detected for inputs A (index 1) in cluster 2

threshold=80.0;

indexOfInputs=1;

CIP‘Cluster‘GetWhiteSpots[clusterOccupancies,indexOfInputs,

threshold]

{2}

and for inputs B (index 2) in cluster 3:



3.7 Alternative Clustering with ART-2a 201

indexOfInputs=2;

CIP‘Cluster‘GetWhiteSpots[clusterOccupancies,indexOfInputs,

threshold]

{3}

White spots or gaps detected in this way may advise further research strategies or

indicate subtle problems.

3.7 Alternative Clustering with ART-2a

Clear["Global‘*"];

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘ExperimentalData‘

<<CIP‘CalculatedData‘

As already mentioned there are numerous different clustering techniques available

based on entirely different principles. As an alternative to the k-medoids clustering

this section describes ART-2a clustering that is derived from neural-network-based

Adaptive Resonance Theory (ART, see [Carpenter 1991] and [Wienke 1994] for

details). ART-2a belongs to the open-categorical clustering techniques and is guided

by a so called vigilance parameter: Depending on an a priori defined vigilance a

corresponding number of clusters is created. The vigilance parameter can be varied

between 0 (rough clustering with little vigilance and a small number of resulting

clusters) and 1 (fine clustering with high vigilance and many resulting clusters).

The CIP default value is 0.1 which means low vigilant/relatively rough clustering. If

the number of clusters is a priori fixed for this method the corresponding vigilance

parameter that produces this a priori defined number of clusters is determined by

an iterative procedure. To get a quick insight about how ART-2a works equally

distributed two-dimensional inputs

SeedRandom[1];

inputs=Table[{RandomReal[{0.05,0.95}],RandomReal[{0.05,0.95}]},

{5000}];

argumentRange={0.0,1.0};

functionValueRange={0.0,1.0};

labels={"x","y","Inputs"};

allInputVectorsWithPlotStyle={inputs,{PointSize[0.01],Green}};

points2DWithPlotStyleList={allInputVectorsWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



202 3 Clustering

are forced to be grouped into three clusters:

numberOfClusters=3;

clusterMethod="ART2a";

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters,ClusterOptionMethod -> clusterMethod];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"ART2aDistanceDiagram","ART2aClusterStatistics"},clusterInfo]

Number of clusters = 3

Cluster 1 : 1712 members (34.24%) with angle = 0.

Cluster 2 : 1681 members (33.62%) with angle = 44.9804

Cluster 3 : 1607 members (32.14%) with angle = 90.

ART-2a produces 3 clusters of similar size. The difference between the clusters

is expressed in an angle value where a value of 0 means identity and a value of

90 means orthogonal clusters with maximum separation. This at first sight strange

terminology becomes clear if the 3 clusters are visualized:



3.7 Alternative Clustering with ART-2a 203

inputsOfClusterList=Table[

CIP‘Cluster‘GetInputsOfCluster[inputs,indexOfCluster,clusterInfo],

{indexOfCluster,numberOfClusters}];

colorList={Blue,Green,Red};

colorIndex=Length[colorList];

points2DWithPlotStyleList=Table[

colorIndex++;If[colorIndex>Length[colorList],colorIndex=1];

{inputsOfClusterList[[i]],{PointSize[0.01],

colorList[[colorIndex]]}},{i,Length[inputsOfClusterList]}];

labels={"x","y","Clusters in different colors"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

The three cluster angles of approximately 0, 45 and 90 degree are now intuitive:

ART-2a has only a radial view of the world. All inputs are projected internally to

a unit hypersphere around the origin so only radial differences between them are

taken into account (moreover the inputs are initially transformed so that the max-

imum angle between clusters is 90 degree and not 180). Therefore ART-2a will

be rather restricted for low dimensional clustering like the 2D example above. But

when it comes to high dimensional clustering tasks in hugh spaces this restriction

will become less important and ART-2a can demonstrate its strength: Speed! ART-

2a is a dramatically faster clustering method compared to k-medoids or k-means.

And speed becomes a critical parameter if very large data volumes with millions or

billions of inputs are to be clustered. If the iris flower inputs

inputsOfSpecies1=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies1[];

inputsOfSpecies2=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies2[];

inputsOfSpecies3=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies3[];

inputs=Join[inputsOfSpecies1,inputsOfSpecies2,inputsOfSpecies3];

classIndexMinMaxList={{1,50},{51,100},{101,150}};

are clustered with ART-2a and the CIP default vigilance parameter of 0.1



204 3 Clustering

clusterInfo=CIP‘Cluster‘GetClusters[inputs,

ClusterOptionMethod -> clusterMethod];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"ART2aDistanceDiagram","ART2aClusterStatistics"},clusterInfo]

Number of clusters = 3

Cluster 1 : 95 members (63.3333%) with angle = 0.

Cluster 2 : 5 members (3.33333%) with angle = 31.7532

Cluster 3 : 50 members (33.3333%) with angle = 90.

3 clusters are obtained. With a scan of the sensitivity of the resulting number of

clusters to the chosen vigilance parameter (which may vary between 0 and 1)

minimumVigilanceParameter=0.01;

maximumVigilanceParameter=0.99;

numberOfScanPoints=30;

art2aScanInfo=CIP‘Cluster‘GetVigilanceParameterScan[inputs,

minimumVigilanceParameter,maximumVigilanceParameter,

numberOfScanPoints];

CIP‘Cluster‘ShowVigilanceParameterScan[art2aScanInfo]



3.7 Alternative Clustering with ART-2a 205

a clear plateau for 3 clusters can be detected, i.e. 3 clusters is the natural choice of

the method for a wide range of vigilance values. A check of the cluster occupancies

of the 3 clusters

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,90.,100.},{0.,10.,0.},{100.,0.,0.}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

shows that species 1 is clearly separated into one cluster (3). One small cluster (2)

contains only some members of species 2 but the biggest cluster (1) contains nearly



206 3 Clustering

all members of species 2 and 3. So ART-2a is not able to distinguish between these

two species. A look at the silhouette widths of the clusters

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

indexOfCluster=2;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



3.7 Alternative Clustering with ART-2a 207

indexOfCluster=3;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]

show one good cluster (3) for the separable species 1, one medium cluster (2) with

only a few fairly separable inputs of species 2 and a very poor cluster (1) with the

mixed species 2 and 3 inputs. If the number of clusters is enforced to be six

numberOfClusters=6;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters,ClusterOptionMethod -> clusterMethod];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters",

"ART2aDistanceDiagram","ART2aClusterStatistics"},clusterInfo]

Number of clusters = 6

Cluster 1 : 62 members (41.3333%) with angle = 0.



208 3 Clustering

Cluster 2 : 5 members (3.33333%) with angle = 28.647

Cluster 3 : 33 members (22.%) with angle = 34.761

Cluster 4 : 1 members (0.666667%) with angle = 69.9521

Cluster 5 : 5 members (3.33333%) with angle = 73.796

Cluster 6 : 44 members (29.3333%) with angle = 90.

the situation does not improve significantly:

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo]

{{0.,58.,66.},{0.,10.,0.},{0.,32.,34.},{2.,0.,0.},{10.,0.,0.},{88.,0.,0.}}

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

Inputs of species 1 now purely occupy three neighbored clusters (4 to 6) but a better

separation of species 2 and 3 can not be achieved: They are now both distributed

among two clusters (1 and 3). Compared to the CIP k-medoids default clustering of

the iris flower inputs before the ART-2a based clustering is inferior with respect to

the separation of species 2 and 3: A result that is expected from its radial view of the

world for a problem with only 4 dimensions. A final example shows that things can

change if clustering is performed in an input’s space with many dimensions. Four

Gaussian clouds

numberOfGaussianClouds=4;

with a small standard deviation of 0.05 and 200 inputs each



3.7 Alternative Clustering with ART-2a 209

standardDeviation=0.05;

numberOfCloudInputs=200;

cloudVectorNumberList=Table[

numberOfCloudInputs,{numberOfGaussianClouds}];

are generated in a 50 dimensional input’s space at random positions:

numberOfDimensions=50;

inputs=CIP‘CalculatedData‘GetRandomGaussianCloudsInputs[

cloudVectorNumberList,numberOfDimensions,standardDeviation];

The first 200 inputs belong to cloud 1 (or class 1), the next 200 inputs belong to

cloud 2 (or class 2) etc. so the list with the min/max indices of the inputs for every

cloud (class) is as follows:

classIndexMinMaxList={{1,200},{201,400},{401,600},{601,800}};

The whole setup can no longer be visually inspected because of the 50 dimensions

but four small clouds of inputs in a hugh space should be easy to partition. If we

cluster the inputs with the CIP default method with an open number of clusters

clusterInfo=CIP‘Cluster‘GetClusters[inputs];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters"},clusterInfo]

Number of clusters = 4

we get four clusters where each cluster contains the inputs of one specific cloud as

may be shown by the cluster occupancies:

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo];

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]



210 3 Clustering

The overall minimum, mean and maximum silhouette values

silhouetteStatistics=CIP‘Cluster‘GetSilhouetteStatistics[inputs,

clusterInfo]

{0.783168,0.823311,0.848463}

reveal a perfect separation of the clusters which may in addition be confirmed by

the individual silhouette widths of the inputs of cluster 1:

silhouetteStatisticsForClusters=

CIP‘Cluster‘GetSilhouetteStatisticsForClusters[inputs,clusterInfo];

indexOfCluster=1;

CIP‘Cluster‘ShowSilhouetteWidthsForCluster[

silhouetteStatisticsForClusters,indexOfCluster]



3.7 Alternative Clustering with ART-2a 211

Now consider the ART-2a method: Its application with the default vigilance param-

eter of 0.1

clusterMethod="ART2a";

clusterInfo=CIP‘Cluster‘GetClusters[inputs,

ClusterOptionMethod -> clusterMethod];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters"},clusterInfo]

Number of clusters = 4

also leads to four perfect clusters which are identical to those found before (but of

course in another order)

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo];

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]

with the same silhouette statistics:

silhouetteStatistics=CIP‘Cluster‘GetSilhouetteStatistics[inputs,

clusterInfo]

{0.783168,0.823311,0.848463}

The sensitivity of the detected number of classes to a change in the vigilance

parameter is extremely low, i.e. there is a wide plateau region for four clusters

minimumVigilanceParameter=0.01;

maximumVigilanceParameter=0.90;



212 3 Clustering

numberOfScanPoints=20;

art2aScanInfo=CIP‘Cluster‘GetVigilanceParameterScan[inputs,

minimumVigilanceParameter,maximumVigilanceParameter,

numberOfScanPoints];

CIP‘Cluster‘ShowVigilanceParameterScan[art2aScanInfo]

which indicates that four clusters are the natural choice. In this case any inferiority

of the ART-2a method in comparison to the k-medoids method due to its restricted

radial perception of the world does no longer play a crucial role - but its higher

speed in fact does.

3.8 Clustering and Class Predictions

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘ExperimentalData‘

<<CIP‘Utility‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘DataTransformation‘

Clustering can be used to construct a class predictor, i.e. a tool that returns a class

number for an arbitrary input. Predictive tools are the holy grail of machine learning

and will be discussed in detail for supervised learning in chapter 4. But also an

unsupervised learning approach like clustering can be predictive to a certain extent.

To get a clear understanding of how a class predictor may be achieved consider the

following data:



3.8 Clustering and Class Predictions 213

centroidVector1={0.2,0.2};

numberOfCloudVectors=150;

standardDeviation=0.3;

cloudDefinition1={centroidVector1,numberOfCloudVectors,

standardDeviation};

inputs1=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition1];

centroidVector2={0.8,0.8};

cloudDefinition2={centroidVector2,numberOfCloudVectors,

standardDeviation};

inputs2=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition2];

points2DWithPlotStyle1={inputs1,{PointSize[0.02],Red}};

points2DWithPlotStyle2={inputs2,{PointSize[0.02],Green}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Inputs and their corresponding color classes"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

There are two classes of inputs where the inputs’ cloud of class 1 overlaps with

the inputs’ cloud of class 2. A class predictor tries to correctly predict the class that

corresponds to a specific input, i.e.corresponds to the coordinates of a specific point:

inputs=Join[inputs1,inputs2];

labels={"x","y","Inputs to be classified: Class 1 or 2?"};

plotStyle={PointSize[0.02],Blue};

points2DWithPlotStyle={inputs,plotStyle};

points2DWithPlotStyleList={points2DWithPlotStyle};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]



214 3 Clustering

For the current task a predictor with a success rate of 100% is obviously impossible

due to the clouds’ overlap. The best possible result seems to be a success rate of

about 90% correct predictions since the class predictions for the inputs in the over-

lapping region will be ambiguous which inevitably leads to classification errors. A

classification data set for both classes is generated (see chapter 1 for details)

cloudDefinitions={cloudDefinition1,cloudDefinition2};

classificationDataSet=

CIP‘CalculatedData‘GetGaussianCloudsDataSet[

cloudDefinitions];

and sorted ascending according its two classes

sortResult=CIP‘DataTransformation‘SortClassificationDataSet[

classificationDataSet];

sortedClassificationDataSet=sortResult[[1]];

with a corresponding min/max index list for the inputs assignment to their particular

class:

classIndexMinMaxList=sortResult[[2]]

{{1,150},{151,300}}

The length of the min/max list simply is the number of classes:

numberOfClusters=Length[classIndexMinMaxList]

2

As a next step the pure inputs of the classification data set are obtained



3.8 Clustering and Class Predictions 215

inputs=CIP‘Utility‘GetInputsOfDataSet[sortedClassificationDataSet];

and clustered according to the desired number of classes:

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

The resulting two clusters may be visualized with their centroids

indexOfCluster=1;

inputsOfCluster1=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.02],Red}};

indexOfCluster=2;

inputsOfCluster2=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.02],Green}};

properties={"CentroidVectors"};

centroids2D=

CIP‘Cluster‘GetClusterProperty[properties,clusterInfo][[1]];

centroids2DBackground={centroids2D,{PointSize[0.035],White}};

centroids2DWithPlotStyle1={centroids2D,{PointSize[0.03],Black}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,centroids2DBackground,

centroids2DWithPlotStyle1};

labels={"x","y","Clusters in different colors and their centroids"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

and the predictivity inspected:

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo];

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]



216 3 Clustering

As a result it becomes obvious that cluster 1 contains around 90% of the members

of class 1 and cluster 2 around 90% of the members of class 2. It is this finding that

may be utilized to construct a class predictor. If each cluster is simply characterized

by its centroid

CIP‘Cluster‘GetClusterProperty[{"CentroidVectors"},clusterInfo]

{{{0.182319,0.22501},{0.829217,0.835822}}}

and the centroid of cluster 1 is most predictive for class 1 then it can be assigned to

class 1. The centroid of cluster 2 is most predictive for class 2 so it is assigned to

this class. Now a class assignment for any arbitrary input may be obtained by simply

calculating its nearest centroid with a minimum euclidean distance. The attached

class assignment of this nearest centroid is then the predictive output. All the above

steps are collected in a single general method FitCluster

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

that generates a clusterInfo which can be used for class predictions, e.g.

input={0.1,0.5};

CIP‘Cluster‘CalculateClusterClassNumber[input,clusterInfo]

1

input={0.9,0.5};

CIP‘Cluster‘CalculateClusterClassNumber[input,clusterInfo]

2



3.8 Clustering and Class Predictions 217

Input (0.1, 0.5) belongs to class 1 and input (0.9, 0.5) to class 2. The overall class

prediction success rate for the whole data set

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

90.7% correct classifications

is around 90% as expected. The predictivity for each single class of the data set

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,clusterInfo]

is equally good since the classification task is symmetrical. For this specific example

the class predictor obtained from unsupervised learning is the best we can get from

the data: Also the in general more powerful supervised machine learning methods

will not perform any better in this case as will be shown in chapter 4. If the iris

flower classification problem is revisited

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

a clustering-based class predictor may be constructed in the same manner:

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

The overall classification success rate



218 3 Clustering

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

89.3% correct classifications

is found to be about 90% but it is quite different for the three species (classes):

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,

clusterInfo]

Whereas species (or class) 1 is 100% correctly predicted the results for the other two

species (classes) are clearly worse. This again is expected from the findings with the

iris flower data above that revealed overlap of the inputs for species 2 and 3. If the

ART-2a clustering method is used instead of the default k-medoids method

clusterMethod="ART2a";

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet,

ClusterOptionMethod -> clusterMethod];

the overall classification success rate

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

87.3% correct classifications

is a little inferior as expected and the class-based results



3.8 Clustering and Class Predictions 219

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,

clusterInfo]

exhibit a particularly poor prediction for species (class) 2. Note that the correct

classification rates are not necessarily equal to the corresponding cluster occupan-

cies: A class is predicted on the basis of the simple (euclidean) distance of an input

to its nearest cluster centroid whereas a clustering method is not necessarily cen-

troid based (e.g. the default k-medoids method is not and ART-2a isn’t either). The

sketched construction of a class predictor based on unsupervised learning is very ro-

bust, i.e. it works almost always for a classification data set without any problems.

But its predictive quality depends on the success of clustering with regard to the de-

sired class assignments: If this assignment is unambiguous the predictor is perfect

- otherwise the predictivity is limited up to extremely poor. A supervised learning

method is in general able to extract more from the data - with the risk of extracting

too much: Then the supervised learning method overfits the data which inevitably

leads to a loss of predictability. In contrast the robust unsupervised learning is not

prone to overfitting at all. It therefore can be regarded as a good start for a more de-

tailed data analysis as far as a classification task is in question. As a final remark it

should be noticed that the outlined construction process of a clustering-based class

predictor may be modified in numerous ways: A family of variants could be created

easily where each family member could be superior to another for a specific classifi-

cation task. The data analysis community loves this comparison of variants so do not

take this game too serious: It’s usually accompanied by a tremendous effort for only

incremental improvements which are most often not significant to a practitioner in

the lab. Therefore it is the basic ideas that count.



220 3 Clustering

3.9 Cookbook Recipes for Clustering

Clustering is a common first step in data analysis so the discussed topics may be

condensed into a few cookbook recipes:

• The start: Take the inputs and perform an open-categorical clustering with your

default method of choice. The clustering result suggests an optimum number of

clusters. If you have any feeling or even knowledge about the true number of

clusters you get some insight about success of failure of the clustering method

chosen. Use alternative clustering methods: Do the results coincide? If not, why

not? For example a comparison of k-medoids with ART-2a may reveal interesting

aspects of the structural features of the inputs in question due to the fundamental

differences of both methods. At the end you should at least have a structural

feeling about your inputs - and may it be that there is nothing like a structure.

• Cluster inspection: Assess the quality of the detected clusters e.g. with silhou-

ette widths plots. There may be good as well as poor clusters with all graduations

in between. A closer look at each cluster is also sensible if the number of clusters

is varied to different fixed values.

• Representatives:Clustering may be utilized to get a reduced set of representa-

tives for the whole inputs. Cluster-based representatives have the advantage of

being uniformly distributed over the whole inputs’ space so they cover approxi-

mately the same spatial diversity as the complete inputs. But be aware that any

method of data reduction looses information: This loss may be crucial for later

failure.

• Comparison of inputs: Inputs of different sources may be compared by clus-

tering techniques to reveal similarities as well as white spots. Both may have an

important heuristic relevance and motivate further research.

• Classification tasks: If your final goal is a class predictor on the basis of a clas-

sification data set try pure unsupervised learning to construct one. A clustering-

based class predictor is usually a good start for the more elaborate supervised

machine learning methods. And note: If the clustering-based class predictor per-

forms well there is no need for the more elaborate methods: You are perfectly

done!

A final statement of warning may always be kept in mind: A clustering method may

yield an intuitive, expected and reasonable result in some cases but not in others.

That means that a clustering process may not be helpful at all or even worse: It

may be misleading! Since clustering always works it always generates a result - no

matter how appropriate this is. A principle problem is the fact that visual inspection

is usually not possible for clustering inputs of dimensions higher than 2 or 3. The

application of a specific clustering method should therefore be validated as thorough

as possible.



Chapter 4

Machine Learning

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘SVM‘

Machine learning methods are applied when Kinput/output (I/O) pairs

(

x1,y1

)

, ...,
(

xK ,y
K

)

of inputs

xk = (xk1,xk2, ...,xkM) ; k = 1, ...,K

and corresponding outputs

y
k
= (yk1,yk2, ...,ykN) ; k = 1, ...,K

are available but the model functions fi that map the input vectors onto the output

vectors

yi = fi (x1, ...,xM) ; i = 1, ...,N

or in compact vector notation

y = f (x)

are completely unknown: Machine learning tries to approximate these unknown

model functions fi on the basis of the provided I/O data. This situation is

A. Zielesny: From Curve Fitting to Machine Learning, ISRL 18, pp. 221–380.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



222 4 Machine Learning

comparable to 2D data smoothing discussed in chapter 2 but now takes place in

many more dimensions. To illustrate an example a function with two arguments

f (x,y) is used to generate 100 normally distributed erroneous data around it (note

that the function used is known to be difficult to be approximated and thus is re-

garded as a benchmark for machine learning approaches, see [Cherkassy 1996]):

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

numberOfDataPerDimension=10;

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels]

The task of the machine learning process is to create an approximate model function

from the pure I/O data

CIP‘Graphics‘Plot3dDataSet[dataSet3D,labels]



4 Machine Learning 223

without any knowledge about the original function used for the data generation

(which is the fundamental difference to pure curve fitting of chapter 2 where

the model function was at least structurally known). As a possible method for

machine learning a so called support vector machine (with a specific so called

kernel function) is chosen to perform the fitting task :

kernelFunction={"Wavelet",0.3};

svmInfo=CIP‘SVM‘FitSvm[dataSet3D,kernelFunction];

Since no error messages were thrown the successful machine learning result is con-

densed in a svmInfo data structure which can be used for further analysis. The

approximated model function may be checked by visual inspection

pureSvm3dFunction=

Function[{x,y},CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureSvm3dFunction,labels]



224 4 Machine Learning

and related quality-of-fit plots

CIP‘SVM‘ShowSvmSingleRegression[{"ModelVsDataPlot",

"AbsoluteSortedResidualsPlot","RMSE"},dataSet3D,svmInfo]



4 Machine Learning 225

Root mean squared error (RMSE) = 9.279×10-2

to be of excellent quality: The residuals (i.e. the deviations between the calculated

values of approximated model function and the initially generated erroneous output

values of the data set) and the RMSE are in perfect agreement with the standard

deviation (error) of 0.1 used above for the data generation. In addition there are

no systematic deviations in the residuals plot. Original and approximated model

function may also be overlayed to reveal only minor deviations:

originalFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureOriginalFunction,xRange,yRange,labels];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]



226 4 Machine Learning

This confirms the impressive approximation success of the used machine learning

method. But any enthusiasm should be complemented with a direct statement of

warning: If a different support vector machine is used (with an inappropriate kernel

function - and there is in general no way to know a good kernel function in advance)

kernelFunction={"Wavelet",2.0};

svmInfo=CIP‘SVM‘FitSvm[dataSet3D,kernelFunction];

the result is a mere disaster

pureSvm3dFunction=Function[

{x,y},CalculateSvm3dValue[x,y,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,pureSvm3dFunction,

labels]

with a completely unsatisfying quality:

CIP‘SVM‘ShowSvmSingleRegression[{"ModelVsDataPlot",

"AbsoluteSortedResidualsPlot","RMSE"},dataSet3D,svmInfo]



4 Machine Learning 227

Root mean squared error (RMSE) = 8.796×10-1

Welcome to machine learning! Always keep in mind that machine learning is (and

unfortunately remains) a lot of laborious trial and error. It opens a space with fan-

tastic opportunities but may often lead to dramatic failure. Since pairs of inputs

xk = (xk1,xk2, ...,xkM) and corresponding outputs y
k
= (yk1,yk2, ...,ykN) are manda-

tory for machine learning its training (or optimization) process is called supervised

learning where the learning is controlled (or supervised) by the known outputs - in

contrast to the unsupervised clustering of inputs without any control discussed in

chapter 3. Machine learning may address a regression or a classification task and

usually involves multidimensional input and output vectors (i.e. N and M are usu-

ally substantially larger than one). As already mentioned it may be regarded as a

generalization of 2D data smoothing (with N and M equal to one, see chapter 2) to

multiple dimensions. Note that errors of the y data are usually not taken into account

since machine learning lacks a sound statistical basis due to the missing knowledge

of the model functions’ structures. In this chapter three machine learning methods

are sketched: Multiple linear regression (MLR), three-layer perceptron-type neural



228 4 Machine Learning

networks (perceptrons) and support vector machines (SVM). MLR is usually not

accounted as a machine learning technique but perfectly fits into this chapter as a

linear start. Perceptrons and SVMs are prominent machine learning methods and are

widely used (not only) in science and engineering. For a successful application of

machine learning unfortunately a lot of subtleties have to be taken into consideration

and a lot can go wrong. But when these issues can be successfully tackled and the

provided data are suitable machine learning can reveal its magic to the practitioner. It

may provide substantial support in finding intricate relationships and hidden optima.

Chapter 4 starts with a brief sketch of the basic principles of machine learning

(section 4.1). The different machine learning methods used in this chapter, i.e. MLR,

three-layer perceptrons and SVMs, are summarized afterwards (section 4.2). The as-

sessment of the goodness of a machine learning result is an essential step so some

quantities and plots are described that are helpful for analyzing the outcomes of re-

gression and classification tasks (section 4.3 and 4.4). The necessity of non-linear

machine learning methods is established with a real world modelling example at the

borderline of non-linearity: A fit to adhesive kinetics data (section 4.5). Also the

phenomenon of overfitting is encountered and illustrated. Non-linear decision sur-

faces for classification tasks are demonstrated afterwards (section 4.6). Supervised

classification does not necessarily aim to be a 100% correct. For ambiguous data

a reduced success rate may be the superior choice. This general insight is outlined

and directs the discussion to the problem of validating predictions (section 4.7). The

partitioning of a data set into a training and a test set to address the validation is-

sue evokes basic questions regarding the size and the selection of these sets. This

is explored with a closer look at different selection heuristics and their success or

failure (section 4.8). There are different methods available for a specific machine

learning task: Comparative aspects are sketched and discussed for SVMs and per-

ceptrons (section 4.9). The relevance of each component of an I/O pair’s input can

be analyzed by a successive leave-one-out procedure. In this way the number of

input components may be reduced which simplifies learning (section 4.10). Pattern

recognition is an important application of supervised machine learning. A simple ex-

ample concerning the detection of face types sketches possible issues and subtleties

(section 4.11). Machine learning as an optimization process is guided by several

technical parameters. Their influence is exemplified (section 4.12). Final cookbook

recipes for machine learning and an appendix with a full-blown classification appli-

cation (practitioners can not get enough examples!) close this chapter (sections 4.13

and 4.14).

4.1 Basics

Clear["Global‘*"];

<<CIP‘Perceptron‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

<<CIP‘DataTransformation‘



4.1 Basics 229

In order to get a principle understanding about how machine learning methods work

the inverse procedure to machine learning is followed and illustrated in two dimen-

sions for simplicity (it may readily be generalized to an arbitrary number of dimen-

sions of course). The starting point is an elementary function in form of a so called

bump: A bump has a value greater than zero in its bump region and a value close to

zero elsewhere. Here is an example of a two-dimensional bump around x = 6:

interval={5.,7.};

pureSigmoid1=Function[x,SigmoidFunction[x-interval[[1]]]];

pureSigmoid2=Function[x,SigmoidFunction[x-interval[[2]]]];

pureBump=Function[x,BumpFunction[x,interval]];

pureFunctions={pureSigmoid1,pureSigmoid2,pureBump};

argumentRange={-5.0,20.0};

plotRange={0.0,1.0};

plotStyle={{Thickness[0.001],Orange},{Thickness[0.001],Orange},

{Thickness[0.005],Green}};

labels={"x","y","Sigmoid functions and resulting bump"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

The bump is the difference between two sigmoid threshold functions on the left and

right which themselves perform a transition from zero to one at a distinct x value.

Perceptron-type neural networks are composed of logical neurons that work with

sigmoid threshold functions: If logical neurons are combined in a network they are

able to produce bumps. By added overlay of several bumps (or other elementary

functions in general) an arbitrarily complex non-linear result function can be created:

interval1={0.,8.};

pureBump1=Function[x,BumpFunction[x,interval1]];

interval2={11.,13.};

pureBump2=Function[x,BumpFunction[x,interval2]];

interval3={10.,22.};



230 4 Machine Learning

pureBump3=Function[x,BumpFunction[x,interval3]];

interval4={25.,29.};

pureBump4=Function[x,BumpFunction[x,interval4]];

pureBumpSum=Function[x,BumpFunction[x,interval1]+

BumpFunction[x,interval2]+BumpFunction[x,interval3]+

BumpFunction[x,interval4]];

pureFunctions={pureBump1,pureBump2,pureBump3,pureBump4,pureBumpSum};

argumentRange={-10,40};

plotRange={0.0,1.5};

plotStyle={{Thickness[0.001],Green},{Thickness[0.001],Green},

{Thickness[0.001],Green},{Thickness[0.001],Green},

{Thickness[0.005],Red}};

labels={"x","y","Result function of added bumps"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

As a last step we simulate 100 error-biased data points around the result function.

Since this demonstration is in 2 dimensions xy-error data with the CIP Calculated-

Data package are generated with an error (standard deviation) of 0.025:

numberOfData=100;

standardDeviationRange={0.025,0.025};

simulatedDataArgumentRange={0.0,30.0};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureBumpSum,

simulatedDataArgumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Simulated data around result function"};

pointSize=0.02;

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

pureFunctions,argumentRange,plotRange,plotStyle,labels,

GraphicsOptionPointSize -> pointSize]



4.1 Basics 231

All machine learning methods try to perform the opposite work flow: They start

with the data (pairs of input/ouput vectors (x,y) in general) and construct a combi-

nation of elementary functions like bumps to produce approximate model functions

fi that describe the input/output mapping y = f (x) of the data. The different ma-

chine learning methods only differ in the elementary functions they use and in the

way they construct adequate model functions fi with them in the data region. From

a mathematical point of view the construction process is an optimization procedure.

For a rough schematic picture an approximate model function fi may be written as

a weighted sum of the known elementary functions giv (x) (but note that a specific

machine learning method may not use a simple weighted sum at all, see below):

fi (x) = ∑v civgiv (x)

The optimization procedure then tries to find the optimum coefficients (weights) c
opt
iv

for an optimum combination to obtain an optimum approximated model function

f
opt
i which describes the input/output mapping y = f (x) as good as possible:

f start
i (x) = ∑v cstart

iv giv (x)
Optimization Procedure

→ f
opt
i (x) = ∑v c

opt
iv giv (x)

To perform the optimization the concrete iterative procedure of a machine learning

method has to search for the global optimum of a specific hyper surface that is de-

termined by the method’s principal setup. This kind of unconstrained or constrained

non-linear optimization in many dimensions belongs to the most demanding math-

ematical tasks known today and the development of new optimization methods is

an active field of research. To close the circle of the example above the simulated

erroneous data are used to approximate the result function with a machine learning

method. Since xy-error data can not be used as an input of CIP machine learning

methods they are transformed to a data set structure by a conversion method from

the CIP DataTransformation package:



232 4 Machine Learning

dataSet=

CIP‘DataTransformation‘TransformXyErrorDataToDataSet[xyErrorData];

In this form the error-biased data are fitted by a three-layer perceptron-type neural

network (all details will be discussed in a minute)

numberOfHiddenNeurons=8;

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[dataSet,numberOfHiddenNeurons];

to create an approximated model function in the data region:

purePerceptronFunction=

Function[x,CalculatePerceptron2dValue[x,perceptronInfo]];

AppendTo[pureFunctions,purePerceptronFunction];

AppendTo[plotStyle,{Thickness[0.005],Black}];

labels={"x","y","Approximated model function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

pureFunctions,argumentRange,plotRange,plotStyle,labels,

GraphicsOptionPointSize -> pointSize]

It is apparent that the approximated model function describes the data very well:

There is no visible difference to the original result function inside the data re-

gion (but of course outside). A plot of the absolute sorted residuals support the

assessment of a perfect fit:

CIP‘Perceptron‘ShowPerceptronSingleRegression[

{"AbsoluteSortedResidualsPlot","RMSE"},dataSet,perceptronInfo]



4.1 Basics 233

Root mean squared error (RMSE) = 2.256×10-2

Also the RMSE is in very good agreement with the standard deviation (error) of

0.025 used above to generate the normally distributed data. Note again that no in-

formation about the original result function was passed to the machine learning

method: It just used the data and a structural parameter for the network topology (the

number of hidden neurons). From the sketched nature of the model function con-

struction process performed by machine learning some fundamental insights may

be deduced:

• Universal function approximation: The combination of adequate elementary

functions (like the bumps above) may describe an arbitrarily complex non-linear

result function, i.e. machine learning techniques can in principle model every-

thing no matter how non-linear or complex the model function is ought to be:

In this sense they are computationally universal, i.e. machine learning methods

perform universal function approximation. Although mathematically there are

specific restrictions for different machine learning methods for all practical pur-

poses this fundamental statement remains valid. It explains the power of these

methods and their wide range of applicability.

• Structural Failure: Number or nature of the elementary functions may be inade-

quate for a specific modelling problem so the modelling effort will fail inevitably.

This problem is in close connection to ...

• The problem of overfitting: Think about the simplest solution for a machine

learning method to perfectly describe the input/output mapping of data: Just build

a sharp bump for every datum. Despite the fact that the resulting model function

would be perfect for the (training) data it would be in general completely useless

for predictions. But satisfactory predictions are the final goal of machine learning

methods: A machine learning method that builds a model function that describes

the data well but that has no generalization or prediction abilities is said to overfit

the (training) data.



234 4 Machine Learning

• Technical Failure: Non-linear optimization techniques as iterative numerical

algorithms may fail to find the global or even a local optimum for numerous

reasons (compare chapter 1).

• No extrapolation abilities: Since elementary functions like bumps are zero or

have arbitrary values outside the data region where they are constructed it is

obvious that model functions created by machine learning methods can not be

used for extrapolation purposes. So only interpolation may be performed with

success.

Failure and overfitting are severe problems of all machine learning methods: Some

strategies to tackle these issues are discussed throughout this chapter.

4.2 Machine Learning Methods

Machine learning methods require the a priori definition of two types of parameters

for successful operation:

• Structural parameters: These parameters determine fundamental structural

features of the method like the kernel function for support vector machines or

the number of hidden neurons for three-layer perceptron-type neural networks.

Within CIP these parameters must be explicitly passed via a method’s signature.

• Technical optimization parameters: They guide the technical details of the op-

timization process like the maximum-number-of-iterations parameter which sets

an absolute upper bound to the number of optimization steps. CIP has default

values for all optimization parameters but they may be modified via options. Un-

fortunately the modification of optimization parameters is often necessary since

the default values can not be optimum choices for all cases.

The setting of parameters is guided by experience and rules of thumb since a theo-

retically based choice is not possible in general. So machine learning is inevitably a

lot of educated trial and error.

4.2.1 Multiple Linear Regression (MLR)

As already mentioned multiple linear regression (MLR) is usually not accounted

as a machine learning technique since this method is not able to construct non-

linear model functions in principal. Thus its applicability is extremely limited but a

valuable point of start to dig into a non-linear regression or classification task. MLR

fits into the general scheme of input/output mapping

y = f (x)



4.2 Machine Learning Methods 235

but the model functions fi it is able to construct are restricted to be hyperplanes. So

each MLR model function fi can be written as

yi = fi (x1,x2, ...,xM) = ∑M
h=1 aihxh + aiM+1 ; i = 1, ...,N

the general form a hyperplane in M + 1 dimensions. MLR may be regarded as the

multidimensional analog to fitting a straight line in two dimensions. The parameters

aih are determined by least squares minimization with the linear model functions fi

(compare the curve fitting chapter 2 and see [Edwards 1976], [Edwards 1979] and

[Chatterjee 2000] for details)

∑K
k=1

(

y
(k)
i − fi

(

x
(k)
1 ,x

(k)
2 , ...,x

(k)
M

))

2 −→ minimize!

∑K
k=1

(

y
(k)
i −

(

∑M
h=1 aihx

(k)
h + aiM+1

))

2 −→ minimize!

where K denotes the number of I/O pairs of the data set, y
(k)
i is the output com-

ponent i of the I/O pair k and x
(k)
h is the input component h of the I/O pair k. I/O

pair k is
(

x(k),y(k)
)

with input vector x(k) =
(

x
(k)
1 ,x

(k)
2 , ...,x

(k)
M

)

and output vector

y(k) =
(

y
(k)
1 ,y

(k)
2 , ...,y

(k)
M

)

. Note that the inflation of indices is an unlovely necessity

to uniquely characterize every quantity in use: The only ray of hope is that they are

used consistently throughout this chapter - but the situation is even getting harder in

the next sub section.

MLR does not contain any structural parameters since the structure of its model

function is fixed to be a hyperplane. The linear restriction on the other hand implies

that MLR is not at all prone to overfitting - a severe problem of the non-linear meth-

ods already mentioned above and discussed thoroughly below. In addition MLR may

be used for extrapolation purposes which may not be tackled with the non-linear

methods in principle. MLR is very fast on today’s computers (it often performs

within seconds being orders of magnitude faster than the non-linear methods) but of

course not computationally universal: In fact its range of applicability is extremely

limited in general. So as a rule of thumb a MLR based regression or classification

approach should always be a first (fast) step before applying more powerful machine

learning methods like perceptrons or SVMs. If MLR is successful there is no need

for the more subtle and more error-prone non-linear methods. If not one may at least

get a feeling of the degree of non-linearity involved in the regression or classifica-

tion task in question. Note that for every component of an output vector one single

MLR minimization is performed, e.g. for outputs of dimension five (i.e. output vec-

tors with five components) there are five MLR minimizations to be performed. With

CIP all MLR tasks are performed with the FitMlr command (see [FitMlr] in the

references for implementation details).



236 4 Machine Learning

4.2.2 Three-Layer Perceptron-Type Neural Networks

Clear["Global‘*"];

<<CIP‘Perceptron‘

<<CIP‘Graphics‘

<<CIP‘CalculatedData‘

<<CIP‘DataTransformation‘

Perceptron-type neural networks consist of layers of logical neurons (see [Hertz

1991], [Freeman 1993] and [Rojas 1996]). A three-layer perceptron thus consists

of three layers of logical neurons: The input layer, one hidden layer and the out-

put layer. The neurons interact feed-forward only, i.e. a neuron in the input layer is

exclusively connected to (all) the neurons of the hidden layer and a neuron in the

hidden layer exclusively to (all) the neurons of the output layer. Thus the flow of

information is restricted to happen from the input to the hidden and from the hidden

to the output layer. A logical neuron of the hidden or the output layer is mathemati-

cally simply characterized: It sums up its weighted inputs wiui (i.e. the outputs from

all of its preceding layer neurons), then subtracts a threshold Θ and passes the result

to a so-called activation function g to calculate its own output a:

a = g(∑l wlul −Θ)

The (generally non-linear) activation function may be the sigmoid function

g(x) = 1
1+exp{−x}

already sketched in the previous section so the whole logical neuron acts as a non-

linear threshold element: Its argument

∑l wlul −Θ

determines the position of the threshold. If an input x(k) =
(

x
(k)
1 ,x

(k)
2 , ...,x

(k)
M

)

of

the kth I/O pair of the data set is fed into a three-layer perceptron each of the M

neurons of the input layer take their corresponding input component from x
(k)
1 to

x
(k)
M as their output (it may be noticed that again the index overkill starts: These

details may be skipped and only paid attention to by those who want to follow

them. This confusing notation is one of the reasons why mathematicians invented

the more abstract notation of linear algebra - which on the other hand is too abstract

for most scientists). The outputs of the following L hidden layer neurons can then

be computed from the M outputs of the input layer neurons

a
(k)(hidden)
j = g

(

∑M
h=1 w

(input→hidden)
h j x

(k)
h −Θ

(hidden)
j

)

; j = 1, ...,L



4.2 Machine Learning Methods 237

where a
(k)(hidden)
j is the output of the jth neuron of the hidden layer for the input

x(k) of the kth I/O pair of the data set. The matrix of weights w
(input→hidden)
h j

and the

thresholds Θ
(hidden)
j set the specific connections between the input and the hidden

layer neurons. In a final step the outputs of the N output neurons are calculated with

the L hidden layer neurons outputs

a(k)(hidden) =
(

a
(k)(hidden)
1 ,a

(k)(hidden)
2 , ...,a

(k)(hidden)
L

)

in the same manner

b
(k)(output)
i = g

(

∑L
j=1 w

(hidden→output)
ji a

(k)(hidden)
j −Θ

(output)
i

)

; i = 1, ...,N

where b
(k)(output)
l is the output of the lth neuron of the output layer for the input x(k)

of the kth I/O pair of the data set. By inserting the expression for the a
(k)(hidden)
j from

above the cumulative computational formula for a three-layer-perceptron results to

b
(k)(output)
i = g

(

∑L
j=1 w

(hidden→output)
ji g

(

∑M
h=1 w

(input→hidden)
h j

x
(k)
h

−Θ
(hidden)
j

)

−Θ
(output)
i

)

i = 1, ...,N

where every network output b
(k)(output)
i should approximate the corresponding I/O

pairs’s output component y
(k)
i of the data set. The apparent sum of weighted sigmoid

threshold functions within the cumulative computational formula for a three-layer-

perceptron

∑L
j=1 w

(hidden→output)
ji g(...)

is the mathematical basis for the internal construction of the bumps mentioned in

the previous section where the network parameters (the weights w and thresholds

Θ ) determine their forms and positions. If we remember the basic task of a machine

learning method to approximate the unknown model functions fi (see above)

yi = fi (x1, ...,xM) ; i = 1, ...,N

the concrete approach of a three-layer-perceptron can now be identified: The un-

known model functions are expressed as

fi (x1, ...,xM) = b
(k)(output)
i



238 4 Machine Learning

fi (x1, ...,xM) = g
(

∑L
j=1 w

(hidden→output)
ji g

(

∑M
h=1 w

(input→hidden)
h j

xh −Θ
(hidden)
j

)

−Θ
(output)
i

)

i = 1, ...,N

where it may be shown by rigorous mathematical proof that this approach is ca-

pable of approximating any arbitrarily complex and difficult function to any de-

sired degree of accuracy (with some negligible restrictions for most practical pur-

poses): This is what the above mentioned computational universality essentially

means. Note that the previous section used the more plausible bump illustration

to demonstrate this same finding. The entire computed output of the network

b(k)(output) =
(

b
(output)
1 ,b

(output)
2 , ...,b

(output)
M

)

for an input x(k) =
(

x
(k)
1 ,x

(k)
2 , ...,x

(k)
M

)

can finally be compared to the corresponding output y(k) =
(

y
(k)
1 ,y

(k)
2 , ...,y

(k)
M

)

of the

data set. It is common to define a type of cost function C like the mean squared error

MSE

CMSE = 1
KN ∑K

k=1 ∑N
i=1

(

y
(k)
i −b

(k)(output)
i

)

2

to quantify the difference between the outputs b(k)(output) of the network and the

desired outputs y(k) for the whole data set. Note that the cost function CMSE is

a function of the network parameters, i.e. a function of all the weights w and

thresholds Θ of the network:

CMSE = CMSE(w
(input→hidden)
11 , ...,w

(input→hidden)
ML ,

Θ
(hidden)
1 , ...,Θ

(hidden)
L ,

w
(hidden→output)
11 , ...,w

(hidden→output)
LN ,

Θ
(output)
1 , ...,Θ

(output)
N )

The smaller the value of the cost function CMSE the better the perceptron approxi-

mates the desired outputs y(k) of the data set. So the network parameters should be

adjusted to minimize CMSE

CMSE = CMSE(network parameters) −→ minimize!

or: Supervised learning with a perceptron is nothing but an unconstrained global

minimization of the hyper surface CMSE (see Appendix A and [FitPerceptron] in the

references for details about the algorithms used by the CIP method FitPerceptron).

The number of internal network parameters of a three-layer perceptron is



4.2 Machine Learning Methods 239

(M ×L) weights w
(input→hidden)
i j plus

L thresholds Θ
(hidden)
j plus

(L×N) weights w
(hidden→output)
jl plus

N thresholds Θ
(output)
N

so a network with 3 input neurons, 10 hidden neurons and 2 output neurons contains

(3×10)+ 10 +(10×2)+2 = 62

internal network parameters. Hence the minimization of CMSE is an unconstrained

global minimization problem in 62 dimensions in this case. Since the number of

neurons of the input and output layer is equal to the number of components of the

inputs and outputs of the data set’s I/O pairs the central structural parameter of a

three-layer perceptron is the number of neurons of the hidden layer. The larger this

number the more bumps the perceptron is able to create but also the more inter-

nal parameters are to be optimized. Thus the learning task (the unconstrained global

minimization of CMSE) will become more difficult. In general a more difficult model

function to approximate requires an increasing number of hidden neurons. But an

increase of the number of hidden neurons also boosts the network’s tendency to

overfitting. Therefore in practice this central structural perceptron parameter should

be kept as small as possible but large enough to fulfill the learning task. To demon-

strate the crucial role of the number of hidden neurons the perfect perceptron fit of

the previous section is performed with a reduced number of hidden neurons. After

restoration of the settings

interval1={0.,8.};

pureBump1=Function[x,BumpFunction[x,interval1]];

interval2={11.,13.};

pureBump2=Function[x,BumpFunction[x,interval2]];

interval3={10.,22.};

pureBump3=Function[x,BumpFunction[x,interval3]];

interval4={25.,29.};

pureBump4=Function[x,BumpFunction[x,interval4]];

pureBumpSum=Function[x,BumpFunction[x,interval1]+

BumpFunction[x,interval2]+BumpFunction[x,interval3]+

BumpFunction[x,interval4]];

pureFunctions={pureBump1,pureBump2,pureBump3,pureBump4,pureBumpSum};

argumentRange={-10,40};

plotRange={0.0,1.5};

numberOfData=100;

standardDeviationRange={0.025,0.025};

simulatedDataArgumentRange={0.0,30.0};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureBumpSum,

simulatedDataArgumentRange,numberOfData,standardDeviationRange];

dataSet=CIP‘DataTransformation‘TransformXyErrorDataToDataSet[

xyErrorData];



240 4 Machine Learning

the training (optimization) with a reduced number of three hidden neurons

numberOfHiddenNeurons=3;

perceptronInfo=

CIP‘Perceptron‘FitPerceptron[dataSet,numberOfHiddenNeurons];

is successful but an adequate fit of the data fails which can be detected by visual

inspection of the approximated model function:

purePerceptronFunction=

Function[x,CalculatePerceptron2dValue[x,perceptronInfo]];

AppendTo[pureFunctions,purePerceptronFunction];

plotStyle={{Thickness[0.001],Green},{Thickness[0.001],Green},

{Thickness[0.001],Green},{Thickness[0.001],Green},

{Thickness[0.005],Red},{Thickness[0.005],Black}};

labels={"x","y","Approximated model function"};

pointSize=0.02;

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

pureFunctions,argumentRange,plotRange,plotStyle,labels,

GraphicsOptionPointSize -> pointSize]

This failure can not be traced to technical optimization problems in this case: The

resulting model function is the optimum of a perceptron with the defined topology,

i.e. the defined number of hidden neurons. It is the reduced structural complexity

of the perceptron that does not allow the construction of an adequate approximate

model function to successfully describe the data. The network is simply not able to

produce enough bumps. But if three hidden neurons are not enough and eight hidden

neurons are sufficient what is the minimum value of this structural parameter for a

satisfactory fit? Unfortunately this has to be evaluated by educated trial and error

since there is in general no way to calculate the necessary number of hidden neu-

rons from theoretical considerations in advance (this is why this problem remains



4.2 Machine Learning Methods 241

an active field of research). Finally there are two ways a perceptron training may

be performed: One perceptron is trained for every output component of an output

vector, i.e. each single perceptron has only one output neuron that corresponds to

one single component of an I/O pair’s output, or one perceptron is trained with a

complete output layer where each output neuron corresponds to a component of

an I/O pair’s output: Then the number of output neurons is equal to the number of

components of an I/O pair’s output. The first choice is in general more powerful

but also computationally more demanding. As already shown within CIP the FitPer-

ceptron command performs all perceptron related machine learning operations (see

[FitPerceptron] in the references for implementation details).

