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Preface

Decision trees and decision rule systems are widely used in different appli-
cations as algorithms for problem solving, as predictors, and as a way for
knowledge representation. Reducts play key role in the problem of attribute
(feature) selection.

The aims of this book are the consideration of the sets of decision trees,
rules and reducts; study of relationships among these objects; design of algo-
rithms for construction of trees, rules and reducts; and deduction of bounds
on their complexity. We consider also applications for supervised machine
learning, discrete optimization, analysis of acyclic programs, fault diagnosis
and pattern recognition.

We study mainly time complexity in the worst case of decision trees and
decision rule systems. We consider both decision tables with one-valued de-
cisions and decision tables with many-valued decisions. We study both exact
and approximate trees, rules and reducts. We investigate both finite and in-
finite sets of attributes.

This is a mixture of research monograph and lecture notes. It contains
many unpublished results. However, proofs are carefully selected to be under-
standable. The results considered in this book can be useful for researchers in
machine learning, data mining and knowledge discovery, especially for those
who are working in rough set theory, test theory and logical analysis of data.
The book can be used under the creation of courses for graduate students.

Thuwal, Saudi Arabia Mikhail Moshkov
March 2011 Beata Zielosko



Acknowledgements

We are greatly indebted to King Abdullah University of Science and Tech-
nology and especially to Professor David Keyes and Professor Brian Moran
for various support.

We are grateful to Professor Andrzej Skowron for stimulated discussions
and to Czes�law Zielosko for the assistance in preparation of figures for the
book.

We extend an expression of gratitude to Professor Janusz Kacprzyk, to Dr.
Thomas Ditzinger and to the Studies in Computational Intelligence staff at
Springer for their support in making this book possible.



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Examples from Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Decision Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Three Cups and Small Ball . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Diagnosis of One-Gate Circuit . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Problem of Three Post-Offices . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Recognition of Digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.5 Traveling Salesman Problem with Four Cities . . . . . . . 16
1.3.6 Traveling Salesman Problem with n ≥ 4 Cities . . . . . . 18
1.3.7 Data Table with Experimental Data . . . . . . . . . . . . . . . 19

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Part I Tools

2 Sets of Tests, Decision Rules and Trees . . . . . . . . . . . . . . . . . . 23
2.1 Decision Tables, Trees, Rules and Tests . . . . . . . . . . . . . . . . . . 23
2.2 Sets of Tests, Decision Rules and Trees . . . . . . . . . . . . . . . . . . . 25

2.2.1 Monotone Boolean Functions . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Set of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Set of Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Set of Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Relationships among Decision Trees, Rules and Tests . . . . . . 34
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Bounds on Complexity of Tests, Decision Rules and

Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Lower Bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



XII Contents

3.2 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Algorithms for Construction of Tests, Decision Rules

and Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Approximate Algorithms for Optimization of Tests and

Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Set Cover Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Tests: From Decision Table to Set Cover Problem . . . 50
4.1.3 Decision Rules: From Decision Table to Set Cover

Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.4 From Set Cover Problem to Decision Table . . . . . . . . . 52

4.2 Approximate Algorithm for Decision Tree Optimization . . . . 55
4.3 Exact Algorithms for Optimization of Trees, Rules and

Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Optimization of Decision Trees . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Optimization of Decision Rules . . . . . . . . . . . . . . . . . . . . 61
4.3.3 Optimization of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Decision Tables with Many-Valued Decisions . . . . . . . . . . . . 69
5.1 Examples Connected with Applications . . . . . . . . . . . . . . . . . . 69
5.2 Main Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Relationships among Decision Trees, Rules and Tests . . . . . . 74
5.4 Lower Bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Approximate Algorithms for Optimization of Tests and

Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.1 Optimization of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.2 Optimization of Decision Rules . . . . . . . . . . . . . . . . . . . . 79

5.7 Approximate Algorithms for Decision Tree Optimization . . . 81
5.8 Exact Algorithms for Optimization of Trees, Rules and

Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.9 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Approximate Tests, Decision Trees and Rules . . . . . . . . . . . . 87
6.1 Main Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Relationships among α-Trees, α-Rules and α-Tests . . . . . . . . . 89
6.3 Lower Bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Approximate Algorithm for α-Decision Rule

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.6 Approximate Algorithm for α-Decision Tree

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Contents XIII

6.7 Algorithms for α-Test Optimization . . . . . . . . . . . . . . . . . . . . . . 106
6.8 Exact Algorithms for Optimization of α-Decision Trees

and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Part II Applications

7 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1 Classifiers Based on Decision Trees . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Classifiers Based on Decision Rules . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 Use of Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.2 Use of Dynamic Programming Approach . . . . . . . . . . . 116
7.2.3 From Test to Complete System of Decision Rules . . . . 116
7.2.4 From Decision Tree to Complete System of Decision

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.5 Simplification of Rule System . . . . . . . . . . . . . . . . . . . . . 117
7.2.6 System of Rules as Classifier . . . . . . . . . . . . . . . . . . . . . . 118
7.2.7 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Lazy Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.1 k-Nearest Neighbor Algorithm . . . . . . . . . . . . . . . . . . . . 120
7.3.2 Lazy Decision Trees and Rules . . . . . . . . . . . . . . . . . . . . 120
7.3.3 Lazy Learning Algorithm Based on Decision Rules . . . 122
7.3.4 Lazy Learning Algorithm Based on Reducts . . . . . . . . 124

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Local and Global Approaches to Study of Trees and

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Local Approach to Study of Decision Trees and Rules . . . . . . 129

8.2.1 Local Shannon Functions for Arbitrary Information
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.2 Restricted Binary Information Systems . . . . . . . . . . . . . 132
8.2.3 Local Shannon Functions for Finite Information

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Global Approach to Study of Decision Trees and Rules . . . . . 136

8.3.1 Infinite Information Systems . . . . . . . . . . . . . . . . . . . . . . 136
8.3.2 Global Shannon Function hl

U for Two-Valued
Finite Information Systems . . . . . . . . . . . . . . . . . . . . . . . 140

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9 Decision Trees and Rules over Quasilinear Information

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.1 Bounds on Complexity of Decision Trees and Rules . . . . . . . 144

9.1.1 Quasilinear Information Systems . . . . . . . . . . . . . . . . . . 144



XIV Contents

9.1.2 Linear Information Systems . . . . . . . . . . . . . . . . . . . . . . . 145
9.2 Optimization Problems over Quasilinear Information

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2.1 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.2.2 Problems of Unconditional Optimization . . . . . . . . . . . 148
9.2.3 Problems of Unconditional Optimization of

Absolute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2.4 Problems of Conditional Optimization . . . . . . . . . . . . . 150

9.3 On Depth of Acyclic Programs . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.3.1 Main Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.3.2 Relationships between Depth of Deterministic and

Nondeterministic Acyclic Programs . . . . . . . . . . . . . . . . 152
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10 Recognition of Words and Diagnosis of Faults . . . . . . . . . . . 155
10.1 Regular Language Word Recognition . . . . . . . . . . . . . . . . . . . . . 155

10.1.1 Problem of Recognition of Words . . . . . . . . . . . . . . . . . . 155
10.1.2 A-Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.1.3 Types of Reduced A-Sources . . . . . . . . . . . . . . . . . . . . . . 157
10.1.4 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.2 Diagnosis of Constant Faults in Circuits . . . . . . . . . . . . . . . . . . 161
10.2.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.2.2 Complexity of Decision Trees for Diagnosis of

Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.2.3 Complexity of Construction of Decision Trees for

Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.2.4 Diagnosis of Iteration-Free Circuits . . . . . . . . . . . . . . . . 166
10.2.5 Approach to Circuit Construction and Diagnosis . . . . 169

10.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Introduction

This book is devoted mainly to the study of decision trees, decision rules
and tests (reducts) [8, 70, 71, 90]. These constructions are widely used in
supervised machine learning [23] to predict the value of decision attribute for
a new object given by values of conditional attributes, in data mining and
knowledge discovery to represent knowledge extracted from decision tables
(datasets), and in different applications as algorithms for problem solving.
In the last case, decision trees should be considered as serial algorithms, but
decision rule systems allow parallel implementation.

A test is a subset of conditional attributes which give us the same informa-
tion about the decision attribute as the whole set of conditional attributes.
A reduct is an uncancelable test. Tests and reducts play a special role: their
study allow us to choose relevant to our goals sets of conditional attributes
(features).

We study decision trees, rules and tests as combinatorial objects: we try to
understand the structure of sets of tests (reducts), trees and rules, consider
relationships among these objects, design algorithms for construction and
optimization of trees, rules and tests, and derive bounds on their complexity.

We concentrate on minimization of the depth of decision trees, length
of decision rules and cardinality of tests. These optimization problems are
connected mainly with the use of trees and rules as algorithms. They have
sense also from the point of view of knowledge representation: decision trees
with small depth and short decision rules are more understandable. These
optimization problems are associated also with minimum description length
principle [72] and, probably, can be useful for supervised machine learning.

The considered subjects are closely connected with machine learning [23,
86]. Since we avoid the consideration of statistical approaches, we hope that
Combinatorial Machine Learning is a relevant label for our study. We need to
clarify also the subtitle A Rough Set Approach. The three theories are nearest
to our investigations: test theory [84, 90, 92], rough set theory [70, 79, 80],
and logical analysis of data [6, 7, 17]. However, the rough set theory is more
appropriate for this book: only in this theory inconsistent decision tables are

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 1–3.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



2 Introduction

studied systematically. In such tables there exist rows (objects) with the same
values of conditional attributes but different values of the decision attribute.
In this book, we consider inconsistent decision tables in the frameworks of
decision tables with many-valued decisions.

The monograph contains Introduction, Chap. 1 with main notions and
simple examples from different areas of applications, and two parts: Tools
and Applications.

The part Tools consists of five chapters (Chaps. 2–6). In Chaps. 2, 3 and 4
we study decision tables with one-valued decisions. We assume that rows of
the table are pairwise different, and (for simplicity) we consider only binary
conditional attributes. In Chap. 2, we study the structure of sets of decision
trees, rules and tests, and relationships among these objects. In Chap. 3, we
consider lower and upper bounds on complexity of trees, rules and tests. In
Chap. 4, we study both approximate and exact (based on dynamic program-
ming) algorithms for minimization of the depth of trees, length of rules, and
cardinality of tests.

In the next two chapters, we continue this line of research: relationships
among trees, rules and tests, bounds on complexity and algorithms for con-
struction of these objects. In Chap. 5, we study decision tables with many-
valued decisions when each row is labeled not with one value of the decision
attribute but with a set of values. Our aim in this case is to find at least
one value of the decision attribute. This is a new approach for the rough set
theory. Chapter 6 is devoted to the consideration of approximate trees, rules
and tests. Their use (instead of exact ones) allows us sometimes to obtain
more compact description of knowledge contained in decision tables, and to
design more precise classifiers.

