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About this Series

The role of adaptation, learning and optimization are becoming increasingly
essential and intertwined. The capability of a system to adapt either through
modification of its physiological structure or via some revalidation process of
internal mechanisms that directly dictate the response or behavior is crucial in
many real world applications. Optimization lies at the heart of most machine
learning approaches while learning and optimization are two primary means to
effect adaptation in various forms. They usually involve computational processes
incorporated within the system that trigger parametric updating and knowledge or
model enhancement, giving rise to progressive improvement. This book series
serves as a channel to consolidate work related to topics linked to adaptation,
learning and optimization in systems and structures. Topics covered under this
series include:

• complex adaptive systems including evolutionary computation, memetic com-
puting, swarm intelligence, neural networks, fuzzy systems, tabu search, sim-
ulated annealing, etc.

• machine learning, data mining & mathematical programming
• hybridization of techniques that span across artificial intelligence and compu-

tational intelligence for synergistic alliance of strategies for problem-solving.
• aspects of adaptation in robotics
• agent-based computing
• autonomic/pervasive computing
• dynamic optimization/learning in noisy and uncertain environment
• systemic alliance of stochastic and conventional search techniques
• all aspects of adaptations in man-machine systems.

This book series bridges the dichotomy of modern and conventional mathematical
and heuristic/meta-heuristics approaches to bring about effective adaptation,
learning and optimization. It propels the maxim that the old and the new can come
together and be combined synergistically to scale new heights in problem-solving.
To reach such a level, numerous research issues will emerge and researchers will
find the book series a convenient medium to track the progresses made.
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Stochastic Sensitivity Analysis Using Extreme
Learning Machine

David Becerra-Alonso, Mariano Carbonero-Ruz, Alfonso Carlos
Martínez-Estudillo and Francisco José Marténez-Estudillo

Abstract The Extreme Learning Machine classifier is used to perform the pertur-
bative method known as Sensitivity Analysis. The method returns a measure of class
sensitivity per attribute. The results show a strong consistency for classifiers with
different random input weights. In order to present the results obtained in an intuitive
way, two forms of representation are proposed and contrasted against each other. The
relevance of both attributes and classes is discussed. Class stability and the ease with
which a pattern can be correctly classified are inferred from the results. The method
can be used with any classifier that can be replicated with different random seeds.

Keywords Extreme learning machine · Sensitivity analysis · ELM feature space ·
ELM solutions space · Classification · Stochastic classifiers

1 Introduction

Sensitivity Analysis (SA) is a common tool to rank attributes in a dataset in terms
how much they affect a classifier’s output. Assuming an optimal classifier, attributes
that turn out to be highly sensitive are interpreted as being particularly relevant for the
correct classification of the dataset. Low sensitivity attributes are often considered
irrelevant or regarded as noise. This opens the possibility of discarding them for the
sake of a better classification. But besides an interest in an improved classification,
SA is a technique that returns a rank of attributes. When expert information about a
dataset is available, researchers can comment on the consistency of certain attributes
being high or low in the scale of sensitivity, and what it says about the relationship
between those attributes and the output that is being classified.
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In this context, the difference between a deterministic and a stochastic classifier
is straightforward. Provided a good enough heuristics, a deterministic method will
return only one ranking for the sensitivity of each one of the attributes. With such
a limited amount of information it cannot be known if the attributes are correctly
ranked, or if the ranking is due to a limited or suboptimal performance of the deter-
ministic classifier. This resembles the long standing principle that applies to accuracy
when classifying a dataset (both deterministic and stochastic): it cannot be known
if a best classifier has reached its topmost performance due to the very nature of the
dataset, or if yet another heuristics could achieve some extra accuracy. Stochastic
methods are no better here, since returning an array of accuracies instead of just
one (like in the deterministic case) and then choosing the best classifier is not better
than simply giving a simple good deterministic classification. Once a better accuracy
is achieved, the question remains: is the classifier at its best? Is there a better way
around it?

On the other hand, when it comes to SA, more can be said about stochastic clas-
sifiers. In SA, the method returns a ranked array, not a single value such as accuracy.
While a deterministic method will return just a simple rank of attributes, a stochastic
method will return as many as needed. This allows us to claim a probabilistic approach
for the attributes ranked by a stochastic method. After a long enough number of clas-
sifications and their corresponding SAs, an attribute with higher sensitivity will most
probably be placed at the top of the sensitivity rank, while any attribute clearly irrel-
evant to the classification will eventually drop to the bottom of the list, allowing for
a more authoritative claim about its relationship with the output being classified.

Section 2.1 briefly explains SA for any generalized classifier, and how sensitivity
is measured for each one of the attributes. Section 2.2 covers the problem of dataset
and class representability when performing SA. Section 2.3 presents the method
proposed and its advantages. Finally, Sect. 3 introduces two ways of interpreting
sensitivity. The article ends with conclusions about the methodology.

2 Sensitivity Analysis

2.1 General Approach

For any given methodology, SA measures how the output is affected by perturbed
instances of the method’s input [1]. Any input/output method can be tested in this
way, but SA is particularly appealing for black box methods, where the inner com-
plexity hides the relative relevance of the data introduced. The relationship between
a sensitive input attribute and its relevance amongst the other attributes in dataset
seems intuitive, but remains unproven.
In the specific context of classifiers, SA is a perturbative method for any classifier
dealing with charted datasets [2, 3]. The following generic procedure shows the most
common features of sensitivity analysis for classification [4, 5]:
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(1) Let us consider the training set given by N patterns D = {(xi , ti ) : xi ∈ Rn,

ti ∈ R, i = 1, 2, . . . , N }. A classifier with as many outputs as class-labels in
D is trained for the dataset. The highest output determines the class assigned
to a certain pattern. A validation used on the trained classifier shows a good
generalization, and the classifier is accepted as valid for SA.

(2) The average of all patterns by attribute x̄ = 1
N

∑
i xi results in an “average pat-

tern” x̄ = {x̄1, x̄2, . . . , x̄ j , . . . , x̄M }. The “maximum pattern” xmax = {xmax
1 ,

xmax
2 , . . . , xmax

j , . . . , xmax
M } is defined as the vector containing the maximum

values of the dataset for each attribute. The “the minimum” pattern is obtained
in an analogous way xmin = {xmin

1 , xmin
2 , . . . , xmin

j , . . . , xmin
M }.

(3) A perturbed pattern is defined as an average pattern where one of the attributes
has been swapped either with its corresponding attribute in the maximum or min-
imum pattern. Thus, for attribute j , we have x̄max

j = {x̄1, x̄2, . . . , xmax
j , . . . , x̄M }

and x̄min
j = {x̄1, x̄2, . . . , xmin

j , . . . , x̄M }.
(4) These M pairs of perturbed patterns are then processed by the validated classifier.

The y jk outputs per class k returned are then recorded for each pair of maximum
and minimum perturbed patterns, giving us the set {xmax

j , xmin
j , ymax

jk , ymin
jk }.

Sensitivity for class k with respect to attribute j can be defined as: S jk =
ymax

jk −ymin
jk

xmax
j −xmin

j
. The sign in S jk indicates the arrow of proportionality between the

input and the output of the classifier. The absolute value of S jk can be considered
a measurement of the sensitivity of attribute j with respect to class k. Thus, if Q
represents the total amount of class-labels present in the dataset, attributes can
be ranked according to this sensitivity as S j = 1

Q

∑
k S jk .

2.2 Average Patterns’ Representability

An average pattern like the one previously defined implies the assumption that the
region around it in the attributes space is representative of the whole sample. If so,
perturbations could return a representative measure of the sensitivity of the attributes
in the dataset. However, certain topologies of the dataset in the attributes space can
return an average pattern that is not even in the proximity of any other actual pattern
of the dataset. Thus, it’s representability can be put to question. Even if the average
pattern finds itself in the proximity of other patterns, it can land on a region dominated
by one particular class. The SA performed would probably become more accurate
for that class than it would for the others. A possible improvement, would be to
propose an average pattern per class. However, once again, topologies for each class
in the attributes space might make their corresponding average pattern land in a
non-representative region. Yet another improvement would be to choose the median
pattern instead of the average, but once again, class topologies in the attributes space
will be critical.
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In other words, the procedure described in Sect. 2.1 is more fit for regressors
than for classifiers. Under the right conditions, and the right dataset, it can suffice
for sensitivity analysis. Once the weights of a classifier are determined, and the
classifier is trained, the relative relevance that these weights assign to the different
input attributes might be measurable in most or all of the attributes space. Only then,
the above proposed method would perform correctly.

2.3 Sensitivity Analysis for ELM

The aim of the present work is to provide with improvements to this method in order
to return a SA according to what is relevant when classifying patterns in a dataset,
regardless of the topology of the attributes space. Three improvements are being
proposed:

• The best representability obtainable from a dataset is the one provided by all its
patterns. Yet performing SA to all patterns can be too costly when using large
datasets. On the other end there is the possibility of performing SA only to the
average or median patterns. This is not as costly but raises questions about the
representability of such patterns. The compromise here proposed is to only study
the SA of those samples of a certain class, in a validation subset, that have been
correctly classified by the already assumed to be good classifier. The sensitivity
per attribute found for each one of the patterns will be averaged with that of the rest
of the correctly classified patterns of that class, in order to provide with a measure
of how sensitive each attribute is for that class.

• Sensitivity can be measured as a ratio between output and input. However, in
classifiers, the relevance comes from measuring not just the perturbed output
differences, but from measuring the perturbation that takes one pattern out of its
class, according to the trained classifier. The boundaries where the classifier assigns
a new (and incorrect) class to a pattern indicate more accurately the size of that
class in the output space, and with it, a measure of the sensitivity of the input. Any
small perturbation in an attribute that makes the classifier reassign the class of that
pattern, indicates a high sensitivity of that attribute for that class. This measurement
becomes consistent when averaged amongst all patterns in the class.

• Deterministic one-run methods will return a single attribute ranking, as indicated
in the introduction. Using the Single Hidden Layer Feedforward (SLFN) version
of ELM [6, 7], every new classifier, with its random input weights and its corre-
sponding output weights, can be trained, and SA can then be performed. Thus,
every classifier will return sensitivity matrix made of SA measurements for every
attribute and every class. These can in turn be averaged into a sensitivity matrix
for all classifiers. If most or all SA performed for each classifier are consistent,
certain classes will most frequently appear as highly sensitive to the perturbation
of certain attributes. The fact that ELM, with its random input weights, gives such
a consistent SA, makes a strong case for the reliability of ELM as a classifier in
general, and for SA in particular.
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These changes come together in the following procedure:

(1) Let us consider the training set given by N patterns D = {(xi , ti ) : xi ∈ Rn,

ti ∈ R, i = 1, 2, . . . , N }. A number L of ELMs are trained for the dataset. A
validation sample is used on the trained ELMs. A percentage of ELMs with the
highest validation accuracies is chosen and considered suitable for SA.

(2) For each ELM selected, a new dataset is made with only those validation patterns
that have been correctly classified. This dataset is then divided into subsets for
each class.

(3) For each attribute x j in each pattern x = {x, x2, . . . , x j , . . . , xM } that belongs
to the subset corresponding to class k, that has been correctly classified by the
q-th classifier, SA is measured as follows:

(4) x j is increased in small intervals within (x j , xmax
j + 0.05(xmax

j − xmin
j )). Each

increase creates a pattern xpert = {x1, x2, . . . , x pert
j , . . . , xM } that is then tested

on the q-th classifier. This process is repeated until the classifier returns a class
other than k. The distance covered until that point is defined as γx+

j .

(5) x j is decreased in small intervals within (xmin
j − 0.05(xmax

j − xmin
j ), x j ). Each

decrease creates a pattern xpert = {x1, x2, . . . , x pert
j , . . . , xM } that is then tested

on the q-th classifier. This process is repeated until the classifier returns a class
other than k. The distance covered until that point is defined as γx−

j .
(6) Sensitivity for attribute j in pattern i , that is part of class-subset k, when studying

SA for classifier q is: S jkqi = 1/(min(γx+
j ,γx−

j )). If the intervals in steps 4

and 5 are covered without class change (hence, no γx+
j or γx−

j are recorded),
then S jkqi = 0.

(7) The sensitivity of all the patterns within a class subset are averaged according to
S jkq = 1

Rkq

∑
i S jkqi , where Rkq is the number of correctly classified patterns

on each classifier, for each class.
(8) The sensitivity of all classifiers is averaged according to S jk = 1

Q

∑
q S jkq

where Q is the number ELMs that were considered as suitable for SA in step 1.
This S jk is the sensitivity matrix above mentioned. It represents the sensitivity
per attribute and class of the correctly classified patterns in the validation subset,
and assuming a good representability, the sensitivity of the entire dataset.

(9) Attribute and class based sensitivity vectors can then be defined by averaging
the sensitivity matrix according to S j = 1

M

∑
q S jk and Sk = 1

K

∑
q S jk respec-

tively. K is the total number of classes in the dataset.

3 Results

3.1 Datasets Used, Dataset Partition and Method Parameters

Well known UCI repository datasets [8] are used to calculate results for the present
model. Table 1 shows the main characteristics of the datasets used. Each dataset is
partitioned for a hold-out of 75 % for training and 25 % for validation, keeping class



6 D. Becerra-Alonso et al.

Table 1 UCI dataset general features

Dataset # Patterns # Attributes # Classes # Patterns per class

Haberman 306 3 2 225-81
Newthyroid 215 5 3 150-35-30
Pima 768 8 2 500-268
Vehicle 946 18 4 212-199-218-217

Table 2 Haberman

Sensitivity matrix Attr.1 Attr.2 Attr.3 Class vec. Rank

Class 1 0.0587 0.0446 0.1873 0.0968 2nd
Class 2 0.3053 0.2477 0.5067 0.3532 1st

Attribute vec. 0.1820 0.1461 0.3470
Rank 2nd 3rd 1st

representability in both subsets. The best Q = 300 out of L = 3000 classifiers will
be considered as suitable for SA. All ELMs performed will have 20 neurons in the
hidden layer, thus avoiding overfitting in all cases.

3.2 Sensitivity Matrices, Class-Sensitivity Vectors,
Attribute-Sensitivity Vectors

Filters and wrappers generally offer a rank for the attributes as an output. SA for ELM
offers that rank, along with a rank per class. For each dataset, the sensitivity matrices
in this section are presented with their class and attribute vectors, that provide with
a rank for class and attribute sensitivity. This allows for a better understanding of
classification outcomes that were otherwise hard to interpret. The following are
instances of this advantage:

• Many classifiers tend to favor the correct classification of classes with the highest
number of patterns, when working with imbalanced datasets. However, the sen-
sitivity matrices for Haberman and Pima (Tables 2 and 4), show another possible
reason for such a result. For both datasets, class 2 is not just the minority class, and
thus more prone to be ignored by a classifier. Class 2 is also the most sensitive. In
other words, it takes a much smaller perturbation to meet the border where a clas-
sifier re-interprets a class 2 pattern into a class 1. On the other hand, the relatively
low sensitivity of class 1 indicates a greater chance for patterns to be assigned to
this class. It is only coincidental that class 1 also happens to be the majority class.

• The results for Newthyroid (Table 3) show a similar scenario: class 2, one of
the two minority classes, is highly sensitive. In this case, since the two minority
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Table 3 Newthyroid

Sensitivity matrix Attr.1 Attr.2 Attr.3 Attr.4 Attr.5 Class vec. Rank

Class 1 0.0159 0.1395 0.0622 0.0742 0.0915 0.0767 3rd
Class 2 0.3038 0.9503 1.8846 0.3813 0.3494 0.7739 1st
Class 3 0.0230 0.0890 0.0470 0.1363 0.1207 0.0832 2nd

Attribute vector 0.1142 0.3929 0.6646 0.1972 0.1872
Rank 5th 2nd 1st 3rd 4th

Table 4 Pima

Sensitivity Attr.1 Attr.2 Attr.3 Attr.4 Attr.5 Attr.6 Attr.7 Attr.8 Class vec. Rank
matrix

Class 1 0.0569 0.0483 0.0862 0.0553 0.0434 0.0587 0.0416 0.0609 0.0564 2nd
Class 2 0.2275 0.1655 0.3238 0.2085 0.1656 0.2413 0.2798 0.2534 0.2332 1st

Attribute vector 0.1422 0.1069 0.2050 0.1319 0.1045 0.1500 0.1607 0.1571
Rank 5th 7th 1st 6th 8th 4th 2nd 3rd

classes (2 and 3) have similar population sizes, it can be expected to have better
classification results for class 3, for the same reasons above mentioned.

• Classes with a highest averaged sensitivity don’t imply the highest sensitivity
class per attribute. Vehicle (Table 5) shows this: although class 3 is the most
sensitive, sensitivities for attributes 1, 2, 9, 15 and 17 are not the highest for this
class. Different attributes are fit for a better classification of different classes.
Orthogonality in the rows of the sensitivity matrix implies perfect classification.

3.3 Attribute Rank Frequency Plots

Another way to easily spot relevant or irrelevant attributes is to use attribute rank
frequency plots. Every attribute selection method assigns a relevance-related value
to all attributes. From such values, an attribute ranking can be made. SA with ELM
provides with as many ranks as the number of classifiers chosen as apt for SA.
In Figs. 1 through 4, each attribute of the dataset is represented by a color. Each
column represents the sensitivity rank in increasing order. Each classifier will assign
a different attribute color to each one of the columns. After the Q = 300 classifiers
have assigned their ranked sensitivity colors, some representations show how certain
attribute colors dominate the highest or lowest rank positions. The following are
interpretations extracted from these figures:

• Both classes in Haberman (Fig. 1) show a high sensitivity to attribute 3. This
corresponds to the result obtained in Table 2. Most validated ELM classifiers
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Fig. 1 Haberman for classes 1 and 2

Fig. 2 Newthyroid for classes 1, 2 and 3

consider attribute 3 to be the most sensitive when classifying both classes. The
lowest sensitivity of attribute 2 is more apparent when classifying class 1 patterns.

• In Newthyroid (Fig. 2) both attributes 4 and 5 are more sensitive when classifying
class 3 patterns. The same occurs for attributes 2 and 3 when classifying class 2
patterns, and for attributes 2 and 5 when classifying class 1 pattern. Again, this is
all coherent with the results in Table 3.

• Pima (Fig. 3) shows attribute 3 to be the most sensitive for the classification of
both classes, especially class 1. This corresponds to what was found in Table 4.



10 D. Becerra-Alonso et al.

Fig. 3 Pima for classes 1 and 2

Fig. 4 Vehicle for classes 1, 2, 3 and 4

However, while Fig. 3 shows attribute 7 to be the least sensitive for both classes,
attribute 7 holds second place in the averaged sensitivity attribute vector of Table 4.
It is in cases like these where both the sensitivity matrix and this representation
are necessary in order to interpret the results. Attribute 7 is ranked as low by most
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classifiers, but has a relatively high averaged sensitivity. The only way to hint at
this problem without the attribute rank frequency plots is to notice the dispersion
for different classes for each attribute. In this case, the ratio between the sensitivity
of attribute 7 for class 2 and attribute 7 for class 1 is the biggest of all, making the
overall sensitivity measure for attribute 7 less reliable.

• The interpretation of more than a handful of attributes can be more complex, as
we can see in Table 5. However, attribute rank frequency plots can quickly make
certain attributes stand out. Figure 4 shows how attributes 8 and 9 are generally
low sensitive to classification of class 3 of the Vehicle dataset. Other attributes are
more difficult to interpret in these representations, but the possibility of detecting
high or low attributes in the sensitivity rank can be particularly useful.

4 Conclusions

This work has presented a novel methodology for the SA analysis of ELM classifiers.
Some refinements have been proposed for the traditional SA methodology, that seems
to be more suitable for regressors. The advantage of creating stochastic classifiers
with different random seeds of input weights allows for a multitude of classifiers to
approximate sensitivity measures. This is something that deterministic classifiers
(without such random seed) cannot do. A large enough number of validated classifiers
can in principle provide with a more reliable measure of sensitivity.

Two different ways of representing the results per class and attribute have been
proposed. Each one of them emphasizes a different way of ranking sensitivities
according to their absolute (sensitivity matrix) or relative (attribute rank frequency
plots) values. Both measures are generally consistent with each other, but some-
times present differences that can be used to assess the reliability of the sensitivities
obtained.

Any classifier with some form of random seed, like the input weights in ELM,
can be used to perform Stochastic SA, where the multiplicity of classifiers indicate a
reliable sensitivity trend. ELM, being a speedy classification method, is particularly
convenient for this task. The consistency in the results presented also indicate the
inherent consistency of different validated ELMs as classifiers.

This work was supported in part by the TIN2011-22794 project of the Spanish
Ministerial Commision of Science and Technology (MICYT), FEDER funds and the
P11-TIC-7508 project of the “Junta de Andalucía” (Spain).
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Abstract Nonnegative Matrix Factorization (NMF) is a powerful data represen-
tation method, which has been applied in many applications such as dimension
reduction, data clustering etc. As the process of NMF needs huge computation cost,
especially when the dimensional of data is large. Thus a ELM feature mapping based
NMF is proposed [1], which combined Extreme Learning Machine (ELM) feature
mapping with NMF (EFM NMF), can reduce the computational of NMF. However,
the random parameter generating based ELM feature mapping is nonlinear. And
this will lower the representation ability of the subspace generated by NMF without
sufficiently constrains. In order to solve this problem, this chapter propose a novel
method named Extreme Learning Machine feature mapping based graph regulated
NMF (EFM GNMF), which combines ELM feature mapping with Graph Regular-
ized Nonnegative Matrix Factorization (GNMF). Experiments on the COIL20 image
library, the CMU PIE face database and TDT2 corpus show the efficiency of the pro-
posed method.
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1 Introduction

Nonnegative matrix factorization (NMF) techniques have been frequently applied
in data representation and document clustering. Given an input data matrix X, each
column of which represents a sample, NMF aims to find two factor matrices U and
V using low-rank approximation such that X ∈ UV. Each column of U represents a
base vector, and each column of V describes how these base vectors are combined
fractionally to form the corresponding sample in X [2, 3].

Compared to other methods, such as principal component analysis (PCA) and
independent component analysis (ICA), the nonnegative constraints lead to a parts-
based representation because they allow only additive, not subtractive, combinations.
Such a representation encodes the data using few active components, which makes
the basis easy to interpret. NMF has been shown to be superior to SVD in face
recognition [4] and document clustering [5]. It is optimal for learning the parts of
objects.

However, NMF cost huge computing when it disposes high-dimensional data such
as image data. ELM feature mapping [6, 7] as an explicit feature mapping techniques
was proposed. It is more convenient than kernel function and can get more satisfactory
results for classification and regression [8, 9]. NMF is a linear model, using nonlinear
feature mapping techniques, it will be able to deal with nonlinear correlation in
data. Then, ELM based methods is not sensitive to the number of hidden layer
nodes, provided that a large enough number is selected [1]. So, using ELM feature
mapping to improve the efficiency of NMF is feasible. Nevertheless, ELM feature
mapping NMF (EFM NMF) can not keep generalization performance as NMF. Only
the non-negative constraints in NMF unlike other subspace methods (e.g. Locality
Preserving Projections (LPP) method [10]), may not be sufficiently understand the
hidden structure of the space which transform from the original data. A wide variety
of subspace constraints can be formulated into a certain form such as PCA and LPP
to enforce general subspace constraints into NMF. Graph Regularized Nonnegative
Matrix Factorization (GNMF [11], which discovers the intrinsic geometrical and
discriminating structure of the data space by implant a geometrical regularization,
is more powerful than the ordinary NMF approach. In order to obtain efficiency
and keep generalization representation performance simultaneously, we proposed
method named EFM GNMF which combined ELM feature mapping with GNMF.

The rest of the chapter is organized as follows: Sect. 2 gives a brief review of the
ELM, ELM Feature mapping, NMF and GNMF. The EFM NMF and EFM GNMF
are presented in Sect. 3. The experimental result will be shown in Sect. 4. Finally, in
Sect. 5, we conclude the chapter.

2 A Review of Related Work

In this section, a short review of the original ELM algorithm, ELM Feature mapping,
NMF and GNMF are given.
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2.1 ELM

For N arbitrary distinct samples (xi , ti ), where xi = [xi1, xi2, . . . , xi D]T ◦RD and
ti = [ti1, ti2, . . . , ti K ]T ◦RK , standard SLFNs with L hidden nodes and activation
function h(x) are mathematically modeled as:

L∑

i=1

βi hi
(
x j

) =
L∑

i=1

βi hi
(
wi · x j + bi

) = o j (1)

where j = 1, 2, . . . , N. Here wi = [wi1, wi2, . . . , wi D]T is the weight vector con-
necting the i th hidden node and the input nodes, βi = [βi1, . . . ,βi K ]T is the weight
vector connecting the i th hidden node and the output nodes, and bi is the threshold
of the i th hidden node. The standard SLFNs with L hidden nodes with activation
function h (x) can be compactly written as [12–15]:

Hβ = T (2)

where

H =
⎧

⎪
⎨

h1 (w1 · x1 + b1) . . . hL (wL · x1 + bL)
...

...
...

h1 (w1 · xN + b1) . . . hL (wL · xN + bL)

⎩

⎥
⎦ (3)

β =
⎧

⎪
⎨

βT
1
...

βT
L

⎩

⎥
⎦ and T =

⎧

⎪
⎨

t T
1
...

t T
N

⎩

⎥
⎦ (4)

Different from the conventional gradient-based solution of SLFNs, ELM simply
solves the function by

β = H+T (5)

H+ is the Moore-Penrose generalized inverse of matrix H .

2.2 ELM Feature Mapping

As show in Sect. 2.1 above, h(x) as the ELM feature mapping, maps the sample x1
from the D-dimensional input space to the L-dimensional hidden-layer feature space
which is called ELM feature space. The ELM feature mapping process is shown in
Fig. 1.
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Fig. 1 ELM feature mapping process (cited from [1])

The ELM feature mapping can be formally described as:

h (xi ) = [h1 (xi ) , . . . , hL (xi )]
T = [G(a1,b1,xi ) , . . . ,G(aL ,bL ,xi )]T (6)

where G(ai, bi, xi ) is the output of the i-th hidden node. The parameters which need
not to be tuned, (ai, bi )

L
i=1, can be randomly generated according to any continuous

probability distribution. It is that ELM feature mapping is very convenient. Huang in
[6, 7] has proved that almost all almost all nonlinear piecewise continuous functions
can be used as the hidden-node output functions directly [1].

2.3 GNMF

NMF [16–18] is a matrix factorization algorithm that focuses on the analysis of data
matrices whose elements are nonnegative. Consider a data matrix X = [x1, . . ., xD]
◦RD×M each column of X is a sample vector which consists of D features. Generally,
NMF can be presented as the following optimization problem:

C (X ∈ UV), s.t. U,V ∗ 0 (7)

NMF aims to find two non-negative matrices U = [ui j ] ◦RD×K and V = [vi j ] ◦
RK×M whose product can well approximate the original matrix X. C(·) denotes the
cost function.
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NMF performs the learning in the Euclidean space which cover the intrinsic
geometrical and discriminating. To find a compact representation which uncovers
the hidden semantics and simultaneously respects the intrinsic geometric structure,
Cai et al. [11] proposed construct an affinity graph to encode the information and
seek a matrix factorization to respects the graph structure in GNMF.

OGNMF = ℵX − UVℵ2
F + λtr

(
V T LV

)
st.U ∗ 0, V ∗ 0 (8)

where L is graph Laplacian. The adjacent graph, which each vertex corresponding
to a sample and the weight between vertex ∧xi and vertex ∧x j , is defined as [19]

Si j =
{

1, if ∧xi ◦ Nk
( ∧x j

)
or ∧x j ◦ Nk ( ∧xi )

0, otherwise
(9)

where Nk ( ∧xi ) signifies the set of k nearest neighbors of ∧xi . Then L is written as
L = T − W, where T is a diagonal matrix whose diagonal entries are column sums
of S, i.e., Tii= ∑

i Wi j .

3 EFM GNMF

In this section, we will present our EFM GNMF. EFM NMF will improve com-
putational efficiency by reducing the feature number. But ELM feature mapping,
which using random parameter, is a nonlinear feature mapping technique. This will
lower the ability of representation of the subspace generating from NMF without
sufficiently constrains. In order to solve this problem, this chapter propose a novel
method EFM GNMF, combined ELM feature mapping with Graph Regularized Non-
negative Matrix Factorization (GNMF). Graph constrain guarantee that using ELM
feature space in NMF can also has the local manifold feature. The proposed algorithm
puts as follows:
(1) Setting the number of hidden-layer nodes L < D and threshold ε > 0.
(2) Calculate the weight matrix W on the nearst neighbor graph of the original data.
(3) Using ELM feature mapping h (x) = [h1 (x) , . . . , hi (x) , . . . , hL (x)]T transform the orig-

inal data into ELM feature space. The original data with D-dimensional will transform into
L-dimensional

X = [x1, . . ., xD] γRD×M → H = [h1, ldots, hL ] γRL×M

(4) Initialize UγRL×K , V γRK×M and the regularization λ with nonnegative values.
(5) Using W as the weight matrix on the nearst neighbor graph of the ELM feature space data H
(6) Iterate for each i, j, and i until convergence (err < ε) or reached the maxiamal iterations [10]

(a)U t+1
i j ← U t

i j
(H V T )i j

(Ut V V T )i j

(b) V t+1
i j ← V t

i j
(H T U+λW V T )i j

((U T UVt )
T + λDV T )i j

(c) err ← max {
∥
∥U t+1−U t

∥
∥√

L K
,

∥
∥V t+1−V t

∥
∥√

K M
}
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Table 1 Statistics of the
three data sets

Datasets Size (N) Dimensionality (M) # of classes (K)

COIL20 1440 1024 20
PIE 2856 1024 68
TDT2 9394 36771 30

4 Experiments Results

In this section, three of the mostly used datasets COIL20 image library, the CMU
PIE face database and TDT2 corpus are used to prove the efficiency of the proposed
algorithm. The important statistics of these data sets are summarized below (see
Table 1). To make the results valid, every algorithm run 20 times on each data set
and obtains the average result. This chapter chooses the sigmoid function as the
ELM feature mapping activation function for it is most used. To obtain the efficiency
and performance of these algorithms with different numbers of hidden nodes, we
adopt the integrated data sets. K-mean is used as the cluster to test the generalization
performance. The clustering result is evaluated by comparing the obtained label
of each sample with the label provided by the data set. Two metrics, the accuracy
(AC) and the normalized mutual information metric (NMI) are used to measure the
clustering performance [11]. Please see [20] for the detailed definitions of these two
metrics. All the algorithms are carried out in MATLAB 2011 environment running
in a Core 2, 2.5 GHZ CPU.

4.1 Compared Algorithms

To demonstrate how the efficiency of NMF can be improve by our method, we
compare the computing time of four algorithms (NMF, GNMFEFM NMF, EFM
GNMF). The hidden nodes number is set as 1, 2, 4, 6, . . . , 18 within 18; 20, 30, . . .,
100 from 20 to 100; 125, 150, . . . , 600 from 125 to 600; 650, 700, . . . , 1000 from
600 to 1000. Comparing the clustering performance of these methods is also revealed
(The values of clustering performance change little when nodes number surpass 100,
that is, only the result of the hidden nodes number from 1to 100 is shown). The max
iterations in NMF, GNMF, EFM NMF and EFM GNMF are 100.

Figure 2 show the time comparing results on the COIL20, PIE, and TDT2 data
sets respectively. Over all, we can see that ELM feature mapping methods (EFM
NMF, EFM GNMFF) is faster than NMF and GNMF when hidden nodes number
is low. With the hidden nodes number increased, the computation time is monotone
increasing. When the number is high, the computation time of EFM NMF or EFM
NMF will exceed NMF and GNMF. Comparing the computation time of EFM NMF
with EFM GNMFF, we can see that EFM NMF is faster than EFM GNMF. However,
by increasing the hidden nodes number, the time difference between EFM NMF
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Fig. 2 Computation time on a COIL20 b PIE c TDT2

Fig. 3 NMI measure clustering performance. a COIL20 b PIE c TDT2

Fig. 4 AC measure clustering performance. a COIL20 b PIE c TDT2

and EFM GNMFF close to a constant. That is because GNMF need to compute the
weight matrix W.

Figures 3 and 4 show clustering performance comparing results on data sets
respectively. Obviously, EFM NMF can not get the approximate clustering perfor-
mance as NMF. Nevertheless, EFM GNMF can reach approximate clustering per-
formance as GNMF, provided that a large enough hidden nodes number is selected.
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Fig. 5 NMI measure clustering performance. Comparing EFM GNMF with EFM EGNMF
a COIL20 b PIE c TDT2

Fig. 6 AC measure clustering performance. Comparing EFM GNMF with EFM EGNMF
a COIL20 b PIE c TDT2

4.2 Original Graph Versus ELM Feature Space Graph

We denote the method that uses ELM feature space neighbor graph to replace the
original space neighbor graph in the EFM GNMF as ELM feature mapping with
ELM space graph NMF (EFM EGNMF).

As show in Figs. 5 and 6, EFM EGNMF can also reach similar clustering perfor-
mance as GNMF. However, comparing with EFM GNMF, EFM EGNMF need more
hidden nodes number to reach similar clustering performance as GNMF. So, ELM
feature mapping may be can simulate the local manifold of the original data.

4.3 The Geometric Structure of ELM Feature Space

Prompt by Sect. 4.2, we speculate that ELM feature mapping can keep approximated
geometric of original data when transforming the original data space into ELM
feature space with a large number of hidden nodes. In order to discover whether
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Fig. 7 NMI measure clustering performance. Comparing ELM with NMF a COIL20 b PIE c TDT2

Fig. 8 AC measure clustering performance. Comparing ELM with NMF a COIL20 b PIE c TDT2

ELM can keep approximated geometric structure of original data, we compare the
cluster performance of ELM with NMF under different hidden nodes number.

As showed in Figs. 7a, c and 8a, c, after transform into ELM feature space, the
data can reach similar clustering performance as NMF, provided the hidden nodes
number is enough. Figure 8b Even the hidden nodes number is huge, the data has an
approximate constant gap with NMF in clustering performance. We can find that the
number of samples for each class is 72 in COIL20 data set, 42 in PIE data set, 313 in
TDT2 data set. So, for ELM feature mapping, it may be that having more samples for
each class can get better performance. ELM feature mapping can keep approximated
geometric of original data not only need enough hidden nodes, but also need enough
samples for each class. This need more experiments to confirm.

4.4 Combining ELM and NMF with Other Constrains

In this chapter, neighbor graph based constrain has been proved powerful. Then, NMF
can combine with a wide variety of subspace constraints that can be formulated into
a certain form such as PCA and LPP. ELM feature mapping combined with general
subspace constrained NMF(GSC NMF) can be the future work.
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5 Conclusions

This chapter proposes a new method named EFM GNMF, which applies ELM feature
mapping and graph constrains to solve computational problem in NMF without
lose generalization performance. Experiments show that when dispose with high-
dimensional data, the efficiency of EFM GNMF is better than directly using NMF
or GNMF. Also, EFM GNMF is compared with GNMF in clustering performance.
Unlike EFM NMF get efficiency without keep generalization performance, EFM
GNMF can reach similar result as GNMF. Moreover, the difference of using the
neighbor graph of the original data space with ELM feature space is raised. ELM
feature mapping can keep approximated geometric structure hidden in the original
data.
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Extreme Support Vector Regression

Wentao Zhu, Jun Miao and Laiyun Qing

Abstract Extreme Support Vector Machine (ESVM), a variant of ELM, is a
nonlinear SVM algorithm based on regularized least squares optimization. In this
chapter, a regression algorithm, Extreme Support Vector Regression (ESVR), is pro-
posed based on ESVM. Experiments show that, ESVR has a better generalization
ability than the traditional ELM. Furthermore, ESVM can reach comparable accuracy
as SVR and LS-SVR, but has much faster learning speed.

Keywords Extreme learning machine ·Support vector regression ·Extreme support
vector machine · Extreme support vector regression · Regression

1 Introduction

Extreme Learning Machine (ELM) is a great successful algorithm for both clas-
sification and regression. It has the good generalization ability at an extremely fast
learning speed [1]. Moreover, ELM can overcome some challenging issues that other
machine learning algorithms face [1]. Some desirable advantages can be found in
ELM such as, extremely fast learning speed, less human intervene and great compu-
tational scalability. The essence of ELM is that the hidden layer parameters need not
be tuned iteratively and the output weights can be simply calculated by least square
optimization [2, 3]. Extreme Learning Machine (ELM) has attracted a great number
of researchers and engineers [4–8] recently.
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Extreme Support Vector Machine (ESVM), a kind of single hidden layer feed
forward network, has the same extremely fast learning speed, but it has a better
generalization ability than ELM [9] on classification tasks. ESVM, a special form
of Regularization Network (RN) derived from Support Vector Machine (SVM), has
the same advantages as ELM such as, that hidden layer parameter can be randomly
generated [9]. Due to these ideal properties, many researches have been conducted on
ESVM [10–13]. In fact, ESVM is a variant of ELM. However, ESVM in [9] cannot
be applied to regression tasks.

In this chapter, Extreme Support Vector Regression (ESVR) algorithm was pro-
posed for regression. Our ESVR algorithm is based on the ESVM model and the
essential of ELM for regression is utilized. Some comparison experiments show that
the ESVR algorithm has quite good generalization ability and the learning speed of
ESVR is quite large.

This chapter is organized as follows. ELM and ESVM are briefly reviewed in
Sect. 2. The linear ESVR, nonlinear ESVR are proposed in Sect. 3. Performances of
ESVR compared with ELM, SVR and LS-SVR are verified in Sect. 4.

2 Extreme Support Vector Machine

We here briefly introduce the basic concept of ELM and Extreme Support Vector
Machine (ESVM). ELM can reach not only the smallest training errors, but also the
best generalization ability [14]. ESVM is based on regularization least squares in
the feature space. The performance of ESVM is better than ELM on classification
tasks [9].

2.1 Extreme Learning Machine

ELM is a single hidden layer forward network (SLFNs). The parameters of the hidden
layer can be randomly generated, and need not be iteratively tuned [2, 3]. The least
square optimization process tackles the output weight vector [2, 3]. Therefore, the
learning speed of ELM is extremely fast. Moreover, ELM has the unified algorithm
to tackle classification and regression problems.

For N arbitrary distinct samples (xi , ti ) ∈ (Rd × Rm), where xi is the extracted
feature vector, and ti is the target output. For the SLFNs, the mathematical model
with L hidden nodes is

L∑

i=1

βigi (x j ) =
L∑

i=1

βi G(ai , bi , x j ) = t̂ j , j = 1, ..., N, (1)
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where t̂ j is the output of the SLFNs, and G(ai , bi , x j ) is the hidden layer feature
mapping. According to [3], the hidden layer parameters (ai , bi ) can be randomly
generated.

The goal of ELM is to approximate the expected targets by the above predicted
targets. That is,

◦Hβ̂ − t◦ = min
β

◦Hβ − t◦, (2)

where

H =


⎧
⎪

G(a1, b1, x1) · · · G(aL, bL, x1)
...

. . .
...

G(a1, b1, xN) · · · G(aL , bL , xN)

⎨

⎩
⎥

N×L

,β =


⎧
⎪

βT
1
...

βT
L

⎨

⎩
⎥

L×m

, T =


⎧
⎪

tT
1
...

tT
N

⎨

⎩
⎥

N×m

.

Therefore, the least square method can be used to solve the above optimization
problem. That is to say, the output weight β can be obtained by the following equation.

β̂ = H†T, (3)

where H† is the Moore-Penrose generalized inverse of matrix H [15].
From the above discussion, ELM can be implemented by the following steps.

First, randomly generate hidden node parameters (ai , bi ), i = 1, ..., L , where L is
the parameter of ELM denoting the number of hidden nodes. Second, calculate the
hidden layer mapped feature matrix H as the above equation. Third, calculate the
output weight by the least square optimization.

2.2 Extreme Support Vector Machine

Instead of using kernels to represent data features by SVM, ESVM explicitly utilizes
SLFNs to map the input data points into a feature space [9]. ESVM is a variant
of ELM [16]. The essential of ESVM is a kind of regularization network. Similar
to ELM, ESVM has a number of advantages, such as, fast learning speed, good
generalization ability and fewer human intervene.

The model of ESVM can be obtained by replacing the inequality constraint in the
traditional SVM with the equality constraint [9].

min
(w,r,y)∈Rñ+1+m

λ

2
◦y◦2 + 1

2

⎦
⎦
⎦
⎦

[
w
r

]⎦
⎦
⎦
⎦

2

s.t. D(γ(A)w − re) + y = e
(4)
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In the above equation, γ(x) : Rn ∗ Rñ is the feature mapping function in the
hidden layer of SLFNs. y is the slack variable of the model. λ is the tradeoff parameter
between allowable errors and the minimization of weights, and e is a vector of size
m×1 which is filled with 1s, where m is the number of the samples. D is the diagonal
matrix of the element of 1 or −1 denoting the labels. A is the sample data matrix.

After deduction, the solution of the model is simply equivalent to calculating the
following expression according to [9]:

[
w
r

]

=
(

I
λ

+ Eγ
T Eγ

)−1

Eγ
T De, (5)

where Eγ = [γ(A),−e] ∈ Rm×(ñ+1).
ESVM can reach better generalization ability than ELM almost in all classifi-

cation tasks [9]. Due to the simple solution, ESVM can learn at an extremely fast
speed. Additionally, the activation functions can be explicitly constructed. However,
diagonal label matrix D must be constructed in the above ESVM model and D must
be with the element of 1 or −1 in the above deduction, which means that the ESVM
model cannot be applied to multi-class classification or regression tasks directly.

3 Extreme Support Vector Regression

In this section, we will extend ESVM from classification tasks to regression tasks.
The linear and nonlinear extreme support vector regression will be proposed.