4.2.3 Support Vector Machines (SVM)

Clear["Global‘*"];

<<CIP‘Graphics‘

<<CIP‘SVM‘

A (regression) support vector machine (SVM) places an a priori defined elemen-

tary function at the position of every input of the data set to be learned. In SVM

terminology an admissible elementary function is called a kernel function since it

must satisfy a specific mathematical condition (Mercer’s condition) to be usable as

a kernel. The already touched Wavelet kernel (with a width parameter of 0.1) may

be illustrated in three dimensions (note the mexican-hat shape)

a=0.1;

pureWaveletKernel3D=

Function[{x,y},CIP‘SVM‘KernelWavelet[{x},{y},a]];

xRange={-0.2,0.2};

yRange={-0.2,0.2};

labels={"x","y","z"};

viewPoint3D={-1.3,-2.5,1.5};

CIP‘Graphics‘Plot3dFunction[pureWaveletKernel3D,xRange,yRange,

labels,GraphicsOptionViewPoint3D -> viewPoint3D]



242 4 Machine Learning

which reduces to

x=0.0;

pureWaveletKernel2D=Function[y,CIP‘SVM‘KernelWavelet[{x},{y},a]];

argumentRange={-0.7,0.7};

functionValueRange={-0.4,1.1};

labels={"x","z","Wavelet kernel function"};

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

if the Wavelet kernel is fixed to a position (in this case to x = 0): Its bump character

is obvious. The wavelet parameter a controls the width of the bump, i.e. a higher

value of the wavelet width parameter a leads to a widened bump:



4.2 Machine Learning Methods 243

a=0.3;

waveletKernel=Cos[1.75*(x-y)/a]* Exp[-(x-y)^2/(2*a^2)];

x=0.0;

pureWaveletKernel2D=Function[x1,waveletKernel/.y->x1];

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

The necessary a priori definition of the kernel function with a fixed width parameter

a thus influences the possible smoothness of the resulting model function, e.g. a

higher value for a inevitably leads to a smoother model function. A (regression)

SVM approximates the unknown model functions fi with weighted sums of the

kernel functions g
(kernel)
i

(

x(k),x
)

at all Kinput positions x(k) of the data set plus a

constant value b (the regression bias):

yi = fi (x1,x2, ...,xM) = ∑K
k=1 αikg

(kernel)
i

(

x
(k)
1 ,x

(k)
2 , ...,x

(k)
M ,x1,x2, ...,xM

)

+ bi

i = 1, ...,N

or more compact:

y = f (x) = α ·g(kernel)
(

x(k),x
)

+ b

Since the kernel function must be a priori chosen (it is a precondition to the method)

the task of a (regression) SVM is to determine optimum weights αopt
ik and optimum

regression biases b
opt
i to approximate the unknown model functions fi (x). Com-

pared to the perceptron approach above the SVM’s strategy seems to be intuitively

simple and straightforward - but there is a solid theoretical basis (statistical learn-

ing theory) with a sophisticated mathematical machinery (quadratic programming)



244 4 Machine Learning

behind the scenes (see [Vapnik 1995], [Vapnik 1998], [Schölkopf 1998], [Gunn

1998], [Schölkopf 1999], [Cristianini 2000], [Schölkopf 2002] and [Bishop 2006]

for details). The magic of a SVM comes from the fact that it allows the definition of a

constrained objective function which can be globally maximized without the risk of

being trapped in a local maximum in order to successfully determine (structurally)

optimum values of the parameters αopt
ik and b

opt
i . This is a fundamental difference to

the (empirical) cost function minimization process for perceptrons where local min-

ima traps bob up consistently. With having a theoretically well-defined and working

global optimization strategy up one’s sleeve the only central unknown structural pa-

rameter of a SVM is the type of kernel function to be used. The proper choice of

the kernel function decides about success or failure of this machine learning method

(as was shown with the introductory example at the beginning of this chapter) - and

again the type of kernel function can not simply be deduced from theoretical con-

siderations in general: Educated trial and error is the only path to success. Also note

that the number of weights αk to optimize is equal to the number of input vectors in

the data set: This means that the SVM’s optimization task becomes more complex

(and therefore more difficult and time consuming in general) with an increasing data

set size. This is different to a perceptron where the number of internal coefficients to

optimize is determined solely by the network topology. On the other hand the num-

ber of weights αk of a SVM does not depend on the dimension of the inputs (i.e.

the number of components of an input vector) but the network topology of a percep-

tron does since this dimension determines the number of input neurons. Therefore

the number of internal parameters to optimize of a perceptron increases with an in-

crease of the input’s dimension which leads to a more difficult optimization task in

general. Like MLR for every component of an I/O pair’s output one single SVM

optimization is to be performed, e.g. for outputs of dimension 5 (an output with 5

components) there are 5 SVM optimizations to be performed. As already demon-

strated SVM related computations with CIP use the FitSvm command (see [FitSvm]

in the references for details).

A short intermezzo about machine learning history: Neural networks and

support vector machines ...

In the late 1980s and early 1990s there was a real neural network hype. They in-

vaded the different scientific communities and attracted a lot of attention of a broad

scientific and non-scientific audience. One reason for this exploding popularity was

(besides their innovative features) that they heavily used a biological terminology

for their description instead of a purely mathematical one: The logical neuron was

almost always motivated on the basis of its biological predecessor and not by its

mathematical features - although a logical and a biological neuron do not have too

much in common. The impression emerged that computers finally started to model

the human brain and human intelligence - an event that nobody wanted to miss. In

this sense the development of SVMs in the late 1990s on the "obscure grounds"

of statistical learning theory may be regarded as a revenge of the mathemati-

cians: Quadratic programming and kernel tricks is nothing to write home about for



4.3 Evaluating the Goodness of Regression 245

non-specialists. But it was the neural network hype that paved the road for machine

learning applications to a broader community so the emerging SVMs could rapidly

spread through the established channels. The question of computational intelligence

will be addressed in more detail in chapter 5.

What is the best machine learning method? MLR almost always works fast

(within seconds on today’s computers) and technically without any problems but is

extremely limited for a successful practical application due to its linear nature. The

non-linear methods are computationally universal but they are comparatively slow

and often subject to severe technical and structural problems. SVMs are more recent

and become increasingly popular. They possess attractive features like the path to

successful global optimization and are often argued to be superior to the somewhat

older perceptron-type neural networks: They seem to be stronger in classification

whereas perceptrons gain ground in regression tasks, SVMs are attributed a reduced

tendency to overfitting, the SVM’s structural risk is preferable to the perceptron’s

empirical risk - but honestly there is no final definite answer to the best-method

question: It simply depends ... and thus machine learning is a vivid and active field

of research and there are daily claims of new superior algorithmic variants (e.g. see

[Platt 1999], [Joachims 1999], [Keerthi 2002], [Fan 2005] or [Glasmachers 2006]

for SVM related global optimization improvements). They all should be regarded

as parts of a growing tool box that stimulates further progress. For the practitioner

the already sketched basic problems of machine learning play the predominant role:

What type of kernel function (SVM) or network topology (perceptron) is to be used?

How can the immense computational efforts that are necessary to tackle large data

sets be reduced (besides simply waiting for Moore’s law, i.e. faster computers, to

do the job)? How can overfitting be avoided and how reliable are machine learning

results in practice? How can they be validated? In the following sections several

aspects of these issues will be illustrated and explored.

4.3 Evaluating the Goodness of Regression

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

In analogy to curve fitting a simple linear example is used to introduce machine

learning and the evaluation of the goodness of a regression result. Therefore error-

biased data are simulated around a plane in three dimensions

z = f (x,y) = 1 + 2x + 3y

with an x and y argument range of [0, 1] and an absolute standard deviation of

0.2 (which leads to corresponding relative errors from approximately 3% around



246 4 Machine Learning

point (1, 1) to approximately 20% around point (0, 0)) with the CIP CalculatedData

package:

pureOriginalFunction=Function[{x,y},1.0+2.0*x+3.0*y];

xRange={0.0,1.0};

yRange={0.0,1.0};

numberOfDataPerDimension=20;

standardDeviationRange={0.2,0.2};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

pointSize=0.02;

CIP‘Graphics‘Plot3dDataSet[dataSet3D,labels,

GraphicsOptionPointSize -> pointSize]

As a machine learning technique Multiple Linear Regression (MLR) is used which

is perfectly capable of fitting linear data in multiple dimensions:

mlrInfo=CIP‘MLR‘FitMlr[dataSet3D];

The root mean squared error of a machine learning method is defined as

RMSE =

√

1
KN ∑K

k=1 ∑N
i=1

(

y
(k)
i − fi

(

x(k)
)

)

2

and its value



4.3 Evaluating the Goodness of Regression 247

CIP‘MLR‘ShowMlrSingleRegression[{"RMSE"},dataSet3D,

mlrInfo];

Root mean squared error (RMSE) = 2.043×10-1

and the (absolute) residual statistics

CIP‘MLR‘ShowMlrSingleRegression[

{"AbsoluteResidualsStatistics","RelativeResidualsStatistics"},

dataSet3D,mlrInfo];

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 1.61×10-1 / 1.28×10-1 / 7.71×10-1

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 5.15 / 4.07 / 3.28×101

correspond perfectly to the standard deviation of 0.2 used for the data simulation.

The model-versus-data plot and the sorted-model-versus-data plot

CIP‘MLR‘ShowMlrSingleRegression[

{"ModelVsDataPlot","SortedModelVsDataPlot",

"CorrelationCoefficient"},dataSet3D,mlrInfo,

GraphicsOptionPointSize -> pointSize];



248 4 Machine Learning

Out 1 : Correlation coefficient = 0.982142

show the expected behavior: The simulated data in the first diagram scatter around

the diagonal (on the diagonal machine and model output are identical), the data

line of the second diagram crawls statistically around the model line defined by the

sorted machine learning outputs. A correlation coefficient may be used to condense

the agreement between data and model into a single quantity (with a value near one

meaning a desired high correlation - but compare the discussion in chapter 2 and

below). The absolute and relative residuals plots

CIP‘MLR‘ShowMlrSingleRegression[

{"AbsoluteSortedResidualsPlot","RelativeSortedResidualsPlot"},

dataSet3D,mlrInfo,GraphicsOptionPointSize -> pointSize];



4.3 Evaluating the Goodness of Regression 249

show statistically distributed residuals with no systematic deviation patterns within

the expected magnitudes: Excellent! And last but not least the visual 3D inspection

pureMlr3dFunction=

Function[{x,y},CalculateMlr3dValue[x,y,mlrInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,pureMlr3dFunction,

labels,GraphicsOptionPointSize -> pointSize]

is convincing. Note that the latter is usually not available for machine learning prob-

lems in many dimensions: This is a severe disadvantage since human beings are very

powerful in judging visual representations at a glance.



250 4 Machine Learning

4.4 Evaluating the Goodness of Classification

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Utility‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘DataTransformation‘

The goodness of a machine learning method’s classification result may be stated

straight forward: The correctly and incorrectly classified I/O pairs are simply

counted and displayed. In three dimensions it is furthermore possible to visual-

ize the decision surfaces. Here a perfect classification example with decision sur-

faces that consists of 3D planes is demonstrated: Two clearly separated clouds of

two-dimensional inputs

centroid1={0.2,0.2};

numberOfCloudVectors1=50;

standardDeviation1=0.1;

singleCloudDefinition1={centroid1,numberOfCloudVectors1,

standardDeviation1};

centroid2={0.8,0.8};

numberOfCloudVectors2=50;

standardDeviation2=0.1;

singleCloudDefinition2={centroid2,numberOfCloudVectors2,

standardDeviation2};

cloudDefinitions={singleCloudDefinition1,singleCloudDefinition2};

classificationDataSet=

CIP‘CalculatedData‘GetGaussianCloudsDataSet[

cloudDefinitions];

labels={"x","y","Inputs"};

CIP‘Graphics‘Plot2dPoints[

CIP‘Utility‘GetInputsOfDataSet[classificationDataSet],labels]



4.4 Evaluating the Goodness of Classification 251

are classified (note that this classification task could be perfectly performed by a

mere unsupervised clustering-based class predictor as shown in chapter 3 so it is no

real challenge for supervised machine learning). The inputs are combined with an

adequately coded output for classification, e.g. the first input/output (I/O) pair

ioPair1=classificationDataSet[[1]]

{{0.248568,0.240914},{1.,0.}}

is attributed to class 1: It has a value of 1.0 at position 1 for class 1 in the output

vector and a value of 0.0 at position 2 for class 2. The last I/O pair of the generated

data set

ioPair1=classificationDataSet[[Length[classificationDataSet]]]

{{0.891354,0.821637},{0.,1.}}

is attributed to class 2 respectively (with value of 0.0 at position 1 for class 1 and

a value of 1.0 at position 2 for class 2). The linear MLR fit generates a decision

surface

mlrInfo=CIP‘MLR‘FitMlr[classificationDataSet];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification","CorrectClassificationPerClass"},

classificationDataSet,mlrInfo]

100.% correct classifications

that allows 100% correct classification of all input vectors for both classes. Since

the output of every I/O pair has dimension two there are two planes, one for every



252 4 Machine Learning

output, that are combined for decision (a distinct input is attributed to the class that

corresponds to the surface with the higher output value at this point). Both planes

can be visualized independently: The plane for output 1 with the corresponding

subset of data

classificationDataSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

classificationDataSet];

indexOfInput1=1;

indexOfInput2=2;

indexOfOutput=1;

input={0.0,0.0};

pureMlr3dFunction=Function[{x,y},

CIP‘MLR‘CalculateMlr3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,mlrInfo]];

labels={"In 1","In 2","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[1]],pureMlr3dFunction,labels]

and the other plane for output 2

indexOfInput1=1;indexOfInput2=2;indexOfOutput=2;input={0.0,0.0};

pureMlr3dFunction=Function[{x,y},

CIP‘MLR‘CalculateMlr3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,mlrInfo]];

labels={"In 1","In 2","Out 2"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[2]],pureMlr3dFunction,labels]



4.5 Regression: Entering Non-linearity 253

illustrate the perfect classification behavior of the machine learning method for the

data in question. Note that the fit process generated just one set of an infinite number

of possible decision surfaces for the data clouds. It should also be noted that linear

decision surfaces will not be powerful in general since they need data that can be

clearly separated by mere planes. The non-linear machine learning methods like

perceptrons and SVMs will be able to construct arbitrarily curved decision surfaces

as will be shown below.

4.5 Regression: Entering Non-linearity

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘MLR‘

<<CIP‘Graphics‘

<<CIP‘SVM‘

<<CIP‘Perceptron‘

In this section a model function for an experimental adhesive kinetics data set is ap-

proximated with different approaches and common pitfalls. The experimental data

describe the dependence of a kinetics parameter on the composition of an adhesive

polymer mixture and are outlined in detail in Appendix A. An I/O pair is four-

dimensional (inputs with three components, outputs with one component) so the

complete data set can not be displayed with 2D or 3D graphics. But due to the mea-

surement setup it is possible to obtain subsets of data that are suitable for visual

inspection in 3D. The experimental errors of the data are reported to be in the order

of 10% to 20% with some outliers which is an essential information for the assess-

ment of the goodness of regression in the following. The modelling task is started



254 4 Machine Learning

with the application of multiple linear regression (MLR). The adhesive kinetics data

set is provided by the CIP ExperimentalData package:

dataSet=CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

A fit of the data set with MLR

mlrInfo=CIP‘MLR‘FitMlr[dataSet];

leads to a regression result with obvious systematic deviations between data and

model (positive deviations for small and large output values and negative deviations

in between) as is illustrated by the model-versus-data plot:

CIP‘MLR‘ShowMlrSingleRegression[

{"ModelVsDataPlot"},dataSet,mlrInfo];

The relative residuals statistics

CIP‘MLR‘ShowMlrSingleRegression[

{"RelativeResidualsStatistics","CorrelationCoefficient"},dataSet,

mlrInfo];

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 3.44×101 / 2.02×101 / 1.71×102

Out 1 : Correlation coefficient = 0.840707

show that the magnitude of the deviations (over 30%) is obviously above the re-

ported experimental errors of 10 to 20% and the correlation coefficient is poor in



4.5 Regression: Entering Non-linearity 255

addition. So it can be deduced that the adhesive kinetics data can not be satisfacto-

rily modelled by a linear technique. This may also be illustrated by the 3D display of

a subset of the data that corresponds to a specific polymer mass ratio of the mixture:

polymerMassRatio="80";

dataSet3D=CIP‘ExperimentalData‘GetAdhesiveKinetics3dDataSet[

polymerMassRatio];

indexOfInput1=2;

indexOfInput2=3;

indexOfOutput=1;

input={80.0,0.0,0.0};

pureMlr3dFunction=Function[{x,y},

CIP‘MLR‘CalculateMlr3dValue[x,y,indexOfInput1,indexOfInput2,

indexOfOutput,input,mlrInfo]];

labels={"In 2","In 3","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,pureMlr3dFunction,

labels]

The linear plane is only a poor approximate description of the data. On the other

hand the adhesive kinetics data are not dramatically non-linear. The linear MLR

approach may be slightly extended into the non-linear region by an a priori/a pos-

terior data transformation with a root/square or logarithmic/exponential function:

The output components are transformed by a root or logarithmic function before the

MLR fit, the function values of the MLR generated model functions are then after-

wards inversely transformed by a square or exponential function (see the CIP code

for details). Here are the results for the logarithmic/exponential transformation:



256 4 Machine Learning

dataTransformationMode="Log";

mlrInfo=CIP‘MLR‘FitMlr[dataSet,

MlrOptionDataTransformationMode -> dataTransformationMode];

CIP‘MLR‘ShowMlrSingleRegression[

{"ModelVsDataPlot","RelativeResidualsStatistics",

"CorrelationCoefficient"},dataSet,mlrInfo];

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 1.84×101 / 1.41×101 / 6.74×101

Out 1 : Correlation coefficient = 0.912715

The systematic deviations between data and model are now confined to the larger

output value region and the residuals statistics are more acceptable with a value

around 18% on average. Also the correlation coefficient increased. The 3D plot of

the subset of data with the approximated model function

pureMlr3dFunction=Function[{x,y},

CIP‘MLR‘CalculateMlr3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,mlrInfo]];

mlr3dPlot=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureMlr3dFunction,labels]



4.5 Regression: Entering Non-linearity 257

demonstrates the improvement. The adhesive kinetics data seem to be at the border-

line for a successful application of a non-linear enhanced MLR approach. To further

improve the modelling result a switch to the genuine non-linear machine learning

methods is necessary: SVMs and perceptrons. Since a SVM needs a kernel function

as its structural parameter (besides several optimization parameters which will be

left unchanged at their default values) the earlier successful wavelet kernel with a

width parameter of 0.1 (see the beginning of this chapter) is used. After the fit is

performed

kernel={"Wavelet",0.1};

svmInfo=CIP‘SVM‘FitSvm[dataSet,kernel];

CIP‘SVM‘ShowSvmSingleRegression[

{"ModelVsDataPlot","RelativeResidualsStatistics",

"CorrelationCoefficient"},dataSet,svmInfo];



258 4 Machine Learning

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 1.67 / 1.43 / 4.74

Out 1 : Correlation coefficient = 0.999977

the result is puzzling at first: The data are nearly perfectly modelled - the diagonal

looks like a rope of pearls with a perfect correlation (indicated by a correlation co-

efficient of practically 1) and the relative deviations between data and model around

2% are an order of magnitude lower than the reported experimental errors. These

findings indicate a clear overfitting of the data which can be well illustrated by the

3D display of the subset of data together with the overfitted model function (where

each data point seems to have its own bump):

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,pureSvm3dFunction,

labels]

It should be noticed that this overfitted model function will be completely useless for

any predictive interpolation tasks. If a perceptron is used for non-linear modelling

the number of hidden neurons must be a priori defined as its structural parameter

(again the several default technical optimization parameters are not touched). If 15

hidden neurons are arbitrarily chosen



4.5 Regression: Entering Non-linearity 259

numberOfHiddenNeurons=15;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[dataSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronSingleRegression[

{"ModelVsDataPlot","RelativeResidualsStatistics",

"CorrelationCoefficient"},dataSet,perceptronInfo];

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 3.03 / 9.97×10-1 / 1.63×101

Out 1 : Correlation coefficient = 0.999192

the result is similar to the SVM approach before. A clear overfitting is detected and

visible in the 3D display of the subset of data:

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,

indexOfInput1,indexOfInput2,indexOfOutput,input,perceptronInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

purePerceptron3dFunction,labels]



260 4 Machine Learning

These two non-linear attempts show that the choice of the structural parameters is

essential: They were simply not adequate for the machine learning task in question.

And this is exactly where the trial and error begins: The kernel function or the num-

ber of hidden neurons respectively has to be adjusted to improve the approximated

model functions and to allow reasonable predictive interpolations. This can be done

by single smart guesses (less computationally demanding if successful) or system-

atic variation (more computationally demanding) of the structural parameters. Since

the adhesive kinetics data are near linear it can be deduced from experience that for

the SVM based approach the width parameter a of the wavelet kernel should be

increased. A tenfold increase from 0.1 to 1.0

kernelFunction={"Wavelet",1.0};

svmInfo=CIP‘SVM‘FitSvm[dataSet,kernelFunction];

CIP‘SVM‘ShowSvmSingleRegression[

{"ModelVsDataPlot","RelativeResidualsStatistics",

"CorrelationCoefficient","RelativeSortedResidualsPlot"},dataSet,

svmInfo];



4.5 Regression: Entering Non-linearity 261

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 1.46×101 / 1.04×101 / 7.57×101

Out 1 : Correlation coefficient = 0.949575

leads to an overall satisfactory modelling result with well-sized non-systematic de-

viations. To avoid overfitting for the perceptron approach the number of hidden neu-

rons has to be decreased - again from experience a very small number of 2 should

be sufficient for a near linear modelling problem:

numberOfHiddenNeurons=2;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[dataSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronSingleRegression[

{"ModelVsDataPlot","RelativeResidualsStatistics",

"CorrelationCoefficient","RelativeSortedResidualsPlot"},dataSet,

perceptronInfo];



262 4 Machine Learning

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 1.76×101 / 1.36×101 / 7.01×101

Out 1 : Correlation coefficient = 0.949782

RMSE, residuals and the correlation coefficient are comparable to the SVM result

before so again an acceptable result is achieved. This may finally be illustrated

by the 3D overlay of the subset of data and the approximated model functions of

the two non-linear machine learning methods. Similar smooth and balancing model

functions are achieved

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo]];

svm3dPlot=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureSvm3dFunction,labels];

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,

indexOfInput1,indexOfInput2,indexOfOutput,input,perceptronInfo]];

perceptron3dPlot=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

purePerceptron3dFunction,labels];

Show[{svm3dPlot,perceptron3dPlot}]



4.6 Classification: Non-linear Decision Surfaces 263

that adequately fit the data. The one to choose for a predictive interpolation task is

thus a mere matter of taste. Both models are probably the best we can get for the

adhesive kinetics modelling problem - and they are convincing and helpful to the

adhesive scientists. Finally note that the correlation coefficient can indicate a better

model (its values for the final SVM and perceptron models are higher than those

of the linear and log models before) but a higher value may also mean undesired

overfitting as already encountered in chapter 2.

4.6 Classification: Non-linear Decision Surfaces

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘SVM‘

A classification task in general requires the construction of non-linear curved de-

cision surfaces beyond the simplicity of linear planes. A nice example which may

be visually inspected is the classification of intertwined spirals (see Appendix A).

A corresponding classification data set with a defined number of I/O pairs for each

spiral can be obtained from the CIP ExperimentalData package:

numberOfSingleSpiralIoPairs=30;

classificationDataSet60=

CIP‘ExperimentalData‘GetSpiralsClassificationDataSet[

numberOfSingleSpiralIoPairs];



264 4 Machine Learning

The inputs of the classification data set are 2D points which may be visualized with

their class assignment denoted by their colors:

classIndex=1;

inputsOfSpiral1=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet60,classIndex];

classIndex=2;

inputsOfSpiral2=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet60,classIndex];

points2DWithPlotStyle1={inputsOfSpiral1,{PointSize[0.02],Black}};

points2DWithPlotStyle2={inputsOfSpiral2,{PointSize[0.02],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Intertwined spirals"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

It is obvious that a highly non-linear curved decision surfaces in three dimensions

is necessary to separate the two spirals for a successful classification. Thus linear

MLR as a machine learning method

mlrInfo=CIP‘MLR‘FitMlr[classificationDataSet60];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet60,mlrInfo]

62.9% correct classifications

is clearly ruled out with only about 63% correct classifications. A non-linear method

is advised and a SVM approach with an adequate kernel function

kernel={"Wavelet",0.1};

svmInfo=CIP‘SVM‘FitSvm[classificationDataSet60,kernel];

CIP‘SVM‘ShowSvmSingleClassification[

{"CorrectClassification"},classificationDataSet60,svmInfo];



4.6 Classification: Non-linear Decision Surfaces 265

100.% correct classifications

leads to a perfect 100% correct classifications. The interpolating predictivity of the

SVM classifier may be tested with an enlarged classification data set which consists

of additional I/O pairs within each spiral

numberOfSingleSpiralIoPairs=100;

classificationDataSet200=

CIP‘ExperimentalData‘GetSpiralsClassificationDataSet[

numberOfSingleSpiralIoPairs];

classIndex=1;

inputsOfSpiral1=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet200,classIndex];

classIndex=2;

inputsOfSpiral2=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet200,classIndex];

points2DWithPlotStyle1={inputsOfSpiral1,{PointSize[0.02],Black}};

points2DWithPlotStyle2={inputsOfSpiral2,{PointSize[0.02],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

to result again in a perfect 100% classification:

CIP‘SVM‘ShowSvmSingleClassification[

{"CorrectClassification"},classificationDataSet200,svmInfo];

100.% correct classifications

Therefore it can be deduced that the decision surfaces of the SVM classifier are

predictive and not overfitted. The latter would also lead to an initial perfect 100%

classification result but to a poor predictivity for new unknown data afterwards (this



266 4 Machine Learning

problem is discussed in detail below). This finding may be finally verified with a

visual inspection of the decision surface for each class (combined with the data

of the enlarged classification data set). The highly non-linear decision surface for

class 1

classificationDataSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

classificationDataSet200];

indexOfInput1=1;indexOfInput2=2;indexOfOutput=1;input={0.0,0.0};

plotStyle3D=Directive[Green,Specularity[White,40],Opacity[0.6]];

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo]];

labels={"In 1","In 2","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[1]],pureSvm3dFunction,labels,

GraphicsOptionPlotStyle3D -> plotStyle3D]

as well as the decision surface for class 2

indexOfInput1=1;indexOfInput2=2;indexOfOutput=2;input={0.0,0.0};

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo]];

labels={"In 1","In 2","Out 2"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[2]],pureSvm3dFunction,labels,

GraphicsOptionPlotStyle3D -> plotStyle3D]



4.7 Ambiguous Classification 267

allow a perfect assignment of each input to its corresponding class. Note that perfect

decision planes would perfectly model the spirals in 3D (with values to be exactly

one at the spiral positions and zero elsewhere). The machine learning result is just

an approximant with deviations to these ideal curves but close enough to allow for

proper decisions.

4.7 Ambiguous Classification

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Utility‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘SVM‘

<<CIP‘Cluster‘

<<CIP‘DataTransformation‘

Consider the following two overlapping Gaussian clouds where each point is at-

tributed to its class indicated by color:

centroidVector1={0.2,0.2};

numberOfCloudVectors=50;

standardDeviation=0.3;

cloudDefinition1={centroidVector1,numberOfCloudVectors,

standardDeviation};

inputs1=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition1];

centroidVector2={0.8,0.8};

cloudDefinition2={centroidVector2,numberOfCloudVectors,

standardDeviation};



268 4 Machine Learning

inputs2=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition2];

points2DWithPlotStyle1={inputs1,{PointSize[0.02],Black}};

points2DWithPlotStyle2={inputs2,{PointSize[0.02],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Inputs and their corresponding color classes"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

If the points are to be classified according to their class memberships a decision line

must be constructed to separate the class areas. It is obvious that in the current case

a perfect (100%) correct classification is not desirable since the clouds penetrate

each other. So an ordinary human solution for the required separation would look

like this

labels={"x","y","Human separation line"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels];

lineGraphics=Graphics[{Thick,

Yellow,Line[{{1.25,-0.3},{-0.55,1.4}}]}];

Show[inputsGraphics,lineGraphics]



4.7 Ambiguous Classification 269

with the rule: Below the line = class 1, above the line = class 2. The decision line

classifies about 90% of the points in a correct manner (just count) and this is roughly

the best we can reasonably get. If a classification method performs significantly

better this would be suspicious (i.e. indicate overfitting), if it performs significantly

poorer the method would not be appropriate or failed due to technical reasons. To

perform a classification task a classification data set is constructed from the cloud

definitions

cloudDefinitions={cloudDefinition1,cloudDefinition2};

classificationDataSet=

CIP‘CalculatedData‘GetGaussianCloudsDataSet[

cloudDefinitions];

and split to a set of classification data sets with each containing one output compo-

nent of the original data set

classificationDataSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

classificationDataSet];

to allow graphical illustrations in the following. Again note that every I/O pair of the

classification data set is attributed to its class by a 0/1 coding at the corresponding

position of its output, e.g. the first I/O pair that belongs to class 1 contains a 1 at

position 1 of its output and a 0 at position 2

firstIoPair=classificationDataSet[[1]]

{{0.345704,0.322742},{1.,0.}}

whereas the last I/O pair that belongs to class 2 contains a 0 at position 1 and a 1 at

position 2:



270 4 Machine Learning

lastIoPair=classificationDataSet[[Length[classificationDataSet]]]

{{1.07406,0.86491},{0.,1.}}

As a good start an unsupervised clustering-based class predictor can be constructed

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

that achieves an overall success rate of about 90% correct predictions

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

92.% correct classifications

and a satisfying prediction result for both classes (compare chapter 3):

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,

clusterInfo]

If we compare the cluster separation of the unsupervised learning result with the

human straight line

inputs=CIP‘Utility‘GetInputsOfDataSet[classificationDataSet];

numberOfClusters=2;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters];

indexOfCluster=1;



4.7 Ambiguous Classification 271

inputsOfCluster1=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle1={inputsOfCluster1,{PointSize[0.02],Green}};

indexOfCluster=2;

inputsOfCluster2=CIP‘Cluster‘GetInputsOfCluster[inputs,

indexOfCluster,clusterInfo];

points2DWithPlotStyle2={inputsOfCluster2,{PointSize[0.02],Red}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Clusters and the human separation line"};

clusterGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels];

Show[clusterGraphics,lineGraphics]

we see a very good agreement - and in practice the classification task would be

successfully fulfilled. But for the current context we proceed into the realm of su-

pervised learning. Since a straight line does the separation job properly the clas-

sification task may be successfully tackled by a linear MLR approach. A MLR

classification results in a success rate

mlrInfo=CIP‘MLR‘FitMlr[classificationDataSet];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet,mlrInfo]

92.% correct classifications

of about 90% percent correct classifications as expected. The decision surface for

class 1 confirms the proper result:

pureMlr3dFunction=Function[{x,y},

CalculateMlr3dValue[x,y,mlrInfo]];

labels={"In 1","In 2","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[1]],pureMlr3dFunction,labels]



272 4 Machine Learning

Again note that a linear technique has no structural flexibility: It simply succeeds

or fails since there is nothing to be tuned. If a non-linear method like a SVM is

used for the very same classification task things may get more difficult because

non-linear methods are far more flexible, i.e. they allow the construction of com-

plex and highly non-linear curved decision surfaces as already shown above. Their

behavior is fundamentally guided by their structural parameters - and they deserve

adequate structural (as well as technical) parameters’ settings to work properly. If

the following inappropriate wavelet kernel function is arbitrarily chosen for the cur-

rent classification task (the wavelet width parameter a is set to a very small value so

the generated model function may be extremely curved)

kernelFunction={"Wavelet",0.05};

svmInfo=CIP‘SVM‘FitSvm[classificationDataSet,kernelFunction];

CIP‘SVM‘ShowSvmSingleClassification[

{"CorrectClassification"},classificationDataSet,svmInfo]

100.% correct classifications

we get a suspicious 100% correct classifications with a SVM’s decision surface for

class 1

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[

classificationDataSet3DList[[1]],pureSvm3dFunction,labels]



4.7 Ambiguous Classification 273

that is the mathematical analog of a pure look-up table: Every input is nearly in-

dividually classified by its own bump which means pure overfitting (again: This

was possible since a very small wavelet width parameter was chosen which allowed

these small bumps). This overfitted decision surface is of course suboptimal for any

class predictions of new inputs. Thus the powerful non-linear method utterly failed

to perform a simple linear classification task because of its inappropriate structural

settings. In this situation a kind of manual tuning of the kernel function could be

applied to arrive at a classification result of human quality but this is not feasible in

general where visual inspection is not available so the optimum 90% classification

result would not be known in advance. In general the machine learning procedure

itself should be able to come to this decision. As a solution strategy it seems rea-

sonable to facilitate the uselessness of the overfitted decision function to proceed:

Therefore the original data set is split into a training set and a test set where the first

is used for machine learning and the second to evaluate its predictivity after train-

ing. Then it becomes possible to monitor the performance of learning in dependence

of the structural settings (here: the kernel function) used. The test set validates the

training set in each step and overfitting will become apparent by a significant differ-

ence between the classification results for the training and the test set. As a start the

original data set is randomly split into a training and test set of equal size

trainingFraction=0.50;

trainingAndTestSet=CIP‘Cluster‘GetRandomTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

trainingSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

trainingSet];



274 4 Machine Learning

what seems to be an unbiased and fair partitioning which may be visually controlled

(with the training inputs in green/light gray and the test inputs in red/dark gray):

inputsOfTrainingSet=CIP‘Utility‘GetInputsOfDataSet[trainingSet];

inputsOfTestSet=CIP‘Utility‘GetInputsOfDataSet[testSet];

trainingPoints2DWithPlotStyle={inputsOfTrainingSet,

{PointSize[0.02],Green}};

testPoints2DWithPlotStyle={inputsOfTestSet,{PointSize[0.02],Red}};

points2DWithPlotStyleList={testPoints2DWithPlotStyle,

trainingPoints2DWithPlotStyle};

labels={"x","y","Training inputs (green), Test inputs (red)"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

Training and test data are equally distributed over the input’s space. If again a MLR

classification is performed with the training set

mlrInfo=CIP‘MLR‘FitMlr[trainingSet];

CIP‘MLR‘ShowMlrClassificationResult[

{"CorrectClassification"},trainingAndTestSet,mlrInfo]

Training Set:

94.% correct classifications

Test Set:

90.% correct classifications

we get the expected classification success rates for training and test set (training/test

= 94/90) with a test set result being a bit inferior (90% < 94%) to the training sets

outcome. So the MLR result is predictive. If now the SVM classification is explored

with different kernel functions in a systematic manner (where the first attempt will

again be the catastrophic look-up table case from above) the classification success

for training and test set may be compared for each setting (with the training result

in green/light gray and the test result in red/dark gray):



4.7 Ambiguous Classification 275

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.05,2.0,0.05}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]

Best test set classification with svmInfo index = {16}

For settings with a small index the classification obviously takes place in the realm

of overfitting with distinct differences between training and test set performance

(100% training success but a clear test failure). For the following settings the SVM

arrives at the expected classification quality of the human solution. The best SVM

solution with the highest test set predictivity

svmInfo=svmInfoList[[16]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{Wavelet,0.8}

yields a classification result

CIP‘SVM‘ShowSvmClassificationResult[{"CorrectClassification"},

trainingAndTestSet,svmInfo]

Training Set:

94.% correct classifications

Test Set:

92.% correct classifications



276 4 Machine Learning

with a little superior test set predictivity (training/test = 94/92) compared to the MLR

result (training/test = 94/90) above (2% or one I/O pair more is correctly classified).

But this difference is irrelevant: Both methods perform equally well on the data set.

As far as optimum solutions are concerned the classification task is successfully

tackled. But with regard to the outlined strategy of partitioning the data set into a

training and a test set the findings of chapter 3 could be taken into account: There it

was demonstrated that cluster representatives (abbreviated CR in the following) are

a promising description of an input’s space spatial diversity. In some cases CRs are

similar to their random brothers but in general they are often superior. If the data set

is again split half by half into a training and a test set on the basis of CRs of the I/O

pair’s inputs

trainingFraction=0.5;

trainingAndTestSet=CIP‘Cluster‘GetClusterBasedTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

trainingSet3DList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

trainingSet];

the result seems to be not much different from the random partitioning above:

inputsOfTrainingSet=CIP‘Utility‘GetInputsOfDataSet[trainingSet];

inputsOfTestSet=CIP‘Utility‘GetInputsOfDataSet[testSet];

trainingPoints2DWithPlotStyle={inputsOfTrainingSet,

{PointSize[0.02],Green}};

testPoints2DWithPlotStyle={inputsOfTestSet,{PointSize[0.02],Red}};

points2DWithPlotStyleList={testPoints2DWithPlotStyle,

trainingPoints2DWithPlotStyle};

labels={"x","y","Training inputs (green), Test inputs (red)"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

But if the same kernel function settings are scanned as before



4.7 Ambiguous Classification 277

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.05,2.0,0.05}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]

Best test set classification with svmInfo index = {10,11,12}

a kind of improvement can be recognized: The training and test set curves are closer

together over a wide range of kernel function settings which indicates a more similar

distribution of the training and test set’s inputs. The best SVM settings like

svmInfo=svmInfoList[[11]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{Wavelet,0.55}

perform equally well

CIP‘SVM‘ShowSvmClassificationResult[{"CorrectClassification"},

trainingAndTestSet,svmInfo]

Training Set:

94.% correct classifications

Test Set:

92.% correct classifications



278 4 Machine Learning

in comparison to their best predecessor before (which also arrived at training/test =

94/92). A plot of a best SVM’s decision surface for class 1

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

labels={"In 1","In 2","Out 1"};

CIP‘Graphics‘Plot3dDataSetWithFunction[trainingSet3DList[[1]],

pureSvm3dFunction,labels]

shows its similarity to a simple plane in the data region. From this latter (crucial)

point of view the CR based strategy was no real improvement beyond mere cos-

metics because the random selection based strategy already achieved the optimum

reasonable outcome of the classification procedure. But the more uniform behavior

of training and test set may be crucial for more challenging machine learning tasks.

The successful outlined validation procedure by partitioning data sets in training

and test sets will be explored more thoroughly next.

4.8 Training and Test Set Partitioning

The validation strategy introduced in the last section with a partitioning of a data set

into a training and a test set rises two questions:

• Question 1: How should a single I/O pair for each set be selected?

• Question 2: How many I/O pairs should each set contain after partitioning?



4.8 Training and Test Set Partitioning 279

General guidelines that address these questions may read as follows:

• Guideline 1: Both sets should cover a similar input’s space, i.e. possess a similar

spatial diversity of inputs.

• Guideline 2: The training set should be kept as small as possible but allow for a

high overall predictivity.

Guideline 1 may be taken into account by using a cluster based approach to get rep-

resentatives for the training set (compare chapter 3). Then the issue remains which

individual cluster member is to be taken as the representative for the training set.

Unfortunately this leads to an extremely difficult optimization task: Think about a

small data set with just 100 I/O pairs that is partitioned in a training set of 25 I/O

pairs and a test set of 75 I/O pairs respectively. If a cluster based approach is used

the I/O pair’s inputs are split into 25 groups with 4 I/O pairs on average. If now one

member of each cluster is chosen for the training set this evaluates to at least one

quadrillion

ScientificForm[4.0^25,1]

1.×1015

possible different training and test sets just for this small training fraction of 0.25 (in

detail: There are 4 choices for a member of the first cluster. Each of these choices

may be combined with the 4 choices of the next cluster which evaluates to 4×4

= 16 combination possibilities for two clusters. Thus 25 clusters evaluate to 425

≈ 1.000.000.000.000.000 possible different training sets). There is no practically

feasible way to evaluate the optimum training set within this vast number of pos-

sibilities. Even an evolutionary algorithm based strategy would be computationally

far too demanding in most cases. Therefore only heuristic partitioning strategies and

optimization approaches may be applied which by no means guarantee to achieve

an even tolerable selection. Heuristic strategies are guided by apparently reasonable

ideas for selecting or optimizing representatives. The latter usually involves only a

few trial steps for optimization. The heuristic strategies of the previous section were

a straightforward "50:50/random strategy" at first (i.e. the whole data set was split

into a training and test set of equal size where each I/O pair was randomly chosen to

belong to the training or test set respectively) and a more elaborate "50:50/cluster

representatives (CR) strategy" afterwards (which used cluster representatives for

I/O pair selection). More intricate heuristics are outlined throughout this section. As

a start the general superiority of a CR based selection is illustrated next with a more

difficult classification example.



280 4 Machine Learning

4.8.1 Cluster Representatives Based Selection

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Utility‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘SVM‘

Consider the following inputs with their corresponding color classes:

centroid1={0.3,0.7};

standardDeviation=0.05;

numberOfCloudInputs=60;

cloudDefinition1={centroid1,numberOfCloudInputs,standardDeviation};

inputs1=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition1];

points2DWithPlotStyle1={inputs1,{PointSize[0.02],Black}};

centroid2={0.7,0.3};cloudDefinition2={centroid2,numberOfCloudInputs,

standardDeviation};

inputs2=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition2];

points2DWithPlotStyle2={inputs2,{PointSize[0.02],Blue}};

centroid3={0.5,0.5};

standardDeviation=0.05;

numberOfCloudInputs=10;

cloudDefinition3={centroid3,numberOfCloudInputs,standardDeviation};

inputs3=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition3];

points2DWithPlotStyle3={inputs3,{PointSize[0.02],Orange}};

centroid4={0.8,0.8};

cloudDefinition4={centroid4,numberOfCloudInputs,standardDeviation};

inputs4=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition4];

points2DWithPlotStyle4={inputs4,{PointSize[0.02],Yellow}};

centroid5={0.2,0.2};

cloudDefinition5={centroid5,numberOfCloudInputs,standardDeviation};

inputs5=CIP‘CalculatedData‘GetDefinedGaussianCloud[

cloudDefinition5];

points2DWithPlotStyle5={inputs5,{PointSize[0.02],Pink}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2,points2DWithPlotStyle3,

points2DWithPlotStyle4,points2DWithPlotStyle5};

labels={"x","y","Inputs with corresponding color classes"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]



4.8 Training and Test Set Partitioning 281

By visual inspection it is expected that a successful machine learning approach

should yield a 100% classification success since the clouds can be unambiguously

separated. Since a 100% success rate can (almost) always be achieved by a non-

linear method as shown in the previous section a validation procedure is crucial to

separate 100% overfitting from 100% predictivity. After generation of the corre-

sponding classification data set

cloudDefinitions={cloudDefinition1,cloudDefinition2,

cloudDefinition3,cloudDefinition4,cloudDefinition5};

classificationDataSet=

CIP‘CalculatedData‘GetGaussianCloudsDataSet[

cloudDefinitions];

and selection of a comparatively small randomly chosen training set with only 25%

of the original data set’s I/O pairs

trainingFraction=0.25;

trainingAndTestSet=CIP‘Cluster‘GetRandomTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

it becomes visible that the input’s space if no longer satisfactorily covered (with the

training inputs in green/light gray and the test inputs in red/dark gray):

inputsOfTrainingSet=CIP‘Utility‘GetInputsOfDataSet[trainingSet];

inputsOfTestSet=CIP‘Utility‘GetInputsOfDataSet[testSet];

trainingPoints2DWithPlotStyle={inputsOfTrainingSet,

{PointSize[0.02],Green}};

testPoints2DWithPlotStyle={inputsOfTestSet,{PointSize[0.02],Red}};

points2DWithPlotStyleList={testPoints2DWithPlotStyle,

trainingPoints2DWithPlotStyle};

labels={"x","y","Training inputs (green), Test inputs (red)"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]



282 4 Machine Learning

The training inputs are concentrated in the two bigger clusters whereas the inputs

of the three small clusters are under-represented. A systematic exploration of kernel

function settings for a SVM based machine learning approach as in the previous

section (with the training result in green/light gray and the test result in red/dark

gray)

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.05,1.0,0.05}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]

Best test set classification with svmInfo index = {6,7,8,9,10,11,12,13,14}



4.8 Training and Test Set Partitioning 283

shows a distinct difference between the training and test set’s results: Whereas the

training set always yields the expected 100% success rate (no matter overfitted or

not) the test set never comes close: The best predictivity is around 90% only. Note

that this can not be attributed to a deficiency of the machine learning method: The

learning procedure itself relies on the training data. If parts of the input’s space are

not covered and thus not trained they are simply unknown to the decision surfaces

so they yield an arbitrary result for corresponding inputs. A training and test set

selection based on cluster representatives (CRs) with the same training fraction

trainingFraction=0.25;

trainingAndTestSet=

CIP‘Cluster‘GetClusterBasedTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

inputsOfTrainingSet=CIP‘Utility‘GetInputsOfDataSet[trainingSet];

inputsOfTestSet=CIP‘Utility‘GetInputsOfDataSet[testSet];

trainingPoints2DWithPlotStyle={inputsOfTrainingSet,

{PointSize[0.02],Green}};

testPoints2DWithPlotStyle={inputsOfTestSet,{PointSize[0.02],Red}};

points2DWithPlotStyleList={testPoints2DWithPlotStyle,

trainingPoints2DWithPlotStyle};

labels={"x","y","Training inputs (green), Test inputs (red)"};

inputsGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels]

reduces this problem as shown: The input’s space coverage is obviously improved.