The second part Applications contains four chapters. In Chap. 7, we discuss
the use of trees, rules and tests in supervised machine learning, including lazy
learning algorithms. Chapter 8 is devoted to the study of infinite systems
of attributes based on local and global approaches. Local means that we
can use in decision trees and decision rule systems only attributes from the
problem description. Global approach allows the use of arbitrary attributes
from the given infinite system. Tools considered in the first part of the book
make possible to understand the behavior in the worst case of the minimum
complexity of classifiers based on decision trees and rules, depending on the
number of attributes in the problem description.

In Chap. 9, we study decision trees with so-called quasilinear and linear
attributes, and applications of obtained results to problems of discrete op-
timization and analysis of acyclic programs. In particular, we discuss the
existence of a decision tree with linear attributes which solves traveling sales-
man problem with n ≥ 4 cities and which depth is at most n7. In Chap.
10, we consider two more applications: the diagnosis of constant faults in
combinatorial circuits and the recognition of regular language words.

This book is a mixture of research monograph and lecture notes. We tried
to systematize tools for the work with exact and approximate decision trees,
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rules and tests for decision tables both with one-valued and many-valued de-
cisions. To fill various gaps during the systematization we were forced to add
a number of unpublished results. However, we selected results and especially
proofs carefully to make them understandable for graduate students.

The first course in this direction was taught in Russia in 1984. It covered
different topics connected with decision trees and tests for decision tables with
one-valued decisions. In 2005 in Poland topics connected with approximate
trees and tests as well as decision tables with many-valued decisions were
added to a new version of the course. After publishing a series of papers
about partial covers, reducts, and decision and association rules [57, 58, 60,
61, 62, 63, 69, 93, 94, 95, 96] including monograph [59], the authors decided
to add decision rules to the course. This book is an essential extension of
the course Combinatorial Machine Learning in King Abdullah University of
Science and Technology (KAUST) in Saudi Arabia.

The results considered in this book can be useful for researchers in machine
learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data. The
book can be used for creation of courses for graduate students.



1

Examples from Applications

In this chapter, we discuss briefly main notions: decision trees, rules, complete
systems of decision rules, tests and reducts for problems and decision tables.

After that we concentrate on consideration of simple examples from dif-
ferent areas of applications: fault diagnosis, computational geometry, pattern
recognition, discrete optimization and analysis of experimental data.

These examples allow us to clarify relationships between problems and
corresponding decision tables, and to hint at tools required for analysis of
decision tables.

The chapter contains four sections. In Sect. 1.1 main notions connected
with problems are discussed. Section 1.2 is devoted to the consideration of
main notions connected with decision tables. Section 1.3 contains seven ex-
amples, and Sect. 1.4 includes conclusions.

1.1 Problems

We begin with simple and important model of a problem. Let A be a set
(set of inputs or the universe). It is possible that A is an infinite set. Let
f1, . . . , fn be attributes, each of which is a function from A to {0, 1}. Each
attribute divides the set A into two domains. In the first domain the value
of the considered attribute is equal to 0, and in the second domain the value
of this attribute is equal to 1 (see Fig. 1.1).

All attributes f1, . . . , fn divide the set A into a number of domains in each
of which values of attributes are constant. These domains are enumerated
such that different domains can have the same number (see Fig. 1.2).

We will consider the following problem: for a given element a ∈ A it is
required to recognize the number of domain to which a belongs. To this end
we can use values of attributes from the set {f1, . . . , fn} on a.

More formally, a problem is a tuple (ν, f1, . . . , fn) where ν is a map-
ping from {0, 1}n to IN (the set of natural numbers) which enumerates the

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 5–20.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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domains. Each domain corresponds to the nonempty set of solutions on A of
a set of equations of the kind

{f1(x) = δ1, . . . , fn(x) = δn}

where δ1, . . . , δn ∈ {0, 1}. The considered problem can be reformulated in the
following way: for a given a ∈ A we should find the number

z(a) = ν(f1(a), . . . , fn(a)) .

As algorithms for the considered problem solving we will use decision trees
and decision rule systems.

A decision tree is a finite directed tree with the root in which each termi-
nal node is labeled with a number (decision), each nonterminal node (such
nodes will be called working nodes) is labeled with an attribute from the set
{f1, . . . , fn}. Two edges start in each working node. These edges are labeled
with 0 and 1 respectively (see Fig. 1.3).

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏✚
✚❂ ◗

◗�
✒✑✓✏
✒✑✓✏✒✑✓✏

f1

f2

0 1

0 1

1 2

3

Fig. 1.3

Let Γ be a decision tree. For a given element a ∈ A the tree works in the
following way: if the root of Γ is a terminal node labeled with a number m
then m is the result of the tree Γ work on the element a. Let the root of Γ
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be a working node labeled with an attribute fi. Then we compute the value
fi(a) and pass along the edge labeled with fi(a), etc.

We will say that Γ solves the considered problem if for any a ∈ A the
result of Γ work coincides with the number of domain to which a belongs.

As time complexity of Γ we will consider the depth h(Γ ) of Γ which is the
maximum length of a path from the root to a terminal node of Γ . We denote
by h(z) the minimum depth of a decision tree which solves the problem z.

A decision rule r over z is an expression of the kind

fi1 = b1 ∧ . . . ∧ fim
= bm → t

where fi1 , . . . , fim
∈ {f1, . . . , fn}, b1, . . . , bm ∈ {0, 1}, and t ∈ IN. The number

m is called the length of the rule r. This rule is called realizable for an element
a ∈ A if

fi1(a) = b1, . . . , fim
(a) = bm .

The rule r is called true for z if for any a ∈ A such that r is realizable for a,
the equality z(a) = t holds.

A decision rule system S over z is a nonempty finite set of rules over z. A
system S is called a complete decision rule system for z if each rule from S is
true for z, and for every a ∈ A there exists a rule from S which is realizable
for a. We can use a complete decision rule system S to solve the problem z.
For a given a ∈ A we should find a rule r ∈ S which is realizable for a. Then
the number from the right-hand side of r is equal to z(a).

We denote by L(S) the maximum length of a rule from S, and by L(z) we
denote the minimum value of L(S) among all complete decision rule systems
S for z. The value L(S) can be interpreted as time complexity in the worst
case of the problem z solving by S if we have their own processor for each
rule from S.

Except of decision trees and decision rule systems we will consider tests and
reducts. A test for the problem z = (ν, f1, . . . , fn) is a subset {fi1 , . . . , fim

}
of the set {f1, . . . , fn} such that there exists a mapping μ : {0, 1}m → IN for
which

ν(f1(a), . . . , fn(a)) = μ(fi1(a), . . . , fim
(a))

for any a ∈ A. In the other words, test is a subset of the set of attributes
{f1, . . . , fn} such that values of the considered attributes on any element
a ∈ A are enough for the problem z solving on the element a. A reduct is a
test such that each proper subset of this test is not a test for the problem.
It is clear that each test has a reduct as a subset. We denote by R(z) the
minimum cardinality of a reduct for the problem z.

1.2 Decision Tables

We associate a decision table T = T (z) with the considered problem (see
Fig. 1.4).
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T=

f1 . . . fn

δ1 . . . δn ν(δ1, . . . , δn)

Fig. 1.4

This table is a rectangular table with n columns corresponding to at-
tributes f1, . . . , fn. A tuple (δ1, . . . , δn) ∈ {0, 1}n is a row of T if and only if
the system of equations

{f1(x) = δ1, . . . , fn(x) = δn}

is compatible on the set A (has a solution on the set A). This row is labeled
with the number ν(δ1, . . . , δn).

We can correspond a game of two players to the table T . The first player
chooses a row of the table T and the second one should recognize the number
(decision) attached to this row. To this end the second player can choose
columns of T and ask the first player what is at the intersection of these
columns and the considered row. The strategies of the second player can be
represented in the form of decision trees or decision rule systems.

It is not difficult to show that the set of strategies of the second player
represented in the form of decision trees coincides with the set of decision trees
with attributes from {f1, . . . , fn} solving the problem z = (ν, f1, . . . , fn). We
denote by h(T ) the minimum depth of decision tree for the table T = T (z)
which is a strategy of the second player. It is clear that h(z) = h(T (z)).

We can formulate the notion of decision rule over T , the notion of decision
rule realizable for a row of T , and the notion of decision rule true for T in a
natural way. We will say that a system S of decision rules over T is a complete
decision rule system for T if each rule from S is true for T , and for every row
of T there exists a rule from S which is realizable for this row.

A complete system of rules S can be used by the second player to find
the decision attached to the row chosen by the first player. If the second
player can work with rules in parallel, the value L(S)—the maximum length
of a rule from S—can be interpreted as time complexity in the worst case of
corresponding strategy of the second player. We denote by L(T ) the minimum
value of L(S) among all complete decision rule systems S for T . One can
show that a decision rule system S over z is complete for z if and only if S
is complete for T = T (z). So L(z) = L(T (z)).

We can formulate the notion of test for the table T : a set {fi1 , . . . , fim
}

of columns of the table T is a test for the table T if each two rows of T
with different decisions are different on at least one column from the set
{fi1 , . . . , fim

}. A reduct for the table T is a test for which each proper subset
is not a test. We denote by R(T ) the minimum cardinality of a reduct for the
table T .
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One can show that a subset of attributes {fi1 , . . . , fim
} is a test for the

problem z if and only if the set of columns {fi1 , . . . , fim
} is a test for the

table T = T (z). It is clear that R(z) = R(T (z)).
So instead of the problem z we can study the decision table T (z).

1.3 Examples

There are two sources of problems and corresponding decision tables: classes
of exactly formulated problems and experimental data. We begin with very
simple example about three inverted cups and a small ball under one of these
cups. Later, we consider examples of exactly formulated problems from the
following areas:

• Diagnosis of faults in combinatorial circuits,
• Computational geometry,
• Pattern recognition,
• Discrete optimization.

The last example is about data table with experimental data.

1.3.1 Three Cups and Small Ball

Let we have three inverted cups on the table and a small ball under one of
these cups (see Fig. 1.5).

★✥☎✆
★✥☎✆
★✥☎✆①

f1 f2 f3

Cup 1 Cup 2 Cup 3

Fig. 1.5

We should find a number of cup under which the ball lies. To this end we
will use attributes fi, i = 1, 2, 3. We are lifting the i-th cup. If the ball lies
under this cup then the value of fi is equal to 1. Otherwise, the value of fi

is equal to 0. These attributes are defined on the set A = {a1, a2, a3} where
ai is the location of the ball under the i-th cup, i = 1, 2, 3.