3.1 The Linear Extreme Support Vector Regression

Our model is derived from the formulation of ESVM. Similar to ESVM, ESVR
also replaces the inequality constraint of the ε-SV regression with the equality con-
straint [17]. But different from ESVM, the diagonal target output matrix need not be
constructed. The model of ESVR is constructed as follows.

min
(w,r,y)∈Rñ+1+m

λ

2
◦y◦2 + 1

2
(wT w + r2)

s.t. Aw − re − T = y
, (6)

where T is the expected target output of the sample data matrix A.
We will provide the solution of the above ESVR model. If w, r have been obtained,

the test process is to calculate xT w−r to get the output target of the sample. Nonlinear
ESVR also will be supplied by introducing a nonlinear feature mapping function in
the following section.
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3.2 The Nonlinear Extreme Support Vector Regression

Nonlinear ESVR can be obtained by simply replace the original data matrix A by
the transformed matrix γ(A).

min
(w,r,y)∈Rñ+1+m

λ

2
◦y◦2 + 1

2

⎦
⎦
⎦
⎦

[
w
r

]⎦
⎦
⎦
⎦

2

s.t. γ(A)w − re − T = y
(7)

After deduction, analytical solution can be obtained.
If m < ñ + 1, we can obtain a simple analytical solution of w and r .

[
w
r

]

= Eγ
T s = Eγ

T
(

I
λ

+ EγEγ
T
)−1

T (8)

If m > ñ + 1,

[
w
r

]

= Eγ
T s =

(
I
λ

+ Eγ
T Eγ

)−1

Eγ
T T, (9)

where Eγ = [γ(A),−e] ∈ Rm×(ñ+1).
From the above discussion, the algorithm of ESVR can be explicitly concluded as

follows. First, randomly generate hidden layer parameters and choose an activation
function. γ(A) can be obtained. Second, construct the matrix Eγ = [γ(A),−e].

Third, choose some positive parameters λ to calculate

[
w
r

]

by expression (8) or (9).

When a new instance x comes, we can use γ(x)T w − r to predict it.

3.3 The Essence of ESVR

Inspired by support vector theory in SVM, ESVR is an proximal algorithm of SVR.
Intuitively, we replace the inequality constraints in ε-SV regression with equal-
ity constraints. The following equation is the ε-SV regression constraints formula
[17, 18].

Ti − ℵw, xi ∧ + r → ε + yi

ℵw, xi ∧ − r − Ti → ε + yβ
i (10)

yi , yβ
i ← 0

Actually, the replacement is a proximal method and proximal decision plane is
obtained in the ESVR.
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After deduction, the analytical solution of ESVR is quite similar to that of ELM.
Compared to the algorithm of ELM, ESVR is similar to regularized ELM besides
a biased term. However, the generalization performance of ESVR is better than
that of ELM, SVR and LS-SVR. The technique used in ESVR is quite important
for overcoming ill-pose problems and singular problems that traditional ELM may
encounter [19]. Furthermore, ESVR has the desirable features as that of ELM such
as, fast learning speed, fewer human intervene. From the computation view, ESVR
is a variant of ELM. Such random parameters are utilized in the ESVR. ESVR has
the similar form of that of regularized ELM.

4 Performance Verification

In this section, the performance of ESVR is compared with ELM, SVR and LS-SVR
on some benchmark regression problems data sets.

4.1 Experimental Conditions

All the simulations for ESVR, ELM, SVR and LS-SVR for regression algorithms
were carried out in MATLAB R2010a environment running in a Xeon E7520,
1.87GHZ CPU. The codes used for ELM, SVR and LS-SVR were downloaded
from 1, 2, and 3 respectively.

In order to extensively verify the performance of ESVR, ELM, SVR and LS-SVR,
twelve data sets of different sizes and dimensions were downloaded from UC Irvine
Machine Learning Repository 4 or StatLib library 5 for simulation. These data sets can
be divided into three categories according to different sizes and feature dimensions.
Baskball, Strike, Cloud, and Autoprice are of small size and low dimensions. Pyrim,
Housing, Body fat, and Cleveland are of small size and medium dimensions. Balloon,
Quake, Space-ga, and Abalone are of large size and low dimensions. Table 1 lists
some features of the regression data sets in our simulation.

In the experiments, three fold cross validation was conducted to select parameters.
The best parameters λ of ESVR, the cost factor C and kernel parameter γ of SVR,
LS-SVR were obtained from the candidate sequence 2−25, 2−24, . . . , 223, 224, 225.
The number of hidden layer nodes ñ in ESVR was obtained from [10, 300] with
step 10. The average performance of testing Root Mean Square Errors (RMSE) was
conducted as the evaluation metric to select the best parameters. And all the data

1 http://www.ntu.edu.sg/eee/icis/cv/egbhuang.html
2 http://asi.insarouen.fr/enseignants/arakotom/toolbox/index.html
3 http://www.esat.kuleuven.be/sista/lssvmlab/
4 http://archieve.ics.uci.edu/ml/
5 http://lib.stat.cmu.edu/

http://www.ntu.edu.sg/eee/icis/cv/egbhuang.html
http://asi.insarouen.fr/enseignants/arakotom/toolbox/index.html
http://www.esat.kuleuven.be/sista/lssvmlab/
http://archieve.ics.uci.edu/ml/
http://lib.stat.cmu.edu/


Extreme Support Vector Regression 31

Table 1 Specification of
regression problems

Datasets # Attributes # Training data # Testing data

Baskball 4 64 32
Cloud 9 72 36
Autoprice 9 106 53
Strike 6 416 209
Pyrim 27 49 25
Body fat 14 168 84
Cleveland 13 202 102
Housing 13 337 169
Balloon 2 1334 667
Quake 3 1452 726
Space-ga 6 2071 1036
Abalone 8 2784 1393

sets were normalized into [−1, 1] before the regression process. The kernel function
used in the experiments was the RBF function. The activation function of ESVR was
sigmoidal function.

4.2 Performance Comparison on Benchmark Datasets

Comparisons of generalization performance between ESVR and ELM on the above
twelve different benchmark regression data sets were firstly carried out. Nonlinear
models with sigmoidal additive feature map function were used for comparison.
Ten round experiments of the same parameters were conducted to obtain an average
performance evaluation in each fold due to randomly selecting parameters in the
hidden layer. Figure 1 is the testing RMSE of ESVR and ELM with different numbers
of hidden nodes on six of the twelve real world data sets.

Figure 1 shows the testing RMSE of ESVR is lower than that of ELM. We can
observe that the performance of ELM is varied greatly with the number of hidden
nodes as well. Moreover, the standard deviation of ELM is much larger than that of
ESVR. The result of the experiment reveals that the generalization of ESVR is better
than that of ELM. Furthermore, ESVR is more stable than ELM from Fig. 1, because
the slack variable added can make our model more stable in the ESVR.

The second experiment was conducted to compare the performances of ESVR,
SVR and LS-SVR. In this experiment, performances of ESVR algorithm were vali-
dated compared with SVR and LS-SVR. The same kernel function (RBF function)
was used for SVR and LS-SVR. The activation function of ESVR was sigmoidal
function. Through three fold cross validation, the best parameters (C, γ) or (λ, ñ)

were obtained. Table 2 records parameters of different models on different data sets.
Table 3 is the performance results of ESVR, SVR and LS-SVR. Training time

and testing RMSE were recoded as the learning speed and generalization ability of
the model separately. The best results for different data sets were emphasized into
bold face.
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Fig. 1 Testing RMSE of ESVR and ELM

Table 3 shows that the testing RMSE of ESVR is the lowest in most of the data sets.
The training time of ESVR is much less than that of SVR and LS-SVR especially in
the large scale data instances. These results reveal that, ESVR has comparable gen-
eralization ability than that of SVR and LS-SVR. Furthermore, the average learning
speed of ESVR can reach at least three times of that of LS-SVR, and at least ten times
of that of SVR on the above real world benchmark data sets. The reason that ESVR
is much faster is the same as that why ELM has an extremely fast learning speed.
The solution of ESVR is an analytical equation. The learning process is simply to
solve an least square expression.

5 Conclusions

This chapter studies the ESVM algorithm and proposes a new regression algorithm
ESVR. Similar to ESVM, ESVR is a new nonlinear SVM algorithm based on regu-
larized least squares and it is also a variant of ELM algorithm. ESVR not only can be
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Table 2 Parameters of ESVR, SVR and LS-SVR

Algorithms SVR LS-SVR ESVR
C γ C γ λ ñ

Baskball 210 22 20 22 24 250
Cloud 220 27 225 216 23 170
Autoprice 219 25 29 27 25 290
Strike 2−3 2−2 2−1 2−1 21 250
Pyrim 20 22 23 23 2−1 260
Body fat 26 23 29 27 22 300
Cleveland 222 213 222 225 2−5 240
Housing 26 21 26 23 27 280
Balloon 23 21 225 25 225 260
Quake 21 2−12 2−1 2−15 20 40
Space-ga 23 2−1 211 23 219 300
Abalone 2−1 2−1 22 22 29 150

Table 3 Performance comparisons of SVR, LS-SVR and ELM

Algorithms SVR LS-SVR ESVR
Testing Training Testing Training Testing Training
RMSE time (s) RMSE time (s) RMSE time (s)

Baskball 0.2567 0.1029 0.2568 0.0049 0.2521 0.0208
Cloud 0.1729 0.0774 0.1810 0.0065 0.1582 0.0115
Autoprice 0.1381 0.1328 0.1359 0.0072 0.1561 0.0365
Strike 0.1443 0.9707 0.1472 0.0541 0.1497 0.0641
Pyrim 0.2151 0.0336 0.2159 0.0051 0.2184 0.0240
Body fat 0.0514 0.0485 0.0502 0.0128 0.0506 0.0458
Cleveland 0.4267 0.2690 0.4333 0.0147 0.4279 0.0365
Housing 0.1469 0.7729 0.1458 0.0455 0.1409 0.0771
Balloon 0.0242 7.8253 0.0099 1.0798 0.0098 0.1932
Quake 0.3438 205.7426 0.3425 2.4292 0.3440 0.0146
Space-ga 0.0654 92.1705 0.0665 2.5293 0.0661 0.3677
Abalone 0.1519 250.4772 0.1486 9.6423 0.1510 0.1875

used to regression tasks, but also can be applied to classification tasks. Performances
of ESVR are compared with that of ELM, SVR and LS-SVR. ESVR has a little
better generation ability than ELM. Compared to SVR and LS-SVR, ESVR has a
comparable generalization ability, but has the much faster learning speed.
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A Modular Prediction Mechanism Based
on Sequential Extreme Learning Machine
with Application to Real-Time Tidal Prediction

Jian-Chuan Yin, Guo-Shuai Li and Jiang-Qiang Hu

Abstract Neural networks have been proved to be efficient for online
identification and prediction of complex nonlinear systems. However, for systems
with time-varying dynamics which are common in practice, networks achieved by
holistic learning scheme cannot reflect the time-varying local dynamics of system.
In this study, a modular prediction scheme is proposed by combining the mecha-
nism model with a neural network predictive model which is online acquired by a
sequential learning extreme learning machine (ELM) based on a sliding data window
(SDW). The SDW-based ELM (SDW-ELM) is online constructed by learning sam-
ples in the real-time updated SDW, is suitable for online identification and prediction
of time-varying system dynamics. Tidal prediction is essential for marine safety and
efficiency, but changes of tidal level is a typical time-varying system which varies
not only with the revolutions of celestial bodies but with the environmental influ-
ences such as atmospheric pressure, wind, rainfall and ice. The harmonic analysis
method is used to represent the influences of celestial bodies, while the SDW-ELM
is used to represent the influences of meteorological factors and other unmodeled
factors. Therefore, the proposed modular based on SDW-ELM is applied for real-
time tidal level prediction based on measurement data in Port Hardy. Simulation
results demonstrate the effectiveness and efficiency of the proposed algorithm and
results are compared with that by online sequential ELM (OS-ELM) algorithm and
SDW-ELM.

Keywords Extreme learning machine · Sliding data window · Time-varying
dynamics · Modular prediction · Tidal prediction
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1 Introduction

Tidal prediction is an important issue in areas of marine safety, coastal construction
design, tidal energy utilization, ocean natural calamities prevention and military
affairs [1]. Precise tidal prediction is vital for the ship operation planning, such as
stipulating ship schedule of navigating through shallow waters or under bridge. Under
such conditions, accurate water depth under keel or clearance under bridge can be
considered to ensure marine safety based on precise real-time tidal level predictions.
The conventional harmonic analysis approach, in which the tide can be expressed
as the superposition of several sinusoidal constituents, is the most commonly used
tidal prediction approach and still the basis for long-term tidal prediction [2]. Loca-
tion and revolution of celestial bodies such as moon and sun, as well as coastal
topography like coastline shape and sea floor profile, are foundation for stipulating
annual tidal table for seafarers. Tidal level is also influenced by meteorological factors
such as atmospheric pressure, wind, rainfall and ice. In addition, other time-varying
factors like river discharge also affect tidal level at estuary sites. However, these
influences cannot be reflected in tidal table, which is the foundation for seafarers to
make voyage planning [3]. Therefore, environmental influences would be ignored
even if they may cause accidents such as grounding on rock. Furthermore, these
meteorological factors are time-varying in nature, which is hard to be represented
by strictly founded mathematical model. Therefore, there is a need to construct an
adaptive model whose structure and parameters can adapt to the above-mentioned
time-varying environmental changes.

Artificial intelligent (AI) techniques have shown their power in nonlinear compu-
tation, and have been widely applied in coastal and marine engineering [4]. Among
various AI techniques, artificial neural network (ANN) can learn and represent com-
plex mapping underlying measured data directly, and stores the knowledge within
computational neurons and connecting weights [5]. Attributing to natures such as
inherent nonlinearity, universal approximation capability and parallel information
processing mechanism, ANN has been implemented successfully in prediction of
different type of tides [3, 6]. Chang and Lin presents a neural network model of sim-
ulating tides at multi-points considering tide-generating forces [7]; Günaydın focuses
on the prediction of monthly mean significant wave heights from meteorological data
by using both artificial neural network (ANN) and regression methods [8]; Huang
et al. presents a regional neural network for water level (RNNWL) prediction method;
[9]; Lee proposed a back-propagation neural network mode which is efficiently for
short-term and long-term tidal level predictions [2]; Lee also proposed neural net-
work model for storm surge predictions which using four input factors, including
the wind velocity, wind direction, pressure and harmonic analysis tidal level [10];
Liang et al. incorporate in the neural network the non-astronomical meteorological
components for tidal level predictions under weathers such as typhoon and storm
surge [3]; Rajasekaran et al. applied the functional networks (FN) and sequential
learning neural network (SLNN) approaches for tidal predictions using short-term
observation [11]; Tseng et al. developed a typhoon-surge forecasting model with a



A Modular Prediction Mechanism Based on Sequential Extreme Learning Machine 37

back-propagation neural network in which the factors of typhoons characteristics,
local meteorological conditions and typhoon surges at considered tidal station are
both incorporated [12]; Yin et al. proposed a sequential learning algorithm to con-
struct variable structure radial basis function network for real-time tidal prediction
[13]. However, the structures of the commonly implemented neural networks are
static, which cannot represent the time-varying system dynamics which varies with
environmental changes mentioned above. Furthermore, networks with static dimen-
sion will inevitably result in phenomenon of over-fitting or under-fitting in process-
ing data arriving sequentially, both would deteriorate the generalization capability
of resulted network.

Sequential learning algorithms are designed for time-varying system dynamics
by constructing ANN with variable structure [14]. The algorithms generate variable
structure neural networks whose hidden neurons are added or pruned at each step
upon learning samples sequentially, and the parameters are tuned accordingly. The
sequential learning algorithm is originated from resource allocation network (RAN)
algorithm [14], which learn samples sequentially and adding neurons accordingly
at each step; Lu improves RAN by incorporating pruning strategy in the learn-
ing process, the resulted minimal RAN (MRAN) adding or pruning the neurons
adaptively during learning [15]. Unlike conventional neural network theories and
implementations, Huang proposes a extremely fast learning algorithm for feedfor-
ward neural network referred to as extreme learning machine (ELM) whose perfor-
mance has been evaluated on a number of benchmark problems [16, 17]. Based
on ELM, Liang et al. proposed the online sequential extreme learning machine
(OS-ELM), improved ELM from batch learning to be able to handle data which
arrives sequentially or chunk-by-chunk with varying chunk size [18]. OS-ELM
has been applied in varies areas and simulation results indicate that it produces
better generalization performance with lower training time, comparing with other
sequential learning algorithms such as resource allocation network (RAN) and its
extensions [15, 19, 20].

Sliding data window (SDW), which is frequently used for representing time-
varying dynamics, has been adopted in various areas such as signal processing [21]
and control [22]. In order to obtain accurate solutions in current situation and to avoid
overflow in orthogonal decomposition of the oldest measurement, Luo and Billings
forms a sliding data window to represent current system dynamics [23]. Akpan and
Hassapiswe use a sliding stack window to store a short history of the training pat-
terns, and implement this continuously updated stack for neural network training [22].
However, the model achieved by learning samples in sliding window can only rep-
resent local system dynamics and cannot reflect the global characteristics of system
and may cause model instability. It is straightforward to take both advantages of
global and local model by combining them together, the result modular structure can
achieve better approximation and prediction accuracy with satisfying stability [24].
ELM has shown its computational power in various applications. Therefore, in this
chapter, a modular neural network is proposed to construct a better inputCoutput
mapping both locally and globally, by combining the mechanism model with a ELM
which is online constructed based on a sliding data window.
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To represent and predict the influence of various time-varying environmental
factors on tidal changes, the proposed modular prediction approach is implemented
for real-time tidal level prediction. The model is composed of the mechanism module
which is performed by conventional harmonic tidal prediction method, and a neural
network module which is realized by ELM based on SDW (SDW-ELM) which is
real-time updated. The SDW-ELM adjusts network structure and connecting parame-
ters by learning samples in the sliding window sequentially, and makes predictions
simultaneously. The proposed neural prediction model was applied to real-time tidal
level prediction at Port Hardy, a west coast of Canada, to validate its feasibility and
effectiveness.

2 Sequential ELM Based on Sliding Data Window
(SDW-ELM)

2.1 Sliding Data Window

Real-time construction of neural network by sequential learning is a research focus
in recent years [25]. In a sequential learning scheme, if an algorithm learns only
the latest received single sample at one step, the resulted network would be highly
affected by the particular sample and may result in instability of network; while
if there are too much samples, such as all the historically received samples, to be
learned at one step, the resulted network cannot reflect the real-time changes in
system dynamics, and the computational burden will be increased accordingly. To
make a compromise, a sliding data window (SDW) is employed in the present study
to represent the input-output mapping of system dynamics, and the algorithm learns
samples in the window.

In the proposed learning scheme, samples are presented to the sliding window
sequentially. The hidden neurons are determined by ELM algorithm. As the ELM
only need to process the data in the sliding data window with fixed size, the com-
putational burden is highly reduced comparing with OS-ELM algorithm. Once the
hidden neurons are determined, the connecting weights between the hidden layer
and output layer are adjusted accordingly. The most important feature of the result-
ing network is that the network can focus on the current dynamics of system which
is represented by the sliding data window, thus the variable structure network can
capture the real-time changes in system dynamics.

The SDW is implemented for representing the current dynamics of system. SDW
is a first-in-first-out (FIFO) sequence: when the newly received sample slides in the
window, the foremost one will be removed simultaneously. At time of t, the sliding
data window is described as:

WSD = [(xt−N+1, yt−N+1), . . . , (xt, yt)], (1)
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where WSD denotes sliding data window, N is the width of the sliding data window.
x and y are inputs and outputs of the sliding data window with dimension of Rn×N

and Rm×N , with n and m are dimensions of input and output, respectively.
At time of t + 1, the SDW is updated by substituting the t in (2) with t + 1:

WSD = [(xt−N+2, yt−N+2), . . . , (xt+1, yt+1)], (2)

with the width of the window remain unchanged.

2.2 Single Hidden Layer Feedforward Neural Networks
(SLFNs)

Assume we have N arbitrary distinct samples (xk, tk) ∈ Rn × Rm, where xk is an
input vector and tk is the corresponding desired output. A standard single hidden
layer feedforward networks (SLFNs) with Ñ additive hidden nodes and activation
function G(x) can be represented by

fÑ (xk) =
Ñ∑

i=1

ωiG(ai · xk + bi), k = 1, . . . ,N . (3)

where ai = [a1i, · · · , ani]T is the weight vector connecting the input layer to the ith
hidden node, bi is the bias of the ith hidden node, and ai ·xk denotes the inner product
of vectors ai and xk in Rn. The activation functions G(x) are sigmoids. For notational
simplicity, here the scalar output case is considered. Extension to the multioutput case
is straightforward. In fact, multioutput SLFNs can always be separated into a group
of single output SLFNs. A schematic of the SLFNs with the scalar output is depicted
in Fig. 1.

The ultimate purpose of SLFNs is to find out the values of ωi, ai and bi such that∑N
k=1 ◦fÑ (xk) − tk◦ = 0, or

fÑ (xk) =
Ñ∑

i=1

ωiG(ai · xk + bi) = tk, k = 1, . . . ,N . (4)

Then, Eq. (4) can be written compactly as

Hω = T, (5)
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Fig. 1 The schematic of the
SLFNs with the scalar output

where

H(a1, . . . , aÑ , b1, . . . , bÑ ,x1, . . . , xN )

=


⎧
⎪

G(a1 · x1 + b1) · · · G(aÑ · x1 + bÑ )
... . . .

...

G(a1 · xN + b1) · · · G(aÑ · xN + bÑ )

⎨

⎩
⎥

N×Ñ

, (6)

ω =


⎧
⎪

ω1
...

ωÑ

⎨

⎩
⎥ and T =



⎧
⎪

t1
...

tN

⎨

⎩
⎥ . (7)

H is called the hidden layer output matrix of the network, the ith column of H is
the ith hidden node’s output vector with respect to inputs x1, x2, . . . , xN and the kth
row of H is the output vector of the hidden layer with respect to input xk .

2.3 Extreme Learning Machine

The main idea of ELM is that for N arbitrary distinct samples (xk, tk) in order to
obtain arbitrarily small non-zero training error, one may randomly generate Ñ(∗ N)

hidden nodes (with random parameters ai and bi). Under this assumption, H is
completely defined. Then, Eq. (5) becomes a linear system and the output weights
ω are estimated as

ω̂ = H†T = (HTH)−1HTT, (8)

where H† is the Moore-Penrose generalized inverse of the hidden layer output
matrix H. Calculation of the output weights is done in a single step here. Thus this
avoids any lengthy training procedure to choose control parameters (learning rate and
learning epochs, etc.). Universal approximation capability of ELM has been analyzed
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in [16], which indicated that SLFNs with randomly generated additive or RBF
nodes can universally approximate any continuous target function on any compact
subspace of Rn. Besides, in the implementations of ELM, the activation functions for
additive nodes can be any bounded nonconstant piecewise continuous functions and
the activation functions for RBF nodes can be any integrable piecewise continuous
functions.
ELM Algorithm. Given a training set ℵ = {(xk, tk)|xk ∈ Rn, tk ∈ R, k = 1, . . . ,N},
activation function G, and hidden node number Ñ .

Step 1. Randomly assign hidden node parameters (ai, bi), i = 1, . . . , Ñ .
Step 2. Calculate the hidden layer output matrix H.
Step 3. Calculate the output weight ω̃ : ω̃ = H†T.

2.4 Extreme Learning Machine Based on Sliding Data Window

The conventional ELM theory can be implemented within the learning of data in SDW
similarly. That is, for N arbitrary distinct samples (xt−N+1, yt−N+1), . . . , (xt, yt) in
the sliding window, in order to obtain arbitrarily small non-zero identification error,
one may randomly generate Ñ, Ñ ∗ N hidden nodes with random parameters. Under
this assumption, response matrix H is completely defined and H is the response
matrix of hidden nodes with respect to the SDW as inputs. Then, Hw = Y becomes
a linear system and the output weightsω are estimated according to (8) where H† is the
Moore-Penrose generalized inverse of the hidden layer response matrix H. It is noted
that the calculation of the output weights is done in a single step here thus avoids any
lengthy repetitive training procedure to choose control parameters such as learning
rate and learning epochs, etc.. Universal approximation capability of ELM has been
analyzed [16], which indicates that single layer feedforward networks (SLFNs) with
randomly generated additive or radial basis function (RBF) nodes can universally
approximate any continuous target function on any compact subspace of RN . Besides,
in the implementations of ELM, the activation functions for additive nodes can be any
bounded nonconstant piecewise continuous functions and the activation functions for
RBF nodes can be any integrable piecewise continuous functions.

The learning process and prediction process are conducted at each step. In this
study, the conventional autoregressive (AR) model is adopted. For arbitrary l-step-
ahead prediction, at t-th step, the N data pairs for learning is:

y(t) = f (y(t − l), y(t − l − 1), . . . , y(t − l − N + 1)) (9)

where N is width of SDW, y(t − l), y(t − l − 1), . . . , y(t − l − N + 1) is input and
y(t) is output. Once the structure and parameters is determined, the achieved ELM
is implemented for l-step-ahead prediction at each step:

y(t + l) = f (y(t), y(t − 1), . . . , y(t − N + 1)) (10)
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Fig. 2 The leaning process of
the modular prediction model
based on SDW-ELM

where N is width of SDW, y(t), y(t − 1), . . . , y(t − N + 1) is input and y(t + l) is
prediction output.

3 Modular Sequential ELM Based on Sliding Data Window

The parametric model and non-parametric model are suitable for representing the
static and time-varying dynamics of system, respectively. A straightforward approach
is to combine the mechanism module and neural network module into one ensemble
system of presumably better quality and treat the combined output as the final forecast
[26]. Modular neural networks can incorporate priori knowledge, thus possess merits
such as robustness and parsimonious model structure.

In this study, conventional harmonic method is implemented to predict
the periodical tidal changes which is driven by the revolution of celestial bodies;
the ELM based on sliding data window is implemented to represent and predict the
residual of the actual tidal level comparing to the harmonic model. The residual can be
considered to be caused by time-varying meteorological or hydrological factors such
as air pressure, wind, rainfall or river flow. Predictions generated by the two modules
are combined together to form the final prediction model. That is, the two identi-
fication module is combined in series connection to form one ship motion forecast
describing the current dynamics of tidal changes. The learning process configuration
of the proposed combined modular is illustrated as Fig. 2.

The learning process is conducted in two steps. Firstly, the harmonic method is
implemented to give tidal level predictions, and the prediction of y is denoted as yM .
yR is the residual between y(t) and yM . yR is composed of yR(t), . . . , yR(t − ny),
with ny is the order of the autoregressive (AR) model. The residual information is
considered as the effects of time-varying environmental changes. To train ELM, we
set yR(t−1), . . . , yR(t−ny) as input and yR(t) as output. After the ELM is constructed
by learning data pairs of yR in SDW, the achieved SDW-ELM module is combined
with the harmonic method and form the modular prediction model. At each step,
once the SDW-ELM is trained, yR(t), . . . , yR(t − ny + 1) is then set as input and the
yR(t + 1) would be the prediction of the influence of environment to the tidal levels.
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Fig. 3 The prediction process
of the modular prediction
model based on SDW-ELM

The result is combined with the result by the harmonic method and get the final tidal
prediction result. The prediction process is illustrated in Fig. 3.

4 Online Tidal Level Prediction Performance

4.1 Tidal Level Prediction by Harmonic Method

As the conventionally used tidal level prediction method, harmonic method takes
consider of the effects of celestial bodies and can give stable long-term predictions.
Therefore, in this study, the harmonic method is employed in the modular mechanism.
The result of harmonic prediction is a superposition of many constituents whose
amplitudes and frequencies are determined by local analysis based on the long-
term tidal measurements. Thus, the tidal level can be predicted as a time-dependant
function:

h(t) = a0 +
n∑

i=1

hi cos(ωit − φi) + εi (11)

where a0 is the mean sea level (MSL); n is the number of constituents; hi, ωi and φi are
the amplitude, frequency and phase of the corresponding constituent, respectively.
And εi is the unmolded error and will be modeled by the RBFN constructed by SDW-
ELM.

Measured tidal level data of Port Hardy, a west coast port of Canada, is imple-
mented to evaluate the feasibility and effectiveness of the proposed SDW-ELM and
modular prediction model based on SDW-ELM. Figure 4 shows the tidal data ranges
from GMT0000 April 1 to GMT2300 April 30, 2013. All the measurement data of
Port Hardy in this study are achieved from web site http://www.pac.dfo-mpo.gc.ca.
The conventional harmonic tidal prediction result is also shown in Fig. 4.

It is shown in Fig. 4 that the tidal level values predicted by harmonic method
diverse much from measured ones at some point, which means that there are

http://www.pac.dfo-mpo.gc.ca
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Fig. 4 The measured tidal level of Port Hardy and predicted results with harmonic method
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Fig. 5 Prediction error of tidal level using harmonic method

prediction error by harmonic method. The reason of diverse lies in many aspects,
part of them is due the fact that the approach of harmonic method only take consider
in factors of celestial bodies, whereas does not consider time-varying environmental
factors such as wind, air pressure, ice, rainfall, etc. When the severe weather condi-
tions occur such as storm surge or abrupt barometer pressure changes, the influence
may cause a diverge to 1m from ordinary tidal level, which may cause harm to the
coastal construction, marine transportation or people’s lives in coastal areas.

The residual of the prediction of harmonic method is shown in Fig. 5.
It can be seen in Fig. 5 that the residual of conventional harmonic tidal prediction

method display the characteristics of time-varying which may attribute to environ-
mental influences. Since the environmental changes cannot be reflected by harmonic
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Fig. 6 1-step-ahead prediction error of tidal level using SDW-ELM

method, the proposed SDW-ELM and modular prediction based on SDW-ELM are
implemented to represent the time-varying environmental influences.

4.2 Tidal Level Prediction by SDW-ELM

The SDW-ELM method is implemented for online tidal prediction based on the
measured tidal level data of Port Hardy. The sample interval of the data is 1 h. To
evaluate the performance of SDW-ELM on a long range, 720 steps of simulation is
conducted. The parameters of SDW-ELM is: the width of SDW, N , is set 72, that is
the tidal level data over 3 days; the number of hidden neurons assigned to the ELM
is 24. 720 steps of simulation is conducted and altogether 50 times of simulation is
conducted and the average prediction error of 1-step-ahead tidal level prediction is
shown in Fig. 6.

The average running time for each step is 0.0024 s. The average identification
root mean square error (RMSE) over 50 times is 0.0072 m and the average of pre-
dictive mean absolute error (MAE) is 0.0149 m. To evaluate the performance of the
SDW-ELM, OS-ELM is also implemented based on the same measurement data
and Simulation result is depicted in Fig. 7. For OS-ELM, the number of assigned
hidden units is 24. The average running time for each step is 0.0045 s, the average
identification RMSE and prediction MAE over 50 times is 0.0123 and 0.0152 m,
respectively.

It can be seen from comparison that the processing speed of SDW-ELM is twice
higher than that of OS-ELM method. This is because that the SDW-ELM only need to
handling the data in the sliding window which much less than all the received samples
in OS-ELM. The learning RMSE of OS-ELM is smaller than that of SDW-ELM but
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Fig. 7 1-step-ahead prediction error of tidal level using OS-ELM
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Fig. 8 2-step-ahead identification and prediction errors of tidal level using OS-ELM

the prediction accuracy of SDW-ELM is slightly higher than that of OS-ELM. That
means that the performance of SDW-ELM overwhelm OS-ELM for 1-step-ahead
tidal prediction for short term prediction.

Conventionally the prediction accuracy declines with the increase of predic-
tion horizon. To evaluate the prediction performance for a longer time domain, the
simulation results of 2-h-ahead prediction and 3-h-ahead prediction using the OS-
ELM and SDW-ELM methods are shown in Figs. 8, 9, 10 and 11, respectively. In
Figs. 8, 9, 10 and 11, both identification error and prediction error are depicted in the
figures, with the black dotted line denote the identification error and the blue solid
line denote the prediction error.
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Fig. 9 2-step-ahead identification and prediction error of tidal level using SDW-ELM
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Fig. 10 3-step-ahead identification and prediction errors of tidal level using OS-ELM

It is shown from Figs. 8 and 9 that performance of SDW-ELM overwhelms that
of the OS-ELM method, which also demonstrate the effectiveness of SDW in repre-
senting time-varying dynamics. The same conclusion can be drawn by comparison
between Figs. 10 and 11. It is also find that the identification error and prediction
error both increases with the increase of prediction horizon, which can be noted by
comparing Fig. 8 with Fig. 10, and Fig. 9 with Fig. 11, respectively.
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Fig. 11 3-step-ahead identification and prediction error of tidal level using SDW-ELM
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Fig. 12 1-step-ahead prediction error of tidal level using modular model based on SDW-ELM

4.3 Tidal Level Prediction by Modular Prediction based on
SDW-ELM

However, as analyzed above, the SDW-ELM focus on the local dynamics whereas the
OS-ELM can represent the global dynamics. With the prolonged prediction horizon,
the performance of OS-ELM overwhelm that of SDW-ELM as the local dynamics
which is reflected by SDW-ELM is a time-varying process, so the achieved SDW-
ELM is suitable for short-term prediction and not suitable for long-term predictions.

Simulation result of average prediction and identification error over 50 times are
shown in Fig. 12.

The average processing time of each step is 0.0012 s, the average identifica-
tion RMSE is 0.0163 m and average prediction MAE are 0.0142 m, respectively.
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Fig. 13 2-step-ahead identification and prediction errors of proposed modular method

0 100 200 300 400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time (h)

er
ro

r 
(m

)

Fig. 14 3-step-ahead identification and prediction errors of proposed modular method

The simulation results for 2-step-ahead and 3-step-ahead predictions are simulated
using proposed modular method and the results are depicted in Figs. 13 and 14.

For two-hours-ahead prediction, the average identification RMSE and prediction
MAE becomes 0.0256 and 0.0248 m, which is much smaller than that of the SDW-
ELM and OS-ELM. It is noticed from simulation results that the prediction accuracy
is improved by combining the mechanism model and neural network model especially
under conditions of long-term prediction. That is, the holistic dynamics caused by
celestial body is represented by harmonic method, and the SDW-ELM only need to
focus on the prediction residual of harmonic method, which is caused by time-varying
meteorological, hydrological and other factors.

To depict the prediction performance of the OS-ELM and SDW-ELM in a longer
time domain, simulations are conducted over the prediction horizon of 12 h and
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Fig. 15 Prediction error of tidal level over prediction horizon of 12 h using OS-ELM
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Fig. 16 Prediction error of tidal level over prediction horizon of 12 h using SDW-ELM

the results of 1-h-ahead to 12-h-ahead prediction are shown in Figs. 15 and 16,
respectively.

It can be noticed from Figs. 15 and 16 that the prediction with SDW-ELM
varies violently with time and prediction horizon, which means it only represent
the local system dynamics and will inevitably bring instability under circumstance
of long-term prediction. The OS-ELM method performs more stable than SDW-
ELM method, but it incorporate the information of all the received samples and
cannot represent the time-varying system dynamics. The same problem exists in the
conventional harmonic method. It means that all the above-mentioned methods are
not suitable for precise long-time tidal prediction.

It is straight forward to combine the models which reflects local dynamics and
global dynamic respectively. In this study, the harmonic tidal prediction model, the
most popular mechanism model is implemented for representing the holistic charac-
teristics of tidal changes, and the SDW-ELM is implemented for representing local
dynamics by using the prediction residual by harmonic method. The sum of the
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Fig. 17 Prediction error of tidal level over prediction horizon of 12 h using modular model based
on SDW-ELM

Table 1 Tidal level prediction simulation results of Port Hardy

Prediction methods SDW-ELM OS-ELM Modular prediction
Simulation results RMSEIden MAEPred RMSEIden MAEPred RMSEIden MAEPred

1-h-ahead 0.0072 0.0149 0.0123 0.0152 0.0163 0.0142
2-h-ahead 0.0240 0.0436 0.0412 0.0452 0.0256 0.0248
3-h-ahead 0.0504 0.0870 0.0861 0.0899 0.0318 0.0322
6-h-ahead 0.1433 0.2340 0.2425 0.2370 0.0369 0.0403
12-h-ahead 0.0668 0.1250 0.1362 0.1404 0.0369 0.0427
24-h-ahead 0.0401 0.0818 0.1194 0.1320 0.0359 0.0442

prediction results by two prediction is the results of the modular prediction model.
The tidal prediction simulation of 1-step-ahead prediction using the modular pre-
diction model. The window width is 24 and the assigned number of hidden units
is 4. Simulations of online tidal level prediction over prediction horizon of 12 h are
conducted by using modular prediction model based on SDW-ELM and results are
shown in Fig. 17.

It can be seen from Fig. 17 that the proposed modular prediction model demon-
strates much higher prediction accuracy than the harmonic method, SDW-ELM
model and OS-ELM. Even under condition of 12-h-ahead prediction, the maximum
prediction error below 0.16 m which can satisfy the need of seafarers for stipulating
voyage plans. The high prediction accuracy modular model is based on the strictly
founded physical model of harmonic method and the SDW-ELM which can precisely
represent the time-varying dynamics of tidal changes.

The changes of tide is a periodic process, and it may also influence the identi-
fication and prediction accuracies of many algorithms. The average identification
RMSE (RMSEIden) and prediction MAE (MAEPred) of 720 steps of prediction over
50 times of simulation are listed in Table 1, under circumstances of 1, 2, 3, 6, 12 and
24 h ahead prediction, respectively.

It is shown in the table that under condition of short-term prediction (1, 2 and
3 steps ahead), all the method possesses satisfying identification and prediction
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performance, but the OS-ELM and modular model possesses faster processing speed
owing to the limited number of samples needed to be processed. However, it is inter-
esting to notice that for methods of SDW-ELM and OS-ELM, there are larger iden-
tification and prediction errors under condition of 6-h-ahead prediction, whereas the
performance is much improved under conditions of 12 and 24 h ahead predictions.
It is the periodicity that causes this phenomenon. As the period of the tide is about
12 h and 24 min, the characters of current tide dynamics is like the dynamics of tide
12 and 24 h before. It can also be noticed from Table 1 that the modular method
are affected little by the periodicity because the periodicity mainly caused by celes-
tial bodies has been represented by mechanism harmonic prediction module, so the
SDW-ELM module can concentrate on the identification and prediction of the time-
varying effects caused by environmental disturbances such as meteorological and
hydrological factors.

5 Conclusions

To fit the need in areas of navigation efficiency and safety, this chapter proposes an
accurate modular tidal prediction model. The modular prediction model combines
the strictly founded mechanism tidal prediction model of harmonic method with
a sequential learning ELM whose hidden units and connecting parameters can be
adjusted based on the learning of data in a sliding data window. The model takes
both advantages of global prediction and local prediction, the prediction accuracy is
highly improved. And the processing speed is faster than that of OS-ELM method
cause it only need to process the limited number of data in the sliding data window.
The tidal prediction simulation is conducted base on the measured data of Port Hardy
and the results demonstrate the feasibility and effectiveness of the proposed modular
method.
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An Improved Weight Optimization
and Cholesky Decomposition Based
Regularized Extreme Learning Machine
for Gene Expression Data Classification

ShaSha Wei, HuiJuan Lu, Yi Lu and MingYi Wang

Abstract The gene expression data classification problem has been widely studied
due to the development of DNA microarray technology. However, how to classify
the complex gene expression data accurately still remains as a major problem. In
this chapter, an improved Regularized Extreme Learning Machine (RELM) method
is proposed for gene expression data classification. The new training algorithm,
called COW-RELM, is based on weight optimization and Cholesky decomposition.
In the proposed method, the input weights of RELM are optimized based on genetic
algorithm in which the fitness function is defined as the reciprocal of error function.
To accelerate the speed of the algorithm, the output weights matrix is optimized based
on Cholesky decomposition. The experiments of COW-RELM algorithm have been
conducted on the Breast, Leukemia, Colon, Heart and other gene expression data.
The results are thus presented to show the excellent performance and effectiveness
of the classification accuracy.

Keywords Regularized extreme learning machine ·Weight optimization ·Cholesky
decomposition · Gene expression data

1 Introduction

With the wide application of Microarray technology, a growing number of gene
expression data is used to study the gene functions, as well as the relationship between
specific genes and certain disease [1]. Gene expression data is obtained through DNA
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microarray hybridization test after pretreatment, which usually represents in the form
of matrix [2].

Data classification [3] is used to divide genes into different groups according to
the similarity or pattern of gene expression data. In 1999, Alon firstly classified the
colon cancer data set into multi-groups using hierarchical clustering algorithm [4].
Gloub [5] constructed the classifier with nearest neighbor algorithm to predict the
classification of leukemia. Khan and Narayanan obtained the classification model by
the known samples through artificial neural network [6]. Furey and Lu realized the
classification of gene expression data respectively by using support vector machine
(SVM) and compressed sensing technology [7, 8].

In 2006, Huang proposed an original algorithm called extreme learning machine
(ELM) in [9]. This method makes the selection of the weights of the hidden neurons
very fast. Hence, compared to some classical methods, the overall computational time
for model structure selection and actual training of the model is often saved a lot.
Furthermore, the algorithm remains rather simple, which makes its implementation
easy. However, there are inherent limitations in ELM. Studies show [10] that in most
cases ELM has high performance, but hidden layer initial parameters (connection
weights, the offset value, the number of nodes) of ELM have big impacts on clas-
sification accuracy. Huang proposed I-ELM which increases hidden layer node of
ELM one by one to improve the convergence rate. In 2008, Huang proposed another
algorithm EI-ELM which can produce a more compact network structure and learn
faster [11, 12]. The above-mentioned ELMs do not take into account the structural
risks that may lead to overfitting problems. In 2010, Deng [13] proposed a Regu-
larized Extreme Learning Machine (RELM) which incorporates the structural risk
minimization theory and the weighted least squares method into the ELM. RELM has
better generalization performance that not only minimizes the training error, but also
makes the edge distance maximized. Further, it has certain anti-jamming capability
for outliers.

The input weights and hidden layer of RELM are randomly assigned and the
changes of the hidden layer output matrix of RELM may be very large [14, 15]. This
in turn results in large changes of the output weight matrix, which greatly increases
both empirical risk and structural risk, and degenerates the robustness.

In this chapter, we studied the RELM with both input weights and output weights
matrix for gene expression data classifications [13–15], and develop a new training
algorithm, called COW-RELM. The RELM input weights are optimized based on
Genetic Algorithm (GA). The fitness function of GA is defined as the reciprocal of
error function. When the number of samples is relatively large, the training speed of
the output weights solving progress is slow. Optimizing the output weights matrix
with the Cholesky decomposition method can improve the training speed and reduce
training time. The proposed algorithm has been applied to the Breast, Leukemia,
Colon, Heart and other gene expression data, the experimental results show signifi-
cant improvement in classification results.
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2 RELM

According to statistical theory in [16], the actual risks include empirical and structural
risks. RELM considers these two factors at the same time through the parameter γ

to adjust the proportion. The mathematical model of RELM can be expressed as:

min(
1

2
∈β∈2 + γ

2
∈ε∈2) (1)

Subject to
N∑

i=1

β i g
(
ai x j + bi

) − t j = ε j (2)

where ε is the matrix of errors between the reference feature vectors and the feature
vectors generated by the hidden layer of RELM in [17]. γ is the proportion of two
kinds of risk parameters. ∈β∈2 is used to smooth the cost function at the singular
point of the correlation matrix of the feature vectors to avoid the ill-posed inverse
of the data matrix and improve the robustness of RELM with respect to the noisy
environment in [13, 14, 17].