A repeated exploration with the same kernel function settings

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.05,1.0,0.05}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]



284 4 Machine Learning

Best test set classification with svmInfo index = {5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

now leads to a satisfactory 100% success rate for the training as well as the test set

for quite a number of different kernel functions after some overfitting settings at the

beginning. Finally the necessary minimum size of the training set can be explored

by use of a good SVM with an appropriate kernel function

kernelFunction={"Wavelet",0.55};

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.05,0.50,0.05}];

svmClassificationScan=

CIP‘SVM‘ScanClassTrainingWithSvm[

classificationDataSet,kernelFunction,trainingFractionList];

CIP‘SVM‘ShowSvmClassificationScan[

svmClassificationScan]

Best test set classification with index = {2,3,4,5,6,7,8,9,10}



4.8 Training and Test Set Partitioning 285

The index mentioned in "Best test set classification ..." refers to svmClassificationScan, i.e. svmClassification-

Scan[[2]] corresponds to trainingFractionList[[2]] with a value of 0.1 (= 10%).

where it is found that a CR based training set size of only 10% of the original

data set is necessary to lead to a 100% success rate for the training as well as the

test set classifications. This result addresses the second question above about the

necessary minimum size of a training set with the highest overall predictivity for

this classification task.

4.8.2 Iris Flower Classification Revisited

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Cluster‘

<<CIP‘MLR‘

<<CIP‘Perceptron‘

The prediction of iris flower species from their sepal and petal size data

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

was already discussed in chapter 3 on the basis of unsupervised learning. There it

was shown that a purely clustering-based class predictor

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

leads to an overall success rate of about 90%

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification"},classificationDataSet,clusterInfo]

89.3% correct classifications

with distinctly different success rates for the three iris flower species (classes):

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassificationPerClass"},classificationDataSet,

clusterInfo]



286 4 Machine Learning

This result is not overall satisfactory so a supervised learning approach may be

worth an attempt. Since a MLR based classification is not prone to overfitting it

may be directly tried for a large variety of CR based training and test set sizes:

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.01,0.90,0.01}];

mlrClassificationScan=

CIP‘MLR‘ScanClassTrainingWithMlr[

classificationDataSet,trainingFractionList];

CIP‘MLR‘ShowMlrClassificationScan[

mlrClassificationScan]

Best test set classification with index = {83}

The result is not promising and reveals an even reduced predictivity in comparison

to the purely clustering-based class predictor before. Therefore a non-linear method

is clearly indicated. A three-layer perceptron with only two hidden neurons



4.8 Training and Test Set Partitioning 287

numberOfHiddenNeurons=2;

is chosen since it is not very prone to overfitting. A scan with different small CR

based training and test set sizes

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.01,0.30,0.01}];

perceptronClassificationScan=

CIP‘Perceptron‘ScanClassTrainingWithPerceptron[

classificationDataSet,numberOfHiddenNeurons,trainingFractionList];

CIP‘Perceptron‘ShowPerceptronClassificationScan[

perceptronClassificationScan]

Best test set classification with index = {28}

reveals a training fraction of 0.28 (i.e. a training set with 28% of all I/O pairs of the

data set) to be exceptionally predictive:

index=28;

trainingAndTestSetsInfo=

perceptronClassificationScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[index,1]];

perceptronInfo=trainingAndTestSetsInfo[[index,2]];

The overall prediction success rate arrives at

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

100.% correct classifications



288 4 Machine Learning

Test Set:

98.1% correct classifications

with iris flower species (class) related success rates of

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassificationPerClass","WrongClassifictionPairs"},

trainingAndTestSet,perceptronInfo]

Training Set:

All I/O pairs are correctly classified

Test Set:

Wrong I/O pair index = 69; input = {63., 28., 51., 15.}; class desired/machine = 3 / 2

Wrong I/O pair index = 82; input = {61., 26., 56., 14.}; class desired/machine = 3 / 2



4.8 Training and Test Set Partitioning 289

This result is a distinct advantage to the pure clustering-based class predictor be-

fore. A small training set with less than a third of the total I/O pairs leads to a high

test set predictivity with only two classification errors. Note that both misclassified

inputs are closely neighbored in the input’s space. With the obtained supervised

learning based class predictor an acceptable solution to the classification seems to

be found. The only dissatisfying incidence of the latter approach is the apparent hop-

ping behavior of the test set predictivity obvious in the training set size scan above.

If training fraction 0.27 is chosen instead of 0.28 with nearly the same training set

size

index=27;

trainingAndTestSetsInfo=

perceptronClassificationScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[index,1]];

perceptronInfo=trainingAndTestSetsInfo[[index,2]];

the overall predictivity

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

95.% correct classifications

Test Set:

74.5% correct classifications

as well as the class related predictivity

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassificationPerClass"},trainingAndTestSet,

perceptronInfo]

Training Set:



290 4 Machine Learning

Test Set:

drops even below the predictivity level of the purely clustering-based class predic-

tor. Thus the CR based training set selection led to a very unfavorable training set

for training fraction 0.27 but to a highly predictive one for training fraction 0.28.

This kind of sensitivity of a machine learning result to comparatively small parame-

ter changes is a true burden of the methods in question and quite often encountered.

In the current case the cluster representatives for the training set cover the input’s

space appropriately but are not the best choices for a good predictivity. A heuristic

strategy to improve could be the following: I/O pairs are exchanged between the

training and the test set since a swap of I/O pairs leaves the training and test set

sizes unchanged. Candidates for this swapping procedure would be test set I/O pairs

whose outputs are only poorly predicted with training set I/O pairs in use. After an

exchange the machine learning fit is repeated and the deviations of the I/O pairs of

the test set are re-evaluated. With this updated information at hand the next swap can

be prepared etc. But a repeated unconstrained exchange could easily decrease the

spatial diversity of the training and test sets I/O pair’s inputs, e.g. the test set could

shrink to only a small region of the I/O pairs input’s space: Thus a high predictiv-

ity on the optimized test set would by no means imply a good general predictivity.

To avoid or at least reduce possible spatial diversity losses an exchange could be

confined to I/O pairs that belong to the same cluster. CIP provides a small number

of these spatial diversity preserving training set optimization strategies. The default

heuristics is abbreviated SingleGlobalMax: The single global test set I/O pair with

the maximum deviation between its output and the machine prediction is chosen

and exchanged with the current training set I/O pair of its cluster. Then the machine

learning process is repeated and re-evaluated. This iteration is performed for a spec-

ified number of optimization steps. If the SingleGlobalMax training set optimization

strategy is applied to the poor training fraction of 0.27 with the CR based training

set from above as the first step



4.8 Training and Test Set Partitioning 291

trainingFraction=0.27;

numberOfTrainingSetOptimizationSteps=20;

perceptronTrainOptimization=

CIP‘Perceptron‘GetPerceptronTrainOptimization[

classificationDataSet,numberOfHiddenNeurons,trainingFraction,

numberOfTrainingSetOptimizationSteps];

CIP‘Perceptron‘ShowPerceptronTrainOptimization[

perceptronTrainOptimization]

an improvement due to a decreased RMSE is obvious - but another problem oc-

curred: The training set optimization is trapped in oscillations after step 6. This

problem may be largely suppressed by a so-called blacklist modification of the

heuristics where an I/O pair is not allowed to be exchanged twice for a specified

number of optimization steps (in this case equal to the blacklist length):

numberOfTrainingSetOptimizationSteps=20;

blackListLength=20;

perceptronTrainOptimization=

CIP‘Perceptron‘GetPerceptronTrainOptimization[

classificationDataSet,numberOfHiddenNeurons,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘Perceptron‘ShowPerceptronTrainOptimization[

perceptronTrainOptimization]



292 4 Machine Learning

Now a considerable improvement is obtained and the best training set

bestIndex=

CIP‘Perceptron‘GetBestPerceptronClassOptimization[

perceptronTrainOptimization];

trainingAndTestSet=

perceptronTrainOptimization[[3,bestIndex]];

perceptronInfo=

perceptronTrainOptimization[[4,bestIndex]];

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

100.% correct classifications

Test Set:

99.1% correct classifications

leads to class predictions with a satisfactory success rate. If the described training

and test set optimization is applied to the whole training fraction scan before

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.01,0.30,0.01}];

numberOfTrainingSetOptimizationSteps=20;

blackListLength=20;

perceptronClassificationScan=

CIP‘Perceptron‘ScanClassTrainingWithPerceptron[

classificationDataSet,numberOfHiddenNeurons,trainingFractionList,

UtilityOptionOptimizationSteps ->

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘Perceptron‘ShowPerceptronClassificationScan[

perceptronClassificationScan]



4.8 Training and Test Set Partitioning 293

Best test set classification with index = {24,25,27,29}

a dramatically improved picture is the result with smooth and high correct class

prediction rates. The minimum training fraction with the highest detected test set

prediction rate

bestIndex=24;

trainingFractionList[[bestIndex]]

0.24

performs excellent on the whole

trainingAndTestSetsInfo=

perceptronClassificationScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[bestIndex,1]];

perceptronInfo=trainingAndTestSetsInfo[[bestIndex,2]];

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

100.% correct classifications

Test Set:

99.1% correct classifications

as well as class specific

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassificationPerClass","WrongClassifictionPairs"},

trainingAndTestSet,perceptronInfo]

Training Set:



294 4 Machine Learning

All I/O pairs are correctly classified

Test Set:

Wrong I/O pair index = 105; input = {60., 27., 51., 16.}; class desired/machine = 2 / 3

and is even smaller than the earlier top training fraction of 0.28. It is worth to note

that the successful sketched training set optimization strategy must not be successful

at all in general: There is no guarantee to improve - it is just heuristics. But again:

A systematic training and test set enumeration and evaluation would inevitably fail

due to the practically infinite number of combinations. A training rate of 0.24 for

150 iris flower I/O pairs means 36 clusters with 4 to 5 members each. If one member

of each cluster is chosen for the training set this evaluates to at least

ScientificForm[4.0^36,1]

5.×1021



4.8 Training and Test Set Partitioning 295

possible different training and test sets just for this training fraction. Short cut

heuristics are the only promising alternatives - and also the latter training fraction

scan with 30 training fractions - each with 20 training set optimization steps and 3

perceptron fits for the 3 class output components - required already 1800 percep-

tron fits. For difficult machine learning problems one single fit may require hours

up to days so the generation of the sketched training fraction scan would require

months of CPU time on a single computer. On the other hand this kind of compu-

tation is particularly eligible for parallel architectures since there is mostly only a

loose dependence of the individual perceptron fits. This is why multicore architec-

tures and grid computing play a major role in professional machine learning setups.

Finally the ruled out MLR approach from the beginning of this subsection may be

considered again and also enhanced by training set optimization:

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.01,0.90,0.01}];

numberOfTrainingSetOptimizationSteps=20;

blackListLength=20;

mlrClassificationScan=

CIP‘MLR‘ScanClassTrainingWithMlr[

classificationDataSet,trainingFractionList,

UtilityOptionOptimizationSteps ->

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘MLR‘ShowMlrClassificationScan[

mlrClassificationScan]

Best test set classification with index = {89}

But although the training fraction scan is clearly improved the linear MLR results

are still significantly inferior to the non-linear perceptron predictions.



296 4 Machine Learning

4.8.3 Adhesive Kinetics Regression Revisited

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Graphics‘

<<CIP‘Perceptron‘

<<CIP‘SVM‘

The adhesive kinetics data have already been successfully modelled by the non-

linear machine learning techniques. A specific validation procedure was not neces-

sary for an assessment of the quality of the fit results since the experimental errors

were known in advance and could be compared to the machine errors. In addition

a visual 3D inspection was possible with a subset of I/O pairs. On the other hand it

may be interesting to explore the minimum training set for this regression task. This

is expected to be difficult since the data set

dataSet=CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

is only small

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs"},dataSet]

Number of IO pairs = 73

and the outputs’ errors are reported to be in the order of 10 to 20%, i.e. the output

values are at the borderline to be only semi-quantitative. So any alteration in an

optimization procedure may cause drastic effects and may be hard to be judged. A

perceptron with two hidden neurons

numberOfHiddenNeurons=2;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[dataSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronSingleRegression[

{"RMSE"},dataSet,perceptronInfo];

Root mean squared error (RMSE) = 2.094×102

and a SVM with an appropriate kernel function

kernelFunction={"Wavelet",1.0};

svmInfo=CIP‘SVM‘FitSvm[dataSet,kernelFunction];

CIP‘SVM‘ShowSvmSingleRegression[{"RMSE"},dataSet,

svmInfo];

Root mean squared error (RMSE) = 2.102×102



4.8 Training and Test Set Partitioning 297

lead to comparable satisfying fitting results with nearly equal RMSEs. This is con-

firmed by visual inspection of a data sub set with the corresponding perceptron’s

polymerMassRatio="80";

dataSet3D=CIP‘ExperimentalData‘GetAdhesiveKinetics3dDataSet[

polymerMassRatio];

indexOfInput1=2;

indexOfInput2=3;

indexOfOutput=1;

input={80.0,0.0,0.0};

labels={"In 2","In 3","Out 1"};

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,

indexOfInput1,indexOfInput2,indexOfOutput,input,perceptronInfo]];

perceptron3dPlot=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

purePerceptron3dFunction,labels]

or SVM’s model function:

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo]];

svm3dPlot=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureSvm3dFunction,labels]



298 4 Machine Learning

A scan of different CR based splits of the whole data set into a training and a test

set with a perceptron training

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.3,0.8,0.05}];

perceptronRegressionScan=

CIP‘Perceptron‘ScanRegressTrainingWithPerceptron[dataSet,

numberOfHiddenNeurons,trainingFractionList];

CIP‘Perceptron‘ShowPerceptronRegressionScan[

perceptronRegressionScan]

Best test set regression with index = {11}



4.8 Training and Test Set Partitioning 299

and a SVM training

svmRegressionScan=

CIP‘SVM‘ScanRegressTrainingWithSvm[dataSet,kernelFunction,

trainingFractionList];

CIP‘SVM‘ShowSvmRegressionScan[

svmRegressionScan]

Best test set regression with index = {11}

leads to similar results (where the overall performance of the SVM seems to be a

little better): The minimum training set size apparently corresponds to a training

fraction of about 0.6, i.e. 60% of the data set’s I/O pairs are assigned to the training

set. But from the previous subsection it is known that this picture may be misleading

due to a non-optimum representative selection from each cluster. If this problem is

addressed by an addition of several training set optimization steps (again with the

SingleGlobalMax heuristics and adequate blacklisting) for each training fraction of

the perceptron scan

numberOfTrainingSetOptimizationSteps=20;

blackListLength=10;

perceptronRegressionScan=

CIP‘Perceptron‘ScanRegressTrainingWithPerceptron[

dataSet,numberOfHiddenNeurons,trainingFractionList,

UtilityOptionOptimizationSteps ->

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘Perceptron‘ShowPerceptronRegressionScan[

perceptronRegressionScan]



300 4 Machine Learning

Best test set regression with index = {11}

as well as the SVM scan

svmRegressionScan=

CIP‘SVM‘ScanRegressTrainingWithSvm[

dataSet,kernelFunction,trainingFractionList,

UtilityOptionOptimizationSteps ->

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmRegressionScan[

svmRegressionScan]

Best test set regression with index = {11}

the RMSEs improve considerably and very small training fractions seem to be

sufficient. The perceptron fit for a training fraction of only 0.35



4.8 Training and Test Set Partitioning 301

index=2;

trainingFractionList[[index]]

0.35

leads to a satisfactory RMSE for the whole data set

trainingAndTestSetsInfo=

perceptronRegressionScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[index,1]];

perceptronInfo2=trainingAndTestSetsInfo[[index,2]];

CIP‘Perceptron‘ShowPerceptronSingleRegression[

{"RMSE"},dataSet,perceptronInfo2];

Root mean squared error (RMSE) = 2.148×102

but by visual inspection of the obtained model function (overlayed over the

satisfying whole-data-fit perceptron model function from above)

purePerceptron3dFunction2=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,

indexOfInput1,indexOfInput2,indexOfOutput,input,perceptronInfo2]];

perceptron3dPlot2=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

purePerceptron3dFunction2,labels];

Show[{perceptron3dPlot,perceptron3dPlot2}]

overfitting artifacts become obvious due to the small number of training data. Note

that this is a general problem for perceptron fits: Small and error biased data sets are



302 4 Machine Learning

very prone to overfitting even if small perceptrons with only a few hidden neurons

are used. The corresponding SVM fit’s RMSE for the whole data set

trainingAndTestSetsInfo=svmRegressionScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[index,1]];

svmInfo2=trainingAndTestSetsInfo[[index,2]];

CIP‘SVM‘ShowSvmSingleRegression[{"RMSE"},dataSet,

svmInfo2];

Root mean squared error (RMSE) = 2.822×102

is somewhat higher compared to the perceptron’s result but the SVM’s tendency

to overfitting with an appropriate kernel function is known to be lessened as shown

below (the current model function is again overlayed over the satisfying whole-data-

fit SVM model function from above)

pureSvm3dFunction2=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo2]];

svm3dPlot2=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureSvm3dFunction2,labels];

Show[{svm3dPlot,svm3dPlot2}]

where no overfitting can be detected. If the training fraction is raised to 0.45

index=4;

trainingFractionList[[index]]

0.45



4.8 Training and Test Set Partitioning 303

the perceptron fit

trainingAndTestSetsInfo=

perceptronRegressionScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[index,1]];

perceptronInfo2=trainingAndTestSetsInfo[[index,2]];

CIP‘Perceptron‘ShowPerceptronSingleRegression[

{"RMSE"},dataSet,perceptronInfo2];

Root mean squared error (RMSE) = 2.194×102

purePerceptron3dFunction2=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,

indexOfInput1,indexOfInput2,indexOfOutput,input,perceptronInfo2]];

perceptron3dPlot2=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

purePerceptron3dFunction2,labels];

Show[{perceptron3dPlot,perceptron3dPlot2}]

and the corresponding SVM fit

trainingAndTestSetsInfo=svmRegressionScan[[1]];

trainingAndTestSet=trainingAndTestSetsInfo[[index,1]];

svmInfo2=trainingAndTestSetsInfo[[index,2]];

CIP‘SVM‘ShowSvmSingleRegression[{"RMSE"},dataSet,

svmInfo2];

Root mean squared error (RMSE) = 2.432×102



304 4 Machine Learning

pureSvm3dFunction2=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,indexOfInput1,

indexOfInput2,indexOfOutput,input,svmInfo2]];

svm3dPlot2=CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureSvm3dFunction2,labels];

Show[{svm3dPlot,svm3dPlot2}]

become acceptable with the perceptron fit now being a bit superior. In summary

this means that only about half of the adhesive kinetics data are necessary to extract

a satisfying model function - but such a clear assessment would be hard to make

without visual inspection and an a priori good fit as a guideline.

4.8.4 Design of Experiment

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘SVM‘

<<CIP‘Cluster‘

Scientific lab work usually generates data on the basis of a design of experiment

(DoE), i.e. the setups and conditions for measurement are not chosen randomly

but follow theoretical considerations or a specific systematics, e.g. derived from

mathematical statistics. The DoE may be utilized to extract an optimum training set

from the full data by an adequate procedure. For an example the inputs’ locations for

the chapter’s introductory regression task may be chosen to form a two-dimensional

grid, e.g. a 19×19 grid



4.8 Training and Test Set Partitioning 305

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

numberOfDataPerDimension=19;

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

viewPoint3D={0.0,0.0,3.0};

CIP‘Graphics‘Plot3dDataSet[dataSet3D,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

where the grid character becomes obvious by 3D inspection of the data set from

above. As a rational choice for an adequate training set the extraction of a sub grid

with a sufficient density is near at hand, e.g. a 10×10 sub grid:



306 4 Machine Learning

numberOfPointsPerDimension=19;

trainingSet={};

testSet={};

Do[

Do[

If[OddQ[i] && OddQ[k],

AppendTo[trainingSet,

dataSet3D[[(i-1)*numberOfPointsPerDimension+k]]],

AppendTo[testSet,

dataSet3D[[(i-1)*numberOfPointsPerDimension+k]]],

];

dataSet3D,

{k,numberOfPointsPerDimension}

],

{i,numberOfPointsPerDimension}

];

viewPoint3D={0.0,0.0,3.0};

CIP‘Graphics‘Plot3dDataSet[trainingSet,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

The remaining I/O pairs are accordingly assigned to the test set:

CIP‘Graphics‘Plot3dDataSet[testSet,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]



4.8 Training and Test Set Partitioning 307

This choice seems to be an optimum with regard to similar spatial diversity and also

satisfies intuitive aesthetic aspects. A SVM fit of the training set with the adequate

kernel function

kernelFunction={"Wavelet",0.3};

svmInfo=CIP‘SVM‘FitSvm[trainingSet,kernelFunction];

yields satisfactory predictions for the training as well as the test set

trainingAndTestSet={trainingSet,testSet};

CIP‘SVM‘ShowSvmRegressionResult[{"ModelVsDataPlot",

"AbsoluteSortedResidualsPlot","RMSE"},trainingAndTestSet,svmInfo]

Training Set:



308 4 Machine Learning

Root mean squared error (RMSE) = 8.904×10-2

Test Set:



4.8 Training and Test Set Partitioning 309

Root mean squared error (RMSE) = 1.508×10-1

The RMSE values again correspond satisfactorily to the value of 0.1 used as the

standard deviation for the calculation of the normally distributed I/O pairs’ outputs.

It may be interesting to compare the DoE-based partitioning to different training

and test set splitting heuristics which completely neglect the DoE knowledge. This

kind of exploration might lead to some insight about success or failure of these

partitioning optimization strategies. The first attempt is a pure CR based training

and test set partitioning with a training fraction equal to the sub-grid partitioning

one. With the current sizes of the training set

Length[trainingSet]

100

and the test set

Length[testSet]

261

the training fraction is evaluated to be:

trainingFraction=

N[Length[trainingSet]/(Length[trainingSet]+Length[testSet])]

0.277008

The CR based training set for this training fraction



310 4 Machine Learning

trainingAndTestSet=CIP‘Cluster‘GetClusterBasedTrainingAndTestSet[

dataSet3D,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

can be visually inspected to demonstrate a good spatial diversity but with inputs

clearly different to those of the sub-grid before:

CIP‘Graphics‘Plot3dDataSet[trainingSet,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

The SVM fit with the same kernel function

svmInfo=CIP‘SVM‘FitSvm[trainingSet,kernelFunction];

produces RMSE values for training and test set

CIP‘SVM‘ShowSvmRegressionResult[{"RMSE"},trainingAndTestSet,svmInfo]

Training Set:

Root mean squared error (RMSE) = 9.118×10-2

Test Set:

Root mean squared error (RMSE) = 1.975×10-1



4.8 Training and Test Set Partitioning 311

which are a little inferior to those of the DoE-based fit before. So a further refine-

ment with additional training set optimization steps on the basis of a distinct I/O

pair exchange heuristics could lead to improvements. Note that this assumption is

a kind of pure hope since none of all possible heuristics guarantees improvement.

The AllClusterMax training set optimization strategy generates a training set in ev-

ery iteration step which consists of the single maximum deviating I/O pairs of each

cluster. So each optimization step may form a completely new training set. The

application of this heuristics to the current regression task

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="AllClusterMax";

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

does not lead to any improvement to the pure CR based training set of step one. As a

variant the AllClusterMean strategy can be examined where the training set in every

iteration is formed by the clusters’ I/O pairs which are nearest their corresponding

cluster-specific mean deviation (and thus do not simply correspond to the cluster’s

maximum deviation). This more balancing global strategy



312 4 Machine Learning

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="AllClusterMean";

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

is able to achieve improvements in comparison to the pure CR based training set of

step one. More reserved heuristics do only change one single I/O pair in every train-

ing set optimization step and not the training set as a whole. The SingleGlobalMean

strategy evaluates the cluster with the maximum deviating I/O pair and replaces this

cluster’s training set member with the cluster’s test set I/O pair which is nearest its

cluster-specific mean deviation. The application of the strategy

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMean";

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]



4.8 Training and Test Set Partitioning 313

shows improvements but is trapped in an oscillation after a few steps. Single I/O

pair exchange strategies are known to be prone to this kind of behavior as already

discussed above. Therefore these strategies are enhanced by blacklisting to suppress

oscillations: A single I/O pair is not allowed to be exchanged twice for a number of

optimization steps (which may be defined by the blacklist length where the blacklist

is removed after it arrived its maximum length). If the blacklist length is chosen

to be equal to the number of optimization steps, i.e. no I/O pair is allowed to be

exchanged twice,

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMean";

blackListLength=20;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]



314 4 Machine Learning

the oscillation is successfully suppressed but only an early improvement is achieved

after three optimization steps since all further optimization trials fail. A reduced

blacklist length

numberOfTrainingSetOptimizationSteps=25;

deviationCalculationMethod="SingleGlobalMean";

blackListLength=10;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]



4.8 Training and Test Set Partitioning 315

allows a re-entry of already exchanged I/O pairs and leads to the best improvement

in step 17 found so far. Finally the SingleGlobalMax strategy is explored (the CIP

default strategy) which evaluates the cluster with the maximum deviating I/O pair

and replaces this cluster’s training set member with this maximum deviating I/O

pair. A non-blacklisted application of this strategy

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMax";

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[

dataSet3D,kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

leads to only a minor improvement in step 2 and oscillations afterwards. A full

blacklisting

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMax";

blackListLength=20;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]



316 4 Machine Learning

does not improve further. So a reduced blacklist length again

numberOfTrainingSetOptimizationSteps=20;

deviationCalculationMethod="SingleGlobalMax";

blackListLength=10;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[dataSet3D,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionDeviationCalculation ->

deviationCalculationMethod,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]

leads to the best result - in this case the best training/test set combination found so

far for the current regression task. The latter optimization result reveals a nice "per

aspera ad astra" (through difficulties to the stars) result: The small improvement in

step 2 is followed by a number of apparently unfavorable steps with increased test



4.8 Training and Test Set Partitioning 317

RMSE values but after the blacklist reset in step 11 a long RMSE value drop down

is found which arrives at an improved RMSE minimum. This best training and test

set partitioning

index=CIP‘SVM‘GetBestSvmRegressOptimization[

svmTrainOptimization];

trainingAndTestSetList=svmTrainOptimization[[3]];

svmInfoList=svmTrainOptimization[[4]];

trainingAndTestSet=trainingAndTestSetList[[index]];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

svmInfo=svmInfoList[[index]];

still contains an absolutely satisfying spatial diverse training set

CIP‘Graphics‘Plot3dDataSet[trainingSet,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

with RMSE values

CIP‘SVM‘ShowSvmRegressionResult[{"RMSE"},trainingAndTestSet,svmInfo]

Training Set:

Root mean squared error (RMSE) = 1.065×10-1

Test Set:

Root mean squared error (RMSE) = 1.438×10-1



318 4 Machine Learning

and deviation plots for training and test set

CIP‘SVM‘ShowSvmRegressionResult[{"ModelVsDataPlot",

"AbsoluteSortedResidualsPlot","RMSE"},trainingAndTestSet,svmInfo]

Training Set:

Root mean squared error (RMSE) = 1.065×10-1

Test Set:



4.8 Training and Test Set Partitioning 319

Root mean squared error (RMSE) = 1.438×10-1

that are even slightly superior to the DoE-based sub grid result above. But note that

it was a kind of educated good luck that led to this excellent final result. In summary

a training and test set partitioning could be achieved by mere CR based partitioning

with some following optimization steps which is comparable to the DoE-based sub

grid approach. But the latter has the crucial advantage of being computationally far

less expensive: That is why experimental scientists and data analysts should closely

collaborate at very early project stages to design experiments together. So at best

the machine learning process(es) could already accompany and support experimen-

tal work during its performance. This becomes even more important for modern

miniaturized, parallelized and automated lab processes by intensive use of robotics.

Otherwise the traditional "experiments first-data analysis second" procedure may

give away an awful lot.



320 4 Machine Learning

4.8.5 Concluding Remarks

The partitioning of a data set into a training and a test set is a crucial step for suc-

cessful machine learning: If a small training set possesses a high predictivity for a

test set whose inputs cover a comparable input space a convincing result is usually

obtained in agreement with the two guidelines sketched at the beginning of this sec-

tion. But in general machine learning results should be treated with caution. There

is a wide range for educated cheating: Almost always something can be learned and

then predicted and thus machine learning results are often dubious. Proper validation

is essential and far more demanding than mere data fitting. It is interesting to note

that commercial machine learning applications are far more trustworthy than many

academic reports since the first are inevitably assessed in practice with a painful

penalty for deceits where the latter are often produced by harassed students under

pressure with a fire and forget mentality.

With the discussed partitioning of data into a training and a test set the domain of

cross-validation was touched: This scientific field uses more elaborate partitioning

schemes and operations upon them to cross-validate data but faces the unfortunate

drawback that these methods often require astronomic computational resources or

time periods beyond all bearings. So in most cases the sketched or similar pre-

cross-validation heuristics underlie practically feasible validation procedures - and

as shown they may lead to helpful results for the practitioner despite their non-

optimal and preliminary character. Nevertheless their deficiencies have to be kept in

mind and a report of machine learning results should always point them out in clear

cut words.

4.9 Comparative Machine Learning

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘SVM‘

<<CIP‘Perceptron‘

<<CIP‘Cluster‘

When machine learning is to be applied to a set of data a decision has to be made

about the method to use. In general the best method for the data in question can

not a priori be determined by theoretical considerations as already pointed out ear-

lier. Thus experience, educated guesses and a lot of trial and error are necessary to

proceed. And there is more than one way to skin a cat. Several machine construc-

tion processes may be performed and compared afterwards. This approach may

be sketched in an illustrative manner with the chapter’s introductory 3D data set

generated on the basis of a true function:



4.9 Comparative Machine Learning 321

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

labels={"x","y","z"};

numberOfDataPerDimension=10;

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

trainingSet=dataSet3D;

testSet={};

trainingAndTestSet={trainingSet,testSet};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels]

An initial linear MLR trial

mlrInfo=CIP‘MLR‘FitMlr[dataSet3D];

can be directly ruled out by visual inspection of the overlay of the approximated

linear model function and the true function



322 4 Machine Learning

originalFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureOriginalFunction,xRange,yRange,labels];

pureMlr3dFunction=Function[{x,y},

CalculateMlr3dValue[x,y,mlrInfo]];

approximatedMlrFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureMlr3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedMlrFunctionGraphics3D]

since the machine learning problem is strongly non-linear: So non-linear methods

are clearly advised. Support vector regression needs an a priori specification of the

kernel function which in general is not known. If a type of kernel function is chosen

by way of trial its parameters are in question: These are usually scanned over a range

of reasonable values to construct an adequate kernel. An attempt with a polynomial

kernel function scanned with different exponents as its kernel parameter

kernelFunctionList=Table[{"Polynomial",1.0,kernelParameter},

{kernelParameter,1,6,1}]

{{Polynomial,1.,1},{Polynomial,1.,2},{Polynomial,1.,3},{Polynomial,1.,4},

{Polynomial,1.,5},{Polynomial,1.,6}}

svmInfoList=CIP‘SVM‘FitSvmSeries[dataSet3D,kernelFunctionList];

svmSeriesRegressionResult=CIP‘SVM‘GetSvmSeriesRmse[

trainingAndTestSet,svmInfoList];

CIP‘SVM‘ShowSvmSeriesRmse[svmSeriesRegressionResult]



4.9 Comparative Machine Learning 323

Best training set regression with svmInfo index = {5}

does not look promising: Also the best result

svmInfoIndex=5;

svmInfo=svmInfoList[[svmInfoIndex]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{Polynomial,1.,5}

yields a RMSE of an order of magnitude greater than the standard deviation of 0.1

which was used for the data generation. The resulting approximated model function

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]



324 4 Machine Learning

differs considerably from the true function and thus the polynomial kernel choice is

not satisfying. The wavelet kernel was already shown to be successful at the intro-

duction of this chapter. A systematic scan of its kernel parameter in a range between

0.1 and 1.0 in steps of 0.1

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,0.1,1.0,0.1}]

{{Wavelet,0.1},{Wavelet,0.2},{Wavelet,0.3},{Wavelet,0.4},{Wavelet,0.5},{Wavelet,0.6},

{Wavelet,0.7},{Wavelet,0.8},{Wavelet,0.9},{Wavelet,1.}}

svmInfoList=CIP‘SVM‘FitSvmSeries[dataSet3D,kernelFunctionList];

svmSeriesRegressionResult=

CIP‘SVM‘GetSvmSeriesRmse[trainingAndTestSet,svmInfoList];

CIP‘SVM‘ShowSvmSeriesRmse[svmSeriesRegressionResult]



4.9 Comparative Machine Learning 325

Best training set regression with svmInfo index = {1}

shows a continuously increasing RMSE value from values below 0.1 (which indi-

cates overfitting since the data are better approximated than they should be accord-

ing to the standard deviation of 0.1 used for their generation) to values considerably

above 0.1 (which means an only poor approximation of the true function). A good

machine learning result with a RMSE around 0.1 for a wavelet parameter of 0.3

svmInfoIndex=3;

svmInfo=svmInfoList[[svmInfoIndex]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{Wavelet,0.3}

thus determines an adequate kernel function (a kind of bump, compare above):

a=0.3;

x=0.0;

pureWaveletKernel2D=Function[y,CIP‘SVM‘KernelWavelet[{x},{y},a]];

argumentRange={-1.0,1.0};

functionValueRange={-0.4,1.1};

labels={"x","z","Wavelet kernel function"};

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]



326 4 Machine Learning

The overlay of the true function with the approximated model function shows the

convincing result for this kernel:

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]

The analogue procedure may be performed for a Gaussian radial basis function

(RBF) kernel. A scan of its parameter



4.9 Comparative Machine Learning 327

kernelFunctionList=Table[

kernelFunction={"GaussianRBF",kernelParameter},

{kernelParameter,1.0,15.0,1.0}]

{{GaussianRBF,1.},{GaussianRBF,2.},{GaussianRBF,3.},{GaussianRBF,4.},{GaussianRBF,5.},

{GaussianRBF,6.},{GaussianRBF,7.},{GaussianRBF,8.},{GaussianRBF,9.},{GaussianRBF,10.},

{GaussianRBF,11.},{GaussianRBF,12.},{GaussianRBF,13.},{GaussianRBF,14.},{GaussianRBF,15.}}

svmInfoList=CIP‘SVM‘FitSvmSeries[dataSet3D,kernelFunctionList];

svmSeriesRegressionResult=

CIP‘SVM‘GetSvmSeriesRmse[trainingAndTestSet,svmInfoList];

CIP‘SVM‘ShowSvmSeriesRmse[svmSeriesRegressionResult]

Best training set regression with svmInfo index = {15}

recommends a value of 14.0 for a RMSE value around 0.1

svmInfoIndex=14;

svmInfo=svmInfoList[[svmInfoIndex]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{GaussianRBF,14.}

to form an adequate Gaussian RBF kernel function:

beta=14.0;

x=0.0;

pureWaveletKernel2D=Function[y,

CIP‘SVM‘KernelGaussianRbf[{x},{y},beta]];

argumentRange={-1.0,1.0};

functionValueRange={-0.1,1.1};

labels={"x","z","Gaussian RBF kernel function"};



328 4 Machine Learning

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

The overlay is again convincing:

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]



4.9 Comparative Machine Learning 329

As a third alternative a universal Fourier kernel function may be chosen and its

parameter scanned:

kernelFunctionList=Table[

kernelFunction={"UniversalFourier",kernelParameter},

{kernelParameter,0.1,0.9,0.1}]

{{UniversalFourier,0.1},{UniversalFourier,0.2},{UniversalFourier,0.3},{UniversalFourier,0.4},

{UniversalFourier,0.5},{UniversalFourier,0.6},{UniversalFourier,0.7},{UniversalFourier,0.8},

{UniversalFourier,0.9}}

svmInfoList=CIP‘SVM‘FitSvmSeries[dataSet3D,kernelFunctionList];

svmSeriesRegressionResult=

CIP‘SVM‘GetSvmSeriesRmse[trainingAndTestSet,svmInfoList];

CIP‘SVM‘ShowSvmSeriesRmse[svmSeriesRegressionResult]

Best training set regression with svmInfo index = {8}

A value of 0.7 for a RMSE value around 0.1

svmInfoIndex=7;

svmInfo=svmInfoList[[svmInfoIndex]];

CIP‘SVM‘GetKernelFunction[svmInfo]

{UniversalFourier,0.7}

now leads to a successful kernel function

q=0.7;

x=0.0;

pureWaveletKernel2D=Function[y,

CIP‘SVM‘KernelUniversalFourier[{x},{y},q]];

argumentRange={-1.0,1.0};



330 4 Machine Learning

functionValueRange={0.0,3.0};

labels={"x","z","Universal Fourier kernel function"};

CIP‘Graphics‘Plot2dFunction[pureWaveletKernel2D,argumentRange,

functionValueRange,labels]

with an excellent overlay result:

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

pureSvm3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]



4.9 Comparative Machine Learning 331

If the three adequate kernel functions are compared they are similar in principal

(i.e. bump-like) but in detail notably different. Nevertheless they lead to approxi-

mated model functions of comparable quality. A perceptron based approach raises

the question for the necessary number of hidden neurons to build a sufficient number

of adequate bumps. Thus a scan of perceptron fits with different numbers of hidden

neurons

numberOfHiddenNeuronsList=Table[numberOfHiddenNeurons,

{numberOfHiddenNeurons,2,20}]

{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

perceptronInfoList=CIP‘Perceptron‘FitPerceptronSeries[

dataSet3D,numberOfHiddenNeuronsList];

perceptronSeriesRmse=CIP‘Perceptron‘GetPerceptronSeriesRmse[

trainingAndTestSet,perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]

Best training set regression with perceptronInfo index = {11}

suggests 12 hidden neurons

perceptronInfoIndex=11;

perceptronInfo=perceptronInfoList[[perceptronInfoIndex]];

CIP‘Perceptron‘GetNumberOfHiddenNeurons[perceptronInfo]

12

to be a minimum sufficient number. Note that more hidden neurons still lead to a

fit’s RMSE value around 0.1 so that the perceptron resists overfitting in the scanned

region. The overlay result



332 4 Machine Learning

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,

perceptronInfo]];

approximatedFunctionGraphics3D=CIP‘Graphics‘Plot3dFunction[

purePerceptron3dFunction,xRange,yRange,labels];

Show[originalFunctionGraphics3D,approximatedFunctionGraphics3D]

shows a satisfying approximation quality which is apparently a bit inferior to the

successful SVM based results before. The initial statement that there is more than

one way to skin a cat finally becomes obvious: For the current example a number of

explored non-linear methods performed comparably well and it is just a matter of

taste which one to choose.

4.10 Relevance of Input Components

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Perceptron‘

<<CIP‘Graphics‘

<<CIP‘DataTransformation‘

Inputs are a necessary basis for all machine learning tasks since something is to be

learned for specific inputs. An input itself is a mathematical vector that codes infor-

mation in an appropriate way for the machine learning task. From a practitioner’s



4.10 Relevance of Input Components 333

point of view an input should contain all useful information, i.e. the input’s compo-

nents should each have a precise scientific meaning. But if a single input component

is really meaningful to the machine learning task is hard to judge in advance. This

raises the question of the relevance of input components. An optimum set of inputs

should only contain those components which are necessary to successfully perform

the machine learning task and omit possible redundant or irrelevant components

which only boost an input’s length but do not contribute to improved learning. As

an example the well-defined iris flower inputs are examined.

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

An iris flower input consists of four components

CIP‘Graphics‘ShowDataSetInfo[{"InputComponents"},

classificationDataSet];

Number of input components = 4

which are the sepal length (component 1), the sepal width (component 2), the petal

length (component 3) and the petal width (component 4). These four quantities are

meaningful to the biologist and thus the natural basis for a classification effort. It

was shown above that a small perceptron with only two hidden neurons

numberOfHiddenNeurons=2;

and a small optimized training set with training fraction of 24%

trainingFraction=0.24;

numberOfTrainingSetOptimizationSteps=20;

blackListLength=20;

perceptronTrainOptimization=

CIP‘Perceptron‘GetPerceptronTrainOptimization[

classificationDataSet,numberOfHiddenNeurons,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘Perceptron‘ShowPerceptronTrainOptimization[

perceptronTrainOptimization]



334 4 Machine Learning

bestIndex=

CIP‘Perceptron‘GetBestPerceptronClassOptimization[

perceptronTrainOptimization]

13

leads to a satisfying classification result for training and test set:

trainingAndTestSet=

perceptronTrainOptimization[[3,bestIndex]];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

perceptronInfo=

perceptronTrainOptimization[[4,bestIndex]];

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},trainingAndTestSet,perceptronInfo]

Training Set:

100.% correct classifications

Test Set:

99.1% correct classifications

The relevance of an input component may be determined by omission of the com-

ponent with a re-evaluation of the machine learning task. If this is performed for all

components (successive leave-one-out) the least relevant component becomes ob-

vious which is the component that leads to a minimum change for the worse (e.g.

for an RMSE decrease) in comparison to the earlier machine learning result. After

removal of this minimum impact component this process may be repeated for the

second component etc. until one single most meaningful component is reached. If

this strategy is applied to the iris flower classification



4.10 Relevance of Input Components 335

perceptronInputRelevanceClass=

CIP‘Perceptron‘GetPerceptronInputRelevanceClass[

trainingAndTestSet,numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronInputRelevanceClass[

perceptronInputRelevanceClass]

Removed input component list = {2,1,3}

the first result is a relevance ranking of the four components: Component 2 (the sepal

width) contributes the least information to the classification task, followed by com-

ponent 1 (the sepal length) and component 3 (the petal length). The most influential

component is component 4 (the petal width) as the one component that survived the

successive removal process. A second result is the comparatively small impact of the

complete sepal information (components 1 and 2): If both sepal components are re-

moved there is only a small decrease of about 2% in prediction performance (see the

diagram above). Finally the high predictivity of component 4 (the petal width) may

be visualized. First the petal width values for the three iris flower species (classes)

are obtained for the training and the test set

classIndex=1;

class1TrainingSet=

CIP‘DataTransformation‘GetSpecificClassDataSubSet[

trainingSet,classIndex];

class1TrainingInputs=class1TrainingSet[[All, 1]];

class1TrainingPetalWidths=class1TrainingInputs[[All, 4]];

class1TestSet=

CIP‘DataTransformation‘GetSpecificClassDataSubSet[

testSet,classIndex];

class1TestInputs=class1TestSet[[All, 1]];

class1TestPetalWidths=class1TestInputs[[All, 4]];

classIndex=2;

class2TrainingSet=

CIP‘DataTransformation‘GetSpecificClassDataSubSet[

trainingSet,classIndex];

class2TrainingInputs=class2TrainingSet[[All, 1]];

class2TrainingPetalWidths=class2TrainingInputs[[All, 4]];

class2TestSet=

CIP‘DataTransformation‘GetSpecificClassDataSubSet[



336 4 Machine Learning

testSet,classIndex];

class2TestInputs=class2TestSet[[All, 1]];

class2TestPetalWidths=class2TestInputs[[All, 4]];

classIndex=3;

class3TrainingSet=

CIP‘DataTransformation‘GetSpecificClassDataSubSet[

trainingSet,classIndex];

class3TrainingInputs=class3TrainingSet[[All, 1]];

class3TrainingPetalWidths=class3TrainingInputs[[All, 4]];

class3TestSet=

CIP‘DataTransformation‘GetSpecificClassDataSubSet[

testSet,classIndex];

class3TestInputs=class3TestSet[[All, 1]];

class3TestPetalWidths=class3TestInputs[[All, 4]];

and visualized as colored points

class1TrainingPetalWidthPoints=

Table[{class1TrainingPetalWidths[[i]],1.2},

{i,Length[class1TrainingPetalWidths]}];

class1TestPetalWidthPoints=

Table[{class1TestPetalWidths[[i]],1.1},

{i,Length[class1TestPetalWidths]}];

class2TrainingPetalWidthPoints=

Table[{class2TrainingPetalWidths[[i]],1.2},

{i,Length[class2TrainingPetalWidths]}];

class2TestPetalWidthPoints=

Table[{class2TestPetalWidths[[i]],1.1},

{i,Length[class2TestPetalWidths]}];

class3TrainingPetalWidthPoints=

Table[{class3TrainingPetalWidths[[i]],1.2},

{i,Length[class3TrainingPetalWidths]}];

class3TestPetalWidthPoints=

Table[{class3TestPetalWidths[[i]],1.1},

{i,Length[class3TestPetalWidths]}];

class1TrainingPoints2DWithPlotStyle={class1TrainingPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Black]}};

class1TestPoints2DWithPlotStyle={class1TestPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Black]}};

class2TrainingPoints2DWithPlotStyle={class2TrainingPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Blue]}};

class2TestPoints2DWithPlotStyle={class2TestPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Blue]}};

class3TrainingPoints2DWithPlotStyle={class3TrainingPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Red]}};

class3TestPoints2DWithPlotStyle={class3TestPetalWidthPoints,

{PointSize[0.03],Opacity[0.3,Red]}};

points2DWithPlotStyleList={class1TrainingPoints2DWithPlotStyle,

class1TestPoints2DWithPlotStyle,

class2TrainingPoints2DWithPlotStyle,

class2TestPoints2DWithPlotStyle,

class3TrainingPoints2DWithPlotStyle,

class3TestPoints2DWithPlotStyle};

labels={"Petal width [mm]","Output",

"Class 1 (black), 2 (blue), 3 (red)"};

argumentRange={0.0,26.0};

functionValueRange={-0.1,1.3};

pointGraphics=CIP‘Graphics‘PlotMultiple2dPoints[

points2DWithPlotStyleList,labels,

GraphicsOptionArgumentRange2D -> argumentRange,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



4.10 Relevance of Input Components 337

for the training set (at an output y-value of 1.2 above) and the test set (at an output

y-value of 1.1 below). The points are displayed with a high level of transparency so

a more intense color means more iris flower data with this distinct petal width value.