We can represent this problem in the following form: z = (ν, f1, f2, f3)
where ν(1, 0, 0) = 1, ν(0, 1, 0) = 2, ν(0, 0, 1) = 3, and ν(δ1, δ2, δ3) = 4 for any
tuple (δ1, δ2, δ3) ∈ {0, 1}3 \ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The decision table
T = T (z) is represented in Fig. 1.6.
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f1 f2 f3

1 0 0 1
0 1 0 2
0 0 1 3

Fig. 1.6

✍✌✎☞✚✚❂ ◗◗�✍✌✎☞✚✚❂ ◗◗�
✍✌✎☞
✍✌✎☞✍✌✎☞
f1

f2

0 1

0 1

3 2

1

Fig. 1.7

{f1, f2, f3}
{f1, f2}
{f1, f3}
{f2, f3}

Fig. 1.8

A decision tree solving this problem is represented in Fig. 1.7, and in
Fig. 1.8 all tests for this problem are represented. It is clear that R(T ) = 2
and h(T ) ≤ 2.

Let us assume that h(T ) = 1. Then there exists a decision tree which solves
z and has a form represented in Fig. 1.9, but it is impossible since this tree
has only two terminal nodes, and the considered problem has three different
solutions. So h(z) = h(T ) = 2.

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏ ✒✑✓✏
Fig. 1.9

One can show that

{f1 = 1 → 1, f2 = 1 → 2, f3 = 1 → 3}

is a complete decision rule system for T , and for i = 1, 2, 3, the i-th rule is
the shortest rule which is true for T and realizable for the i-th row of T .
Therefore L(T ) = 1 and L(z) = 1.

1.3.2 Diagnosis of One-Gate Circuit

Let we have a circuit S represented in Fig. 1.10. Each input of the gate ∧ can
work correctly or can have constant fault from the set {0, 1}. For example,
the fault 0 on the input x means that independently of the value incoming
to the input x, this input transmits 0 to the gate ∧.

Each fault of the circuit S can be represented by a tuple from the set
{0, 1, c}2. For example, the tuple (c, 1) means that the input x works correctly,
but y has constant fault 1 and transmits 1.

The circuit S with fault (c, c) (really without faults) realizes the function
x ∧ y; with fault (c, 1) realizes x; with fault (1, c) realizes y, with fault (1, 1)
realizes 1; and with faults (c, 0), (0, c), (1, 0), (0, 1) and (0, 0) realizes the
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✡
✡
✡

❙
❙
❙

❄❡

❡ ❡
❄❄

S
∧

x y

x ∧ y

Fig. 1.10

function 0. So, if we can only observe the output of S on inputs of which a
tuple from {0, 1}2 is given, then we can not recognize exactly the fault, but
we can only recognize the function which the circuit with the fault realizes.
The problem of recognition of the function realizing by the circuit S with
fault from {0, 1, c}2 will be called the problem of diagnosis of S.

For this problem solving, we will use attributes from the set {0, 1}2. We
give a tuple (a, b) from the set {0, 1}2 on inputs of S and observe the value
on the output of S, which is the value of the considered attribute that will
be denoted by fab. For the problem of diagnosis, in the capacity of the set
A (the universe) we can take the set of circuits S with arbitrary faults from
{0, 1, c}2.

The decision table for the considered problem is represented in Fig. 1.11.

f00 f01 f10 f11

0 0 0 1 x ∧ y

0 0 1 1 x

0 1 0 1 y

1 1 1 1 1
0 0 0 0 0

Fig. 1.11

The first and the second rows have different decisions and are different only
in the third column. Therefore the attribute f10 belongs to each test. The
first and the third rows are different only in the second column. Therefore f01

belongs to each test. The first and the last rows are different only in the last
column. Therefore f11 belongs to each test. One can show that {f01, f10, f11}
is a test. Therefore the considered table has only two tests {f01, f10, f11}
and {f00, f01, f10, f11}. Among them only the first test is a reduct. Hence
R(T ) = 3.

The tree depicted in Fig. 1.12 solves the problem of diagnosis of the circuit
S. Therefore h(T ) ≤ 3.
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✒✑✓✏f01

✒✑✓✏f11

✒✑✓✏f10✒✑✓✏0

✖✕
✗✔
x ∧ y ✒✑✓✏x

✒✑✓✏f10

✒✑✓✏1✒✑✓✏y

✟✟✟✟✟✟✟✙
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❍❍❍❍❍❍❍❥
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��✠
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❅
❅
❅❅❘
1
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��✠
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❅
❅
❅❅❘
1

0 1
✂
✂
✂✂✌

❇
❇
❇❇◆

Fig. 1.12

Let us assume that h(T ) < 3. Then there exists a decision tree of the
kind depicted in Fig. 1.13, which solves the problem of diagnosis. But this
is impossible since there are 5 different decisions and only 4 terminal nodes.
So, h(T ) = 3.

✒✑✓✏✟✟✟✟✟✙

❍❍❍❍❍❥

✒✑✓✏ ✒✑✓✏✑
✑✰

◗
◗�

✒✑✓✏ ✒✑✓✏
✑

✑✰
◗
◗�

✒✑✓✏ ✒✑✓✏
Fig. 1.13

One can show that

{f01 = 0 ∧ f10 = 0 ∧ f11 = 1 → x ∧ y, f10 = 1 ∧ f00 = 0 → x,

f01 = 1 ∧ f00 = 0 → y, f00 = 1 → 1, f11 = 0 → 0}

is a complete decision rule system for T , and for i = 1, 2, 3, 4, 5, the i-th rule
is the shortest rule which is true for T and realizable for the i-th row of T .
Therefore L(T ) = 3. It was an example of fault diagnosis problem.
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1.3.3 Problem of Three Post-Offices

Let three post-offices P1, P2 and P3 exist (see Fig. 1.14). Let new client ap-
pear. Then this client will be served by nearest post-office (for simplicity we
will assume that the distances between client and post-offices are pairwise
distinct).

✲f1

❄
f3

�
�
�
�
�
�
�
�
�
�
�
�
�
�

❅❅❘
f2

2

2

1 1

3

3

P2
�

P1 �

P3
�

Fig. 1.14

Let we have two points B1 and B2. We join these points by segment (of
straight line) and draw the perpendicular through the center of this segment
(see Fig. 1.15). All points which lie from the left of this perpendicular are

� �
B2B1

Fig. 1.15

nearer to B1, and all points which lie from the right of the perpendicular are
nearer to the point B2. This reasoning allows us to construct attributes for
the problem of three post-offices.

We joint all pairs of post-offices P1, P2, P3 by segments (these segments
are invisible in Fig. 1.14) and draw perpendiculars through centers of these
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segments (note that new client does not belong to these perpendiculars).
These perpendiculars (lines) correspond to three attributes f1, f2, f3. Each
such attribute takes value 0 from the left of the considered line, and takes
value 1 from the right of the considered line (arrow points to the right). These
three straight lines divide the plane into six regions. We mark each region
by the number of post-office which is nearest to points of this region (see
Fig. 1.14).

For the considered problem, the set A (the universe) coincides with plane
with the exception of these three lines (perpendiculars).

Now we can construct the decision table T corresponding to this problem
(see Fig. 1.16).

T=

f1 f2 f3

1 1 1 3
0 1 1 2
0 0 1 2
0 0 0 1
1 0 0 1
1 1 0 3

Fig. 1.16

✒✑✓✏✟✟✟✟✟✙

❍❍❍❍❍❥

✒✑✓✏ ✒✑✓✏✑
✑✰

◗
◗�

✒✑✓✏ ✒✑✓✏
✑

✑✰
◗
◗�

✒✑✓✏ ✒✑✓✏

f3

f2 f1

1 3 2 3

0 1

0 1 0 1

Fig. 1.17

The first and the second rows of this table have different decisions and are
different only in the first column. The fifth and the last rows are different only
in the second column and have different decisions. The third and the fourth
rows are different only in the third column and have different decisions. So
each column of this table belongs to each test. Therefore this table has unique
test {f1, f2, f3} and R(T ) = 3.

The decision tree depicted in Fig. 1.17 solves the problem of three post-
offices. It is clear that using attributes f1, f2, f3 it is impossible to construct
a decision tree which depth is equal to 1, and which solves the considered
problem. So h(T ) = 2.

One can show that

{f1 = 1 ∧ f2 = 1 → 3, f1 = 0 ∧ f2 = 1 → 2, f1 = 0 ∧ f3 = 1 → 2,

f2 = 0 ∧ f3 = 0 → 1, f2 = 0 ∧ f1 = 1 → 1, f1 = 1 ∧ f2 = 1 → 3}

is a complete decision rule system for T , and for i = 1, 2, 3, 4, 5, 6, the i-th
rule is the shortest rule which is true for T and realizable for the i-th row of
T . Therefore L(T ) = 2.

The considered problem is an example of problems studied in computa-
tional geometry. Note that if we take the plane in the capacity of the universe
we will obtain a decision table with many-valued decisions.
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1.3.4 Recognition of Digits

In Russia, postal address includes six-digit index. On an envelope each digit
is drawn on a special matrix (see Figs. 1.18 and 1.19).
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Fig. 1.18
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Fig. 1.19

We assume that in the post-office for each element of the matrix there exists
a sensor which value is equal to 1 if the considered element is painted and 0
otherwise. So, we have nine two-valued attributes f1, ..., f9 corresponding to
these sensors.

Our aim is to find the minimum number of sensors which are sufficient for
recognition of digits. To this end we can construct the decision table, corre-
sponding to the considered problem (see Fig. 1.20). The set {f4, f5, f6, f8}

T=

f1 f2 f3 f4 f5 f6 f7 f8 f9

0 0 1 1 0 0 0 1 0 1
1 0 0 1 0 0 1 0 1 2

. . .

1 1 0 1 0 1 0 1 1 0

Fig. 1.20

(see Fig. 1.21) is a test for the table T . Really, Fig. 1.22 shows that all rows
of T are pairwise different at the intersection with columns f4, f5, f6, f8. To
simplify the procedure of checking we attached to each digit the number of
painted elements with indices from the set {4, 5, 6, 8}.

Therefore R(T ) ≤ 4. It is clear that we can not recognize 10 objects using
only three two-valued attributes. Therefore R(T ) = 4. It is clear that each
decision tree which uses attributes from the set {f1, ..., f9} and which depth
is at most three has at most eight terminal nodes. Therefore h(T ) ≥ 4. The
decision tree depicted in Fig. 1.23 solves the considered problem, and the
depth of this tree is equal to four. Hence, h(T ) = 4. It was an example of
pattern recognition problem.
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✍✌✎☞f4
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Fig. 1.23

1.3.5 Traveling Salesman Problem with Four Cities

Let we have complete unordered graph with four nodes in which each edge
is marked by a real number—the length of this edge (see Fig. 1.24).

A Hamiltonian circuit is a closed path which passes through each node
exactly one time. We should find a Hamiltonian circuit which has minimum
length. There are three Hamiltonian circuits:

H1: 12341 or, which is the same, 14321,
H2: 12431 or 13421,
H3: 13241 or 14231.
For i = 1, 2, 3, we denote by Li the length of Hi.
Then

α β
L1 = x12 + x23 + x34 + x14 = (x12 + x34)+ (x23 + x14),

α γ
L2 = x12 + x24 + x34 + x13 = (x12 + x34)+ (x24 + x13),

γ β
L3 = x13 + x23 + x24 + x14 = (x24 + x13)+ (x23 + x14).
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For simplicity, we will assume that L1, L2 and L3 are pairwise different
numbers. So, as universe we will consider the set of points of the space IR6

which do not lie on hyperplanes defined by equations L1 = L2, L1 = L3,
L2 = L3.