The Eq. (3) which is converted to an unconditional extremum problem by
Lagrange function, is a conditional extremum one. The following Lagrange function:

(βεα) = γ

2
∈ε∈2 + 1

2
∈β∈2 −

N∑

j=1

α j
(
g

(
ai x j + bi

) − t j − ε j
)

= γ

2
∈ε∈2 + 1

2
∈β∈2 − α (Hβ − T − ε) (3)

where α = [α1, α2, . . . , αN ] , α j ◦ Rm ( j = 1, 2, . . . , N ), and α represents the
Lagrange weights. Let’s solve the partial derivative of each variable in the Lagrange
function and make partial derivative to zero:

⎧
⎪⎨

⎪⎩

∂
∂

∗ βT = αH (4.1)
∂
∂ε

∗ γ εT + α = 0 (4.2)
∂
∂α

∗ Hβ − T − ε = 0 (4.3)

(4)

Substituting Eq. (4.3) to (4.2):

α = −γ (Hβ − T )T (5)

β =
⎥

I −1γ + H T H
⎦−1

H T T (6)

I is the unit matrix. Since the formula contains only a N × N (Nℵ N ) matrix
inverse operations, the calculation is fast.
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3 The Input Weight Optimization of RELM Based on GA

For random allocation of input weights, a large output change matrix leads to larger
output weight matrix. As a result, Empirical risk and structural risk are increased
to degenerate the robustness of RELM. Instead of randomly selected weight as the
goal stated in [17], this chapter defines the reciprocal of the error as the fitness value
with GA: (1) the error between the reference feature vectors and the feature vectors
generated by the hidden layer of the RELM classifier can be minimized and then
(2) the error between the desired output pattern and the actual output pattern of the
RELM classifier is minimized.

3.1 Basic of Genetic Algorithm

Genetic Algorithms (GA) was first introduced in 1965 by professor Holland [18]
based on the Darwin’s theory of evolution and population genetics of Mendel. Bio-
logical strategies of behavior adaptation and synthesis are used to enhance the prob-
ability of survival and propagation during their evolution and it has good advantages
in finding the best global answer of optimization problem. There are four major
parts required in the conventional genetic algorithm to solve a problem, namely
the encoding mechanism, the fitness function, the variables for controlling and the
genetic operators. With the reason that GA can’t deal with the parameters of the
problem space directly, its first step has to convert the solution parameters form of
the optimization problem to the gene chain expression. In this chapter, we use binary
number to encode the solution.

Without using external information in the optimization search, it only evaluates
each chromosome’s pros and cons depending on the value of fitness function. The
bigger fineness value of an individual indicates the better fitness for that individual
to survive for next generation.

3.2 The Weight Optimization Based on GA

According to the above analysis, the weight optimization based on GA between input
layer and hidden layer works as follows:

Step 1: The initial population of weight is filled with individuals that are generally
created at random. Each chromosome is encoded in binary numbers which
correspond to the relationship of input layer and hidden layer.

Step 2: The fitness function is defined as the reciprocal of the error function. So the
bigger of the fitness value has, the better fitness a solution has.

Step 3: If the termination criterion is met, the best solution is returned.
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Step 4: From the current population, the least fitted individuals are omitted based
on the previously computed fitness values.

Step 5: New individuals are generally created as offspring of parents after crossover
and mutation operations.

Step 6: Actions starting from Step 2 are repeated until the termination criterion is
satisfied.

F = 1
/

E (7)

E = 1

2P

P∑

P=1

O∑

i=1

[
Y

p
i (t) − Y P

di (t)
]2

(8)

where E is defined as the average square error function, the smaller difference of
squares, the higher accuracy of training, thus, F is defined as the reciprocal of E
which is the fitness function. The larger the fitness value, the better the training
results, the more suitable weight obtained. P as the number of training samples; O
for the number of output layer neurons, Y

p
i (t) is the actual output of the ith neuron

of the Pth sample, Y P
di (t) for the expected output. The bigger E is, the smaller F is.

4 Output Weights of RELM Based on Cholesky Decomposition

Computing the output weight β is the next task after optimizing the input weight in
RELM. In [14], the authors proposed one method which involve matrix inversion.
However, it requires intensive computation which reduces training efficiency of the
RELM. In this chapter, we propose an approach to obtain RELM output weights
based on Cholesky decomposition.

By the Eq. 4:
⎥

r−1 I + H T H
⎦
β = H T T (9)

Make A = r−1 I + H T H, b = H T T , the Eq. 9 is transformed to:

Aβ = b (10)

Prove coefficient A is symmetric positive definite matrix:

Step 1:

AT =
⎥

r−1 I + H T H
⎦T = r−1 I + H T H = A (11)

Step 2:

xT Ax = xT
⎥

r−1 I + H T H
⎦

x = r−1xT x + (H x)T H x (12)
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From what has been discussed above, A is a symmetric matrix when

x ∧= 0, r−1x
T

x > 0, (H x)T H x > 0. Therefore, xT Ax > 0. So A is symmet-
ric positive definite matrix.

A = SST (13)

S is a triangular matrix with a diagonal of positive element:

Sij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√

aij −
i−1∑

n=1
S2

in i = j,
(

aij −
j−1∑

n=1
SinSjn

)
/

Sjj i > j.

(14)

Substituting Eq. 13 to 12 and multiplying S−1 with both sides:

ST β = F (15)

Among them F = S−1b (16)

fi =
⎧
⎨

⎩

bi
/

Sii i = 1,
(

bi −
i−1∑

n=1
Sni fn

)/
Sii i > 1.

(17)

Eventually:

βi =
⎧
⎨

⎩

fi
/

Sii i = N ,
(

fi −
N−i∑

n=1
Si+nβi+n

)/
Sii i < N .

(18)

In conclusion, the solution of β is based on Cholesky decomposition only using
simple arithmetic in which the calculation is simple and fast.

In addition, while the hidden layer neurons of RELM from N into N+1, the neuron
matrix becomes:

HN+1 = [
HN | hN+1

]
(19)

Subject to hi = [
g(ai ·x1 + b1) · · · g

(
ai ·x j + bi

)]T

Therefore, AN+1 = H T
N+1 HN+1 + IN+1

γ
(20)

The Eq. 14 shows that the N (N + 1)/2 non-zero elements of result SN+1 of AN+1
after Cholesky decomposition are equal to SN . Therefore, by only calculating L + 1
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Table 1 Experiment datasets Dataset Sample num Gene num Class distribution
Class name Num

Breast 97 24481 Relapse 46
Non-Relapse 51

Leukemia 72 7129 ALL 24
MLL 20
AML 28

Colon 62 2000 Negative 40
Positive 22

Heart 270 3510 Negative 150
Positive 120

non-zero elements from SN+1,1 to SN+1,N+1, we can obtain SN+1:

bN+1 = H T
N+1T =

[
bN

hT
N T

]

(21)

FN+1 =
[

FN

/
fN+1

]
(22)

In conclusion, to get the FN+1, we only need the fN+1. It is not necessary to
calculate f1– fn . The information, which was stored during the process of computing
β based on Cholesky decomposition, can be fully used so that the βN+1 is computed
based upon β directly. It is more convenient and quick than the method introduced
in Eq. 6.

5 Performance Verification

To demonstrate the performance of COW-RELM, four gene expression datasets are
selected as showed in Table 1. Among them, the Breast, Colon and Heart are the
two-class dataset and the Leukemia is the multi-class dataset.

Four different kinds of algorithms, BP [19], SVM [20], ELM [9] and RELM
[13] are used to compare with COW-RELM. Parameter C in SVM is set to ten. In
these experiments, we generate the mean value by repeating fifty times to avoid the
unstable situation of the algorithms.

COW-RELM algorithm steps are as follows:

Step 1: Optimize the input weights instead of randomly selected of RELM by GA,
compute AN and bN ;

Step 2: Calculate SN according to the Cholesky decomposition of AN , using Eq. 17
to calculate FN ;

Step 3: Calculate βN by SN and FN according to Eq. 18;
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Fig. 1 Fitness curve of COW-
RELM on the breast datasets
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Fig. 2 Fitness curve of COW-
RELM on the colon datasets
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Step 4: Take mean value through multi-times testing.

In step 1, the sample for training with GA to find the proper input weights which
replace the random original input layer of RELM.

Fitness carve of COW-RELM on the Breast, Leukemia, Colon and Heart datasets
are shown in Figs. 1, 2, 3 and 4.

From Fig. 5, COW-RELM performs better than other algorithms in classification
accuracy. In addition, with the determined weights, COW-RELM also outperforms
other algorithms in time, and it is about 2 or 3 fold faster than ELM and RELM as
showed in Table 2 and Fig. 6.

In order to reflect the generalization ability of COW-RELM, the Root Mean Square
Error (RMSE) is used. As showed in Table 3, on the four datasets, the RMSE of
COW-RELM is the smallest in most datasets.
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Fig. 3 Fitness curve of
COW-RELM on the leukemia
datasets
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Fig. 4 Fitness curve of COW-
RELM on the heart datasets
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Fig. 5 Comparison of classi-
fication accuracy of BP, SVM,
ELM, RELM and COW-
RELM

Breast Leukemia Colon Hearth
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Four dataset

A
cc

ur
ac

y(
s)

BP
SVM
ELM
RELM
COW-RELM



64 S. Wei et al.

Table 2 Comparison of training and testing time of BP, SVM, ELM, RELM and COW-RELM

Dataset BP(s) SVM(s) ELM(s) RELM(s) COW-RELM (s)
Train Test Train Test Train Test Train Test Train Test

Breast 3.091 0.052 1.202 0.244 0.769 0.229 0.902 0.130 0.553 <10e−4

Leukemia 2.085 0.012 0.882 0.212 0.450 0.051 0.687 0.048 0.340 <10e−4

Colon 0.904 0.009 0.987 0.128 0.221 0.045 0.455 0.155 0.112 <10e−4

Heart 0.108 <10e−4 0.652 0.337 0.371 0.041 0.590 <10e−4 0.112 <10e−4
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Fig. 6 Comparison of training and testing time of BP, SVM, ELM, RELM and COW-RELM

Table 3 Comparison of training RMSE and testing RMSE of BP, SVM, ELM, RELM and COW-
RELM

Dataset BP SVM ELM RELM COW-RELM
Train Test Train Test Train Test Train Test Train Test

Breast 0.0478 0.2643 0.0718 0.0728 0.0378 0.2643 0.2470 0.2679 0.2145 0.2011
Leukemia 0.0164 0.1829 0.0534 0.0540 0.0512 0.4829 0.1897 0.2002 0.1877 0.1801
Colon 0.0204 0.0337 0.0461 0.0420 0.0980 0.0937 0.0754 0.0994 0.0724 0.0753
Heart 0.0430 0.0446 0.0117 0.0101 0.0318 0.0346 0.0624 0.0660 0.0624 0.0360

6 Conclusions

In this chapter, we have developed an improved regularized extreme learning machine
which is based on weights optimization and Cholesky decomposition, and then
applied the algorithm for gene expression data classification. In order to obtain
higher accuracy, the input weights of RELM are optimized based on Genetic Algo-
rithm (GA). The output weights matrix is optimized by the Cholesky decomposition
method to improve the training speed and thus reduce the training time. The new
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algorithm has been applied on the Breast, Leukemia, Colon, Heart and other gene
expression data. The experimental results show significant improvement in classifi-
cation results.
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A Stock Decision Support System Based on ELM

Chengzhang Zhu, Jianping Yin and Qian Li

Abstract People often tend to use a reliable way to predict the stock market in order
to get a substantial return on investment. However, with plenty of uncertainty and
noise, prediction is full of challenging and risk when it comes to stock markets. This
chapter combines extreme learning machine (ELM) and the Oscillation box theory
together to construct a stock decision support system, which can help people make
decisions on stock trading through suggestion buy or sell stock. In experiments, 4
typical stock movements have been tested trading and 400 stocks in S&P500 are
used to detect the performance of the system. Results show that our method is much
better than buy-and-hold strategy.

Keywords Stock predict · ELM · Oscillation box theory

1 Introduction

The study of stock market, which helps people make lucrative investment decisions,
is a focus of attention. However, owing to the fact that stock market indices are
essentially dynamic, nonlinear, complicated, nonparametric, and chaotic, the stock
time-series forecasting is regarded as one of the most challenging applications of
time-series forecasting [1]. In recent years, a lot of work had been done and try-
ing to analyse and predict stock prices or trends in the future [2]. Although nobody
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can predict a stock market with high enough accuracy, one could be able to pre-
dict the overall trend in this market based on historical data. Therefore, people may
obtain high profit by using some well trading strategies with the prediction results.
A successful stock market prediction is characterized by achieving best results using
minimum required input data and the least complex stock market model [3]. Since it
is affected by many macro economic factors, the stock market cannot be well compre-
hensively described by traditional model [4]. As a comparatively accurate solution
can be found in the complex, noisy environment due to artificial neural networks
[5], lots of attentions have been devoted to applying different neural networks into
stock prediction [6–9]. In addition, with the application of SVM in regression, some
work introduced SVM method in stock market prediction and got outstanding result
[10, 11]. All the methods mentioned above have made breakthrough achievements,
which made the stock market prediction significantly accurate and robust however,
there still exists an unresolved problem that is the speed will become very slow when
a large number of historical data in the stock market need to be learned. It limits
computer dynamic learning new data.

Recently, a new type of learning machine called extreme learning machine (ELM),
which is a methodology for learning single-hidden layer feedforward neural networks
(SLFN) and is proposed by Huang et al. [12–15], has been proved to be extremely
fast and it can also provide excellent generalization performance. Different with the
traditional neural network training algorithms such as back-propagation algorithm
(BP), ELM does not need any other extra time to adjust the hidden weights and biases
since it chooses them at random and then obtains the output layer weights and biases
analytically. For this reason, we can introduce ELM to forecast the stock price trends
in the future in order to get a better performance in a short time.

A powerful trading strategy is necessary for stock transactions. Nicolas proposed
a box theory, which indicates the price of stock would generally oscillate in a certain
range in a period of time named price box. The price will fall when it is close to
the upper boundary of the price box and rise on the contrary. If the price breaks the
upper boundary or the lower boundary of the oscillation box, it will enter another
oscillation box in which the price will start a new upward or downward trend. So
it will be the best time to buy or sell the stock [16]. It is fairly clear that the most
important and difficult work is to accurately identifying the boundary of the box and
confirm the price breakout it, since one can only predict it based on experience in
daily life.

The box theory and extreme learning machine algorithm are combined in this
chapter. We train extreme learning machine by history price data and utilize it to
predict the highest and lowest stock price in the next period as the upper and lower
boundary of the oscillation box. Meanwhile, we have developed an inspection rule to
confirm whether the stock price breakout the boundary or not. Then we can formulate
our trading strategy based on the box theory to make decisions. Experiments show
that our approach has obvious performance advantages compared to hold-and-buy
strategy in which an investor buys stocks and holds them for a long period of time,
regardless of fluctuations in the market. The advantages of the systems are mainly
reflected in two aspects. On one hand, the system has a great learning speed to learn
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Fig. 1 The oscillation box samples

from a large number of historical stock price data and make decisions. On the other
hand, the system can always get a better performance than it compared with other
methods.

The remainder of this chapter is organized into four sections. Section 2 briefly
reviews the oscillation box theory and extreme learning machine theory. Section 3
details our system trading strategy. Section 4 shows experiments and analysis. Finally,
Sect. 5 contains the concluding remarks.

2 Related Work

2.1 Oscillation Box Theory

Nicolas proposed the Oscillation box theory. The basic idea of this theory is that
the stock price is always has a certain shock range in a period of time, thus it has
a maximum and a minimum price during this time. Imaging there are two ends
of a box—the upper boundary and the lower boundary, thus Nicolas had it called
oscillation box in his theory. When the stock price close to the lower boundary it
has the rising trend and on the contrary close to the upper boundary. Furthermore,
the price will go into another box to start a new shock in a range after it breaks
through the boundary. The Oscillation box is showed in Fig. 1. Obviously, we can
get a fruitful profit if we buy the stock when the price breaks the upper boundary and
sell it as soon as it breaks the lower boundary. However, effective to detect the price
when it breaks through the boundary, which is always based on experience, is quite
challenging. In our system, we proposed a method to detect it automatically based
on the ELM prediction.
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2.2 Extreme Learning Machine

Extreme learning machine is a novel algorithm proposed by Huang et al. in [14].
The theory provides a new approach to training the single hidden layer feedforward
networks, which makes the training completed within a very short time to achieve
the effect of extreme learning. A SLFN consists of three layers, namely input layer,
hidden layer and output layer. We can train the network by adjusting the connection
weights and biases of layers.

Denote the numbers of nodes in input, hidden and output layers as n1, n2 and n3,
we can represented a SLFN by

tr = fr (x j ) =
n2∑

i=1

βir Gi (ai , bi , x j ) ( j = 1, 2, . . . , n1; r = 1, 2, . . . , n3). (1)

where tr = [tr1, tr2, . . . , trn]T is the output vector; x j = [x j1, x j2, . . . , x jn1 ]T is
the input vector; ai = [a1i , a2i , . . . , an1i ] represents the connection weights between
the input layer and i th node in the hidden layer; βi = [βi1,βi2, . . . ,βin3 ]T represents
the connection weights between the i th node in the hidden layer and the output
layer; bi means the i th hidden node bias; Gi (ai , bi , x) = g(ai · x + bi ) is the value
provided by the network for xi in the hidden layer, where g(·) represents the activation
function of the hidden layer. The g(·) can have a variety of options such as Sigmoid
function, Sine function, Hard Limit function, Triangular basis function and Radial
basis function.

The above Eq. (1) can be written compactly as

T = G · β. (2)

where

G =



⎧

g(a1 · x1 + b1) . . . g(an2 · x1 + bn1)
...

. . .
...

g(a1 · xn + b1) . . . g(an2 · xn + bn1)

⎪

⎨
⎩

n×n2

. (3)

β =






⎧

β1
β2
...

βn2

⎪

⎨
⎨
⎨
⎩

n2×n3

. (4)

T =






⎧

t1
t2
...

tn

⎪

⎨
⎨
⎨
⎩

n×n3

. (5)
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The extreme learning machine is trying to minimize the empirical and structural
error by adjusting the weights and biases. The objective can be written as

minE(ai ,βi ) =
n∑

r=1

||tr − Tr ||. (6)

where Tr represents the real target values. In ELM theory, ai and bi , which are the
weights and biases of hidden layer, can be randomly assigned. We only need to focus
on βi , which are the weights of output layer. The theory provides that solving the
optimization problem Eq. (6) is equivalent to Eq. (2) for its least square solution β. It
will be easy to get the weights β = G† · T based on the Moore Penrose generalized
inverse matrix theory, where G† is the generalized inverse matrix of G.

2.3 Gray Correlation Degree (GCD)

In [17], Deng proposed the gray correlation degree, which has been applied in many
fields [18]. The method is using the geometric shape of sequence curves to present
the relational degree between two data sequences. The closer the two curves are,
the higher degree is it. If we have a feature X = [x1, x2, . . . , xn] and target T =
[t1, t2, . . . , tn] we can calculate the feature GCD as follow:

r(ti , xi ) = min|ti − xi | + ξmax |ti − xi |
|ti − xi | + ξmax |ti − xi | . (7)

r(T,X) = 1

n

n∑

i=1

r(ti , xi ). (8)

where ξ ∈ (0, 1) is the discernibly coefficient which often set to 0.5. The r(ti , xi ) is
the gray correlation degree of T and X at i th point. The r(T,X) is the gray correlation
degree of T and X.

3 Detail of the Decision Support System

The decision support system is in accordance with the following steps. First, the
system calculates the related indicators from the historical data of the stock market
and scales it. Then it obtains relationships of the scaled indicators and stock prices
time-series, which could set as the input value weight of the ELM. Next step comes
to training the ELM, using the weighted indicators sequence as input values and
stock history prices time-series as target values. The third step is using the trained
ELM to predict the stock price sequence for the next period of time in order to
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Fig. 2 Support system architecture

get the minimum and maximum values of stock prices, which can set as the lower
and upper bounds of the oscillation box. Finally, the transaction is carried out in
accordance with the trading strategy based on box theory. The architecture of the
system is showed in Fig. 2.

3.1 Pre-processing History Indictors

The system uses closing price to present stock market price, which is the target
value. We have selected some indicators as the ELM input feature values, which are
OPEN, HIGH, LOW, CLOSE, VOL, AMOUNT, MA, ROC, RSI, FASTK, SLOWK,
SLOWD. The computations can be found in [19]. In order to get the boundary in next
few days through prediction the stock market time-series, the boundary in period few
days can be used as features. In this system, we use the highest price and lowest price
of the stock in the future n1 days as the upper boundary U pk and lower boundary
Lowk .

U pk = max(Ci+1,Ci+2, . . . ,Ci+n1)

Lowk = min(Ci+1,Ci+2, . . . ,Ci+n1)

were Ck represent the closing price in the kth day.
There are totally 14 indictors and 1 target in our system. If a indictor data sequences

are X = (x(1), x(2), ..., x(n)), all data of the indictor will be normalized to [−1, 1]
by

x(i)normali ze = −1 + 2
x(i) − min(X)

max(X) − min(X)
(9)

Otherwise, the prediction result will be denormalized by

pdenormali ze = p(max(X) − min(X)) + max(X) + min(X)

2
. (10)

where p is the prediction result.
However, the influence degrees of these indicators on the prediction results are not

equal. Obviously, enlarge the indicator, which has considerable impact on the result,
can help get a more accurate prediction result. Therefore we use the gray relation
analysis method to get relationships of the scaled indicators and stock market prices
time-series and use it as the input weight wi .
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3.2 Stock Prices Prediction Based on ELM

This system needs to predict prices in the next n1 days based on history data in n2
previous days. We define the target vector as Ti = [Ci+1,Ci+2, . . . ,Ci+n1 ], the
feature vector as

Fi = [Ok, Hk, Lk,Ck,VOLk, M Ak,ROCk,RSIk,FastKk, SlowKk,

SlowDk,U pk,Lowk]

where k = (i −1, i −2, . . . , i −n2), all features are indictors mentioned in Sect. 3.1.
Since the input weights wi has been acquired based on gray relation analysis

method, we can descript the weight vector as W i = [wOk , wHk , . . . , wLowk ], where
k = (1, 2, . . . , n2). The input vector Ii can calculate as follow:

Ii = Fi ◦ W i . (11)

where ◦ is Hadamard product, i presents i th day.
Due to the recent data do more contribution to learning stock market, we need to

set up a window that contains recent data for ELM training. If we want to predict
stock prices after i th-day, and the window size is set to n days. The input vectors
can form a matrix as I = [Ii−n, Ii−n+1, . . . , Ii−n1 ] while the target vectors can form
a matrix as T = [T i−n,T i−n+1, . . . ,T i−n1 ]. After training ELM, which used I as
input matrix and T as target matrix, we can predict stock price T i using input vector
Ii . The upper boundary and lower boundary can set to maximize and minimize price
of Ti .

3.3 Trading Strategy Based on Box Theory

Our trading strategy is based on the oscillation box theory. After predicting the upper
and lower boundary, which are described as U pi and Lowi , in next n1 days after i th-
day, we need to set a standard to detect whether the price series crossing the border.
Obviously, two conditions need to be met when the price series up through the box.
The first thing is that the price is very close to the lower boundary of the new box,
and the second thing is that the lower boundary of the new box is moved upward.
Similarly, the price will close to the upper boundary of the new box and the upper
boundary of the new box will move downward when it crosses the lower boundary.
Thus our strategy can be defined as Algorithm 1.
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Algorithm 1 Trading strategy.
if next trade == buy then

if |Ci −Lowi |
Ci

� σ and Lowi is in uptrend then
if sellprice − Ci � ϕ then

Buy,buyprice = Ci
next trade=sell

end if
end if

else if |Ci −U pi |
Ci

� σ and U pi is in downtrend then
if Ci − buyprice � φ then

Sell,sellprice = Ci
next trade = buy

end if
if buyprice−Ci

buyprice � θ then
Sell,sellprice = Ci
next trade=buy

end if
end if

4 Experiments

We conducted some experiments to verify the system’s feasibility and efficiency. In
these experiments, several typical stock movements, such as bull market, bear market,
fluctuant market and so on, are selected to carry out a comparative analysis. After
that we tested 400 stocks in the S&P500, in order to detect the average performance
of our system. Finally, the optimal sets of parameters are discussed and tested. All
of the experiments are run in MATLAB environment.

4.1 Performance Evaluation

There are two performance indicators in our experiments. One of them is MSE (mean
squared error), which is used to illustrate the accuracy of ELM regression. The MSE
is defined as follow:

MSE = 1

N

N∑

i=1

(yi − y∗
i )

2. (12)

where yi is the actual output and y∗
i is the estimate.

The other is rate of profit which can defined as

rate of profit = (Y − Y0)/Y0 × 100 %. (13)

where Y is the money after trade and Y0 is the initial money.
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Fig. 3 a The fluctuant and bull market movement, where • means buy point and ◦ means sell point.
b The fluctuant and bear market movement

In our experiments, we suppose $10000 initial money and use all money or stock
to trade at each operation. As the real trading, we set the transaction cost of each
trading 0.5 %. Then we let the system trade on a stock for a period of time and get
the average MSE and rate of profit in the final. In particular, we short-selling of all
stocks hold at the last day of test trading.

4.2 Typical Stock Movement Trading

A movement of fluctuant and bull market is showed as Fig. 3a. The transaction rate
σ is set to 0.01 and stop-loss rate θ is set 0.1 and ϕ,φ set to 0, 0.05, respectively.
The window size is 120. In the experiment, our system profits to 93.20 % while the
market gains about 41.69 %. The MSE of the ELM is 7.2957e−30. The data set is
samples from March 13, 2002 to August 29, 2003.

A movement of fluctuant and bear market is showed as Fig. 3b. The transaction
rate σ is set to 0.01 and stop-loss rate θ is set 0.1 and ϕ,φ set to 0, 0.05, respectively.
The window size is 120. In the experiment, our system can profit to 38.61 % while
the market losses about 15.48 %. The MSE of the ELM is 5.6965e−30. The data set
is samples from October 26, 2000 to June 6, 2002.

Obviously, our system is significantly better than the buy-and-hold strategy in a
fluctuant market.

A movement of overall bull market is showed as Fig. 4a. The transaction rate σ
is set to 0.05 and stop-loss rate θ is set 0.1 and ϕ,φ set to 0, 0.05, respectively. The
window size is 120. In the experiment, our system can profit to 137.17 % while the
market gains about 94.38 %. The MSE of the ELM is 1.0645e−29. The data set is
samples from March 17, 2004 to October 17, 2005.

A movement of overall bear market is showed as Fig. 4b. The transaction rate
σ is set to 0.05 and stop-loss rate θ is set 0.1 and ϕ,φ set to 0, 0.05, respectively.
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Fig. 4 a The overall bull market movement. b The overall bear market movement

The window size is 90. In the experiment, our system only losses 2.74 % while the
market losses about 45.13 %. The MSE of the ELM is 2.3462e−30. The data set is
samples from August 8, 2001 to September 9, 2002.

4.3 Trade on S&P500

We simulate trading of 400 stocks in 400 trading days, which are selected in S&P500
from Mar 18, 2004 to Oct 17, 2005, to examine the average performance of the system.
There are 212 of these stocks movement are bull, the other are bear. In these trading
test, the same parameters are used. The transaction rate σ is set to 0.01 and stop-loss
rate θ is set to 0.05 and ϕ,φ set to 0, 0.05, respectively. While the window size is set
to 120. The test results are showed in Table 1. Clearly, our system is in most cases
superior to the buy-and-hold strategy, and can gains a much higher average profit.

4.4 The Optimal Sets of Parameters

Firstly, we consider the impact on the training window size. Obviously, the learning of
history data in a period of time before can generate important guiding significance for
the prediction of future case. However, if we take a long time to learn the prediction
accuracy, it might be decreased because of much noise data. At the same time, if we
take a short time to learn, it might lack of experience. On experience, a stock with bull
movement always has less noise data over a longer period of time. Conversely, a stock
with bear movement is often accompanied by more noise data. Therefore, if we set a
large window size to a bull movement stock and set a small size to a bear movement
stock, the system may give better results. We have already conducted experiment
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Table 1 Average performance of trading 400 stocks in S&P500 for 400 days

Market Stock Less than buy- Less Loss Loss Average Average profit of
pattern number and-hold (%) number (%) profit (%) buy-and-hold (%)

Bull 212 47 21.17 0 0 40.16 27.32
Bear 188 1 0.53 25 13.30 14.18 −20.68
Total 400 48 12.00 25 6.25 27.95 4.76

Table 2 Average performance of trading 400 stock in S&P500 for 400 days with window size
control

Market Stock Less than buy- Less Loss Loss Average Average profit of
pattern number and-hold (%) number (%) profit (%) buy-and-hold (%)

Bull 212 32 15.09 0 0 57.28 27.32
Bear 188 0 0 8 4.26 14.73 −20.68
Total 400 32 8.00 8 2.00 37.28 4.76

Table 3 Average performance of trading 50 stock by varying n2

15/15 15/30 15/45 15/60 15/75

Average profit (%) 30.25 35.32 36.64 37.38 34.32
Number of transaction 15.2 14.6 13.4 12.8 12.2

Table 4 Average performance of trading 50 stock by varying n1

5/20 8/32 10/40 15/60 20/80

Average profit (%) 28.21 32.48 35.64 37.38 36.32
Number of transaction 14.2 13.4 12.2 12.4 11.2

while the window size is set to 120 trading days (nearly 3 months). Table 1 shows
the results. Now we have tested same stocks again with window size control while
other parameter settings are not change. The results are shown in Table 2. Revenue
in this experiment has been significantly increased.

Secondly, since we have used the previous n2 days for feature value extraction
and prediction, the extreme value stock may reach in next n1 days, the n1 and n2
may be considered. We first fix n1 as 15 and chance n2 from 1 to 5 times of n1 to find
the optimal value of n2. The result illustrates in Table 3, which shows that the most
profit will be gained while n2 is 4 times of n1. Then we adjust n1 from 5 to 20, and
set n2 as 4 times of n1. At this time we can see the average yield arrive maximum
when n1 is set to 15 in Table 4.

The last but not the least, the σ also need to be considered. On one hand this
parameter controls the speed of transactions, on the other hand it also eliminates some
of the impact caused by the prediction error. For fluctuations or bull movement, we
can set it to a larger value to get more transactions. In contrast, for the bear movement,
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Table 5 Performance of trading MSFT by varying σ

σ 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Profit (%) 2.41 7.20 8.15 4.53 5.75 4.84 4.97 4.73 5.18 6.07
Number of transaction 8 9 9 9 9 9 9 9 9 8

it can be set a small value to reduce transactions. However, the parameter must be set
within a range, otherwise it will reduce the accuracy. We selected a stock to show the
impact for system profit of σ. The value of σ adjust from 0.005 to 0.04 while window
size is set to 90, stop-loss rate θ is set to 0.05 and ϕ,φ set to 0, 0.05, respectively.
The data set is samples from September 7, 2004 to March 24, 2006. In Table 5 we
can see when σ is 0.015 the profit will be highest.

5 Conclusion

We have proposed a stock decision support system in this chapter. In the experiment,
we have shown that this system is capable of superior performance to give investors
considerable returns, especially when it is in a fluctuant movement the system can
bring more lucrative benefits. It is mainly based on two reasons. The first one is the
fast learning ability and high precision of ELM. The second one is that trading with
box theory is based on the highest and lowest values the stock could reach in a period
of time, which reduces the impact of noise and uncertainty in the stock market on
the prediction accuracy. Similarly, using gray relation degree method to obtain each
factor weight, to a certain extent, helps the ELM get more precise results.

The whole system is based on the ELM’s prediction value to produce the result.
However, features, which are used to train ELM, cannot fully represent all the influ-
encing factors in the stocks. For this reason, ELM can only reach a certain degree
of prediction accuracy. Therefore, how to reasonably model on the stock market and
select more representative and comprehensive features become the future work.
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Robust Face Detection Using Multi-Block
Local Gradient Patterns and Extreme
Learning Machine

Sihang Zhou and Jianping Yin

Abstract A novel multi-block local gradient patterns (MB-LGP) based face
detection method was proposed in this article. The MB-LGP operators extract face
features in the way similar to local gradient patterns (LGP) however, the gradient of
pixels in LGP was replaced by the counterparts of square image areas in MB-LGP.
We have proved that the MB-LGP has most of the advantages of LGP and moreover
with a stronger discriminant power and better robustness against noise. In the clas-
sification part, the extreme learning machine was introduced in the last stage in the
proposed cascade classifier in order to speed up training process and increase classi-
fication accuracy. As was shown in experiments using the CMU+MIT database the
new method possesses high detection rate.

Keywords Face detection ·Multi-block local gradient patterns (MB-LGP) ·Extreme
learning machine (ELM)

1 Introduction

Face detection is one of the basic yet sophisticated procedure in a computer vision or
an object recognition system whose accuracy and robustness can easily be influenced
by changes in illumination condition, occlusions, facial expression, scale, pose, ori-
entation, etc.
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In order to handle these variations, a good feature is indispensable. Among all the
exiting features, local binary patterns (LBP) [1] are one of most attractive alternatives.
Because of its stability against monotonic illumination changes and its computational
simplicity, local binary patterns have drawn increasing interest of a lot of scientists.
As a result, a large number of improved and transformed versions have been pro-
posed focusing on different aspects of this feature in the recent years. Among them Jin
et al. [2] enhanced the discriminative capability by comparing all the pixels in the
patch with the mean intensity; Tan and Triggs [3] improved the robustness of orig-
inal LBP by introducing a version with 3-value code local ternary patterns; Liao
and Chung [4] changed the strategy to choose neighborhoods which leaded a great
improvement on the variety and amount of information of the previous features.
After this, some improvement had been made to extend the LBP to 3-D volume
[5, 6]. Recently, a new method Local Gradient Patterns [7], which uses the gradient
values of the neighboring pixel to gain the binary codes, has improved the invariance
to local intensity variations. In addition to selecting features with good discriminabil-
ity and classification performance, choosing a good classifier is also essential to an
accurate and fast face detection system. One of the most significant contribution in
the field of feature selection and sample classification was made by Viola and Jones
[8]. In their work, the first real-time face detector with high accuracy was designed
mainly due to the implementation of integral image representation, the cascaded
framework and the use of Adaboost algorithm. However, the simplicity of Haar-like
features and decision stump function has long been a bottleneck of this method which
was the focus of researchers in recent years. For instance, Jones and viola [9] and Xu
et al. [10] developed the original simple stump function into more complicated tree
structure, Xiao et al. [11], Friedman et al. [12] and Li et al. [13] were mainly focusing
on the improvement of strong classifier learning strategy. Moreover, Zeng et al. [14]
developed the lower level of parallelism through OpenMP and higher level paral-
lelism through MPI to accelerate the computation of the algorithm. In this article,
we designed a four stage cascaded face detector. Novel multi-block local gradient
patterns with strong classification ability as well as great invariance to both local
and global intensity variation were proposed as features in the detection system. At
the same time, the latest Single-hidden-Layer Feedforward Neural Networks called
Extreme Learning Machine (ELM) [15] was introduced to make the final decision
of the cascaded classifier so as to improve the classification accuracy.

2 Method

2.1 Face Representation

Introduction of MB-LGP A distinctive representation for face patterns is the basis
of an accurate face detection system. Many face representation methods have been
proposed. One of the most effective face features LBP attracted scientists’ further
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Fig. 1 Multi-block local gradient patterns for face representation

study mainly on reliance of its perfect displaying of texture in the local area with
great robustness to illumination variations. Among all the extension of LBP, the
latest local gradient pattern proposed by Jun, Kim [7] is an outstanding one. It was
proved to be more stable to local intensity variation, less influenced by local color
variation and more distinctive than LBP. However, the LGP features seem relatively
sensitive to noise and location variation. In this article, we proposed a generalization
of LGP–multi-block local gradient patterns (MB-LGP). The MB-LGP operator uses
the gradient values of eight neighboring counterparts of a given square area in an
image space, which are assigned by the absolute value of average intensity difference
between the central square and its surroundings. After the gradient values is gained,
compare the values with their average value, and assign 1 if the gradient value in the
according square is larger than the mean value, and 0 otherwise. At last, concatenate
the 0s and 1s in a clockwise direction (Fig. 1).

The procedure of extracting MB-LGP feature is similar with LGP’s, besides that
it is the gradient values of image blocks rather than those of pixels which were
being compared. Define the average gradient value of a certain square area as g
and the values of its neighboring areas as {g1, g2, . . . , g8}. Here gn is obtained by
calculating the absolute difference of average intensity value between the nth and the
central image square. We define the average intensity of the nth image block as in ,
(n = 1, 2, . . . , 8) and ic as the average intensity of the central image area. Then, gn

can be represented as: gn = |ic − in| and g = 1
8

∑8
n=1 gn . Then, the output value of

the MB-LGP operator is:

MB − LGP =
8∑

i=1

s(gi − g)2i

where

s(x) =
{

1 x < 0,

0 otherwise.

In order to control the dimensionality of features, each block of the 3×3 operators
is constrained to be square. In addition to that, the operator of MB-LGP can also be
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Fig. 2 Determination of a
MB-LGP mask

extended to M B − LG Ps with s × s pixels in each sub-block at different sizes and
scales.

Consulting the work of Viola and Jones [9], a 24 × 24 square block were used to
scan the images to seek for human faces, accordingly there 1436 different masks of
MB-LGP operators. The number of masks is determined as follow: a mask can be
determined when the position of the pixel on the top left corner and the side length
of the sub-image-blocks fixes (see Fig. 2).
Define (xi , yi ) as the coordinate of the pixel on the top left corner and a∗ as the side
length of sub-image-blocks, so the variation range of xi and yi is [1, 24 − 3a + 1],
while a∗ ranges from 1 to 8. The total number of MB-LGP masks NM in a 24 × 24
square block can be calculated by:

NM =
8∑

a∗=1

(25 − 3a∗)2 = 1436

Advantages of MB-LGP

As the generalization of LGP, MB-LGP has inherited most advantages of its prede-
cessor, It can keep invariant both locally and globally [7]. Besides that, as MB-LGP
uses the average pixel value in image boxes to represent the structure of objects, it
is more robust against noises and more powerful to present the structure of human
faces, especially in low resolution conditions. By comparing the pixel values as well
as the patterns of LBP, LGP and MB-LGP, Fig. 3 is a good proof of MB-LGP’s
robustness against noise and strong representation ability. Here, LBP8,8 and LGP8,8
(LBP8,8 and LGP8,8 stands for the LBP and LGP operator with 8 pixels surrounding
the centre pixel on the radius of 8), operators were used to extract the features from
the original image for LBP and LGP, while MB − LGP8 is adopted to extract the
MB-LGP features.

The upper part of the Fig. 3 shows us the pixel and the average pixel values
extracted from a low resolution testing image from CMU+MIT database. As we
can see in the figure, LGP and MB-LGP could roughly reveal the eyes and mouth
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Fig. 3 Patterns extracted
by LBP8,8, LGP8,8 and
MB − LGP8 on low reso-
lution image and the variation
of patterns when the scanning
window translated

of the person while LBP showed nothing at all. In the under part of the figure, the
sampling box was translated for 2 pixels to the left and downward respectively. After
that, the pixel values and patterns of both LBP and LGP changed sharply. However
the average pixel value of MB-LGP had only fluctuated slightly and the pattern of
it kept the same. The great robustness against noises and great ability to represent
large scale structure make MB-LGP more distinctive than LBP, LGP and Haar like
features. This will be shown in the experiment in Sect. 3.

2.2 Feature Selection

As we are finding a real-time method for face detection, the time consumed by
extracting 1436 MB-LGP for hundreds and thousands of times, on a single image
is surely unacceptable. On the other hand, although the number of MB-LGP has
sharply decreased as we constrain the rectangular regions to be squares, there are
still a lot of redundant information. In view of the two mentioned issues, feature
selection is needed, and the latest Adaboost algorithm happens to be a perfect choice
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to fulfil the task. The main idea of the boosting algorithm is to choose and combine
weak classifiers one by one to form a strong detector. During the iterations, weights
of each training sample are modified according to the classification result of the
selected weak classifiers. As the iteration goes, most of the training samples have
been correctly classified by the already selected weak classifiers, accordingly the
weight of these samples will decrease, and more attention will be paid to the high
weighted i.e. the misclassified instances. However, as the values of MB-LGP are
non-metric, common weak classifiers like threshold function may not fit the need of
the MB-LGP features. In order to solve this problem, Adaboost learning based on a
256-dimensional look up table was chosen. Here is the description of the design of
the weak classifier.

sm (α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0, α = 0
· · ·

a j , α = j
· · ·

a255, α = 255

where α is the value of the extracted MB-LGP feature, a j ( j = 1, 2, . . . , 256) is a
confidence weight indicating that whether the checked window contains a face or
not. The method of weak classifier training by Adaboost learning can refer to that
in [7].

2.3 Classifier Construction

To improve the detection accuracy and reduce the calculation, a cascaded classifier
of decision trees and Extreme learning machine is proposed. Cascade classifiers are
perfect choices for local features, for instance Haar-like features and MB-LGP, as it
can remove a large amount of obvious non-face image blocks with weak classifiers
whose computation speed is quite fast and remain the sophisticated image blocks
to the relatively time consuming yet high-precision classifiers. The early rejection
of non-face images is the key to the high speed of this classifier, because most of
the areas in an image are non-face areas. In our 4-stage cascade classifiers, the first
three classifiers are simple multi-branch decision trees and the last one is an ELM
classifier.