Mixed colors indicate class overlaps that prevent simple and clear separations. The

perceptron fit with the training set with the removed input components 1 to 3

inputComponentsToBeRemoved={1,2,3};

reducedTrainingSet=

CIP‘DataTransformation‘RemoveInputComponentsOfDataSet[trainingSet,

inputComponentsToBeRemoved];

reducedTestSet=

CIP‘DataTransformation‘RemoveInputComponentsOfDataSet[testSet,

inputComponentsToBeRemoved];

reducedTrainingAndTestSet={reducedTrainingSet,reducedTestSet};

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedTrainingSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification"},reducedTrainingAndTestSet,perceptronInfo]

Training Set:

91.7% correct classifications

Test Set:

97.4% correct classifications

yields a high prediction rate over 90% as already shown above. Since there is now

only one input component (the petal width) and three output components (one for

each class) the decision lines of each output component may be displayed in addition

where each decision line is colored according to its corresponding class (i.e. iris

flower species):

reducedTrainingSetList=

CIP‘DataTransformation‘TransformDataSetToMultipleDataSet[

reducedTrainingSet];

perceptronInfo=CIP‘Perceptron‘FitPerceptron[

reducedTrainingSetList[[1]],numberOfHiddenNeurons];

pureClass1Function=Function[x,



338 4 Machine Learning

CIP‘Perceptron‘CalculatePerceptron2dValue[x,

perceptronInfo]];

plotStyle={Thick,Black};

class1Graphics=CIP‘Graphics‘Plot2dFunction[pureClass1Function,

argumentRange,functionValueRange,labels,

GraphicsOptionLinePlotStyle -> plotStyle];

perceptronInfo=CIP‘Perceptron‘FitPerceptron[

reducedTrainingSetList[[2]],numberOfHiddenNeurons];

pureClass2Function=Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,

perceptronInfo]];

plotStyle={Thick,Blue};

class2Graphics=CIP‘Graphics‘Plot2dFunction[pureClass1Function,

argumentRange,functionValueRange,labels,

GraphicsOptionLinePlotStyle -> plotStyle];

perceptronInfo=CIP‘Perceptron‘FitPerceptron[

reducedTrainingSetList[[3]],numberOfHiddenNeurons];

pureClass3Function=Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,

perceptronInfo]];

plotStyle={Thick,Red};

class3Graphics=CIP‘Graphics‘Plot2dFunction[pureClass3Function,

argumentRange,functionValueRange,labels,

GraphicsOptionLinePlotStyle -> plotStyle];

Show[pointGraphics,class1Graphics,class2Graphics,class3Graphics]

Note that for each petal width value the winner output is the decision line with the

highest output value. Thus it becomes obvious that a petal width of less than about

6 mm is attributed to the class 1 (iris setosa, black), values between about 6 and

17 mm are assigned to the class 2 (iris versicolor, blue) and values above 17 mm

belong to the class 3 (iris virginica, red). Since the petal width allows for this simple

partitioning scheme its success is explained. The information of components 1 to 3

may be regarded as a refinement of this rough picture which leads to an improved

predictivity.



4.11 Pattern Recognition 339

The sketched analysis of the relevance of input components may in general pro-

vide valuable insights into dependencies of scientific quantities which in turn may

substantially contribute to a scientist’s feeling for a problem and motivate further

investigations. If a possible input component is already known to be more or less

redundant (i.e. its information is already contained in other input components) it

should of course be omitted from the very beginning: Computational effort is in-

creased with every additional input component and should be kept as small as pos-

sible. Also the proneness to overfitting increases with an increased length of the

inputs.

4.11 Pattern Recognition

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Utility‘

<<CIP‘Cluster‘

<<CIP‘DataTransformation‘

<<CIP‘MLR‘

The recognition of patterns belongs to the most prominent and most demanding ap-

plications of machine learning, e.g. the classification of biological tissues or medical

images. For simplicity the discussion in this section is confined to the recognition

of digital grayscale images with different face types. Digital images are composed

of pixels (picture elements) in a rectangular arrangement with a defined width and

height (in pixels): A 640×480 digital image consists of

640*480

307200

307200 pixels arranged in 480 rows with 640 pixels in each row. Each pixel contains

a specific color information. A grayscale pixel may contain 256 possible shades of

gray ranging from black (with value 0) to white (with value 255). Thus a digital im-

age can be represented as a matrix of numbers. Pattern recognition is demonstrated

in the following for the intuitive problem of face detection (i.e. classification) with

grayscale images of cat, dog and human faces. An image classification data set is

obtained from the CIP ExperimentalData package (see Appendix A):

imageClassificationDataSet1=

CIP‘ExperimentalData‘GetFacesWhiteImageDataSet[];

The data set contains



340 4 Machine Learning

imageInputs1=CIP‘Utility‘GetInputsOfDataSet[

imageClassificationDataSet1];

Length[imageInputs1]

18

18 I/O pairs: The faces of 6 cats (class 1), 6 dogs (class 2) and 6 humans (class 3)

GraphicsGrid[

Table[

Image[imageInputs1[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

Note that an above display pixel is not equal to an image pixel since the images are automatically scaled for

better visibility.

with each class shown in one row. Each input is a 30×30 grayscale image

Dimensions[imageInputs1[[1]]]

{30,30}

which contains 30×30 = 900 pixels where each pixel contains a specific shade of

gray (out of 256 possible values). Thus each input may be coded as a vector with

900 components where each component contains the grayscale value of its corre-

sponding pixel. If the image classification data set is transformed in this way to a

classification data set (with the rows of the rectangular pixel matrix structure con-

catenated to form a mere vector)

classificationDataSet1=

CIP‘DataTransformation‘ConvertImageDataSet[

imageClassificationDataSet1];

inputs1=CIP‘Utility‘GetInputsOfDataSet[classificationDataSet1];



4.11 Pattern Recognition 341

clustering and machine learning tasks may be performed. An initial clustering of the

inputs into 3 classes (the natural choice)

numberOfClusters=3;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs1,

numberOfClusters];

yields 3 asymmetric classes

CIP‘Cluster‘ShowClusterResult[

{"EuclideanDistanceDiagram","ClusterStatistics"},clusterInfo]

Cluster 1 : 12 members (66.6667%) with distance = 0.

Cluster 2 : 5 members (27.7778%) with distance = 1787.3

Cluster 3 : 1 members (5.55556%) with distance = 2525.37

where the data set’s class assignments do not correspond to the detected clusters:

sortResult=CIP‘DataTransformation‘SortClassificationDataSet[

classificationDataSet1];

classIndexMinMaxList=sortResult[[2]]

{{1,6},{7,12},{13,18}}

clusterOccupancies=CIP‘Cluster‘GetClusterOccupancies[

classIndexMinMaxList,clusterInfo];

CIP‘Cluster‘ShowClusterOccupancies[clusterOccupancies]



342 4 Machine Learning

Cluster 1 contains the majority of cats and dogs with two humans. Cluster 2 is

human dominated with just one dog and cluster 3 consists of only one cat. Cats and

dogs are detected to be more similar since they are predominantly joined in one

cluster. It becomes clear that a mere clustering of image inputs can not satisfactorily

group the three types of faces. Thus supervised learning is advised. A linear MLR

approach

mlrInfo1=CIP‘MLR‘FitMlr[classificationDataSet1];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet1,mlrInfo1]

100.% correct classifications

already yields a perfect 100% correct face detection (note that a MLR approach is

not prone to overfitting thus a partitioning in training and test set is not necessary.

But the success of a linear method is an exception chosen for simplicity: In general

non-linear machine learning is necessary with all the difficulties discussed in previ-

ous sections). To dig a little deeper into the subtleties of pattern recognition consider

the following image classification data set:

imageClassificationDataSet2=

CIP‘ExperimentalData‘GetFacesGrayImageDataSet[];

imageInputs2=CIP‘Utility‘GetInputsOfDataSet[

imageClassificationDataSet2];

GraphicsGrid[

Table[

Image[imageInputs2[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]



4.11 Pattern Recognition 343

It is identical to the one before with the difference that now the background of each

image is not white but gray. If this data set is classified with the MLR predictor

achieved before

classificationDataSet2=CIP‘DataTransformation‘ConvertImageDataSet[

imageClassificationDataSet2];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet2,mlrInfo1]

33.3% correct classifications

a very poor predictivity of only 33.3% results. This seems puzzling since the faces

are exactly the same but it is quite simple to understand: Humans automatically

separate the background from a body of interest, a difficult operation they are usually

not aware of. Since the machine learning process is expected to work human-like

(the machine is anthropomorphized) it is expected to recognize the faces it learned

also in another context. But the machine did not learn faces: It learned "faces on

a white background" since this was the information which was presented in the

training. And therefore a "face on a gray background" is in general unknown to the

predictor which inevitably leads to a poor prediction performance. If the two image

classification data sets are joined

joinedImageClassificationDataSets12=

Join[imageClassificationDataSet1,imageClassificationDataSet2];

joinedImageInputs12=CIP‘Utility‘GetInputsOfDataSet[

joinedImageClassificationDataSets12];

GraphicsGrid[

Table[

Image[joinedImageInputs12[[(i-1)*6+j]],"Byte"],

{i,6},{j,6}

],

ImageSize->300

]



344 4 Machine Learning

and used to train the (MLR) machine

joinedClassificationDataSets12=

CIP‘DataTransformation‘ConvertImageDataSet[

joinedImageClassificationDataSets12];

mlrInfo12=CIP‘MLR‘FitMlr[joinedClassificationDataSets12];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},joinedClassificationDataSets12,mlrInfo12]

100.% correct classifications

a 100% correct face detection is achieved for the joined data. A third image classi-

fication data set

imageClassificationDataSet3=

CIP‘ExperimentalData‘GetFacesBlackImageDataSet[];

imageInputs3=CIP‘Utility‘GetInputsOfDataSet[

imageClassificationDataSet3];

GraphicsGrid[

Table[

Image[imageInputs3[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]



4.11 Pattern Recognition 345

with the known faces but a black background is now directly a 100% correctly rec-

ognized

classificationDataSet3=CIP‘DataTransformation‘ConvertImageDataSet[

imageClassificationDataSet3];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet3,mlrInfo12]

100.% correct classifications

by the MLR predictor based on the white and gray background data sets: The dif-

ferent backgrounds in the training data taught the machine that the background is

not that important for face detection. Thus the machine becomes more tolerant to

different backgrounds and more predictive on that score. A prediction on the basis

of the first MLR predictor based only on the white background data set

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},classificationDataSet3,mlrInfo1]

33.3% correct classifications

yields again the expected poor result as before for the gray background data set. If

all three image classification data sets are joined

joinedImageClassificationDataSets123=Join[

imageClassificationDataSet1,imageClassificationDataSet2,

imageClassificationDataSet3];

joinedImageInputs123=CIP‘Utility‘GetInputsOfDataSet[

joinedImageClassificationDataSets123];

GraphicsGrid[

Table[

Image[joinedImageInputs123[[(i-1)*6+j]],"Byte"],

{i,9},{j,6}

],

ImageSize->300

]



346 4 Machine Learning

and trained

joinedClassificationDataSets123=

CIP‘DataTransformation‘ConvertImageDataSet[

joinedImageClassificationDataSets123];

mlrInfo123=CIP‘MLR‘FitMlr[joinedClassificationDataSets123];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},joinedClassificationDataSets123,

mlrInfo123]

100.% correct classifications

a background independent face type MLR predictor with a 100% correct training

detection rate is achieved. Its predictivity may be further explored with blurred ver-

sions of the images used for the training

blurredJoinedImageClassificationDataSets123=

CIP‘DataTransformation‘BlurImageDataSet[

joinedImageClassificationDataSets123];

blurredJoinedImageInputs123=CIP‘Utility‘GetInputsOfDataSet[

blurredJoinedImageClassificationDataSets123];



4.11 Pattern Recognition 347

GraphicsGrid[

Table[

Image[blurredJoinedImageInputs123[[(i-1)*6+j]],"Byte"],

{i,9},{j,6}

],

ImageSize->300

]

up to a degree where humans would still be able to recognize the face type without

failure. A test with the blurred images

blurredJoinedClassificationDataSets123=

CIP‘DataTransformation‘ConvertImageDataSet[

blurredJoinedImageClassificationDataSets123];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification","CorrectClassificationPerClass"},

blurredJoinedClassificationDataSets123,mlrInfo123]

96.3% correct classifications



348 4 Machine Learning

yields a notable correct detection result over 95% where the two misclassifications

only affect the more similar cats and dogs (with their similarity already shown by

the initial clustering result above). Thus a machine trained with specific faces is also

able to recognize more abstract faces. It may be interesting to reverse the procedure:

The machine is trained with the abstract blurred faces

mlrInfoBlurred123=CIP‘MLR‘FitMlr[

blurredJoinedClassificationDataSets123];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},blurredJoinedClassificationDataSets123,

mlrInfoBlurred123]

100.% correct classifications

and then tested with the specific faces:

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification"},joinedClassificationDataSets123,

mlrInfoBlurred123]

100.% correct classifications

In contrast to the result before now a 100% correct detection rate for both data

sets is achieved: The blurred faces taught the machine to learn more generalizable

face intrinsic characteristics which then led to an improved prediction result for the

specific ones. Pattern recognition always needs an optimum level of abstraction to

be most predictive. This finding also indicates that the image size could be reduced

to still allow for a successful face recognition. If the image size is reduced from

30×30 images to 20×20 images with a scaling factor of 2/3 for the joined white

and gray background images as a training set



4.11 Pattern Recognition 349

scaleFactor=2/3;

reducedJoinedImageClassificationDataSets12=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

joinedImageClassificationDataSets12,scaleFactor];

reducedJoinedImageInputs12=CIP‘Utility‘GetInputsOfDataSet[

reducedJoinedImageClassificationDataSets12];

GraphicsGrid[

Table[

Image[reducedJoinedImageInputs12[[(i-1)*6+j]],"Byte"],

{i,6},{j,6}

],

ImageSize->300

]

Note that the display size of the images did not change. The reduced image size appears as a decreased and

more coarse-grained resolution.

Dimensions[reducedJoinedImageInputs12[[1]]]

{20,20}

and the black background images as a test set

reducedImageClassificationDataSet3=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

imageClassificationDataSet3,scaleFactor];

reducedImageClassificationInputs3=CIP‘Utility‘GetInputsOfDataSet[

reducedImageClassificationDataSet3];

GraphicsGrid[

Table[



350 4 Machine Learning

Image[reducedImageClassificationInputs3[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

the face detection

reducedJoinedClassificationDataSets12=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedJoinedImageClassificationDataSets12];

reducedClassificationDataSet3=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedImageClassificationDataSet3];

mlrInfoReduced12=CIP‘MLR‘FitMlr[

reducedJoinedClassificationDataSets12];

trainingAndTestSet={reducedJoinedClassificationDataSets12,

reducedClassificationDataSet3};

CIP‘MLR‘ShowMlrClassificationResult[{"CorrectClassification"},

trainingAndTestSet,mlrInfoReduced12]

Training Set:

100.% correct classifications

Test Set:

100.% correct classifications

keeps being perfect. Even a further reduction to 10×10 images for training

scaleFactor=1/3;

reducedJoinedImageClassificationDataSets12=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

joinedImageClassificationDataSets12,scaleFactor];

reducedJoinedImageInputs12=CIP‘Utility‘GetInputsOfDataSet[

reducedJoinedImageClassificationDataSets12];

GraphicsGrid[

Table[

Image[reducedJoinedImageInputs12[[(i-1)*6+j]],"Byte"],

{i,6},{j,6}

],

ImageSize->300

]



4.11 Pattern Recognition 351

Dimensions[reducedJoinedImageInputs12[[1]]]

{10,10}

and test

reducedImageClassificationDataSet3=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

imageClassificationDataSet3,scaleFactor];

reducedImageClassificationInputs3=CIP‘Utility‘GetInputsOfDataSet[

reducedImageClassificationDataSet3];

GraphicsGrid[

Table[

Image[reducedImageClassificationInputs3[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]



352 4 Machine Learning

is still successful with the (MLR) machine

reducedJoinedClassificationDataSets12=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedJoinedImageClassificationDataSets12];

reducedClassificationDataSet3=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedImageClassificationDataSet3];

mlrInfoReduced12=CIP‘MLR‘FitMlr[

reducedJoinedClassificationDataSets12];

trainingAndTestSet={reducedJoinedClassificationDataSets12,

reducedClassificationDataSet3};

CIP‘MLR‘ShowMlrClassificationResult[{"CorrectClassification"},

trainingAndTestSet,mlrInfoReduced12]

Training Set:

100.% correct classifications

Test Set:

100.% correct classifications

(Humans start having some recognition problems at this state of image resolution:

On average they make three classification mistakes as a result of a small personal

survey). Note that a size reduction from 30×30 images to 10×10 images means

a dramatic inputs’ size decrease from inputs with 900 components to inputs with

only 100 components. But also the 100 pixels of the 10×10 images may be further

reduced with a relevance determination of each pixel (i.e. each input component,

compare the previous section above):

mlrInputRelevanceClass=

CIP‘MLR‘GetMlrInputRelevanceClass[

trainingAndTestSet];

CIP‘MLR‘ShowMlrInputRelevanceClass[

mlrInputRelevanceClass]



4.11 Pattern Recognition 353

Removed input component list = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,

51,52,53,55,56,57,58,59,60,61,62,66,67,69,72,70,65,68,71,74,79,81,85,86,89,84,91,76,98,94,88,

78,90,92,54,75,93,83,82,99,80,77,95,63,100,87,97,64,96}

It becomes obvious that the majority of pixels can be discarded without any loss

of predictive success: Only after elimination of more than 70% of the pixels the

predictivity decreases, i.e. about the right 30 pixels are enough. There is of course

a lower border for size reductions, e.g. if the size is reduced to 6×6 images for

training

scaleFactor=1/5;

reducedJoinedImageClassificationDataSets12=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

joinedImageClassificationDataSets12,scaleFactor];

reducedJoinedImageInputs12=CIP‘Utility‘GetInputsOfDataSet[

reducedJoinedImageClassificationDataSets12];

GraphicsGrid[

Table[

Image[reducedJoinedImageInputs12[[(i-1)*6+j]],"Byte"],

{i,6},{j,6}

],

ImageSize->300

]

Dimensions[reducedJoinedImageInputs12[[1]]]

{6,6}



354 4 Machine Learning

and test

reducedImageClassificationDataSet3=

CIP‘DataTransformation‘ScaleSizeOfImageDataSet[

imageClassificationDataSet3,scaleFactor];

reducedImageClassificationInputs3=CIP‘Utility‘GetInputsOfDataSet[

reducedImageClassificationDataSet3];

GraphicsGrid[

Table[

Image[reducedImageClassificationInputs3[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

the machine starts to fail:

reducedJoinedClassificationDataSets12=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedJoinedImageClassificationDataSets12];

reducedClassificationDataSet3=

CIP‘DataTransformation‘ConvertImageDataSet[

reducedImageClassificationDataSet3];

mlrInfoReduced12=CIP‘MLR‘FitMlr[

reducedJoinedClassificationDataSets12];

trainingAndTestSet={reducedJoinedClassificationDataSets12,

reducedClassificationDataSet3};

CIP‘MLR‘ShowMlrClassificationResult[

{"CorrectClassification","CorrectClassificationPerClass"},

trainingAndTestSet,mlrInfoReduced12]

Training Set:

100.% correct classifications



4.11 Pattern Recognition 355

Test Set:

66.7% correct classifications

In this case it is the detection of cats which collapses first. Note that the image

size reduction led to an unfavorable 36 pixels (the size reduction eliminated neces-

sary information for face detection) whereas the right 30 pixels before were enough

for a 100% prediction success. In general successful machine learning based pat-

tern recognition needs adequate image preprocessing steps like a segmentation of

relevant objects, rotations and translations, contrast enhancements, filtering tech-

niques, noise suppression, image size reductions, color standardizations, wavelet

transformations, spectral analysis or numerous others. Adequate image preprocess-

ing towards a minimum number of input components is also mandatory to reduce

the computational effort for the machine learning tasks since inputs with hun-

dreds, thousands or even more input components for pure images complicate in-

ternal calculations and the whole optimization process considerably. Thus adequate



356 4 Machine Learning

preprocessing is crucial for successful machine learning. This does not only hold

for pattern recognition: Well-prepared data are a virtue to the data analyst whereas

input garbage only leads to output garbage no matter how sophisticated the machine

learning method tries to be (this is again the already mentioned GIGO -garbage in,

garbage out - principle).

4.12 Technical Optimization Problems

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘Perceptron‘

All machine learning issues discussed so far did only address structural problems of

machine learning like the choice of a SVM kernel function or the number of hidden

neurons of a perceptron approach. All technical parameters that guide the different

machine learning methods were set to adequate default values and were therefore

hidden by parameters which may optionally be changed but must not be specified

in advance. In general these technical parameters must be properly adjusted for a

specific machine learning task performed with a specific method. This means all

sketched structural problems may be additionally spoiled by technical problems. It

is this evil mixture of problems that often leads to a state of frustration when dealing

with practically challenging machine learning tasks. To demonstrate the influence of

technical parameters a fundamental parameter for every iterative procedure is cho-

sen as an example: The maximum number of allowed iterations. This parameter is

(or at least should be) essential since iterative procedures may run eternally under

certain circumstances: An optimization procedure may get trapped in an oscillation

around an optimum or run towards infinity forever (only stopped by an inevitable

overflow error). Thus in each iterative step the current step number is compared

to the maximum allowed number of iterations and the whole iterative process is

stopped if this upper bound is exceeded. It is most often not desired for an itera-

tive procedure to arrive this upper bound: An optimization procedure should ideally

stop before according to an a priori precision criterion (which is another techni-

cal parameter that guides the optimization process). For an illustration the chapter’s

introductory 3D data set generated on the basis of a true function is again used:

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

labels={"x","y","z"};

numberOfDataPerDimension=10;

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

trainingSet=dataSet3D;



4.12 Technical Optimization Problems 357

testSet={};

trainingAndTestSet={trainingSet,testSet};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels]

In an earlier section a perceptron based approach was analyzed to obtain the neces-

sary number of hidden neurons to properly approximate the original surface based

on the data. Therefore the number of hidden neurons was varied from 2 to 20

numberOfHiddenNeuronsList=Table[numberOfHiddenNeurons,

{numberOfHiddenNeurons,2,20}]

{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

and the RMSE of the trained perceptron was used as a criterion for success (since

the data were generated with a standard error of 0.1 the RMSE should correspond

to this value):

perceptronInfoList=CIP‘Perceptron‘FitPerceptronSeries[dataSet3D,

numberOfHiddenNeuronsList];

perceptronSeriesRmse=CIP‘Perceptron‘GetPerceptronSeriesRmse[

trainingAndTestSet,perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]



358 4 Machine Learning

Best training set regression with perceptronInfo index = {11}

From the result of the hidden neuron scan it was deduced

perceptronInfoIndex=11;

perceptronInfo=perceptronInfoList[[perceptronInfoIndex]];

CIP‘Perceptron‘GetNumberOfHiddenNeurons[perceptronInfo]

12

that 12 hidden neurons is the minimum sufficient number for an adequate approxi-

mate model function. But the scan result contains some peculiarities: After an ini-

tial expected drop of the RMSE with an increasing number of hidden neurons (the

more bumps the more adequate the model function may be constructed) there is a

small rise at index 9. This seems to be an accident since a monotonic decrease of

the RMSE is expected with a hidden neuron increase. Obviously the optimization

process got stuck somehow and somewhere. And after index 11 (our choice) the per-

ceptrons’ RMSE values did not improve in spite of more hidden neurons. This was

interpreted as an obvious feature of stability and resistance against overfitting - but

could as well be attributed to an insufficient number of iterative steps for a further

improvement. The CIP default maximum number of iterations for a perceptron’s

optimization procedure is

OptionValue[CIP‘Perceptron‘PerceptronOptionsOptimization,

PerceptronOptionMaximumIterations]

10000

To become aware of artifacts which can be traced to this arbitrary default setting

the maximum number of iterations may be tenfold increased and the hidden neuron

scan repeated:



4.12 Technical Optimization Problems 359

maximumNumberOfIterations=100000;

perceptronInfoList=CIP‘Perceptron‘FitPerceptronSeries[dataSet3D,

numberOfHiddenNeuronsList,

PerceptronOptionMaximumIterations ->

maximumNumberOfIterations];

perceptronSeriesRmse=CIP‘Perceptron‘GetPerceptronSeriesRmse[

trainingAndTestSet,perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]

Best training set regression with perceptronInfo index = {19}

And in fact the resulting scan is slightly different: There is still the unexplained lo-

cal RMSE maximum at index 9 (so this finding can not be traced to an insufficient

number of iterations) but the RMSE finally decreases with an increase of hidden

neurons towards overfitting (for index 19 = 20 hidden neurons the RMSE is clearly

below 0.1 which means overfitting). As far as the earlier "12 hidden neurons are

sufficient" conclusion is concerned the overall picture does not change: Therefore

the default maximum number of iterations was an acceptable balance between ac-

curacy and speed (note that the tenfold increase of the technical parameter led to a

considerably longer computation period to obtain the scan). If the default maximum

number of iterations is decreased a step into a dangerous region is taken: A scan

with a reduced maximum number

maximumNumberOfIterations=1500;

perceptronInfoList=CIP‘Perceptron‘FitPerceptronSeries[dataSet3D,

numberOfHiddenNeuronsList,

PerceptronOptionMaximumIterations ->

maximumNumberOfIterations];

perceptronSeriesRmse=CIP‘Perceptron‘GetPerceptronSeriesRmse[

trainingAndTestSet,perceptronInfoList];

CIP‘Perceptron‘ShowPerceptronSeriesRmse[perceptronSeriesRmse]



360 4 Machine Learning

Best training set regression with perceptronInfo index = {15}

may falsely suggest that a perceptron with up to 20 hidden neurons is not able to

adequately describe the data at all (since the RMSE is always well above 0.1). In

summary technical problems may be easily detected and fixed by adequate param-

eter changes but also may contains some evil potential in other cases: Among the

worst consequences of technical problems are wrong decisions based on machine

learning results like an unfounded statement about the inapplicability of a method

or even the unnecessary termination of a machine learning based research effort due

to its obvious failure.

4.13 Cookbook Recipes for Machine Learning

As in the earlier chapters the discussion of supervised machine learning is

summarized in a number of cookbook recipes:

• The data: The quality of the data is essential for the success of a machine learn-

ing approach (compare chapter 5). Since they may usually not be visually in-

spected due to their multiple dimensions specific care has to be taken. Outliers

may play an evil role since they try to mask themselves even worse in comparison

to curve fitting. Adequate data preprocessing may be crucial for a machine learn-

ing approach to be successful at all - the question of proper information encoding

therefore is at heart of scientific disciplines like chemo- and bioinformatics. In

practice the data generators (i.e. the lab scientists) and the data analyzers are of-

ten not identical. Therefore the latter should cooperate as closely as possible with

the former to get a feeling about data quality (in fact it is this separation of scien-

tists due to the inevitable division of labor and professions which is responsible

for a lot of misinterpretation up to complete data analysis failure).

• The linear approach: Nature is essentially non-linear. But a linear machine

learning approach is usually extremely fast (performed within minutes even for



4.13 Cookbook Recipes for Machine Learning 361

large data sets), not affected by technical or structural problems (if adequate soft-

ware is used) and not prone to overfitting. Although a linear result will most often

fail to get a successful result it may at least provide a feeling for the degree of

non-linearity of the machine learning task under consideration. In practice many

tasks may only be slightly non-linear, i.e. they deserve a non-linear method but

with structural parameters that allow for near-linear regression or decision sur-

faces, e.g. realized with a bigger width-parameter for a wavelet kernel function or

a small number of hidden neurons. And if the linear approach is successful you

are done! It is often astonishing that non-linear methods with all their subtleties

and problems are applied where an extremely fast linear approach performs

satisfactorily.

• Preparing training and test sets: Unless there is a data set with known output

errors for a regression task to assess the quality of a machine learning result the

data must be partitioned into a training and test set. The concrete partitioning is a

crucial step and an inadequate partitioning may spoil all further machine learning

efforts. As outlined there is no ideal way available for a concrete partitioning and

brute force strategies are not feasible. Thus this challenge has to be tackled by

heuristic considerations in combination with related experience. As general rules

of thumb a CR based training set selection is often superior to a purely random

one and a training and test set of at least equal size are desirable. But these are

only crude guidelines since every specific task requires its specific treatment.

• The choice of method: There are numerous machine learning methods and there

is nothing like the single best choice for all purposes. On the other hand there are

many ways to skin a cat: Usually a method is chosen on the basis of personal

preferences or individual experiences. And if this method can be successfully

applied there is no need to investigate alternatives. Only failure may motivate the

evaluation of further methods.

• Setting of structural and technical parameters: Almost all machine learning

procedures start with some default settings of its parameters which is known to

be successful in similar tasks. At first an adjustment of the technical parame-

ters is essential and afterwards the structural issues can be tackled with a proper

technical setup. Unfortunately this sequential approach does not always work

since there may be evil entanglements between technical and structural prob-

lems. Again there is no ideal way to solve these issues and in the end simple trial

and error may be the road to success.

• A proper estimation of computational effort: Machine learning tasks may

need considerable computational resources (multicore workstations up to grid

computing) and long periods of time (ranging from hours over days and weeks

up to months). Thus an adequate initial estimate of these requirements is indis-

pensable. In practice estimates may be deduced from experience with similar

tasks or preliminary investigations. In general machine learning efforts should

not be initiated if there is no proper prospect for them to succeed (also compare

chapter 5).

• The interpretation of results: Machine learning procedures may lead to results

ranging from pure bullshit up to valuable and magically seeming insights. Due to



362 4 Machine Learning

their numerous parameters an awful lot can be tuned and problems can be sub-

tly hidden. Thus there is a wide field for educated cheating already discussed in

chapter 2. As a rule of thumb published machine learning results should always

be regarded with care - again in general commercial applications are more trust-

worthy than academic claims. It is a scientifically venerable attitude to disclose

the encountered and assumed problems for a specific machine learning task. All

validation efforts should be outlined with care and thoroughness. Unfortunately

a lot of publications lack these fundamentals which led machine learning to

become somewhat dubious for many practitioners.

If properly applied supervised machine learning can be an extremely valuable tool

to tackle complex and difficult scientific problems that otherwise could not be mas-

tered. The sketched problems are remarkable but so are the possible benefits. De-

spite its wide range of applicability due to its universal character supervised machine

learning has of course its limitations that are usually determined by the provided

data: Machine learning is not able to extract something out of nothing - if it is not

in the data it can not be modelled. The foundation of its magic remains the happen-

stance that a complex and non-trivial relationship (i.e. a non-linear model/decision

function) may be created without further instructions or superior knowledge. The

final next chapter discusses some of its consequences for the generation of new

knowledge and the views of computational intelligence.

4.14 Appendix - Collecting the Pieces

Clear["Global‘*"];

<<CIP‘Utility‘

<<CIP‘ExperimentalData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘Cluster‘

<<CIP‘MLR‘

<<CIP‘Perceptron‘

<<CIP‘SVM‘

In the following a complete machine learning procedure is outlined that comprises

a number of topics already discussed in this and the previous chapter. This section

contains no new material and is simply redundant from a scientific point of view.

But redundancy is a virtue when trying to dig into a new discipline. The real-world

application chosen for demonstration from the field of medical decision support is

easy to comprehend, an important area of research and it attracts a considerable at-

tention (not only) from the machine learning community: The Wisconsin Diagnostic

Breast Cancer (WDBC) data correlate features of cell nuclei extracted from breast

tumor tissue (as input) with the tumor type after diagnosis (as output), i.e. they map

the cell nuclei features onto a diagnosed benign (class 1) or malignant (class 2) tu-

mor type (see Appendix A for details and [WDBC data] in the references). Thus

the WDBC data may be used to construct a class predictor that supports the crucial



4.14 Appendix - Collecting the Pieces 363

benign/malignant decision in tumor diagnosis. The WDBC classification data set is

copied to the CIP ExperimentalData package:

classificationDataSet=

CIP‘ExperimentalData‘GetWDBCClassificationDataSet[];

CIP‘Graphics‘ShowDataSetInfo[

{"IoPairs","InputComponents","OutputComponents","ClassCount"},

classificationDataSet]

Number of IO pairs = 569

Number of input components = 30

Number of output components = 2

Class 1 with 357 members

Class 2 with 212 members

It consists of 569 I/O pairs (i.e. the diagnoses of 569 different patients with breast

tumors) where each input consists of 30 components and each output of 2 com-

ponents. Each input component describes a single quantity of a feature of a tumor

tissue’s cell nuclei and the two output components denote classes 1 (benign tumor,

coded {1.0, 0.0}) and 2 (malignant tumor, coded {0.0, 1.0}). The number of be-

nign tumor samples (357) exceeds the number of malignant samples (212) thus the

classification data set is asymmetric with the benign class samples being overrepre-

sented:

N[357/212]

1.68396

The first sensible step to construct a benign/malignant class predictor should be

an unsupervised learning trial with a purely clustering-based class predictor. This

predictor exploits only the spatial structure of input points in the input space to clas-

sify a single input (thus the predictor is unsupervised and not at all prone to overfit

data): If a clustering-based class predictor exhibits a 100% predictive success rate

this means that the inputs of benign and malignant tumors form clearly separated

point clouds in the 30 dimensional input space. If the predictive success rate is less

than a 100% the point clouds of benign and malignant tumors do overlap, i.e. they

penetrate each other in some way. A clustering-based class predictor is constructed

with the FitCluster method of the CIP Cluster package:

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet];

CIP‘Cluster‘ShowClusterSingleClassification[

{"CorrectClassification","CorrectClassificationPerClass",

"WrongClassificationDistribution"},classificationDataSet,

clusterInfo]

85.4% correct classifications



364 4 Machine Learning

The overall predictive success rate of 85% shows that the benign and malignant

point clouds in the input space are structured but they do not form clearly separated

clusters. With a success rate of 99% the predictivity of class 1 benign tumors is

nearly perfect but class 2 malignant predictions with only 61% success are rather

poor (in medial practice this would mean that on average 39 out of 100 woman with

malignant breast tumors would be diagnosed to have a benign tumor: A catastrophic

result that would lead to a completely inadequate further medical treatment. But if

a tumor is predicted to be malignant this would be a comparatively reliable result

since wrong class 2 predictions are rare with only 1% among all wrong predictions).

In conclusion unsupervised learning does not seem to be able to successfully tackle

the benign/malignant decision problem. Before turning to supervised machine learn-

ing methods (which will take the benign/malignant -output -diagnoses into account

to control the learning process) a purely technical issue may be of interest. The

FitCluster method above was called without any further technical parameters so it



4.14 Appendix - Collecting the Pieces 365

used its internal defaults (e.g. the default k-medoids clustering algorithm). If the

clustering algorithm is changed to ART-2a

clusterMethod="ART2a";

clusterInfo=CIP‘Cluster‘FitCluster[classificationDataSet,

ClusterOptionMethod -> clusterMethod];

Infinite expression 1/0 encountered.

an unexpected error occurs. If a computational method fails there are two possibil-

ities: The method’s code contains a bug or the method is not able to arrive at the

desired result in principal. To analyze the ART-2a error it is necessary to have a

look at the pure clustering of the inputs of the WDBC classification data set:

inputs=CIP‘Utility‘GetInputsOfDataSet[classificationDataSet];

Since ART-2a is fundamentally controlled by a vigilance parameter we set this

parameter to a very small value to urge the method to construct only a few large

clusters:

clusterMethod="ART2a";

vigilanceParameter=0.01;

clusterInfo=CIP‘Cluster‘GetClusters[inputs,

ClusterOptionMethod -> clusterMethod,

ClusterOptionVigilanceParameter -> vigilanceParameter];

CIP‘Cluster‘ShowClusterResult[{"NumberOfClusters"},clusterInfo]

Number of clusters = 9

With a very small vigilance parameter of 0.01 ART-2a detects 9 clusters. If the de-

pendence of the detected number of clusters on the vigilance parameter is explored

(first over the full range from 0 to 1

minimumVigilanceParameter=0.01;

maximumVigilanceParameter=0.99;

numberOfScanPoints=30;

art2aScanInfo=CIP‘Cluster‘GetVigilanceParameterScan[inputs,

minimumVigilanceParameter,maximumVigilanceParameter,

numberOfScanPoints];

CIP‘Cluster‘ShowVigilanceParameterScan[art2aScanInfo]



366 4 Machine Learning

and then confined to the smaller range from 0 to 0.5)

minimumVigilanceParameter=0.01;

maximumVigilanceParameter=0.5;

numberOfScanPoints=30;

art2aScanInfo=CIP‘Cluster‘GetVigilanceParameterScan[inputs,

minimumVigilanceParameter,maximumVigilanceParameter,

numberOfScanPoints];

CIP‘Cluster‘ShowVigilanceParameterScan[art2aScanInfo]

it becomes obvious that the 9-cluster result is the method’s answer over a wide range

of low vigilance. If we force the ART-2a algorithm to reduce the vigilance param-

eter towards zero to arrive at exactly 2 clusters (decreasing the vigilance parameter

means fewer and larger clusters)

numberOfClusters=2;

clusterInfo=CIP‘Cluster‘GetFixedNumberOfClusters[inputs,

numberOfClusters,ClusterOptionMethod -> clusterMethod];



4.14 Appendix - Collecting the Pieces 367

Infinite expression 1/0 encountered.

the error occurs and that is exactly what happened during the predictor construction:

Also in the limit of a vanishingly small vigilance parameter ART-2a is not able to

detect the desired 2 classes - and in numerical computing with a limited number

of digits a vanishing small value will inevitably be equated with zero and lead to

problems. Thus ART-2a is simply inadequate to construct a clustering-based class

predictor for the particular classification data set in question. This finding empha-

sizes the need for a growing tool box of comparable computational methods where

the one will fail in a particular situation while another may possibly succeed.

When it comes to supervised machine learning it is always advised to start with

a linear method. Linear methods perform very fast and are not at all prone to over-

fitting. But they are of course limited in principle due to their linear nature. If MLR

is used to construct a benign/malignant class predictor on the basis of the complete

classification data set

mlrInfo=CIP‘MLR‘FitMlr[classificationDataSet];

CIP‘MLR‘ShowMlrSingleClassification[

{"CorrectClassification","CorrectClassificationPerClass",

"WrongClassificationDistribution"},classificationDataSet,mlrInfo]

96.5% correct classifications



368 4 Machine Learning

a remarkable overall predictive success rate of 96% is achieved where the predictiv-

ity of benign class 1 tumors with a nearly perfect 99% success rate is again clearly

superior to the malignant class 2 predictions with only 91%. But compared to the

unsupervised learning approach before the supervised learning improves the malig-

nant class 2 predictivity significantly from a 61% to a 91% success rate! (Again

a malignant prediction is comparatively reliable due to only 10% wrong class 2

predictions among all wrong predictions - and this finding remains valid in the fol-

lowing but is skipped as a subtlety to ease the discussion.) The relative success of

the linear approach suggests that the classification problem in question can be char-

acterized as near-linear, i.e. it does not demand highly non-linear curved decision

surfaces. This has to be taken into account when the non-linear methods will be ap-

plied. But before we can get even more from the linear approach. When it comes to

the non-linear methods overfitting will become a central problem - again note that a

non-linear method will almost always arrive at a perfect 100% predictor by creating

a simply overfitted look-up table for the data. So a partitioning of the whole classifi-

cation data set into a training set (used for machine learning) and a test set (used for

the validation of the predictor after training) will be mandatory. As a rule of thumb

the training set should be kept as small as possible while adequately balancing size

and predictive success rate. If we use clustering-based representatives (CR) for the

training set construction (which are in general superior to pure random representa-

tives) and scan different training set sizes with MLR (note that CR selection is the

default for the CIP scan methods)

trainingFractionList=Table[trainingFraction,

{trainingFraction,0.10,0.60,0.05}];

mlrClassificationScan=

CIP‘MLR‘ScanClassTrainingWithMlr[

classificationDataSet,trainingFractionList];

CIP‘MLR‘ShowMlrClassificationScan[

mlrClassificationScan]



4.14 Appendix - Collecting the Pieces 369

Best test set classification with index = {11}

it appears that a CR based small training set of only 25% of the whole data exhibits

a comparable high predictivity for training and corresponding test data.

trainingFraction=0.25;

trainingAndTestSet=CIP‘Cluster‘GetClusterBasedTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

The training set consists of 142 I/O pairs and the test set of 427 I/O pairs with a

class representation of 1.62 and 1.70

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},trainingSet];

Class 1 with 88 members

Class 2 with 54 members

N[88/54]

1.62963

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},testSet];

Class 1 with 269 members

Class 2 with 158 members

N[269/158]

1.70253



370 4 Machine Learning

which is similar to the one of the complete classification data set of 1.68 (see above).

This is an important finding because the partitioning process may lead to unwanted

distortions of the relative number of classes in both sets so this fact has to be checked

(otherwise the partitioning process should be performed in a class-dependent man-

ner to maintain relative numbers). The obtained training and test set lead to the

following detailed MLR predictions

mlrInfo=CIP‘MLR‘FitMlr[trainingSet];

CIP‘MLR‘ShowMlrClassificationResult[

{"CorrectClassification","CorrectClassificationPerClass"},

trainingAndTestSet,mlrInfo]

Training Set:

95.1% correct classifications

Test Set:

96.3% correct classifications



4.14 Appendix - Collecting the Pieces 371

with similar results for both sets. Thus the partitioning is very convincing with a

small training set of high validated predictivity. The linear results may also serve as a

comparison to the prediction results of the non-linear methods which are now being

explored. Non-linear methods require the definition of structural parameters for their

operation. As far as three-layer perceptron-type neural networks are concerned the

crucial structural parameter is the number of hidden neurons. Since the WDBC data

set classification task could be characterized as near-linear due to the relatively high

predictive success rate of the linear MLR approach a very small number of hidden

neurons should be initially set. Thus the perceptron’s ability to produce bumps is

restricted and as a consequence its proneness to overfitting is reduced. If a minimum

of 2 hidden neurons is used

numberOfHiddenNeurons=2;

with the small (25%) CR based training set obtained before the perceptron fit

perceptronInfo=CIP‘Perceptron‘FitPerceptron[trainingSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification","CorrectClassificationPerClass"},

trainingAndTestSet,perceptronInfo]

Training Set:

97.9% correct classifications

Test Set:

97.2% correct classifications



372 4 Machine Learning

is convincing: Training and test results show comparable high success rates so that

overfitting problems can be ruled out. In comparison to the linear MLR result espe-

cially the inferior malignant class 2 predictivity is improved. A further advancement

may be achieved with a heuristically optimized training set: If the default Single-

GlobalMax optimization strategy is followed with 20 optimization steps and black-

listing to avoid oscillations

trainingFraction=0.25;

numberOfTrainingSetOptimizationSteps=20;

blackListLength=5;

perceptronTrainOptimization=

CIP‘Perceptron‘GetPerceptronTrainOptimization[

classificationDataSet,numberOfHiddenNeurons,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘Perceptron‘ShowPerceptronTrainOptimization[

perceptronTrainOptimization]

an optimized training and test set for classification



4.14 Appendix - Collecting the Pieces 373

index=

CIP‘Perceptron‘GetBestPerceptronClassOptimization[

perceptronTrainOptimization]

13

is obtained:

optimizedTrainingAndTestSetList=

perceptronTrainOptimization[[3]];

optimizedTrainingAndTestSet=

optimizedTrainingAndTestSetList[[index]];

optimizedTrainingSet=optimizedTrainingAndTestSet[[1]];

optimizedTestSet=optimizedTrainingAndTestSet[[2]];

optimizedPerceptronInfoList=

perceptronTrainOptimization[[4]];

optimizedPerceptronInfo=optimizedPerceptronInfoList[[index]];

The optimized training and test set still consists of 142 I/O pairs and 427 I/O pairs

respectively but the class representations

Class 1 with 87 members

Class 2 with 55 members

N[87/55]

1.58182

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},optimizedTestSet];

Class 1 with 270 members

Class 2 with 157 members

N[270/157]

1.71975

changed slightly from 1.62/1.70 to 1.58/1.72 where the current values are still in

concordance with the relative number of 1.68 of the original complete classification

data set. The detailed perceptron classification results with the optimized sets

CIP‘Perceptron‘ShowPerceptronClassificationResult[

{"CorrectClassification","CorrectClassificationPerClass"},

optimizedTrainingAndTestSet,optimizedPerceptronInfo]



374 4 Machine Learning

Training Set:

99.3% correct classifications

Test Set:

98.8% correct classifications

reveals overall and class specific excellent predictive success rates and a predictor

with very good generalization abilities (training/test size = 25%/75% with data sets

that possess a similar spatial diversity in the input space). It is probably impossible to

construct a significantly superior benign/malignant class predictor from the WDBC

data. Furthermore it can be argued that a perceptron with only 2 hidden neurons is

principally not very prone to overfitting and the complete WDBC data set may be

used for training:



4.14 Appendix - Collecting the Pieces 375

perceptronInfo=CIP‘Perceptron‘FitPerceptron[classificationDataSet,

numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronSingleClassification[

{"CorrectClassification","CorrectClassificationPerClass"},

classificationDataSet,perceptronInfo]

99.6% correct classifications

Now the prediction result is nearly perfect for both classes - but any validation is

no longer possible. Thus it becomes a question of courage to use this latter class

predictor instead of the validated class predictor before. With a successful class pre-

dictor at hand (we choose the validated one) the relevance of each input component

may finally be analyzed:

perceptronInputRelevanceClass=

CIP‘Perceptron‘GetPerceptronInputRelevanceClass[

optimizedTrainingAndTestSet,numberOfHiddenNeurons];

CIP‘Perceptron‘ShowPerceptronInputRelevanceClass[

perceptronInputRelevanceClass]



376 4 Machine Learning

Removed input component list = {30,19,13,11,25,26,9,21,1,18,29,24,2,17,5,

10,3,20,28,7,4,23,6,15,16,27,14,12,22}

Interestingly enough about two third of the input components may be omitted with-

out any significant loss of predictivity: The quantities used to describe the cell nu-

clei reveal a high mutual redundancy with respect to the classification task although

this may not be obvious to the medicinal scientist - an insight that can motivate

further investigations: A reduced number of necessary input components/features

usually not only simplifies the computational machine learning process but allevi-

ates the whole medical diagnosis procedure. The initial choice of a perceptron as

a non-linear machine learning method was of course arbitrary without any superior

theoretical knowledge available for that decision. A SVM approach could have been

chosen instead and many data analysts would have done so. If we again start with

the CR based small (25%) training set obtained via the linear MLR approach

trainingFraction=0.25;

trainingAndTestSet=CIP‘Cluster‘GetClusterBasedTrainingAndTestSet[

classificationDataSet,trainingFraction];

trainingSet=trainingAndTestSet[[1]];

testSet=trainingAndTestSet[[2]];

the crucial structural parameter of a SVM - the kernel function - is in need. Again

the near-linear classification problem characterization of the linear MLR approach

is helpful. If we choose a wavelet kernel we can search for an adequate width param-

eter in a region that corresponds to wider bumps that do not allow highly non-linear

and very curved decision surfaces:

kernelFunctionList=Table[{"Wavelet",kernelParameter},

{kernelParameter,1.0,3.0,0.1}];

svmInfoList=CIP‘SVM‘FitSvmSeries[trainingSet,kernelFunctionList];

svmSeriesClassificationResult=

CIP‘SVM‘GetSvmSeriesClassificationResult[trainingAndTestSet,

svmInfoList];

CIP‘SVM‘ShowSvmSeriesClassificationResult[

svmSeriesClassificationResult]



4.14 Appendix - Collecting the Pieces 377

Best test set classification with svmInfo index = {12}

With an adequate width parameter of the wavelet kernel at hand

kernelFunction=kernelFunctionList[[12]]

{Wavelet,2.1}

a heuristic training set optimization may be performed as before in the perceptron

approach:

trainingFraction=0.25;

numberOfTrainingSetOptimizationSteps=20;

blackListLength=5;

svmTrainOptimization=

CIP‘SVM‘GetSvmTrainOptimization[classificationDataSet,

kernelFunction,trainingFraction,

numberOfTrainingSetOptimizationSteps,

UtilityOptionBlackListLength -> blackListLength];

CIP‘SVM‘ShowSvmTrainOptimization[

svmTrainOptimization]



378 4 Machine Learning

An improvement can be obtained

index=

CIP‘SVM‘GetBestSvmClassOptimization[

svmTrainOptimization]

12

with an optimized training and test set

optimizedTrainingAndTestSetList=

svmTrainOptimization[[3]];

optimizedTrainingAndTestSet=

optimizedTrainingAndTestSetList[[index]];

optimizedTrainingSet=optimizedTrainingAndTestSet[[1]];

optimizedTestSet=optimizedTrainingAndTestSet[[2]];

optimizedSvmInfoList=svmTrainOptimization[[4]];

optimizedSvmInfo=optimizedSvmInfoList[[index]];

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},optimizedTrainingSet];

Class 1 with 87 members

Class 2 with 55 members

N[87/55]

1.58182

CIP‘Graphics‘ShowDataSetInfo[{"ClassCount"},optimizedTestSet];

Class 1 with 270 members

Class 2 with 157 members



4.14 Appendix - Collecting the Pieces 379

N[270/157]

1.71975

of comparable class representations. The SVM based class predictor for the opti-

mized training set

CIP‘SVM‘ShowSvmClassificationResult[

{"CorrectClassification","CorrectClassificationPerClass"},

optimizedTrainingAndTestSet,optimizedSvmInfo]

Training Set:

98.6% correct classifications

Test Set:

98.6% correct classifications



380 4 Machine Learning

performs also excellent on training and test data and is comparable in its predictive

success rates to the perceptron based class predictor before. The same is true if a

SVM fit is performed with the complete WDBC classification data set

svmInfo=CIP‘SVM‘FitSvm[classificationDataSet,kernelFunction];

CIP‘SVM‘ShowSvmSingleClassification[

{"CorrectClassification","CorrectClassificationPerClass"},

classificationDataSet,svmInfo]

98.8% correct classifications

with the perceptron result being a bit superior (which may be attributed to unwanted

overfitting). In summary it can be concluded that the WDBC classification prob-

lem could be successfully tackled by machine learning. Not only it was possible

to construct convincing and validated class predictors of excellent quality that can

successfully support diagnostic decisions in medical practice but also insights about

the necessary features of a cell nucleus for successful benign/malignant classifica-

tion could be stimulated.