In the capacity of attributes we will use three functions f1 = sign(L1−L2),
f2 = sign(L1 − L3), and f3 = sign(L2 − L3) where sign(x) = −1 if x < 0,
sign(x) = 0 if x = 0, and sign(x) = +1 if x > 0. Instead of +1 and −1 we
will write sometimes + and −.

Values L1, L2 and L3 are linearly ordered. Let us show that any order is
possible. It is clear that values of α, β and γ can be chosen independently.

We can construct corresponding decision table (see Fig. 1.25).

f1 f2 f3

If α < β < γ then L1 < L2 < L3 − − − 1
If α < γ < β then L2 < L1 < L3 + − − 2
If β < α < γ then L1 < L3 < L2 − − + 1 = T

If β < γ < α then L3 < L1 < L2 − + + 3
If γ < α < β then L2 < L3 < L1 + + − 2
If γ < β < α then L3 < L2 < L1 + + + 3

Fig. 1.25

We see that the first and second rows have different decisions and are
different only in the first column. The third and the fourth rows have different
decisions and are different only in the second column. The fifth and the
sixth rows have different decisions and are different only in the third column.
Therefore R(T ) = 3. It is clear that h(T ) ≥ 2. A decision tree, represented
in Fig. 1.26 solves the considered problem. The depth of this tree is equal to
2. Hence h(T ) = 2.



18 1 Examples from Applications
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One can show that

{f1 = −1 ∧ f2 = −1 → 1, f1 = +1 ∧ f2 = −1 → 2,

f1 = −1 ∧ f2 = −1 → 1, f2 = +1 ∧ f1 = −1 → 3,

f1 = +1 ∧ f3 = −1 → 2, f2 = +1 ∧ f3 = +1 → 3}

is a complete decision rule system for T , and for i = 1, 2, 3, 4, 5, 6, the i-th
rule is the shortest rule which is true for T and realizable for the i-th row of
T . Therefore L(T ) = 2. Note that one rule can cover more than one row of
decision table (see the first rule, and the first and the third rows).

It was an example of discrete optimization problem.
If we consider also points which lie on the mentioned three hyperplanes

then we will obtain a decision table with many-valued decisions.

1.3.6 Traveling Salesman Problem with n ≥ 4 Cities

Until now we have considered so-called local approach to the investigation of
decision trees where only attributes from problem description can be used in
decision trees and rules. Of course, it is possible to consider global approach
too, when we can use arbitrary attributes from the information system in
decision trees. Global approach is essentially more complicated than the local
one, but in the frameworks of the global approach we sometimes can construct
more simple decision trees. Let us consider an example.

Let Gn be the complete unordered graph with n nodes. This graph has
n(n − 1)/2 edges which are marked by real numbers, and (n − 1)!/2 Hamil-
tonian circuits. We should find a Hamiltonian circuit with minimum length.
This is a problem in the space IRn(n−1)/2. What will be if we use for this
problem solving arbitrary attributes of the following kind. Let C be an ar-
bitrary hyperplane in IRn(n−1)/2. This hyperplane divides the space into two
open halfspaces and the hyperplane. The considered attribute takes value
−1 in one halfspace, value +1 in the other halfspace, and the value 0 in the
hyperplane.

One can prove that there exists a decision tree using these attributes which
solves the considered problem and which depth is at most n7.
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One can prove also that for the considered problem there exists a complete
decision rule system using these attributes in which the length of each rule
is at most n(n − 1)/2 + 1.

1.3.7 Data Table with Experimental Data

As it was said earlier, there are two sources of decision tables: exactly for-
mulated problems and experimental or statistical data. Now we consider an
example of experimental data.

Let we have data table (see Fig. 1.27) filled by some experimental data.

x1 x2 y

a 0.1 C1
b 1.5 C2
c 2.3 C2
a −3.0 C1

Fig. 1.27

fa

1 fb

1 fc

1 f0
2 f1

2 f2
2 y

1 0 0 1 0 0 C1
T= 0 1 0 1 1 0 C2

0 0 1 1 1 1 C2
1 0 0 0 0 0 C1

Fig. 1.28
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Here x1 and y are discrete variables which take values from some unordered
sets, and x2 is a continuous variable. We should predict value of y using
variables x1 and x2. We will not use values of variables x1 and x2 directly,
but we will use some attributes depending on these variables. We consider
attributes which are used in well known system CART [8].

For discrete variable x1, we can take a subset B of the set {a, b, c}. Then
the considered attribute has value 0 if x1 /∈ B, and has value 1 if x1 ∈ B.

Let fa
1 be the attribute corresponding to B = {a}, f b

1 be the attribute
corresponding to B = {b}, and f c

1 be the attribute corresponding to B = {c}.
For continuous variable x2, we consider linear ordering of values of this

variable −3.0 < 0.1 < 1.5 < 2.3 and take some real numbers which lie
between neighboring pairs of values, for example, 0, 1 and 2. Let α be such
a number. Then the considered attribute takes value 0 if x2 < α, and takes
value 1 if x2 ≥ α.

Let f0
2 , f1

2 , and f2
2 be attributes corresponding to numbers 0, 1 and 2 re-

spectively. The decision table for the considered attributes based on variables
x1, and x2 is depicted in Fig. 1.28.

We see that {f1
2} is a reduct for this table. Therefore R(T ) = 1. It is clear

that h(T ) = 1 (see decision tree depicted in Fig. 1.29).
One can show that

{fa
1 = 1 → C1, fa

1 = 0 → C2, fa
1 = 0 → C2, fa

1 = 1 → C1}

is a complete decision rule system for T , and for i = 1, 2, 3, 4, the i-th rule
is the shortest rule which is true for T and realizable for the i-th row of T .
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Therefore L(T ) = 1. We have here one more example of the situation when
one rule covers more than one row of decision table.

1.4 Conclusions

The chapter is devoted to brief consideration of main notions and discussion
of examples from various areas of applications: fault diagnosis, computational
geometry, pattern recognition, discrete optimization, and analysis of experi-
mental data.

The main conclusion is that the study of miscellaneous problems can be
reduced to the study of in some sense similar objects—decision tables.

Note that in two examples (problem of three post-offices and traveling
salesman problem) we did not consider some inputs. If we eliminate these
restrictions we will obtain decision tables with many-valued decisions.

Next five chapters are devoted to the creation of tools for study of decision
tables including tables with many-valued decisions.

In Chaps. 2, 3 and 4, we study decision tables with one-valued decisions. In
Chap. 2, we consider sets of decision trees, rules and reducts, and relationships
among these objects. Chapter 3 deals with bounds on complexity and Chap.
4—with algorithms for construction of trees, rules and reducts.

Chapters 5 and 6 contain two extensions of this study. In Chap. 5,
we consider decision tables with many-valued decisions, and in Chap. 6—
approximate decision trees, rules and reducts.



Part I

Tools



2

Sets of Tests, Decision Rules and Trees

As we have seen, decision tables arise in different applications. So, we study
decision tables as an independent mathematical object. We begin our consid-
eration from decision tables with one-valued decisions. For simplicity, we deal
mainly with decision tables containing only binary conditional attributes.

This chapter is devoted to the study of the sets of tests (reducts), decision
rules and trees. For tests and rules we concentrate on consideration of so-
called characteristic functions—monotone Boolean functions that represent
sets of tests and rules. We can’t describe the set of decision trees in the same
way, but we can compare efficiently sets of decision trees for two decision
tables with the same attributes. We study also relationships among trees,
rules and tests.

The chapter consists of four sections. In Sect. 2.1, main notions are dis-
cussed. In Sect. 2.2, the sets of tests, decision rules and trees are studied. In
Sect. 2.3, relationships among trees, rules and tests are considered. Section
2.4 contains conclusions.

2.1 Decision Tables, Trees, Rules and Tests

A decision table is a rectangular table which elements belong to the set {0, 1}
(see Fig. 2.1). Columns of this table are labeled with attributes f1, ..., fn.
Rows of the table are pairwise different, and each row is labeled with a
natural number (a decision). This is a table with one-valued decisions.

T =

f1 . . . fn

δ1 . . . δn d

Fig. 2.1

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 23–36.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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We will associate a game of two players with this table. The first player
chooses a row of the table and the second player must recognize a decision
corresponding to this row. To this end he can choose columns (attributes)
and ask the first player what is at the intersection of the considered row and
these columns.

A decision tree over T is a finite tree with root in which each terminal
node is labeled with a decision (a natural number), each nonterminal node
(such nodes will be called working) is labeled with an attribute from the set
{f1, . . . , fn}. Two edges start in each working node. These edges are labeled
with 0 and 1 respectively.

Let Γ be a decision tree over T . For a given row r of T this tree works in
the following way. We begin the work in the root of Γ . If the considered node
is terminal then the result of Γ work is the number attached to this node.
Let the considered node be working node which is labeled with an attribute
fi. If the value of fi in the considered row is 0 then we pass along the edge
which is labeled with 0. Otherwise, we pass along the edge which is labeled
with 1, etc.

We will say that Γ is a decision tree for T if for any row of T the work of Γ
finishes in a terminal node, which is labeled with the decision corresponding
to the considered row.

We denote by h(Γ ) the depth of Γ which is the maximum length of a path
from the root to a terminal node. We denote by h(T ) the minimum depth of
a decision tree for the table T .

A decision rule over T is an expression of the kind

fi1 = b1 ∧ . . . ∧ fim
= bm → t

where fi1 , . . . , fim
∈ {f1, . . . , fn}, b1, . . . , bm ∈ {0, 1}, and t ∈ IN. The number

m is called the length of the rule. This rule is called realizable for a row
r = (δ1, . . . , δn) if

δi1 = b1, . . . , δim
= bm .

The rule is called true for T if for any row r of T , such that the rule is
realizable for row r, the row r is labeled with the decision t. We denote by
L(T, r) the minimum length of a rule over T which is true for T and realizable
for r. We will say that the considered rule is a rule for T and r if this rule is
true for T and realizable for r.

A decision rule system S over T is a nonempty finite set of rules over T .
A system S is called a complete decision rule system for T if each rule from
S is true for T , and for every row of T there exists a rule from S which is
realizable for this row. We denote by L(S) the maximum length of a rule from
S, and by L(T ) we denote the minimum value of L(S) among all complete
decision rule systems S for T .

A test for T is a subset of columns such that at the intersection with
these columns any two rows with different decisions are different. A reduct for
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T is a test for T for which each proper subset is not a test. It is clear that each
test has a reduct as a subset. We denote by R(T ) the minimum cardinality
of a reduct for T .