Extreme learning machine I. Introduction of Extreme learning machine
Extreme learning machine (ELM) is an emergent learning algorithm for single hid-
den layer feedforward neural networks (SLFNs) which randomly chooses its input
weights and analytically determines its output weights. The essence of ELM is the
un-tuned hidden layer and the bi-objective of the smallest training error as well
as smallest norm of out put weight. It maintains a good generalization perfor-
mance while extremely improves the computing speed of the feedforward neural
networks. The application of moore-penrose generalized inverse matrix to deter-
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mine the output weights has avoided many problems caused by gradient descent
learning method, such as local minima, too much iteration times and the selection
of performance index and learning rate. Here is the algorithm theory of ELM. Ran-
domly choose N distinct samples (xi , ti ), where xi = {xi1, xi2, . . . , xin}T ∈ Rn

and ti = {ti1, ti2, . . . , tim}T ∈ Rm , the standard SLFNs with hidden neurons and
activation function g(x) can select parameters of βi , wi , bi to approximate these N
samples with zero error.

f Ñ

⎥
x j

⎦ =
∑Ñ

i=1
βig

⎥
wi , bi , x j

⎦ = t j

(
j = 1, 2, . . . , Ñ

)

The equation can be abbreviate as

Hβ = T

where

H
⎥
w1, · · · , wÑ , b1, · · · , bÑ , x1, · · · , xN

⎦ =





g (w1 · x1 + b1) · · · g
⎥
wÑ · x1 + bÑ

⎦

.

.

. · · · .
.
.

g (w1 · xN + b1) · · · g ⎥
wÑ · xN + bÑ

⎦






N×Ñ

β =





βT
1
...

βT
Ñ






Ñ×m

and T =





t T
1
...

t T
N






N×m

H is called the hidden layer output matrix of the neural network, whose ith row is the

output of the ith hidden node.wi = [wi1, wi2, · · · , wim]T ∈ Rm
(

i = 1, 2, · · · Ñ
)

is the connection weight vector between the ith hidden node and the output node, bi is
the threshold of the ith hidden nodes. As it is shown in the related work of G.B.Huang
[15], unlike traditional SLFNs, if the activation function is infinite differential, the
input weight and the hidden layer biases of SLFNs can be arbitrarily given. So the
only work of training a SLFN is to find a least-squares solution β̃ of the linear system
Hβ = T . According to [16] the finding solution can be obtained by:

β̃ = H∗T

Considering that the number of our training samples (250000) is much larger than
the dimensionality of the feature space, we decide to select the alternative solution
of ELM [17]. Consequently, the decision function of ELM classifier is

f (x) = sign

(

h (x)

(
1

C
+ H T H

)−1

H T T

)
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Fig. 4 The variance of
histograms of each feature

where C is the error cost which controls the punishment for the classification error
of samples.

II. ELM Training

Considering that the value of MB-LGPs are non-metric, the extracted features can
not be sent to the learning machine for the training and testing task directly. To
solve the similar problem, [18] used histograms to conduct the edge orientation of
image blocks, which was metric, to represent the local texture and global shape of
images. In this article we first select distinctive features and calculate the frequency
of occurrence of the feature values in a 24 × 24 image window to form a histogram.
The definition of the histograms are as follow:

H (i) =
∑

x∈S

I (s (x) = i) (i = 1, · · · , 255)

where H (•) is a 255 dimensional vector which indicate the frequency of each feature
value, S is the selected feature set, I (•) is a function which values one if the equation
is true and values zero otherwise. Then, the ready-processed histogram data was sent
to the ELM to train the strong classifier of the last stage.

a. Feature selection

In the first step, the total histogram of every dimension of the MB-LGP feature
was calculated in face and non-face samples set separately. As a result, two 1436 ×
255 matrixes H f and Hn f were formed. Then do the subtraction between the two
matrixes and take the absolute value: H = ∣

∣H f − Hn f
∣
∣. Calculate the variance of

each row vector of H (see Fig. 4). The distinctive ability of each MB-LGP feature
was judged by the variance of the corresponding row. The larger the variance is the
more discriminating the feature is.
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Fig. 5 Training performance
of ELM

Fig. 6 Testing performance
of ELM

b. Training

Sort the features by the variance value of each row of H in a descending order to form
a candidate queue. The first 100 features with greater distinctive ability were added
to the selected set at the very beginning, after that, five features were moved to the
selected set at a time orderly until the training and testing accuracy get higher than
99.5 %. Each time the ELM was training, the parameters of C and L were tuned in the
range of

{
2−24, 2−23, · · · , 224, 225

}
and {100, 200, · · · , 1000} separately. Figures 5

and 6 shows the performance of training and testing of ELM, here C is the exponent
of error costs.

The selected feature set met the requirement at the feature number of 215.

Combine the multi-branch decision trees together with the ELM Our four stage
classifier was formed by combining the multi-branch decision trees with the ELM.
Detailed detection procedure works as follows: (1) Contract the detecting image into
different scales to form an image pyramid [19], so as to acquire faces of different
sizes. In our experiment, original images were repeatedly reduced in a ratio of 0.89.
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(2) Extract features from the image sequence by a 24 × 24 detection window with
different mappings according to a different stage of classifier. (3) Send the features
to classifier and do the classification. (4) Merge the adjacent rectangles.

3 Experiment and Results

To evaluate the discriminating ability of MB-LGP and judge the performance of the
proposed method, two experiments had been conducted in this section: (1) Compar-
ing the discrimination capacity of MB-LGP with Haar-like features, LBP and LGP.
(2) Applying the proposed detector to CMU+MIT face database. In the experiment,
10, 000 sample faces with different illumination conditions, face expressions, ori-
entations and pose (in a range of [−15◦,+15◦]) were collected on the internet. The
clipping of face areas were determined by the position and distance between eyes.
Let the coordinate of the left eye to be (0, 0), the distance between both eyes to be
α, then the up-right square area with the side length of 2α whose top left corner
lay at (−0.5α,−0.5α) was considered to be the face area and was clipped to be the
final face sample. We gather the other 90, 000 samples by slightly enlarge the face
area, shifting the sampling window horizontally and vertically as well as rotating the
sampling window by ±15◦. 150, 000 non face samples were collected by randomly
scan different images of scenery and buildings without human faces. At last, all the
sample images were resized to the scale of 24 × 24.

3.1 Feature comparison

In this part of experiment, 100,000 face samples and 150,000 non-face samples were
randomly divided into two equal parts, one for training and the other for testing.
Boosting classifiers of 30 features was trained to compare the distinguishing ability
of the four representing method. The same experiment had been carried out for ten
times, the average experimental data was used to do the judgement. As we can see
in Fig. 7, MB-LGP’s error rate was relatively lower than LGP and LBP and much
better than Haar-like features. This is the best proof of the discriminative ability of
MB-LGP.

When it came to the ROC curves (see Fig. 8) of the four features, MB-LGP also
did a better job than the three other features. It shows that MG-LGP has detection rate
of 72.6 % at the very beginning, comparing with the 70 % of LGP, 64.2 % of LBP
and 55 % of Haar-like features MG-LGP acted better than the three other features.
When the false positive gets higher, the performance of MB-LGP keeps better than
the three other features.



Robust Face Detection Using Multi-Block Local Gradient Patterns 91

Fig. 7 The tendency of error
rate of four features when
number of weak classifiers
increases

Fig. 8 ROC curves of MB-
LGP, LGP, LBP and Haar-like
classifiers

3.2 Experiment on CMU+MIT Face Database

In this section, all the 250,000 faces and non-face samples were used to train the
cascaded classifiers. In each training stage, the detection rate were controlled to
be 99 % while the false positive rate to be 4 %. During the training, the false face
samples and the correct non-face samples were weeded out, the remaining samples
were selected to train the strong classifier for the next stage. Here is the information
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Table 1 Stages and feature numbers of cascaded classifiers

Features and Classifiers MB-LGP+ELM MB-LGP LGP LBP

Number of stages 4 5 5 6
Number of features 398 423 478 542

Table 2 Face detection rate on CMU+MIT database for different detectors

False positive 2 3 4 8 10 42 45 150 167 179 187 198

MB-LGP+ELM 0.88 0.918 0.935
MB-LGP 0.86 0.908 0.923
LGP 0.84 0.92
LBP 0.79 0.903
Viola&Jones 0.8 0.91

Fig. 9 ROC curves using CMU+MIT database

of the cascaded classifiers (Table 1). Part of the detection result of the five detectors
are listed in Table 2. As expected, due to the distinctive capability of MB-LGP and
ELM our detector had better performance than the others (Fig. 9).

4 Conclusion

An extension of the newly local feature LGP called MB-LGP was introduced in this
article. Through the introduction and experiment we have proved its great invari-
ance against both local and globe variation, perfect distinctive capability and low
dimensionality. Moreover, based on the newly discovered strong feature, a cascade
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face detector with four stages which were constructed by combining the boosting
classifiers with Extreme Learning Machine was proposed. The experiment carried
on the famous CMU+MIT face database had proved the great detection ability of
the cascaded classifier.
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Freshwater Algal Bloom Prediction
by Extreme Learning Machine
in Macau Storage Reservoirs

Inchio Lou, Zhengchao Xie, Wai Kin Ung and Kai Meng Mok

Abstract Understanding and predicting dynamic change of algae population in
freshwater reservoirs is particularly important, as algae-releasing cyanotoxins are
carcinogens that would affect the health of public. However, the high complex non-
linearity of water variables and their interactions makes it difficult in modeling its
growth. Recently extreme learning machine (ELM) was reported to have advantages
of only requirement of a small amount of samples, high degree of prediction accuracy
and long prediction period to solve the nonlinear problems. In this study, the ELM-
based prediction and forecast models for phytoplankton abundance in Macau Storage
Reservoir (MSR) are proposed, in which the water parameters of pH, SiO2, alka-
linity, Bicarbonate (HCO3

−), dissolved oxygen (DO), total Nitrogen (TN), UV254,
turbidity, conductivity, nitrate, total nitrogen (TN), orthophosphate (PO4

3−), total
phosphorus (TP), suspended solid (SS) and total organic carbon (TOC) selected
from the correlation analysis of the 23 monthly water variables were included, with
8 years (2001–2008) data for training and the most recent 3 years (2009–2011) for
testing. The modeling results showed that the prediction and forecast (based on data
on the previous 1st, 2nd, 3rd and 12th months) powers were estimated as approx-
imately 0.83 and 0.90 respectively, showing that the ELM is an effective new way
that can be used for monitoring algal bloom in drinking water storage reservoir.
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1 Introduction

Freshwater algal bloom is one of water pollution problem that occurs in eutrophic
lakes or reservoirs due to the presence of excessive nutrients. It has been found that
most species of algae (also called phytoplankton) can produce various cyanotoxins
including microcytins, cylindrospermopsis and nodularin, which have directly impact
on the water treatment processes and consequently affect the health of public [1]. Thus
it is of great importance to understand the population dynamics of algae in the raw
water storage units. However, modeling the algae population in such a complicated
system is a challenge, as the physical, chemical and biological processes as well as the
interaction among them are involved, resulting in the highly nonlinear relationship
between phytoplankton abundance and various water parameters.

Computational artificial intelligence techniques have been developed as the effi-
cient tools in recent years for predicting (without considering time series effect) or
forecasting (considering time series effect) algal bloom. Previous studies [2] have
used the principle component regression (PCR), i.e., principal component analysis
(PCA) followed by multiple linear regressions (MLR), to predict chlorophyll-a lev-
els, the fundamental index of phytoplankton. However, the intrinsic problem of PCR
is that the variables data set used as the input of the model have high complex non-
linearity, expecting that PCR alone is inadequate for prediction and the prediction
results were unsatisfactory. With the development of artificial intelligence models,
artificial neural network (ANN) such as back propagation (BP) was applied to pre-
dict the algal bloom by assessing the eutrophication and simulating the chlorophyll-a
concentration. ANN is a well-suited method with self-adaptability, self-organization
and error tolerance, which is better than PCR for non-linear simulation. ANN has
been used for predicting the chlorophyll concentration [3–5]. However, this method
has such limitations as requirement of a great amount of training data, difficulty in
tuning the structure parameter that is mainly based on experience, and its “black
box” nature that is difficult to understand and interpret the data [2, 6].

Considering the drawbacks of the both methods, recently extreme learning
machine (ELM) is thought as the best solution. ELM is a simple and efficient learning
algorithm that was developed recently. In the name of ELM, extreme means that its
learning speed is extremely fast while it has higher generalization than the gradient-
descent based learning [7]. Furthermore, ELM can be used to solve issues like local
minima, improper learning rate and over-fitting which are very possible in traditional
ANN [4, 7]. Examples [3–5, 7] also showed that ELM possesses a superior perfor-
mance than other conventional algorithms on different benchmark problems from
both regression and classification areas. There are some existing works [8–10] with
using ELM and through these works it can be seen that ELM could have a very good
performance for some engineering applications. By far, as the best knowledge of
authors, there is no existing application of using ELM on prediction or forecast the
phytoplankton abundance in algal blooms.

In this study, it is attempted to develop an ELM-based predictive model to simulate
the dynamic change of phytoplankton abundance in Macau Reservoir given a variety
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Fig. 1 Location of the MSR

of water variables. The measured data from 2001 to 2011 were used to train and test
the model. The present study will lead to better understanding of the algal problems
in Macau, which will help to develop later guidelines for forecasting the onset of
algae blooms in raw water resources.

2 Materials And Methods

2.1 MSR and Water Parameters Measurement

Macau is situated 60 km southwest of Hong Kong, and experiences a subtropical
seasonal climate that is greatly influenced by the monsoons. The difference of tem-
perature and rainfall between summer and winter are significant though not great.
Macau Main Storage Reservoir (MSR) (Fig. 1), located in the east part of Macau
peninsula, is the biggest reservoir in Macau with the capacity of about 1.9 million m3

and the water surface area of 0.35 km2. It is a pumped storage reservoir that receives
raw water from the West River of the Pearl River network, and can provide water
supply to the whole areas of Macau for about 1 week. MSR is particularly important
as the temporary water source during the salty tide period when high salinity con-
centration is caused by intrusion of sea water to the water intake location. In recent
years, there were reports (Macao Water Co. Ltd., unpublished data) that the reservoir
experienced algal blooms and the situation appeared to be worsening.

Macau Water Supply Co. Ltd. is responsible for water-quality monitoring and
management. Location in the inlet of the reservoir was selected for sampling. Samples
were collected in duplicate monthly from May 2001 to February 2011 at 0.5 m from
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the water surface. A total of 23 water quality parameters, including hydrological,
physical, chemical and biological parameters, were monitored monthly. Precipitation
was obtained from Macau Meteorological Center (http://www.smg.gov.mo/www/te_
smgmail.php). Imported volume, exported volume and water level were recorded by
the inlet and outlet flow meters, based on which the hydraulic retention time (HRT)
can be calculated. Turbidity, temperature, pH, conductivity, chloride (Cl−), sulfate
(SO4

2−), silicon (SiO2), alkalinity, bicarbonate (HCO3
−), dissolved oxygen (DO),

ammonium (NH4
+), nitrite (NO2

−), nitrate (NO3
−), total nitrogen (TN), phosphorus

(PO4
3−), total phosphorus (TP), suspended solid, total organic carbon (TOC) and

UV254 and iron (Fe) were measured according to the standard methods [11, 12].
The phytoplankton samples were fixed using 5 % formaldehyde and transported to
laboratory for microscopic counting.

In this work, correlation analysis was conducted to identify the water parameters
which were significantly correlated with phytoplankton abundance. Only the para-
meters with the correlation coefficients greater than 0.3, are selected as inputs in the
ELM models. It was also noted that the parameters selected in forecast models are
different from those in the prediction models, as the water parameters in previous
data were also used in the correlation analysis. In our study, two types of forecast
models were used, depending on the monthly data used as the inputs. Forecast model
1 was based on the last 3 months data, while forecast model 2 was based on the last
3 months data as well as the previous 12th month data, i.e., the previous 1st, 2nd and
3rd and 12th month data. The purpose of adding the previous 12th month data in the
forecast model 2 is to take the historical effect the last year that have similar environ-
mental conditions, as the environmental conditions, such as temperature, influence
the growth of phytoplankton.

2.2 Extreme Learning Machine

ELM originally was proposed as a learning scheme for single-hidden-layer feed-
forward neural networks (SLFNs). Then, it was extended to the generalized SLFNs
where the hidden layer needs not be neuron alike [13, 14]. In the past, gradient descent
based approaches were used for feed-forward neutral networks, and all parameters
need to be tuned which usually take a long time. While for ELM which the basic idea
is that, the model has only one hidden layer, and the parameters of this hidden layer,
including the input weights and biases of the hidden nodes, need not to be tuned. On
the contrary, these hidden nodes parameters are assigned randomly, which means
that they may be independent of the training data [14]. After these input weights and
hidden layer biases are assigned randomly, SLFNs can be treated as linear system and
output weights which link hidden layer to the output layer can be calculated using
generalized inverse operation [15–17]. References [3, 4, 7] proposed and proved the
theory of ELM. In order to make it clear on ELM and its application in water treatment
prediction, here the fundamental theory of ELM in [7] will be briefly re-introduced
first as follows:

http://www.smg.gov.mo/www/te_smgmail.php
http://www.smg.gov.mo/www/te_smgmail.php
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Consider a training data set D of N arbitrary distinct samples (xi , ti ), where
{xi } ∈ Rm is the m ×1 input vector and {ti } ∈ Rn is the n ×1 target vector. Standard
SLFNs with Ñ nodes and activation function g(x) are mathematically modeled a

Ñ∑

i=1

βigi
(
x j

) =
Ñ∑

i=1

βig
(
wi , bi , x j

) = o j , 1 ◦ j ◦ N (1)

where wi is weight vector connecting the ith hidden node and the input nodes, βi is
the weight vector connecting the ith hidden node and the output nodes, and bi is the
threshold of the ith hidden node.

Since the goal is to find the relation between xi and ti , if the SLFNs can approxi-

mate the training data with zero error (i.e.,
⎧Ñ

j=1

⎪
⎪o j − t j

⎪
⎪ = 0), then there exists

βi , wi , and bi such that Eq. (2) is satisfied.

Ñ∑

i=1

βig
(
wi , bi , x j

) = t j , 1 ◦ j ◦ N (2)

The above N equations can be written compactly as

Hβ = T (3)

where

H =
⎨

⎩
⎥

h (x1)
...

h (xN )

⎦


 =

⎨

⎩
⎥

g (w1, b1, x1) · · · g
(
wÑ , bÑ , x1

)

...
. . .

...

g (w1, b1, xN ) · · · g (
wÑ , bÑ , xN

)

⎦




N×Ñ ,

(4)

β =
⎨

⎩
⎥

βT
1
...

βT
N

⎦




Ñ×n

and T =
⎨

⎩
⎥

tT
1
...

tT
N

⎦




N×n

(5)

H is called the hidden layer output matrix of SLFN. h(x) = g (w1, b1, x) , . . . ,

g
(
wÑ , bÑ , x

)
is called the hidden layer feature mapping. The ith column of H is the

ith hidden node output with respect to inputs x1, x2, . . . , xN . The ith row of H is the
hidden layer feature mapping with respect to the ith input xi .

According to the proofs in [3, 4], if the activation function is infinitely differ-
entiable, the input weight vectors wi and hidden layer biases bi can be randomly
assigned. Moreover, these parameters are not necessarily tuned and the hidden layer
output matrix H can actually remain unchanged once random values have been
assigned in the beginning of learning.

Different from traditional learning algorithms, ELM tends to reach not only the
smallest training error but also the smallest norm of output weights [18]:
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Minimize: ∗Hβ − T∗2 and ∗β∗ (6)

Then, if the number Ñ of hidden neurons is equal to the number N of distinct
training samples (i.e., Ñ = N ), the matrix H is square and invertible, which means
that the output weights β can be analytically calculated by simply inverting H, and
thus the SLFNs can approximate these training samples with zero error. However,
most of the times the number of hidden nodes is much less than the number of distinct
training samples (i.e., Ñ ℵ N ), and thus H is a non-square matrix and there may not
exist βi , wi and bi , and Eq. (3) cannot be satisfied. Fortunately, since wi and bi are
fixed, Eq. (3) becomes a linear system, and the smallest norm least square method can
be used instead of the standard optimization method to estimate the output weights.

β = H†T (7)

where H† is the Moore–Penrose pseudoinverse of matrix H [16], which can be
calculated using the orthogonal projection method [17]:

H† =
(

HTH
)−1

HT when HT H is nonsingular (8)

or H† = HT
(

H HT
)−1

when H HT is nonsigular (9)

where the superscript T means matrix transposition.
Based on this learning algorithm, the training time can be extremely fast because

only three calculation steps are required: 1. randomly assign hidden nodes parame-
ters; 2. calculate the hidden layer output matrix H; 3. calculate the output weight β.
Moreover, since the output weights are calculated analytically using inverse matrix,
it ensures that the results are global and hence better prediction accuracy and general-
ization performance can be achieved. After training, the output function of ELM for
an unseen vector X (take one output node case as an example) can be expressed as:

f (X) = h (X) β (10)

2.3 Performance Indicators

The performance of models was evaluated using the following indicators: square of
correlation coefficient (R2) that provides the variability measure for the data repro-
duced in the model; mean absolute error (MAE) and root mean square error (RMSE)
that measure residual errors, providing a global idea of the difference between the
observation and modeling. The indicators were defined as below by Eq. 11–15.

R2 = 1 − F

Fo
(11)
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F =
∑ (

Yi − ∧
Yi

)2

(12)

Fo =
∑ (

Yi − Yi
)2

(13)

MAE = 1

n

n∑

i=1

( ∧
Yi −Yi

)2

(14)

RMSE =
√
√
√
√1

n

n∑

i=1

( ∧
Yi −Yi

)2

(15)

where n is the number of data; Yi and Y i are observation data and the mean of

observation data, respectively, and
∧
Yi is the modeling results Table 1.

3 Results and Discussion

The correlation of log10 phytoplankton and water parameters for forecast model and
prediction model were shown in Table 2. Parameters with correlation coefficients
greater than 0.3 (highlighted in bold) will be retained in the models. It was also
noted that the parameters selected in forecast models are different from those in
the prediction models, as the water parameters in previous data (past record) were
also used in the correlation analysis. In the forecast models of ELM, phytoplankton
abundance (t) is a function of water parameter (t-1), water parameter (t-2) and water
parameters (t-3), where t-1, t-2, t-3 and t-12 represent the 1, 2, 3 and 12 months prior
to time t. Thus there were only 9 parameters used in the prediction models and 23
time-lagged parameters selected for the forecast models.

After the correlation analysis, it comes to the testing of the models invoked two
parts, the accuracy performance and the generalization performance. Accuracy per-
formance is to test the capability of the model to predict the output for the given input
set that originally used to train the model, while generalization performance is to test
the capability of the model to predict the output for the given input sets that were
not in the training set. In order to prevent the model that is memorizing the inputs
instead of generalized learning, both performance checks need to be considered. In
the present research, the performance indexes for ELM-based models were averaged
with 50 runs.

In the application of ELM in this work, for the predication models, after the
correlation analysis, 9 parameters such as pH, SiO2 are selected as the independent
variables, and phytoplankton abundance is selected as the induced variable (target
value). Then, the data from May of 2005 to December of 2008 are used to train the
model, and data from January of 2009 to February of 2011 are used to test the model.
In the training process, the cross-validation approach as mentioned previously is
adopted to obtain the optimal combination of parameters for the testing. Specifically,
the training data are divided into 10 about the same size groups that 9 groups for
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Table 1 Correlation analysis of prediction and forecast model

Parameters Prediction Forecast model Time lagged (month)
model

t-1 t-2 t-3 t-12

Turbidity −0.03 0.00 −0.01 −0.06 −0.25
Temperature 0.19 0.21 0.19 0.14 0.22
pH 0.49 0.42 0.38 0.33 0.33
Conductivity −0.08 0.01 0.14 0.21 −0.24
Cl− 0.01 0.10 0.22 0.28 −0.16
SO4

2− −0.03 0.03 0.14 0.22 −0.28
SiO2 0.33 0.31 0.16 0.04 −0.08
Alkalinity −0.34 −0.30 −0.21 −0.12 −0.36
HCO3

− −0.46 −0.40 −0.32 −0.24 −0.38
DO 0.39 0.35 0.34 0.31 0.18
NO3

− −0.29 −0.22 −0.22 −0.15 −0.35
NO2

− −0.10 −0.08 −0.02 0.03 −0.23
NH4

+ 0.11 0.10 0.08 0.25 0.05
TN 0.68 0.60 0.53 0.46 0.23
UV254 0.56 0.55 0.48 0.47 −0.07
Fe −0.14 −0.06 −0.04 −0.08 −0.27
PO4

3− 0.02 0.06 0.06 0.03 0.11
TP 0.08 0.05 0.02 0.00 −0.21
Suspended solid 0.31 0.35 0.31 0.23 −0.10
TOC 0.38 0.33 0.29 0.35 0.07
HRT −0.12 −0.11 −0.13 −0.16 0.10
Water level 0.13 0.05 0.01 −0.02 0.10
Precipitation −0.09 0.05 0.11 0.06 −0.05
Phytoplankton abundance − 0.82 0.71 0.62 0.24

training and the rest 1 group is used to test the model trained by the previous 9 groups’
data. Then, this (9 groups training and 1 group testing) is repeated for 9 times (10
times in total). And then, parameters of the one process which has the best testing
performance in these 10 repeats will be used as the optimal parameters combination
in the ‘real’ testing process which has the data from January of 2009 to February of
2011. The forecast model basically follows the same steps of the prediction model,
while the only difference between these two models is that effect of time series is
included in the forecast model. So, in the forecast model, only the previous 3 months’
data are included in the training process.

The performance of prediction and forecast models were shown in Table 2. The
results indicated that the ELM were successful in the prediction and forecast phyto-
plankton abundance in MSR, with the R2 greater than 0.82 for both training and test-
ing data sets. Compared to the prediction model, ELM had better performance with
the R2 of 0.8637 (0.8702), RMSE of 0.2246 (0.3643), and MAE of 0.1794 (0.2565)
for training (testing), suggesting that the historical water parameters including the
phytoplankton abundance has effect on the prediction, which can improve the pre-
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Fig. 2 Observed and predicted phytoplankton level for the training and validation data set of the
prediction models
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Fig. 3 Observed and predicted phytoplankton level for the testing data set of the prediction models

diction power. Furthermore, when including the previous 12th month data as input
in the forecast model, the prediction power of the forecast model can increase up to
0.9 with the RMSE of 0.2236 (0.3166), and MAE of 0.1597 (0.2258) for training
(testing). These results further confirmed the historical effects on the model accuracy
and generalization performance, and also implied that take the previous 12th month
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Fig. 4 ELM results for the training and validation (a) and testing (b) data set of the prediction
model

data as memorizing learning can improve the prediction power in the forecast model.
Besides, further compared with our previous study [19] for forecast of phytoplankton
abundance using support vector machine (SVM) with R2 of 0.86, the present study
using ELM have better prediction power with R2 of 0.9.

The observed data versus the modeling data were shown in Fig. 4 (prediction
model), Fig. 7 (forecast model 1) and Fig. 10 (forecast model 2), and the observed
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Fig. 5 Observed and predicted phytoplankton level for the training and validation data set of the
forecast model 1 that based on the previous 1st, 2nd and 3rd months data

2009 2010 2011
6

6.5

7

7.5

8

8.5

9

Year

P
hy

to
pl

an
kt

on
 a

bu
nd

an
ce

 (
lo

g1
0)

Observed
ELM

Fig. 6 Observed and predicted phytoplankton level for the testing data set of the forecast model 1
that based on the previous 1st, 2nd and 3rd months data

and modeling phytoplankton abundance change over time were listed in Figs. 2
and 3 (prediction model) and Figs. 5 and 6 (forecast model 1) and Figs. 8 and 9
(forecast model 2). These results confirmed that ELM can handle well the non-linear
relationship between water parameters and phytoplankton abundance.
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Fig. 7 ELM results for the training and validation (a) and testing (b) data set of the forecast model 1
that based on the previous 1st, 2nd and 3rd months data
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Fig. 8 Observed and forecasted phytoplankton lever for the training and validation data set of the
forecast model 2 that based on the previous 1st, 2nd, 3rd and 12th months data
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Fig. 9 Observed and predicted phytoplankton level for the testing data set of the forecast model 2
that based on the previous 1st, 2nd, 3rd, and 12th months data
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Fig. 10 ELM results for the training and validation (a) and testing (b) data set of the forecast model
2 that based on the previous 1st, 2nd, 3rd, and 12th months data
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4 Conclusions

The ELM-based prediction and forecast models for phytoplankton abundance in
MSR are proposed in this study. 15 water parameters with the correlation coeffi-
cients against phytoplankton abundance greater than 0.3 were selected, with 8 years
(2001–2008) data for training and cross validation, and the most recent 3 years
(2009–2011) for testing. The results showed that the forecast model have better
performance with the R2 of up to 0.9 than prediction model with the R2 of 0.83,
implying that the algal bloom problem is a complicated non-linear dynamic system
that is affected not only by the water variables in current month, but also by those
in a couple of previous months. In addition, including the previous 12th month data
in the forecast model, ELM in the study showed superior forecast power and root
mean square errors, indicting that the historical water parameters and phytoplank-
ton abundance have impact on the phytoplankton dynamics of the reservoir. These
results will provide an effective way for water quality monitoring and management
of drinking water storage reservoirs. In addition, additional numerical approaches
and optimization algorithms can be applied to enhance the performance [20–22].
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Abstract Due to having many advantages, virtualization technology has been
widely used and become a key technique of cloud computing. Live migration of
virtual machines is the core and key technique of virtualization fields, but the exist-
ing pre-copy live migration approach has the problems of low copy efficiency and
long total migration time, so we propose an extreme learning machine (ELM) based
adaptive live migration approach of virtual machines (ELMBALMA) in this chapter.
Firstly, the approach uses the ELM algorithm to classify the virtual machines accord-
ing to the type of the running applications, and then choose the best suitable migration
algorithms for each type of virtual machines, thereby reduce the time of live migrat-
ing of virtual machines. In addition, we proposed a memory compression based live
migration algorithm (MCBLMA) for the memory-intensive application scene. The
algorithm uses a weight-based measurement method of writable working set, which
can accurately measure the writable working set, so that it can reduce the amount of
dirty memory page transmission, meanwhile it uses a memory compression algorithm
to compress memory pages to be transmitted, and thus reduces the data transmission
time. Preliminary experiments show that the proposed approach can significantly
reduce the memory pages transmitted, the total migration time and the downtime of
virtual machines.
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1 Introduction

Virtualization technology plays an important role in the development of the
computer technology; it is widely used in the fields of services and resources inte-
gration, system security and distributed computing. It can enhance the resilience
and flexibility of system architecture, implement resources partition and aggrega-
tion, package services transparently and so on; it can greatly enhance the resource
utility, reduce the computing cost, and has become one of the important supporting
technologies of current mainstream cloud computing systems. As one of the key
techniques of virtualization, the live migration of virtual machines can seamlessly
and completely migrate a running virtual machine from one physical machine to
another physical machine. It is usually used along with the resource monitoring
and load balancing algorithm to schedule resources automatically in the cloud com-
puting systems, achieving load balancing among physical machines. This greatly
increases the automatic management capabilities of resource of cloud computing
center, reducing operating and maintenance costs, enhancing the system availability
and scalability, so live migration of virtual machines has attracted more and more
people’s attention.

Xen [1] is a very excellent open source virtualization hypervisor of x86 platform,
which has high performance approximate to the original system, it is able to sup-
port full virtualization and has been widely used. However, virtualization platforms
including Xen mainly use pre-copy migration approach to implement live migration
of virtual machines. But the original pre-copy approach cannot be fit for all applica-
tion scenes, especially for the memory-intensive applications. The main drawback
of this algorithm is that its iterative pre-copy process needs to transfer many memory
pages repeatedly when the migration memory pages are modified frequently, this
leads to the repeated transmission of a large number of memory pages, not only adds
the total migration time, but also takes up network bandwidth and reduces system per-
formance. To solve this problem, we present an extremely learning machine (ELM)
based adaptive live migration approach (ELMBALMA) on the basis of deeply study-
ing the original pre-copy memory migration approach. This approach fully considers
the application scenarios of different virtual machines, and firstly classifies the virtual
machine (VM) into two types which are memory-intensive VMs and non-memory-
intensive VMs, and then choose the best suitable migration algorithms for each types
of VMs, thereby reduce the overall time of live migrating of VMs, meanwhile, we
proposed a memory compression based live migration algorithm (MCBLMA) for the
memory-intensive application scene. The algorithm uses a weight-based measure-
ment method of writable working set, which can accurately measure the writable
working set, so that it can reduce the amount of memory pages transmission, it also
uses a memory page compression algorithm to compress memory pages which will
be transmitted. The source physical host uses the compression algorithm to compress
memory pages before they are sent, and the destination physical host will recover the
memory pages after receiving the compressed data and decoding the data with the
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corresponding decoding algorithm, thereby further reducing the data transfer time.
Experiments show that the proposed approach can effectively reduce the amount of
memory pages transferred, the total migration time and downtime of VMs.

2 Related Works

In recent years, virtual machine live migration and Extreme Learning Machine (ELM)
techniques are given much attention by scholars at home and abroad, and a lot of
relative works are done. ELM is a new learning algorithm for single hidden layer
feed-forward networks (SLFNs), it is proposed by Huang et al. [2, 3]. ELM not
only can avoid a number of iterations and the local minimum, but also have bet-
ter generalization, robustness and controllability, so it is widely used in regression
and classification problems. Cao and et al. proposed an effective ELM (EELM) [4],
which is used for the image classification. Engin Avci [5] proposed a combination
of an adaptive feature extraction and classification using optimum wavelet entropy
parameter values. The features used in this study are extracted from radar target
echo signals. Herein, a genetic wavelet extreme learning machine classifier model
(GAWELM) is developed for expert target recognition. [6] proposed model-namely,
the multiple extreme learning machines (MELMs)—shows promising performance
under numerous assessing criteria and constructs a pre-warning model to assist deci-
sion makers in making an appropriate decision in a turbulent economic climate. Zheng
et al. [7] proposed a novel approach for text categorization based on a regularization
extreme learning machine (RELM) in which its weights can be obtained analytically,
and a bias-variance trade-off could be achieved by adding a regularization term into
the linear system of single-hidden layer feed forward neural networks. In the field
of virtual machine, live migration algorithm is one of the main research directions,
and many research results have been made. many typical virtual machine migration
algorithms are presented such as stop-and-copy [8], pre-copy [9], post-copy [10] and
etc., the stop-and-copy migration algorithm is suitable for small memory system,
pre-copy algorithm is the mainstream live migration algorithm of virtual machine
currently, it copies memory pages on the source machine to the target machine in
iterative manner, the algorithm has the problem which the total migration time is too
long. Hines proposed post-copy algorithm, which first transfer state of the CPU and
necessary memory information to the target host, at the same time start the virtual
machine, then transfer necessary memory pages from the source host to the target
host dynamically. [11] proposed a new fast and transparent virtual machine migra-
tion mechanism which use Re-Virt framework and combined the checkpoint recovery
idea with the track playback technology, but the method waste some performance.
[12] proposed an adaptive data compression algorithm, which select the appropriate
compression algorithm to compress memory pages based on the characteristics of
the memory page data. [13] proposed an improved pre-copy scheme, It adds a data
structure called to_send_last bitmap to mark memory pages that modified frequently,
In the final round of the iterative process of copying, transfer memory pages marked
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by the to_send_last bitmap. [14] proposed a hierarchical copy algorithm based on
Xen pre-copy algorithm, which layered memory pages according to its modification
frequency, and adjusted the transmitting strategy of memory pages in the first iter-
ation, the first iteration does not send all memory pages, and set writable working
set testing in advance of the stage of pre-migration and resource reservation of orig-
inal algorithm. [15] proposed a Slowdown Scheduling Algorithm, which decrease
the CPU resources which have been assigned to migration domain, and reduces the
dirtying page rate according to the decrease of CPU activity. But it can add response
time. [16] proposed a memory migration mechanism named Microwiper. Microwiper
includes two policies which are transferred according to memory page modification
rate and transmission regulator. The former refers to the virtual machine memory
is divided into a series of regions, migrates according to the rate of modification of
the region, the latter refers to adjust the page transmission according to the network
bandwidth.

3 Analysis of Xen Pre-copy Migration Algorithm

The virtual machine (VM) migration is mainly related to two important performance
indicators which are downtime and total migration time, according to the weight
of two indicators, different algorithms are designed to meet different application
requirements. Pre-copy method well balances the contradiction between downtime
and total migration time, and it is used by the live migration of the VMware, Xen and
other mainstream virtualization platform. Below are the main steps of the pre-copy
algorithm. Assume that the source host is A and the destination host is B, and then
the whole Xen pre-copy algorithm consists of the following five steps:

Step 1: Source Reservation. At this stage, the source host A send request to the
destination host B, the first thing need to be done is to make sure whether
there are enough resource to run the migration virtual machine. If so, reserve
the resources which has the same size as the virtual machine migration, or
the VM is still running in A, and it may choose other host as the destination
host.

Step 2: Iterative Pre-Copy. At this stage, the memory of the VM will be copied to
the destination host B by A in an iterative manner; the VM in A is still in the
state of running and offer service. In first round of iteration copy, all the VM
memory pages should be copied from A to B. In the latter iteration, only
copy the memory pages modified on the last transmission process.

Step 3: Stop-and-Copy. The process of the iteration will be stopped when meeting
the given conditions. Next is to suspend the migration VM of the source host
A, redirect the network connection of VM to destination host B, and begin
to transmit the state of the CPU and the left dirty pages. After the end of this
stage, A and B have the same copy of the suspended VM. If the migration
fails, the VM in A could still restore to run.
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Step 4: Commitment. The target host B informs Host A that virtual machine image
has been successfully received. Once the message is conformed, the source
host A will destroy the original VM.

Step 5: Activation. In this phase, host B activate the migrated VM, bind the device
drivers to the destination host B, and broadcast the new IP address.

In the above migration algorithm of Xen, memory iterative pre-copy is the impor-
tant factor affecting migration performance. The VM memory migration of Xen is
copy memory pages from the source host to the destination host iteratively. The first
round of transmission includes all pages of memory of the VM, and for later itera-
tions, the n-th iteration of the transmission only includes the modified pages in the
n-1th iteration process. But from a systems point of view, the memory pages fre-
quently modified are to be repeatedly transferred for many times. This increases the
number of memory pages for each iteration transmission and total migration time,
it has the negative impact on the migration performance. These pages changed fre-
quently are called Writable Working Set (WWS), so precise determination of WWS
can avoid repeat transmission of the pages and reduce the iteration number. In order
to accurately determining WWS and migrate memory efficiently, Xen divide virtual
machine memory pages into three categories, using three page bitmap variables,
to_send, to_skip and to_fix to denote. To_send denotes the pages that become dirty
in the former round of the iterative process and those pages are need to be transmitted
in this iteration; To_skip is the bitmap that Xen introduced in order to reduce the
memory pages retransmission, it marks the pages that are modified more frequent
and can be skipped in the current round of iteration. To_fix marks the pages that have
not been mapped and will be transferred in the final round of stop and copy stage.

We can see from above analysis, Xen pre-copy algorithm mainly through two
consecutive collection of dirty page information to two bitmaps to_send and to_skip,
then compare this two bitmaps information to determine the WWS. Obviously, such
a method of testing WWS is too simple, especially under the memory pages being
modified frequently, the information collected is not sufficient to predict modification
state of a page, and this leads the WWS measurement inaccurate, and makes many
memory pages are transmitted repeatedly more times, meanwhile, the bigger the
memory size of virtual machine, the greater the amount of data to be transferred,
and those increase the total migration time, which makes the pre-copy migration
algorithm not suitable for memory-intensive application scene.

4 ELM Based Adaptive Live Migration Approach

We can see from the above analysis, the pre-copy algorithm does not efficiently
process VM live migration in memory-intensive application scenarios, so we com-
bine ELM techniques and propose an ELM based adaptive live migration approach
of virtual machines (ELMBALMA) to solve the problem. Next we first introduce
the ELM, then describe the ELM based VM live migration framework and related
algorithms in detail.



118 B. Qiao et al.

4.1 ELM

Extreme learning machine (ELM) is a new learning algorithm for single-hidden
layer feedforward neural networks (SLFNs), which is proposed by Huang et al.
[2, 3]. It not only can avoid a number of iterations and the local minimum, but
also have better generalization, robustness and controllability, and is widely used in
regression and classification problems. It randomly assigns the input weights and
hidden layer biases and then analytically determines the output weights of SLFNs.
ELM can achieve better performance than other conventional learning algorithms
for classification [17]. Also, it is less sensitive to user-specified parameters, and can
be developed faster and more conveniently [18].

Given Xi = [xi1, xi2, . . . , xin]T ∈ Rn and ti = [ti1, ti2, . . . , tim]T ∈ Rm , and
an activation function g(x), standard SLFNs with N arbitrary (xi, ti) samples are
modeled as

γL
i=1βi gi (x j ) = γL

i=1βi g(wi · x j + b j ) = oi , ( j = 1, . . . , N ) (1)

where L is the number of hidden layer nodes, wi = [wi1, wi2, . . . , win]T is the weight
vector between the ith hidden node and the input nodes, βi = [βi1, βi2, . . . , βim]T

is the weight vector between the ith hidden node and the output nodes, and bi is the
threshold of the ith hidden node.

The output of ELM has been modeled as follows.

f (x) = γL
i=1βi G(ai , bi, x) (2)

where

H(w1, . . . , wL , b1, . . . , bL , x1, . . . , xL)

=





g(w1 · x1 + b1) · · · g(wL · x1 + bL)
... · · · ...

g(w1 · xN + bN ) · · · g(wL · xN + bL)

⎧

⎪
⎨

N×L

(3)

Because standard SLFNs with activation function g(x) can approximate these L
samples with zero error, it means

⎩L
j=1

⎥
⎥o j − t j

⎥
⎥ = 0 and there exist βi , wi and bi

which satisfy the following equation:

L⎦

i=1

βi g(wi · x j + bi ) = t j j = 1, . . . , N (4)

The equation above can be expressed compactly as follows:

Hβ = T (5)
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H is called the hidden layer output matrix of the neural networks.
Given a training set ◦ = {(xi , ti ) |xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N }, activation

function g(x) and hidden node number L , algorithm ELM is describe as algorithm 1.