Chapter 5

Discussion

At the end of a tour from curve fitting to machine learning there are two kinds of

questions that usually remain: The first kind is about the numerous details and side

branches of the sketched topics that had to be omitted for the sake of readability

and comprehensibility -limitations are inevitable and a bunch of important and in-

teresting issues had to be skipped. The second kind of questions addresses the more

abstract and general aspects that arise from the earlier discussions like the principal

capabilities of machine learning. In this final chapter some so far neglected topics

that belong to both kinds of questions are outlined.

First a crucial aspect of computation is discussed: Speed. A proper estimate of

the time period necessary to perform a computational task is essential for almost

all practical applications (section 5.1). After an initial fascination a deeper insight

into machine learning often leads to a notion of disappointment about what can be

expected from these methods in principal thus some basic possibilities and limits

are discussed (section 5.2). The relations of the methods outlined on the road from

curve fitting to machine learning to a possibly emerging computational intelligence

are of general interest and thus briefly sketched (section 5.3). Final remarks close

this chapter (section 5.4).

5.1 Computers Are about Speed

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘MLR‘

<<CIP‘Perceptron‘

<<CIP‘SVM‘

<<CIP‘CurveFit‘

Performance issues which are related to the road from curve fitting to machine learn-

ing were only marginally mentioned in the previous chapters. But they are of course

at heart of any practical application: If there is not at least a vague estimate about

A. Zielesny: From Curve Fitting to Machine Learning, ISRL 18, pp. 381–408.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



382 5 Discussion

the necessary computational resources and corresponding time periods to come to

a successful result a research effort is immediately abandoned. As pointed out in

chapter 1 all methods discussed so far can be mathematically traced back to opti-

mization problems which can be tackled with particular adequate stepwise iterative

procedures. A question about performance for a specific problem thus can be di-

vided in two parts: How much time does a single optimization step need? And how

many steps are necessary to arrive at a successful result? Whereas an approximate

answer of the first question is feasible for most practical applications the second

one can not be answered in general: There is no way of knowing the number of

necessary iterations in advance for a non-linear optimization problem (linear op-

timization problems can almost always be tackled successfully in short time peri-

ods, see below). Putting both answers together the principal statement about any

question of performance is not satisfying: We do not know! Fortunately there are

a number of practical rules of thumb, a lot of experience with already performed

similar problems as well as procedures of preliminary estimation which turn the sad

general answer into a more optimistic version for many practically relevant situa-

tions. To put it short (and neglecting pathological cases): With today’s computers

curve fitting is usually performed on the fly (this means you can sit in front of your

screen and wait for the result to emerge after a few seconds) whereas clustering and

machine learning are typical batch tasks: They usually consume minutes (for very

small problems like many of those discussed in the previous chapters) up to hours

and days or even longer - they are started and performed in the background without

being constantly monitored or waited for. An important characteristics of a method

of choice concerning its necessary computational time consumption is its behavior

for a varying problem size. This behavior can be experimentally deduced or derived

from theoretical considerations. If for example a number of K data records is to be

searched for a specific entry in a successive manner one after another (a so-called

exact sequential search) the necessary maximum time period can be estimated to be

"the time necessary to detect the entry for a single record" times K (where it is as-

sumed that the entry detection for every single data record consumes the same time

on average). What happens if the number of data records is doubled to 2K? Then

the maximum necessary time period simply doubles too. A sequential search is said

to scale with O(K) (read "order K" where "O" means order), i.e. the dependence

between the data size and the search speed is linear. A sequential search is in fact a

worst case scenario for exact data searching so there are more efficient algorithmic

alternatives available like a binary tree search with O(log2K) or a hash-table search

with O(1). O(log2K) means that you can search 2 (= 21) data records in let’s say

1 second, 4 (= 22) data records in 2 seconds, 8 (= 23) data records 3 seconds and

4.294.967.296 (about 4 billion) data records in 32 seconds:

2^32

4294967296



5.1 Computers Are about Speed 383

The search period increases only logarithmically with the data size. O(1) indicates

that the search speed and the data size are decoupled: The search speed does no

longer depend on the number of records (this is the holy grail of searching - in

fact hashing in this context simply means the calculation of a position in a data ta-

ble with a calculation time that does not depend of the number of the table’s rows

that corresponds to the data size). Note that the scaling behavior says nothing about

the absolute time period necessary to search e.g. 12 data records with the different

methods but it signals that a hash-table search will finally outperform its competitors

for searching large data volumes. The thorough characterization of the interplay be-

tween data structures (like binary trees or hash-tables) and the algorithms that work

upon them is at heart of computer science and every single choice for a practical ap-

plication of a method is a compromise that (hopefully) best fits the specific needs:

The selection of a method is usually based on its most attractive features (like max-

imum search speed) whereas its problems (e.g. additional memory consumption)

must be tolerable. In general each computational method exhibits contradictory fea-

tures (like speed versus memory) so that their comparison by adequate benchmarks

is a difficult and professional science on its own with many traps and subtleties: A

lot of published benchmark results simply compare apples and oranges. Thus great

care is necessary to achieve trustable results that are able to meet the requirements

of scientific validity. To demonstrate the estimation of necessary computational time

periods an already discussed regression problem of chapter 4 may be utilized again:

Normally distributed 3D points are generated at grid positions around a non-linear

surface (here shown with a 10×10 grid with 100 I/O pairs)

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,1.0};

yRange={0.0,1.0};

numberOfDataPerDimension=10;

standardDeviationRange={0.1,0.1};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels]



384 5 Discussion

where the number of grid points (and thus the number of I/O pairs of the data set)

is varied. How do the different machine learning methods scale with an increasing

size of the data set? For the machine learning method implementations provided by

the CIP package this may be analyzed by experiment: With Mathematica’s Abso-

luteTiming command the time period consumed by a specific Fit procedure can be

measured and displayed in a number of I/O pairs versus training period diagram. For

a Multiple Linear Regression (MLR) approach to the regression task the following

result is obtained:

xyErrorData={};

rmsePoints2D={};

Do[

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

result=AbsoluteTiming[CIP‘MLR‘FitMlr[dataSet3D]];

trainingPeriod=result[[1]];

mlrInfo=result[[2]];

numberOfIoPairs=numberOfDataPerDimension*numberOfDataPerDimension;

AppendTo[xyErrorData,{numberOfIoPairs,trainingPeriod,1.0}];

AppendTo[rmsePoints2D,{numberOfIoPairs,

CIP‘MLR‘CalculateMlrDataSetRmse[dataSet3D,mlrInfo]}],

{numberOfDataPerDimension,5,100,5}

];

minExponent=1.0;

maxExponent=4.0;

exponentStepSize=0.1;

exponentLabels={"Number of I/O pairs (K)","Training period [s]",

"Training period = O(K^exponent)"};

CIP‘CurveFit‘ShowBestExponent[xyErrorData,minExponent,maxExponent,

exponentStepSize,CurveFitOptionLabels -> exponentLabels];



5.1 Computers Are about Speed 385

Best exponent = 1.

Over a wide range of data set sizes (from K = 25 I/O pairs up to K = 10.000 I/O

pairs) the training period scales linear with an increasing number of I/O pairs K

(O(K) which corresponds to a "Best exponent" of 1.0). Each MLR fit is performed

in fractions of a second (with a common notebook computer). This linear scaling

behavior is the best we can expect for a machine learning method and confirms

the general statement already mentioned above that linear methods are fast (with

today’s computers). But of course a MLR approach is completely inadequate for

a non-linear regression task which may be revealed by an inspection of the corre-

sponding RMSE values of the regression results which should lie around 0.1 since

the normally distributed data were generated with a standard deviation of 0.1 (see

above):

qualityLabels={"Number of I/O pairs (K)","RMSE",

"Quality of machine learning result"};

functionValueRange2D={0.0,1.2};

CIP‘Graphics‘Plot2dLineWithOptionalPoints[rmsePoints2D,

rmsePoints2D,qualityLabels,

GraphicsOptionFunctionValueRange2D -> functionValueRange2D]



386 5 Discussion

The determined RMSE values are an order of magnitude above expectation and

thus MLR is clearly out of play. Next a Support Vector Machine (SVM) approach

with an adequate kernel function and default settings may be explored (compare

chapter 4):

kernelFunction={"Wavelet",0.3};

xyErrorData={};

rmsePoints2D={};

Do[

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

result=AbsoluteTiming[CIP‘SVM‘FitSvm[dataSet3D,kernelFunction]];

trainingPeriod=result[[1]];

svmInfo=result[[2]];

numberOfIoPairs=numberOfDataPerDimension*numberOfDataPerDimension;

AppendTo[xyErrorData,{numberOfIoPairs,trainingPeriod,1.0}];

AppendTo[rmsePoints2D,{numberOfIoPairs,

CIP‘SVM‘CalculateSvmDataSetRmse[dataSet3D,svmInfo]}],

{numberOfDataPerDimension,5,20}

];

CIP‘CurveFit‘ShowBestExponent[xyErrorData,minExponent,maxExponent,

exponentStepSize,CurveFitOptionLabels -> exponentLabels];



5.1 Computers Are about Speed 387

Best exponent = 3.6

For the data range from K = 25 I/O pairs to K = 400 I/O pairs the training period

is well described to scale with O(K3.6). Compared to a fast MLR fit performed in

fractions of a second a SVM fit is terribly slow (5000 seconds correspond to roughly

one and a half hour for a single fit with 400 I/O pairs). With such a polynomial

scaling it may be deduced that a single SVM fit of 1.000 I/O pairs would require

factor=1000./400.

2.5

timePeriod=5000*factor^3.6

135380.

hours=timePeriod/(60*60)

37.6055

about one and a half day (38 hours) if an extrapolation is dared. The CIP default

implementation of a SVM becomes prohibitive for larger data sets and is thus rea-

sonably confined to machine learning tasks with only small data set sizes (compare

Appendix A for CIP design goals). Note that these specific findings can not sim-

ply be generalized: There are far more efficient SVM implementations available! In

general a SVM’s training period scales between quadratically (O(K2)) and cubically

(O(K3)) in the number of I/O pairs (see [Joachims 1999]) - nevertheless even with an

efficient implementation and an improved polynomial scaling behavior SVMs are

known to have a large data set problem currently addressed by many R&D efforts.

A final look at the quality of the SVM fits shows their results



388 5 Discussion

functionValueRange2D={0.0,0.2};

CIP‘Graphics‘Plot2dLineWithOptionalPoints[rmsePoints2D,

rmsePoints2D,qualityLabels,

GraphicsOptionFunctionValueRange2D -> functionValueRange2D]

to be satisfying: After some inevitable initial overfitting for the smallest data sets the

RMSE values are distributed around the expected value of 0.1. A similar perceptron

analysis with an adequate number of hidden neurons and default settings (again

compare chapter 4)

numberOfHiddenNeurons=12;

xyErrorData={};

rmsePoints2D={};

Do[

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

result=AbsoluteTiming[CIP‘Perceptron‘FitPerceptron[dataSet3D,

numberOfHiddenNeurons]];

trainingPeriod=result[[1]];

perceptronInfo=result[[2]];

numberOfIoPairs=numberOfDataPerDimension*numberOfDataPerDimension;

AppendTo[xyErrorData,{numberOfIoPairs,trainingPeriod,1.0}];

AppendTo[rmsePoints2D,{numberOfIoPairs,

CIP‘Perceptron‘CalculatePerceptronDataSetRmse[dataSet3D,

perceptronInfo]}],

{numberOfDataPerDimension,5,20}

];

CIP‘CurveFit‘ShowBestExponent[xyErrorData,minExponent,maxExponent,

exponentStepSize,CurveFitOptionLabels -> exponentLabels];



5.1 Computers Are about Speed 389

Best exponent = 1.1

leads to a near linear O(K1.1) scaling. In addition a single (default CIP) perceptron

training is to be about an order of magnitude faster than a (default CIP) SVM one

(again see Appendix A for comments on the CIP design goals). But an inspection

of the regression results reveals that the perceptron fits did not yield the expected

RMSE values for most data set sizes:

functionValueRange2D={0.0,0.2};

CIP‘Graphics‘Plot2dLineWithOptionalPoints[rmsePoints2D,

rmsePoints2D,qualityLabels,

GraphicsOptionFunctionValueRange2D -> functionValueRange2D]

There is again an initial overfitting for very small data sets but then the RMSE

values rise to about 0.15 which is above the expected value of 0.1 and the SVM

results. Thus the deficient perceptron training can not simply be compared to the



390 5 Discussion

satisfying SVM training before - this is exactly where the comparison of apples and

oranges usually starts. The perceptron training may have been artificially stopped

by the default maximum number of iterations, its topology may not be adequate due

to the specified number of hidden neurons, the optimization process is trapped in

local minima -or a perceptron can not model the non-linear surface with the desired

precision in principle. The first possibility may be checked with a tenfold increased

maximum number of iterations (from the default 10.000 to 100.000):

numberOfHiddenNeurons=12;

maximumNumberOfIterations=100000;

xyErrorData={};

rmsePoints2D={};

Do[

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

result=AbsoluteTiming[CIP‘Perceptron‘FitPerceptron[dataSet3D,

numberOfHiddenNeurons,

PerceptronOptionMaximumIterations -> maximumNumberOfIterations]];

trainingPeriod=result[[1]];

perceptronInfo=result[[2]];

numberOfIoPairs=numberOfDataPerDimension*numberOfDataPerDimension;

AppendTo[xyErrorData,{numberOfIoPairs,trainingPeriod,1.0}];

AppendTo[rmsePoints2D,{numberOfIoPairs,

CIP‘Perceptron‘CalculatePerceptronDataSetRmse[dataSet3D,

perceptronInfo]}],

{numberOfDataPerDimension,5,20}

];

CIP‘CurveFit‘ShowBestExponent[xyErrorData,minExponent,maxExponent,

exponentStepSize,CurveFitOptionLabels -> exponentLabels];

Best exponent = 1.

which shows more diverse and slightly increased training periods with a still overall

linear scaling behavior - and a slightly improved but very similar RMSE quality plot

as before:



5.2 Isn’t It Just ...? 391

functionValueRange2D={0.0,0.2};

CIP‘Graphics‘Plot2dLineWithOptionalPoints[rmsePoints2D,

rmsePoints2D,qualityLabels,

GraphicsOptionFunctionValueRange2D -> functionValueRange2D]

Thus the maximum-number-of-iterations parameter can be excluded as a possible

cause. The other possibilities may be checked in an analogue manner. In conclusion

a fair comparison of methods has to take all these subtle differences (and many oth-

ers like the important memory consumption) into account. As a final rule of thumb it

is recommended to always perform initial investigations concerning speed, scaling

behavior, memory consumption etc. before applying non-linear iterative optimiza-

tion procedures to real-world problems in practice.

5.2 Isn’t It Just ...?

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘Perceptron‘

<<CIP‘CurveFit‘

<<CIP‘SVM‘

Off[FindMaximum::"lstol"];

The methods described on the road from curve fitting to machine learning are

perceived by practitioners quite differently: Opinions range from "mere technical

tools" (predominantly for curve fitting) up to an esteem of "scientific intelligence"

with a "touch of magic" (often attributed to successful machine learning results).

This finding may be related to the fact that results of curve fitting can be directly



392 5 Discussion

inspected in a visual manner whereas the results of clustering and machine learning

are less intuitive and more complex to grasp. In scientific education the same ba-

sic moods can be observed with students - especially an expectant curiosity about

machine learning which is inspired by rumors regarding their magic capabilities.

5.2.1 ... Optimization?

But after the background of the methods is outlined and traced back to mathematical

optimization problems a swing in opinions occurs: "Isn’t it just optimization?" is

a common expression of disappointment. Machine learning seems to loose a lot of

its initial fascination after an explanation of its basic machinery. This may be due

to fact that an optimization task sounds easy: Just walk uphill (for maximization)

or downhill (for minimization) - and your are done (in principal). It is quite com-

mon to the views about modern science that the level of sophistication necessary to

tackle the details is undervalued after a principle understanding is achieved. But the

progress of science is more and more absorbed by details while developing from its

basic foundations in physics and chemistry to an understanding of complex systems

in biology or ecology: "It’s a mere detail that makes you dead or alive" as a friend

summarizes his daily experience as a surgeon with the complex system homo sapi-

ens. As pointed out in chapter 1 it is the details of optimization that lead to success

of failure and there is no general way to avoid the latter. Optimization issues are

deeply connected to the most challenging scientific problems like protein folding

(where the correctly folded biologically active protein conformation is assumed to

be a minimum energy state). Whereas optimization tasks sound easy they should

be regarded with the necessary respect for an extremely difficult and active field of

research.

5.2.2 ... Data Smoothing?

Another attitude often expressed by practitioners after getting acquainted with ma-

chine learning may be summarized with the question "Isn’t it just data smoothing?"

which implies that machine learning may be useful for a comprehensive description

of data and possible interpolations of new values but not for any new insights. This

issue is a bit more subtle and concerns the principle question: What can you get out

of your data? Possibilities may be sketched with the following example: A relatively

imprecise data set is generated around a 3D function

pureOriginalFunction=Function[{x,y},

1.9*(1.35+Exp[x]*Sin[13.0*(x-0.6)^2]*Exp[-y]* Sin[7.0*y])];

xRange={0.0,0.5};

yRange={0.0,0.5};

numberOfDataPerDimension=10;

standardDeviationRange={0.75,0.75};

dataSet3D=CIP‘CalculatedData‘Get3dFunctionBasedDataSet[

pureOriginalFunction,xRange,yRange,numberOfDataPerDimension,

standardDeviationRange];

labels={"x","y","z"};



5.2 Isn’t It Just ...? 393

viewPoint3D={1.9, -3.0, 0.9};

CIP‘Graphics‘Plot3dDataSetWithFunction[dataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

with a maximum in the data range:

FindMaximum[pureOriginalFunction[x,y],{x,0.2},{y,0.2}]

{4.55146,{x → 0.265291,y → 0.204128}}

At the position of the maximum a hole in the data set is generated

reducedDataSet3D={};

Do[

If[!(dataSet3D[[i,1,1]]>0.1&& dataSet3D[[i,1,1]]<0.4 &&

dataSet3D[[i,1,2]]>0.1 && dataSet3D[[i,1,2]]<0.4),

AppendTo[reducedDataSet3D,dataSet3D[[i]]]

],

{i,Length[dataSet3D]}

];

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]



394 5 Discussion

which becomes easily visible from above:

viewPoint3D={0.0,0.0,3.0};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]



5.2 Isn’t It Just ...? 395

If an approximation of the original function is performed with an perceptron based

on the data set with a hole

numberOfHiddenNeurons=3;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedDataSet3D,

numberOfHiddenNeurons];

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,perceptronInfo]];

viewPoint3D={1.9, -3.0, 0.9};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

purePerceptron3dFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

the approximated perceptron model function contains a maximum

FindMaximum[purePerceptron3dFunction[x,y],{x,0.2},{y,0.2}]

{3.96551,{x → 0.326515,y → 0.170616}}

near the true maximum of the original 3D function. If a SVM with an adequate

kernel function is used for the regression task

kernelFunction={"Wavelet",0.5};

svmInfo=CIP‘SVM‘FitSvm[reducedDataSet3D,kernelFunction];

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureSvm3dFunction,labels,GraphicsOptionViewPoint3D -> viewPoint3D]



396 5 Discussion

the approximation of the true maximum is even improved:

FindMaximum[pureSvm3dFunction[x,y],{x,0.2},{y,0.2}]

{4.72082,{x → 0.287884,y → 0.190222}}

This means that although the data are considerably error-biased and do not cover

the interesting maximum region a machine learning method may be able to reveal

a maximum which is indicated by the surrounding data. Since optima are often the

primary targets of research and development a machine learning result as the one

illustrated may lead to a true discovery (note that visual inspection is not possible

in general but an exploration of the approximated model surface for optima may

equally work in multiple dimensions). This promising feature has of course its lim-

its: If the data hole is enlarged further

reducedDataSet3D={};

Do[

If[!(dataSet3D[[i,1,1]]>0.05&& dataSet3D[[i,1,1]]<0.45 &&

dataSet3D[[i,1,2]]>0.05 && dataSet3D[[i,1,2]]<0.45),

AppendTo[reducedDataSet3D,dataSet3D[[i]]]

],

{i,Length[dataSet3D]}

];

viewPoint3D={1.9, -3.0, 0.9};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]



5.2 Isn’t It Just ...? 397

so that the true maximum is only framed by a few points

viewPoint3D={0.0,0.0,3.0};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureOriginalFunction,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]



398 5 Discussion

a machine learning approach is likely to completely fail. A perceptron model fit

with an inadequate number of hidden neurons may lead to an approximated model

function that does not describe the hole region at all,

numberOfHiddenNeurons=10;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedDataSet3D,

numberOfHiddenNeurons];

purePerceptron3dFunction=Function[{x,y},

CIP‘Perceptron‘CalculatePerceptron3dValue[x,y,perceptronInfo]];

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

purePerceptron3dFunction,labels]

i.e. it leads to a flat valley with a zero gradient without any optimum. A maximum

search must inevitably fail:

FindMaximum[purePerceptron3dFunction[x,y],{x,0.2},{y,0.2}]

Encountered a gradient that is effectively zero. The result returned may not be a maximum;

it may be a minimum or a saddle point.

{0.143304,{x → 0.2,y → 0.2}}

In this specific case a SVM approach with an adequate model function

kernelFunction={"Wavelet",0.5};

svmInfo=CIP‘SVM‘FitSvm[reducedDataSet3D,kernelFunction];

pureSvm3dFunction=Function[{x,y},

CIP‘SVM‘CalculateSvm3dValue[x,y,svmInfo]];



5.2 Isn’t It Just ...? 399

viewPoint3D={1.9, -3.0, 0.9};

CIP‘Graphics‘Plot3dDataSetWithFunction[reducedDataSet3D,

pureSvm3dFunction,labels,GraphicsOptionViewPoint3D -> viewPoint3D]

is still able to predict a maximum not too far from the true original one:

FindMaximum[pureSvm3dFunction[x,y],{x,0.2},{y,0.2}]

{3.68395,{x → 0.379893,y → 0.15681}}

But this is just good luck - and explains why machine learning performs astonish-

ingly well for one problem and fails utterly for another. Although the problems and

data sets may seem to be very similar it can be small and subtle differences in the

data that lead to completely different outcomes. A final point may be a closer look

of what was earlier described as "indicated by the surrounding data". Normally

distributed data are generated around a 2D function

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)^2]];

argumentRange={1.0,7.0};

numberOfData=100;

standardDeviationRange={0.1,0.1};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above function"};

functionValueRange={0.0,5.5};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



400 5 Discussion

with a single maximum:

FindMaximum[pureOriginalFunction[x],{x,3.9}]

{5.02091,{x → 4.08392}}

Again data are removed around the maximum

reducedXyErrorData={};

Do[

If[!(xyErrorData[[i,1]]>3.0&&xyErrorData[[i,1]]<5.4),

AppendTo[reducedXyErrorData,xyErrorData[[i]]]],

{i,Length[xyErrorData]}

];

labels={"x","y","Reduced data above function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[reducedXyErrorData,

pureOriginalFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



5.2 Isn’t It Just ...? 401

to produce a data hole. A perceptron fit to the data with an adequate number of

hidden neurons

reducedDataSet=

CIP‘DataTransformation‘TransformXyErrorDataToDataSet[

reducedXyErrorData];

numberOfHiddenNeurons=3;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedDataSet,

numberOfHiddenNeurons];

purePerceptron2dFunction=Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,perceptronInfo]];

labels={"x","y","Reduced data above approximate model"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[reducedXyErrorData,

purePerceptron2dFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

leads to an approximated model function with a maximum very close to the true

original one:

FindMaximum[purePerceptron2dFunction[x],{x,3.9}]

{3.70255,{x → 4.11641}}

It now becomes clear why the data can indicate a maximum: The data blocks on the

left and on the right of the hole are best described by lines with positive curvature.

For a continuous model function these lines must be connected by a line with nega-

tive curvature which inevitably produces a maximum in between. If the data blocks

are further reduced

reducedXyErrorData={};

Do[

If[!(xyErrorData[[i,1]]>2.0&&xyErrorData[[i,1]]<6.0),

AppendTo[reducedXyErrorData,xyErrorData[[i]]]],



402 5 Discussion

{i,Length[xyErrorData]}

];

labels={"x","y","Reduced data above function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[reducedXyErrorData,

pureOriginalFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]

so that they no longer advise the maximum in between due to their curvature an

approximated model function

reducedDataSet=

CIP‘DataTransformation‘TransformXyErrorDataToDataSet[

reducedXyErrorData];

numberOfHiddenNeurons=3;

perceptronInfo=CIP‘Perceptron‘FitPerceptron[reducedDataSet,

numberOfHiddenNeurons];

purePerceptron2dFunction=Function[x,

CIP‘Perceptron‘CalculatePerceptron2dValue[x,perceptronInfo]];

labels={"x","y","Reduced data above approximate model"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[reducedXyErrorData,

purePerceptron2dFunction,labels,

GraphicsOptionFunctionValueRange2D -> functionValueRange]



5.3 Computational Intelligence 403

will most likely fail to suggest one (in this case a maximum is detected but far

outside the data region without any meaning):

FindMaximum[purePerceptron2dFunction[x],{x,3.9}]

{3.78097,{x → 108.998}}

It may be only a very few data that are crucial for success or failure and they are

not known in advance. In summary data analysis may lead to a discovery of hidden

optima which can not be easily derived from the pure data - but there is of course

no guarantee of success.

5.3 Computational Intelligence

Are computers intelligent? Or - more humble - is machine learning a first glimpse

of computational intelligence? And by the way: What at all means to be intelli-

gent? To put it short: There is no generally accepted definition of intelligence - it

is an umbrella term that comprises an interplay of human behavioral properties like

abstract thought, reasoning, planning, problem solving, communication or learning

(see [Intelligence 2010]). As an intuitive definition one may suggest that intelligent

behavior means to act as an average human being. This is the basis of a famous test

for machine intelligence proposed by Alan Turing in 1950: If a machine’s behavior

may not be distinguished from human behavior then the machine must be attributed

to be intelligent (see [Turing 1950]). But it may be comparatively easy to simu-

late human behavior as was early demonstrated by the definitely non-intelligent

ELIZA computer program that mimicked a human psychotherapist (see [Weizen-

baum 1966]) - and complex tests of human behavior which would be able to reveal

fakes like ELIZA could easily have the catastrophic result to attribute non-humanity

to living human beings. Thus the situation remains dodgy. In addition the introduc-

tory questions touch old and basic philosophical issues like the famous mind-body

problem. The two major schools of thought that try to resolve this problem are

dualism and monism: Dualism claims that mind and matter are different existing

substances which interact in some way. Unfortunately nothing is said about the na-

ture and the details of this mind-body interaction which makes this position quite

obscure. Monism on the other hand regards mind as an emerging function of specif-

ically organized matter so there is just matter as an ontological entity. Unfortunately

monism is still not able to tell how this emergence of mind from matter is achieved in

detail (this unsatisfying situation may be illustrated with a famous cartoon by Syd-

ney Harris: There are two persons standing in front of a chalkboard which shows a

mathematical derivation with an intermediate step paraphrased as Then A Miracle

Occurs: One person points at this statement by telling the other I think you should

be more explicit here in step two). In the 20th century the old philosophical prob-

lem was complemented with questions about a possible artificial intelligence which

may be realized by computational devices as well as questions about intelligence



404 5 Discussion

acceleration as an effect of combining man and machine into cybernetic organisms

(cyborgs). In a situation of vague definitions and fundamental unsolved problems

it is not surprising that there is still a lively discussion of all these fascinating is-

sues (e.g. see [Hofstadter 1981], [Penrose 1991], [Dreyfus 1992], [Penrose 1994],

[Churchland 1996], [Kaku 1998], [Koch 2004], [Hawkins 2005], [Baggott 2005],

[Kurzweil 2005] or [Mitchell 2009]).

From a scientific point of view biological systems in general and human brains in

particular are just ordinary pieces of matter that obey the known laws of physics and

chemistry. There is nothing special about them: Concepts like "supernormal vis

vitalis" (specific forces of living systems beyond physics) or "immaterial souls"

besides matter (essential for the dualist view, compare above) are outside any seri-

ous scientific discussion: There is simply no clue for their existence (that is why the

majority of scientists nowadays tends to be monists and materialists with regarding

matter as the only ontological entity - at least in their daily scientific work). But

whereas the human brain is ordinary in a pure material sense it is an extremely

intricate piece of matter in a structural sense with a hundred billion nerve cells

(neurons) that form a hundred trillion connections (synapses) for mutual interac-

tion: It is the most complex natural system of the known universe. And although

there is an already broad and impressive knowledge about its neurobiological parts

and their chemical and physical interactions it is still completely unknown how the

whole system works and achieves its intelligent characteristics (this miracle is the

monists’ problem, compare above): All there is are appealing proposals (like the

memory-prediction framework theory, see [Hawkins 2005]) but no true "Theory

of the Brain"- a challenge that is likely to become the foundational scientific feat

of the 21th century with the aid of more developed computers. Today’s comput-

ers are not able to simulate or even represent such a complex biological structure

(see [Kurzweil 2005]): The human brain is able to update its hundred trillion (1014)

synapses about a 100 times a second (each neuron is a comparatively slow functional

unit with a reset time of about 10 ms) which means that the brain performs about

1014 ×100 = 1016 synaptic transactions per second. If a single synaptic transaction

is formally described by about 1.000 computational calculations a digital computer

would need to perform at least 1016 ×1.000 = 1019 calculations per second to sim-

ulate a human brain (not too mention the necessary computational memory which

would be at least 1014 ×10 = 1015 = 1petabyte = 1.000terabyte if every synapse is

represented by only 10 bytes of memory). Compared to the fastest available com-

puters with a performance of about 1015 calculations per second these (more than)

rough estimates illustrate the existing complexity gap between the artificial in-silico

machines and the evolutionary developed biological system. But within the next

decades the computational devices may achieve similar (or even higher) levels of

complexity as their biological predecessors - and early attempts to reverse-engineer

the mammalian brain have already started (e.g. see [Blue Brain Project 2010]). So

from a pure materialist’s point of view today’s computers can not be intelligent

due to their insufficient degree of complexity compared to the human brain as a

gold standard - where another interesting question remains currently unanswered

whether human intelligence really needs the brain’s complexity or may be realized



5.3 Computational Intelligence 405

by a simpler architecture. Also note that this view does not necessarily imply that

powerful enough computers automatically produce intelligent behavior. But they are

regarded as the necessary and sufficient tools to successfully tackle the mind-body

problem at leasts from the monist’s point of view.

Computers are often blamed because they are not able to understand simple daily-

life situations. A brief example (inspired by Roger Schank, see [Schank 1977]) is

the following message: John went to a restaurant. He ordered lobster. He paid the

bill and left. A proper comprehension of this message could be tested with the ques-

tion: "What did John eat?" A human being is extremely like to reply "Lobster, of

course!" but the best a computer could respond is "I don’t know!" - an answer that

would be taken as an indication of failed understanding. But the computer’s answer

is correct since the message did not at all contain what John really ate. Humans

do not consciously hear, smell, see or feel what they really hear, smell, see or feel:

Every sensual input is automatically interpreted by the brain within a concrete situa-

tion. This interpretation is among others a function of the historical and sociocultural

context in which the human being is living in. Concerning the above message an in-

habitant of an American or European society knows that someone usually eats in a

restaurant what he orders since it is normally not allowed to bring in own food etc.

Thus the objectively missing contextual piece of information is automatically filled-

in by the neural information processing. To let a computer act as a human being in

daily-life situations an access to a human-comparable contextual memory would be

necessary which is at present technically impossible to achieve (compare above, an

approximation is the aim of the Cyc project, see [Cyc 2010]). So the failure of the

computer system is not a principle one: A human being would fail as well if it had

to act within an unknown context since then the automatic fill-in could not work

adequately. The related unsure feeling in an alien environment is often experienced

by foreigners in their new home countries- and this is why cross-cultural training

becomes more and more popular in an increasingly globalized and flexible world.

The above arguments suggest that contemporary computers are not intelligent in

comparison to an average culturally educated specimen of homo sapiens. But there

is a justified hope to scientifically reveal the miracle of human intelligence and there

is no principal objection against a future human-like machine intelligence with more

developed computational devices.

And if the intelligence discussion is confined to the initial more humble ques-

tion about a first glimpse of computational intelligence exerted by current machine

learning the answer may turn from a simple "no" to a more optimistic outcome. It

is inevitable for a corresponding line of thought to at least come to a preliminary

working definition of what means intelligent and to compare its characteristics with

the current power of machine learning. Besides the semantic ambiguities it has to be

recognized that there is an additional well-known semantic shift of what is regarded

to be intelligent which may be summarized by the following rule of thumb: If a ma-

chine is capable of performing an intelligent operation this operation is no longer

called intelligent. Obviously homo sapiens likes its exceptional status on earth. For

an illustration of emerging computational intelligence different ways of searching

in data are sketched in the following. Searching is valued from being a dull task up



406 5 Discussion

to a challenge of the highest level of intellectual sophistication thus it may be worth

to outline this ascent and its relation to the issue in question.

Let’s start with an exact search: A data item is searched as a complete whole in

a defined volume of data, e.g. a distinct name in a telephone book, a full chemi-

cal structure in a compound database or a complete biological sequence in a set of

sequences. This type of search may be performed in a sequential manner (i.e. the

data item is successively compared one after another to each single data item of the

data volume) or with the data volume in a preprocessed state (e.g. as a binary tree

or a hash-table) to increase the search speed. Although the details of the concrete

computational implementation of an exact search may be very difficult and thus in-

tellectually demanding an exact search is not regarded to be an intelligent operation.

It is a dull task.

The next common step for a search with enhanced options is to soften the data

item comparison to match only partially. For the name search in a telephone book

this may be realized by the well-known wildcard characters like "*" at the begin-

ning or the end of a name (left/right truncation, e.g. "May*" will find "Mayer",

"Maybridge", "Mayfield" etc.). In chemical compound search this kind of struc-

ture retrieval is named substructure search: The structure query defines only a part

of a full chemical structure (a substructure like a benzene ring or a functional chem-

ical unit like a hydroxy group) and each full chemical structure of the database is

checked for an occurrence of this substructure. Substructure searches are important

for many areas of molecular research like chemical synthesis or drug development.

Similarly a biological sequence search will only look for the defined parts of the

(base pair or amino acid) sequences of a gene or protein in the volume of sequences

under investigation, e.g. to find highly conserved sequence regions in biological

evolution. The technical implementation of a partial-match search may be very de-

manding (e.g. chemical substructure search is an active field of research for decades

and the development of an adequate sub-graph isomorphism algorithm is a severe

and an intellectually extremely challenging task) but also this kind of search is gen-

erally not attributed to be intelligent. Nonetheless a borderline of intelligence may

come into sight: The latter kind of a defined softened search may retrieve data that

were not primarily anticipated by a user (but of course are part of the user’s defined

solution space if the search performed in a correct manner). This means that emerg-

ing intelligence could be attributed to a computational method that yields results

that are beyond simple anticipation of a human being: To perform the same task a

human being would think that it has to apply its intelligent abilities rather than its

brute labor. This is of course a very weak definition but may be at least operational

for a division between (emerging) intelligent and (predominantly) non-intelligent

computational methods: An exact search was characterized as a boring and dull task

(too) often encountered in daily-life whereas for a partial-match search someone

may feel an upcoming necessity to use his noddle.

If this line is followed then a true computationally intelligent search would be

able to retrieve data that are related to the query in a non-trivial sophisticated man-

ner. These results may only be similar or abstractly associated to what was searched

for and they may reveal connections or insights that were not initially intended.



5.3 Computational Intelligence 407

In other words: Query (input) and answer (output) are related by a non-trivial in-

put/output mapping function f. But the construction of these complex and non-trivial

mapping functions f for an input/output pair obtained by output = f (input) or in a

adequately coded mathematical notation y = f (x) respectively is exactly the goal of

machine learning as discussed in chapter 3 and 4. As a very basic example a name

search could be fuzzy so much that only phonetically similarity is in question, i.e.

query "Meyer" would yield the answers "Mayer", "Maher", "Mayr" etc. More

advanced similarity or associative name searches could involve arising elements of

the elaborate combinated logic used by Sherlock Holmes and his successors to de-

tect malefactors. A chemical structure search may try to retrieve structures that are in

some way similar to a query structure. As far as topological similarity is in question

such a query could of course yield the results of a corresponding substructure search

but with an enhanced result set that consists of additional structures. The latter are

not true substructures in a topological sense but resemble the query structure accord-

ing to a defined measure of similarity. This measure may be defined quantitatively

by an overlap (Tanimoto) coefficient that evaluates a similarity value in percent on

the basis of individual bit vectors for the query and a test structure of the database:

Each bit of a bit vector may encode the appearance (true) or absence (false) of a spe-

cific chemical group (like a benzene ring, a hydroxy group etc.) in a chemical struc-

ture. The Tanimoto coefficient then computes the ratio of the number of intersected

"true"-bits (i.e. bits which are simultaneously true in both structures) to the number

of united "true"-bits of query and test structure. If the ratio/coefficient is above a

specific threshold (commonly 90%) then query and test structure are regarded to be

similar and the test structure is transferred to the answer set. For more ambitious

similarity searches the complexity of the similarity measure or the similarity de-

tection function similarityvalue = f (teststructure) will have to be readily increased

up to an arbitrary difficult level, e.g. concerning the similarity in physico-chemical,

environmental or pharmaceutical effects. A biological sequence related similarity

search (a sequence alignment) makes use of scoring systems with (evolutionary de-

rived) similarity matrices for monomer (base pair or amino acid) comparisons and

specific penalties for alignment gaps. An optimum (local or global) sequence align-

ment between query and test sequence for a defined scoring system can be achieved

with specific computational methods (dynamic programming)- the sequence sim-

ilarity search operation became so widespread and popular in molecular biology

related research and development that the new verb "to blast" was established to

denote its execution (named after the heuristic BLAST algorithm which is one of

the most popular algorithms used for biological sequence alignment). As mentioned

for chemical structures a biological sequence related similarity search may be ex-

tended to arbitrary levels of complexity, e.g. concerning the biological function of

sequences or their specific expression under certain circumstances. Thus abstractly

associated properties of chemical structures or biological sequences may be revealed

by a trained computationally intelligent machine learning system which would be

otherwise the results of attempts of well-educated human scientists (or simply im-

possible). And they may reveal completely new insights (the possible detection of

hidden optima discussed above) that were not anticipated at all.



408 5 Discussion

Computational intelligence which is modestly and preliminary characterized in

the above manner is not yet ready to surpass its human predecessor but rather to

accelerate and enhance human intelligence and creativity in many ways: It’s the

combination and hybridization of both - man and machine- that shapes the develop-

ments at the beginning of the 21th century. And a true man-machine interaction on

a WYTIWYG (What You Think Is What You Get) basis comes into sight.

5.4 Final Remark

In chapter 1 the motivation of this book was stated to show how specific situations

of the interplay between data and models could be tackled: Firstly the situation was

sketched where a model function f is known but not its parameters (denoted situ-

ation 2 in chapter 1) which was discussed on the basis of statistical curve fitting

approaches. The second situation (situation 3 in chapter 1) contained the additional

inconvenience that the model function f itself is unknown which led to attempts of

unsupervised and supervised machine learning. The road from curve fitting to ma-

chine learning demonstrated how we can proceed from experimental data to models:

A road that is often stony and full of perils and pitfalls. It was aimed to not only

mention these difficulties but to outline how they can be successfully overcome.

This implies the courage and the honesty to stop any analysis in the case of inad-

equate data to avoid the GIGO (Garbage In, Garbage Out) failure. But appropriate

data analysis and model construction reward all efforts with convincing results up

to possible new insights that were not anticipated before. With a still exponentially

increasing computational power the sketched methods will become more extensive

and faster and thus more widespread and easier to use. Combination strategies and

new heuristics for their application will emerge so that they become more and more

ubiquitous tools (not only) in scientific research and development.



Appendix A

CIP - Computational Intelligence Packages

CIP (Computational Intelligence Packages) is a high-level function library that is

used for all demonstrations throughout this book (see [CIP]). It is built on top of the

commercial mathematical computing platform Mathematica (see [Mathematica]) to

exploits its algorithmic and graphical capabilities. The CIP design goals were nei-

ther maximum speed nor minimum memory consumption but a largely unified and

robust access to high-level functions necessary for demonstration purposes. Thus

CIP is not an optimized and maximum efficient library for scientific application

although it may be practically utilized in many operational areas (see comments be-

low). Since CIP is open-source (for download locations see [CIP]) the library may

be used as a starting point for customized and tailored extensions, e.g. an implemen-

tation of a multi-core processor support to increase computational speed (many CIP

operations are ideally suited for parallel operation).

A.1 Basics

The unification goal of CIP design primarily addresses the optimization calcula-

tions: Data (with adequate data structures) are submitted to Fit methods provided

by the CurveFit, Cluster, MLR, SVM or Perceptron packages to perform a corre-

sponding optimization procedure. The result of the latter is a comprehensive info

data structure, e.g. a curveFitInfo, clusterInfo, mlrInfo, svmInfo or perceptronInfo.

This info data structure can then be passed to corresponding Show methods for mul-

tiple evaluation purposes like visual inspection of the goodness of fit or to Calculate

methods for model related calculations. Similar operations of different packages are

denoted in a similar manner to ease their use. Method signatures do mainly contain

only structural parameters where technical control parameters may be changed via

options if necessary. CIP consists of ten packages:

• Utility: The Utility package is a basic package that collects several general meth-

ods used by other packages like GetMeanSquaredError which is used by all ma-

chine learning related packages. Thus this package is used to decrease redundant

code.



410 A CIP - Computational Intelligence Packages

• ExperimentalData: The ExperimentalData package provides all data used

throughout the book where details are provided below. This package makes use

of the packages Utility, DataTransformation and CurveFit.

• DataTransformation: CIP performs many internal data transformations for dif-

ferent purposes, e.g. all data that are passed to a machine learning method are

scaled before the operation (like ScaleDataMatrix) and re-scaled afterwards (like

ScaleDataMatrixReverse). The DataTransformation package comprehends all

these methods in a single package. It uses the Utility package.

• Graphics: The Graphics package tailors Mathematica’s graphical functions for

application throughout the book. It is used for all graphical representations and

uses itself the Utility and DataTransformation packages.

• CalculatedData: The CalculatedData package complements the Experimen-

talData package with methods for the generation of simulated data like nor-

mally distributed xy-error data around a function with GetXyErrorData. It uses

methods from the Utility and DataTransformation packages.

The five packages discussed so far complement and underlie the actual core pack-

ages of CIP. These five core packages address curve fitting, clustering, multiple

linear regression, perceptron-type neural networks and support vector machines:

• CurveFit: The CurveFit package tailors Mathematica’s built in curve fitting

method (NonlinearModelFit) for least-squares minimization and adds a smooth-

ing cubic splines support. Since NonlinearModelFit is an algorithmic state-of-

the-art implementation for curve fitting the CurveFit package is well-suited for

professional data analysis purposes. It uses the Utility, Graphics, DataTransfor-

mation and CalculatedData packages.

• Cluster: The Cluster package tailors Mathematica’s built in FindClusters method

for clustering purposes and adds an adaptive resonance theory (ART-2a) support.

FindClusters is an algorithmic state-of-the-art implementation for k-medoids

clustering thus the Cluster package may be used for professional tasks (see [Get-

Clusters]). It uses the Utility, Graphics and DataTransformation packages.