2.2 Sets of Tests, Decision Rules and Trees

In this section, we consider some results related to the structure of the set
of all tests for a decision table T , structure of the set of decision rules which
are true for T and realizable for a row r, and the structure of decision trees
for T .

We begin our consideration from monotone Boolean functions which will
be used for description of the set of tests and the set of decision rules.

2.2.1 Monotone Boolean Functions

We define a partial order ≤ on the set En
2 where E2 = {0, 1} and n is a

natural number. Let ᾱ = (α1, . . . , αn), β̄ = (β1, . . . , βn) ∈ En
2 . Then ᾱ ≤ β̄ if

and only if αi ≤ βi for i = 1, . . . , n. The inequality ᾱ < β̄ means that ᾱ ≤ β̄
and ᾱ �= β̄. Two tuples ᾱ and β̄ are incomparable if both relations ᾱ ≤ β̄ and
β̄ ≤ ᾱ do not hold. A set A ⊆ En

2 is called independent if every two tuples
from A are incomparable. We omit the proofs of the following three lemmas
containing well known results.

Lemma 2.1. a) If A ⊆ En
2 and A is an independent set then |A| ∈

{

0, 1, . . . ,
(

n
⌊n/2⌋

)}

.

b) For any k ∈
{

0, 1, . . . ,
(

n
⌊n/2⌋

)}

there exists an independent set A ⊆ En
2

such that |A| = k.

A function f : En
2 → E2 is called monotone if for every tuples ᾱ, β̄ ∈ En

2 if
ᾱ ≤ β̄ then f(ᾱ) ≤ f(β̄).

A tuple ᾱ ∈ En
2 is called an upper zero of the monotone function f if

f(ᾱ) = 0 and for any tuple β̄ such that ᾱ < β̄ we have f(β̄) = 1. A tuple
ᾱ ∈ En

2 is called a lower unit of the monotone function f if f(ᾱ) = 1 and
f(β̄) = 0 for any tuple β̄ such that β̄ < ᾱ.

Lemma 2.2. Let f : En
2 → E2 be a monotone function. Then

a) For any ᾱ ∈ En
2 the equality f(ᾱ) = 1 holds if and only if there exists a

lower unit β̄ of f such that β̄ ≤ ᾱ.
b) For any ᾱ ∈ En

2 the equality f(ᾱ) = 0 holds if and only if there exists an
upper zero β̄ of f such that ᾱ ≤ β̄.

Lemma 2.3. a) For any monotone function f : En
2 → E2 the set of lower

units is an independent set.
b) Let A ⊆ En

2 and A be an independent set. Then there exists a monotone
function f : En

2 → E2 for which the set of lower units coincides with A.
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2.2.2 Set of Tests

Let T be a decision table with n columns labeled with attributes f1, . . . , fn.
There exists a one-to-one correspondence between En

2 and the set of subsets
of attributes from T . Let ᾱ ∈ En

2 and i1, . . . , im be numbers of digits from ᾱ
which are equal to 1. Then the set {fi1 , . . . , fim

} corresponds to the tuple ᾱ.
Let us correspond a characteristic function fT : En

2 → E2 to the table T .
For α ∈ En

2 we have fT (ᾱ) = 1 if and only if the set of attributes (columns)
corresponding to ᾱ is a test for T .

We omit the proof of the following simple statement.

Lemma 2.4. For any decision table T the function fT is a monotone func-
tion which does not equal to 0 identically and for which the set of lower units
coincides with the set of tuples corresponding to reducts for the table T .

Corollary 2.5. For any decision table T any test for T contains a reduct for
T as a subset.

Let us correspond a decision table τ(T ) to the decision table T . The table
τ(T ) has n columns labeled with attributes f1, . . . , fn. The first row of τ(T )
is filled by 1. The set of all other rows coincides with the set of all rows of the
kind l(δ̄1, δ̄2) where δ̄1 and δ̄2 are arbitrary rows of T labeled with different
decisions, and l(δ̄1, δ̄2) is the row containing at the intersection with the
column fi, i = 1, . . . , n, the number 0 if and only if δ̄1 and δ̄2 have different
numbers at the intersection with the column fi. The first row of τ(T ) is
labeled with the decision 1. All other rows are labeled with the decision 2.

We denote by C(T ) the decision table obtained from τ(T ) by the removal
all rows σ̄ for each of which there exists a row δ̄ of the table τ(T ) that is
different from the first row and satisfies the inequality σ̄ < δ̄. The table C(T )
will be called the canonical form of the table T .

Lemma 2.6. For any decision table T ,

fT = fC(T ) .

Proof. One can show that fT = fτ(T ). Let us prove that fτ(T ) = fC(T ). It is
not difficult to check that fC(T )(ᾱ) = 0 if an only if there exists a row δ̄ of
C(T ) labeled with the decision 2 for which ᾱ ≤ δ̄. Similar statement is true
for the table τ(T ).

It is clear that each row of C(T ) is also a row in τ(T ), and equal rows in
these tables are labeled with equal decisions. Therefore if fτ(T )(ᾱ) = 1 then
fC(T )(ᾱ) = 1.

Let fC(T )(ᾱ) = 1. We will show that fτ(T )(α) = 1. Let us assume the
contrary. Then there exists a row σ̄ from τ(T ) which is labeled with the
decision 2 and for which ᾱ ≤ σ̄. From the description of C(T ) it follows that
there exists a row δ̄ from C(T ) which is labeled with the decision 2 and for
which σ̄ ≤ δ̄. But in this case ᾱ ≤ δ̄ which is impossible. Hence fτ(T )(α) = 1
and fτ(T ) = fC(T ). ⊓⊔
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Lemma 2.7. For any decision table T the set of rows of the table C(T ) with
the exception of the first row coincides with the set of upper zeros of the
function fT .

Proof. Let ᾱ be an upper zero of the function fT . Using Lemma 2.6 we obtain
fC(T )(ᾱ) = 0. Therefore there exists a row δ̄ in C(T ) which is labeled with the
decision 2 and for which ᾱ ≤ δ̄. Evidently, fC(T )(δ̄) = 0. Therefore fT (δ̄) = 0.
Taking into account that ᾱ is an upper zero of the function fT we conclude
that the inequality ᾱ < δ̄ does not hold. Hence ᾱ = δ̄ and ᾱ is a row of C(T )
which is labeled with the decision 2.

Let δ̄ be a row of C(T ) different from the first row. Then, evidently,
fC(T )(δ̄) = 0, and by Lemma 2.6, fT (δ̄) = 0. Let δ̄ < σ̄. We will show that
fT (σ̄) = 1. Let us assume the contrary. Then by Lemma 2.6, fC(T )(σ̄) = 0.
Therefore there exists a row γ̄ of C(T ) which is labeled with the decision 2
and for which δ̄ < γ̄. But this is impossible since any two different rows of
C(T ) which are labeled with 2 are incomparable. Hence fT (σ̄) = 1, and δ̄ is
an upper zero of the function fT . ⊓⊔

We will say that two decision tables with the same number of columns are
almost equal if the set of rows of the first table is equal to the set of rows
of the second table, and equal rows in these tables are labeled with equal
decisions. Almost means that corresponding columns in two tables can be
labeled with different attributes.

Proposition 2.8. Let T1 and T2 be decision tables with the same number of
columns. Then fT1 = fT2 if and only if the tables C(T1) and C(T2) are almost
equal.

Proof. If fT1 = fT2 then the set of upper zeros of fT1 is equal to the set of
upper zeros of fT2 . Using Lemma 2.7 we conclude that the tables C(T1) and
C(T2) are almost equal.

Let the tables C(T1) and C(T2) be almost equal. By Lemma 2.7, the set
of upper zeros of fT1 is equal to the set of upper zeros of fT2 . Using Lemma
2.2 we obtain fT1 = fT2 . ⊓⊔

Theorem 2.9. a) For any decision table T the function fT is a monotone
Boolean function which does not equal to 0 identically.

b) For any monotone Boolean function f : En
2 → E2 which does not equal

to 0 identically there exists a decision table T with n columns for which
f = fT .

Proof. a) The first part of theorem statement follows from Lemma 2.4.
b) Let f : En

2 → E2 be a monotone Boolean function which does not equal to
0 identically, and {ᾱ1, . . . , ᾱm} be the set of upper zeros of f . We consider
a decision table T with n columns in which the first row is filled by 1,
and the set of all other rows coincides with {ᾱ1, . . . , ᾱm}. The first row
is labeled with the decision 1, and all other rows are labeled with the
decision 2.
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One can show that C(T ) = T . Using Lemma 2.7 we conclude that the
set of upper zeros of the function f coincides with the set of upper zeros
of the function fT . From here and from Lemma 2.2 it follows that f = fT .

⊓⊔

Theorem 2.10. a) For any decision table T with n columns the set of tuples
from En

2 corresponding to reducts for T is a nonempty independent set.
b) For any nonempty independent subset A of the set En

2 there exists a de-
cision table T with n columns for which the set of tuples corresponding to
reducts for T coincides with A.

Proof. The first part of theorem statement follows from Lemmas 2.2, 2.3 and
2.4. The second part of theorem statement follows from Lemmas 2.3, 2.4 and
Theorem 2.9. ⊓⊔

Corollary 2.11. a) For any decision table T with n columns the cardinality
of the set of reducts for T is a number from the set

{

1, . . . ,
(

n
⌊n/2⌋

)}

.

b) For any k ∈
{

1, . . . ,
(

n
⌊n/2⌋

)}

there exists a decision table T with n columns

for which the number of reducts for T is equal to k.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn.
It is possible to represent the function fT as a formula (conjunctive normal
form) over the basis {∧,∨}. We correspond to each row δ̄ of C(T ) different
from the first row the disjunction d(δ̄) = xi1 ∨ . . . ∨ xim

where fi1 , . . . , fim

are all columns of C(T ) at the intersection with which δ̄ has 0. Then fT =
∧

δ̄∈∆(C(T ))\{1̄} d(δ̄) where Δ(C(T )) is the set of rows of the table C(T ) and

1̄ is the first row of C(T ) filled by 1.
If we multiply all disjunctions and apply rules A∨A∧B = A and A∧A =

A∨A = A we obtain the reduced disjunctive normal form of the function fT

such that there exists a one-to-one correspondence of elementary conjunctions
in this form and lower units of the functions fT (reducts for T ): an elementary
conjunction xi1 ∧ . . . ∧ xim

corresponds to the lower unit of fT which has 1
only in digits i1, . . . , im (corresponds to the reduct {fi1 , . . . , fim

}).
Another way for construction of a formula for the function fT is considered

in Sect. 4.3.3.

Example 2.12. For a given decision table T we construct corresponding tables
τ(T ) and C(T )—see Fig. 2.2.