4.2 ELM Based Virtual Machine Live Migration Framework

Because different types of virtual machines whose load type and application sce-
narios are different, so each virtual machine live migration algorithm can efficiently
support only certain types of virtual machine live migrations. Such as pre-copy live
migration algorithm is suitable for non-memory-intensive application scenarios, and
post-copy live migration algorithm is suitable for the time-sensitive application sce-
narios. Therefore, classify virtual machines into different types according to the
load type and application characteristics of the virtual machines, then select the most
appropriate algorithms to achieve the live migration of different type virtual machine
has become an important way to improve the overall performance of virtual machine
migration within a cluster.

Therefore, in this chapter we present a ELM based virtual machine live migration
framework, which takes advantage of current popular ELM technique to achieve
accurate classification of virtual machines in a cluster, and chooses the most suitable
migration algorithms to perform live migration of virtual machines in some appli-
cation scenarios, thereby shortens the overall virtual machine migration time and
improves the efficiency of VM live migration.

Figure 1 shows the ELM-based virtual machine live migration framework, which
mainly consists of ELM classifier and two migrate algorithm modules. Firstly,
we use the training data to train the ELM classifier, and then classified virtual
machines into memory-intensive and non-memory-intensive types according to the
feature data of the application on the virtual machines, memory-intensive virtual
machines are migrated using the memory compression based live migration algorithm
(MCBLMA) which is proposed specifically for the migration of memory-intensive
virtual machines and presented in subsequent sections in detail, no-memory-intensive
virtual machines are migrated using the original pre-copy live migration algorithm.
Obviously, the framework can use the most appropriate migration algorithms to
achieve the migration of two type virtual machines, which can enhance the overall
efficiency of migration of virtual machines within a cluster. In fact, the migration
framework is a combination of the ELM technology with two kinds of migration
algorithms, so it is an adaptive method of virtual machine live migration.
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Fig. 1 The framework of ELM based live migration of virtual machine

4.3 Classification of Virtual Machines

ELM algorithm has good generalization performance, so we choose ELM classifier
to classify virtual machines. The following is the related contents about classification
of VMs, such as the selection of VM feature data, data preprocessing and the selection
of ELM model parameters.

(1) The feature data selection of virtual machine Using ELM classifier to classify
virtual machines, the first issue is to select the properties of virtual machines.
Although virtual machines have a lot of properties, we only select three feature
data which is related to the live migration of virtual machines as feature data,
the three features are as follows:

(a) Memory size of virtual machine (V). Memory size is the key factor to affect
VM live migration. Generally, the bigger of the VM memory size, the greater
amount of data should be migrated and the longer of migration time.

(b) Rate of dirty page (D). Rate of dirty page reflects the speed of memory
dirty pages generated, it represents the memory access feature of application
programs, it is a core factor to affect the performance of VM migration. It
directly affect the migration copy iteration round number and the amount of
data transferred per round, which will ultimately affect the total migration
time and the total amount of data transmission;

(c) Network transmission speed (R). The network transmission speed is also a
core parameter to affect live migration performance; it directly affects the
migration algorithm convergence speed. The greater of network bandwidth,
the smaller of data transfer time;
Because the extraction of above three feature parameters of virtual machines
is relative simple, it can achieve a more accurate classification of virtual
machines. in a certain extent.

(2) The data preprocessing
In order to achieve better efficiency and accuracy of ELM classification, we
make use of Fuzzy Clustering Method to preprocess the original data, and then
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input them into ELM classifier, so that we can train and test the ELM classifier.
The details of Fuzzy Clustering Method are as following:

(a) Establish fuzzy similar matrix S
The formula of fuzzy similar matrix S is as Eq. (6):

Si j =





1, i = j;
1 − C

m⎩

k=1
|hik − hjk |, i ∗= j. (6)

where, Sik is property value for the ith row kth column; S jk is prop-
erty value for the jth row kth column; C is a constant, so that it makes
0 ℵ si j ℵ 1; i, j = 1, 2, . . . , n, where m is the number of the sample
property, n is the number of the sample.

(b) Calculate equivalence matrix for fuzzy matrix t (S)

Calculate the transitive closure for S through convolution, that is S multiply
itself, e.g. Sk = S2k, then multiply again, until Sk = S2k. So the fuzzy
equivalence matrix t (S) = Sk = S2k,k ∈ N. The fuzzy equivalence matrix
data work as the input of ELM sample data.

(3) The selection of ELM Model parameters
The main parameter for ELM classification model is the number of hidden layer
neuron, it relates to the number of input layer neutron. So we initialize the number
of hidden layer neutron by 20, then according to the training error to increase
properly, so as to achieve the proper number of hidden layer node number. If the
error is greater than the allowed bound, we increase the number of hidden layer
nodes, otherwise, we decrease it. We choose Sigmoid as the activation function,
the equation is as following:

g(x) = 1/(1 + e−x ) (7)

5 Memory Compression Based Live Migration Algorithm

According to the above analysis of the pre-copy algorithm, the pre-copy migration
algorithm is not suitable for memory-intensive application scene; the main reason is
that its writable work set (WWS) measurement is inaccurate, and this leads to many
memory pages are transmitted repeatedly, increases the migration time. To solve the
problem, we propose a memory compression based live migration algorithm of VMs
(MCBLMA). Below we will describe the proposed algorithm from the following
aspect: the main idea, weight-based WWS measurement approach and the memory
pages compression algorithm.
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5.1 Main Idea

According to principle of program locality, the more recently the instructions and data
are used, the more likely they are used later. So the memory pages modified recently
has the higher probability to be modified again. Based on this principle, we propose
a weight-based WWS measure approach which can determine WWS accurately;
meanwhile we develop a memory compression algorithm which can compress the
memory pages to transmit. The main ideas are described as below:

(1) In each round of the iterative process, we repeatedly collect dirty page infor-
mation of VM and assign an appropriate weight, and then compute the weight
of each dirty page. The larger weight value of the dirty page shows its higher
modification frequency and will be likely to be used again in the next period of
time, and the smaller weight value of a dirty page shows the lower modification
frequency and in the future over a period of time is not likely to be used. And
then we set a threshold, and only those dirty pages whose weight is less than
the threshold will be transferred in each iteration copy process. In this way, we
can predict the memory page modification trends of VMS, and accurately mea-
sures the WWS, thereby reducing the amount of pages to be transmitted during
migration time.

(2) Designing a memory compression algorithm to compress the memory dirty
pages, and hence reduce the amount of data to be transmitted and improve the
data transmission efficiency in each iteration process, shorten the migration time
and optimize the migration performance.

5.2 Weight-Based WWS Determining Approach

The proposed approach, which determines the WWS by the way of adding weight, is
mainly through collecting the dirty pages in memory and then calculates the weight
of each dirty page to determine the WWS. The collection of the dirty pages is support
by the page operation XEN_DOMCTL_OP_CLEAN provided by the Xen platform.
It directly copy the bitmap of the dirty page in memory to the array dirty_maps and
then set the bitmap null. After the next given time_slot, we need to collect the dirty
pages again and then repeat this operation until we reach the scheduled times. The
time_slot can be given and is initialized as 900ms in the platform Xen3.4.2 and will
reduce 80ms in each iteration process. The Fig. 2 is an example of the collection of
the dirty pages.

We can see from the Fig. 2, the dirty page information of memory are collected
many times, all of them are stored in the dirty_maps array, then using the information
to calculate the weight of each dirty page. If we use Dirty_Weighti to express the
weight of dirty page i, the calculation method is bellowed as Eq. (8):
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Fig. 2 The demonstration of collecting dirty page information

Dirty_Weighti = Dirty_maps[i][1] ∧ Weight1 + Dirty_maps[i][2] ∧ Weight2 + . . .

+ Dirty_maps[i][ct] ∧ Weightct (8)

In the formula above, dirty_maps[i][j] means the modifying information of mem-
ory page i collected in the j-th time, its value is 0 or 1, 1 means the page is changed,
and 0 means the page doesn’t be changed; Weightj that can be specified means the
weight of dirty page information collected in the j-th time; Actually, the weight of
dirty pages is the product of each modifying information of them multiplies each
page weight of each collecting time, and then sum them.

We can know from the Eq. (8), setting the weight of dirty pages in each collection
time not only influence the weight of the whole dirty pages mostly, but also influence
the performance of memory compression based live migration algorithm directly. We
can know from the discussion above, the weight of pages that collected latest should
be bigger than those earlier, which may measure the WWS accurately. We can set
weights with different systems, such as binary system, 20, 21, . . .2i. . .; quaternary
system, 40, 41, 42, . . ., 4i, etc. In order to make the weight of pages smaller for
the convenient calculation, we take the binary system as the weight of pages that
each time collected. We set the weights weight1, weight2, . . ., weightct of pages that
collected in first time, second time, . . ., collect_times time as 20, 21, . . ., 2ct−1. This
way not only satisfies the need of the dirty page weight of each collection time is
different, and the weight of latest collection is higher in one magnitude than that of
last time. The Fig. 3 is an example of calculating page weights, where CT is 4, the
weights of 4 collecting times and the weight calculated of ten dirty pages are shown
in the figure.

When calculating the page weight, it needs to compare it with the predefined
threshold to decide whether to send it this round of iterative copy. It’s important
to set the value of the threshold, if too big it can cause some frequently changed
pages are looked as not frequently changed pages, and to be transferred repeatedly,
this increases the network loads and total migration time; if too small it can lead
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Fig. 3 An example of calculating page weights

some not frequently changed pages are mistaken as frequently changed pages to be
sent at the last, so as to increase the transferred page numbers of the final round of
iteration, and to prolong the downtime of that machine. So the threshold must have
a moderate value. There will be a threshold setting the highest number of weight of
the collection times, which is 2(ct−1). So we can mark the memory pages into three
categories according to the threshold: (1) the pages that their dirty_weight value are
equal to zero have never been modified and will be sent to the destination host in
the first round of iteration; (2) the pages that the weights are greater than zero but
less than the threshold can be thought as not frequently modified pages and will be
sent at this round of iteration; (3) the pages that their weights are greater than the
threshold are looked as frequently updated pages and will be updated recently, and
will be skipped to transfer in this round of iteration. This can improve the efficiency
of page transferring, reduce the times of iteration, and shorten the total migration
time.

5.3 Compress Algorithm of the Memory Pages

We can see from the pre-copy algorithm that reducing the amount of dirty pages in
each iteration is an important method to reduce the migrating time. In addition to the
determination of the WWS, the most intuitive way is to use the way of memory page
compression transmission. In this way, we can reduce the amount of the transmission
data, transmission time and speed up the convergence rate. But the compression
process itself will bring some time cost, which may offset the benefits of compression
itself. Here we make use of a mathematical model to describe the change of migration
time and the amount of dirty pages transmitted when using MCBLMA algorithm.

Assuming that MCBLMA algorithm requires N times iteration copies and the
amount of data transmission in each iteration is Vi(0 < i < N), the data transmission
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time of each iteration is Ti, the network transmission speed is R, the average dirty page
rate is D(0 <= D <= 1), compression rate per memory page is Z(0 <= Z <= 1),
compression time per memory page is tc. According to the MCBLMA algorithm,
the first iteration processing time T0 and the amount of data transmission V0 can be
computed by the following equation respectively:

V0 = Vm × Z , T0 = Vm × Z ÷ R + Vm × tc (9)

where Vm is the initial memory size of virtual machine, Vi and Ti of the rest iteration
can be computed by the following equation respectively:

Vi = Ti−1 × D × Z , 1 ℵ i ℵ N (10)

Ti = Ti−1 × D × Z ÷ R + D × Ti−1 × tc
= (D × Z ÷ R + D × tc) × Ti−1

= (D × Z ÷ R + D × tc)
i × T0 (11)

As the network transmission speed R, the virtual machine memory size Vm is fixed,
and the dirty pages rate D is determined by the application characteristics and can be
considered as fixed, in this case, we can see from Eq. (11), the processing time of each
iteration Ti is decide only by compression rate per memory page Z and compression
time per memory page tc. so we should consider to shorten the migration time of
virtual machine from the two aspect. However, as mentioned earlier, under normal
circumstances compression speed and compression ratio is contradictory, so when
choose a compression algorithm we should make a reasonable compromise between
compression speed and compression rate, and make the migration time shortest. On
the basis of studying the related character encoding compression algorithms, we con-
sider the requirement of virtual machine live migration comprehensively and design
a memory live compression algorithm (M2LZO) which is based on the character
code model. The basic idea is to build a dictionary, and for the input string, use hash
approach to find the match strings, for a matched string, get its location and the same
string length, then output the generated encode according to the compression encod-
ing format. The algorithm is an improvement of LZO compression algorithms and
the main improvement is search matching method. LZO algorithm uses twice hash
lookup matching method which can not support the best match search, thus affect-
ing the compression rate. So we use a two level hash matching method. Because it
increase the second level hash matching which is more than the original LZO algo-
rithm, it can match a longer string, and has a better compression ratio, at the same
time it doesn’t reduce the compression speed of the original algorithm.

M2LZO algorithm is made up of three parts: duplication degree checking algo-
rithm of memory pages, M2LZO encoding algorithm and M2LZO decoding algo-
rithm. Firstly, it checks the duplication degree of the memory pages generated by
the MCBLMA algorithm in the source host. Secondly, it uses different compression
levels of M2LZO compression algorithm to compress the memory pages according
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to their duplication degrees, and then send them to the destination host. In the des-
tination host, the M2LZO decoding algorithm is used to decode the compressed
memory pages, and then apply MCBLMA algorithm to recover the memory pages.
So the MCBLMA algorithm is actually composed of weighted migration pre-copy
algorithm, memory page repeatability checking algorithms and memory live com-
pression algorithm M2LZO. As M2LZO algorithm is similar to LZO algorithm, the
detail description is omitted.

5.4 Process Flow of the Proposed Algorithm

The process flow of the proposed algorithm MCBLMA is generally the same with
that of original xen pre-copy algorithm migration, while the difference lies in the
memory migration. There are two differences; the one is that the measuring of WWS
is not simply comparison of the bitmap to_send and into_skip to decide whether
to transfer a memory page, but introducing the weight calculation of dirty pages to
determine the memory pages transferring. The other is that the memory compression
algorithm M2LZO is introduced to compress memory pages to reduce amount of
data transmission. The detail processing steps of MCBLMA are as following:

(1) Collect collect_times (CT) times messages of memory dirty pages into dirty_
maps array in the process of preliminary migration.

(2) When the iteration pre-copy begins, calculates the weight Dirty_weight of the
memory pages in dirty_maps according to weight computing formula and mark
those pages that meet the conditions of transferring into mem_page_send array.

(3) Collecting M requirements pages which satisfy condition into buffer, as the
objects of this round iteration. The pages satisfying the requirements refer to:
(a) the page is not in the final round of iteration, and its mem_page_send label
not 1; Or (b) The page of the final round of iteration, and its bitmap to_fix
corresponding label to be 1; Or (c) The page of the final round of iteration,
and its bitmap to_send corresponding label to be 1, that is, the last dirty page
of virtual machine. Here the bitmap to_fix is the same with the original pre-
copy algorithm, but the bitmap to_send here marks the final dirty page of virtual
machine, which is already not the same with the original algorithm.

(4) Compress and transmit the collected memory pages which satisfy the require-
ment. Firstly, repeatedly check the memory pages, and then use different com-
pression level of M2LZO algorithm to compress memory pages according to
their duplication degree and place the compressed pages into send buffer.

(5) Transfer the memory pages in the buffer, repeat the operations in steps (3), (4)
and (5) until all the memory pages of virtual machine are scanned.

(6) When transferring memory pages of a round, determine whether to be the final
round of iteration, if not repeat the operation of collecting dirty page messages
in step (1), if it is the last round of iteration, copy the dirty messages into to_send
directly.
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(7) Repeat step (2), (3), (4), (5), (6) until meeting the exit conditions, then transfer
the last memory pages. The exit conditions are the same with original pre-copy
algorithm.

(8) Suspend VM, and directly copies dirty page information into to_send bitmap,
and then transfer the related memory dirty pages which are corresponding with
to_send bitmap.

The detail description of MCBLMA is described as algorithm 2:

6 Performance Evaluation

In order to evaluate the effectiveness of the proposed approach and algorithms, we
establish the corresponding experiment environment and make a large number of
experiments to test performance about the proposed MCBLMA and ELMBALMA
approach. In addition, we also make comparison with the traditional Pro-copy
algorithm, below is the details of the experiments.
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6.1 Experimental Environment

The test environment consists of six IBM PC servers (2 CPU, 32G Memory, 12T
Disk), among which five servers are used as physical nodes and 1 server are used
as administration node, which connect each other with Gigabit Ethernet and are
installed with Centos6.4 (kernel 3.1.2) and Xen 4.1.2. The administration node also
installs convirture 2.1.1 to manage the physical nodes. Meanwhile, we also install the
migration modules modified and the related resource monitoring modules, all these
constitute the complete experiment environment. On the above experiment platform,
we create many virtual machines with 128M, 256M, 512M and 1024M memory.
Every virtual machine (VM) is installed with CPU intensive, memory intensive and
I/O intensive applications respectively, such as TCP-C, Linpak, Dbench, Memtester,
DaCapo and so on. We also design the feature data extraction program and extract
100 feature data from 100 virtual machines, 60 feature data are used to train ELM
classifier and the other 40 data are used for the testing of the accuracy of the ELM
classifier.

6.2 Experiment Results

In this chapter, the ELM classifier is trained and tested firstly, and then the per-
formance of the MCBLMA and ELMBAMA algorithms are tested and compared
with the traditional Pro-copy algorithm. The detail performance analysis is as the
following.

(1) ELM Classifier Performance Analysis
In order to test the accuracy of the ELM classifier, virtual machines with different
memory size are created and several kinds of benchmark programs are installed
to extract the data for training and testing the ELM classifier. About 100 feature
data are extracted from different VMs; these data can reflects the memory access
characteristics of different loads and applications scenarios. About 60 feature
data are used to train and the rest 40 data are used to test the performance of
ELM classifier. In the 60 training data, three types virtual machines: memory-
intensive, CPU-intensive and I/O-intensive, each has 20 feature data. The initial
hidden nodes of the ELM classifier is 20, but for the accuracy of the classification,
the hidden nodes are set to 35 finally. In this condition, the experimental result is
show in Table 1. We can see from the table that the accuracy of memory intensive
is 93.3 %, and the accuracy of the CPU intensive and I/O intensive reach 84.6
and 91.7 % respectively, it shows the prediction accuracy of the ELM classifier is
very high, the ELM classifier can meet the requirements of the VM classification
completely, the data feature parameter selection and the ELM parameter setting
are reasonable.
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Table 1 The predication rate of ELM classifier

Item list Memory intensive CPU intensive I/O intensive

Training data size 20 20 20
Testing data size 15 13 12
The number of accuracy prediction 14 11 11
The rate of predication (%) 93.3 84.6 91.7

(2) Performance Analysis of Migration Algorithm
As MCBLMA algorithm require to collect the dirty page information for many
times to compute the weight to determine the writable working set, so the value
of collection times (CT) of dirty pages need to set reasonably. Below we will
firstly analyze the influence of CT on the performance of the MCBLMA algo-
rithm from three aspects: total migration time, the amount of transmission pages
and the downtime. Then we will give performance analysis and comparison of
MCBLMA, ELMBAMA and Pro-copy algorithms.

(a) The influence of collection times
In order to test the effect of dirty page collecting times (CT), we create two
virtual machines with 512M memory and 1G memory respectively, then we
execute live migration of VMs under running three different applications:
I/O intensive, CPU intensive and memory intensive applications. Figure 4
describe the total migration time varies with different CTs. We learn from
the figure that as the CT increase, the total migration time decrease firstly
and then increases. When CT is 4, the total migrate time become shortest,
and when CT is greater than 5, the total migration time increases slightly,
the reason is that collect dirty information can bring certain time costs, the
more CT, the bigger time costs. Figure 5 describes the varying of the amount
of transmission data with different CTs. We can see from it that the amount
of transmission data decreases with CT increase, and when CT is greater
than 5, the decreasing trend slows.
Table 2 shows the downtime. When CT is 4 or 5, the downtime is similar
to the pre-copy algorithm. The downtime increases when the CT is greater
than 5. Because the bigger the value of CT is, the more accurate the WWS
is, and consequently the frequently modified memory pages are transferred
at the final time, leading the increasing of VM downtime. Considering the
total migration time, number of transmitting memory pages and downtime
comprehensively, in MCBLMA, the value of CT should be set to 4 or 5.

(b) The average total migration time
The total migration time is an important indicator for measuring migration
algorithm, the less the total migration time, the higher the performance of the
algorithm. When the CT value of MCBLMA algorithm is 4, and 10 VMs of
running 10 kinds of different benchmark applications respectively execute
live migration, the varying of the average total migration time (ATMT) with
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Fig. 4 The varying of total
migration time with collecting
times
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different memory size of VMs is shown as Fig. 6. We can see from the figure,
the ATMT of three algorithms increase with memory increase, and that of
the pre-copy algorithm is the longest. ATMT of MCBLMA largely decreases
compared with the pre-copy algorithm, this is because MCBAMA algorithm
apply a memory compression algorithm and transmit the memory pages at
a compression way, this can greatly reduce the amount of transmission data,
thus reduce its ATMT, for the ELMBAMA algorithm can choose the best
suitable algorithm to migrate the virtual server every time, so its ATMT is
shortest.
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Table 2 The comparison of downtime (ms) with load

Item list Pre-copy ct = 2 ct = 3 ct = 4 ct = 5 ct = 6 ct = 7 ct = 8

CPU-512M 732 689 715 730 745 763 801 832
MEM-512M 22926 22568 22875 22922 22987 22990 23014 23425
I/O-512M 683 650 685 690 710 725 785 810
CPU-1G 1056 956 1066 1071 1084 1093 1115 1132
MEM-1G 29164 29021 29132 29160 29301 29320 30020 30263
I/O-1G 965 930 975 986 1065 1086 1187 1208

Fig. 6 The comparison of
average total migration time
with different memory size
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(c) The total amount of memory data transmission
The total amount of memory data transmission directly influences the perfor-
mance of the migration algorithm and further influences the total migration
time. So it is another important indicator of the performance of the migra-
tion algorithm. Figure 7 shows the varying of the average total amount of
memory data transmission (ATAMDT) with different memory size under
the same condition as the Fig. 6. It shows that the ATAMDTs of three algo-
rithms increase with the increase of the virtual machine’s memory. And the
ATAMDT of the pre-copy algorithm increase quickly with memory size
increase, and that of MCBLMA algorithm decreases largely, this is because
the dirty pages will increase with the increase of the memory. However,
the MCBLMA algorithm can determine the working set more precisely and
use the memory compression technique, so it can reduce its ATAMDT. The
ATAMDT of the ELMBAMA algorithm is smallest; as the perspective of
the ATAMDT, the ELMBAMA algorithm is best.
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Fig. 7 The comparison of average total amout of memory data transmission with different memory
size

Table 3 The comparison of downtime (ms) with memory-intensive workload

Item list 128M 256M 512M 1024M

Pre-copy-write 12897 28041 30540 32976
MCBLMA-write 11946 27546 29650 31246
ELMLBAMA-write 11786 27052 28023 30461
Pre-copy-read 322 329 350 403
MCBLMA-read 301 325 338 385
ELMLBAMA-read 293 312 315 360

(d) Average downtime
Downtime is a very important metrics in live migration of virtual machines.
Long downtime will make the live migration lose its meaning, so good algo-
rithm must be guaranteed within a certain time period to complete the live
migration. Table 3 is comparison of the average downtime in three kinds
of application in the process of live migration, which runs on the virtual
machine with 128M, 256M, 512M, 1024M WWS respectively. It can be
seen from the table, when writing memory and executing migration, the
downtime increases proportionally with the WWS increases. This is because
the larger the WWS, the more the memory pages are modified frequently,
and those memory pages will be transferred only after the virtual machine is
suspended, thus leads the longer downtime. This condition does not change
for the improvement of the algorithm, because MCBLMA can only deter-
mine the WWS and it can not reduce the active memory pages. For read
memory operation, the downtime is considerable less than that of the write
operation. This is because the read operation does not change the contents of
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the memory page, so the memory pages modified frequently are not many,
and there is little pages need to send at the final stage. For the three algo-
rithms, the average downtime of pro-copy algorithm is smaller than that of
the others when WWS size is small; but with the increasing of WWS size,
the average downtimes of ELMLBAMA and MCBLMA become lower than
that of the pre-copy algorithm, this is because they use memory compres-
sion algorithm. So from the perspective of the downtime, the ELMBAMA
algorithm is also the best one.

From the comparison of the above three aspects, we can draw a conclusion that
when the collection times is 4, the proposed MCBLMA algorithm and the ELM-
BAMA approach are able to obtain a good balance between the total migration time
and downtime, it can reduce the average total migration time, the average memory
data transmission and the downtime significantly.

7 Conclusions

In this chapter, we propose the ELM based Adaptive algorithm for virtual machine
live migration on the basis of the research and analysis on the existing live migration
algorithms of virtual machines. The algorithm can use the most appropriate vir-
tual machine migration algorithm according to different application types of virtual
machines, thus shortening the time of the virtual machine live migration. In addition,
we propose a memory compression based algorithm for the memory-intensive appli-
cation. This algorithm is an improvement of the pre-copy algorithm and the WWS
measurement approach which can determine the writable working set precisely, this
can consequently reduce the transmitted memory pages. Meanwhile, it can reduce
the amount of data which need to transmit by using the method of memory compres-
sion. The experiment results show that the proposed approach can reduce the total
migration time largely, at the same time it does not increase the downtime, and has
better migration efficiency. Next step we will consider classifier factors that affect the
performance of the live migration to improve the migration algorithm performance
on the basis of the existing algorithm.
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ELM for Retinal Vessel Classification

Iñigo Barandiaran, Odei Maiz, Ion Marqués, Jurgui Ugarte
and Manuel Graña

Abstract Robust image segmentation can be achieved by pixel classification based
on features extracted from the image. Retinal vessel quantification is an important
component of retinal disease screening protocols. Some vessel parameters are poten-
tial biomarkers for the diagnosis of several diseases. Specifically, the arterio-venular
ratio (AVR) has been proposed as a biomarker for Diabetic retinopathy and other
diseases. Classification of retinal vessel pixels into arteries or veins is required for
computing AVR. This chapter compares Extreme Learning Machines (ELM) with
other state-of-the-art classifier building approaches for this tasks, finding that ELM
approaches improve over most of them in classification accuracy and computational
time load. Experiments are performed on a well known benchmark dataset of retinal
images.

Keywords Retinal vessels · Arterio-venular ratio · Biomarkers · ELM

1 Introduction

Recent studies [11] point to the importance of the fundus imaging as a substantial part
of a large number of diagnostic procedures for a wide variety of pathologies. This
technique allows to obtain high resolution images of the internal structures of the
retina, such as the micro-vascular tree or the optic disc, as shown in Fig. 1. Currently,
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Fig. 1 Image of the retina
obtained by fundus imaging

there is an increasing scientific evidence regarding the role played by micro-vascular
diseases in relation to the pathologies associated with macro-vascular structures.
Studies such as [11] have shown how a condition in coronary micro-vascular struc-
ture, may cause serious heart failure with risk of heart attack and death, without any
pathological evidence in coronary macrovascular structures, so that periodic checks
of such structures may not reveal the existence of pathology. Moreover, some dys-
functions in skin microvascularity which is estimated to be representative of the entire
micro-human circulatory system, have been associated with increased risk of heart
attack. However, studies over microvascularization are small relative to the affected
population because they need laborious and very invasive techniques. For this rea-
son, researchers are looking for non invasive alternatives and mechanisms allowing
accurate analysis of microvascular structures. Retinal imaging allows studying dif-
ferent aspects of the microcirculation in-vivo, whose role in vascular or metabolic
diseases is less clear than that of macrocirculation [10]. Image analysis with vascular
morphometry techniques carried out over large populations point out correlations
between retinal microvascular patterns and different cerebrovascular and cardiovas-
cular diseases and metabolic disorders [16]. We focus on one retinal image biomarker
with great diagnostic value, which is the arterio-venular ratio (AVR), computed as
the quotient between the averages of the widths of several arterioles and venules.
Alternatively, the AVR is also computed as the quotient of the central retinal artery
equivalent (CRAE) and the central retinal vein equivalent (CRVE) [9].

The quantification of retinal bio-markers such the AVR, CRAE or CRVE over
large populations requires automated tools for vessel segmentation and analysis. We
are interested in low complexity and fast approaches that could allow the clinicians
to be able to carry out large screening programs. There are two steps in this process:

(a) Image segmentation to obtain the location of the vessel pixels in the image
(b) Vessel pixel discrimination into arteries and veins, needed to compute the AVR.

Current methods for retinal vessel segmentation mechanisms [4] can be roughly
categorized as those based on supervised learning [14] and unsupervised [2] tech-
niques. Supervised learning techniques rely on hand labeled images for the off-line
classifier training process. Segmentation process becomes a pixel classification into
two different classes: vessel versus background. On the other hand, unsupervised
approaches rely on image processing and analysis techniques specialized for vascular
structures. In these approaches, hand labeled images are used only for validation,
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Fig. 2 Retinal image analysis pipeline

not for the construction or tuning of the segmentation algorithm. Overall, algorithms
based on supervised classification report better segmentation results with a compu-
tational overhead due to training process. They are also dependent on the sample
used for training and may suffer great errors on outlier retinal images. On the other
hand, unsupervised techniques are less computationally demanding but difficult to
tune, and sensitive to unexpected variations in the images. The vascular segmenta-
tion algorithm used in this chapter follows the approach proposed in [2], which uses
an unsupervised and fast segmentation mechanism. The vessel pixel discrimination
must be performed following a supervised learning approach, where specific features
are proposed to exploit subtle image differences of the artery and vein vessels [13]. In
this chapter we concentrate on the comparison of Extreme Learning Machine (ELM)
[8] approaches against other state-of-the-art classifier building approaches for this
task.

The chapter is structured as follows: Sect. 1 gives a brief overview of approaches
dealing with retinal microvasculature analysis in fundus images. Section 2 presents
the image processing pipeline for retinal vessels and the feature extraction approach
for artery/vein discrimination, as well as a brief description of implementation details.
Section 3 gives a brief review of ELM as supervised classification technique applied
to the problem of artery/vein classification. Section 4 reports obtained classification
results obtained with different supervised classification approaches. Finally, Sect. 5
gives a discussion about the implemented and tested approach, and addresses next
lines of research and development.

2 Feature Extraction

Figure 2 depicts the image processing pipeline implementing our approach. First we
perform the vessel segmentation. After image acquisition, we first perform a field of
view (FOV) detection, selecting the region-of-interest for the following processes.
Next, we apply an isotropic undecimated wavelet transform (IUWT) [2] at several
wavelet scales. This transformation achieves contrast enhancement, increasing the
difference between structures of different luminance value. We apply a threshold-
ing operation on the IUWT contrast enhanced images, followed by a connected
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Fig. 3 Sequence of partial results of vessel segmentation. Left to right original image, FOV detec-
tion, IUWT contrast enhancement, vessel detection

Fig. 4 Extracted vessel pro-
files overlaid on the input
image

component analysis removing spurious small connected components, falling below
the minimum length of a vessel candidate to be measured. Segmentation threshold is
set to 15–20 % of the lowest luminance value inside the region of interest (FOV). This
value over-segments the images, ensuring that most of the vessel tree is retained. The
center line is obtained by reducing vessel regions to one-pixel-wide skeletons using
a thinning algorithm. Afterward, a branch detector is applied in order to identify
and separate vessel bifurcations and vessels segment, and obtained vessel segments
are approximated with B-spline curves for regularization, and curvature and section
computation. Finally, we use a Full Width at Half Maximum (FWHW) algorithm
to estimate vessel caliber along such sections. Figure 3 shows a sequence of partial
results of the vessel segmentation. On the localized vessels, sections that are per-
pendicular to the local orientation of the B-spline representing the vessel are draw at
regular intervals of the vessel centerline as shown in Fig. 4. These sections are then
used for image feature extraction for vessel type discrimination by classification,
prior to AVR calculation.

Several studies [15, 19] show that only photometric features are useful for
artery/vein classification. Morphometric features such as width or tortuosity are
pathological biomarkers, thus may change severally depending if the patient has
a potential disease or not. Therefore, in our study we define only photometric fea-
tures based on pixel luminance and chrominance information. More precisely, we
extract the following features:

• Mean and standard deviation of green and red value in RGB color space along the
vessel segment. We excluded blue channel because its signal-to-noise-ratio is very
low compared with the other two, thus does not add discriminant capabilities for
the classification.
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Fig. 5 Localization of outer
and inner pixels along the
sections drawn perpendicular
to the vessel centerline

• Along the perpendicular sections we distinguish two parts, illustrated in Fig. 5:
outer pixels lying at a distance from the centerline above 40 % of the estimated
vessels width, depicted by black segments in Fig. 5, inner pixels lying at a distance
below this threshold, depicted by white segments in Fig. 5. We compute the differ-
ence of the means of of green and red channels of the outer and inner pixels. These
features model the contrast between foreground, i.e. vessels, and background.

• Mean and standard deviation of Hue channel in HSV color space along the vessel
segment.

• Mean luminance inside the vessel, and the difference in luminance between outside
and inside the vessel.

3 Extreme Learning Machines

3.1 Basic ELM

The Extreme Learning Machine (ELM) [7] is a very fast training algorithm for single-
layer feedforward neural networks (SLFN). The key idea of ELM is the random
initialization of the SLFN hidden layer node weights. Consider a set of M data
samples (xi , yi ) with xi∈ R

d and yi ∈ Ω . Then, a SLFN with N hidden neurons is
modeled as the following expression:

y = Φ (x) =
N∑

i=1

βi f (wi · x + bi ), j ∈ [1, M], (1)

where f (x) is the activation function, wi the input weights to the i-th neuron in
the hidden layer, bi the hidden layer unit bias and βi are the output weights. The
application of this equation to all available data samples can be written in matrix
form as

Hβ = Y,

where H is the hidden layer output matrix defined as the output of the hidden layer
for each input sample vector, β = (β1 . . . βN )T and Y = (y1, . . . , yM )T .
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The way to calculate the output weights β from the hidden-layer to the target values
is computing the Moore–Penrose generalized inverse of the matrix H, denoted as
H†. The mean least squares solution is β = H†Y.

The orthogonal projection method can be used to calculate the pseudo-inverse. In
the case of HHT being non-singular, H†would be obtained by H† = HT (HT H)−1.
Thus, the output weights β are calculated

β = HT
(

HT H
)−1

Y.

According to ridge regression theory [6], it was suggested [18] that Thikonov
regularization [17] can be used to have better generalization performance. This reg-
ularization is achieved by adding a positive value 1/λ to the diagonal of HHT . The
calculation of the output weights is

β = HT
(

I
λ

+ HT H
)−1

Y.

In our experiments, the basic ELM is denoted as “ELM”, and the regularized ELM is
denoted as “ELM(w/regul)”. The implementation of both ELMs is available at [5].

3.2 OP-ELM

The Optimally Pruned Extreme Learning Machine (OP-ELM) was proposed in [12]
with the goal of solving the problem that ELM faces with highly correlated variables.
The basic ELM does not cope well with variables irrelevant to the problem at hand.
The OP-ELM proposes a three-steps methodology, to address this problem:

1. Construct an SLFN using ELM.
2. Rank the best neurons using LARS algorithm. This process is akin to a “regu-

larization” of the ELM. It uses Allen’s PRESS [3] formula to L1 regularize the
ELM.

3. Select the optimal number of neurons using Leave-One-Out (LOO) criterion.

The LOO method is usually costly, since it requires to train the model on the whole
data set except one sample for all the samples of the data. However, in the OP-ELM
the situation is linear between the hidden layer and the output one. The LOO error
has a closed matrix form, given by the PRESS method [3]. This closed form allows
a fast computation of the MSE, and therefore the computation of the output weights
is still computationally fast, and theoretically more robust than the original ELM to
correlated variables. The code of OP-ELM is made available by Miche et al. at [1].
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Table 1 Classification mean
accuracy results from 10-fold
cross-validation

Classifier Accuracy

Naive bayes 82.7
MLP 91.1
SVM (Lineal) 73.3
SVM (RBF) 92.5
ELM 89.4
ELM (w/regul) 90.5
OP-ELM 93.6

Table 2 Training and testing times

Classifier Training time Testing time

Naive Bayes 0.05 0.01
MLP 4.64 0.01
SVM (Lineal) 15.49 0.07
SVM (RBF) 1.94 0.09
ELM 3.91a 0.03
ELM (w/regul) 1.11 0.04
OP-ELM 55 0.02
aNote that the greater training time of ELM compared to ELM(w/regul) is due to the use of SVD
on the calculation of the pseudo-inverse in the case of ELM

4 Results

This section shows the comparative results obtained during the retinal vessels clas-
sification experiment. For this study we used the feature vectors of 5730 ves-
sel sections, extracted from several images which have been labeled as arteries
or veins by two human experts. For this evaluation we used several supervised
classification approaches implemented in the public available Weka software http://
www.cs.waikato.ac.nz/ml/weka/, version 3.7.9. We set each classifier learning algo-
rithm parameters to their default values. In this evaluation we tested single classifier
approaches, thus we did not include ensemble approaches such as Random Forest.

The results of 10-fold cross-validation experiment for each algorithm are sum-
marized in Table 1. Worst results were obtained by SVM with linear kernel, hence
indicating that the best decision boundary between artery and vein classes is not
linear. OP-ELM obtains the best classification accuracy, followed by MLP and SVM
with non-linear RBF kernel. Table 2 shows training and testing times of tested clas-
sifiers. As expected a simple Naive Bayes classifier is the fastest approach, while
OP-ELM is the slowest approach. However, regarding testing times OP-ELM is
one of fastest approaches. In our case, testing times are more important than train-
ing times, because our retinal quantification application is oriented to carrying out
large population screening programs, where small differences in testing times will
be amplified by the population size.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/


142 I. Barandiaran et al.

Fig. 6 Accuracy results for increasing hidden layer sizes

Figure 6 shows the results of an experiment using ELM, ELM with regulariza-
tion and OP-ELM by evaluating classifier accuracy against the number of hidden
nodes. As can be seen, OP-ELM outperforms basic ELM with and without regular-
ization. Moreover, OP-ELM requires many fewer hidden nodes before convergence,
compared with basic ELM.

5 Conclusion and Feature Work

In this chapter we have introduced a system for retinal image vessel segmentation
and classification. Classifying retinal vessels into arteries or veins is a crucial step
for retinal image quantification based on the extraction of biomarkers such as vessels
tortuosity or arterio-venular ratio (AVR). Therefore, the final supervised classifier is
a key element of this system. We have performed a comparative experiment between
state-of-the-art classifiers and Extreme Learning Machines (ELM). Our results shows
that the approach based on Op-ELM outperforms other supervised classification
approaches such as SMV or MLP, in terms of accuracy and testing times.

In the future, we plan to implement an hybrid approach for retinal vessels clas-
sification, by fusing a supervised Classification using OP-ELM with unsupervised
classification by using Fuzzy K-means. This approach would try to overcome the
problems arising from the presence of inter-image contrast and luminosity variability,
that are difficult to cope with a single Supervised Classification approach.
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Demographic Attributes Prediction Using
Extreme Learning Machine

Ying Liu, Tengqi Ye, Guoqi Liu, Cathal Gurrin and Bin Zhang

Abstract Demographic attributes prediction is fundamental and important in many
applications in real world, such as: recommendation, personalized search and behav-
ior targeting. Although a variety of subjects are involved with demographic attributes
prediction, e.g. there are requirements to recognize and predict demography from
psychology, but the traditional approach is dynamic modeling on specified field and
distinctive datasets. However, dynamic modeling takes researchers a lot of time and
energy, even if it is done, no one has an idea how good or how bad it is. To tackle
the problems mentioned above, a framework is proposed in this chapter to predict
using classifiers as core part, which consists of three main components: data process-
ing, predicting using classifiers and prediction adjustments. The component of data
processing performs to clean and format data. The first step is extracting relatively
independent data from complicated original dataset. In the next step, the extracted
data goes through different paths based on their types. And at the last step, all the
data will be transformed into a demographic attributes matrix. To fulfill prediction,
the demographic attributes matrix is taken as the input of classifiers, and the testing
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dataset comes from the same matrix as well. Classifiers in the experiments includes
conventional state-of-the-art ones and Extreme Learning Machine, a new outstanding
classifier. From the results of experiments based on two unique datasets, it is con-
cluded ELM outperforms others. In the stage of prediction adjustments, two kinds
of adjustments strategies are proposed corresponding to single target attributes and
multiple target attributes separately, where single target attributes adjustments strate-
gies include: adjusting the parameters of classifiers, adjusting the number of classes
of target attributes and adjusting the public attributes. And multiple target attributes
adjustment utilizes the outputs of first prediction as the inputs of second prediction to
improve the accuracy of the first prediction. The framework proposed in this chapter
consumes less time compared with traditional dynamic modeling methods, and there
is no need to fully study the knowledge in various subjects for researchers using the
framework because of the regular patterns. In addition, adjustment strategies have
no restriction on the datasets; hence it will be useful universally. However, in some
cases, dynamic modeling has the advantage of precision, resulting in better accu-
racy, but the results from the framework proposed in the chapter could provide as a
comparison. In this work, a universal demographic attributes prediction framework is
proposed to work on a variety of dataset with Extreme Learning Machine (ELM). The
framework consists of three main components: First, processing raw data and extract-
ing attribute features depending on different data types; Second, predicting desired
attributes by classification; Third, improving the accuracy of classifiers through var-
ious adjustment strategies. Two experiments of different data types on real world
prediction problems are conducted to demonstrate our framework can achieve better
performance than other traditional state-of-the-art prediction methods with respect
to accuracy. abstract environment.

Keywords Demographic attributes prediction · Extreme learning machine

1 Introduction

Demographic attributes prediction is to predict desired attributes information of
human after gathering and analyzing all the attributes information of others. It is
important and fundamental for many applications, such as recommendation, person-
alization, and behavior targeting [1]. Some but not many chapters and methods have
been proposed to perform demographic attributes prediction [2, 3]. However, almost
all methods require constructs diverse models depending on different datasets; while
rest methods apply similar model on different curriculum. After performing dis-
cretization on raw data, the key of prediction is classification. Thus, as an excellent
classifier, Extreme Learning Machine is taken as an important section in the model
which could apply on diverse dataset and situations with little modification.