• MLR: The MLR package tailors Mathematica’s built in Fit method for multiple

linear regression (MLR). This is an algorithmic state-of-the-art implementation

for MLR so the MLR package may be used for professional application (see

[FitMlr]). It uses the Utility, Graphics, DataTransformation and cluster packages.

• Perceptron: The Perceptron package provides optimization algorithms for three-

layer perceptron-type neural networks. It utilizes Mathematica’s FindMinimum

(ConjugateGradient) or NMinimize (DifferentialEvolution) methods for min-

imization tasks (see [FindMinimum/FindMaximum] and [NMinimize/NMaxi-

mize]). The package also provides a backpropagation plus momentum mini-

mization and a classical genetic algorithm based minimization. Although the

quality of the minimization algorithms is state-of-the-art the specific calcula-

tion setup contains non-optimum redundancies that decrease performance and

increase memory consumption. Thus the usage of this package is confined to

small data sets with about a thousand I/O pairs for practical application. It uses

the Utility, Graphics, DataTransformation and cluster packages.



A.2 Experimental Data 411

• SVM: The SVM package provides constrained optimization algorithms for sup-

port vector machines (SVM). It utilizes Mathematica’s FindMaximum (Interior-

Point) or NMaximize (DifferentialEvolution) methods for constrained optimiza-

tion tasks (see [FindMinimum/FindMaximum] and [NMinimize/NMaximize]).

Although these algorithms are robust they do not exploit any specifics of the sup-

port vector objective function to increase optimization convergence speed etc.

Therefore a practical application is advised to only very small data sets with less

than a thousand I/O pairs. The package uses the Utility, Graphics, DataTransfor-

mation and cluster packages.

A.2 Experimental Data

Clear["Global‘*"];

<<CIP‘Utility‘

<<CIP‘DataTransformation‘

<<CIP‘ExperimentalData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

The CIP package ExperimentalData provides mainly experimental and some the-

oretically calculated data which are used throughout the book. They are briefly

sketched in the following.

A.2.1 Temperature Dependence of the Viscosity of Water

The xy-error data describe the temperature dependence of the viscosity η of water

(measured in centi-Poise which is the scientific unit of viscosity) in the temperature

range from 293.15 to 323.15 K (20 to 50 degree Celsius) with a very small estimated

experimental error of 0.0001
(

10−4
)

cP (see [Weast 1975] for reference):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

labels={"T [K]","\[Eta] [cP]","Viscosity of water"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]



412 A CIP - Computational Intelligence Packages

A.2.2 Potential Energy Surface of Hydrogen Fluoride

The xy-error data describe the potential energy of the hydrogen fluoride molecule

(measured in Hartree) as a function of the interatomic distance (measured in

Angstrom). A very small absolute error of 10−6 is assumed for the energy values.

They were calculated with the ab-initio quantum-chemical software package Gaus-

sian using a uMP4/6-311++g(3df, 3pd) model chemistry (see [Gaussian 2003]).

xyErrorData=

CIP‘ExperimentalData‘GetHydrogenFluoridePESXyErrorData[];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of hydrogen fluoride (HF)"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]



A.2 Experimental Data 413

A.2.3 Kinetics Data from Time Dependent IR Spectra of the

Hydrolysis of Acetanhydride

The hydrolysis of acetanhydride was monitored online by infrared (IR) spectra

which were taken every 2 minutes (see [Meyer 2010]). The list of IR spectra

spectra=CIP‘ExperimentalData‘GetAcetanhydrideHydrolysisIRSpectra[];

Length[spectra]

22

ranges from spectrum 1 (at start = 0 minutes) to spectrum 22 (at the end = 44 min-

utes). Each spectrum is a list of 2D xy-points where the argument value (x) is the

wave number in 1/cm and the dependent value (y) the corresponding absorption at

this wave number. From the full spectrum

index=1;

time=(index-1)*2;

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["Full IR spectrum (",ToString[time]," min)"]};

pointSize=0.01;

CIP‘Graphics‘Plot2dPoints[spectra[[index]],labels,

GraphicsOptionPointSize -> pointSize]

the acetanhydride absorption peak around 1140 1/cm is used for tracking the re-

duction of acetanhydride due to the hydrolysis reaction. The peak has a maximum

height at the beginning of the reaction

partialSpectrum=Select[spectra[[index]],#[[1]]<1500&];

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["Zoomed IR spectrum (",ToString[time]," min)"]};

CIP‘Graphics‘Plot2dPoints[partialSpectrum,labels,

GraphicsOptionPointSize -> pointSize]



414 A CIP - Computational Intelligence Packages

and then decreases with reaction progress

index=11;

time=(index-1)*2;

partialSpectrum=Select[spectra[[index]],#[[1]]<1500&];

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["Zoomed IR spectrum (",ToString[time]," min)"]};

CIP‘Graphics‘Plot2dPoints[partialSpectrum,labels,

GraphicsOptionPointSize -> pointSize]

to an almost complete disappearance at the end of the monitored time period:

index=22;

time=(index-1)*2;

partialSpectrum=Select[spectra[[index]],#[[1]]<1500&];

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["Zoomed IR spectrum (",ToString[time]," min)"]};

CIP‘Graphics‘Plot2dPoints[partialSpectrum,labels,

GraphicsOptionPointSize -> pointSize]



A.2 Experimental Data 415

The height of the peak is linearly correlated to the chemical concentration of acetan-

hydride (Lambert-Beer law). Thus the most straightforward procedure to extract ki-

netics data from the spectra is to simply use the maximum peak absorption value

at each time. This method is denoted "method 1" and executed with GetAcetanhy-

drideKineticsData1 of the CIP ExperimentalData package:

kineticsDataMethod1=GetAcetanhydrideKineticsData1[];

Note that the absorption at the end of the reaction with completely vanished acetan-

hydride is not zero as expected but has a baseline (background) value above zero:

labels={"Time [min]","Absorption",

"Measured absorption maxima around 1140 1/cm"};

CIP‘Graphics‘Plot2dPoints[kineticsDataMethod1,labels]



416 A CIP - Computational Intelligence Packages

The non-zero baseline is an unlovely artifact of the measurement process. More

elaborate methods of kinetics data extraction from the spectra try to take the un-

wanted baselines into account to correct the absorption for background indepen-

dence. A possible more elaborated method (denoted "method 2") proceeds as fol-

lows. The peak of each spectrum is isolated in the wave number range 1060 to 1220

1/cm (shown here for the first spectrum at the beginning of the reaction):

index=1;

time=(index-1)*2;

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["IR spectrum (",ToString[time]," min)"]};

partialSpectrum=

Select[spectra[[index]],(#[[1]]<1220 && #[[1]]>1060)& ];

CIP‘Graphics‘Plot2dPoints[partialSpectrum,labels]

The absorption values are assumed to be very precise with a small absolute error of

0.0005 and the spectral data are transformed to xy-error data for curve fitting:

errorOfAbsorption=0.0005;

partialSpectrumData=

CIP‘DataTransformation‘AddErrorToXYData[partialSpectrum,

errorOfAbsorption];

The spectral data are smoothed with cubic splines (compare chapter 2)

reducedChisquare=1.0;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[partialSpectrumData,

reducedChisquare];

with a convincing result:



A.2 Experimental Data 417

labels={"Wavenumber [1/cm]","Absorption",

StringJoin["IR spectrum with smoothing splines (",ToString[time],

" min)"]};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},partialSpectrumData,

curveFitInfo,CurveFitOptionLabels -> labels];

Thus the spectral data may be successfully represented by the smoothing cubic

splines function:

argumentRange={partialSpectrumData[[1,1]],

partialSpectrumData[[Length[partialSpectrumData],1]]};

functionValueRange={0.1,0.55};

pureFunction=Function[internalArgument,

CIP‘CurveFit‘CalculateFunctionValue[internalArgument,

curveFitInfo]];

labels={"Wavenumber [1/cm]","Absorption","Smoothing cubic splines"};

graphics=CIP‘Graphics‘Plot2dFunction[pureFunction,argumentRange,

functionValueRange,labels]



418 A CIP - Computational Intelligence Packages

Next the locations of the minimum left of the peak, of the peak maximum and the

minimum right of the peak are determined with the aid of the smoothing cubic

splines model:

roots={};

oldPoint={partialSpectrumData[[1,1]],

CIP‘CurveFit‘CalculateDerivativeValue[1,partialSpectrumData[[1,1]],

curveFitInfo]};

Do[

newPoint=

{i,CIP‘CurveFit‘CalculateDerivativeValue[1,i,curveFitInfo]};

If[oldPoint[[2]]*newPoint[[2]]<= 0,

AppendTo[roots,x/.FindRoot[

CIP‘CurveFit‘CalculateDerivativeValue[1,x,curveFitInfo],

{x,oldPoint[[1]],newPoint[[1]]}]]

];

oldPoint=newPoint,

{i,partialSpectrumData[[1,1]],

partialSpectrumData[[Length[partialSpectrumData],1]],1}

];

The detected locations

roots

{1071.68,1138.07,1200.94}

can be used to construct a connection (linearly interpolated line) between the left

and right minima to approximate the unknown baseline of the peak. The absorption

value may then be corrected with the baseline value at maximum absorption

minimum1={roots[[1]],

CIP‘CurveFit‘CalculateFunctionValue[roots[[1]],curveFitInfo]};

maximum={roots[[2]],

CIP‘CurveFit‘CalculateFunctionValue[roots[[2]],curveFitInfo]};

minimum2={roots[[3]],

CIP‘CurveFit‘CalculateFunctionValue[roots[[3]],curveFitInfo]};

baselineCorrection={

maximum[[1]],

minimum1[[2]]+

(minimum2[[2]]-minimum1[[2]])/(minimum2[[1]]-minimum1[[1]])*
(maximum[[1]]-minimum1[[1]])

};

which may be graphically depicted for illustration:

Show[

graphics,

Epilog -> {Thickness[0.005],PointSize[0.03],RGBColor[1,0,0],

Line[{minimum1,minimum2}],Line[{baselineCorrection,maximum}],

Point[minimum1],Point[maximum],Point[minimum2],

Point[baselineCorrection]}

]



A.2 Experimental Data 419

The corrected absorption value is the distance between the linearly interpolated

baseline value at the maximum position and the maximum measured absorption

value. This procedure is applied to all spectra with the GetAcetanhydrideKinetics-

Data2 method of the CIP ExperimentalData package:

kineticsDataMethod2=GetAcetanhydrideKineticsData2[];

A graphical display of the kinetics data demonstrates the improvement in compari-

son to method 1:

labels={"Time [min]","Absorption",

"Corrected absorption maxima around 1140 1/cm"};

CIP‘Graphics‘Plot2dPoints[kineticsDataMethod2,labels]

The absorption values now seem to drop to zero as it is expected for a vanished ac-

etanhydride. Note that there is still an obvious deviation of the absorption peak value



420 A CIP - Computational Intelligence Packages

of the first spectrum at 0 minutes which could be traced to an initial measurement

delay. As a final remark it should be clear that the kinetics data obtained with both

methods are flawed by systematic errors due to their individual data extraction pro-

cess: Whereas method 1 completely neglects all baseline issues the more elaborate

method 2 performs an arbitrary linear approximation procedure only.

A.2.4 Iris Flowers

The iris flower classification data set (see [Fisher 1936]) consists of measurements

of the length and width of sepal and petal of 50 samples from each of the three

species of iris flowers: Iris setosa (denoted species 1), iris versicolor (species 2) and

iris virginica (species 3). Each input is a vector with 4 components that denote the

sepal length (component 1), the sepal width (component 2), the petal length (com-

ponent 3) and the petal width (component 4) in millimeter. Each output codes the

corresponding species (see chapter 1 for encoding classification data set outputs).

The inputs alone may be accessed for each species separately

inputsOfSpecies1=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies1[];

inputsOfSpecies2=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies2[];

inputsOfSpecies3=CIP‘ExperimentalData‘GetIrisFlowerInputsSpecies3[];

or joined:

inputs=CIP‘ExperimentalData‘GetIrisFlowerInputs[];

The complete classification data set with all I/O pairs for all three species can be

accessed with

classificationDataSet=

CIP‘ExperimentalData‘GetIrisFlowerClassificationDataSet[];

A.2.5 Adhesive Kinetics

The adhesive kinetics data set describes the dependence of a kinetics parameter

on the composition of an adhesive polymer mixture. The adhesive polymer mixture

contains four components: Methyl methacrylate (MMA), poly(methyl methacrylate)

(PMMA), dibenzoyl peroxide and N,N-diethylol-p-toluidine.Each input vector con-

tains 3 components with the mass ratio of MMA to PMMA in percent (component

1), the mass of dibenzoyl peroxide in gram (component 2) and the mass of N,N-

diethylol-p-toluidine in gram (component 3) - the complete mass of each mixture

was about 20g. The output vector contains 1 component which is the time in seconds

to the maximum temperature as a characteristic property of the exothermic adhesive

hardening reaction (see [Koch 2003]). The adhesive data set comprises 73 different

mixtures



A.2 Experimental Data 421

dataSet=CIP‘ExperimentalData‘GetAdhesiveKineticsDataSet[];

Length[dataSet]

73

with a clear design of experiment which may be illustrated by a 3D display of the

inputs

inputs=CIP‘Utility‘GetInputsOfDataSet[dataSet];

labels={"Ratio","C2","C3"};

viewPoint3D={0.6,-3.4,2.0};

CIP‘Graphics‘Plot3dPoints[inputs,labels,

GraphicsOptionViewPoint3D -> viewPoint3D]

where "Ratio" denotes the mass ratio of MMA to PMMA, C2 the mass of dibenzoyl

peroxide (in gram) and C3 the mass of N,N-diethylol-p-toluidine (in gram). There

are 3 MMA:PMMA ratios measured: 80%, 85% and 90%. Since the full adhesive

kinetics data set is four-dimensional (3 input components plus 1 output component)

a three-dimensional data subset with two input components and 1 output component

may be obtained for each fixed MMA:PMMA ratio, e.g. for MMA:PMMA = 80%

polymerMassRatio="80";

dataSet3D=

CIP‘ExperimentalData‘GetAdhesiveKinetics3dDataSet[

polymerMassRatio];

labels={"C2","C3","t"};

CIP‘Graphics‘Plot3dDataSet[dataSet3D,labels]



422 A CIP - Computational Intelligence Packages

where "t" denotes the time in seconds to the maximum temperature. The exper-

imental time-to-maximum-temperature errors were reported to be in the order of

10% to 20% with some outliers.

A.2.6 Intertwined Spirals

A intertwined spiral classification data set consists of inputs of dimension 2 and

corresponding outputs that code one of the two spiral classes. The inputs of the first

spiral are calculated with

(x,y) =
(

2cos(u)eu/10,1.5sin(u)eu/10
)

; π ≤ u ≤ 3.5π

and those of the second spiral with

(x,y) =
(

2.7cos(u)eu/10,2.025sin(u)eu/10
)

; −π/2 ≤ u ≤ 2.5π

(see [Juillé 1996] and [Paláncz 2004]). The number of points along the spirals within

the defined intervals may be specified:

numberOfSingleSpiralIoPairs=30;

classificationDataSet60=

CIP‘ExperimentalData‘GetSpiralsClassificationDataSet[

numberOfSingleSpiralIoPairs];

classIndex=1;

inputsOfSpiral1=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet60,classIndex];



A.2 Experimental Data 423

classIndex=2;

inputsOfSpiral2=

CIP‘DataTransformation‘GetInputsForSpecifiedClass[

classificationDataSet60,classIndex];

points2DWithPlotStyle1={inputsOfSpiral1,{PointSize[0.02],Black}};

points2DWithPlotStyle2={inputsOfSpiral2,{PointSize[0.02],Blue}};

points2DWithPlotStyleList={points2DWithPlotStyle1,

points2DWithPlotStyle2};

labels={"x","y","Intertwined spirals"};

CIP‘Graphics‘PlotMultiple2dPoints[points2DWithPlotStyleList,labels]

A.2.7 Faces

There are 3 faces image classification data sets. They contain 18 I/O pairs each

(faces of 6 cats (class 1), 6 dogs (class 2) and 6 humans (class 3)) with the same

faces but different backgrounds (see [Faces 2010]): An image classification data set

with white background

imageClassificationDataSetWhite=

CIP‘ExperimentalData‘GetFacesWhiteImageDataSet[];

imageInputsWhite=

CIP‘Utility‘GetInputsOfDataSet[imageClassificationDataSetWhite];

GraphicsGrid[

Table[

Image[imageInputsWhite[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]



424 A CIP - Computational Intelligence Packages

one with gray background

imageClassificationDataSetGray=

CIP‘ExperimentalData‘GetFacesGrayImageDataSet[];

imageInputsGray=

CIP‘Utility‘GetInputsOfDataSet[imageClassificationDataSetGray];

GraphicsGrid[

Table[

Image[imageInputsGray[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]

and one with black background:

imageClassificationDataSetBlack=

CIP‘ExperimentalData‘GetFacesBlackImageDataSet[];

imageInputsBlack=

CIP‘Utility‘GetInputsOfDataSet[imageClassificationDataSetBlack];

GraphicsGrid[

Table[

Image[imageInputsBlack[[(i-1)*6+j]],"Byte"],

{i,3},{j,6}

],

ImageSize->300

]



A.2 Experimental Data 425

Each input of the image classification data sets is a matrix with 30 rows and columns

that code 30×30 grayscale images (with a 30×30 = 900 pixels in total per image):

Dimensions[imageInputsWhite[[1]]]

{30,30}

Each pixel contains a specific shade of gray (out of 256 possible values), e.g. the

first pixel

imageInputsWhite[[1,1,1]]

255.

codes "white" (255). To use an image classification data set for clustering or ma-

chine learning the (pixel) matrix must be converted to a (pixel) vector by successive

concatenation of the pixel matrix rows. This is performed with a specific method of

the CIP DataTransformation package, e.g. for the faces image classification data set

with white background:

classificationDataSetWhite=

CIP‘DataTransformation‘ConvertImageDataSet[

imageClassificationDataSetWhite];

Each input of the resulting classification data set contains a vector with 900 com-

ponents where each component contains the grayscale value of its corresponding

pixel:

inputsWhite=

CIP‘Utility‘GetInputsOfDataSet[classificationDataSetWhite];

Length[inputsWhite[[1]]]

900



426 A CIP - Computational Intelligence Packages

inputsWhite[[1,1]]

255.

A.2.8 Wisconsin Diagnostic Breast Cancer (WDBC) Data

The Wisconsin Diagnostic Breast Cancer (WDBC) classification data set (see

[WDBC data] in the references) consists of 569 I/O pairs

classificationDataSet=

CIP‘ExperimentalData‘GetWDBCClassificationDataSet[];

CIP‘Graphics‘ShowDataSetInfo[{"IoPairs","InputComponents",

"OutputComponents","ClassCount"},classificationDataSet]

Number of IO pairs = 569

Number of input components = 30

Number of output components = 2

Class 1 with 357 members

Class 2 with 212 members

where each input is mapped onto one of two classes. Every I/O pair refers to a

single patient. The 30 components of each input are real-valued quantities that are

computed from a digitally scanned image of a fine needle aspirate of a breast mass.

Fine needle aspiration biopsy is a very safe and minor surgical procedure which is

widely used in the diagnosis of cancer: A thin and hollow needle is inserted into

the tumor tissue to extract cells which are then (after being stained) examined and

digitally scanned under a microscope. The 30 input components describe charac-

teristics of the extracted cell nuclei present in an digital image. Components 1-10

describe the mean, components 11-20 the standard deviation and components 21-30

the maximum ("worst" or "largest") of a feature. The 10 single features that are

computed for each cell nucleus are (1) radius, (2) texture, (3) perimeter, (4) area,

(5) smoothness, (6) compactness, (7) concavity, (8) concave points, (9) symmetry

and (10) fractal dimension. Thus input components 1, 11 and 21 refer to the same

feature (radius) and are the mean, the standard deviation and the maximum of this

feature for all cell nuclei of a digitized image. The two output components code two

classes where class 1 (coded {1.0, 0.0}) denotes the diagnosis of a benign tumor

and class 2 (coded {0.0, 1.0}) the diagnosis of a malignant tumor.



References

[Andrade 1934] da Andrade, E.N.C.: A Theory of the Viscosity of Liquids. - Part I. Philo-

sophical Magazine 17(112), 497–511 (1934)

[Baggott 2005] Baggott, J.: A Beginner’s Guide to Reality. Penguin Books, New York (2005)

[Barlow 1989] Barlow, R.J.: Statistics: A Guide to the Use of Statistical Methods in the

Physical Sciences. Wiley VCH, Chichester (1989)

[Bevington 2002] Bevington, P., Robinson, D.K.: Data Reduction and Error Analysis for the

Physical Sciences, 3rd edn. McGraw-Hill, New York (2002)

[Bishop 2006] Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New

York (2006)

[Blue Brain Project 2010] Blue Brain Project (2010), http://bluebrain.epfl.ch

[Box] Quotation (Chapter 1.1) from Wikiquote,

http://en.wikiquote.org/wiki/George_E._P._Box

(found at January 27, 2010)

[Brandt 2002] Brandt, S.: Data Analysis: Statistical and Computational Methods for Scien-

tists and Engineers, 3rd edn. Springer, New York (1998)

[Carpenter 1991] Carpenter, G.A., Grossberg, S., Rosen, D.B.: ART 2-A: An Adaptive Res-

onance Algorithm for Rapid Category Learning and Recognition. Neural Networks 4,

493–504 (1991)

[Chatterjee 2000] Chatterjee, S., Hadi, A., Price, B.: Regression Analysis by Example. In:

Chapter 3: Multiple Linear Regression, 3rd edn., pp. 51–84. John Wiley & Sons,

Chichester (2000)

[Cherkassy 1996] Cherkassy, V., Gehring, D., Mulier, F.: Comparison of adaptive methods

for function estimation from samples. IEEE Trans. Neural Networks 7(4), 969–984

(1996)

[Churchland 1996] Churchland, P.M.: The Engine of Reason, The Seat of the Soul: A Philo-

sophical Journey into the Brain. MIT Press, Massachusetts (1996)

[CIP] Computational Intelligence Packages (CIP), Version 1.0. Open source library for

Mathematica 7 or higher designed by Achim Zielesny. Internet:

http://www.ibci.de or http://www.gnwi.de Installation instructions

for the CIP Mathematica packages are provided within the ZIP container available

for download at these internet sites. The websites also link to the CIP user forum

[Clark 2010] Clark, T.: Private communication at the 2010 Beilstein Symposium on Nan-

otechnology, Bolzano, Italy (2010)

http://bluebrain.epfl.ch
http://en.wikiquote.org/wiki/George_E._P._Box
http://www.ibci.de
http://www.gnwi.de


428 References

[Cristianini 2000] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Ma-

chines and other kernel-based learning methods. Cambridge University Press, Cam-

bridge (2000)

[Cyc 2010] The Cyc project, Internet: http://www.cyc.com

[Dirac 1929] Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proceedings of

the Royal Society (London) A 123, 714–733 (1929)

[Dreyfus 1992] Dreyfus, H.L.: What Computers Still Can’t Do: A Critique of Artificial Rea-

son. MIT Press, Cambridge (1992)

[Dyson 2004] Attributed to John von Neumann by Enrico Fermi, quoted by: F. Dyson. A

meeting with Enrico Fermi, Nature 427, 297 (2004)

[Edwards 1976] Edwards, A.L.: An Introduction to Linear Regression and Correlation. W.H.

Freeman, San Francisco (1976)

[Edwards 1979] Edwards, A.L.: Multiple Regression and the Analysis of Variance and Co-

variance. W.H. Freeman, San Francisco (1979)

[Faces 2010] The face images are a courtesy of Rebecca Schulz. University of Applied Sci-

ences Gelsenkirchen, Germany

[Fan 2005] Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using the second order

information for training support vector machines. Journal of Machine Learning Re-

search 6, 1889–1918 (2005)

[FindMinimum/FindMaximum] The FindMinimum and FindMaximum commands of the

Mathematica system (Version 7) provide an unified access to different unconstrained

and constrained local optimization algorithms (FindMinimum for minimization,

FindMaximum for maximization: Both commands essentially use the same algo-

rithms since minimization of a function f means maximization of "− f or f−1").

Constraint optimization is chosen if a constraint is defined in the command signature

otherwise an unconstrained optimization is performed. The default unconstrained lo-

cal optimization algorithm used is the BFGS variant of the Quasi-Newton methods.

If the function to be optimized is detected to be a sum of squares the Levenberg-

Marquardt algorithm is used as a default. Other unconstrained local minimization

methods like Conjugate Gradient or Newton and their variants may be specified with

the method option (see [Press 2007] for algorithmic details). For constrained local op-

timization there is the Interior Point method used as a default (see [Mehrotra 1992]

and [Forsgren 2002] for algorithmic details)

[FitMlr] The CIP FitMlr method is build on top of Mathematica’s (Version 7) Fit command

which performs least squares fits with linear combinations of functions. See [Edwards

1976], [Edwards 1979], [Chatterjee 2000] and [Press 2007] for details

[FitPerceptron] As a default the CIP method FitPerceptron is build on top of Mathemat-

ica’s FindMinimum command for an unconstrained local minimization with the (the

Polak-Ribiere variant of the) Conjugate Gradient method (see [FindMinimum/Find-

Maximum]). Other optimization methods available through FitPerceptron are an evo-

lutionary algorithm based global minimization with NMinimize (which uses Differ-

ential Evolution, see [NMinimize/NMaximize]), a Backpropagation plus Momentum

local minimization or a Genetic Algorithm based global minimization (see [Freeman

1993]). The different minimization techniques may be selected with option Optimiza-

tionMethodOption. The option MultiplePerceptronsOption allows to fit a perceptron

for every single output component of a data set’s output (which is the default)

[FitSvm] The CIP methods FitSvm uses Mathematica’s NMaximize command with an

evolutionary algorithm based constrained global maximization method (Differential

Evolution, see [NMinimize/NMaximize]). The SVM code itself is based on the im-

plementation in [Paláncz 2005]



References 429

[Fisher 1936] Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. An-

nals of Eugenics 7, 179–188 (1936)

[FitModelFunction] The FitModelFunction method is build on top of the NonlinearModelFit

command of Mathematica (version 7) which uses the Levenberg-Marquardt method

for iterative unconstrained local minimization of χ2 (a1, ..,aL) since this quantity is a

sum of squares (compare chapter 2). See [Bevington 2002], [Brandt 2002] and [Press

2007] for algorithmic details

[Forsgren 2002] Forsgren, A., Gill, P.E., Wright, M.H.: Interior Methods for Nonlinear Op-

timization. SIAM Rev. 44(4), 525–597 (2002)

[Freeman 1993] Freeman, J.A.: Simulating Neural Networks with Mathematica. Addison-

Wesley Longman Publishing Co., Boston (1993)

[Frenkel 2002] Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algo-

rithms to Applications. Academic Press, San Diego (2002)

[Gaussian 2003] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,

Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Mil-

lam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scal-

mani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota,

K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai,

H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo,

J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C.,

Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg,

J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick,

D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul,

A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz,

P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y.,

Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong,

M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision B.05. Gaussian, Inc., Pitts-

burgh (2003)

[Gasteiger 2003] Gasteiger, J., Engels, T.: Chemoinformatics. Wiley-VCH, Weinheim

(2003)

[Glasmachers 2006] Glasmachers, T., Igel, C.: Maximum-Gain Working Set Selection for

SVMs. Journal of Machine Learning Research 7, 1437–1466 (2006)

[GetClusters] CIP GetClusters is build on top of Mathematica’s (Version 7) command Find-

Clusters with a method specification for partitioning around medoids (see [Kaufman

1990] for details). If the number of resulting clusters k is not defined in advance the

silhouette test is chosen to obtain the best k value (see [Rousseeuw 1987] and chapter

3)

[Grant 1998] This general inability of computational chemistry to quantitatively predict rate

constants for chemical reactions may be regarded as the single biggest unsolved prob-

lem in chemistry (from: Grant, G.H., Richards, W.G.: Computational Chemistry. Ox-

ford (1998)) - with severe impacts on modern systems biology in form of an overall

lack of kinetics data which are necessary for a realistic dynamical study and thus an

understanding of biological systems

[Gunn 1998] Gunn, S.R.: Support Vector Machines for Classification and Regression, Tech-

nical Report, University of Southampton, Faculty of Engineering, Science and Math-

ematics, School of Electronics and Computer Science, May 10 (1998)

[Hamilton 1964] Hamilton, W.C.: Statistics in the Physical Sciences. Ronald Press, New

York (1964)

[Hampel 1986] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statis-

tics: The Approach Based on Influence Functions. Wiley, New York (1986)



430 References

[Hawkins 2005] Hawkins, J., Blakeslee, S.: On Intelligence. Times Books/Henry Holt and

Company, New York (2005)

[Hertz 1991] Hertz, J.A., Krogh, A.S., Palmer, R.G.: Introduction To The Theory Of Neural

Computation. Addison-Wesley, Redwood City (1991)

[Hofstadter 1981] Hofstadter, D.R., Dennett, D.C.: The Mind’s I: Fantasies and Reflections

on Self and Soul. Basic Books, New York (1981)

[Intelligence 2010] Intelligence, from Wikipedia:

http://en.wikipedia.org/wiki/Intelligence

(found at June 2, 2010)

[Jensen 2007] Jensen, F.: Introduction to Computational Chemistry, 2nd edn. John Wiley &

Sons Ltd, Chichester (2007)

[Joachims 1999] Joachims, T.: Making large-Scale SVM Learning Practical. In: Joachims,

T., Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods -

Support Vector Learning, ch. 1. MIT Press, Cambridge (1999)

[Juillé 1996] Juillé, H., Pollack, J.B.: Co-evolving Intertwined Spirals. In: Proceedings of

the Fifth Annual Conference on Evolutionary Programming, February 29 - March 2,

pp. 461–468. MIT Press, San Diego (1996)

[Kaku 1998] Kaku, M.: Visions: How Science Will Revolutionize the 21st Century. Anchor

Books, New York (1998)

[Kaufman 1990] Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to

Cluster Analysis. John Wiley & Sons, New York (1990)

[Keerthi 2002] Keerthi, S.S., Gilbert, E.G.: Convergence of a Generalized SMO Algorithm

for SVM Classifier Design. Machine Learning 46, 351–360 (2002)

[Koch 2003] The adhesive kinetics data were provided in 2003. They are a courtesy of Prof.

Dr. Klaus-Uwe Koch, University of Applied Sciences Gelsenkirchen, Germany. The

data were measured in his polymer laboratory; See also: Koch, K.-U., Zielesny,

A.: Neuronale Netze verkuerzen die Klebstoffentwicklung. Adhaesion 1-2, 32–37

(2004)

[Koch 2004] Koch, C.: The Quest for Consciousness - A Neurobiological Approach. Roberts

& Company Publishers, Englewood (2004)

[Kurzweil 2005] Kurzweil, R.: The Singularity Is Near: When Humans Transcend Biology.

Viking Penguin, New York (2005)

[Leach 2001] Leach, A.R.: Molecular Modelling: Principles and Applications. Prentice-

Hall, Harlow (2001)

[Leach 2007] Leach, A.R., Gillet, V.J.: An Introduction to Chemoinformatics. Springer, Dor-

drecht (2007)

[MacQueen 1967] MacQueen, J.B.: Some Methods for Classification and Analysis of Mul-

tivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical

Statistics and Probability, pp. 281–297. University of California Press (1967)

[Mathematica] Wolfram Mathematica, Version 7. Mathematica is a registered trademark of

Wolfram Research, Inc., Internet: http://www.wolfram.com

[Mehrotra 1992] Mehrotra, S.: On the Implementation of a Primal-Dual Interior Point

Method. SIAM J. Optimization 2, 575–601 (1992)

[Meyer 2010] The acetanhydride hydrolysis IR spectra were provided in 2010. They are a

courtesy of Prof. Dr. Gerhard Meyer, University of Applied Sciences Gelsenkirchen,

Germany. The data were measured in his analytical laboratory

[Mitchell 2009] Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, New

York (2009)

http://en.wikipedia.org/wiki/Intelligence
http://www.wolfram.com


References 431

[NMinimize/NMaximize] The NMinimize and NMaximize commands of the Mathematica

system (Version 7) provide access to the Differential Evolution method for con-

strained global optimization via their method option (for algorithmic details about

Differential Evolution see [Price 1997], [Storn 1997], [Price 1999] and [Price 2005]).

A local refinement of the constrained global optimization result with the Interior

Point method (see [Mehrotra 1992] and [Forsgren 2002]) is performed by default as

a post process

[Nobel Prize 1998] Royal Swedish Academy of Sciences, Additional background material

on the Nobel Prize in Chemistry (1998), from

http://nobelprize.org/nobel_prizes/chemistry/

laureates/1998/chemback98.pdf

(found at May 26, 2010)

[Paláncz 2004] Paláncz, B., Völgyesi, L.: Support Vector Classifier via Mathematica. Peri-

odica Polytechnica Civ. Eng. 48(1-2), 15–37 (2004)

[Paláncz 2005] Paláncz, B., Völgyesi, L., Popper, G.: Support Vector Regression via Math-

ematica. Periodica Polytechnica Civ. Eng. 49(1), 59–84 (2005)

[Pascal] Quotation (Preface) from Pascal’s Pensees. Introduction by T. S. Eliot. E. P. Dutton

& Co., Inc., New York (1958)

[Penrose 1991] Penrose, R.: The Emperor’s new Mind. Penguin Books, New York (1991)

[Penrose 1994] Penrose, R.: Shadows of the Mind: A Search for the Missing Science of

Consciousness. Oxford University Press, Oxford (1994)

[Platt 1999] Platt, J.: Fast training of support vector machines using sequential minimal op-

timization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel

Methods - Support Vector Learning. MIT Press, Cambridge (1999)

[Press 2007] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical

Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press,

Cambridge (2007)

[Price 1997] Price, K., Storn, R.: Differential Evolution: Numerical Optimization Made

Easy. Dr. Dobb’s J. 264, 18–24 (1997)

[Price 1999] Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo,

M., Glover, F. (eds.) New Ideas in Optimization, pp. 77–106. McGraw-Hill, London

(1999)

[Price 2005] Price, K., Storn, K.R., Lampinen, J.: Differential Evolution - A Practical Ap-

proach to Global Optimization. Springer, Berlin (2005)

[Reinsch 1967] Reinsch, C.H.: Smoothing by Spline Functions. Numer. Math. 10, 177–183

(1967)

[Reinsch 1971] Reinsch, C.H.: Smoothing by Spline Functions II. Numer. Math. 16, 451–

454 (1971)

[Rojas 1996] Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Berlin (1996)

[Rousseeuw 1987] Rousseeuw, P.J.: Silhouettes: A Graphical Aid to the Interpretation and

Validation of Cluster Analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

[Rousseeuw 2003] Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection.

lncs, vol. 15. Wiley, Hoboken (2003)

[Schank 1977] Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding. An

Inquiry into Human Knowledge Structures, New York (1977)

[Schneider 2008] Schneider, G., Baringhaus, K.-H.: Molecular Design: Concepts and Appli-

cations. Wiley-VCH, Weinheim (2008)

[Schölkopf 1998] Schölkopf, B., Smola, A.J.: A Tutorial on Support Vector Regression,

NeuroCOLT2 Technical Report Series, NC2-TR-1998-030 (1998)

http://nobelprize.org/nobel_prizes/chemistry/laureates/1998/chemback98.pdf
http://nobelprize.org/nobel_prizes/chemistry/laureates/1998/chemback98.pdf


432 References

[Schölkopf 1999] Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in Kernel

Methods - Support Vector Learning. MIT Press, Cambridge (1999)

[Schölkopf 2002] Schölkopf, B., Smola, A.: MA 2002. MIT Press, Cambridge (2002)

[Storn 1997] Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Adaptive

Scheme for Global Optimization over Continuous Spaces. J. Global Optimization 11,

341–359 (1997)

[Turing 1950] Turing, A.: Computing Machinery and Intelligence. Mind 59(236), 433–460

(1950)

[Vapnik 1995] Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York

(1995)

[Vapnik 1998] Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

[Vogel 1921] Vogel, H.: Das Temperaturabhängigkeitsgesetz der Viskosität von Flüs-

sigkeiten. Physikalische Zeitschrift 22, 645 (1921)

[WDBC data] Wisconsin Diagnostic Breast Cancer (WDBC) data set. Taken at 2011/01/30

from the UCI (University of California at Irvine) machine learning repos-

itory at http://archive.ics.uci.edu/ml, Repository citation: Frank,

A., Asuncion, A.: UCI Machine Learning Repository. University of Cali-

fornia, School of Information and Computer Science, Irvine, CA (2010),

http://archive.ics.uci.edu/ml ; First citation in medical literature: Wol-

berg, W.H., Street, W.N., Mangasarian, O.L.: Machine learning techniques to diag-

nose breast cancer from fine-needle aspirates. Cancer Letters 77, 163–171 (2010)

[Weast 1975] Weast, R.C. (ed.): Handbook of Physics and Chemistry, 56th edn. CRC Press,

Boca Raton (1975)

[Weizenbaum 1966] Weizenbaum, J.: ELIZA - A Computer Program for the Study of Nat-

ural Language Communication between Man and Machine. Communications of the

ACM 9(1), 36–45 (1966)

[Wienke 1994] Wienke, D., Xie, Y., Hopke, P.K.: An adaptive resonance theory based arti-

ficial neural network (ART -2a) for rapid identification of airborne particle shapes

from their scanning electron microscopy images. Chemometrics and Intelligent Lab-

oratory Systems 25, 367–387 (1994)

[Zupan 1999] Zupan, J., Gasteiger, J.: Neural Networks in Chemistry and Drug Design.

Wiley-VCH, Weinheim (1999)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Index