We can represent the function fT as a conjunctive normal form and trans-
form it into reduced disjunctive normal form: fT (x1, x2, x3, x4) = (x2 ∨ x4)∧
(x3 ∨ x4) ∧ x1 = x2x3x1 ∨ x2x4x1 ∨ x4x3x1 ∨ x4x4x1 = x2x3x1 ∨ x2x4x1 ∨
x4x3x1 ∨ x4x1 = x2x3x1 ∨ x4x1. Therefore the function fT has two lower
units (1, 1, 1, 0) and (1, 0, 0, 1), and the table T has two reducts {f1, f2, f3}
and {f1, f4}.

So we have the following situation now: there is a polynomial algorithm which
for a given decision table T constructs its canonical form C(T ) and the set
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T =

f1 f2 f3 f4

0 1 1 1 3
0 0 1 0 2
0 1 0 0 2
1 1 0 0 3

τ (T ) =

f1 f2 f3 f4

1 1 1 1 1
1 0 1 0 2
1 1 0 0 2
0 0 0 1 2
0 1 1 1 2

C(T ) =

f1 f2 f3 f4

1 1 1 1 1
1 0 1 0 2
1 1 0 0 2
0 1 1 1 2

Fig. 2.2

of upper zeros of the characteristic function fT . If T has m rows then the
number of upper zeros is at most m(m − 1)/2. Based on C(T ) we can in
polynomial time construct a formula (conjunctive normal form) over the basis
{∧,∨} which represents the function fT . By transformation of this formula
into reduced disjunctive normal form we can find all lower units of fT and
all reducts for T . Unfortunately, we can not guarantee that this last step will
have polynomial time complexity.

Example 2.13. Let us consider a decision table T with m + 1 rows and 2m
columns labeled with attributes f1, . . . , f2m. The last row of T is filled by
1. For i = 1, . . . , m, the i-th row of T has 0 only at the intersection with
columns f2i−1 and f2i. The first m rows of T are labeled with the decision
1 and the last row is labeled with the decision 2. One can show that fT =
(x1∨x2)∧ (x3∨x4)∧ . . .∧ (x2m−1∨x2m). This function has exactly 2m lower
units, and the table T has exactly 2m reducts.

2.2.3 Set of Decision Rules

Let T be a decision table with n columns labeled with attributes f1, . . . , fn

and r = (δ1, . . . , δn) be a row of T labeled with a decision d.
We can describe the set of all decision rules over T which are true for T

and realizable for r (we will say about such rules as about rules for T and
r) with the help of characteristic function fT,r : En

2 → E for T and r. Let
ᾱ ∈ En

2 and i1, . . . , im be numbers of digits from ᾱ which are equal to 1.
Then fT,r(ᾱ) = 1 if and only if the rule

fi1 = δi1 ∧ . . . ∧ fim
= δim

→ d (2.1)

is a decision rule for T and r. We will say that the rule (2.1) corresponds to
the tuple ᾱ, and the tuple ᾱ corresponds to the rule (2.1).

Let us correspond a decision table T (r) to the table T . The table T (r) has
n columns labeled with attributes f1, . . . , fn. This table contains the row r
and all rows from T which are labeled with decisions different from d. The row
r in T (r) is labeled with the decision 1, all other rows in T (r) are labeled with
the decision 2. One can show that a set of attributes (columns) {fi1 , . . . , fim

}
is a test for T (r) if and only if the decision rule (2.1) is a rule for T and r.
Thus fT,r = fT (r).
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We denote C(T, r) = C(T (r)). This table is the canonical form for T and
r. The set of rows of C(T, r) with the exception of the first row coincides
with the set of upper zeros of the function fT,r (see Lemma 2.7). Based on
the table C(T, r) we can represent function fT,r in the form of conjunctive
normal form and transform this form into reduced disjunctive normal form.
As a result, we obtain the set of lower units of fT,r which corresponds to the
set of so-called irreducible decision rules for T and r. A decision rule for T
and r is called irreducible if any rule obtained from the considered one by
the removal of an equality from the left-hand side is not a rule for T and r.
One can show that a set of attributes {fi1 , . . . , fim

} is a reduct for T (r) if
and only if the decision rule (2.1) is an irreducible decision rule for T and r.

Theorem 2.14. a) For any decision table T and any row r of T the function
fT,r is a monotone Boolean function which does not equal to 0 identically.

b) For any monotone Boolean function f : En
2 → E2 which does not equal to

0 identically there exists a decision table T with n columns and a row r of
T for which f = fT,r.

Proof. a) We know that fT,r = fT (r). From Lemma 2.4 it follows that fT (r)

is a monotone Boolean function which does not equal to 0 identically.
b) Let f : En

2 → E2 be a monotone Boolean function which does not equal
to 0 identically, and {ᾱ1, . . . , ᾱm} be the set of upper zeros of f . We
consider a decision table T with n columns in which the first row is filled
by 1 (we denote this row by r), and the set of all other rows coincides
with {ᾱ1, . . . , ᾱm}. The first row is labeled with the decision 1 and all
other rows are labeled with the decision 2.

One can show that C(T, r) = C(T (r)) = T (r) = T . We know that
fT,r = fT (r). So fT = fT,r. Using Lemma 2.7 we conclude that the set of
upper zeros of f coincides with the set of upper zeros of fT . From here
and from Lemma 2.2 it follows that f = fT . Therefore f = fT,r. ⊓⊔

Theorem 2.15. a) For any decision table T with n columns and for any row
r of T the set of tuples from En

2 corresponding to irreducible decision rules
for T and r is a nonempty independent set.

b) For any nonempty independent subset A of the set En
2 there exists a de-

cision table T with n columns and row r of T for which the set of tuples
corresponding to irreducible decision rules for T and r coincides with A.

Proof. a) We know that the set of tuples corresponding to irreducible deci-
sion rules for T and r coincides with the set of tuples corresponding to
reducts for T (r). Using Theorem 2.10 we conclude that the considered set
of tuples is a nonempty independent set.

b) Let A ⊆ En
2 , A �= ∅ and A be independent. Using Lemma 2.3 we conclude

that there exists a monotone Boolean function f : En
2 → E for which the

set of lower units coincides with A. From Theorem 2.14 it follows that
there exists a decision table with n columns and a row r of T for which



2.2 Sets of Tests, Decision Rules and Trees 31

f = fT,r. It is clear that the set of lower units of fT,r coincides with the
set of tuples corresponding to irreducible decision rules for T and r. ⊓⊔

Corollary 2.16. a) For any decision table T with n columns and any row r
of T the cardinality of the set of irreducible decision rules for T and r is
a number from the set

{

1, 2, . . . ,
(

n
⌊n/2⌋

)}

.

b) For any k ∈
{

1, 2, . . . ,
(

n
⌊n/2⌋

)}

there exists a decision table T with n

columns and a row r of T for which the number of irreducible decision
rules for T and r is equal to k.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn

and r be a row of T .
As for the case of reducts, we can represent the function fT,r as a conjunc-

tive normal form and transform it into reduced disjunctive normal form. As
a result we obtain all irreducible decision rules for T and r.

Example 2.17. Let T be the decision table depicted in Fig. 2.2 and r be the
first row of T . We construct tables T (r), τ(T (r)) and C(T, r) = C(T (r))—see
Fig. 2.3.

T (r) =

f1 f2 f3 f4

0 1 1 1 3
0 0 1 0 2
0 1 0 0 2

τ (T (r)) =

f1 f2 f3 f4

1 1 1 1 1
1 0 1 0 2
1 1 0 0 2

C(T, r) =

f1 f2 f3 f4

1 1 1 1 1
1 0 1 0 2
1 1 0 0 2

Fig. 2.3

We can represent the function fT,r as a conjunctive normal form and trans-
form it into reduced disjunctive normal form: fT,r(x1, x2, x3, x4) = (x2∨x4)∧
(x3 ∨x4) = x2x3 ∨x2x4 ∨x4x3 ∨x4x4 = x2x3 ∨x2x4 ∨x4x3 ∨x4 = x2x3 ∨x4.
Therefore the function fT,r has two lower units (0, 1, 1, 0) and (0, 0, 0, 1), and
there are two irreducible decision rules for T and r: f2 = 1∧ f3 = 1 → 3 and
f4 = 1 → 3.

So we have polynomial algorithms that allow us for a given decision table
T and row r of T construct the canonical form C(T, r) for T and r and the
set of upper zeros of the characteristic function fT,r. If T has m rows then the
number of upper zeros is at most m − 1. Based on C(T, r) we can construct
a conjunctive normal form representing fT,r.

Also we can transform this form into the reduced disjunctive normal form
and find all irreducible decision rules for T and r. As for the case of reducts,
this step can have exponential time complexity.

Example 2.18. Let T be the decision table considered in Example 2.13 and r
be the last row of T . The table T has m + 1 rows and 2m columns. One can
show that fT,r = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ . . . ∧ (x2m−1 ∨ x2m), and there are
exactly 2m lower units of fT,r and 2m irreducible decision rules for T and r.
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2.2.4 Set of Decision Trees

Decision tree is a more complicated object than test or decision rule. So we
can’t describe the set of decision trees in the same way as the set of tests or
the set of rules. However, we can compare efficiently sets of decision trees for
two decision tables with the same sets of attributes.

Let T be a decision table. We denote by DT (T ) the set of decision trees
for the table T . By ̺(T ) we denote the set of pairs (r, d) where r is a row of
T and d is the decision attached to the row r. We will say that two decision
tables T1 and T2 are equal if T1 and T2 have the same number of columns
labeled with the same names of attributes and ̺(T1) = ̺(T2). Let T1 and T2

have the same number of columns. We will say that T1 and T2 are consistent
if for any two pairs (δ̄1, d1) ∈ ̺(T1) and (δ̄2, d2) ∈ ̺(T2) from the equality
δ̄1 = δ̄2 the equality d1 = d2 follows. If T1 and T2 are not consistent they will
be called inconsistent.

Theorem 2.19. Let T1 and T2 be decision tables with n columns labeled with
attributes f1, . . . , fn. Then

a) DT (T1) ∩ DT (T2) �= ∅ if and only if the tables T1 and T2 are consistent.
b) DT (T1) ⊆ DT (T2) if and only if ̺(T2) ⊆ ̺(T1).

Proof. a) Let Γ ∈ DT (T1) ∩ DT (T2), (δ̄, d1) ∈ ̺(T1), (δ̄, d2) ∈ ̺(T2), and v
be the terminal node of Γ such that the work of Γ for δ̄ finishes in v. Since
Γ ∈ DT (T1), the node v is labeled with d1. Since Γ ∈ DT (T2), the node
v is labeled with d2. Therefore d1 = d2.