In the last few years, demographic attributes prediction attracted great attention
from all over the world. In January 2009 Nokia Research Center Lausanne and
its Swiss academic partners Idiap and EPFL started gathering demographic data
through mobile phones and afterwards hold Mobile Data Challenge based on the
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data [4]. There were three tasks in the Challenge and the third one was about demo-
graphic attributes prediction. Sanja Brdar [5] proposed k-nearest neighbors, radial
basis function network and random forest as classification access. Kaixiang Mo [6]
proposed Support Vector Machine to perform classification, which obtains better
accuracy. NishKam Ravi [7] studied activity recognition from accelerometer data
which accessed amazing prediction accuracy.

In previous work, almost all researches have analyzed their collected dataset and
construct corresponding model which could not be applied to other datasets. The
main contribution of this chapter is a model proposed which could be widely applied
to variety of demographic attributes prediction with only little adjustment in the data
processing stage. Raw data is divided into two groups: continuous variables and
discrete variables. The two groups are different in data processing stage but similar
in prediction stage. Concluded from the results, although the model is universal, it
can produce fabulous accuracy sometimes.

The rest chapter is organized as follows: Sect. 2 briefly introduces ELM and SVM
algorithms. Section 3 presents process on raw datasets. Section 4 demonstrates pre-
diction and prediction adjustment. Section 5 compares experimental results of ELM
with that of SVM. Conclusions and future work are in Sect. 6.

2 Brief Introduction of ELM

Countless classification theories and methods have been proposed to solve the prob-
lem and a lot of them are successful. One of the goals of this work is to compare the
performance of Extreme Learning Machine with other classifiers [8].

Traditional learning speed of feedforward neural networks is in general far slower
than required and it has been a major bottleneck in their applications for past decades
[9]. Mainly because of two reasons: (a) Usual gradient-based learning algorithms are
slow; and (b) all the parameters of the networks are tuned iteratively by using such
algorithms. To tackle the issues and improve learning speed of feedforward neural
networks [10], Huang et al proposed Extreme Learning Machine from single-hidden
layer feedforward neural networks (SLFNs) which can randomly select the initial
values for the hidden layer bias and input weights at the condition that the activation
functions are infinitely differentiable [11].

For N arbitrary distinct samples (xi, ti), where xi = [xi1, xi2, · · · , xin]T ∈ Rn

are data vectors and ti = [ti1, ti2, · · · , tin]T ∈ Rm are the target classes, standard
SLFNs with Ñ hidden nodes and activation function g(x) can be mathematically
modeled as

Ñ∑

i=1

βigi (xj) =
Ñ∑

i=1

βig(wi · xj + bi ) = oj, j = 1, · · · N (1)
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where wi = [wi1, wi2, · · · , win]T is the weight vector connecting the i th hidden
node and the input nodes, βi = [βi1, βi2, · · · , βim]T is the weight vector connecting
the i th hidden node and the output nodes, and bi is the threshold of the i th hidden
node. In addition [12], wi ·xj represents the inner product of wi and xj. And Extreme
Learning Machine with Ñ hidden nodes with activation function g(x) will approx-

imate these N samples with zero error means that
∑Ñ

i=1

∣
∣
∣
∣oj − tj

∣
∣
∣
∣ = 0, i.e., there

exist βi , wi and bi such that

Ñ∑

i=1

βig(wi · xj + bi ) = tj, j = 1, · · · N (2)

The above N equations can be denoted in the form of matrix as

Hβ = T (3)

where

H(w1, · · ·wÑ, b1, · · ·bÑ, x1, · · ·xN) = (4)
⎧

⎪
⎨

g(w1·w2 + b1) · · · g(wÑ·x1 + bÑ )
... · · · ...

g(w1·wN + b1) · · · g(wÑ·xN + bÑ )

⎩

⎥
⎦

N×Ñ

β =
⎧

⎪
⎨

βT
1

...

βT
Ñ

⎩

⎥
⎦

Ñ×m

and T =
⎧

⎪
⎨

tT
1

...

tT
Ñ

⎩

⎥
⎦

N×m

(5)

and H is the hidden layer output matrix of the neural network; the i th column of H
is the i th hidden node output with respect to inputs x1, x2, · · ·, xN.

3 Data Process

As different raw datasets are usually in different patterns and more or less contain
some errors or exceptions, processing the raw datasets before taking them as predic-
tion input is necessary and important. In addition, processing before predicting will
improve the accuracy of result and efficiency of prediction. Raw data can be divided
into two types: continuous variables and discrete variables. In fact, there is no contin-
uous value in continuous variables. Continuous variables contain observations with
no obvious intervals. Data process is shown as Fig. 1.

In our model, demographic attributes matrix provides as direct input of classifiers
for prediction. As original datasets are complicated and differs from each other, our
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Fig. 1 Process on different
types of data

model will transform the original datasets to demographic attributes matrices in the
data processing stage. Data cleaning and attributes constructions are two main goals
in data processing, as shown in Fig. 1. The first step is to extract logical consistent
data from the original dataset. Continuous data and discrete data will go through
different processing, which will be detailed explained later. After all the processing,
at the end, demographic attributes matrix will be constructed for prediction.

Logical consistent data refers to data of same meaning: data from an extraction
could be of same attributes from all people or of same attributes from one person,
e.g. phone call records of same person or all sex choices from investigation. After
an extraction, the following process differs depending on different data types, con-
tinuous data or discrete data. Normally speaking, discrete data comes from data of
same attributes from group of people.

3.1 Demographic Attributes Matrix Representation

A demographic attributes matrix is a matrix represents information of a group of
individuals, where each line vector is the attributes set of corresponding individ-
ual and each column vector represents corresponding attribute of every individuals.
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Demographic attributes matrix is denoted by D and D j
i denotes the element of i th

line and j th column, representing the value of i th individual on j th attribute. The
individual in the matrix could be other than person. If attributes of people are to
be predicted, the individual in the matrix refers to person; while attributes between
people, like closeness level, are to be predicted, the individual refers to pair of people.

To construct a demographic attributes matrix, three steps should be done: individ-
uals identifying, attributes selecting and determining every elements in it. Individuals
identification is easy to operate based on what to be predicted, while the other two
steps are more difficult and more complex.

3.2 Continuous Variables Process

Data collected by sensors, such as accelerators, usually consists of continuous vari-
ables. As classifier is not able to work directly on continuous variables, several statis-
tical characteristics are selected to represent the raw data. Resulted from the problem
of sensors and rare situations, few data are extreme values, mostly extremely large.
Although the number is few, these exceptions would have great impact on statistical
characteristics presenting the original data. Thus, exceptions would be erased before
feature construction. In addition, as enough number of testing cases is necessary for
classifier to learn, the original data should be split wisely. In conclusion, continuous
raw data will go through data splitting, data cleaning and feature construction in turn.

Hampel identifier are widely used to detect extreme values which defines Z ◦:

Z ◦ = |Xi − Median|
( M AD

.6745

) (6)

where Xi is each observation in the dataset, Median is the median of the Xi , and MAD
is median absolute deviation (MAD) between Xi and Median. In the experiments,
Hampel identifier is improved to perform much better according to the characteristic
of the data. Pseudocode is shown below to utilize the improved Hampel identifier to
detect exception values:

Exception_detection([x1, x2, · · · , xn])
1 Exception_detection ∗ [] � exception set is empty at the beginning
2 med ∗ Median([x1, x2, · · · , xn]) � find median of input
3 for xi in [x1, x2, · · · , xn]
4 do x ◦

i = |xi − median|
5 M AD ∗ Mean([x ◦

1, x ◦
2, ..., x ◦

n]) � figure out average distance
6 for x ◦

i in [x ◦
1, x ◦

2, ..., x ◦
n]

7 if |xi −median|
M AD
0.6745

> threshold � compare the result with threshold

8 then exception_set ∗ [exception_set, xi ]
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The MAD in the pseudocode prefers to mean absolute deviation instead of median
absolute deviation in original Hampel identifier.

There are several statistical characteristics could represent original data, such as
average number, variance and median, etc. Sometimes, rate and percentage could be
more useful.

3.3 Discrete Variables Process

Discrete variables normally come from surveys or counters instead of sensors. Not
like continuous variables, there is no extreme value in discrete variables, but instead
null values may appear. Not all null values will affect the result, but those may affect
will be deleted. Since some questions in survey have connections, related attributes
will be erased as well. As answers from investigation in sentences could not be
directly used in classifier, numeralization will turn the sentences into numbers before
classification. At classification stage, attributes should be independent of each other;
thus, related attributes should be combined into one. For a question, if all answers
are of strings, they are numbered in continual positive integers. If all answers are
of numbers, they remain. If in continuous data, data cleaning focuses on cleaning
extreme values, however, null values are focused in discrete data.In continuous data,
data cleaning focus on cleaning extreme values, however, null values are focus in
discrete data.

Assume there are n questions, Qi is the i th question. If the number of answers
to Qi is limited and values of answers are discrete, all the choices of answers are
< C1

i , C2
i , Ck

i >, where k is the number of choices. If the choice of Qi will influ-
ence the scope of choices of Q j , Q j depends on Qi . If Qc depends on Qb and
Qb depends on Qa , then Qc depends on Qa . Situations of circular dependency
rarely happen, so they are not in the consideration, like Qi depends on Q j and
Q j depends on Qi . The dependency relationship can be one to many, many to
one or many to many. A dependency cluster contains elements where each two
have dependency relationship and no one has relationship with elements on the
outside.

Based on the assumptions above, it is feasible to combine all the answers of a
dependency cluster to only one attribute. Because the number of questions is limited
and there is no circular dependency, there will be elements which depend on no one
and elements which no one depends on them. Combination algorithms are showed
below:
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Combination(Q1, Q2, · · · , Qn
)

1 find elements which no one depends on them, D
2 for each Q j in U
3 do n j ∗ 0
4 for each Ck

i in answer of Qi � find all choices
5 do for each Ck

j in answer of Q j

6 do if it is possible Ck
i and Ck

j appears at the same time
7 then n j ∗ n j + 1
8 < C1

j , C2
j , · · · , Cn

j >∗< 1, 2, · · · , n j > � rearrange choices
9 D ∗ D − {Qi }

10 if Q j depends on other elements
11 then D ∗ D + {Qi }

4 Prediction Using Different Classifiers and Prediction
Adjustment

After previous work on raw data, data at this stage is in the form of matrix, each row
of which is an observation and each column is an attribute. The whole data will go
into two dataset: training dataset and testing dataset.

It is possible that our universal model could produce results with accuracy much
lower than expected. There are three possibilities which could cause the problem:
(a) the attributes are unpredictable; (b) classification is not suitable for predicting
the attributes; (c) processing on the data is not suitable not enough or the original
dataset is fake. Although in the first two conditions, there is a great chance traditional
dynamic modeling on specified dataset outperforms our model, it also could provide
as a comparison to indicate how well the traditional model is. In the last condition,
some adjustments could be done to improve the accuracy of classifiers.

4.1 Demographic Prediction Analysis

The columns of a demographic attributes matrix are consist of various attributes,
some are always directly accessible and the rest are not always known. The directly
accessible attributes attributes in demographic attributes matrix D, are denoted by
D ·a. For the rest attributes in the matrix, sometimes the values of them are unknown,
thus prediction is used to figure out the values of those target attributes. Target
attributes in a demographic attributes matrix are denoted by D · t. If all values of
target attributes are unknown, the corresponding demographic attributes matrix is
predicting matrix, denoted by P . In the experiments, classifiers are used to predict
P · t . In fact, the results of prediction will never be known exactly, but accuracy is
an important factor for evaluating the classifiers.
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It is feasible to obtain accuracy rate by testing classifiers using known data. The
classifiers provide as a mapping y = f (x, c), where c is parameters unrelated with
dataset. c can be worked out using T · t = f (T · a, c), since T is entirely known.
Thus P · t is predicted through P · t = f (P · a, c). To get the accuracy of the a
classifier, after c is figured out, V · t◦ results from V · t◦ = f (V · a, c). And the the
accuracy of the mapping is the accuracy between V · t◦ and V · t.

Based on the number of labels, prediction can be divided into two types: predicting
one attribute and predicting multiple attribute. And predicting multiple attributes is
implemented by predicting one attribute separately multiple times.

4.2 Prediction with Various Classifiers

Concerning the number of target attributes, there are 2 types of prediction methods:
single target attribute prediction and multiple target attributes prediction. Pseudocode
of single attribute prediction is shown below:
Input: T, P.a
Output: P.t

single_target_predict(T, P)

1 classi f ier_train(T .t, T .a) � use training set train classifier
2 P.ti ∗ single_target_predict (P.a)

As almost all classifiers are not able to predict multiple attributes directly, multiple
attributes prediction is performing single target attribute prediction multiple times.

Decision tree [13], Naive Bayes algorithm and SVM [14] are used as other clas-
sifiers to compare with ELM in performance. Multiple target attributes prediction
pseudocode is shown below:

Input: T, P.a
Output: P.t

multiple_target_predict(Input)

1 for P.ti in P.t
2 do P.ti ∗ single_target_predict (T, P.a) � utilize single_target_predict
3 P.t ∗ [P.t, P.ti ]

4.3 Prediction Adjustment Strategies

There are 2 types of prediction methods, so there are 2 types of prediction adjustment
strategies: single target attribute prediction adjustment strategies and multiple target
attributes prediction adjustment strategy. Because multiple target attributes predic-
tion is based on single target attribute prediction, single target attribute prediction
adjustment strategies could also influence multiple target attributes prediction.
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Single target attribute prediction adjustments strategy

1. Adjusting the parameters of classifiers is able to improve the accuracy of pre-
diction. Some classifiers require parameters unrelated with dataset to predict,
like ELM. For them, trying different parameters leads to different accuracy and
highest accuracy will be chosen.

2. Adjusting the attributes is able to improve the accuracy of prediction. Normally
speaking, more attributes provide more information, which improve the accuracy
of prediction. And sometimes, key attributes contribute most to accuracy. The
process is in Fig. 2. In the process, for every loop, there is one more attribute to
be added. If the accuracy decreases, the attribute will be erased. As a result, all
chosen attributes perform positive effect to the final prediction.

3. Reducing the number of target attribute levels leads to improve accuracy of pre-
diction. Normally the number of target attribute levels is smaller, the accuracy is
higher. Pseudocode of target attribute levels adjusting is shown below, where k is
the final number of levels and [C1, C2, ..., Cn] is original class indexes:

Input: [C1, C2, · · · , Cn], k
Output: [C1, C2, · · · , Cn]
Classification(Input)

1 range ∗ n/k
2 remainder ∗ n%k
3 for i in [1, · · · , (1 + range) ℵ remainder ] � add remainder
4 do Ci ∗ (i − 1)/(range + 1)

5 for i in [(1 + range) ℵ remainder + 1, · · · , n]
6 do Ci ∗ (i − (1 + range) ℵ remainder)/range + remainder

As the original number of target attributes levels may not be divided exactly, classes
will expand 1 scope.

Multiple target attributes prediction adjustments strategy Normally, the accu-
racy of classifiers increases when the number of attributes increases. Thus, it is
possible to improve the accuracy of multiple target attributes prediction by taking
predicted target attributes as known attributes to predict other target attributes. Cor-
responding pseudocode is shown below:

Input: T, P.a
Output: P.t

multi_target_improve(Input)

1 P.t ∗ multi_target_predict (I nput)� utili zemulti_target_predict
2 for ti in P.t
3 do if classi f ier_vadiate(T, [T .a, T .ti ], i) > classi f ier_vadiate(T, T .a, i)
4 then t ◦i ∗ single_target_predict ([I nput, t1, · · · , ti − 1, ti + 1, · · · , tm ])
5 ti ∗ t ◦i
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Fig. 2 Adjusting process of
attributes

5 Experimental Results and Analysis

In this section, detailed experimental results of every components of model will
be shown based on two datasets and performances of four different classifiers are
compared for evaluation. There are three components in the model: data processing,
classifying and adjusting classification, where performance comparisons between
classifiers takes place in the classifying step. The four classifiers are decision tree,
Naive Bayes algorithm, Support Vector Machine and Extreme Learning Machine.

In the experiments, all algorithms are implemented in Visual Studio 2010 and
MATLAB R2012b. Experiments are run on a PC with Intel Corei5 2400, 3.10 GHz
CPU, 3GB RAM and Windows XP operating system.

5.1 Raw Datasets Description

Two separate datasets are used to evaluate our model. The first dataset is full of
accelerometer records and activity labels and the second dataset contains data from
surveys and software applications in mobile phones.

The goal for first dataset is to predict the state of motions based on accelerom-
eter records, which contains 7 labels of activity states: standing, walking, running,
climbing up stairs, climbing down stairs, transporting and resting. Besides the labels,
the original datasets mainly contains accelerations in three orthogonal directions and
other support information, including timestamps, corresponding action labels and
base station coordinates of recording. The 20.6 MB original dataset was split into
matrix of 1436 observations [15].
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Table 1 Files introduction from the second dataset

File name Content Collecting tool Total line

closeness_adj.csv Closeness value between each two informant Survey 56
couples.csv Marriage status and family information Survey 56
BluetoothProximity.csv Records of bluetooth contacts Sensor 469924
SMS.csv Records of SMS Sensor 5301
VoiceCall.csv Records of phone calls Sensor 103468

There are two goals for second datasets: one is predicting closeness levels between
arbitrary two people using data gathered through survey and data collected by soft-
ware in cell phones; the other is predicting closeness levels and is couple or not
between each pair using same data. It is assumed that is couple or not is known in
first goal while unknown in second goal.

Instead of first dataset, data is collected by both surveys and sensors. The dataset
has information of marriage status, closeness feeling, voice call records, message
records and Bluetooth records. Marriage status includes which two is couple, sex
of each one and how many children the one has. Closeness feeling indicates the
closeness index with scope from 0 to 10. Voice call records shows when someone
calls the other and if the other missed or not. Message records are similar to voice
call but messages would surely arrive. Bluetooth records display when which two
people get close enough. After decomposition, the 287 MB dataset consists of 5 files,
detailed explanation is revealed in Table 1. Software applications on mobile phones
are considered as sensor for convenience.

closeness_adj.csv consists of closeness levels between each two informants and
there are 11 levels from 0 to 10, higher level indicating more close, where 0 denoting
not known at all. couples.csv has information of which two informants is couple,
how many children and sex. The software applications are more like counters rather
than sensors: a Bluetooth contact, SMS receiving or sending and a phone call will
trigger a recording.

5.2 Experimental Results of Data Processing

Exception detecting operations on first dataset is shown in Fig. 3. In the figure, red
inverted triangle, blue circle and green point denote accelerations of three different
orthogonal directions. The reason to utilize different shapes of different color is to
distinguish each other. The black line in the figure is around 1011 of its original value
to be distinguished from points below. And points above the black line are exception
values.
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Fig. 3 Data processing of exceptions detection

Table 2 Performance of various classifiers using first dataset

Datasets Training data Training time Testing data Testing time Accuracy

Decision tree 1436 0.0106 1436 0.0019 0.9582
Naive bayes 1436 0.1068 1436 1.5136 0.9582
SVM 1436 0.1829 1436 0.0248 0.9616
ELM 1436 0.3659 1436 0.1019 0.9999

5.3 Comparison Between Performances of Various Classifiers

In the section of classification, decision tree, Naive Bayes algorithm and Support
Vector Machine provide as comparisons for Extreme Learning Machine.

1. Mean, standard deviation and median are selected as attributes from first dataset
to predict motion states. There are 7 levels in target attribute, and RBF is chosen
as activation function with parameter of 1, the result is shown in Table 2.
Decision tree costs less training time and testing time than other algorithms, but
with relatively low accuracy. Training time of Naive Bayes is about the same as
that of others, but corresponding testing time is around hundred times of that of
others. Accuracy of SVM is higher than that of decision tree and Naive Bayes, but
consumes more training time. Accuracy of ELM is highest among 4 classifiers,
but requires more time than SVM on both training time and testing time.

2. Is-couple, the number of children, ratio of Bluetooth contacts, ratio of SMS send-
ing and receiving, and ratio of phone calls are selected as attributes from second
dataset to predict closeness levels. There are 11 levels in target attribute, from 0
to 10, and RBF is chosen as activation function with parameter of 1, the result is
shown in Table 3.
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Table 3 Performance of various classifiers using second dataset to predict 11 target attribute levels

Datasets Training data Training time Testing data Testing time Accuracy

Decision tree 3080 0.0115 3080 0.0185 0.8373
Naive bayes 3080 0.1257 3080 4.1247 0.8737
SVM 3080 0.0747 3080 0.0583 0.8386
ELM 3080 0.7819 3080 0.3874 0.8390

Table 4 Performance of various classifiers using second dataset to predict 3 target attribute levels

Datasets Training data Training time Testing data Testing time Accuracy

Decision tree 3080 0.1136 3080 0.0012 0.8929
Naive bayes 3080 0.0482 3080 3.1450 0.8929
SVM 3080 0.4727 3080 0.0583 0.8996
ELM 3080 0.4988 3080 0.0731 0.9006

Decision tree costs less training time and testing time than other algorithms, but
with lowest accuracy among 4 classifiers. Training time of Naive Bayes is about
the same as that of others, but corresponding testing time is around hundred times
of that of others, and it has the highest accuracy among 4 classifiers. Accuracy
of ELM is second highest among 4 classifiers, but requires relatively more time
than others.

3. Is-couple, the number of children, ratio of Bluetooth contacts, ratio of SMS send-
ing and receiving, and ratio of phone calls are selected as attributes from second
dataset to predict closeness levels. There are 3 levels in target attribute, from 0
to 2, which are classified from the original 11 levels. Linear kernel is chosen as
activation function with parameter of 1, the result is shown in Table 4.
Decision tree still costs less training time and testing time than other algorithms,
but with relatively low accuracy. Training time of Naive Bayes is about the same
as that of others, but corresponding testing time is around hundred times of that of
others. Although ELM consumes more time on training and testing, its accuracy
is highest among 4 classifiers, and only its accuracy is beyond 0.9.

5.4 Prediction Accuracy Results of Various Classifiers

There are single target attribute prediction adjustments strategy and multiple tar-
get attributes prediction adjustments strategy depending whether there is one target
attribute or multiple target attributes to predict.
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Fig. 4 Influence on accuracy
with different parameters for
ELM using first dataset (Red
bar: RBF kernel, green line:
linear kernel)
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Single target attribute prediction adjustments strategy

1. Adjusting the parameters of classifiers is able to improve the accuracy of pre-
diction. In this section, adjustment is performed on ELM using both datasets.
Mean, standard deviation and median are selected as attributes from first dataset
to predict motion states and there are 7 levels in target attribute. Under those con-
ditions, linear kernel and RBF kernel is chosen separately as activation function
with several corresponding parameters, as shown in Fig. 4.
Using first dataset, RBF kernel performs much better than linear kernel and its
accuracy gets higher with lower kernel parameter. However, the accuracy of linear
kernel stays the same with different kernel parameters and its accuracy is much
lower than that of RBF kernel. The highest accuracy from RBF kernel is close to
1, with kernel parameter 1.
Is-couple, the number of children, ratio of Bluetooth contacts, ratio of SMS send-
ing and receiving, and ratio of phone calls are selected as attributes from second
dataset to predict closeness levels and there are 11 levels in target attribute, from 0
to 10. Under those conditions, linear kernel and RBF kernel is chosen separately
as activation function with several corresponding parameters, as shown in Fig. 5.

Using second dataset, accuracy of RBF kernel increases as corresponding kernel
parameter decreases. However, the accuracy of linear kernel stays the same with
different kernel parameters. The highest accuracy from RBF kernel is higher than
that of linear kernel, but most values of RBF kernel is lower than linear kernel.
Is-couple, the number of children, ratio of Bluetooth contacts, ratio of SMS send-
ing and receiving, and ratio of phone calls are selected as attributes from second
dataset to predict closeness levels and there are 3 levels in target attribute, from 0
to 2. The 3 levels comes from original 11 levels: 0 to 3 denotes almost unknown
(0 now), 4–7 denotes known (1 now), 8–10 denotes known very well (2 now).
Under those conditions, linear kernel and RBF kernel is chosen separately as
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Fig. 5 Influence on accuracy
with different parameters for
ELM using second dataset
with 11 target levels (Red bar:
RBF kernel, green line: linear
kernel)
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Fig. 6 Influence on accuracy
with different parameters for
ELM using second dataset
with 3 target levels (Red bar:
RBF kernel, green line: linear
kernel)
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activation function with several corresponding parameters, as shown in Fig. 6.
Using second dataset, RBF kernel performs worse than linear kernel and its accu-
racy gets higher with lower kernel parameter. However, the accuracy of linear
kernel stays the same with different kernel parameters and its accuracy is much
higher than that of RBF kernel.

2. Adjusting the attributes is able to improve the accuracy of prediction. In the
section, adjustment is performed on ELM using only first datasets.
There are 7 levels in target attribute from first dataset to predict motion states.
Different attributes combination are selected from mean, standard deviation and
median. Linear kernel and RBF kernel is chosen separately as activation function
with several corresponding parameters, as shown in Fig. 7. Every result shown
in the figure is the mean from corresponding results of several different kernel
parameters, because the highest accuracies are almost the same.
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Fig. 7 Influence on accuracy with different parameters for ELM using first dataset (Red bar: RBF
kernel, green bar: linear kernel)

Chosen attributes combinations are: mean, standard deviation, median, (mean
and standard deviation), and (mean, standard deviation and median). It can be
concluded from the figure that the last combination gets highest accuracy and
normally, accuracy increase as the number of attributes increases.

3. Reducing the number of target attribute levels leading to advancing accuracy of
prediction. In the section, adjustment is performed on ELM using only second
datasets.
The reason to use only second database is the target attribute levels in first dataset
is fixed. Figure 8 shows the specified operation on changing the levels of target
attribute from second dataset. There are original 11 levels and they are divided
into 2, 3 and 5 levels as even as possible separately.
Is-couple, the number of children, ratio of Bluetooth contacts, ratio of SMS send-
ing and receiving, and ratio of phone calls are selected as attributes from second
dataset to predict closeness levels. Every result shown in the figure is the highest
from corresponding results of several different kernel parameters. It is concluded
from Fig. 9 that accuracy of prediction increases as the number of target attribute
levels decreases. However, in fact, 3 levels of target attribute is better than others,
because index of emotions can not be too precise and 2 levels are too ambiguous.

Multiple target attributes prediction adjustments strategy As mentioned above,
the accuracy of classifiers increases when the number of attributes increases. Thus, it
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Fig. 8 Division on original
11 target attribute levels (Red
circle: 2 levels; green inverted
triangle: 3 levels; blue cross:
5 levels; yellow add sign:
original 11 levels )
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Fig. 9 Influence on accuracy
with different number of target
attribute levels for ELM using
second dataset (Red bar:
random algorithm; green bar:
RBF kernel; blue bar: linear
kernel)
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is possible to improve the accuracy of multiple target attributes prediction by taking
predicted target attributes as known attributes to predict other target attributes. The
chosen predicted target attributes should be well predicted, corresponding to high
prediction accuracy.

Only second dataset is used: assuming closeness levels and is-couple relationship
are both target attributes. There are two choices of is-couple relationship, yes or no.
And original 11 levels are chosen for closeness levels.

Firstly, two independent predictions are performed for the two target attributes
separately using other known attributes: the number of children, ratio of Bluetooth
contacts, ratio of SMS sending and receiving, and ratio of phone calls. Highest results
are selected using ELM from different parameters in Table 5.
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Table 5 Direct independent
multiple target attributes
prediction using ELM from
different parameters

Target attribute Kernel function Kernel parameter Accuracy

is-couple RBF 1 0.9974
is-couple RBF 11 0.9968
is-couple linear 1 0.9655
is-couple linear 11 0.9655
closeness RBF 1 0.8377
closeness RBF 11 0.8364
closeness linear 1 0.8367
closeness linear 11 0.8367

Table 6 Second time
independent multiple target
attributes prediction using
data derived from Table 5

Target attribute Kernel function Kernel parameter Accuracy

is-couple RBF 1 0.9974
is-couple RBF 11 0.9971
is-couple linear 1 0.9961
is-couple linear 11 0.9961
closeness RBF 1 0.8377
closeness RBF 11 0.8370
closeness linear 1 0.8373
closeness linear 11 0.8373

Table 7 Third time multiple
target attributes prediction
using complete attributes

Target attribute Kernel function Kernel parameter Accuracy

is-couple RBF 1 0.9974
is-couple RBF 11 0.9968
is-couple linear 1 0.9969
is-couple linear 11 0.9969
closeness RBF 1 0.8390
closeness RBF 11 0.8383
closeness linear 1 0.8383
closeness linear 11 0.8383

Secondly, take is-couple as known attribute with other attributes to predict close-
ness levels and take closeness information for is-couple as well. Then predict both of
them separately once again. Highest results are selected using ELM from different
parameters in Table 6.

Compared with Table 5, almost all accuracies of is-couple some accuracy of close-
ness get higher and few accuracies of closeness become lower. The results show our
multiple target attributes prediction adjustments strategy does work.

Thirdly, real is-couple value will be with other attributes to predict closeness levels
and similar operation will be performed for is-couple as well. The highest results are
selected using ELM from different parameters in Table 7.
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There is no wonder almost all accuracies in Table 7 are higher than that of other
tables, because real value is with ‘prediction accuracy’ of 1. And the results from
our strategy are very close to directly prediction.

6 Conclusion and Future Work

The main contributions of our chapter includes:

1. constructing an universal model which could apply on a variety of dataset;
2. utilizing multiple state-of-art classifiers to compare with Extreme Learning

Machine;
3. proposing some categories to improve the performance of Extreme Learning

Machine.

Regarding our work, we are going to continue to improve the performance of our
model based on ELM, which is intended to improve the accuracy of demographic
attributes prediction. As to predicting action types based on accelerometer data,
we are planning to increase the variety of action types. Besides predicting, more
works will be done to study how to prevent predicting demographic information by
protecting key demographic information.
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Hyperspectral Image Classification Using
Extreme Learning Machine and Conditional
Random Field

Yanyan Zhang, Lu Yu, Dong Li and Zhisong Pan

Abstract Recent studies show that extreme learning machine (ELM) is a suitable,
effective, and less time-consuming classifier with a wide range of applications. This
chapter addresses the application of ELM to the remotely sensed hyperspectral image
classification. In this chapter, the proposed hyperspectral image classification method
consists of three steps: First, a semi-supervised feature extract algorithm is used for
dimensionality reduction; Second, ELM is taken as a classifier; Finally, conditional
random field (CRF) is taken to smooth the result of ELM classifier, where the proba-
bility estimation over each class obtained by ELM is used as unary potential function
of CRF. The experimental results show that the proposed hyperspectral image classi-
fication method using both ELM and CRF achieves good classification performance
on two real hyperspectral data sets in comparison to the methods using SVM and CRF.

Keywords Extreme learning machine · Support vector machine · Conditional
random field · Semi-supervised dimensionality reduction · Hyperspectral image
classification

1 Introduction

With the development of remote sensing systems, the resolution of remote sensing
images is increasing improved. Hyperspectral images characterized by hundreds
of different spectral bands contain a wealth of information on ground objects for
researchers to extract. While the high spectral resolution involves some critical issues
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on the classification studies in hyperspectral images. The first issue is that the tradi-
tional classification methods for classifying hyperspectral images often cause Hughes
Phenomenon [1] (which is intrinsic in high-dimensional data). In other words, when
the dimension increases dramatically, the classification accuracy will not decrease
only when there is a sufficient number of training samples. The second issue is that
the independent training samples can not provide a complete description of hyper-
spectral images, discarding significant spatial information and resulting in many
ill-posed classification problems. Namely, samples come from different classes with
similar spectral features are often misclassified by the traditional pixelwise classifiers
[2, 3] (i.e. support vector machine (SVM)). The third issue is related to the com-
putational cost. Traditional classifiers (i.e. k nearest neighbor (k-NN) classifier and
SVM) chosen to classify large hyperspectral images are usually time-consuming.
For example, training a SVM on a whole image or a large training set may take a
long time because the number of support vectors is often proportional to the number
of training samples.

In the literature, the most direct way to avoid the problem of Hughes Phenom-
enon is dimensionality reduction. Existing dimensionality reduction methods can be
roughly categorized into supervised, unsupervised and recently appeared semisuper-
vised methods according to whether they use supervision information or not. One
of the most popular supervised dimensionality reduction methods is linear discrim-
inant analysis (LDA), also known as fisher discriminant analysis (FDA [4]) or dis-
criminant analysis feature selection (DAFE [5]). Another widely used and efficient
supervised dimensionality reduction methods for hyperspectral image is nonpara-
metric weighted feature extraction (NWFE [6]). In recent years, many extensions on
those two methods have been proposed, such as generalized discriminant analysis
(GDA [7]) using kernel trick, nonparametric discriminant analysis (NDA [8]), mar-
ginal fisher discriminant analysis (MFA [9]) and local fisher discriminant analysis
(LFDA [10]), decision boundary feature extraction (DBFE [11]) and so on. Above
supervised dimensionality reduction methods using supervision information, such
as class labels or pairwise constraints, have been proved efficiently but also time-
consuming in many applications. While unsupervised methods directly use unlabeled
data to guide the process of dimensionality reduction. Principal components analy-
sis (PCA [12]) is one of the most typical unsupervised dimensionality reduction
methods, which acquires the main components of samples using a linear transfor-
mation. Other widely used unsupervised methods include independent components
analysis (ICA [13]), multidimensionality scaling (MDS [14]), nonparametric matrix
factorization (NMF [15]), kernel PCA (KPCA [16]) and other manifold learning
and sparse representation based methods [17, 18]. Above unsupervised methods
not used any supervision information usually receive imprecise results in hyper-
spectral image classification. Combining the advantages of both supervised meth-
ods and unsupervised methods, semi-supervised dimensionality reduction methods
which use supervision information as in supervised methods and keep intrinsic struc-
tural information (such as global variance of data and local structural information)
as in unsupervised methods have been proposed in recent years. Typical semi-
supervised dimensionality reduction methods include semi-supervised probabilistic



Hyperspectral Image Classification Using Extreme Learning Machine 169

PCA (S2PPCA [19]), classification constrained dimensionality reduction (CCDR
[20]), constraint based semi-supervised dimensionality reduction framework (SSDR
[21]) and so on.

To involve the problem of imprecise estimation of hyperspectral samples with sim-
ilar spectral properties, many hyperspectral images classification methods consider-
ing both spectral and spatial information have been proposed to decrease speckle-like
errors caused by most traditional pixelwise classifiers. Spectral and spatial informa-
tion are combined by two main methods: graph-based techniques which build a
regularization on the samples with similar spectral properties and fixed-window-
based methods which use markov random fields (MRFs) and their extensions, such
as SCSVM and SCSVMF [22] modifying the decision function of SVM and using the
spatial information in the original space and the feature space respectively. Although
MRF is a classical statistical method for modeling the spatial contextual information,
the observed data is assumed conditional independence in the MRF-based classi-
fiers. However, there are strong correlation between adjacent pixels for hyperspec-
tral images. A new discriminative probabilistic model, i.e. conditional random field
(CRF [23]) relaxes conditions for MRF. Recent studies show that CRF is efficently
used in object recognition and image segmentation. Ping Zhong et al. [24] devel-
oped an efficient local method to train a CRF under piecewise training framework for
hyperspectral image classification. Chi-Hoon Lee et al. [25] used CRFs and SVMs to
segment brain tumors. Zuchuan Li et al. [26] applied SVM and CRF into hyperspec-
tral images classification. Although recent works show that SVM and CRF based
models work well on many applications, the computational cost of classification
large data sets such as hyperspectral images is very high.

In this chapter, we propose a fast ELM and CRF based model to classify hyperspec-
tral images. ELM [27] is a simple least square based learning algorithm for single-
hidden layer feedforward neural network (SLFN). Recent studies show that ELM is
a suitable, effective, and less time-consuming classifier with a wide range of applica-
tions. Therefore, we take ELM as a classifier, and CRF is used for smoothing the result
of ELM. The remainder of this chapter is organized as follows: Sect. 2 introduces the
used dimensionality reduction algorithms (i.e. SSDRpca and SSDRsp [28]) and the
corresponding ELM classification methods. Section 3 descries the CRF smoothing
of the result of ELM classification. Section 4 shows the experimental results in two
real hyperspectral data sets: the Indian Pines 92AV3C and the Washington DC mall.
Section 5 draws conclusions of this chapter.

2 Dimensionality Reduction and Classification

2.1 Semi-Supervised Dimensionality Reduction

To avoid the Hughes phenomenon often happened in classification for high-
dimensional data directly, we take semi-supervised dimensionality reduction
from state-of-the-art dimensionality reduction methods to reduct the dimensionality
of hyperspectral data.
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Shiguo Chen et al. [28] presented a semi-supervised dimensionality reduction
framework, which contains a discrimination term (based on pairwise constraints)
and a regularization term (to characterize some property of the original dataset). The
goal is to maximize the global objective function which is made up of two terms
as shows in Eq. 1, where JD is the discrimination term and JR is the regularization
term, β is the parameter.

J = JD + β • JR (1)

Using PCA criterion as the regularization term, Eq. 1 can be written as Eq. 2, which
is the global objective function of SSDRpca as shown in [21]. Therefore, SSDRpca can
be seen as a special case of the semi-supervised dimensionality reduction framework.

JSSDRpca (w) = 1

2nC

∑

(i, j)∈C

(wT xi − wT x j )
2 − α

2nM

∑

(i, j)∈M

(wT xi − wT x j )
2

+ β

2N 2

∑

i, j

(wT xi − wT x j )
2 (2)

Using the sparse representation as the regularization term, Eq. 1 can be written
as Eq. 3, which is the global objective function of SSDRsp. Where si is the sparse
reconstructive weight vector for xi .

JSSDRsp (w) = 1

2nC

∑

(i, j)∈C

(wT xi − wT x j )
2 − α

2nM

∑

(i, j)∈M

(wT xi − wT x j )
2

+ β •
[

− 1

N

∑

i

◦wT xi − wT Xsi◦2

]

(3)

2.2 ELM Classification

ELM is a simple learning algorithm originally proposed for single-hidden-layer feed-
forward neural networks (SLFNs) and then extended to the generalized SLFNs [27].
ELM is based on the Moore-Penrose generalized inverse instead of tuning the hidden
layer.

Given N arbitrary distinct samples (xi , ti ), where input variables are xi =
[xi1, xi2, . . . , xin]T ∈ R

n and target values are ti = [ti1, ti2, . . . , tim]T ∈ R
m , the

output of standard SLFNs with Ñ hidden nodes are mathematicly modeled as

f (x) =
Ñ∑

i=1

βi • gi (x), (4)
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where βi ∈ R
m is the weight vector connecting the i th hidden node and the output

nodes, gi (x) is the activation function. With some simple algebraic derivation, above
equation can be written as:

Hβ = T, (5)

where HN×Ñ is called the hidden layer output matrix of the SLFN, βÑ×m is the
output weight matrix, and TN×m is the target matrix. After a series of mathematical
derivation, the smallest norm least-squares solution of the above linear system is as
follow:

β̂ = H†T, (6)

where H† is the Moore-Penrose inverse of H .
As shown in [27], ELM has the ability to approximate any target continuous

function and classify any disjoint regions. In this chapter, we address ELM to the
classification of hyperspectral images. The probability estimates of each pixel over
all the class labels acquired by ELM is considered for the following optimization
work.

3 CRF Smoothing

Recent studies [24] proved that there are strong correlations between neighbor-
ing spectral bands and spatial neighbors in both the observations and label image.
Whereas an ordinary classifier predicts a label for a single sample without regard
to the neighboring samples. In order to involve the problem of imprecise estimation
of hyperspectral samples with similar spectral properties but come from different
land cover caused by conventional pixelwise classification methods, we develop a
new hyperspectral image classification method (called ELM-CRF) based on CRF
to combine spectral and spatial information to deal with the problems mentioned
earlier.

CRF is a discriminative framework globally conditioned on the observation X.
According to Hammersley-clifford theorem, the conditional distribution over labels
Y given the observations can be described as follows:

P(Y |X) = 1

Z

∏

c

ψc(Yc, X), (7)

where ψc(Yc, X) is the potential function of the clique c, and Z is a normalizing con-
stant known as the partition function [23]. The corresponding Gibbs energy function
defined on unary and pairwise cliques is given by
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E(X) =
∑

i∈V

ψi (xi ) +
∑

(i, j)∈E

ψi j (xi , x j ), (8)

where V is the set of all hyperspectral image pixels, E is a set of the neighborhood of
each pixels. As shown in Eq. 8, the first term known as the unary potential reflects the
probability of the given pixel xi labeled as yi . The second term known as the pairwise
potential represents interaction between labels of neighboring sites. Minimizing the
energy function Eq. 8, we can get the optimized parameters of CRF.

In this chapter, the energy function of CRF used in hyperspectral images classifi-
cation is defined as follows: the unary potential ψi of ELM-CRF is defined directly
by the probability outputs provided by our ELM classifier for each image pixel,
while the unary potential of our comparison method (marked as SVM-CRF) in our
experiments is defined by the probability outputs of SVM as in [29]. The pairwise
edge potentials of ELM-CRF and SVM-CRF have the form of a Potts model as in
[29, 30]. Namely the pairwise edge potential is

ψi j (xi , x j ) = exp

(

−◦xi − x j◦2

β

)

δ(xi ∗= x j ), (9)

where β is the model parameter. In other words, the pairwise edge potentials depend
on the consistency of the two labels of neighboring pixels. If neighboring pixels have
similar spectral values, ψi j favors the same category label for them. If neighboring
pixels have dissimilar spectral values, they might be assigned different category
labels. Therefore, the second term in Eq. 8 helps for smoothing the results of labeling
the hyperspectral pixels as shown in our experiments.

4 Experiments

Experiments were conducted on two real hyperspectral airborne images, Indian Pines
92AV3C and Washington DC Mall,1 described in the following:

Indian Pines 92AV3C is a 220-chanel 20-m resolution image (145×145 pixels) of
a vegetation area from Northern Indiana that was recorded by the AVIRIS sensor on
June 12, 1992. 50.7 % pixels of the image with the ground truth were categorized
into 16 classes. A three-band false color image and the spatial distribution of the
ground truth image are shown in Fig. 1. This dataset was randomly partitioned into
a set of 1297 training samples and 1298 testing samples (set 1), all the pixels of 16
classes constitute another testing set (set 2), which are detailed in Table 1.