AbsoluteResidualsPlot 70, 71,

73-78, 93, 95, 96, 98, 100,

103, 129, 131, 132, 134,

136-139, 142-144

AbsoluteResidualsStatistics

142-144, 247

AbsoluteSortedResidualsPlot

224, 226, 232, 248, 307, 318

AbsoluteTiming 384, 386, 388,

390

AddErrorToXYData 128, 130, 416

AllClusterMax 311

AllClusterMean 312

AppendTo 20, 232, 240, 306,

384, 386, 388, 390, 393, 396,

400, 401, 418

Arrowheads 18, 22, 23, 26,

32-35

BumpFunction 229, 230, 239

CalculateClusterClassNumber 216

CalculateDerivativeValue 146,

418

CalculateFunctionValue 79, 80,

140, 145, 146, 417, 418

CalculateMlr3dValue 249, 252,

255, 256, 271, 322

CalculateMlrDataSetRmse 384

CalculatePerceptron2dValue 232,

240, 338, 401, 402

CalculatePerceptron3dValue 259,

262, 297, 301, 303, 332, 395,

398

CalculatePerceptronDataSetRmse

388, 390

CalculateSvm3dValue 223, 226,

258, 262, 266, 272, 278, 297,

302, 304, 323, 326, 328, 330,

395, 398

CalculateSvmDataSetRmse 386

CalculatedDataOptionDistance

111, 113, 117, 122

CalculatedDataOptionErrorType

62, 111, 113, 117, 122, 125

Clear 6, 9, 13, 15, 19, 30, 37,

39, 40, 42, 44, 46, 49, 51,

53, 62, 68, 81, 85, 89, 99,

104-106, 110, 124, 127, 135,

149, 155, 170, 177, 186, 198,

201, 212, 221, 228, 236, 241,

245, 250, 253, 263, 267, 280,

285, 296, 304, 320, 332, 339,

356, 362, 381, 391, 411

ClusterOptionMethod 202, 204,

207, 211, 218, 365, 366

ClusterOptionNumberOfIntervals

157, 178, 183, 189

ClusterOptionVigilanceParameter

365

ClusterStatistics 159, 162,

166, 171, 174, 191, 193, 196,

199, 341

ConjugateGradient 84

ConvertImageDataSet 340,

343-347, 350, 352, 354, 425

CorrectClassification 217, 218,

251, 264, 265, 270-272, 274,

275, 277, 285, 287, 289, 292,

293, 334, 337, 342-348, 350,



434 Index

352, 354, 363, 367, 370, 371,

373, 375, 379, 380

CorrectClassificationPerClass

217-219, 251, 270, 285, 288,

289, 293, 347, 354, 363, 367,

370, 371, 373, 375, 379, 380

CorrelationCoefficient 66, 70,

71, 73-78, 136-139, 142-144,

247, 254, 256, 257, 259-261

CurveFitOptionConfidenceLevel

106, 112, 113, 115-117, 119,

120, 122

CurveFitOptionLabels 54, 63,

69, 71, 72, 74-76, 129, 131,

132, 134, 142-144, 384, 386,

388, 390, 417

CurveFitOptionMaximumIterations

91-94, 96

CurveFitOptionMethod 84

CurveFitOptionNumberOfTrialPoints

86, 87

CurveFitOptionSearchType 86, 87

CurveFitOptionStartParameters

72, 74-78, 83, 84, 86-88,

91-93, 95, 96, 98, 103-110,

112, 113, 115-117, 119, 120,

122, 129, 132, 134

CurveFitOptionVarianceEstimator

105, 106, 125, 126, 129, 131,

132, 134

DifferentialEvolution 28-30, 36

Epilog 418

EuclideanDistance 158, 162

EuclideanDistanceDiagram 159,

162, 166, 171, 174, 191, 193,

196, 199, 341

FindMaximum 23, 27, 391, 393,

395, 396, 398-401, 403

FindMinimum 17, 18, 32-35, 146

FindRoot 418

FitCluster 216-218, 270, 285,

363, 365

FitCubicSplines 136-139, 144,

416

FitMlr 246, 251, 254, 256, 264,

271, 274, 321, 342, 344, 346,

348, 350, 352, 354, 367, 370,

384

FitModelFunction 54, 63, 69,

71, 72, 74-78, 82-84, 86-88,

91-93, 95, 96, 98, 100,

103-109, 112, 113, 115-117,

119, 120, 122, 125, 126, 128,

129, 131, 132, 134, 142, 143

FitPerceptron 232, 240, 259,

261, 296, 337, 338, 371, 375,

388, 390, 395, 398, 401, 402

FitPerceptronSeries 331, 357,

359

FitSvm 223, 226, 257, 260, 264,

272, 296, 307, 310, 380, 386,

395, 398

FitSvmSeries 275, 277, 282,

283, 322, 324, 327, 329, 376

FunctionPlot 54, 63, 69, 71,

72, 74-76, 82, 83, 86-88,

91-93, 95, 96, 98, 100, 103,

112, 113, 115-117, 119, 120,

122, 125, 126, 129, 131, 132,

134, 136-139, 142-144, 417

Gaussian 156, 327

GaussianRBF 327

GetAcetanhydrideHydrolysisIRSpectra

413

GetAcetanhydrideKineticsData1

128, 415

GetAcetanhydrideKineticsData2

130, 419

GetAdhesiveKineticsDataSet 46,

254, 296, 421

GetBestPerceptronClassOptimization

292, 334, 373

GetBestSvmClassOptimization 378

GetBestSvmRegressOptimization

317

GetClusterBasedTrainingAndTestSet

276, 283, 310, 369, 376

GetClusterOccupancies 192, 194,

197, 200, 205, 208, 209, 211,

215, 341

GetClusterProperty 150, 181,

185, 215, 216

GetClusterRepresentatives 180,

184

GetClusters 150, 159, 162, 166,

191, 204, 209, 211, 365



Index 435

GetDefinedGaussianCloud 149,

156, 158, 162, 166, 170, 182,

198, 213, 267, 268, 280

GetFacesBlackImageDataSet 344,

424

GetFacesGrayImageDataSet 342,

424

GetFacesWhiteImageDataSet 339,

423

GetFixedNumberOfClusters 171,

174, 181, 185, 193, 196, 199,

202, 207, 215, 270, 341, 366

GetGaussianCloudsDataSet 214,

250, 269, 281

GetHydrogenFluoridePESXyErrorData

141, 412

GetIndexListOfCluster 191

GetInputsForSpecifiedClass 264,

265, 422, 423

GetInputsOfCluster 150, 159,

163, 167, 172, 175, 181, 185,

203, 215, 271

GetInputsOfDataSet 45, 215,

250, 270, 274, 276, 281, 283,

340, 342-346, 349-351, 353,

354, 365, 421, 423-425

GetIrisFlowerClassificationDataSet

217, 285, 333, 420

GetIrisFlowerInputs 47, 420

GetIrisFlowerInputsSpecies1

186, 203, 420

GetIrisFlowerInputsSpecies2

186, 203, 420

GetIrisFlowerInputsSpecies3

186, 203, 420

GetKernelFunction 275, 277,

323, 325, 327, 329

GetMlrInputRelevanceClass 352

GetNumberOfData 110, 122

GetNumberOfHiddenNeurons 331,

358

GetOutputsOfDataSet 45

GetPerceptronInputRelevanceClass

335, 375

GetPerceptronSeriesRmse 331,

357, 359

GetPerceptronTrainOptimization

291, 333, 372

GetRandomGaussianCloudsInputs

209

GetRandomRepresentatives 179,

184

GetRandomTrainingAndTestSet

273, 281

GetSilhouettePlotPoints 160,

164, 168

GetSilhouetteStatistics 210,

211

GetSilhouetteStatisticsForClusters

161, 164, 168, 172, 175, 192,

195, 206, 210

GetSpecificClassDataSubSet 335,

336

GetSpiralsClassificationDataSet

263, 265, 422

GetStartParameters 86-88,

91-94, 96, 98, 103

GetSvmSeriesClassificationResult

275, 277, 282, 283, 376

GetSvmSeriesRmse 322, 324, 327,

329

GetSvmTrainOptimization 311-

316, 377

GetVigilanceParameterScan 204,

212, 365, 366

GetWDBCClassificationDataSet

363, 426

GetWaterViscosityXyErrorData

68, 104, 106, 411

GetWhiteSpots 200, 201

GetXyErrorData 53, 62, 82, 86,

90, 93, 96, 100, 102, 107,

108, 111, 113, 117, 122, 125,

135, 230, 239, 399

Graphics3D 22, 23, 26, 32-35

GraphicsGrid 340, 342-346,

349-351, 353, 354, 423, 424

GraphicsOptionArgument1Range3D

20, 22-27, 32-35

GraphicsOptionArgument2Range3D

20, 22-27, 32-35

GraphicsOptionArgumentRange2D

11, 14, 17, 18, 29, 31, 178,

180-182, 184, 185, 187, 189,

198, 201, 203, 336

GraphicsOptionFunctionValueRange2D

11, 14, 17, 18, 29, 31, 178,



436 Index

180-182, 184, 185, 187, 189,

198, 201, 203, 336, 385, 388,

389, 391, 399-402

GraphicsOptionLinePlotStyle 338

GraphicsOptionPointSize 62-64,

66, 108, 117, 119, 120, 122,

230, 232, 240, 246-249, 413,

414

GraphicsOptionRegionFunction

34, 35

GraphicsOptionViewPoint3D 20,

22-27, 241, 305, 306, 310,

317, 393-397, 399, 421

Infinity 21, 25

InputComponents 46, 47, 333,

363, 426

InputVectors 47

IoPairs 46, 296, 363, 426

KernelGaussianRbf 327

KernelUniversalFourier 329

KernelWavelet 241, 242, 325

LogLargeToSmall 111

MlrOptionDataTransformationMode

256

ModelVsDataPlot 66, 224, 226,

247, 254, 256, 257, 259-261,

307, 318

NMaximize 28

NMinimize 29, 30, 36

NumberOfClusters 159, 162, 166,

171, 174, 181, 185, 191, 193,

196, 199, 202, 204, 207, 209,

211, 365

NumberOfIntervalsOption 118,

120, 121, 123

Opacity 22, 26, 32, 266, 336

OptionValue 358

OutputComponents 46, 363, 426

ParameterErrors 65, 104-109,

112, 113, 115-117, 119, 120,

122, 125, 126, 129, 131, 132,

134

PerceptronOptionMaximumIterations

358, 359, 390

Plot2dFunction 10, 12, 37-39,

145, 242, 243, 325, 328, 330,

338, 417

Plot2dPointsAboveFunction 11,

14, 17, 18, 29, 31

Plot3dDataSet 222, 246, 305,

306, 310, 317, 421

Plot3dDataSetWithFunction 222,

223, 226, 249, 252, 255, 256,

258, 259, 262, 266, 271, 272,

278, 297, 301-304, 321, 357,

383, 393-399

Plot3dFunction 7, 8, 31, 41,

42, 225, 241, 322, 323, 326,

328, 330, 332

Plot3dPointsWithFunction 20,

22-27, 32-35

PlotXyErrorData 53, 62, 69,

128, 130, 133, 141, 411, 412

PlotXyErrorDataAboveFunction

82, 90, 93, 96, 100, 102,

107-109, 135, 399-402

PlotXyErrorDataAboveFunctions

79, 230, 232, 240

PostProcess 28-30, 36

RBF 327

RGBColor 29, 31, 79, 418

RMSE 66, 224, 226, 232, 247,

296, 301-303, 307, 310, 317,

318, 385

RandomReal 25, 178, 201

RationalInterpolation 140

ReducedChiSquare 65, 79, 104-

109, 112, 113, 115-117, 119,

120, 122, 125, 126, 128,

136-139, 142-144

RelativeResidualsPlot 64, 112,

113, 115-117, 119, 120, 122

RelativeResidualsStatistics 66,

67, 118, 120, 121, 123, 247,

254, 256, 257, 259-261

RelativeSortedResidualsPlot

248, 260, 261

RemoveInputComponentsOfDataSet

337

SDFit 65, 78, 96, 98, 112, 113,

115-117, 119, 120, 122, 125,

126

ScaleSizeOfImageDataSet 349-

351, 353, 354

ScanClassTrainingWithMlr 286,

295, 368

ScanClassTrainingWithPerceptron

287, 292



Index 437

ScanClassTrainingWithSvm 284

ScanRegressTrainingWithPerceptron

298, 299

ScanRegressTrainingWithSvm 299,

300

ScientificForm 279, 294

SeedRandom 25, 178, 201

ShowBestExponent 384, 386, 388,

390

ShowClusterOccupancies 192,

194, 197, 200, 205, 208, 209,

211, 215, 341

ShowClusterResult 159, 162,

166, 171, 174, 191, 193, 196,

199, 202, 204, 207, 209, 211,

341, 365

ShowClusterSingleClassification

217-219, 270, 285, 363

ShowComponentStatistics 157,

178, 183, 187, 189

ShowDataSetInfo 46, 296, 333,

363, 369, 373, 378, 426

ShowFitResult 54, 63-67, 69-79,

82, 83, 85-88, 91-93, 95, 96,

98, 100, 103-109, 112, 113,

115-123, 125, 126, 129, 131,

132, 134, 136-139, 142-144,

417

ShowInputsInfo 47

ShowMlrClassificationResult

274, 350, 352, 354, 370

ShowMlrClassificationScan 286,

295, 368

ShowMlrInputRelevanceClass 352

ShowMlrSingleClassification

251, 264, 271, 342-348, 367

ShowMlrSingleRegression 247,

248, 254, 256

ShowPerceptronClassificationResult

287-289, 292, 293, 334, 337,

371, 373

ShowPerceptronClassificationScan

287, 292

ShowPerceptronInputRelevanceClass

335, 375

ShowPerceptronRegressionScan

298, 299

ShowPerceptronSeriesRmse 331,

357, 359

ShowPerceptronSingleClassification

375

ShowPerceptronSingleRegression

232, 259, 261, 296, 301, 303

ShowPerceptronTrainOptimization

291, 333, 372

ShowSilhouettePlot 160, 164,

168

ShowSilhouetteWidthsForCluster

161, 164, 165, 168, 169, 172,

173, 175-177, 192, 193, 195,

196, 206, 207, 210

ShowSvmClassificationResult

275, 277, 379

ShowSvmClassificationScan 284

ShowSvmRegressionResult 307,

310, 317, 318

ShowSvmRegressionScan 299, 300

ShowSvmSeriesClassificationResult

275, 277, 282, 283, 376

ShowSvmSeriesRmse 322, 324,

327, 329

ShowSvmSingleClassification

264, 265, 272, 380

ShowSvmSingleRegression 224,

226, 257, 260, 296, 302, 303

ShowSvmTrainOptimization 311-

316, 377

ShowVigilanceParameterScan 204,

212, 365, 366

SigmoidFunction 229

SingleGlobalMax 315, 316

SingleGlobalMean 312-314

Solve 10, 13

SortClassificationDataSet 50,

214, 341

SortedModelVsDataPlot 67, 247

StringJoin 413, 414, 416, 417

ToString 413, 414, 416, 417

TransformDataSetToMultipleDataSet

252, 266, 269, 273, 276, 337

TransformXyErrorDataToDataSet

232, 239, 401, 402

UniversalFourier 329

UtilityOptionBlackListLength

291, 292, 295, 299, 300,

313-316, 333, 372, 377

UtilityOptionDeviationCalculation

311-316



438 Index

UtilityOptionOptimizationSteps

292, 295, 299, 300

WrongClassificationDistribution

363, 367

WrongClassifictionPairs 288,

293

ab-initio 3–5, 68, 141, 412

AbsoluteTiming 384

absorption 129, 131, 413, 415, 416,
418, 419

peak 413, 419

accuracy 3, 91, 153, 186, 238, 359

and speed 91, 359

acetanhydride 128, 129, 413, 415, 419

activation function 236

Adaptive Resonance Theory 201, 410

ART-2a 152, 201–203, 206, 208,
211, 212, 218–220, 365–367, 410

adhesive 46, 228, 253–255, 257, 260,
263, 296, 304, 420, 421

kinetics 46, 228, 253–255, 257, 260,
263, 296, 304, 420, 421

polymer mixture 253, 420

algebra 236

linear algebra 236

algorithm VII, VIII, 1, 14–16, 22, 28,
34, 44, 47, 51, 81, 84, 88, 90, 101,
104, 147, 151, 154, 234, 238, 279,
365, 366, 383, 406, 407, 410, 411

clustering algorithm 151, 365

evolutionary algorithm VII, 28, 36,
88, 90, 279

genetic algorithm 410

iterative algorithm 15

iterative numerical algorithm 234

minimization algorithm 34, 84, 88,
147, 410

optimization algorithm 410, 411

search algorithm 14, 15

alignment 407

sequence alignment 407

AllClusterMax 311

AllClusterMean 311

amino acid 406, 407

analysis

data analysis VII, 2, 40, 42, 43, 47,
48, 51, 54, 56, 95, 99, 124, 126,

127, 146, 219, 220, 319, 360, 403,
408, 410

spectral analysis 355
statistical analysis 1

analytical method 9
Angstrom 145, 412
approach

iterative search-based approach 13
search-based approach 13

approximant 267
approximation 2–4, 19, 140, 141, 158,

226, 233, 325, 332, 395, 396, 405,
420

function approximation 233
universal function approximation

233
architecture 295, 405

parallel architecture 295
ART-2a 152, 201–203, 206, 208, 211,

212, 218–220, 365–367, 410
aspirate 426

fine needle aspirate 426
aspiration 426
assessment 1, 45, 48, 93, 147, 162,

168, 228, 232, 253, 296, 304
statistical assessment 48

association 43
associative 407
atom 4, 5

background parameter 129, 132, 134
Backpropagation 410

Error Backpropagation 410
base pair 406, 407
baseline 415, 416, 418–420
basis

statistical basis 48, 227
behavior

scaling behavior 383, 385, 387,
390, 391

bell curve 68, 118
bell-shaped 158
benchmark 222, 383
benign 362–364, 368, 426
benign tumor 363, 364, 426
benzene 406, 407
bias

regression bias 243
binary tree 382, 383, 406



Index 439

bioinformatics 5, 43, 360
structural bioinformatics 5

biological
effect 3, 5
evolution 28, 406
function 407
sequence 406, 407
sequence alignment 407
structure 404
system 2, 404
tissue 339

biologically active 392
biologist 3, 333
biology 392, 407

molecular biology 407
biophysics 4
biopsy 426

fine needle aspiration biopsy 426
BioTech 6

data explosion 6
blacklist 291, 313, 314, 316, 317

length 291, 313, 314, 316
blacklisting 299, 313, 315, 372
BLAST 407
Blue Brain Project 404
bond 68

hydrogen bond 68
bonding 3

chemical bonding 3
brain 4, 244, 404, 405

human brain 4, 244, 404
breast 362–364, 426

cancer 362, 426
mass 426
WDBC 362, 363, 365, 371, 374,

380, 426
Wisconsin Diagnostic Breast Cancer

362, 363, 365, 371, 374, 380, 426
brute-force 95
bump 229, 231, 233, 234, 237–240,

242, 258, 273, 325, 331, 358, 371,
376

character 242
byte 404

CalculatedData package 51, 62, 111,
156, 230, 246, 410

calculation
computational calculation 404

single point calculation 141
speed 13

calculus 9
calibration 48
cancer 362, 426

breast 362, 426
WDBC 362, 363, 365, 371, 374,

380, 426
Wisconsin Diagnostic Breast Cancer

362, 363, 365, 371, 374, 380, 426
cat 320, 332, 339, 340, 342, 348, 355,

361, 423
cell 2, 362, 363, 376, 380, 404, 426

nucleus 362, 363, 376, 380, 426
central limit theorem 55
centroid 150–154, 156, 159, 180, 215,

216, 219
charge

surface charge 5
cheating

educated cheating 56, 64, 110, 114,
123, 134, 147, 320, 362

chemical
bonding 3
compound 6, 406
concentration 415
diversity 5, 6
ensemble 4
first-order kinetics 39
group 407
kinetics 5
reaction 2, 5, 128
spectrum 48
structure 5, 406, 407
substructure 406
synthesis 406

chemist 3
chemistry 4, 6, 392, 404, 412

combinatorial chemistry 6
physical chemistry 4

chemoinformatics 5, 43
CIP VII, VIII, 1, 6, 7, 10, 46, 47, 51,

62, 63, 68, 81, 82, 85, 90, 109, 111,
121, 128, 141, 152, 154–157, 159,
178, 179, 186, 191, 201, 203, 208,
209, 230, 231, 234, 235, 238, 241,
244, 246, 254, 255, 263, 290, 315,
339, 358, 363, 368, 384, 387, 389,
409–411, 415, 419, 425



440 Index

CalculatedData package 51, 62,
111, 156, 230, 246, 410

Cluster package 157, 159, 178, 179,
363, 410

CurveFit package 51, 63, 85, 90,
109, 121, 409, 410

DataTransformation package 231,
410, 411, 425

ExperimentalData package 46, 51,
68, 128, 141, 186, 254, 263, 339,
363, 410, 411, 415, 419

Graphics package 6, 46, 51, 410

MLR package 410

Perceptron package 51, 410
SVM package 411

user forum VIII

Utility package 409, 410

class 1, 49, 50, 151, 152, 155, 186,
209, 211–220, 251, 252, 264,
266–273, 278, 280, 285, 286,
288–290, 292, 293, 295, 335, 337,
338, 340, 341, 362–364, 367–370,
372–375, 379, 380, 422, 423, 426

predictor 152, 212, 213, 216, 217,
219, 220, 251, 270, 285, 286, 289,
290, 362, 363, 367, 374, 375, 379,
380

classification VIII, 1, 49, 50, 151,
214, 217–220, 227, 228, 234,
235, 245, 250, 251, 253, 263–269,
271–276, 278, 279, 281, 285, 286,
289, 333–335, 339, 340, 342–345,
352, 363, 365, 367, 368, 370–373,
376, 380, 420, 422, 423, 425, 426

data set 49, 50, 214, 219, 220,
263–266, 269, 281, 339, 340,
342–345, 363, 365, 367, 368, 370,
373, 380, 420, 422, 423, 425, 426

goodness of classification 250

supervised classification 228
task VIII, 1, 49, 50, 151, 217, 219,

220, 227, 228, 234, 235, 251, 263,
269, 271–273, 276, 285, 335, 371,
376

cloud 150, 151, 156, 158, 159, 162,
165, 170, 208, 209, 213, 214, 250,
253, 267–269, 281, 363, 364

Gaussian cloud 156, 158, 162, 165,
208, 267

cluster 51, 150–155, 157, 159–165,
167, 168, 170–175, 177–181, 183,
186, 191–212, 215, 216, 219, 220,
270, 276, 279, 280, 282, 283, 290,
294, 299, 311, 312, 315, 341, 342,
363–366, 409–411

occupancy 152, 186, 192, 194, 198,
205, 209, 219

representative 152, 182, 220, 276,
279, 280, 283, 290, 368

selection 180, 182, 184, 186
clusterInfo 51, 216, 409

clustering VII, VIII, 1, 5, 44, 46, 47,
149–156, 158–160, 162, 164–166,
168, 170, 177, 178, 180, 186,
190, 195, 197, 201, 203, 208, 212,
218–220, 227, 341, 342, 348, 365,
382, 392, 410, 425

algorithm 151, 365

method VIII, 5, 149–152, 155, 156,
190, 203, 218–220

technique 151, 201, 220
unsupervised clustering VIII, 227

clustering-based
class predictor 217, 219, 220, 251,

270, 285, 286, 289, 290, 363, 367
representative 368

Cluster package 157, 159, 178, 179,
363, 410

coefficient 66, 70, 79, 136, 138, 139,
145, 231, 244, 248, 254, 256, 258,
262, 263, 407

correlation coefficient 66, 70, 79,
136, 138, 139, 145, 248, 254, 256,
258, 262, 263

Tanimoto coefficient 407
color 264, 267, 280, 337, 339, 355

standardization 355
combination 5, 16, 56, 77, 79, 80,

101, 127, 231, 233, 279, 294, 316,
361, 408

method 16

combinatorial 6
chemistry 6

compactness 426



Index 441

complexity 4, 5, 240, 404, 407
structural complexity 240

component
input component 228, 235, 236,

332–334, 337, 339, 352, 355, 363,
375, 376, 421, 426

output component 45, 49, 66, 235,
237, 241, 255, 269, 295, 337, 363,
421, 426

composition
material’s composition 3, 5

compound
chemical compound 6, 406

computation 4, 244, 295, 359, 381
computational

calculation 404
CIP VII, VIII, 1, 6, 7, 10, 46, 47,

51, 62, 63, 68, 81, 82, 85, 90, 109,
111, 121, 128, 141, 152, 154–157,
159, 178, 179, 186, 191, 201, 203,
208, 209, 230, 231, 234, 235, 238,
241, 244, 246, 254, 255, 263, 290,
315, 339, 358, 363, 368, 384, 387,
389, 409–411, 415, 419, 425

Computational Intelligence Packages
VII, VIII, 1, 6, 7, 10, 46, 47, 51,
62, 63, 68, 81, 82, 85, 90, 109, 111,
121, 128, 141, 152, 154–157, 159,
178, 179, 186, 191, 201, 203, 208,
209, 230, 231, 234, 235, 238, 241,
244, 246, 254, 255, 263, 290, 315,
339, 358, 363, 368, 384, 387, 389,
409–411, 415, 419, 425

cost 16, 153
device 403–405
effort 245, 339, 355, 361
formula 237
intelligence VII, VIII, 1, 51, 245,

362, 381, 403, 405–407, 409
Intelligence Packages (CIP) VII, 1,

51, 409
memory VII, 404
method 4, 365, 367, 383, 406, 407
power 42, 141, 408
resource 320, 361, 382
speed 4, 409
task 381
time consumption 382
time period 383

universality 233, 235, 238, 245
Computational Intelligence Packages

VII, VIII, 1, 6, 7, 10, 46, 47, 51,
62, 63, 68, 81, 82, 85, 90, 109, 111,
121, 128, 141, 152, 154–157, 159,
178, 179, 186, 191, 201, 203, 208,
209, 230, 231, 234, 235, 238, 241,
244, 246, 254, 255, 263, 290, 315,
339, 358, 363, 368, 384, 387, 389,
409–411, 415, 419, 425

computationally 28, 141, 233, 235,
241, 245, 260, 279, 319, 406, 407

intelligent 406, 407
universal 233, 235, 245

computer VII, VIII, 4, 13, 44, 47, 81,
235, 244, 245, 295, 381–383, 385,
403–405

digital computer VII, 4, 13, 404
computing VII, 7, 47, 295, 361, 367,

409
numerical computing 367

concave 426
point 426

concavity 426
concentration

chemical concentration 415
condition

Mercer’s condition 241
confidence

level 56, 105–107, 109, 112, 147
region 65, 105–110, 112–114, 118,

121
Conjugate-Gradient 16, 84, 410
constant

rate constant 5
constrained

global minimum 30, 36
global optimum 31
global search 36
iterative optimization 30
local minimization 34
objective function 244
optimization 30, 411

constraint 30, 34–36, 61
consumption

memory consumption 2, 383, 391,
409, 410

contrast 1, 11, 46, 47, 55, 130, 219,
227, 348, 355



442 Index

enhancement 355

convergence 16, 17, 22, 411

conversion 231

cookbook recipe 56, 146, 152, 220,
228, 360

corrected error 60, 106

correction

error correction 105

correlation coefficient 66, 70, 79, 136,
138, 139, 145, 248, 254, 256, 258,
262, 263

cost

computational cost 16, 153

cost function 238, 244

creativity 408

critical 5, 109–111, 113, 114, 116,
118, 124, 203

exponent 5, 111, 113, 114, 116, 118

phenomena 110, 124

cross-validation 320

crossover 28

cubic spline VIII, 56, 61, 135, 138,
140, 144, 410, 416–418

smoothing cubic spline 56, 61, 138,
410, 417, 418

curvature 14–16, 61, 135, 138, 401,
402

curve

bell curve 68, 118

curveFitInfo 51, 63, 409

CurveFitOptionConfidenceLevel 106

CurveFitOptionStartParameters 86

CurveFitOptionVarianceEstimator
105

CurveFit package 51, 63, 85, 90, 109,
121, 409, 410

curve fitting VII, VIII, 1, 3–7, 36, 38,
40, 44, 47, 48, 53, 54, 56–58, 62,
63, 66, 80, 81, 84, 89, 90, 92, 99,
104, 105, 124, 126, 146, 147, 223,
235, 245, 360, 381, 382, 391, 408,
410, 416

linear curve fitting 80, 81

non-linear curve fitting VII, 58, 80,
81, 84, 126, 147

cybernetic 404

organism 404

cyborg 404

data

analysis VII, 2, 40, 42, 43, 47, 48,
51, 54, 56, 95, 99, 124, 126, 127,
146, 219, 220, 319, 360, 403, 408,
410

BioTech data explosion 6

classification data set 49, 50, 214,
219, 220, 263–266, 269, 281, 339,
340, 342–345, 363, 365, 367, 368,
370, 373, 380, 420, 422, 423, 425,
426

experimental data VII, VIII, 1–4,
6, 38, 41, 43, 47, 48, 56, 68, 89,
106, 109, 110, 113, 121, 124, 253,
408, 411

generation 62, 65, 68, 92, 140, 223,
225, 323

I/O data 221, 222

plot 69, 147

preprocessing VIII, 47, 48, 360

scaling of data 1, 47

set 44–46, 48–50, 214, 217, 219,
220, 225, 228, 231, 235–239, 241,
243–245, 251, 253, 254, 263–266,
269, 273, 276, 278, 279, 281, 285,
287, 296, 298, 299, 301, 302, 305,
320, 339–345, 348, 356, 361, 363,
365, 367, 368, 370, 371, 373, 374,
380, 384, 385, 387–389, 392, 393,
395, 399, 410, 411, 420–423, 425,
426

smoothing VIII, 3, 55, 56, 60, 61,
135, 140, 141, 144, 146, 147, 222,
227

structure VIII, 1, 44, 46–48, 51,
63, 223, 383, 409

transformation 47, 56, 124, 126,
127, 147, 255, 410

xy-error data 5, 44, 47, 48, 53, 55,
57, 60, 61, 63, 81, 89, 92, 104, 111,
127, 128, 133, 135, 140, 230, 410

xy-error data triple 5, 44, 48, 57,
81, 89

data set

classification data set 49, 50, 214,
219, 220, 263–266, 269, 281, 339,
340, 342–345, 363, 365, 367, 368,
370, 373, 380, 420, 422, 423, 425,
426



Index 443

image classification data set 339,
340, 342–345, 423, 425

large data set problem 387
data structure

info data structure 51, 409
DataTransformation package 231,

410, 411, 425
decay

exponential decay 39, 128
decision support

medical decision support 362
decision surface 228, 250, 251, 253,

263–266, 271–273, 278, 283, 361,
368, 376

degree of freedom 59, 61
dependence

temperature dependence 5, 68, 411
descent

steepest descent 16
descriptor

structural descriptor 5, 6
design of experiment 111, 304, 421
detection

face detection 339, 342, 344, 345,
350, 355

determination
relevance determination 352

development
and research 4, 396, 407, 408

deviation
pattern 64, 70, 73, 78, 94, 130, 134,

139, 249
standard deviation 59, 62, 64, 66,

68, 82, 89, 95, 99, 102, 104, 111,
125, 127, 156, 208, 225, 230, 233,
245, 247, 309, 323, 325, 385, 426

device
computational device 403–405

diagnosis 362–364, 376, 426
medical diagnosis 376

dialectical 2
diatomic molecule 141
difference

radial difference 203
differential-evolution 28, 88, 410, 411
differentiation 10
digital

computer VII, 4, 13, 404
grayscale image 339

image 50, 339, 426
digitally 426

scanned 426
scanned image 426

dimension
fractal dimension 426

dipole moment 5
direction

downhill direction 16
directional hopping 28
distance

energy distance 145
euclidean distance 158, 159, 162,

163, 216
distributed

statistically distributed 64, 249
distribution

frequency distribution 156, 158,
187

normal distribution 57, 62, 67, 68,
156, 158

random distribution 178
spatial distribution 198
statistical distribution 55, 67

diversity 6, 178, 186, 220, 276, 279,
290, 307, 310, 374

chemical diversity 5, 6
spatial diversity 178, 186, 220, 276,

279, 290, 307, 310, 374
DNA 68

strands 68
dog 339, 340, 342, 348, 423
downhill 16, 392

direction 16
dualism 403
dualist 404
dynamic

property 68

ecology 392
economy 2
educated cheating 56, 64, 110, 114,

123, 134, 147, 320, 362
effect

biological effect 3, 5
pharmaceutical effect 407
pharmacological effect 43

effort
computational effort 245, 339, 355,

361



444 Index

elementary function 229, 231, 233,
234, 241

ELIZA 403

empirical

parameter 56, 134

risk 245

encoding 360, 420

energy 5, 141, 145, 392, 412

distance 145

potential energy 5, 141, 412

state 392

surface 5, 141, 412

value 5, 412

engineer 3

engineering VIII, 228

enhancement

contrast enhancement 355

ensemble

chemical ensemble 4

molecular ensemble 4

entity

molecular entity 3, 5

new molecular entity 3, 5

equation

non-linear equation 13

rate equation 5

Schroedinger equation 4, 141

error 1, 5, 7, 22, 44, 45, 47, 48, 53,
55–60, 62, 63, 65, 66, 69, 70,
73, 77–80, 84, 85, 104–110, 113,
124–128, 140, 142, 145–147, 214,
223, 225, 227, 230, 233, 234, 238,
240, 244–246, 253, 254, 258, 260,
289, 296, 301, 320, 356, 357, 361,
365, 367, 411, 412, 416, 420, 422

corrected 60, 106

correction 105

estimation of error 60

experimental error 55, 56, 69, 70,
73, 77, 78, 124, 147, 253, 254, 258,
296, 411

message 63, 84, 85, 223

propagation 47, 127

root mean squared error 59, 65,
225, 233, 246, 262, 291, 297,
300–302, 309, 310, 317, 323, 325,
327, 329, 331, 334, 357–360, 385,
386, 388–390

statistical error 1, 5, 44, 45, 48, 53,
59, 60, 105

trial and error 7, 55, 56, 79, 80, 85,
140, 146, 227, 234, 240, 244, 260,
320, 361

error-biased 230, 232, 245, 396
estimation 55, 56, 60, 105, 146, 361,

382, 383
of error 60
robust estimation 146

euclidean 151–154, 158, 159, 162,
163, 216, 219

distance 158, 159, 162, 163, 216
evidence

experimental evidence 2, 113
evolution 28, 91, 406

biological evolution 28, 406
differential evolution 28, 88, 410,

411
evolutionary

algorithm VII, 28, 36, 88, 90, 279
search 89
step 96
strategy 91

evolutionary-algorithm-based 28, 36
exchange

unconstrained exchange 290
exothermic 420
expansion 39, 127
experiment 2, 5, 6, 111, 304, 319,

384, 421
design of experiment 111, 304, 421

experimental
data VII, VIII, 1–4, 6, 38, 41, 43,

47, 48, 56, 68, 89, 106, 109, 110,
113, 121, 124, 253, 408, 411

error 55, 56, 69, 70, 73, 77, 78, 124,
147, 253, 254, 258, 296, 411

evidence 2, 113
failure 146
measurement 5
proof 113
science 4
scientist 61, 319
setup 53, 55, 123
value 4, 57

ExperimentalData package 46, 51,
68, 128, 141, 186, 254, 263, 339,
363, 410, 411, 415, 419



Index 445

experimentalist 124
exponent 5, 37, 111, 113, 114, 116,

118, 322
critical exponent 5, 111, 113, 114,

116, 118
exponential VII, 7, 39, 57, 73, 75, 76,

84, 85, 90, 101, 128, 255
decay 39, 128
function 7, 73, 76, 255
growth VII
term 57, 84, 85, 101

exponentially 4, 13, 24, 408
growing 13
increasing 4, 408

extraction
model extraction 2

extrapolating 2
extrapolation 47, 55, 56, 60, 72, 79,

80, 140, 147, 234, 235, 387

face 28, 228, 320, 339, 340, 342–348,
350, 355, 423, 425

detection 339, 342, 344, 345, 350,
355

factor
scaling factor 348

failure
experimental failure 146
structural failure 233
technical failure 234

fake 403
feature 2, 4, 5, 7, 16, 220, 234, 244,

245, 358, 362, 363, 380, 383, 396,
426

structural feature 220, 234
feeling

structural feeling 220
filtering 355

technique 355
FindClusters 410
FindMaximum 22, 411
FindMinimum 17, 22, 32, 34, 410
fine needle 426

aspirate 426
aspiration biopsy 426

first-order kinetics 39
fit

goodness of fit 51, 56, 62, 64, 70,
79, 147, 409

non-linear fit 39

rational function fit 143

standard deviation of the fit 59, 64

straight-line fit 69

FitCluster 216, 363, 364

FitMlr 235, 410

FitModelFunction 58, 63, 81, 83, 84,
105, 106

FitPerceptron 238, 241

FitSvm 244

fitting task 1, 48, 56, 85, 147, 223

flexibility

structural flexibility 272

flower 46, 47, 152, 186, 197, 203, 208,
217, 218, 285, 288, 294, 333–335,
337, 420

iris flower 46, 47, 152, 186, 197,
203, 208, 217, 218, 285, 288, 294,
333–335, 337, 420

fluoride 5, 141, 145, 412

hydrogen fluoride 5, 141, 412

folding

protein folding 392

force field 4

form

structural form 3, 5, 40, 55, 58,
140

formula 237

computational formula 237

formulation 49

fractal dimension 426

fraction

training fraction 279, 283, 287,
289, 290, 292–295, 299, 300, 302,
309, 333

freedom

degree of freedom 59, 61

frequency 2, 67, 156–158, 187, 189

distribution 156, 158, 187

function

activation 236

approximation 233

biological function 407

cost function 238, 244

elementary function 229, 231, 233,
234, 241

exponential function 7, 73, 76, 255

general linear function 37, 38, 40



446 Index

kernel function 223, 226, 234, 241,
243–245, 257, 260, 264, 272–274,
276, 277, 282–284, 296, 302, 307,
310, 322, 325, 327, 329, 331, 356,
361, 376, 386, 395

linear function 13, 37, 38, 40
logarithmic function 255
model function VIII, 1–6, 36–43,

48, 49, 54–61, 63–68, 71, 76–82,
84, 86, 89, 90, 99–102, 104, 106,
110, 111, 117, 124, 126–129, 138,
140, 142, 145–147, 221–223, 225,
227, 231–235, 237, 239, 240, 243,
253, 255, 256, 258, 260, 262, 272,
297, 301, 302, 304, 321, 323, 326,
331, 358, 395, 398, 401, 402, 408

non-linear function 7, 9
objective function 244, 411
plot 63, 71, 73
pure function 7, 10
radial basis function 326, 327
rational function 140, 143
rational function fit 143
sigmoid function 236
smoothing model function 56, 61,

140, 145
universal function approximation

233
functional programming 7

garbage 146, 356, 408
Gaussian 55, 68, 90, 92, 94, 97, 102,

156, 158, 162, 165, 208, 267, 326,
327, 412

bell curve 68
cloud 156, 158, 162, 165, 208, 267
Gaussian-peak shaped 81, 84, 106,

135, 140
peak 90, 92, 94, 97, 102
RBF kernel 327

gene 406
generalization 227, 233, 374
general linear function 37, 38, 40
generation

data generation 62, 65, 68, 92, 140,
223, 225, 323

genetic algorithm 410
GetAcetanhydrideKineticsData1 415
GetAcetanhydrideKineticsData2 419

GetClusters 154, 159, 160, 410
GetMeanSquaredError 409
GetNumberOfData 109, 121
GetStartParameters 85, 86, 88, 90
GetXyErrorData 111, 410
GIGO 146, 356, 408
global

constrained global minimum 30, 36
constrained global optimum 31
constrained global search 36
constrained local minimization 34
grid search 22
iterative global optimization 19
iterative optimization 14
maximum 19, 22, 23, 27, 28
minimization 58, 238, 239
minimization problem 239
minimum 1, 19, 29, 30, 32, 33, 35,

36, 58, 80, 81, 88, 89, 153
optimization 14, 19, 24, 26, 30,

152, 245
optimization method 15, 30
optimization problem 24
optimization procedure 28, 153
optimization result 26
optimization task 152
optimum 14, 19, 22, 28, 31, 36, 38,

41, 153, 154, 231
sampling 27
search 28, 36, 85
search strategy 88
strategy 311

global minimization
unconstrained global minimization

238, 239
goodness

of classification 250
of fit 51, 56, 62, 64, 70, 79, 147,

409
of fit quantity 147
of regression 245, 253
of smoothing 139

gradient 2, 16, 84, 398
method 16
step 16

Graphics package 6, 46, 51, 410
grayscale

image 339, 340, 425
pixel 339



Index 447

value 340, 425
grid 19–24, 27, 28, 85, 87, 295, 304,

305, 319, 361, 383, 384
global grid search 22
point 19–24, 384
random grid 87
search 19, 22, 24, 27

ground
statistical ground 55

group VIII, 151, 195, 279, 342, 406,
407

chemical group 407
hydroxy group 406, 407

growing
exponentially growing 13

growth
exponential growth VII

hardware 11
hash-table 382, 383, 406

search 382, 383
hashing 383
heuristic 152, 153, 220, 279, 290, 361,

377, 407
partitioning 279
partitioning strategy 279
strategy 279, 290

heuristics 228, 279, 290, 291, 294,
295, 299, 309, 311, 312, 320, 408

selection heuristics 228
hidden

layer 236, 237, 239
neuron 233, 234, 239, 240, 258,

260, 261, 286, 296, 302, 331, 333,
356–361, 371, 374, 388, 390, 398,
401

optimum 228, 403, 407
high-throughput 6

screening 6
homo sapiens 392, 405
hopping

directional hopping 28
HT 6
HTS 6
human VII, 2, 4, 244, 249, 268, 270,

273, 275, 339, 340, 342, 343, 347,
352, 403–408, 423

brain 4, 244, 404
intelligence VII, 244, 404, 405, 408

hybridization 408
hydrogen 4, 5, 68, 141, 145, 412

bond 68
fluoride 5, 141, 412

hydrolysis 128, 413
reaction 413

hydroxy 406, 407
group 406, 407

hyperplane 7, 14, 40, 42, 235
hypersphere 203
hyper surface 8, 9, 13, 16, 36, 42, 58,

80, 81, 231, 238

I/O 43–47, 50, 221, 222, 228, 231,
233–237, 239, 241, 244, 250, 251,
253, 263, 265, 269, 276, 278, 279,
281, 287, 289–291, 294, 296, 299,
306, 309, 311–313, 315, 340, 363,
369, 373, 383–385, 387, 407, 410,
411, 420, 423, 426

data 221, 222
pair 44–47, 50, 228, 235–237, 239,

241, 244, 250, 251, 253, 263,
265, 269, 276, 278, 279, 281, 287,
289–291, 294, 296, 299, 306, 309,
311–313, 315, 340, 363, 369, 373,
383–385, 387, 407, 410, 411, 420,
423, 426

image 50, 339, 340, 342–350, 352,
353, 355, 423, 425, 426

classification data set 339, 340,
342–345, 423, 425

digital grayscale image 339
digital image 50, 339, 426
digitally scanned image 426
grayscale image 339, 340, 425
medical image 339
preprocessing 355

in-silico 404
increasing

exponentially increasing 4, 408
independent

statistically independent 55, 57
industry VIII, 6

pharmaceutical industry 6
Infinity 94, 158, 356
info data structure 51, 409
infrared 128, 413

(IR) spectrum 128, 413



448 Index

input 1, 3, 5, 43–47, 49, 50, 86, 149,
151–165, 168, 170, 172, 174, 175,
177–180, 182–187, 189–193, 195,
197–201, 203, 207–210, 212–214,
216–221, 227, 228, 231, 235–239,
241, 243, 244, 250–253, 264, 267,
273, 274, 276, 277, 279–283, 289,
290, 304, 310, 320, 332–334, 337,
339–342, 352, 355, 356, 362–365,
374–376, 405, 407, 420–422, 425,
426

component 228, 235, 236, 332–334,
337, 339, 352, 355, 363, 375, 376,
421, 426

layer 236

variable 3

vector 1, 3, 5, 43–47, 49, 50, 86,
149, 151–165, 168, 170, 172, 174,
175, 177–180, 182–187, 189–193,
195, 197–201, 203, 207–210,
212–214, 216–221, 227, 228, 231,
235–239, 241, 243, 244, 250–253,
264, 267, 273, 274, 276, 277,
279–283, 289, 290, 304, 310, 320,
332–334, 337, 339–342, 352, 355,
356, 362–365, 374–376, 405, 407,
420–422, 425, 426

input/output 43–47, 50, 221, 222,
228, 231, 233–237, 239, 241, 244,
250, 251, 253, 263, 265, 269, 276,
278, 279, 281, 287, 289–291, 294,
296, 299, 306, 309, 311–313, 315,
340, 363, 369, 373, 383–385, 387,
407, 410, 411, 420, 423, 426

pair 407

insight

structural insight 168

inspection

visual inspection 76, 82, 85, 90, 92,
95, 97, 111, 133, 150, 186, 199,
220, 223, 240, 253, 266, 273, 281,
297, 301, 304, 321, 396, 409

instability

numerical instability 81

intelligence VII, VIII, 1, 51, 244, 245,
362, 381, 403–406, 408, 409

computational intelligence VII,
VIII, 1, 51, 245, 362, 381, 403,
405–407, 409

human intelligence VII, 244, 404,
405, 408

machine intelligence 403, 405
interaction 2–4, 68, 403, 404, 408

man-machine interaction 408
molecular interaction 3, 4, 68
physical interaction 404

interatomic 145, 412
interior point 411
internet 147
interpolating 2, 60, 140, 142, 265
interpolation 5, 55, 72, 79, 136,

145–147, 234, 258, 260, 263, 392
interpretation 95, 155, 361, 405
intertwined spiral 263, 422
interval 19, 29, 30, 47, 61, 65, 67, 85,

86, 105, 113, 157, 158, 422
IR 128, 413
iris

flower 46, 47, 152, 186, 197, 203,
208, 217, 218, 285, 288, 294,
333–335, 337, 420

setosa 186, 338, 420
versicolor 186, 338, 420
virginica 186, 338, 420

isomorphism 406
issue

structural issue 361
iteration 14, 16, 30, 58, 91, 93, 94,

154, 290, 311, 356, 358, 359, 382,
390

maximum number of iterations 14,
30, 58, 234, 358, 359, 390, 391

number of iterations 14, 30, 58, 91,
93, 94, 356, 358, 359, 390

iterative
algorithm 15
constrained iterative optimization

30
global iterative optimization 14
global optimization 19
local minimization 16
local optimization 15, 16
local search 19
numerical algorithm 234
optimization 13, 14, 30
optimization procedure 391
optimization strategy 13
procedure 201, 231, 356, 382



Index 449

process 109, 356
search 14
search-based approach 13
search method 14, 17
step 16, 356, 358
strategy 40

k-means 152–154, 203
k-medoids 152, 154, 201, 203, 208,

212, 218, 219, 365, 410
kernel 223, 226, 234, 241–245, 257,

260, 264, 272–274, 276, 277,
282–284, 296, 302, 307, 310, 322,
324–327, 329, 331, 356, 361, 376,
377, 386, 395

function 223, 226, 234, 241,
243–245, 257, 260, 264, 272–274,
276, 277, 282–284, 296, 302, 307,
310, 322, 325, 327, 329, 331, 356,
361, 376, 386, 395

Gaussian RBF kernel 327
radial basis function 327
RBF kernel 327
trick 244
wavelet kernel 241, 242, 257, 260,

272, 324, 361, 376, 377
kernel function

Gaussian RBF kernel function 327
kinetics 5, 39, 46, 128, 228, 253–255,

257, 260, 263, 296, 304, 413, 415,
416, 419–421

adhesive 46, 228, 253–255, 257,
260, 263, 296, 304, 420, 421

chemical first-order kinetics 39
chemical kinetics 5
first-order kinetics 39

knowledge VIII, IX, 3, 15, 24, 48, 56,
85, 93, 220, 223, 227, 309, 362,
376, 404

laboratory 2
lab system 6
Lambert-Beer law 415
large data set problem 387
law

Lambert-Beer law 415
Moore’s law 13, 245
of nature 2, 3
physical law 4

power law 110, 111, 113

layer

hidden layer 236, 237, 239

input layer 236

output layer 236, 237, 239, 241

learning

machine learning VII, VIII, 1, 3–7,
36, 42–50, 55, 59, 65, 66, 151, 152,
186, 212, 217, 220–223, 226–229,
231, 233–235, 237, 241, 244–246,
248–251, 253, 257, 260, 262, 264,
267, 273, 278, 281–283, 290, 295,
296, 319, 320, 322, 325, 332–334,
339, 341–343, 355, 356, 360–362,
364, 367, 368, 376, 380–382, 384,
385, 387, 391, 392, 396, 398, 399,
403, 405, 407–410, 425

statistical learning theory 243, 244

supervised learning VIII, 212, 219,
227, 238, 271, 286, 289, 342, 368

unsupervised learning 152, 212,
217, 219, 220, 270, 285, 363, 364,
368

learning theory 243, 244

least squares 58, 235

method of least squares 58

minimization 235

leave-one-out 228, 334

Levenberg-Marquardt 16, 84

library

structure library 6

targeted structure library 6

life 4, 5, 28, 68

likelihood 55, 57

maximum likelihood 55, 57

limitation 2, 362, 381

linear

algebra 236

curve fitting 80, 81

function 13, 37, 38, 40

general linear function 37, 38, 40

MLR VIII, 51, 55, 227, 228, 234,
235, 244–246, 251, 254, 255, 257,
264, 271, 274, 276, 286, 295, 321,
342–346, 352, 367, 368, 370–372,
376, 384–387, 409, 410

model 40, 70

model function 37–41, 235, 321



450 Index

multiple linear regression VIII, 51,
55, 227, 228, 234, 235, 244–246,
251, 254, 255, 257, 264, 271, 274,
276, 286, 295, 321, 342–346, 352,
367, 368, 370–372, 376, 384–387,
409, 410

regression VIII, 55, 227, 234, 246,
254, 384, 410

relation 37
statistics 65, 127
transformation 47

linearity 80
linearization 77, 126, 127, 147
liquid 5, 68, 80
list 5, 10, 11, 17, 44–46, 186, 209,

214, 413
living organism 28, 40
local

iterative local minimization 16
iterative local optimization 15, 16
iterative local search 19
maximum 27, 244
minimization 146
minimization procedure 81, 83
minimum 16, 17, 32, 34, 58, 244,

390
optimization 14–16, 19
optimization method 16, 28, 153
optimum 14, 19, 27, 234
search 19, 22, 23

logarithm 126
logarithmic

function 255
scale 111
transformation 76

logarithmic/exponential transformation
255

logic 407
logical neuron 229, 236, 244

machine VII, VIII, 1, 3–7, 11, 36,
42–50, 55, 59, 65, 66, 70, 136,
151, 152, 186, 212, 217, 220–223,
226–229, 231, 233–235, 237, 241,
244–246, 248–251, 253, 257, 260,
262, 264, 267, 273, 278, 281–283,
290, 295, 296, 319, 320, 322, 325,
332–334, 339, 341–345, 348, 352,
354–356, 360–362, 364, 367, 368,

376, 380–382, 384–387, 391, 392,
396, 398, 399, 403–405, 407–410,
425

intelligence 403, 405

learning VII, VIII, 1, 3–7, 36,
42–50, 55, 59, 65, 66, 151, 152,
186, 212, 217, 220–223, 226–229,
231, 233–235, 237, 241, 244–246,
248–251, 253, 257, 260, 262, 264,
267, 273, 278, 281–283, 290, 295,
296, 319, 320, 322, 325, 332–334,
339, 341–343, 355, 356, 360–362,
364, 367, 368, 376, 380–382, 384,
385, 387, 391, 392, 396, 398, 399,
403, 405, 407–410, 425

supervised machine learning VIII,
217, 220, 228, 251, 360, 362, 364,
367, 408

support vector machine VII, VIII,
51, 223, 226, 228, 234, 235, 241,
243–245, 253, 257, 259, 260,
262–265, 272, 274, 275, 277, 278,
282, 284, 296, 297, 299, 300, 302,
303, 307, 310, 332, 356, 376, 379,
380, 386, 387, 389, 390, 395, 398,
409–411

unsupervised machine learning 151

malignant 362–364, 368, 372, 426

tumor 363, 426

mammalian 404

man-machine interaction 408

mass 152, 154, 159, 163, 180, 255,
420, 421, 426

ratio 255, 420, 421

mass ratio

polymer mass ratio 255

material 3, 5, 6, 43, 362, 404

material’s

composition 3, 5

property 5, 43

scientist 3

materialist 404

Mathematica VII, VIII, 2, 6, 7, 10,
11, 17, 18, 22, 28, 31, 44, 51, 81,
84, 88, 101, 384, 409–411

mathematician 236, 244

mathematics VII

matrix 81, 237, 339, 340, 407, 425



Index 451

matter 2–4, 80, 220, 233, 263, 283,
332, 356, 403, 404

maximization 23, 392
path 23

maximum 1, 2, 6, 9, 11, 14, 19, 21–23,
27, 28, 30, 42, 47, 49, 55, 57, 58,
62, 64, 66, 84, 157, 168, 186, 202,
203, 210, 244, 290, 311–313, 315,
356, 358, 359, 382, 383, 390, 393,
395–403, 409, 413, 415, 418–420,
422, 426

global maximum 19, 22, 23, 27, 28
likelihood 55, 57
local maximum 27, 244
number of iterations 14, 30, 58,