Let T1 and T2 be consistent. Consider a decision tree Γ (T1, T2) over T1

which consists of n + 1 layers. For i = 1, . . . , n, all nodes from the i-th
layer are labeled with the attribute fi. All nodes from the (n+1)-th layer
are terminal nodes. Let v be an arbitrary terminal node and δ1, . . . , δn be
numbers attached to edges in the path from the root of Γ (T1, T2) to v.
Denote δ̄ = (δ1, . . . , δn). If δ̄ is not a row of T1 and T2 then we mark v
with 1. If δ̄ is a row of T1 or T2 and δ̄ is labeled with the decision d then
we mark v with d. If δ̄ is a row of T1 and a row of T2 then δ̄ is labeled
with the same decision in T1 and T2 since T1 and T2 are consistent. It is
clear that Γ (T1, T2) ∈ DT (T1) ∩ DT (T2).

b) Let ̺(T2) ⊆ ̺(T1) and Γ ∈ DT (T1). It is clear that Γ ∈ DT (T2). There-
fore DT (T1) ⊆ DT (T2).

Let ̺(T2) � ̺(T1). We show that DT (T1) � DT (T2).
Let T1 and T2 be inconsistent. By proved above, DT (T1)∩DT (T2) = ∅.

It is clear that DT (T1) �= ∅. Therefore DT (T1) � DT (T2).
Let T1 and T2 be consistent. Since ̺(T2) � ̺(T1), there exists δ̄ =

(δ1, . . . , δn) ∈ En
2 and natural d such that (δ̄, d) ∈ ̺(T2) and (δ̄, d) /∈ ̺(T1).

In the decision tree Γ (T1, T2) described above, let v be the terminal node
such that the edges in the path from the root of Γ (T1, T2) to v are labeled
with the numbers δ1, . . . , δn. In Γ (T1, T2) the node v is labeled with d.
Instead of d we mark v with d + 1. We denote the obtained decision
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tree by Γ . It is clear that Γ ∈ DT (T1) and Γ /∈ DT (T2). Therefore
DT (T1) � DT (T2). ⊓⊔

Corollary 2.20. Let T1 and T2 be decision tables with n columns labeled with
attributes f1, . . . , fn. Then DT (T1) = DT (T2) if and only if ̺(T1) = ̺(T2).

It is interesting to compare Corollary 2.20 and Proposition 2.8. From this
proposition it follows that the set of tests for T1 is equal to the set of tests for
T2 if and only if ̺(C(T1)) = ̺(C(T2)). This condition is essentially weaker
than the condition ̺(T1) = ̺(T2): it is possible that for very different decision
tables T1 and T2 the canonical forms C(T1) and C(T2) are equal.

Example 2.21. Let us consider four decision tables (see Fig. 2.4).

T1 =
f1 f2

0 1 1
1 0 2

T2 =
f1 f2

1 0 2
0 1 1

T3 =

f1 f2

0 1 1
1 0 2
0 0 3

T4 =

f1 f2

0 1 1
1 0 2
0 0 2

Fig. 2.4

We have DT (T1) = DT (T2), DT (T3) ⊂ DT (T1), DT (T4) ⊂ DT (T1) and
DT (T3) ∩ DT (T4) = ∅.

For any decision table T , the number of decision trees for T is infinite.
However, often we can narrow down the consideration to irreducible decision
trees for T which number is finite.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn.
We denote by E(T ) the set of attributes (columns of T ) each of which contains
different numbers. Let Γ be a decision tree over T and v be a node of Γ . Let in
the path from the root of Γ to v nodes be labeled with attributes fi1 , . . . , fim

and edges be labeled with numbers δ1, . . . , δm. Denote by T (v) the subtable
of T which consists of rows that at the intersection with columns fi1 , . . . , fim

have numbers δ1, . . . , δm.
We will say that a decision tree Γ for T is irreducible if any node v of Γ

satisfies the following conditions:

1. If all rows of the subtable T (v) are labeled with the same decision d then
v is a terminal node of Γ labeled with d.

2. If there are rows of T (v) labeled with different decisions then v is a working
node labeled with an attribute from E(T (v)).

Proposition 2.22. Let T be a decision table with n columns labeled with
attributes f1, . . . , fn. Then there exists an irreducible decision tree Γ for T
such that h(Γ ) = h(T ).
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Proof. Let D be a decision tree for T such that h(D) = h(T ). We will modify
the tree D in order to obtain an irreducible decision tree for T . The algorithm
considers working nodes of the tree D sequentially beginning with the root.
Let v be the current node and fi be an attribute attached to the node v. The
algorithm tries to apply the following rules to the node v.

1. Let all rows of T (v) be labeled with the same decision d. Then remove all
descendants of v and label v with d instead of fi.

2. Let fi /∈ E(T (v)) and the column fi in the table T (v) contain only one
number a. Denote by Γa the tree which root is the end of the edge started
in v and labeled with a. Then substitute the subtree whose root is v
to Γa.

We denote the obtained decision tree by Γ . One can show that Γ is an
irreducible decision tree for T and h(Γ ) ≤ h(D). Therefore h(Γ ) = h(T ). ⊓⊔

Note that the algorithm described in the proof of Proposition 2.22 can be
applied to an arbitrary decision table T and an arbitrary decision tree Γ
for T . As a result we obtain an irreducible decision tree Γ ′ for T such that
h(Γ ′) ≤ h(Γ ).

2.3 Relationships among Decision Trees, Rules and

Tests

Theorem 2.23. Let T be a decision table with n columns labeled with at-
tributes f1, . . . , fn.

1. If Γ is a decision tree for T then the set of attributes attached to working
nodes of Γ is a test for the table T .

2. Let F = {fi1 , . . . , fim
} be a test for T . Then there exists a decision tree Γ

for T which uses only attributes from F and for which h(Γ ) = m.

Proof. 1. Let r1 and r2 be two rows from T with different decisions. Since
Γ is a decision tree for T then the work of Γ for r1 and r2 finishes in
different terminal nodes. Therefore there exists an attribute fi attached
to a working node of Γ such that r1 and r2 are different in the column
fi. Since r1 and r2 is an arbitrary pair of rows with different decisions, we
obtain that the set of attributes attached to working nodes of Γ is a test
for the table T .

2. Let {fi1 , . . . , fim
} be a test for T . Consider a decision tree Γ which consists

of m + 1 layers. For j = 1, . . . , m, all nodes on the j-th layer are labeled
with the attribute fij

. All nodes from the (m + 1)-th layer are terminal
nodes. Let v be an arbitrary terminal node. If there is no row of T for
which the work of Γ finishes in this node then we mark v with the number
1. Let there exist rows of T for which the work of Γ finishes in v. Since
{fi1 , . . . , fim

} is a test for T , all these rows are labeled with the same
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decision. We mark the node v with this decision. It is clear that Γ is
a decision tree for T which uses only attributes from {fi1 , . . . , fim

} and
which depth is equal to m. ⊓⊔

Corollary 2.24. Let T be a decision table. Then h(T ) ≤ R(T ).

Theorem 2.25. Let T be a decision table with n columns labeled with at-
tributes f1, . . . , fn.

1. If S is a complete system of decision rules for T then the set of attributes
from rules in S is a test for T .

2. If F = {fi1 , . . . , fim
} is a test for T then there exists a complete system

S of decision rules for T which uses only attributes from F and for which
L(S) = m.

Proof. 1. Let S be a complete system of decision rules for T , and r1, r2 be
two rows of T with different decisions. Then there exists a rule from S
which is realizable for r1 and is not realizable for r2. It means that there
is an attribute fi on the left-hand side of the considered rule such that r1

and r2 are different in the column fi. Since r1 and r2 is an arbitrary pair
of rows with different decisions, we obtain that the set of attributes from
rules in S is a test for T .

2. Let F = {fi1 , . . . , fim
} be a test for T . Consider a decision rule system S

which contains all rules of the kind

fi1 = b1 ∧ . . . ∧ fim
= bm → t

for each of which there exists a row r of T such that the considered rule
is realizable for r, and r is labeled with the decision t. Since F is a test
for T , the considered rule is true for T . Therefore S is a complete decision
rule system for T and L(S) = m. ⊓⊔

Corollary 2.26. L(T ) ≤ R(T ).

Let Γ be a decision tree for T and τ be a path in Γ from the root to a terminal
node in which working nodes are labeled with attributes fi1 , . . . , fim

, edges
are labeled with numbers b1, . . . , bm, and the terminal node of τ is labeled
with the decision t. We correspond to τ the decision rule rule(τ)

fi1 = b1 ∧ . . . ∧ fim
= bm → t .

Theorem 2.27. Let Γ be a decision tree for T , and S be the set of decision
rules corresponding to paths in Γ from the root to terminal nodes. Then S is
a complete system of decision rules for T and L(S) = h(Γ ).

Proof. Since Γ is a decision tree for T , for each row r of T there exists a
path τ from the root to a terminal node v of Γ such that the work of Γ for
r finishes in v, and v is labeled with the decision t attached to r. It is clear
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that rule(τ) is realizable for r. It is clear also that for each row r′ of T , such
that rule(τ) is realizable for r′, the row r′ is labeled with the decision t. So,
rule(τ) is true for T . Thus S is a complete decision rule system for T . It is
clear that the length of rule(τ) is equal to the length of the path τ . Therefore
L(S) = h(Γ ). ⊓⊔

Corollary 2.28. L(T ) ≤ h(T ).

2.4 Conclusions

The chapter is devoted to the study of the sets of tests, decision rules and
trees, and relationships among these objects.

We can write efficiently formulas for characteristic functions which describe
sets of tests and rules. We can find efficiently sets of upper zeros for these
functions (it can be useful for design of lazy learning algorithms). However,
there are no polynomial algorithms for construction of the set of lower units
for characteristic functions (in the case of tests, lower units correspond to
reducts, and in the case of rules—to irreducible decision rules). We can com-
pare efficiently sets of decision trees for decision tables with the same names
of attributes.

We studied relationships among decision trees, rules and tests which al-
low us to work effectively with bounds on complexity and algorithms for
construction of rules, tests and trees.

The results considered in this chapter (with the exception of results for de-
cision rules and decision rule systems) were published in methodical develop-
ments [38, 39] for the course Test Theory and its Applications—a predecessor
of the course Combinatorial Machine Learning.
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Bounds on Complexity of Tests,
Decision Rules and Trees

In this chapter, we continue the consideration of decision tables with one-
valued decisions. We study bounds on complexity for decision trees, rules,
and tests.

The chapter consists of three sections. In Sect. 3.1, we investigate lower
bounds on the depth of decision trees, cardinality of tests and length of
decision rules.

Section 3.2 is devoted to the consideration of upper bounds on the mini-
mum cardinality of tests and minimum depth of decision trees. These bounds
can be used also as upper bounds on the minimum length of decision rules.

Section 3.3 contains conclusions.

3.1 Lower Bounds

From Corollaries 2.24 and 2.28 it follows that L(T ) ≤ h(T ) ≤ R(T ). So each
lower bound on L(T ) is a lower bound on h(T ) and R(T ), and each lower
bound on h(T ) is also a lower bound on R(T ).

Let us consider now some lower bounds on the value h(T ) and, conse-
quently, on the value R(T ).

We denote by D(T ) the number of different decisions in a decision
table T .