Washington DC Mall is a 210-chanel 2-m hyperspectral airborne data (1280×307
pixels) collected in the 0.4–2.4µm region of the visible and infrared specra over
a Mall in Washington DC. Noisy bands due to water absorption were removed,

1 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Table 1 Data sets used in the experiments

Properties Indian pines 92AV3C Washington DC mall

Image size 145×145 1280×307
#bands 220 191
#classes 16 7
#training samples 1297 2094
#testing samples (set 1) 1298 3040
#testing samples (set 2) 10366 392960

Table 2 Classification accuracy (%) on the Indian pines 92AV3C

Test sets Classifiers PCA NWFE SSDRpca SSDRsp

Set 1 SVM 7.70 82.51 80.70 79.98
ELM 6.93 80.28 84.43 83.37

Set 2 SVM 3.67 77.73 75.14 74.16
SVM-CRF 3.67 91.47 88.18 86.90
ELM 23.81 75.16 80.82 79.08
ELM-CRF 23.81 92.24 94.72 94.43

resulting in 191 chanels. Seven classes of interest are considerd. A three-band false
color image is shown in Fig. 2. This dataset was randomly partitioned into a set
of 2094 training samples and 3040 testing samples (set 1), all the pixels of the
whole hyperspectral image constitute another testing set (set 2), which are detailed
in Table 1.

In this experiments, four dimensionality reduction methods were used here: unsu-
pervised (PCA [12]), supervised (NWFE [6]) and semi-supervised (SSDRpca and
SSDRsp, the same constraints and parameter selection mechanism used as in [28]).
The classification results were compared with those given by: (i) a traditional SVM
classifier; (ii) a traditional ELM classifier; (iii) a SVM-CRF classifier based on the
Potts model and estimates of the class posterior probabilities computed by SVM; (iv)
a ELM-CRF classifier based on the Potts model and estimates of the class posterior
probabilities computed by ELM. On testing set 1 of two data sets, two pixelwise
classifiers (SVM and ELM) are used in the experiments. While on the testing set 2
of two data sets, two smoothing methods (SVM-CRF and ELM-CRF) are used to
compare with traditional pixelwise classifiers (SVM and ELM).

We use classification accuracy to evaluate the results of methods proposed above.
Tables 2 and 3 show the results on two hyperspedtral image data sets, respectively.
Figures 1 and 2 show the classification maps of different classification methods men-
tioned above.

From the results of Table 2, we can see that the classification results of semi-
supervised methods on testing set 1 of Indian Pines 92AV3C are superior to the
unsupervised and supervised methods as proved in [28]. The results of two smoothing
methods (SVM-CRF and ELM-CRF) are superior to pixelwise classifiers (SVM and
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Table 3 Classification accuracy (%) on the Washington DC mall, accuracy on the testing set 2 was
computed only on the pixels with ground truth as shown in Fig. 2d

Test sets Classifiers PCA NWFE SSDRpca SSDRsp

Set 1 SVM 7.11 95.07 91.13 91.42
ELM 18.55 96.55 96.47 95.95

Set 2 SVM 5.01 72.32 69.40 69.56
SVM-CRF 5.01 72.15 71.68 71.88
ELM 6.02 75.88 71.53 72.45
ELM-CRF 5.15 74.53 72.8 73.71

(a)

 SVM (75.4486%)

(b)

 ELM (82.7995%)

(c)

(d)

SVM−CRF (88.1632%)

(e)

ELM−CRF (95.0318%)

(f)

Fig. 1 Indian pines 92AV3C a Three-band color composite. b SVM pixelwise classification map.
c ELM pixelwise classification map. d The ground truth. e SVM-CRF classification map. f ELM-
CRF classification map

ELM). As shown in Table 3, the smoothing methods do not have significant effect on
Washington DC Mall. One possible reason is that the accuracy was computed only
on the pixels with ground truth, while the pixels with ground truth have a very small
proportion in the whole Washington DC Mall hyperspectral image.
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Fig. 2 Washington DC mall
a Three-band color composite.
b SVM pixelwise classifica-
tion map. c ELM pixelwise
classification map. d The
ground truth. e SVM-CRF
classification map. f ELM-
CRF classification map. Accu-
racies on the classification
maps was computed only on
the pixels with ground truth as
shown in Fig. 2d

(a)  SVM (69.6992%)(b)  ELM (73.8458%)(c)

(d) SVM−CRF (72.0758%)(e) ELM−CRF (75.5539%)(f)
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Table 4 Computational cost (the unit of measurement is second) of different approaches on the
Indian pines 92AV3C, where tdr denotes the cost time of dimentionality reduction, the other symbols
denote a similar meaning

Methods tdr tsvmtrain tsvm_set1 tsvm_set2 tcr f _set2

PCA 0.0463 10.8349 0.1910 1.1003 0.4741
NWFE 571.6478 59.8343 0.5750 5.1058 0.3573
SSDRpca 0.3974 10.9710 0.0965 0.7885 0.3537
SSDRsp 29.9099 15.1722 0.1481 1.0790 0.3452
Methods tdr – telm_set1 telm_set2 tcr f _set2

PCA 0.0549 – 0.3442 0.6256 0.2971
NWFE 570.4765 – 0.1964 0.5748 0.3384
SSDRpca 0.3477 – 0.3291 0.5417 0.4403
SSDRsp 0.3785 – 0.3179 0.3728 0.6145

Table 5 Computational cost (the unit of measurement is second) of different approaches on the
Washington DC mall, where tdr denotes the cost time of dimentionality reduction, the other symbols
denote a similar meaning

Methods tdr tsvmtrain tsvm_set1 tsvm_set2 tcr f _set2

PCA 0.0542 12.1764 0.0478 2.9917 21.4838
NWFE 1858 43.5631 0.0003 0.0199 0.0432
SSDRpca 0.7885 11.538 0.0619 7.4123 28.9416
SSDRsp 44.6645 11.2901 0.0567 6.9673 27.8813
Methods tdr – telm_set1 telm_set2 tcr f _set2

PCA 0.0630 – 0.3244 9.8259 30.8901
NWFE 1886.6 – 0.0003 0.0128 0.0346
SSDRpca 0.8019 – 0.4531 10.1931 32.0403
SSDRsp 45.9748 – 0.2897 10.7319 33.8963

From Figs. 1 and 2, we can see that the speckle-like errors which appear in the
pixelwise classifiers are corrected by SVM-CRF and ELM-CRF. Here, the effect of
CRF is similar to the expansion technology in image processing. Overall, the methods
using both spectral and spatial contextual information are efficient in hyperspectral
image classification. From Tables 2 and 3, we can also see that the results of ELM
based classifiers are just about right with the results of SVM based classifiers, but the
training time of SVM is more than ELM, which are detailed in Tables 4 and 5. That is
because the parameters are random assighed in ELM, while SVM wastes most time
on finding the optimal model parameters.

All the simulations for classification algorithms mentioned on our experiments
are carried out in MATLAB R2011a environment running in a Dell PowerEdge R710
server with 16 Intel(R) Xeon(R) 2.93 GHZ CPUs and 32 GB memory.
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5 Conclusions

This chapter has introduced a new spectral and spatial contextual information based
classification method for hyperspectral images. The method is consistent of three
steps: (i) dimensionality reduction using a semi-supervised dimentionality reduction
framework; (ii) classification using ELM; (iii) smoothing the classification maps
using CRF. Experimental results on two real experiments have demonstrated that the
proposed method yields accurate classification maps within a short time compared
to the pixelwise classifiers.

Acknowledgments We are grateful for financial support from the National Nature Science Foun-
dation of China under Grant No. 61101202 and the National Technology Research and Development
Program of China under Grant No. 2012AA01A510.

References

1. P.H. Hsu, Feature extraction of hyperspectral images using wavelet and matching pursuit.
ISPRS J. photogramm. Remote Sens. 62(2), 78–92 (2007)

2. D.A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, vol. 29 (Wiley
Interscience, Hoboken, 2005)

3. G. CampsValls, L. Bruzzone, Kernel-based methods for hyperspectral image classification.
IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

4. R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2),
179–188 (1936)

5. E.M. Mikhail, J.S. Bethel, J.C. McGlone, Introduction to Modern Photogrammetry (Wiley,
New York, 2001)

6. B.C. Kuo, D.A. Landgrebe, Nonparametric weighted feature extraction for classification. IEEE
Trans. Geosci. Remote Sens. 42(5), 1096–1105 (2004)

7. G. Baudat, F. Anouar, Generalized discriminant analysis using a kernel approach. Neural Com-
put. 12(10), 2385–2404 (2000)

8. K. Fukunaga, J.M. Mantock, Nonparametric discriminant analysis. IEEE Trans. Pattern Anal.
Mach. Intell. 6, 671–678 (1983)

9. S.C. Yan, D. Xu, B.Y. Zhang, H.J. Zhang, Q. Yang, S. Lin, Graph embedding and extensions:
a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell.
29(1), 40–51 (2007)

10. M. Sugiyama, Dimensionality reduction of multimodal labeled data by local fisher discriminant
analysis. J. Mach. Learn. Res. 8, 1027–1061 (2007)

11. C. Lee, D.A. Landgrebe, Feature extraction based on decision boundaries. IEEE Trans. Pattern
Anal. Mach. Intell. 15(4), 388–400 (1993)

12. H. Hotelling, Analysis of a complex of statistical variables into principal components. J. Educ.
Psychol. 24, 417–441 (1993)

13. J. Wang, C.I. Chang, Independent component analysis-based dimensionality reduction with
applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–
1600 (2006)

14. L. Yang, Alignment of overlapping locally scaled patches for multidimensional scaling and
dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 438–450 (2008)

15. D. Seung, L. Lee, Algorithms for nonnegative matrix factorization. Adv. Neural Inf. Process.
Syst. 13, 556–562 (2001)



178 Y. Zhang et al.

16. B. Schölkopf, A. Smola, K.R. Müller, Nonlinear component analysis as a kernel eigenvalue
problem. Neural Comput. 10(5), 1299–1319 (1998)

17. J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

18. L.S. Qiao, S.C. Chen, X.Y. Tan, Sparsity preserving projections with applications to face
recognition. Pattern Recognit. 43(1), 331–341 (2010)

19. S.P. Yu, K. Yu, V. Tresp, H.P. Kriegel, M.R. Wu, Supervised probabilistic principal component
analysis, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (ACM, New York, 2006), pp. 464–473

20. J. A. Costa, A.O. Hero III, Classification constrained dimensionality reduction, in Proceed-
ings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005
(ICASSP’05) vol. 5 (IEEE, 2005), pp. v-1077

21. D.Q. Zhang, Z.H. Zhou, S.C. Chen, Semi-supervised dimensionality reduction, in Proceedings
of the 7th SIAM International Conference on Data Mining (2007), pp. 629–634

22. C.H. Li, B.C. Kuo, C.T. Lin, C.S. Huang, A spatial-contextual support vector machine for
remotely sensed image classification. IEEE Trans. Geosci. Remote Sens. 50(3), 784–799 (2012)

23. J. Lafferty, A. McCallum, F.C. Pereira, Conditional random fields: probabilistic models for seg-
menting and labeling sequence data, in Proceedings of the Eighteenth International Conference
on Machine Learning (2001), pp. 282–289

24. P. Zhong, R.S. Wang, Learning conditional random fields for classification of hyperspectral
images. IEEE Trans. Image Process. 19(7), 1890–1907 (2010)

25. C.H. Lee, M. Schmidt, A. Murtha, A. Bistritz, J. Sander, R. Greiner, Segmenting brain tumors
with conditional random fields and support vector machines, in Computer Vision for Biomedical
Image Applications (Springer, 2005), pp. 469–478

26. Z.C. Li, J.W. Ma, R. Zhang, L.W. Li, Classifying hyperspectral data using support vector
machine conditional random field. Geomat. Inf. Sci. Wuhan Univ. 36(3), 306–310 (2011)

27. G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications. Neu-
rocomputing 70(1), 489–501 (2006)

28. S.G. Chen, D.Q. Zhang, Semisupervised dimensionality reduction with pairwise constraints
for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 8(2), 369–373 (2011)

29. B. Fulkerson, A. Vedaldi, S. Soatto, Class segmentation and object localization with superpixel
neighborhoods, in IEEE 12th International Conference on Computer Vision, 2009 (IEEE,
2009), pp. 670–677

30. J. Shotton, J. Winn, C. Rother, A. Criminisi, Textonboost: joint appearance, shape and context
modeling for multi-class object recognition and segmentation, in Computer Vision-ECCV 2006
(Springer, 2006), pp. 1–15



ELM Predicting Trust from Reputation
in a Social Network of Reviewers

J. David Nuñez-Gonzalez and Manuel Graña

Abstract Trust is a central concept in distributed systems, such as Ad Hoc Networks,
Social Networks and Recommender Systems. Trust has a predictive component, it is
a measure of the certainty that an agent has on the output from other agent. Hence,
Trust is a key component of distributed decision making processes. It can be built
from reputation, meaning the observation of the Trust values from other agents (the
trusters) on the target agent (the trustee). In this chapter we take the point of view of
predicting the Trust value on the basis of the reputation information that the agent
may collect. When Trust values are categorical, or binary, the problem becomes a
classification problem that can be tackled by Extreme Learning Machines (ELM). We
perform experimental assessment of the value of ELM for this task on a benchmark
database obtained from a real life recommender system.

Keywords ELM · Trust computation · Recommender systems

1 Introduction

Trust is a pervasive concern in human and computational interactions [1, 2]. We
must trust the services we receive and we rely on for our work and daily life, ranging
from the use of cars and transports to the use of internet services, or the interaction
between computational agents performing searches or other delegated tasks. Trust
in automation [3] has been identified as a major concern in the development of
human centered computing, proposing active evaluation of trust strategies to correct
unjustified trust or mistrust, and to assess their consequences. In general terms the
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trusters face some degree of risk when they decide to accept the outcome of the
trustee. Trust management [4, 5] is related with the prediction of the expected risk or
the affordable level of trust on the basis of all available information. When the source
of information is the opinion of other agents, the witnesses, the system is based on
Reputation.

In the field of distributed systems, such as Ad Hoc communication networks,
Social Networks, Online Review Systems and Recommender Systems, the issue of
managing Trust is critical for the function of the system. Recommender Systems
are common in e-commerce for making personalized marketing. On the other hand,
Online Review Systems (ORS) allow users to provide reviews of products and thus
become a user-oriented Recommender System. To help the user to navigate the
reviews, the ORS provides the possibility to state trust scores on the reviews, so that
reviewers with more positive trust scores will merit more attention. The issue, then,
is how the observed trust scores given by other users may influence the user, and
may serve to predict his own trust value.

Specifically, in this chapter we are concerned with the use of classifiers trained
with Extreme Learning Machines (ELM) to perform the prediction of the Trust on
the basis of the reputation of the trustee obtained from witness agents that have
common trust relations with the truster and the trustee. Reputation is modeled as a
feature vector composed of the trust values of the witness agents on the trustee. We
apply the approach on a trust database extracted from an ORS web service that has
been used for the study of Trust metrics [6] and outlier controversial reviews [7].
We perform classification experiments assessing the generalization power of ELM
compared with other state-of-the-art classifier training algorithms.

Contents of the chapter This chapter is organized as follows: Sect. 2 reviews some
ideas about Trust in Social Networks. Section 3 provides a review of ELM basics.
Section 4 describes the experimental database and the reputation feature extraction.
Section 5 gives the experimental results. Finally, Sect. 6 gives some conclusions and
directions of research work for the future.

2 Trust

Some philosophical definitions of Trust are:

• “the degree of subjective belief about the behaviors of (information from) a par-
ticular entity” [8]

• “the quantified belief by a truster with respect to the competence, honesty, security,
and dependability of a trustee within a specified context” [1]

• “a particular level of the subjective probability with which an agent will perform
a particular action, both before [we] can monitor such action (or independently of
his capacity of ever be able to monitor it) and in a context in which it affects [our]
own action” [9].
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The literature contains the recognition of several properties of Trust that may be
useful to understand or develop trust-based systems. Goldbeck et al. [10] identifies
transitivity, asymmetry properties meaning that Trust relations tend to be transitive
and that there is no guarantee that Trust is reciprocated, and personalization proper-
ties. Cho et al. [11] state that Trust is subjective, changes in time (dynamic) and is
context-dependent. Some authors point that Trust is reflexive, an agent trust in itself
always, non antisymmetric, meaning that mutual trust does not imply identity, and
that Trust decays with time and (physical or virtual) distance [9, 12].

Increasing concerns about Trust and ethics in computing are appearing in the
literature. From the philosophical reflections on Trust in Cyberspace [13] and auto-
mated systems [3] to the more precise proposals of ethical government in the field
of robotics [14] motivated by their military and medical uses. The proposal includes
models of moral emotions to enforce ethical robotic behavior. Distributed systems
introduce a new dimension in Trust related issues: Trust becomes a factor in the com-
putation/communication system. In Peer-to-Peer systems, nodes need to reason and
establish Trust on their communicating nodes to protect themselves against attacks
[15, 16]. Mobile Ad Hoc Networks (MANET) allow to create dynamical communi-
cation paths arising from temporary relations between nodes. Computing Trust is a
critical capability in MANETs involving establishing, updating and revocating Trust
[11, 17]. The trust management problem generalizes to wireless communications
[18] encompassing MANETs, wireless sensor networks and cognitive radio. Cur-
rent approaches to Trust management are based on fuzzy or probabilistic reasoning
on the information available, however some machine learning techniques have been
proposed, i.e. to detect attacks coming from malicious nodes for MANETs [19].

3 Extreme Learning Machines

Extreme Learning Machine (ELM) [20, 21] is a simple learning algorithm for Single-
Hidden Layer Feedforward Neural network (SLFN). This method is based on the
Moore-Penrose generalized inverse providing the minimum Least-Squares solution
of general linear systems.

3.1 Basic ELM

For N arbitrary distinct samples (xi, ti ), where input variables are xi = [xi1, xi2, . . . ,

xin]T ∈ R
n and target values are ti = [ti1, ti2, . . . , tim]T ∈ R

m . The training of a
standard SLFN with N hidden neurons and activation function g(x) is mathemati-
cally modeled as solving the following equation to estimate the value of the SLFN
parameters:

hn∑

i=1

βi · g(wi · xj + bi ) = tj, j = 1, . . . , N . (1)
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where wi = [wi1, wi2, . . . , win]T is the weight vector connecting the i-th hidden
neuron and the input neurons, βi = [βi1, βi2, . . . , βim]T is the weight vector con-
necting the i-th hidden neuron and the output neurons, and bi is the threshold of the
i th hidden neuron. wi ·xj denotes the inner product of wi and xj and hn is the number
of hidden neurons. The activation function can be the identity for the so-called linear
kernel approaches, sigmoid for the Multilayer Perceptron approaches, or Gaussian
for Radial Basis Function approaches [21].

The Eq. (1) can be written in matrix form as:

Hβ = T, (2)

where H, of size N × hn, is the output matrix resulting of the SLFN hidden layer
activated by the input samples, β is the output weight matrix of size hn ×m, and T is
the target matrix with size N × m. Training of SLFN is accomplished by computing
the least-squares solution β̂ of the linear system Hβ = T, given by β̂ = H†T, where
H† is the Moore-Penrose inverse of H.

4 Experimental Database and Reputation Features

The original database The Epinions site1 is a social site where user provide reviews
of products of any kind, from music to perfumes or construction hardware. These
reviews are the base for the establishment of trust relations between users. Trust is a
binary variable taking values in {−1, 1}: a user can choose to trust (1) another or not
(−1). Negative trust values are not published in the web service, but the anonymized
dataset provided for experimentation, which is available to the public,2 contains also
negative Trust values. This dataset has 841,372 data samples. Each sample is a triplet
composed of two user indexing numbers (no personal data of any form is included)
and the binary Trust value of the first user on the second user. Therefore, Trust
relations define a directed graph, with weighted edges. Used database is unbalanced:
85.3 % of instances show positive trust (717,667 triplets), versus 14.7 % of negative
trust instances (123,705 triplets). This data base has been used previously to perform
computational experiments of Trust models [6, 7, 22, 23].

Reputation features From the original database of triplets, we build several data-
bases of Reputation features, consisting on the observation of the Trust values of
related users. Each database is made of samples composed of a feature vector of
specific dimension and the desired trust value to be predicted. Construction of the
database is as follows: For each triplet (A, B, tAB) we construct a list of witness
users L AB = {C |(C, A, tC A) ∈ D ∧ (C, B, tC B) ∈ D }, where D denotes the orig-
inal database of triplets. Given a feature vector dimension, i.e. d, we discard the
triplet if |L AB | < d. If |L AB | > d, we perform a random selection of d witness

1 http://www.epinions.com/
2 http://www.trustlet.org/wiki/Extended_Epinions_dataset

http://www.epinions.com/
http://www.trustlet.org/wiki/Extended_Epinions_dataset
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Fig. 1 Pipeline of the experimental works

nodes C obtaining L∗
AB such that

∣
∣L∗

AB

∣
∣ = d. The input/output pair (X, Y ) in the

reputation feature database corresponding to triplet (A, B, tAB) is constructed such
as X = {

tC,B
∣
∣C ∈ L∗

AB

}
and Y = tAB . For d = 10, the reputation feature database

has 735,757 samples with 14.86 % of class “−1” and 85.14 % of class “1”. This
reputation feature database will be published at the group’s website3 for third party
assessment of results.

5 Experimental Results

Experimental pipeline The computational experiments follow the scheme of Fig. 1.
The complete reputation feature database is used (in a 10-fold cross-validation) to
build classifiers and test them, obtaining the first experiment accuracy results. In
another pipeline path, we select a 10 % of the database samples, ensuring that the
classes are well balanced. On this reduced database we perform a 10-fold cross-
validation, obtaining the results of the second experiment. Finally, each of the classi-
fiers constructed in the second experiment is further tested over the entire reputation
feature database, obtaining the generalization results of the third experiment. The
difference between the results of the third and the first experiment are representative
of the generalization robustness of the approach considered. The competing classifi-
cation algorithms are obtained from Weka.4 When comparing computational times,
it is convenient to keep in mind that ELM is implemented in Matlab, while Weka is
implemented in Java.

3 http://www.ehu.es/ccwintco/index.php/GIC-experimental-databases
4 http://www.cs.waikato.ac.nz/ml/weka/

http://www.ehu.es/ccwintco/index.php/GIC-experimental-databases
http://www.cs.waikato.ac.nz/ml/weka/
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Table 1 Average accuracy of the first experiment 10-fold cross-validation and computation time
in seconds

3 features 5 features 7 features 10 features
% acc. Time (s) % acc. Time (s) % acc. Time (s) % acc. Time (s)

AdaBoost 90 61 90 72 91 97 92 162
Spegasos function 89 146 91 152 92 168 92 205
Bayesian log. regr. 90 22 91 43 91 84 92 107
Logistic functions 90 63 91 73 92 87 92 93
Bagging 90 47 91 64 92 73 92 564
Decision table 90 39 91 90 92 69 92 135
Decision tree 90 72 91 78 92 82 92 210
ELM (20 hu) 90 1 91 1 92 2 92 2
ELM (50 hu) 90 5 91 5 92 6 93 6
ELM (70 hu) 91 5 91 5 92 6 93 6

Increasing reputation feature vector dimensions

Table 2 Average accuracy of the second experiment 10-fold cross-validation and computation
time in seconds

3 features 5 features 7 features 10 features
% acc. Time (s) % acc. Time (s) % acc. Time (s) % acc. Time (s)

AdaBoost 82 57 82 54 83 59 84 74
Spegasos function 86 39 86 41 86 45 89 49
Bayesian log. regr. 82 43 87 44 87 49 89 56
Logistic functions 82 38 87 42 87 47 88 59
Bagging 86 42 86 44 88 51 89 55
Decision table 86 41 88 45 89 53 90 56
Decision tree 86 58 88 62 89 61 90 110
ELM (20 hu) 86 1 89 1 89 2 90 2
ELM (70 hu) 86 5 89 5 89 6 91 6

Increasing reputation feature vector dimensions

Table 3 Average accuracy of the third experiment 10-fold cross-validation and computation time
in seconds

3 features 5 features 7 features 10 features
% acc. Time (s) % acc. Time (s) % acc. Time (s) % acc. Time (s)

AdaBoost 75 109 77 107 78 112 79 168
Spegasos function 75 143 77 167 79 177 80 237
Bayesian log. regr. 75 27 78 42 79 85 80 57
Logistic functions 75 56 78 63 79 78 80 84
Bagging 76 54 78 79 79 164 80 255
Decision table 76 39 78 61 79 83 80 98
Decision tree 76 61 78 62 79 69 80 116
ELM (50 hu) 76 5 78 5 79 6 81 6

Increasing reputation feature vector dimensions
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Fig. 2 Plot of the accuracy/time ration for the tested classifiers on the three experiments

First experiment The results of the 10-fold cross-validation on the whole database
are given in Table 1. Overall the accuracy of the classifiers increases with the feature
vector dimension, as well as the computational time measured in seconds. Best
accuracy results are obtained by the ELM with 50 and 70 hidden units. Results are
relatively similar in all classifiers, which can be interpreted as an indication of the
discriminant power of the feature vectors.

Second experiment The results of the 10-fold cross-validation over the reduced
feature database are given in Table 2. Again the best results are achieved by the
ELM algorithm. We observe an expected reduction in computational time, and an
unexpected reduction in accuracy that may be due to the sampling process. ELM are
the most resilient architectures in this regard, with less accuracy loss. Results in this
experiment are representative of the validation of the reduced database training.

Third experiment The results of the third experiment, consisting on applying the
classifiers trained on each of the 10-folds on the reduced database to the entire
database, are given in Table 3. The loss in accuracy when comparing with Table 1
reflect the effect of generalization from the reduced database to the entire database.
Again best results are provided by ELM with lower computational cost.

Accuracy versus time Figure 2 shows a plot of the ratio Accuracy/time for the
experiments with feature dimension 10, intended to highlight the trade off between
accuracy and time requirements. The greater this ratio, the better the algorithm. ELM
appears on top of all algorithms in this plot. Second best is the logistic regression.
Other algorithms show some improvement in the second experiment due to the well
balanced sample, but have big drops in the last experiment. Worst results are obtained
by the decision tree and the adaboost.
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6 Conclusions

We have introduced a Trust prediction system based on reputation features obtained
as the trust values of witness agents. The system has been demonstrated over a bench-
mark trust database extracted the trust assessment of an Online Review System. The
computational experiments have shown that the ELM achieves the best accuracies,
and accuracy versus computational time ratio. Also, we have found that the loss
of accuracy when generalizing from a small database to the complete database is
smaller in ELM.

Further work will be carried out within the SandS project where a social network
of household appliances share knowledge about the use of appliances through the
exchange of recipes of use. The system is intended to provide emergent social intelli-
gence from the social interactions. Users can ask for a recipe giving a task (described
in natural language). Recipes will be generated by system and users. At the end, users
can give a feedback about the obtained recipe. Trust values would serve to moderate
the influence of the users regarding the composition of new recipes from the past
recommendations. Therefore, a trust prediction system similar to the one presented
here would be of value for the SandS system.

Acknowledgments This research has been partially funded by EU through SandS project, grant
agreement No. 317947.
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Indoor Location Estimation Based on Local
Magnetic Field via Hybrid Learning

Yansha Guo, Yiqiang Chen and Junfa Liu

Abstract In this chapter, the magnetic field samples over more than 2 months
inside an office building presents a finding that there exist the relative stable measure-
ments for a single location and the relative obvious difference in most of locations.
Under this phenomenon, a hybrid learning method based on the local magnetic field
measurements is proposed. (1) Kalman filter is firstly utilized to smooth the initial
samples in order to obtain the stable data. (2) Classification programs by Extreme
learning machine (ELM) is introduced to model the relationship between the mea-
surements and physical locations, and then four potential positions can be chosen for
a special measurement. (3) The optimal location is finally confirmed in view of those
four selections by using K-nearest neighbor (KNN) algorithm. A series of experi-
ments and comparisons with other five methods were implemented to validate the
feasibility and superiority of this technique for improving the positioning accuracy.
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1 Introduction

Indoor location estimation has received considerable attention with the gradual
development and maturation of wireless communication technology. As a major
element in the particular applications, it can be used to provide the navigation aids
for the disabled, help a user conveniently obtain the specific merchandise informa-
tion from shopping malls, quickly guide rescuers to rescue the trapped people in
trouble, provide the exhibition information for visitors in time in museum. First and
last, indoor positioning in all walks of life are directly or indirectly affecting people’s
works and lives.

Recent years, some systems on the grounds of signal propagation and finger-
print algorithm had been exploited for location estimation. Ultrasonic technology
accomplished a location estimation through measuring the time-of-flight of trans-
mitting and receiving ultrasonic signals so that obtain the distances between move
terminal and reference nodes (well-known points); This way for indoor positioning
is greatly influenced by multipath effects and non-line-of–sight (NLOS) propagation
although the overall positioning accuracy of it is higher [1, 2]. Some scholars con-
structed a positioning system in view of the infrared emitters (e.g. three emitters)
mounted in fixed known sites, and then the angle differences, which were directly
used to determine a target location, between any two emitters can be measured by an
incident angle sensor [3, 4]; Whereas it is limited since infrared is only suitable for
short-distance communication and easily disturbed by the lights. Also, Bluetooth
positioning using received signal strength (RSS) and triangulation methods was pro-
posed, this technique established an mathematical model to analyze the relationship
between RSS, which were gotten by utilizing a feature in new Bluetooth standard, and
the distances, which were calculated by some methods (e.g. Least Square Estimation,
Three-border and Centroid Method), based on triangulation algorithm between any
two Bluetooth devices [5]; In order to improve the positioning accuracy, Liang Chen
et al. combined the information from RSS measurements and prior motion model
based on Bluetooth access points (APs), and speed detection was either brought to
calibrate the location estimation [6]; The superiority of this technology is that Blue-
tooth module can be conveniently embedded into other devices, but the stability is
poor because it might be influenced by noise and complicated spatial environment.
Radio frequency identification (RFID) tagged objects is a common feature to be
employed for realizing indoor positioning; Some algorithms designed for station
estimation have been presented by using mobile RFID readers and landmarks which
were active or passive tags with the known locations [7–10]; This technique has
no communication ability and need to combine with other technologies although it
can transmit longer distance and has stronger penetrability. Currently, Wi-Fi, which
owns some potential features such as wide covering range, fast transmission speed
and high reliability, as a new wireless communication means has been broadly applied
in indoor positioning; Firstly, fingerprint database or map are constructed through
collecting RSS values from different Wi-Fi APs in environments; And then machine
learning methods are adopted to model the relation between labeled locations and
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RSS map; The target station can be finally concluded by mapping the real-time RSS
records with them in the database based on the training model [11–14].

As described above, each technology with its advantages and disadvantages had
been used in different occasions. Whereas, one thing in common of them is that a
local radio network or some additional devices are necessary to be prearranged and
deployed for emitting and receiving signals, which subsequently were employed to
estimate the locations. Thus, piles of work and big-cost are inevitable. Whether there
is one or some resources with minimum spending that can be applied in positioning
increasingly becomes an exploratory problem facing the scholars.

Magnetic field as a universal natural resource in earth started to be noted. Janne
Haverinen et al. tried a series of location researches and experiments using particle
filters and Monte Carlo Localization (MCL) in the case of preconditions such as each
building having its unique static magnetic field and the anomalies of magnetic field
in local area having sufficient variability. The effect in indoor positioning especially
in guiding the robot was prominent [15, 16]. Evidence of the magnetic field data
in an office building (working area in Institute of Computing Technology Chinese
Academy of Science) showed that the local variability was relative stable for longer
periods, i.e. amplitude range of measurements (X, Y, Z) in different times for a
location was relative smaller, but the phenomenon that the observations of one or
more locations, where may be neighboring or far from each other, were similar also
existed and directly confused the location identifications.

In this article, the magnetic field measurements of the working area in Institute
of Computing Technology Chinese Academy of Sciences from 9 to 21 o’clock of
46 days over 2 months are gathered here to experiment. And then Kalman filter,
ELM classification and KNN methods are introduced in different stages, respectively.
Section 2 detailedly describes the basic principles and processes of three methods.
Experiments and the corresponding results based on local magnetic field are imple-
mented in Sect. 3. Section 4 summarizes the whole work and prospects several poten-
tial research points.

2 Methodologies

2.1 Kalman Filter

Filtering as a signal processing and conversion course can be achieved by hardware
or realized by software for removing or weakening the unwanted components and
enhancing the needed components [17]. A good filtering algorithm should drop
the noise from signals (e.g. electromagnetic signals) while preserving the useful
information.

Kalman filter, which generally used in a linear system, can provide state estima-
tors with the minimum variance of estimation error. During estimating a system state
based on the measurements of concrete position, two requirements, the expected
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estimators are came anywhere near the true state and an estimator resulting in the
smallest possible error variance can be obtained, become the criteria that the calcu-
lated estimators should satisfy [17]. Kalman filter implements the state estimations
mainly by executing a recursive procedure that predicts the current state only based
on the last estimation (so need not to track and save the historical data) and optimally
updates the predicted estimator based on the real observations in order to acquire
a new estimator with higher accuracy. Accordingly, how to predict and update the
estimators constitutes three stages of this filtering method.

Step 1: State prediction. This process is responsible for gaining the priori estimator
and error covariance of the current state. Equations (1) and (2) are introduced here
to estimate the current state X (k|k − 1)(X ∈ Rn) and corresponding covariance
P(k|k − 1) on the basis of the previous best estimator, X (k − 1|k − 1) and P(k −
1|k − 1), of a special system, where k is assumed the present time and k − 1 means
the last moment.

X (k|k − 1) = A × X (k − 1|k − 1) + B × U (k − 1) (1)

P(k|k − 1) = A × P(k − 1|k − 1) × A◦ + Q (2)

U (k −1) ∈ Rl , which may be equal to 0 if there is no control variable, denotes an
optional control variable in k −1 time and Q expresses the process noise covariance.
A as a driving function or process noise is a n × n matrix that relates the state from
k − 1 to k time, and B is a n × l matrix that connects U (k − 1) to the state. In this
chapter, these parameters are set as constants [18].

Step 2: Measurement update. This process incorporates the priori prediction into
the real observations to calculate optimal posteriori estimation X (k|k) for the current
state. In this stage, the first task is to calculate Kalman gain K (k) by Eq. (3). And then,
the posteriori estimator and corresponding covariance can be generated by fusing
Kalman gain K (k), real measurement Z(k) ∈ Rm , priori estimator and covariance
in k time based on Eqs. (4) and (5), respectively.

K (k) = P(k|k − 1) × H ◦/(H × P(k|k − 1) × H ◦ + R) (3)

X (k|k) = X (k|k − 1) + K (k) × (Z(k) − H × X (k|k − 1)) (4)

P(k|k) = (I − K (k) × H) × P(k|k − 1) (5)

where H is a m × n matrix that links the state and measurement Z(k), and R that
denotes the original measurement noise covariance is analogous to Q [18].

Step 3: Recursive process by repeating Step 1 and Step 2. In view of the above
descriptions, Step 1 makes a preparation for Step 2, which is the extension and
improvement for the former again [17–20].
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2.2 Extreme Learning Machine

Extreme Learning Machine (ELM), which is a new learning algorithm for single-
hidden layer feedforward neural network (SLFN) proposed by G.B.Huang and has
been widely used in a number of fields in recent years, has been proved that there
are some superiorities to gradient-based learning algorithms like back-propagation
(BP). (1) Compare to several hours or even more time taken in training neural network
even for simple applications by utilizing traditional learning algorithms, the learning
process of ELM can be finished in seconds. (2) ELM owns better performance during
learning course than classic SLFN in most cases. (3) ELM is simple but can also
solve the common problems, such as local minima, overtraining, overfitting and
instability, existed in conventional gradient-based learning algorithms. (4) Many
nondifferentiable activation functions can be adopted in ELM unlike classic SLFN
methods which only employ differentiable activation functions [21, 22].

ELM uses a finite number of input-output samples, (xi , ti ) ∈ Rn × Rm , to train
and construct a model, where xi is a n × 1 input vector and ti is a m × 1 target or
output vector that can be expressed by Eq. (6) with N hidden nodes and activation
function g(x) to approximate N samples with zero error.

fN (x j ) =
N∑

i=1

βi g(wi · x j + bi ) = t j j = 1, 2, . . . , N (6)

In Eq. (6), βi = [βi1, βi2, . . . , βim]T denotes output weight vector connecting the
i th hidden node and output nodes. wi = [wi1, wi2, . . . , win]T is input weight vector
connecting the i th hidden node and input nodes, bi expresses a threshold or hidden
layer bias of the i th hidden node, and wi · x j shows the inner product of wi and x j .
Equation (6) can also be simply given as

Hβ = T (7)

H(a1, . . . , aN , b1, . . . , bN , x1, . . . xN ) =



⎧

g(w1 · x1 + b1) · · · g(wN · x1 + bN )

... · · · ...

g(w1 · xN + b1) · · · g(wN · xN + bN )

⎪

⎨
⎩

N×N
(8)

β =



⎧

βT
1
...

βT
N

⎪

⎨
⎩

N×m

and T =



⎧

t T
1
...

t T
N

⎪

⎨
⎩

N×m

(9)

H is said to be hidden layer output matrix of neural network, the i th column of
H is the i th hidden node output under input samples x1, . . . xN and the j th row of
H denotes the output vector of hidden layer under one input sample x j [21, 23].
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In light of Eqs. (6) or (7), β as a weight matrix connecting the hidden nodes and
output nodes is of great importance in whole learning process. Apparently, β should
be the product of the inverse of H and T like following Eq. (10). Here the inverse
H† adopted the Moore-Penrose generalized inverse of H according to [21].

β = H†T (10)

To sum up, give a set of training samples (xi , ti ) ∈ Rn × Rm, i = 1, 2, . . . , N ,
select a suitable activation function g(x) (e.g. sigmoidal function, radial basis, sine)
and define a number of hidden nodes, the learning procedure of ELM algorithm can
be executed in the following steps [21, 24]:

Step 1: Randomly distribute the input weight wi and bias bi of the hidden nodes,
i = 1, 2, . . . , N .

Step 2: Compute the hidden layer output matrix H according to Eq. (8).
Step 3: Compute the output weight β based on Eq. (10).

2.3 K-nearest Neighbor

K-nearest Neighbor (KNN) is an easy classification algorithm, which assumes that
each class contains a plurality of samples and each sample has a unique mark to
indicate its category. The principle of KNN is to select out K sample data that are
nearest to a specific sample with unknown category by calculating the similarities
between all samples with known category (or training data) and this specific sample
(or testing data). Generally, the similarity can be obtained using Euclidean distance
by Eq. (11) [25]. Ultimately, this unclassified sample belongs to the category that
most of the K samples are in [26].

d =
⎥
⎦
⎦
√

L∑

i=1

( ftraini − ftesti )2 (11)

where L is the number of researched features such as X, Y, Z; ftraini and ftesti

denote a particular feature value of training data and testing data, respectively.
Obviously, the data including training samples with known classification marks

and testing samples with unknown categories are preliminary requirements for KNN,
and then the subsequent classification process are implemented as following:

Step 1: Calculate the distances on the basis of Eq. (11) between each testing
sample and training data, then choose K training samples with the shortest distance
or maximum similarity.

Step 2: Summarize the categories of K potential samples gotten in Step 1, and
confirm an optimal class that more ones of K samples are belonged to, then the
testing sample is necessary also in this class [25–27].
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Fig. 1 Overall design of the
proposed method or procedure
in this chapter
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2.4 Proposed Method or Procedure for Location Estimation

Generally, the solution of an issue depends on multi-method to exploit their coop-
eration by exerting respective advantages in various aspects. In this article, a hybrid
learning method or procedure for location estimation is proposed by utilizing three
algorithms to fully mine the useful information in different stages as shown in Fig. 1.
Firstly, Kalman filter is functioned on the original magnetic field data for smooth-
ing the fluctuation in order to attain a relative stable situation. Secondly, classifica-
tion learning based on the filtering data by ELM is brought into effect according
to Eqs. (7)–(10). Thirdly, four underlying classes that a particular testing data may
belong are selected out in light of the results in second step. Fourthly, an optimal
class for this testing data is finally ensured by applying KNN algorithm.

3 Experiments

3.1 Data and Experiment Conditions

Eight neighboring stations (Fig. 2 showed the environment where magnetic field
data were collected) of an office building in Institute of Computing Technology
Chinese Academy of Sciences were selected as the experiment and test sites. This
environment is a typical workplace with computers, printers, desks, chairs and some
other things. All these items may cause the magnetic field to fluctuate in any station at
some time. The maximum distance between the neighboring stations is about 2.4 m
and the minimum distance between them is about 1 m, and the covering area of the
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Fig. 2 Experiment environ-
ment tested in this chapter

experiment environment is about 6 m2. The magnetic field data were collected only
with the help of a magnetometer in smart-phone (HTC).

Each sampling started on an hour and got 25 records lasting about five seconds for
every station. The magnetic field measurements, including three indicators (X, Y, Z),
were acquired from 9 a.m. to 21 p.m. in weekdays and from 11 a.m. to 16 p.m. at
weekend over 73 days. However, only the data of 46 days can be used in this article.
Thereinto, the data in previous 37 days contained in training process and the others
as testing data were to be concerned with the certification. And then, the other four
indicators (H : total amount in horizontal direction, F : total amount, D: geomagnetic
declination, I : geomagnetic inclination) were derived from X, Y and Z according to
Eqs. (12) and (13) [28].

H =
√

X2 + Y 2 F =
√

X2 + Y 2 + Z2 (12)

D = arctan(Y/X) I = arctan(Z/H) (13)

All algorithms for data processing and experiments were run in such computer
conditions: (1) CPU: Intel (R) Core(TM)2 Duo CPU; (2) Memory: 2G; (3) Analysis
software: Matlab R2009a.
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3.2 Experiment Procedure

Three courses were projected here to realize the flow of Fig. 1 by utilizing the pro-
posed method depicted in Sect. 2.