234, 358, 359, 390, 391
maximum-number-of-iterations

parameter 234, 391
mean 16, 39, 66, 79, 101, 104, 127,

151, 153–155, 160, 162, 164, 165,
168, 173, 174, 210, 238, 246, 263,
311, 312, 364, 426

k-means 152–154, 203
silhouette width 154, 155, 160,

162, 164, 168, 173
statistical mean 104

measure 53, 154, 407
measurement 5, 48, 106–109, 127,

186, 253, 304, 416, 420
experimental measurement 5

mechanics 2, 4
quantum mechanics 2, 4

median 66
medical 339, 362, 364, 376, 380

decision support 362
diagnosis 376
image 339
practice 380
treatment 364

medicinal 376
medoid 154

k-medoids 152, 154, 201, 203, 208,
212, 218, 219, 365, 410

partitioning around medoids 154
memory VII, 2, 383, 391, 404, 405,

409, 410
computational memory VII, 404
consumption 2, 383, 391, 409, 410
versus speed 383

memory-prediction framework theory
404

Mercer’s condition 241

message

error message 63, 84, 85, 223

methacrylate 420

method

analytical 9

clustering method VIII, 5, 149–152,
155, 156, 190, 203, 218–220

combination method 16

computational method 4, 365, 367,
383, 406, 407

global optimization method 15, 30

gradient method 16

iterative search method 14, 17

local optimization method 16, 28,
153

Newton method 16

of least squares 58

optimization method VIII, 15, 16,
28, 30, 153, 231

Quasi-Newton method 16, 17

search method 14, 17, 32

Simplex method 16

methyl 420

mexican-hat 241

shape 241

microscope 426

mind 6, 59, 90, 134, 220, 227, 320,
403

mind-body 403, 405

problem 403, 405

minimization 16, 17, 32, 34, 58, 80,
81, 83–85, 88, 124, 146, 147, 235,
238, 239, 244, 392, 410

algorithm 34, 84, 88, 147, 410

constrained local minimization 34

global minimization 58, 238, 239

iterative local minimization 16

least squares minimization 235

local minimization 146

path 17

problem 16, 17, 239

procedure 58, 80, 81, 83, 85, 147

process 32, 34, 58, 84, 244

quantity 58

technique 16



452 Index

minimum 1, 2, 6, 9, 11, 14–19, 29,
30, 32–36, 42, 47, 57, 58, 62, 80,
81, 88, 89, 124, 145, 146, 151, 153,
157, 165, 186, 210, 216, 240, 244,
284, 285, 293, 296, 299, 317, 331,
334, 355, 358, 371, 390, 392, 409,
418

constrained global minimum 30, 36

global minimum 1, 19, 29, 30, 32,
33, 35, 36, 58, 80, 81, 88, 89, 153

local minimum 16, 17, 32, 34, 58,
244, 390

misclassification 348

misclassified 289

mixing

random mixing 28

mixture 81, 253, 255, 356, 420

polymer mixture 253, 420

MLR VIII, 51, 55, 227, 228, 234,
235, 244–246, 251, 254, 255, 257,
264, 271, 274, 276, 286, 295, 321,
342–346, 352, 367, 368, 370–372,
376, 384–387, 409, 410

mlrInfo 51, 409
MLR package 410

model VIII, 1–6, 36–43, 47–49, 51,
54–61, 63–68, 70, 71, 76–82, 84,
86, 89, 90, 99–102, 104, 106, 110,
111, 113, 117, 124, 126–129, 131,
138, 140, 142, 145–147, 221–223,
225, 227, 231–235, 237, 239, 240,
243, 244, 248, 253–256, 258, 260,
262, 263, 267, 272, 297, 301, 302,
304, 321, 323, 326, 331, 358, 390,
395, 396, 398, 401, 402, 408, 409,
412, 418

extraction 2

function VIII, 1–6, 36–43, 48, 49,
54–61, 63–68, 71, 76–82, 84, 86,
89, 90, 99–102, 104, 106, 110,
111, 117, 124, 126–129, 138, 140,
142, 145–147, 221–223, 225, 227,
231–235, 237, 239, 240, 243, 253,
255, 256, 258, 260, 262, 272, 297,
301, 302, 304, 321, 323, 326, 331,
358, 395, 398, 401, 402, 408

linear model 40, 70

non-linear model VIII, 39, 40, 42,
54, 56, 81, 146, 234

testing 2
model-versus-data plot 66, 247, 254
model function

linear model function 37–41, 235,
321

non-linear model function VIII, 39,
40, 42, 54, 56, 81, 146, 234

modelling 228, 233, 253, 257, 258,
261, 263

molecular
biology 407
ensemble 4
entity 3, 5
interaction 3, 4, 68
new molecular entity 3, 5
property 141
research 406
science VIII, 1–4, 6
system 4
weight 5

molecule 2, 4, 43, 68, 141, 412
diatomic molecule 141

momentum 410
monism 403
monist 404, 405
monomer 407
Moore’s law 13, 245
MSE 238, 239
multicore 295, 361
multidimensional VII, 40, 41, 227,

235
multiple linear regression VIII, 51,

55, 227, 228, 234, 235, 244–246,
251, 254, 255, 257, 264, 271, 274,
276, 286, 295, 321, 342–346, 352,
367, 368, 370–372, 376, 384–387,
409, 410

mutation 28

nano science 4, 5
nature 2, 3, 40, 42, 43, 48, 81, 89, 99,

233, 245, 367, 403
law of nature 2, 3

near-linear 361, 368, 371, 376
needle 28, 426

fine needle 426
network VII, VIII, 110, 228, 229,

232–234, 236–240, 244, 245, 371,
410



Index 453

neural network VII, VIII, 227, 229,
232, 234, 236, 244, 245, 371, 410

topology 233, 244, 245
neural VII, VIII, 227, 229, 232, 234,

236, 244, 245, 371, 405, 410
network VII, VIII, 227, 229, 232,

234, 236, 244, 245, 371, 410
neurobiological 404
neuron 229, 233, 234, 236, 237,

239–241, 244, 258, 260, 261, 286,
296, 302, 331, 333, 356–361, 371,
374, 388, 390, 398, 401, 404

hidden neuron 233, 234, 239, 240,
258, 260, 261, 286, 296, 302, 331,
333, 356–361, 371, 374, 388, 390,
398, 401

logical neuron 229, 236, 244
new molecular entity 3, 5
Newton

method 16
step 16

NMaximize 28, 411
NME 3, 5
NMinimize 28, 36, 88, 410
noise suppression 355
non-linear

curve fitting VII, 58, 80, 81, 84,
126, 147

equation 13
fit 39
function 7, 9
model VIII, 39, 40, 42, 54, 56, 81,

146, 234
model function VIII, 39, 40, 42,

54, 56, 81, 146, 234
problem 76
regression 234
relation 110
transformation 47

non-linearity 39, 80, 228, 235, 253,
361

NonlinearModelFit 410
normal distribution 57, 62, 67, 68,

156, 158
normally distributed 57, 60, 62, 111,

156, 222, 233, 309, 383, 385, 399,
410

notebook 385
nucleus 2, 4, 362, 363, 376, 380, 426

number of iterations 14, 30, 58, 91,
93, 94, 356, 358, 359, 390

number of parameters 27, 55, 56, 77,
88

numerical 14, 47, 81, 234, 367

computing 367

instability 81

problem 14, 47, 81

objective 60, 135, 152, 155, 158, 244,
411

function 244, 411

objective function

constrained objective function 244

Occam’s razor 56, 99

occupancy 152, 186, 192, 194, 198,
205, 209, 219

ontological 403, 404

open-categorical 151, 159, 201, 220

operation

parallel operation 409

operator 10

optimization VII, VIII, 1, 6, 7, 9,
13–16, 19, 24, 26, 28, 30, 31, 36,
38, 40–42, 55, 80, 152, 153, 160,
227, 228, 231, 234, 240, 244, 245,
257, 258, 279, 290–292, 294–296,
299, 309, 311–314, 316, 319, 355,
356, 358, 372, 377, 382, 390–392,
409–411

algorithm 410, 411

constrained iterative optimization
30

constrained optimization 30, 411

global iterative optimization 14

global optimization 14, 19, 24, 26,
30, 152, 245

iterative global optimization 19

iterative local optimization 15, 16

iterative optimization 13, 14, 30

local optimization 14–16, 19

method VIII, 15, 16, 28, 30, 153,
231

parameter 234, 257, 258

problem 7, 9, 13, 15, 24, 31, 36, 38,
40, 41, 240, 356, 382, 392

procedure 28, 30, 153, 160, 231,
296, 356, 358, 391, 409



454 Index

process 228, 234, 355, 356, 358,
390

step 234, 290, 291, 295, 299,
311–314, 319, 372, 382

strategy 7, 13, 14, 19, 28, 244, 290,
294, 309, 311, 372

technical optimization parameter
234, 258

technique 7, 42, 234

unconstrained optimization 31

unconstrained optimization problem
31

optimizing 279

optimum 2, 5–17, 19, 22, 27, 28, 31,
32, 36, 38, 40, 41, 55, 56, 58, 60,
65, 79, 104, 126, 151–155, 160,
161, 164, 171, 172, 175, 220, 228,
231, 234, 240, 243, 244, 273, 276,
278, 279, 304, 307, 333, 348, 356,
396, 398, 403, 407

constrained global optimum 31

global optimum 14, 19, 22, 28, 31,
36, 38, 41, 153, 154, 231

hidden optimum 228, 403, 407

local optimum 14, 19, 27, 234

option 11, 28, 51, 85, 86, 88, 105,
106, 234, 406, 409

organism 28, 40, 404

cybernetic organism 404

living organism 28, 40

orthogonal 202

oscillation 14, 143, 291, 313–315, 356,
372

outlier 48, 56, 124, 133, 134, 146,
253, 360, 422

output 1, 3, 11, 43–47, 49, 66, 67, 70,
136, 216, 221, 225, 227, 235–239,
241, 244, 248, 251–256, 269, 290,
295, 296, 309, 337, 338, 356,
361–364, 407, 420–422, 426

component 45, 49, 66, 235, 237,
241, 255, 269, 295, 337, 363, 421,
426

layer 236, 237, 239, 241

variable 3

vector 1, 3, 11, 43–47, 49, 66,
67, 70, 136, 216, 221, 225, 227,
235–239, 241, 244, 248, 251–256,

269, 290, 295, 296, 309, 337, 338,
356, 361–364, 407, 420–422, 426

overfit 219, 233, 363
overfitted 258, 265, 273, 283, 368
overfitting 137, 140, 145, 219, 228,

233–235, 239, 245, 258, 259, 261,
263, 269, 273, 275, 281, 284, 286,
287, 301, 302, 325, 331, 339, 342,
358, 359, 361, 367, 368, 371, 372,
374, 380, 388, 389

overflow 356
overlap 162, 165, 190, 195, 197, 213,

214, 218, 337, 363, 407
overlapping 164, 214, 267
overlay 18, 141, 229, 262, 321, 326,

328, 330, 331
overlayed 140, 225, 301, 302
overrepresented 363
overtrained 48

package VII, 1, 6, 46, 51, 62, 63, 68,
85, 90, 109, 111, 121, 128, 141,
156, 157, 159, 178, 179, 186, 230,
231, 246, 254, 263, 339, 363, 384,
409–412, 415, 419, 425

CIP VII, VIII, 1, 6, 7, 10, 46, 47,
51, 62, 63, 68, 81, 82, 85, 90, 109,
111, 121, 128, 141, 152, 154–157,
159, 178, 179, 186, 191, 201, 203,
208, 209, 230, 231, 234, 235, 238,
241, 244, 246, 254, 255, 263, 290,
315, 339, 358, 363, 368, 384, 387,
389, 409–411, 415, 419, 425

CIP CalculatedData 51, 62, 111,
156, 230, 246, 410

CIP Cluster 157, 159, 178, 179,
363, 410

CIP CurveFit 51, 63, 85, 90, 109,
121, 409, 410

CIP DataTransformation 231, 410,
411, 425

CIP ExperimentalData 46, 51, 68,
128, 141, 186, 254, 263, 339, 363,
410, 411, 415, 419

CIP Graphics 6, 46, 51, 410
CIP MLR 410
CIP Perceptron 51, 410
CIP SVM 411
CIP Utility 409, 410



Index 455

Computational Intelligence Packages
(CIP) VII, VIII, 1, 6, 7, 10,
46, 47, 51, 62, 63, 68, 81, 82, 85,
90, 109, 111, 121, 128, 141, 152,
154–157, 159, 178, 179, 186, 191,
201, 203, 208, 209, 230, 231, 234,
235, 238, 241, 244, 246, 254, 255,
263, 290, 315, 339, 358, 363, 368,
384, 387, 389, 409–411, 415, 419,
425

pair

I/O pair 44–47, 50, 228, 235–237,
239, 241, 244, 250, 251, 253, 263,
265, 269, 276, 278, 279, 281, 287,
289–291, 294, 296, 299, 306, 309,
311–313, 315, 340, 363, 369, 373,
383–385, 387, 407, 410, 411, 420,
423, 426

input/output pair 407

parabola 8, 38, 70

quadratic parabola 8, 38, 70

parabolic 8, 16, 58, 80

parallel 295, 409

architecture 295

operation 409

parallelized 319

parameter 3, 5, 6, 15, 27, 37–40,
48, 55, 56, 58, 60, 63, 72, 77,
80–83, 85–88, 90–96, 99, 101,
102, 104–112, 115, 121, 124–128,
134, 140, 146, 147, 228, 234, 235,
237–239, 244, 257, 258, 260, 272,
322, 356, 361, 362, 364, 371, 408,
409

background 129, 132, 134

empirical parameter 56, 134

maximum-number-of-iterations
parameter 234, 391

number of parameters 27, 55, 56,
77, 88

optimization parameter 234, 257,
258

parameters’ error 56, 80, 104–110,
125, 126, 128, 147

parameters’ value 56, 58, 80, 81,
104, 106, 108–110, 124, 147

space 85, 88, 91

start parameter 72, 88, 112

structural parameter 233–235, 239,
240, 244, 257, 258, 260, 272, 361,
371, 376, 409

technical parameter 228, 356, 359,
361, 364

vigilance parameter 201, 203, 204,
211, 365–367

wavelet width parameter 242, 272,
273

width parameter 241–243, 257,
260, 272, 273, 376, 377

parameters’ error 56, 80, 104–110,
125, 126, 128, 147

parameters’ value 56, 58, 80, 81, 104,
106, 108–110, 124, 147

partition 149, 152, 153, 209

partitioning 152–155, 177, 228, 274,
276, 278, 279, 309, 317, 319, 320,
338, 342, 361, 368, 370, 371

heuristic partitioning 279

random partitioning 276

partitioning around medoids 154

partitions 151, 195

path

maximization path 23

minimization path 17

pathological 382

pattern 50, 64, 70, 73, 77, 78, 94, 99,
130, 134, 139, 228, 249, 339, 342,
348, 355, 356

deviation pattern 64, 70, 73, 78,
94, 130, 134, 139, 249

recognition 50, 228, 339, 342, 348,
355, 356

peak 90, 92–95, 97, 99, 102, 104, 139,
183, 187, 189, 413, 415, 416, 418,
419

absorption 413, 419

Gaussian peak 90, 92, 94, 97, 102

penalty 320, 407

perception

radial perception 212

perceptron 51, 228, 235, 236,
238–241, 243–245, 253, 257, 258,
261, 263, 286, 295–304, 331, 333,
337, 356–358, 360, 371, 373, 374,
376, 377, 380, 388–390, 395, 398,
401, 409, 410



456 Index

three-layer perceptron 228, 236,
238, 239, 286

perceptron-type VIII, 227, 229, 232,
234, 236, 245, 371, 410

perceptronInfo 51, 409
Perceptron package 51, 410
performance 48, 273, 275, 299, 319,

335, 343, 381, 382, 404, 410
perimeter 426
peroxide 420, 421
PES 5, 141, 412
petabyte 404
petal 186, 189, 190, 285, 333, 335,

337, 338, 420
pharmaceutical 6, 407

effect 407
industry 6

pharmacological 43
effect 43

phase transition 80
phenomenon 55, 56, 110, 124, 228

critical phenomena 110, 124
philosophical 56, 403
physical 4, 404

chemistry 4
interaction 404
law 4

physico-chemical 5, 407
physics 3, 4, 392, 404
pixel 339, 340, 352, 353, 355, 425

grayscale pixel 339
plane

hyperplane 7, 14, 40, 42, 235
plateau 205, 211
platform VII, 7, 409
plot 62–64, 66, 68, 69, 71, 73, 76, 79,

116, 124, 138, 139, 147, 160, 161,
164, 168, 188, 190, 192, 220, 224,
225, 228, 232, 247, 248, 254, 256,
278, 318, 390

data plot 69, 147
function plot 63, 71, 73
model-versus-data plot 66, 247,

254
quality-of-fit plot 224
relative residuals plot 248
residuals plot 64, 73, 76, 116, 138,

139, 147, 225
silhouette plot 160, 164, 168

sorted-model-versus-data plot 247

Plot2dFunction 10

Plot2dPointsAboveFunction 11

PMMA 420, 421

point

concave point 426

grid point 19–24, 384

interior point 411

random point 25–27

random test point 24, 27

random trial point 86

polymer 253, 255, 420

adhesive polymer mixture 253, 420

mass ratio 255

mixture 253, 420

polynomial 38, 61, 72, 140, 142, 322,
324, 387

scaling 387

post-processing 22, 23, 27

PostProcess 28

potential 5, 141, 360, 412

energy 5, 141, 412

energy surface 5, 141, 412

power 39, 42, 48, 57, 110, 111, 113,
141, 233, 405, 408

computational power 42, 141, 408

law 110, 111, 113

series 39

powers 39

practice 1, 5, 13, 15, 39, 47, 48, 55,
56, 59, 60, 79, 81, 105, 109, 138,
153, 154, 239, 271, 320, 360, 361,
364, 380, 391

medical practice 380

practitioner VIII, 56, 70, 84, 219,
228, 245, 320, 332, 362, 391, 392

precision 5, 11, 14, 16, 23, 28, 36, 49,
56, 89, 97, 99, 109–111, 123, 141,
143, 356, 390

precondition

statistical precondition 60

predictability 48, 219

prediction 5, 6, 111, 114, 116, 118,
120, 124, 212, 214, 216, 217, 219,
228, 233, 270, 273, 285, 287, 290,
292, 293, 295, 307, 335, 337, 343,
345, 348, 355, 364, 368, 370, 371,
375



Index 457

predictive VIII, 72, 212, 216, 219,
258, 260, 263, 265, 274, 287, 290,
345, 348, 353, 363, 364, 368, 371,
374, 380

system VIII
predictivity 215, 217, 219, 265, 273,

275, 276, 279, 281, 283, 285, 286,
289, 290, 320, 335, 338, 343, 346,
353, 364, 368, 369, 371, 372, 376

predictor 152, 212–214, 216, 217,
219, 220, 251, 270, 285, 286, 289,
290, 343, 345, 346, 362, 363, 367,
368, 374, 375, 379, 380

class predictor 152, 212, 213, 216,
217, 219, 220, 251, 270, 285, 286,
289, 290, 362, 363, 367, 374, 375,
379, 380

clustering-based class predictor
217, 219, 220, 251, 270, 285, 286,
289, 290, 363, 367

preprocessing
data preprocessing VIII, 47, 48,

360
image preprocessing 355

pressure 320
probability 27, 65, 106, 113, 180, 184

statistical probability 65
problem

global minimization problem 239
global optimization problem 24
large data set problem 387
mind-body problem 403, 405
minimization problem 16, 17, 239
non-linear problem 76
numerical problem 14, 47, 81
optimization problem 7, 9, 13, 15,

24, 31, 36, 38, 40, 41, 240, 356,
382, 392

regression problem 383
structural problem 245, 356, 361

procedure
global optimization procedure 28,

153
iterative optimization procedure

391
iterative procedure 201, 231, 356,

382
local minimization procedure 81,

83

minimization procedure 58, 80, 81,
83, 85, 147

optimization procedure 28, 30,
153, 160, 231, 296, 356, 358, 391,
409

search procedure 13, 19

statistical procedure 58

process

iterative process 109, 356

minimization process 32, 34, 58,
84, 244

optimization process 228, 234, 355,
356, 358, 390

radioactive process 39

processor 409

program 51, 147, 403

programming VIII, 2, 6, 7, 243, 244,
407

functional programming 7

quadratic programming 243, 244

proof

experimental proof 113

propagation

error propagation 47, 127

property 2, 3, 5, 43, 48, 68, 141, 152,
403, 407, 420

dynamic property 68

material’s property 5, 43

molecular property 141

protein 392, 406

folding 392

proton 4

proximity 16, 22, 89, 90, 135, 140

psychotherapist 403

pure function 7, 10

QSAR 5

QSPR 5

quadratic

parabola 8, 38, 70

programming 243, 244

quality 97, 99, 154, 177, 219, 220,
225, 226, 273, 275, 296, 331, 332,
360, 361, 380, 387, 390, 410

quality-of-fit 224

plot 224

Quantitative Structure Activity
Relationship 5



458 Index

Quantitative Structure Property
Relationship 5

quantity
goodness of fit quantity 147
minimization quantity 58
statistical quantity 58–60, 65

quantum 2–4, 68
mechanics 2, 4
theory 3, 68

quantum-chemical 5, 141, 412
quantum-mechanical 4, 68
Quasi-Newton 16, 17

method 16, 17
query 406, 407

radial 203, 208, 212, 326
basis function 326, 327
difference 203
perception 212
view 203, 208

radioactive 39
process 39

radius 426
random 24–28, 83, 85–88, 156, 178,

180, 182, 186, 209, 276, 278, 361,
368

distribution 178
grid 87
mixing 28
partitioning 276
point 25–27
representative 180, 368
search 28, 85, 88
selection 180, 278
test point 24, 27
trial point 86

ranking
relevance ranking 335

rate
constant 5
equation 5

ratio
mass ratio 255, 420, 421

rational function 140, 143
fit 143

RBF 326, 327
kernel 327

reaction 2, 5, 128, 129, 413–416, 420
chemical reaction 2, 5, 128

hydrolysis reaction 413

reactivity 3

reality 4

recipe

cookbook recipe 56, 146, 152, 220,
228, 360

recognition 50, 228, 339, 342, 348,
352, 355, 356

pattern recognition 50, 228, 339,
342, 348, 355, 356

recombination 28

record 382, 383

rectangle 162

rectangular 339, 340

reduction 220, 350, 352, 353, 355, 413

redundancy 362, 376, 410

refinement 23, 28, 89, 94, 311, 338

region

search region 14

regression VIII, 1, 49, 50, 55, 227,
228, 234, 235, 241, 243, 245, 246,
253, 254, 296, 304, 311, 316, 322,
361, 383–385, 389, 395, 410

bias 243

goodness of regression 245, 253

linear regression VIII, 55, 227, 234,
246, 254, 384, 410

multiple linear regression VIII, 51,
55, 227, 228, 234, 235, 244–246,
251, 254, 255, 257, 264, 271, 274,
276, 286, 295, 321, 342–346, 352,
367, 368, 370–372, 376, 384–387,
409, 410

non-linear regression 234

problem 383

support vector regression 322

task 1, 49, 50, 245, 296, 304, 311,
316, 361, 384, 385, 395

relation

linear relation 37

non-linear relation 110

relationship

Quantitative Structure Activity
Relationship 5

Quantitative Structure Property
Relationship 5

relative residual 64, 66, 67, 248

plot 248



Index 459

relevance 220, 228, 332–335, 339,
352, 375

determination 352
ranking 335

representation 2, 140, 141, 186, 249,
369, 373, 379, 410

representative 6, 152, 177–180, 182,
183, 185, 186, 220, 276, 279, 280,
283, 290, 299, 368

cluster-based representative 152,
182, 220, 276, 279, 280, 283, 290,
368

random representative 180, 368
research 4–7, 201, 220, 231, 241, 245,

360, 362, 382, 392, 396, 406–408
and development 4, 396, 407, 408
molecular research 406

residual 57–59, 64, 66, 67, 70, 71, 73,
76–78, 94, 99, 105, 116, 118, 130,
134–136, 138, 139, 145, 147, 225,
232, 247–249, 254, 256, 262

plot 64, 73, 76, 116, 138, 139, 147,
225

relative residual 64, 66, 67, 248
statistics 254, 256

resolution 349, 352
resonance 201, 410
resource

computational resource 320, 361,
382

result
global optimization result 26

retrieval 406
risk

empirical risk 245
structural risk 245

RMSE 59, 65, 225, 233, 246, 262,
291, 297, 300–302, 309, 310, 317,
323, 325, 327, 329, 331, 334,
357–360, 385, 386, 388–390

robotics 6, 319
robust estimation 146
root 10, 11, 13, 246, 255
root mean squared error 59, 65, 225,

233, 246, 262, 291, 297, 300–302,
309, 310, 317, 323, 325, 327,
329, 331, 334, 357–360, 385, 386,
388–390

rotation VIII, 355

Royal Swedish Academy of Sciences
4

safeguard 81, 84, 101, 147
sample 363, 420
sampling 19, 27

global sampling 27
scale 47, 111, 382, 384, 385, 387

logarithmic scale 111
scale-free 110
scaled 47, 146, 340, 410
ScaleDataMatrix 410
ScaleDataMatrixReverse 410
scaling 1, 47, 348, 383, 385, 387,

389–391
behavior 383, 385, 387, 390, 391
factor 348
of data 1, 47
polynomial scaling 387

scanned
digitally scanned 426

schemata 28
Schroedinger equation 4, 141
science VII, VIII, 1–6, 13, 16, 40, 43,

44, 68, 85, 110, 124, 135, 228, 383,
392

experimental science 4
molecular science VIII, 1–4, 6
nano science 4, 5

scientist 3, 61, 85, 99, 101, 104, 105,
113, 152, 236, 263, 319, 339, 360,
376, 404, 407

experimental scientist 61, 319
material’s scientist 3

screening
high-throughput screening 6

search
algorithm 14, 15
constrained global search 36
evolutionary search 89
global grid search 22
global search 28, 36, 85
grid search 19, 22, 24, 27
hash-table search 382, 383
iterative local search 19
iterative search 14
local search 19, 22, 23
method 14, 17, 32
procedure 13, 19



460 Index

random search 28, 85, 88
region 14
sequential search 382
space 14, 19, 20, 24, 27–30, 86, 90
speed 382, 383, 406
start-parameter search 90
strategy 56, 58, 85, 88
type 85

search-based approach 13
searching 382, 383, 405
seed 25
segmentation 355
selection IX, 28, 180, 182, 184, 186,

228, 278–281, 283, 290, 299, 361,
368, 383

cluster-based selection 180, 182,
184, 186

heuristics 228
random selection 180, 278

semantic 405
semi-empirical 4
sense

statistical sense 48, 58
sepal 186–188, 285, 333, 335, 420
separation 155, 163, 202, 208, 210,

268, 270, 271, 337, 360
sequence 5, 25, 406, 407

alignment 407
biological sequence 406, 407

sequential 361, 382, 406
search 382

series
power series 39

set
data set 44–46, 48–50, 214, 217,

219, 220, 225, 228, 231, 235–239,
241, 243–245, 251, 253, 254,
263–266, 269, 273, 276, 278, 279,
281, 285, 287, 296, 298, 299, 301,
302, 305, 320, 339–345, 348, 356,
361, 363, 365, 367, 368, 370, 371,
373, 374, 380, 384, 385, 387–389,
392, 393, 395, 399, 410, 411,
420–423, 425, 426

test set 228, 273–279, 283–287,
289, 290, 292–295, 298, 306, 307,
309, 310, 312, 317–320, 334, 335,
337, 342, 349, 361, 368–370, 372,
373, 378

training and test set 273–275,
277–279, 283, 286, 287, 290, 292,
294, 295, 309, 310, 317–319, 334,
342, 361, 370, 372, 373, 378

training set 273, 274, 279, 281,
283–285, 287, 289–292, 294–296,
299, 304, 305, 307, 309, 311, 312,
315, 317, 320, 333, 337, 348, 361,
368, 369, 371, 372, 376, 377, 379

setosa

iris setosa 186, 338, 420

setting VIII, 10, 25, 51, 82, 86, 91,
105, 234, 239, 272–277, 282–284,
358, 361, 386, 388

structural setting 273

setup 20, 49, 53, 55, 123, 154, 209,
231, 253, 295, 304, 361, 410

experimental setup 53, 55, 123

shape

mexican-hat 241

shift 48, 72, 78, 405

shifting 76

shoulder 90, 93

sigmoid 229, 236, 237

function 236

threshold function 229, 237

silhouette 154, 155, 160–162, 164,
165, 168, 170, 172–175, 192, 193,
195, 206, 210, 211, 220

mean silhouette width 154, 155,
160, 162, 164, 168, 173

plot 160, 164, 168

width 154, 155, 160, 162, 164, 168,
170, 173

Simplex 16

method 16

simulation 4, 109, 247

sine 8

SingleGlobalMax 290, 299, 315, 372

SingleGlobalMean 312

single point calculation 141

slope 15, 55

smoothing VIII, 3, 5, 55, 56, 60, 61,
135–138, 140, 141, 144–147, 222,
227, 410, 417, 418

cubic spline 56, 61, 138, 410, 417,
418



Index 461

data smoothing VIII, 3, 55, 56, 60,
61, 135, 140, 141, 144, 146, 147,
222, 227

goodness of smoothing 139

model function 56, 61, 140, 145

software VII, 81, 104, 126, 147, 361,
412

solution VIII, 1, 2, 4, 13, 14, 16, 28,
76, 81, 83, 85, 147, 151, 233, 268,
273, 275, 276, 289, 406

sorted-model-versus-data plot 247

space 4, 14, 19, 20, 24, 27–30, 85, 86,
88, 90, 91, 94, 95, 152, 153, 159,
178, 180, 182, 184, 185, 189, 195,
203, 208, 209, 220, 227, 274, 276,
279, 281, 283, 289, 290, 320, 363,
364, 374, 406

parameter space 85, 88, 91

search space 14, 19, 20, 24, 27–30,
86, 90

spatial 178, 186, 198, 220, 276, 279,
290, 307, 310, 317, 363, 374

distribution 198

diversity 178, 186, 220, 276, 279,
290, 307, 310, 374

species 186, 188–193, 195, 197,
205–208, 218, 219, 285, 288, 335,
337, 420

specification 159, 322

specimen 405

spectral analysis 355

spectrum 48, 128, 413, 415, 416, 419,
420

chemical spectrum 48

infrared (IR) spectrum 128, 413

speed VII, 4, 13, 16, 17, 28, 91, 153,
203, 212, 359, 381–383, 391, 406,
409, 411

and accuracy 91, 359

calculation 13

computational speed 4, 409

search speed 382, 383, 406

versus memory 383

speed versus memory 383

sphere

hypersphere 203

spiral 263–265, 267, 422

intertwined spiral 263, 422

spline VIII, 56, 61, 135, 138, 140,
144, 410, 416–418

cubic spline VIII, 56, 61, 135, 138,
140, 144, 410, 416–418

smoothing cubic spline 56, 61, 138,
410, 417, 418

standard deviation 59, 62, 64, 66, 68,
82, 89, 95, 99, 102, 104, 111, 125,
127, 156, 208, 225, 230, 233, 245,
247, 309, 323, 325, 385, 426

of the fit 59, 64
statistical 104

standardization 355
color standardization 355

start
parameter 72, 88, 112
value 56, 81, 83–93, 96, 97, 102,

111, 146, 147
start-parameter search 90
state

energy state 392
statistical

analysis 1
assessment 48
basis 48, 227
distribution 55, 67
error 1, 5, 44, 45, 48, 53, 59, 60,

105
ground 55
learning theory 243, 244
mean 104
precondition 60
probability 65
procedure 58
quantity 58–60, 65
sense 48, 58
standard deviation 104
treatment 146

statistically
based 45, 61
distributed 64, 249
independent 55, 57

statistics 57, 58, 60, 65, 127, 178,
183, 211, 247, 254, 256, 304

linear statistics 65, 127
residuals statistics 254, 256

steepest descent 16
step

evolutionary step 96



462 Index

gradient step 16
iterative step 16, 356, 358
Newton step 16
optimization step 234, 290, 291,

295, 299, 311–314, 319, 372, 382
size 16

stepwise 382
straight line 3, 7, 14, 36–38, 40, 55,

56, 62, 63, 70, 126, 127, 135, 137,
235, 270, 271

fit 69
strands

DNA strands 68
strategy

evolutionary strategy 91
global search strategy 88
global strategy 311
heuristic partitioning strategy 279
heuristic strategy 279, 290
iterative optimization strategy 13
iterative strategy 40
optimization strategy 7, 13, 14, 19,

28, 244, 290, 294, 309, 311, 372
search strategy 56, 58, 85, 88

structural
bioinformatics 5
complexity 240
descriptor 5, 6
failure 233
feature 220, 234
feeling 220
flexibility 272
form 3, 5, 40, 55, 58, 140
insight 168
issue 361
parameter 233–235, 239, 240, 244,

257, 258, 260, 272, 361, 371, 376,
409

problem 245, 356, 361
risk 245
setting 273

structure VIII, 1–3, 5, 6, 44, 46–48,
51, 63, 68, 155, 165, 168, 220, 223,
227, 231, 235, 340, 363, 383, 404,
406, 407, 409

biological structure 404
chemical structure 5, 406, 407
data structure VIII, 1, 44, 46–48,

51, 63, 223, 383, 409

library 6
targeted structure library 6

subroutine 84
subset 6, 252, 253, 255, 256, 258, 259,

262, 296, 421
substance 403
substructure 406, 407

chemical substructure 406
sum 16, 57–59, 104, 124, 231, 236,

237, 243
of squares 16, 57–59, 124

supervised VIII, 151, 212, 217, 219,
220, 227, 228, 238, 251, 271, 286,
289, 342, 360, 362, 364, 367, 368,
408

classification 228
learning VIII, 212, 219, 227, 238,

271, 286, 289, 342, 368
machine learning VIII, 217, 220,

228, 251, 360, 362, 364, 367, 408
support vector VII, VIII, 223, 226,

228, 234, 241, 244, 322, 386, 410,
411

machine VII, VIII, 51, 223, 226,
228, 234, 235, 241, 243–245, 253,
257, 259, 260, 262–265, 272, 274,
275, 277, 278, 282, 284, 296, 297,
299, 300, 302, 303, 307, 310, 332,
356, 376, 379, 380, 386, 387, 389,
390, 395, 398, 409–411

regression 322
suppression

noise suppression 355
supramolecular 68
surface 2, 5, 8, 9, 13, 16, 19, 31,

34–36, 42, 58, 80, 81, 141, 155,
228, 231, 238, 250–253, 263–266,
271–273, 278, 283, 357, 361, 368,
376, 383, 390, 396, 412

charge 5
decision surface 228, 250, 251, 253,

263–266, 271–273, 278, 283, 361,
368, 376

energy surface 5, 141, 412
hyper surface 8, 9, 13, 16, 36, 42,

58, 80, 81, 231, 238
potential energy surface 5, 141,

412

unconstrained surface 34, 35



Index 463

surgeon 392
SVM VII, VIII, 51, 223, 226, 228,

234, 235, 241, 243–245, 253, 257,
259, 260, 262–265, 272, 274, 275,
277, 278, 282, 284, 296, 297, 299,
300, 302, 303, 307, 310, 332, 356,
376, 379, 380, 386, 387, 389, 390,
395, 398, 409–411

svmInfo 51, 223, 409
SVM package 411
symmetry 426
synapse 404
synthesis 406

chemical synthesis 406
system

biological system 2, 404
lab system 6
molecular system 4
predictive system VIII

systematics 304

table 48, 56, 273, 274, 368, 383
hash-table 382, 383, 406

Tanimoto coefficient 407
target VIII, 6, 19, 396
targeted structure library 6
task

classification task VIII, 1, 49, 50,
151, 217, 219, 220, 227, 228, 234,
235, 251, 263, 269, 271–273, 276,
285, 335, 371, 376

computational task 381
fitting task 1, 48, 56, 85, 147, 223
global optimization task 152
regression task 1, 49, 50, 245, 296,

304, 311, 316, 361, 384, 385, 395
technical 1, 6, 228, 234, 240, 245,

258, 269, 272, 356, 359–361, 364,
391, 406, 409

failure 234
optimization parameter 234, 258
parameter 228, 356, 359, 361, 364

technique VII, VIII, 2–4, 6, 7, 16, 42,
49, 60, 61, 151, 201, 220, 228, 233,
234, 246, 255, 272, 296, 355

clustering technique 151, 201, 220
filtering technique 355
minimization technique 16
optimization technique 7, 42, 234

telephone book 406
temperature 2, 5, 68, 69, 72, 80, 411,

420, 422
dependence 5, 68, 411

terabyte 404
term

exponential term 57, 84, 85, 101
termination 80, 360
terminology 149, 202, 241, 244
test

random test point 24, 27
test set 228, 273–279, 283–287,

289, 290, 292–295, 298, 306, 307,
309, 310, 312, 317–320, 334, 335,
337, 342, 349, 361, 368–370, 372,
373, 378

training and test set 273–275,
277–279, 283, 286, 287, 290, 292,
294, 295, 309, 310, 317–319, 334,
342, 361, 370, 372, 373, 378

testing 2
model testing 2

theorem 55
central limit 55

theory 2–4, 48, 68, 111, 201, 243,
244, 404, 410

Adaptive Resonance Theory 201,
410

Adaptive Resonance Theory ART-2a
152, 201–203, 206, 208, 211, 212,
218–220, 365–367, 410

learning theory 243, 244
memory-prediction framework theory

404
quantum theory 3, 68
statistical learning theory 243, 244

three-layer VIII, 227, 228, 232, 234,
236, 238, 239, 286, 371, 410

perceptron 228, 236, 238, 239, 286
perceptron-type VIII, 227, 232,

234, 236, 371, 410
threshold 4, 200, 229, 236–238, 407
threshold function

sigmoid threshold function 229,
237

time-to-maximum-temperature 422
time consumption

computational time consumption
382



464 Index

time period 320, 381–384, 414
computational time period 383

tissue 50, 339, 362, 363, 426
biological tissue 339
tumor tissue 50, 362, 363, 426

tool 212, 245, 362, 367, 405, 408
tool box 245, 367
topological 5, 407
topology 233, 240, 244, 245, 390

network topology 233, 244, 245
training 48, 227, 228, 233, 240,

241, 273–279, 281–287, 289–296,
298–302, 304, 305, 307, 309–312,
315, 317–320, 333–335, 337, 342,
343, 345, 346, 348, 350, 353, 361,
368–374, 376–380, 384, 385, 387,
389, 390, 405

and test set 273–275, 277–279, 283,
286, 287, 290, 292, 294, 295, 309,
310, 317–319, 334, 342, 361, 370,
372, 373, 378

fraction 279, 283, 287, 289, 290,
292–295, 299, 300, 302, 309, 333

set 273, 274, 279, 281, 283–285,
287, 289–292, 294–296, 299, 304,
305, 307, 309, 311, 312, 315, 317,
320, 333, 337, 348, 361, 368, 369,
371, 372, 376, 377, 379

transformation 47, 56, 76, 124, 126,
127, 147, 255, 355, 410

data transformation 47, 56, 124,
126, 127, 147, 255, 410

linear transformation 47
logarithmic/exponential transforma-

tion 255
logarithmic transformation 76
non-linear transformation 47
wavelet transformation 355

transition
phase transition 80

translation 355
transparency 337
treatment

medical treatment 364
statistical treatment 146

tree
binary 382, 383, 406

trial
and error 7, 55, 56, 79, 80, 85, 140,

146, 227, 234, 240, 244, 260, 320,
361

random trial point 86
trick

kernel trick 244
triple 5, 44, 48, 53, 55, 57, 62, 64, 81,

89, 107, 127, 140
truncation 406
tumor 50, 362–364, 368, 426

malignant 363, 426
tissue 50, 362, 363, 426
type 362

Turing 403
type

search type 85
tumor type 362

unbiased 274
unconstrained 30, 31, 34, 35, 231,

238, 239, 290
exchange 290
global minimization 238, 239
optimization 31
optimization problem 31
surface 34, 35

underflow 84
unification 409
union 186
universal 233, 235, 245, 329, 362

Fourier kernel 329
function approximation 233

universality 238
computational universality 233,

235, 238, 245
universe 48, 404
unsupervised VIII, 151, 152, 159,

212, 217, 219, 220, 227, 251, 270,
285, 363, 364, 368, 408

clustering VIII, 227
learning 152, 212, 217, 219, 220,

270, 285, 363, 364, 368



Index 465

machine learning 151
user forum

CIP user forum VIII
Utility package 409, 410

validation 11, 186, 228, 278, 281, 296,
320, 362, 368, 375

validity 383
value

energy value 5, 412
experimental value 4, 57
grayscale value 340, 425
start value 56, 81, 83–93, 96, 97,

102, 111, 146, 147
vapor 80
variable 3, 6, 7, 10, 11, 58

input variable 3
output variable 3

variant 17, 155, 219, 245, 311
vector VII, VIII, 5, 43–45, 47, 49, 50,

156, 157, 221, 223, 226–228, 231,
234, 235, 241, 244, 251, 322, 332,
340, 386, 407, 410, 411, 420, 425

input vector 1, 3, 5, 43–47, 49,
50, 86, 149, 151–165, 168, 170,
172, 174, 175, 177–180, 182–187,
189–193, 195, 197–201, 203,
207–210, 212–214, 216–221, 227,
228, 231, 235–239, 241, 243, 244,
250–253, 264, 267, 273, 274, 276,
277, 279–283, 289, 290, 304, 310,
320, 332–334, 337, 339–342, 352,
355, 356, 362–365, 374–376, 405,
407, 420–422, 425, 426

output vector 1, 3, 11, 43–47, 49,
66, 67, 70, 136, 216, 221, 225, 227,
235–239, 241, 244, 248, 251–256,
269, 290, 295, 296, 309, 337, 338,
356, 361–364, 407, 420–422, 426

support vector VII, VIII, 223, 226,
228, 234, 241, 244, 322, 386, 410,
411

versicolor
iris versicolor 186, 338, 420

view
radial view 203, 208

vigilance 201, 203–205, 211, 365–367
parameter 201, 203, 204, 211,

365–367
virginica

iris virginica 186, 338, 420
viscosity 5, 68, 69, 72, 80, 411
visual

inspection 76, 82, 85, 90, 92, 95,
97, 111, 133, 150, 186, 199, 220,
223, 240, 253, 266, 273, 281, 297,
301, 304, 321, 396, 409

visualization 64

water 68, 80, 128, 411
wavelet 241, 242, 257, 260, 272, 273,

324, 325, 355, 361, 376, 377
kernel 241, 242, 257, 260, 272, 324,

361, 376, 377
transformation 355
width parameter 242, 272, 273

WDBC 362, 363, 365, 371, 374, 380,
426

weight 5, 57, 59, 60, 105, 128, 146,
231, 237, 238, 243, 244

molecular weight 5
What You See Is What You Get 408
white spot 6, 152, 198, 200, 201, 220
width

silhouette width 154, 155, 160,
162, 164, 168, 170, 173

width parameter 241–243, 257, 260,
272, 273, 376, 377

wavelet width parameter 242, 272,
273

wildcard 406
winner 21–23, 25–27, 338
Wisconsin Diagnostic Breast Cancer

362, 363, 365, 371, 374, 380, 426
workstation 361
WYTIWYG 408

xy-error
data 5, 44, 47, 48, 53, 55, 57, 60,

61, 63, 81, 89, 92, 104, 111, 127,
128, 133, 135, 140, 230, 410

data triple 5, 44, 48, 57, 81, 89


	Introduction
	Motivation: Data, Models and Molecular Sciences
	Optimization
	Calculus
	Iterative Optimization
	Iterative Local Optimization
	Iterative Global Optimization
	Constrained Iterative Optimization

	Model Functions
	Linear Model Functions with One Argument
	Non-linear Model Functions with One Argument
	Linear Model Functions with Multiple Arguments
	Non-linear Model Functions with Multiple Arguments
	Multiple Model Functions
	Summary

	Data Structures
	Data for Curve Fitting
	Data for Machine Learning
	Inputs for Clustering
	Inspection of Data Sets and Inputs

	Scaling of Data
	Data Errors
	Regression versus Classification Tasks
	The Structure of CIP Calculations

	Curve Fitting
	Basics
	Fitting Data
	Useful Quantities
	Smoothing Data

	Evaluating the Goodness of Fit
	How to Guess a Model Function
	Problems and Pitfalls
	Parameters’ Start Values
	How to Search for Parameters’ Start Values
	More Difficult Curve Fitting Problems
	Inappropriate Model Functions

	Parameters’ Errors
	Correction of Parameters’ Errors
	Confidence Levels of Parameters’ Errors
	Estimating the Necessary Number of Data
	Large Parameters’ Errors and Educated Cheating
	Experimental Errors and Data Transformation

	Empirical Enhancement of Theoretical Model Functions
	Data Smoothing with Cubic Splines
	Cookbook Recipes for Curve Fitting

	Clustering
	Basics
	Intuitive Clustering
	Clustering with a Fixed Number of Clusters
	Getting Representatives
	Cluster Occupancies and the Iris Flower Example
	White-Spot Analysis
	Alternative Clustering with ART-2a
	Clustering and Class Predictions
	Cookbook Recipes for Clustering

	Machine Learning
	Basics
	Machine Learning Methods
	Multiple Linear Regression (MLR)
	Three-Layer Perceptron-Type Neural Networks
	Support Vector Machines (SVM)

	Evaluating the Goodness of Regression
	Evaluating the Goodness of Classification
	Regression: Entering Non-linearity
	Classification: Non-linear Decision Surfaces
	Ambiguous Classification
	Training and Test Set Partitioning
	Cluster Representatives Based Selection
	Iris Flower Classification Revisited
	Adhesive Kinetics Regression Revisited
	Design of Experiment
	Concluding Remarks

	Comparative Machine Learning
	Relevance of Input Components
	Pattern Recognition
	Cookbook Recipes for Machine Learning
	Appendix - Collecting the Pieces

	Discussion
	Computers Are about Speed
	Isn’t It Just ...?
	... Optimization?
	... Data Smoothing?

	Computational Intelligence
	Final Remark

	Cover
	Front Matter
	Introduction
	Motivation: Data, Models and Molecular Sciences
	Optimization
	Calculus
	Iterative Optimization
	Iterative Local Optimization
	Iterative Global Optimization
	Constrained Iterative Optimization

	Model Functions
	Linear Model Functions with One Argument
	Non-linear Model Functions with One Argument
	Linear Model Functions with Multiple Arguments
	Non-linear Model Functions with Multiple Arguments
	Summary
	Multiple Model Functions

	Data Structures
	Data for Machine Learning
	Data for Curve Fitting
	Inspection of Data Sets and Inputs
	Inputs for Clustering

	Scaling of Data
	Data Errors
	Regression versus Classification Tasks
	The Structure of CIP Calculations

	Curve Fitting
	Basics
	Fitting Data
	Useful Quantities
	Smoothing Data

	Evaluating the Goodness of Fit
	How to Guess a Model Function
	Problems and Pitfalls
	Parameters’ Start Values
	How to Search for Parameters’ Start Values
	More Difficult Curve Fitting Problems
	Inappropriate Model Functions

	Parameters’ Errors
	Correction of Parameters’ Errors
	Confidence Levels of Parameters’ Errors
	Estimating the Necessary Number of Data
	Large Parameters’ Errors and Educated Cheating
	Experimental Errors and Data Transformation

	Empirical Enhancement of Theoretical Model Functions
	Data Smoothing with Cubic Splines
	Cookbook Recipes for Curve Fitting

	Clustering
	Basics
	Intuitive Clustering
	Clustering with a Fixed Number of Clusters
	Getting Representatives
	Cluster Occupancies and the Iris Flower Example
	White-Spot Analysis
	Alternative Clustering with ART-2a
	Clustering and Class Predictions
	Cookbook Recipes for Clustering

	Machine Learning
	Basics
	Machine Learning Methods
	Multiple Linear Regression (MLR)
	Three-Layer Perceptron-Type Neural Networks
	Support Vector Machines (SVM)

	Evaluating the Goodness of Regression
	Evaluating the Goodness of Classification
	Regression: Entering Non-linearity
	Classification: Non-linear Decision Surfaces
	Ambiguous Classification
	Training and Test Set Partitioning
	Cluster Representatives Based Selection
	Iris Flower Classification Revisited
	Adhesive Kinetics Regression Revisited
	Design of Experiment

	Comparative Machine Learning
	Concluding Remarks

	Relevance of Input Components
	Pattern Recognition
	Cookbook Recipes for Machine Learning
	Appendix - Collecting the Pieces

	Discussion
	Computers Are about Speed
	Isn’t It Just ...?
	... Data Smoothing?
	... Optimization?

	Computational Intelligence
	Final Remark

	Back Matter