3.2.1 Data Preprocess

In order to attain the comparatively stable data, the stacking, a total of 325 records with
seven indicators (X, Y, Z , H, F, D, I ), of 1, 2, 3. . . 25 records of original magnetic
field measurements in each station at a time point were constructed to be preprocessed
by Kalman filter based on the steps in Sect. 2.1. Next, Four and two schemes for
training and testing data in view of the filtering results were considered, respectively.
As to the training data, (1) the mean of 125 filtering data in every station at each
time point (eight stations, 37 days, 13 or 6 h in each day); (2) integrated data by
supplementing (1) with the daily mean of eight stations (37 records for each station);
(3) the last five ones of 125 filtering data in every station at each time point (eight
stations, 37 days, 13 or 6 h in each day, 5 records per hour); (4) integrated data by
supplementing (3) with the daily mean of eight stations (37 records for each station),
the above four kinds of filtering data were prepared for training phase. Two types, the
mean and the last one of 125 filtering data of a given testing sample, corresponding
to the training data were applied to validate the classification model conceived in
training phase by ELM algorithm. Note that the forementioned 125 filtering data
were intercepted from 201 to 325 records so that the relative smooth values can be
acquired. Figure 3 displayed the filtering results of three dimensions (X, Y, Z) in a
station at some time point, and the steady trends of filtering records from 201 to 325
were also clearly appeared.

Figure 4 portrayed the variation characteristics of magnetic filed (X, Y, Z) in part
of stations from 9 a.m. to 21 p.m.. In legend of subplot (1) (subplot (2)–(3) had the
same legend), the letter S following a number denoted the station label (2, 5, 7) and
the last number indicated how many days after the first measurements acquisition. It
was evident that the magnetic field of each station was comparatively stable in three
dimensions for long time although a certain degree of undulation, which may be the
comprehensive effects of periodical changes and magnetic disturbance, existed in
different hours. However, another issue can also be observed, that is station 5 and 7
owning the similar measurements especially in Y direction. The mutual influences
caused by this similarity between any two stations would be the main reason for
lower positioning accuracy, which had been validated in latter experiments. Whereas,
how to distinguish these stations by using decomposition method and magnetic field
features was beyond the scope of this chapter and will be explored in future study.
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Fig. 3 Kalman filtering results in a station at some time

3.2.2 Classification Learning

Based on the prepared training and testing data, three groups (data with three indi-
cators (X, Y, Z), data with five indicators (X, Y, Z , H, F) and data with seven indi-
cators (X, Y, Z , H, F, D, I ) of which were designed to be as the initial data. ELM
algorithm began to execute Step 2 and Step 3 in Fig. 1. Noise was reduced by prin-
cipal component analysis (PCA) firstly in order to make the energy to be rearranged
in different dimensions of ELM data S (i.e. the initial filtering data preparing for
ELM learning), including all the training data and a group of special testing data.
In Table 1, S1 was the transformed ELM data, and which would be as the inputs to
directly involved in ELM classification learning.

During the process of ELM learning, sigmoidal was selected as the activation
function, the default number of hidden node was set as 10 and the number of out-
put node was automatically assigned as the classification count that detected from
training data. The input weights and biases of hidden nodes were randomly gener-
ated based on the number of hidden node and input samples. Where the randomness
in this stage simplified the calculation and saved much time comparing with other
neural network systems. According to these defined parameters and Eq. (8), output
matrix Htrain and the corresponding Moore-Penrose generalized inverse (H†

train) on
the basis of training data can be gained. And then, the output weight β, which was
the key for successive estimation of testing data, equaled to the product of H†

train and
the classification vector in training data. In the same manner, the output matrix Htest

based on the testing sample was calculated so that the output vector for this particular
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Fig. 4 Variation characteristics of magnetic field in three stations (2, 5, 7)

Table 1 Matlab codes for
noise reduction by PCA

Procedure of PCA for noise reduction

S = S − repmat(mean(S), size(S, 1), 1);
C = cov(S);
[P, Lambda] = eig(C);
S1 = S*P;

testing sample would be acquired by Eq. (7). Normally, this testing sample should
be endowed the class (or location) with maximum value in output vector. Here, four
potential classes (or locations) with the first four maximum values in output vector
were distilled to be used for reckoning the optimal location, where may be lived in
these classes with larger probability.

Table 2 listed the accuracies to recognize exact locations for a group of testing
data by using only one maximum (‘1 max’) and the first four maximum (‘4 max’)
of output vector. Where the results acquired based on filtering data and original
measurements were showed in left and right three columns, respectively. In Table 2,
the digital label i (i = 1, 2, 3, 4) in train (i) means the type of training data described
in the foregoing Sect. 3.2, and the digital label j (j = 1, 2) in test (j) denotes that
the testing data were the mean or the last one of 125 records based on filtering or
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Table 2 Accuracies to estimate exact locations for a group of testing data based on two ways

Data_Filter 1 max 4 max Data_origin 1 max 4 max

F_ELM_train(1)_test(1)3 0.627 0.950 O_ELM_train(1)_test(1)3 0.596 0.927 

F_ELM_train(2)_test(1) 3 0.637 0.948 O_ELM_train(2)_test(1) 3 0.590 0.938 

F_ELM_train(3)_test(1) 3 0.619 0.951 O_ELM_train(3)_test(1) 3 0.605 0.921 

F_ELM_train(4)_test(1) 3 0.646 0.938 O_ELM_train(4)_test(1) 3 0.584 0.928 

F_ELM_train(1)_test(2) 3 0.646 0.936 O_ELM_train(1)_test(2) 3 0.595 0.957 

F_ELM_train(2)_test(2) 3 0.651 0.930 O_ELM_train(2)_test(2) 3 0.582 0.945 

F_ELM_train(3)_test(2) 3 0.617 0.941 O_ELM_train(3)_test(2) 3 0.587 0.939 

F_ELM_train(4)_test(2) 3 0.639 0.951 O_ELM_train(4)_test(2) 3 0.593 0.950 

F_ELM_train(1)_test(1)5 0.721 0.974 O_ELM_train(1)_test(1)5 0.659 0.976 

F_ELM_train(2)_test(1) 5 0.726 0.971 O_ELM_train(2)_test(1) 5 0.695 0.974 

F_ELM_train(3)_test(1) 5 0.721 0.980 O_ELM_train(3)_test(1) 5 0.665 0.974 

F_ELM_train(4)_test(1) 5 0.698 0.971 O_ELM_train(4)_test(1) 5 0.662 0.971 

F_ELM_train(1)_test(2) 5 0.713 0.968 O_ELM_train(1)_test(2) 5 0.655 0.970 

F_ELM_train(2)_test(2) 5 0.706 0.971 O_ELM_train(2)_test(2) 5 0.639 0.973 

F_ELM_train(3)_test(2) 5 0.688 0.976 O_ELM_train(3)_test(2) 5 0.674 0.966 

F_ELM_train(4)_test(2) 5 0.715 0.979 O_ELM_train(4)_test(2) 5 0.678 0.977 

F_ELM_train(1)_test(1)7 0.668 0.976 O_ELM_train(1)_test(1)7 0.666 0.979 

F_ELM_train(2)_test(1) 7 0.718 0.980 O_ELM_train(2)_test(1) 7 0.659 0.973 

F_ELM_train(3)_test(1) 7 0.683 0.971 O_ELM_train(3)_test(1) 7 0.633 0.957 

F_ELM_train(4)_test(1) 7 0.712 0.956 O_ELM_train(4)_test(1) 7 0.662 0.965 

F_ELM_train(1)_test(2) 7 0.700 0.973 O_ELM_train(1)_test(2) 7 0.659 0.973 

F_ELM_train(2)_test(2) 7 0.686 0.966 O_ELM_train(2)_test(2) 7 0.601 0.960 

F_ELM_train(3)_test(2) 7 0.697 0.977 O_ELM_train(3)_test(2) 7 0.671 0.966 

F_ELM_train(4)_test(2) 7 0.657 0.979 O_ELM_train(4)_test(2) 7 0.668 0.971 

original data. The subscript 3, 5 and 7 expressed the related indictors employed in
ELM learning course.

Apparently, the classes with four maximum values from ELM learning results
can rightly identify a location for the special testing sample in most cases in despite
of datum type. However, the results based on filtering data had better performance
than original measurements when only one maximum value was used to estimate a
location, and the results with five indicators were superior to other situations again.
Therefore, there may be a higher accuracy for indoor positioning if a suitable method
can be functioned on these results.
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Table 3 Comparing the positioning accuracies obtained by six methods

Data type KNN
PCA-

KNN

ELM_

KNN

Kalman_

KNN

Kalman_

PCA-KNN

Kalman_

ELM_KNN

F_ELM_train(1)_test(1)3 0.183 0.782 0.771 0.182 0.806 0.843

F_ELM_train(2)_test(1) 3 0.197 0.788 0.774 0.182 0.811 0.831

F_ELM_train(3)_test(1) 3 0.125 0.742 0.744 0.455 0.803 0.725

F_ELM_train(4)_test(1) 3 0.125 0.748 0.761 0.165 0.808 0.748

F_ELM_train(1)_test(2) 3 0.111 0.755 0.747 0.215 0.800 0.819

F_ELM_train(2)_test(2) 3 0.113 0.758 0.745 0.215 0.803 0.799

F_ELM_train(3)_test(2) 3 0.226 0.755 0.753 0.399 0.800 0.733

F_ELM_train(4)_test(2) 3 0.226 0.759 0.761 0.215 0.802 0.771

F_ELM_train(1)_test(1)5 0.184 0.790 0.790 0.182 0.797 0.852

F_ELM_train(2)_test(1) 5 0.184 0.796 0.788 0.182 0.798 0.843

F_ELM_train(3)_test(1) 5 0.194 0.738 0.765 0.443 0.800 0.766

F_ELM_train(4)_test(1) 5 0.194 0.741 0.750 0.276 0.798 0.783

F_ELM_train(1)_test(2) 5 0.116 0.752 0.753 0.215 0.806 0.825

F_ELM_train(2)_test(2) 5 0.117 0.755 0.762 0.215 0.806 0.835

F_ELM_train(3)_test(2) 5 0.232 0.753 0.777 0.399 0.799 0.771

F_ELM_train(4)_test(2) 5 0.232 0.762 0.761 0.215 0.802 0.782

F_ELM_train(1)_test(1)7 0.195 0.787 0.761 0.304 0.797 0.834

F_ELM_train(2)_test(1) 7 0.195 0.794 0.756 0.304 0.797 0.835

F_ELM_train(3)_test(1) 7 0.125 0.744 0.742 0.212 0.803 0.725

F_ELM_train(4)_test(1) 7 0.125 0.750 0.742 0.391 0.805 0.747

F_ELM_train(1)_test(2) 7 0.113 0.764 0.752 0.209 0.803 0.817

F_ELM_train(2)_test(2) 7 0.113 0.767 0.750 0.209 0.805 0.811

F_ELM_train(3)_test(2) 7 0.348 0.761 0.755 0.396 0.803 0.742

F_ELM_train(4)_test(2) 7 0.348 0.767 0.759 0.209 0.805 0.748

3.2.3 Location Estimation

Finally, KNN algorithm introduced in Sect. 2.3 was applied to figure out the optimal
location in view of the above results (four potential classes or locations) for a special
testing sample. Equation (11) was brought to calculate the distances between this
testing sample and the specified training data with four selected classes. Because
there were many records with the same class in training data, the summations of these
distances based on all features were then calculated and the class with minimum
summation was ensured to be the optimal location. Note that: (1) the number of
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training data for each station was the same, so the minimum summation and minimum
mean had a consistent effect. (2) K (in KNN) equaled to 1 here and 4 was the potential
sample size, whereafter Step 1 depicted in Sect. 2.3 was implemented to select out
K (or 1) sample, which had been the optimal value, and Step 2 no longer enforced.

The comparisons of six methods, i.e. KNN, PCA-KNN (the function of PCA
is to reduce noise like the usage in classification learning part), ELM_KNN,
Kalman_KNN, Kalman_PCA_KNN and Kalman_ELM_KNN (proposed method in
this chapter), based on eight kinds of data with three groups of indicators used in
Table 2 were displayed in Table 3. Thereinto, the former three methods utilized the
original magnetic field measurements, which were not preprocessed by Karman filter,
while the filtering data were employed in the other methods. Each output obtained
by every method expressed the mean positioning accuracy for all the testing data
(9 days from 9 a.m. to 21 p.m. in weekday and from 11 a.m. to 16 p.m. in weekend).

As shown in Table 3, the positioning accuracies gained by KNN and Kalman_KNN
were relative stable but much lower. Although PCA_KNN and ELM_KNN can
effectively recognize the locations for testing data to some extent, the performance
of them were obviously inferior to Kalman_PCA_KNN and Kalman_ELM_KNN
in much of the times, the phenomenon of which presented that filtering preprocess
for original magnetic field measurements, i.e. the comparatively smooth and sta-
ble data, can efficiently improve the subsequent positioning precision. The results
of Kalman_PCA_KNN were consistent with regard to all types of data with three
groups of indicators, whereas Kalman_ELM_KNN had the highest accuracy when
the accumulated data (the mean of 125 filtering data in each station at every time) of
eight stations in 37 days were taken in training process, and the capability of ELM
learning with five indicators were especially prominent (marked by bold italic).

Figure 5 sketched the positioning performances by using four methods (except
KNN and Kalman_KNN) at each station, which also unfurl the superiority of the
proposed method (Kalman_ELM_KNN). In Fig. 5, a distinct characteristic existed
in first three methods (subplot (1)–(6)) was that the positioning accuracies gained on
account of eight kinds of learning data basically remained steady at each station while
the larger differences aroused from diverse training data (eight kinds of learning
data) by Kalman_ELM_KNN emerged in part of stations such as station1, 5 and
7. Nevertheless, it was found that Kalman_ELM_KNN can present the excellent
performance for identifying locations in most stations when the mean of filtering
data as the training data, i.e. (1, 1), (2, 1), (1, 2) and (2, 2) ((i, j) in legend was
corresponding to the datum type in Table 3), were built into ELM learning, and
which were evidently embodied in subplot (8) (5 indicator of Kalman_ELM_KNN).
All of these were accordant with the results in Table 3.

3.3 Discussion

Kalman filter, ELM learning and KNN algorithms were adopted in different stages
to fully excavate and apply the considerable information for indoor positioning. This
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Fig. 5 Comparisons of positioning accuracy at each station using four methods based on eight
kinds of learning data with two groups of indicators
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proposed idea were validated by a series of experiments based on eight kinds of
learning data with three groups of indicators, and compared with other five methods
displayed in Table 3 and Fig. 5. Also the whole processes only recur to a smart-phone
with magnetometer but no additional radio network or devices so that it can be simply
extended to some other applications.

As shown in Tables 2 and 3, the stable data as inputs preprocessed by Kalman filter
for estimating the locations were more effective than original magnetic field measure-
ments in most instances. The precisions of single KNN and Kalman_KNN, which
should be integrated with other algorithms, were the worst. And the similar capa-
bility of PCA_KNN and ELM_KNN revealed that noise process by PCA and learning
enhancement by ELM can efficiently exert the functions of KNN. Kalman_PCA_KNN
enforced the procedures of PCA_KNN based on the filtering data and had an obvious
improvement, which likewise demonstrated the validity of Kalman filter. The posi-
tioning accuracies of compared five methods in view of eight kinds of learning data
with three groups of indicators were relative stable, in other words, these methods
were insensitive to any formats of data and indicators. Kalman_ELM_KNN gave
prominence to its higher precision when the cumulative data (mean of 125 filtering
data in each station at one time point) of eight stations were taken in the learning
process, and the performances with five indicators (X, Y, Z , H, F) in experiments
were the best.

The analogous outcomes also emerged in Fig. 5 that presented the positioning
accuracies of each station by using four methods based on eight kinds of learning
data with two groups of indicators. Thereinto, the precisions of station 2, 3 and
4 were comparatively higher and up to more than 90 %, which illuminated that
these stations owned unique measurements and clearly distinguished from other
stations. Station 1, 5 and 7, especially station 7 (maximum: 51 % in subplot (2),
38 % in subplot (4), 61 % in subplot (6) and 74 % in subplot (8)), had more difficult
for right recognition. The accuracy difference on station 6 and 8 by PCA_KNN,
ELM_KNN and Kalman_PCA_KNN were not big, whereas the precisions gained
by ELM_KNN in station 1 and 5 were slightly better than the results by PCA_KNN
and Kalman_PCA_KNN. The performance of Kalman_ELM_KNN with the mean
data and five indicators in subplot (8) were notable in majority of stations except
station 1.

4 Conclusions

Evidence had been demonstrated that the magnetic field, produced by the Earth’s
uppermost lithosphere, with relative larger difference between any two stations and
relative stability for each station in a long time had a potential ability to support
the accurate indoor positioning [15, 16]. However, the experiments reported in this
chapter proved that it is possible to utilize the local magnetic field for indoor posi-
tioning even in complex environments such as an office building, some stations of
where may own the similar measurements.
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The positioning technique provided in this chapter didn’t require to deploy the
additional equipments such as a radio network in advance, only some algorithms
(Kalman filter, ELM learning and KNN) were united to preprocess, analyze and
compute based on the measurements for location recognition. (1) Kalman filter was
functioned on the primitive values (eight stations, 46 days) and the last 125 filtered
records of each station at a time point were selected so that the smooth data can
be utilized to continue the subsequent steps. (2) The filtered data obtained in (1)
were separated into two parts: training and testing data, which were then inputted
to ELM learning procedure and four potential locations were accordingly fixed for
a particular testing sample. (3) KNN method was finally introduced to process the
four intermediate results obtained in (2) for picking out the optimal location. The
experiments based on eight kinds of learning data with three groups of indicators
tested and verified the feasibility of this proposed method, the superiority of which
was also apparent by comparing with other five methods. Although these data was
only from the part of working area in an office building, this technique can be extended
to other districts for indoor positioning, too.

With more and more extensive applications of location-based service (LBS), the
research of which had been given considerable concerns. In this setting and based
on the findings in this chapter, there exist important aspects of future research as to
the local magnetic field in environments, including the followings:

(1) How to select out the representative sites, the measurements of where will be
used for interpolating unknown places so that a continuous indoor positioning
can be implemented, in environments through analysis and comparison methods.

(2) How to set the interpolation distances according to a particular environment in
order to obtain the accurate indoor locations.

(3) How to ulteriorly improve the positioning precision by efficiently differentiating
those sites, which may be the adjacent or non-adjacent locations, with similar
measurements through decomposition method and magnetic field features.
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A Novel Scene Based Robust Video
Watermarking Scheme in DWT Domain
Using Extreme Learning Machine

Charu Agarwal, Anurag Mishra, Arpita Sharma and Girija Chetty

Abstract In this chapter, we present a novel fast and robust watermarking scheme for
three different standard video in RGB uncompressed AVI format in DWT domain
using a newly developed SLFN commonly known as Extreme Learning Machine
(ELM). The embedding is carried out by using scene detection. The LL4 sub-band
coefficients of frames constitute the dataset to train the ELM in millisecond time. The
output of the ELM is used to embed a binary watermark in the video frames using a
pre-specified formula. The resultant video exhibits good visual quality. Five different
video processing attacks are executed over signed video. The extracted watermarks
from the signed and attacked video yield high normalized correlation (NC) values
and low Bit Error Rate (BER) values. This indicates successful watermark recovery
and the embedding scheme is found to be robust against these common attacks. It
is concluded that the proposed watermarking scheme produces best results due to
optimized embedding facilitated by fast training of the ELM. The proposed scheme
is found to be suitable for developing real time video watermarking applications due
to its low time complexity.
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Keywords Extreme learning machine · Video watermarking · Uncompressed RGB
AVI format · Scene detection

1 Introduction

Copyright issues related to digital content lead to its authentication which is critically
required for distribution of the content into safe hands. Digital watermarking of
multimedia content is one such technique which has gained tremendous importance
for last more than one decade. This application requires fast execution of embedding
and extraction processes so as to enable the application to finish on a real time scale.
Besides this, it is expected to be robust against common signal processing attacks
without losing perceptible quality of the of the host signal. These twin requirements
are often found to be conflicting to each other. Due to this reason, the problem
of watermarking is perceived as an optimization problem. Many researchers have
dealt with the issue of optimization of these processes in images. However, not
much research work is done to develop fast and optimized embedding and extraction
schemes for video using soft computing tools.

Hartung et al. [1] published one of the pioneering works for watermarking of com-
pressed and uncompressed video. They embed an encrypted pseudo-noise signal as
watermark within the MPEG-2 encoded video to obtain an invisible, statistically
unobtrusive and robust scheme. Their scheme is also found to work for other hybrid
transform coding schemes like MPEG-1, MPEG-4, H.261 and H.263. For processing
of their frames, they have used DCT method within their algorithm. They have also
delved upon the issue of time complexity of their embedding algorithm vis-à-vis
other methods. Biswas et al. [2] have presented a new compressed video watermark-
ing procedure which embeds several binary images as watermarks decomposed and
obtained from a single watermark image into various scenes of the subject MPEG-2
encoded video sequence. Their scheme is found to be substantially more effective
and robust against spatial attacks such as scaling, rotation, frame averaging and fil-
tering besides temporal attacks like frame dropping and temporal shifting. Rajab
et al. [3] and Faragallah [4] have recently used SVD technique to implement video
watermarking. Rajab et al. [3] embed their watermark in the SVD transformed video
in diagonal wise and block wise fashion. They evaluate the performance with respect
to imperceptibility, robustness and data payload or capacity. They argue that the
diagonal-wise algorithm achieves better robustness while the block-wise algorithm
gives higher pay load rate. Faragallah [4] presented an efficient, robust and imper-
ceptible video watermarking technique based on SVD decomposition performed in
DWT domain. In this chapter, two levels of high frequency band HH and middle fre-
quency band LH are SVD transformed and the watermark are hidden into them. Their
proposed algorithm is tested in the presence of image and video processing attacks
and their experimental results prove that this method survives these attacks. They
attribute these positive results to the amalgamation of DWT and SVD transforms they
use in their work. Wu et al. [5] have very recently proposed a flexible H.264/AVC
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compressed video watermarking scheme using particle swarm optimization (PSO)
based dither modulation. The technique proposed by them is found to be robust
against commonly employed watermarking attacks. In order to consider water-
mark imperceptibility within the video, the authors have used swarm optimization.
They claim that the imperceptibility is enhanced by using this optimization method.
El’ Arbi et al. [6] have delved upon the issue of video watermarking based on neural
networks. They have employed a back propagation neural network (BPNN) to imple-
ment a video watermarking scheme based on multi resolution motion estimation.
They said that their embedding algorithm is robust against common video process-
ing attacks. However, they have not touched upon the issue of time complexity. It
is a well known fact that the BPNN while propagating back are often found to get
trapped into local minima and therefore its training time span is found to be large.
On the contrary, any practical video processing such as watermarking should be effi-
cient in terms of time complexity issues [1]. Chen et al. [7] presented a compressed
video watermarking algorithm based on synergetic neural network in IWT domain.
They use pattern recognition method of synergetic neural network during watermark
extraction. They claim that their algorithm results in fine performance of robustness
and speediness. A novel digital video watermarking scheme based on 3D-DWT and
Artificial Neural Network is proposed by Li et al. [8]. In this case, a 3D-DWT was
performed on each selected video shots and then the watermark is embedded in the
LL sub-band wavelet coefficients. Their scheme shows strong robustness against
common video processing attacks. The frame coefficients are selected adaptively to
embed the watermark and to ensure perceptual invisibility. The embedding intensity
was adaptively controlled using statistical characteristics such as mean and standard
deviation. Their scheme implements a blind extraction process. Isac et al. [9] pre-
sented a compact review of image and video watermarking techniques using neural
networks. Leelavathy et al. [10] presented a scene based raw video watermarking
in Discrete Multi-wavelet domain. They also use Quantization Index Modulation
(QIM) to implement their embedding algorithm. They claim that by using QIM, the
watermark is embedded into selected multi-wavelet coefficients by quantizing them.
They generate scrambled watermarks using a set of secret keys and each watermark
is embedded in each motionless scene of the video. They claim that their scheme
is robust against frame dropping, frame averaging, swapping and statistical analysis
attacks.

In this chapter, we successfully embed a binary image as a watermark into all
frames of three different RGB uncompressed AVI video by using DWT- ELM water-
marking scheme. We extend the preliminary work we have proposed previously in
[11]. The ELM training is particularly important in this case as it optimizes the
watermark embedding to produce best results in minimum time. For this purpose,
first, the video is decomposed into non overlapping frames which led to detection
of scenes. The scene based RGB frames thus obtained are converted into YCbCr
color space. A 4-level DWT of luminance component (Y) of all video frames is
computed. The LL4 sub-band coefficients are used to develop a data set which is
fed to a newly developed fast neural network known as extreme learning machine
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(ELM). The training of the ELM is completed within few milliseconds. The output
of this machine is used to embed the coefficients of a binary image as watermark into
LL4 sub-band coefficients using a pre-specified formula. The signed video sequences
are found to be completely imperceptible after watermark embedding as indicated
by high PSNR values. The extraction of the watermarks from these frames yield
high normalized correlation (NC) and low bit error-rate (BER) values which indi-
cate successful watermark recovery. The signed video frames are also examined for
robustness by executing five different video processing attacks. The attacks used in
the present work are: (1) Scaling (20, 40, 60, 80 and 100 %), (2) Gaussian Noise (with
mean = 0 and variance 0.001, 0.01, 0.03 and 0.05), (3) JPEG (compression ratio =
5, 25, 50, 75 and 90 %), (4) Frame dropping (10, 30, 50, 70 and 90 %), and (5) Frame
Averaging (5, 10, 15 and 20 %). Watermarks are extracted from the attacked frames
as well. In this case, the experimental results indicate that the proposed watermarking
scheme is robust against the selected video processing attacks. All these processes
are carried out in few seconds. On the other hand, the ELM training is carried out
in millisecond time. It is concluded that the proposed ELM based fast embedding
and extraction scheme is suitable for real time applications which is one of the most
important considerations for multimedia processing.

The chapter is organized as follows. Section 2 gives a brief theoretical description
of ELM algorithm. Section 3 describes the proposed embedding and extraction algo-
rithm. Section 4 delves upon the results obtained in this simulation and its discussion.
Finally, Sect. 5 presents the conclusion followed by list of references.

2 Extreme Learning Machine

The Extreme Learning Machine [12–16] is based on a Single hidden Layer Feed
forward Neural Network (SLFN) architecture. This differs from the conventional
training algorithms such as Back Propagation (BP) algorithms which may face dif-
ficulties in manual tuning control parameters and local minima. On the contrary,
training of ELM is very fast, it has a good accuracy and offers a solution in the
form of system of linear equations. For a given network architecture, ELM does not
have any control parameters like stopping criteria, learning rate, learning epochs etc.,
and thus, the implementation of this network is very simple. In this algorithm, the
input weights and hidden layer biases are randomly chosen which are based on some
continuous probability distribution function. We choose uniform probability distri-
bution in our simulation. The output weights are then analytically calculated using
a simple generalized inverse method known as Moore-Penrose generalized pseudo
inverse [15].
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2.1 Mathematics of ELM Model

Given a series of training samples (xi , yi )i=1,2,...,N and N̂ the number of hid-
den neurons where xi = (xi1, ..., xin) ∈ ◦n and yi = (yi1, ..., yim) ∈ ◦m , the
actual outputs of the single-hidden-layer feed forward neural network (SLFN) with
activation function g(x) for these N training data is mathematically modeled as

∑N̂

k=1
βkg(< wk, xi > +bk) = oi ,∗i = 1, . . . , N (1)

where wk = (wk1, ..., wkn) is a weight vector connecting the kth hidden neuron,
βk = (βk1, ..., βkm) is the weight vector connecting the kth hidden neuron and
output neurons and bk is the threshold bias of the kth hidden neuron. The weight
vectors wk are randomly chosen. The term ℵwk, xi ∧ denotes the inner product of the
vectors wk and xi and g is the activation function.

The above N equations can be written as

Hβ = 0 (2)

and in practical applications N̂ is usually much less than the number N of training
samples and Hβ →= Y , where

H =
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(3)

The matrix H is called the hidden layer output matrix. For fixed input weights
wk = (wk1, ..., wkn) and hidden layer biases bk , we get the least-squares solution β̂

of the linear system of equation Hβ = Y with minimum norm of output weights
β, which gives a good generalization performance. The resulting β̂ is given by β̂ =
H+Y where matrix H+ is the Moore-Penrose generalized inverse of matrix H [15].
The above algorithm may be summarized as follows:
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2.2 The ELM Algorithm

Given a training set
S = {(xi , yi ) ∈ ◦m+n, yi ∈ ◦m}N

i=1

⎥
, for activation function g(x) and the

number of hidden neurons N̂ ;
Step 1: For k = 1, ..., N̂ randomly assign the input weight vector wk ∈ ◦n and bias
bk ∈ ◦.

Step 2: Determine the hidden layer output matrix H .
Step 3: Calculate H+.
Step 4: Calculate the output weights matrix β

�
by β̂ = H+T .

Many activation functions can be used for ELM computation. In the present case,
Sigmoid activation function is used to train the ELM.

2.3 Computing the Moore-Penrose Generalized Inverse of a Matrix

Definition 1.1: A matrix G of order N̂ × N is the Moore-Penrose generalized inverse
of real matrix A of order if N × N̂AGA = A, GAG = G and AG, GA are symmetric
matrices.

Several methods, for example orthogonal projection, orthogonalization method,
iterative methods and singular value decomposition (SVD) methods exist to calculate
the Moore-Penrose generalized inverse of a real matrix. In ELM algorithm, the SVD
method is used to calculate the Moore-Penrose generalized inverse of H. Unlike other
learning methods, ELM is very well suited for both differential and non-differential
activation functions. As stated above, in the present work, computations are done
using “Sigmoid” activation function for N̂ = 20. ⎦β is a column vector and is used to
embed the binary watermark coefficient into luminance component (Y) of the video
frame by using a pre specified formula. This is described in detail in Sect. 3.

3 Proposed DWT-ELM Based Video Watermarking Scheme

Figure 1 depicts the block diagram of the proposed video watermark embedding
scheme.

The host video is first divided into non-overlapping frames of size M × N. Sec-
ondly, the scene detection algorithm gives the number of scenes available in the given
video comprising of these non-overlapping frames. Let T is the total number of such
frames and k is the total number of available scenes. The watermark (W) used in this
work is a binary image of size (x, y) which depends on the size of original video
frame (M × N), total number of DWT levels employed and the number of available
scenes (k).
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Fig. 1 Block diagram of watermark embedding scheme

3.1 Scene Change Detection

In the proposed scheme, we use histogram difference method for scene change
detection and is given by Listing 1.

Listing 1: Scene Change Detection Algorithm.

Step 1. Calculate the histogram of the red component of all the frames
Step 2. Calculate the total difference of the whole histogram using the formula given
by Eq. (4)

D(z, z + 1) =
∑T

z=1
|Az(r) − Az+1(r)| (4)

where Az(r) is the histogram value for the red component r in the zth frame
Step 3. If D(z, z + 1) > threshold a scene change is detected, where threshold is
empirically determined.

3.2 Embedding the Watermark

The watermark embedding algorithm is given in Listing 2.
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Listing 2: Algorithm for Watermark Embedding.

Step 1. Apply scene change detection algorithm (Listing 1) to detect the available
scenes (k) from the original video frames
Step 2. Convert every RGB frame Fi (i = 1, 2, 3…T) of each scene k to YCbCr
format
Step 3. Obtain scrambled watermark Wp by performing pseudorandom permutation
on original watermark W

Wp = Permute(W )

Step 4. Decompose the permuted watermark Wp into k watermark sub-images such
as, W 1

p, W 2
p, . . .W k

p where a specific watermark is used to modify the frames of the
corresponding scene
Step 5. Apply 4—level DWT using Haar filter to the luminance (Y) component
of every ith frame of each scene k of the host video to obtain the L L4k

i sub-band
coefficients of size m × n
Step 6. Compute the output column vector using ELM as follows:

1. Consider an initial data set of size (m × n) using L L4k
i sub-band coefficients and

calculate row wise the arithmetic mean of the coefficients of all rows
2. For each row, use the mean value as label and arrange them in the first column of

the data set. Thus obtain a final data set of size m × (n + 1)

3. Train the ELM in regression mode using this data set and obtain an output column
vector (Ek

i ) of size m × 1. This column vector is further used to embed the
watermark in the L L4k

i sub-band coefficients.

Step 7. Embed the binary watermark sub-image (W k) into the L L4k
i sub-band coef-

ficients of every ith video frame of each scene k using the formula given by Eq. (5)

wL L4k
i (q, r) = L L4k

i (q, r) + (Ek
i (q) ← W k

p(q, r)) (5)

where q=1, 2…m and r = 1, 2…n
Step 8. After embedding the watermark in every ith frame of each scene k of the
host video, apply 4—level inverse DWT to every ith signed frame of each scene k
of the host video to obtain the watermarked luminance component of the ith frame.
Convert every ith frame of each scene k of the signed video back to the RGB format
to obtain the watermarked video.

The embedded frames are further examined for its perceptible quality by comput-
ing PSNR individually and taking an average PSNR of all frames put together. Equa-
tions (6) and (7) respectively give mathematical formulae for PSNR and AVG_PSNR.
The computed results are presented and discussed in detail in Sect. 4.

PSNR = 10log10(
2552

MSE
) (6)
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Fig. 2 Block diagram of watermark extraction scheme

AVG_PSNR =
⎥T

i=1 PSNR

T
(7)

where T is the total number of frames in the video sequence.

3.3 Extracting the Watermark from Signed Video

Figure 2 depicts the proposed video watermark extraction scheme. For this purpose,
NC(W, W √) normalized correlation and bit error rate BER(W, W √) parameters are
computed. W and W√ are respectively original and recovered watermarks. These two
parameters are given by Eqs. (8) and (9) respectively.

NC(W, W √) =
⎥x

i=1
⎥y

j=1[W (i, j).W √(i, j)]
⎥x

i=1
⎥y

j=1[W (i, j)]2
(8)

BER(W, W √) = 1

xy

∑xy

j=1
|W √( j) − W ( j)| (9)

The extraction algorithm is given in Listing 2.
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Listing 2: Algorithm for Watermark Extraction

Step 1. Apply scene change detection algorithm (Listing 1) to detect the available
scenes (k) from the signed video frames
Step 2. Convert every ith RGB frame of signed video F √

i (i = 1, 2, 3. . .T) and original
video of each scene k to YCbCr format
Step 3. Apply 4—level DWT to the luminance (Y) component of every ith frame of
each scene k of signed video and original video to obtain the wwL L4k

i and L L4k
i

sub-bands of size m × n
Step 4. Compute the output column vector using ELM as follows:

1. Consider an initial data set of size (m × n) using wwL L4k
i sub-band coefficients

and row wise calculate the arithmetic mean of the coefficients of all rows
2. For each row, use the mean value as label and arrange them in the first column

of the data set. Thus obtain a final data set of size m × (n + 1)

3. Train the ELM in regression mode using this data set and obtain an output column
vector (wEk

i ) of size m × 1. This column vector is further used to embed the
watermark in the wwL L4k

i sub-band coefficients.

Step 5. Extract the watermark sub-image from every ith frame of each scene k using
Eq. (10).

wW k
p(q, r) = wwL L4k

i (q, r) − L L4k
i (q, r)

wEk
i (q)

(10)

where q = 1, 2…m and r = 1, 2…n
Step 6. Compute average extracted binary watermark sub-images wW k for every
scene k from i extracted scrambled watermark sub-images wW k

p obtained from every
ith frame of each scene k of the signed video. Construct the extracted binary water-
mark image W √ from the extracted k binary watermark sub-images wW k .

These signed video frames are also examined for robustness by executing five
different video processing attacks. These are: (1) Scaling (20, 40, 60, 80 and 100 %),
(2) Gaussian Noise (with mean = 0 and variance 0.001, 0.01, 0.03 and 0.05), (3)
JPEG (compression ratio = 5, 25, 50, 75 and 90 %), (4) Frame dropping (10, 30, 50,
70 and 90 %), and (5) Frame Averaging (5, 10, 15 and 20 %). The watermarks are
subsequently recovered from attacked frames and get matched with the original ones.
For this purpose, normalized correlation NC(W, W √) and bit error rate BER(W, W √)
parameters are computed. W and W √ respectively being the original and recovered
watermarks. The results are compiled and discussed in Sect. 4.

4 Experimental Results and Discussion

The performance of the proposed watermarking scheme is evaluated on three standard
CIF (352 × 288) video sequences namely News, Silent and Hall_Monitor in RGB
uncompressed AVI format having frame rate of 30 fps and each consisting of 300
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Fig. 3 a–c 100th original video frame of video sequence News, Hall_Monitor and Silent respec-
tively and d Original watermark

Fig. 4 100th signed video frame of video sequence a News (43.1621 dB), b Hall_Monitor
(43.2017 dB) and c Silent (43.045 dB)
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BER = 0              BER = 0.975              BER = 0 
NC (W, W’) =1 NC (W, W’) = 0.985 NC (W, W’) = 1 

(a) (b) (c)

Fig. 5 a–c Extracted watermarks from the signed video sequences a News, b Hall_Monitor and
c Silent with BER (%) and NC (W, W√) on top
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Fig. 6 a–c Plot of PSNR, NC (W, W√) and BER (%) w.r.t scaling factor

frames. A binary watermark of size 44 × 36 is embedded in all frames of these
videos by using DWT-ELM scheme. Figure 3a–c depicts the 100th original frame of
the video sequences News, Hall_Monitor and Silent respectively and Fig. 3d depicts
the original binary watermark. Figure 4a–c depicts the signed frames respectively
obtained from Fig. 3a–c. Figure 5a–c depicts the binary watermarks extracted from
the three video sequences.

The average PSNR in our simulation is 43.1621, 43.2017 and 43.045 dB respec-
tively for News, Hall_Monitor and Silent sequences. We further report high computed
values of normalized cross correlation NC (W, W√) for all three video sequences.
The computed NC (W, W√) values in our work are 1.0, 0.985 and 1.0 for these three
video respectively. We obtain BER (%) values as 0.0, 0.975 and 0.0 respectively for
the three video sequences. These results indicate that the proposed watermarking
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Fig. 7 a–c Plot of PSNR, NC (W, W√) and BER (%) w.r.t. Gaussian noise density

scheme is capable of maintaining the visual quality of all frames along with a
successful watermark recovery. This is particularly true in this work due to opti-
mized embedding facilitated by ELM training.

To examine the robustness of the proposed watermarking scheme, five different
video processing attacks are carried out on the signed video sequences. PSNR, NC
(W, W√) and BER (%) are calculated with respect to variation in respective attack
parameter and plots are shown in Figs. 6, 7, 8, 9 and 10.

(a) Scaling: In this case, the video frames are scaled up to different sizes of the
signed frame using bicubic interpolation method and reverted back. These sizes
are 20, 40, 60, 80 and 100 %. Figure 6a–c respectively show the plot of PSNR,
NC (W, W√) and BER (%) w.r.t. different scaling size.

(b) Gaussian Noise: This noise is added to signed frames by taking mean = 0 and
variance = 0.001, 0.01, 0.03 and 0.05. Figure 7a–c shows the plot of PSNR, NC
(W, W√) and BER (%) w.r.t. noise variance.

(c) JPEG Compression: As the host video is available in RGB uncompressed AVI
format, it is subject to JPEG compression also. Figure 8a–c show plot of PSNR,
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Fig. 8 a–c Plot of PSNR, NC (W, W√) and BER (%) w.r.t. JPEG compression ratio

NC (W, W√) and BER (%) w.r.t. variation in compression ratio (5, 25, 50, 75
and 90 %).

(d) Frame Dropping: For a video sequence having a large number of frames, drop-
ping of a few redundant frames of a scene is considered as a natural video
processing attack. It can be executed by removing a fraction of total frames from
the video sequence. In this simulation, the percentage of dropped frames of a
scene varies as 10, 30, 50, 70 and 90 %. Figure 9a–c show the plot of PSNR, NC
(W, W√) and BER (%) w.r.t. the percentage of dropped frames.

(e) Frame Averaging: This is a very common video processing attack. In this
case, the current frame is replaced by the average of two neighboring frames.
In the present work, a variable percentage of averaged frames is taken into
account. Figure 10a–c show the plot of PSNR, NC (W, W√) and BER (%) w.r.t.
the percentage of averaged frames.

Note that the plot of PSNR and NC (W, W√) is found to be similar in case of all
these attacks. For any efficient watermarking scheme, the visual quality of signed
image / video frame and robustness are expected to be high. In this work, the results
are clearly indicative of good optimization of visual quality and robustness obtained
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Fig. 9 a–c Plot of PSNR, NC (W, W√) and BER (%) w.r.t. number of dropped frames

Table 1 Time (seconds)
consumed by different
processes of the proposed
scheme

For all 300 frames News Silent Hall monitor

ELM training time 0.2365 0.2846 0.2969
Embedding time 32.9809 33.2819 33.3906
Extraction time 19.2317 20.0017 20.0156

by using ELM algorithm with minimum time complexity. The BER (%) is expected
to show an inverse behavior with respect to NC (W, W√). Figures 6c–10c indicate
the same.

To analyze the issue of time complexity of the proposed watermarking scheme,
we take into account ELM training time, embedding and extraction time for 300
frames for all three video sequences. Table 1 compiles these results. Note that the
ELM gets trained in millisecond time for all 300 frames. Similarly, embedding and
extraction for all 300 frames are carried out in seconds. It is important to mention that
the embedding time constitutes decomposition of video into frames, scene detection
and actual embedding of the watermark. Similarly, extraction time is computed by
taking into account decomposition of video into frames, scene detection and actual
extraction of watermark.
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Fig. 10 a–c Plot of PSNR, NC (W, W√) and BER (%) w.r.t. number of averaged frames

The training of ELM is an integral part of both embedding and extraction proce-
dures. We therefore conclude that the embedding and extraction using DWT-ELM
is capable to implement real time video watermarking application.

5 Conclusions

We successfully demonstrate a novel scene based fast and robust video watermarking
scheme for three standard video in RGB uncompressed AVI format. This scheme is
implemented in DWT domain using a newly developed fast neural network known
as Extreme Learning Machine (ELM). The fast training of this machine is suitable
for optimized video watermarking on a real time scale. The perceptible quality of
the video is good as indicated by high PSNR values. Watermark recovery is suc-
cessful as indicated by high normalized cross correlation values and low bit error
rate values between embedded and extracted watermarks. The robustness of the pro-
posed scheme is examined by carrying out five different video processing attacks.
This scheme is found to be robust against selected attacks. It is concluded that the
proposed scheme produces best results due to optimized embedding facilitated by
training of ELM in minimum time and overall the algorithm is suitable for developing
real time video watermarking applications.
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