Theorem 3.1. Let T be a nonempty decision table. Then

h(T ) ≥ log2 D(T ) .

Proof. Let Γ be a decision tree for T such that h(Γ ) = h(T ). We denote by
Lt(Γ ) the number of terminal nodes in Γ . It is clear that Lt(Γ ) ≥ D(T ). One
can show that Lt(Γ ) ≤ 2h(Γ ). Therefore 2h(Γ ) ≥ D(T ) and h(Γ ) ≥ log2 D(T ).
Thus, h(T ) ≥ log2 D(T ). ⊓⊔

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 37–46.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Theorem 3.2. Let T be a decision table. Then

h(T ) ≥ log2(R(T ) + 1) .

Proof. Let Γ be a decision tree for T such that h(Γ ) = h(T ). We denote by
Lw(Γ ) the number of working nodes in Γ . From Theorem 2.23 it follows that
the set of attributes attached to working nodes of Γ is a test for T . Therefore
Lw(Γ ) ≥ R(T ). One can show that Lw(Γ ) ≤ 1+2+ . . .+2h(Γ )−1 = 2h(Γ )−1.
Therefore 2h(Γ ) − 1 ≥ R(T ), 2h(Γ ) ≥ R(T ) + 1 and h(Γ ) ≥ log2(R(T ) + 1).
Since h(Γ ) = h(T ) we obtain h(T ) ≥ log2(R(T ) + 1). ⊓⊔

Example 3.3. Let us consider the decision table T depicted in Fig. 3.1.

T=

f1 f2 f3

1 1 1 1
0 1 0 2
1 1 0 2
0 0 1 3
1 0 0 3

Fig. 3.1

For this table D(T ) = 3. Using Theorem 3.1 we obtain h(T ) ≥ log2 3.
Therefore h(T ) ≥ 2.

One can show that this table has exactly two tests: {f1, f2, f3} and {f2, f3}.
Therefore R(T ) = 2. Using Theorem 3.2 we obtain h(T ) ≥ log2 3 and
h(T ) ≥ 2.

In fact, h(T ) = 2. A decision tree for the table T which depth is equal to
2 is depicted in Fig. 3.2.

✒✑✓✏✑
✑✰

◗
◗�

✒✑✓✏ ✑
✑✰

◗
◗�
✒✑✓✏

✒✑✓✏ ✒✑✓✏
f2

3

0 1

0

12

1
f3

Fig. 3.2

Let T be a decision table with n columns which are labeled with at-
tributes f1, . . . , fn. A subtable of the table T is a table obtained from T by
removal some rows. Let {fi1 , . . . , fim

} ∈ {f1, . . . , fn} and δ1, . . . , δm ∈ {0, 1}.
We denote by T (fi1 , δ1) . . . (fim

, δm) the subtable of the table T which con-
sists of rows that at the intersection with columns fi1 , . . . , fim

have numbers
δ1, . . . , δm.
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We will say that T is a degenerate table if T does not have rows or all rows
of T are labeled with the same decision.

We define now a parameter M(T ) of the table T . If T is degenerate then
M(T ) = 0. Let T be nondegenerate. Let δ̄ = (δ1, . . . , δn) ∈ {0, 1}n. We de-
note by M(T, δ̄) the minimum natural m such that there exist fi1 , . . . , fim

∈
{f1, . . . , fn} for which T (fi1 , δi1) . . . (fim

, δim
) is a degenerate table. Then

M(T ) = max{M(T, δ̄) : δ̄ ∈ {0, 1}n}.
We consider one more definition of the parameter M(T, δ̄). If δ̄ is a row of

T then M(T, δ̄) is the minimum number of columns on which δ̄ is different
from all rows with other decisions. Let δ̄ be not a row of T . Then M(T, δ̄) is
the minimum number of columns on which δ̄ is different from all rows of T
with the exception, possibly, of some rows with the same decision.

Lemma 3.4. Let T be a decision table and T ′ be a subtable of T . Then

M(T ′) ≤ M(T ) .

Proof. Let T have n columns labeled with attributes f1, ..., fn. Let fi1 , ..., fim
∈

{f1, ..., fn} and δ1, ..., δm ∈ {0, 1}. If T (fi1 , δ1)...(fim
, δm) is a degenerate

table then T ′(fi1 , δ1)...(fim
, δm) is a degenerate table too. From here and

from the definition of parameter M the statement of lemma follows. ⊓⊔

Example 3.5. Let us find the value M(T ) for the decision table T depicted
in Fig. 3.1. To this end we find the value M(T, δ̄) for each δ̄ ∈ {0, 1}3. We
obtain (see Fig. 3.3) that M(T ) = 2.

T=

f1 f2 f3 M(T, δ̄)
1 1 1 1 2
0 1 0 2 2
1 1 0 2 2
0 0 1 3 1
1 0 0 3 1

0 0 0 1

1 0 1 1

0 1 1 2

Fig. 3.3

Theorem 3.6. Let T be a decision table. Then

h(T ) ≥ M(T ) .

Proof. If T is a degenerate table then h(T ) = 0 and M(T ) = 0. Let T be
a nondegenerate table having n columns labeled with attributes f1, . . . , fn.
Let Γ be a decision tree for the table T such that h(Γ ) = h(T ). Let δ̄ =
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(δ1, . . . , δn) ∈ {0, 1}n be a n-tuple for which M(T, δ̄) = M(T ). We consider a
path τ = v1, d1, . . . , vm, dm, vm+1 from the root v1 to a terminal node vm+1

in Γ which satisfies the following condition: if nodes v1, . . . , vm are labeled
with attributes fi1 , . . . , fim

then edges d1, . . . , dm are labeled with numbers
δi1 , . . . , δim

. Denote T ′ = T (fi1 , δi1) . . . (fim
, δim

). It is clear that the set of
rows of T ′ coincides with the set of rows of T for which the work of Γ
finishes in the terminal node vm+1. Since Γ is a decision tree for the table
T , the subtable T ′ is a degenerate table. Therefore m ≥ M(T, δ̄) and h(Γ ) ≥
M(T, δ̄). Since h(Γ ) = h(T ) and M(T, δ̄) = M(T ), we have h(T ) ≥ M(T ).⊓⊔

The following example helps us to understand why in the definition of M(T )
we use not only rows of T but also tuples δ̄ which are not rows of T .

Example 3.7. Let us consider a decision table T with n columns and n rows
labeled with decisions 1, . . . , n. For i = 1, . . . , n, the i-th row has 1 only at
the intersection with the column fi.

It is clear that for any row δ̄ of T the equality M(T, δ̄) = 1 holds. Let us
consider the tuple 0̄ = (0, . . . , 0) ∈ {0, 1}n. This tuple is not a row of T . One
can show that M(T, 0̄) = n − 1.

We have now three lower bounds. Unfortunately, sometimes each of these
bounds is not an exact bound. What to do in this case?

Example 3.8. Let us consider the problem of computation of the function
f(x, y, z) = xy ∨ xz ∨ yz with the help of decision trees using values of
variables x, y and z. The corresponding decision table T is depicted in Fig.
3.4. Our aim is to evaluate the value of h(T ). Note that the value of the

T =

x y z

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Fig. 3.4

considered function (the function of voting) on a tuple (δ1, δ2, δ3) is equal to
0 if the number of 0 among δ1, δ2, and δ3 is maximum, and it is equal to 1 if
the number of 1 among δ1, δ2, and δ3 is maximum.

It is clear that D(T ) = 2. From Theorem 3.1 it follows that h(T ) ≥ 1. One
can show that R(T ) = 3. From Theorem 3.2 it follows that h(T ) ≥ 2. It is
not difficult to see that for any δ̄ ∈ {0, 1}3 the inequality M(T, δ̄) ≥ 2 holds.
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On the other hand, it is easy to notice that M(T, δ̄) ≤ 2 for any δ̄ ∈ {0, 1}3.
Hence, M(T ) = 2 and from Theorem 3.6 it follows that h(T ) ≥ 2. Thus, we
have the following lower bound: h(T ) ≥ 2. But it is impossible to construct
a decision tree for T which depth is equal to 2.

What to do? We should find a way to obtain exact lower bound. In the
considered case we can use the following reasoning: if the first question is, for
example, about the value of x, then we will answer that x = 0; if the second
question is, for example, about the value of y, then we will answer that y = 1.
Thus, it will be necessary to ask the third question about the value of z.

In some sense we are saying about a strategy of the first player in the game
which is modified in the following way: the first player does not choose a row
at the beginning of the game, but at least one row must satisfy his answers
on questions of the second player.

A strategy of the first player is depicted in Fig. 3.5.

❝
❄

������������

✏✏✏✏✏✏✏✏✏✏✏✮

(x, 0) (y, 0) (z, 0)
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❅
❅❅❘

�
�

��✠ ❄(x, 0) (y, 1) (z, 1)

❝
❝ ❝ ❝

❅
❅
❅❅❘

�
�

��✠ ❄(x, 1) (y, 0) (z, 1)

❝
❝ ❝ ❝

❝
❅
❅
❅❅❘

�
�

��✠ ❄(x, 1) (y, 1) (z, 0)❝ ❝ ❝
Fig. 3.5

We see that if the first player uses this strategy, the second player after any
two questions will localize the considered row in a table which is not degen-
erate. Therefore he should make additional third step, and hence, h(T ) ≥ 3.
A decision tree for T which depth is equal to 3 is depicted in Fig. 3.6.

Now we consider the notion of strategy of the first player more formally. We
will say about so-called proof-trees.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn,
m be a natural number, and m ≤ n.

A (T, m)-proof-tree is a finite directed tree G with the root in which the
length of each path from the root to a terminal node is equal to m − 1.
Nodes of this tree are not labeled. In each nonterminal node exactly n edges
start. These edges are labeled with pairs of the kind (f1, δ1), . . . , (fn, δn)
respectively where δ1, . . . , δn ∈ {0, 1}. For example, in Fig. 3.5 a (T, 3)-proof-
tree is depicted, where T is the table depicted in Fig. 3.4.

Let v be an arbitrary terminal node of G and (fi1 , δ1), . . . , (fim−1 , δm−1)
be pairs attached to edges in the path from the root of G to the terminal
node v. Denote T (v) = T (fi1 , δ1) . . . (fim−1 , δm−1).

We will say that G is a proof-tree for the bound h(T ) ≥ m if for any
terminal node v the subtable T (v) is not degenerate.
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✍✌✎☞x
✍✌✎☞y
✍✌✎☞z✍✌✎☞0
✍✌✎☞0 ✍✌✎☞1

✍✌✎☞y
✍✌✎☞1✍✌✎☞z

✍✌✎☞1✍✌✎☞0

✏✏✏✏✏✏✏✏✏✮
0

����������
1

�
��✠
0

❅
❅❅❘

1
�

��✠
0

❅
❅❅❘

1

✂
✂✂✌

0
❇
❇❇◆

1
✂
✂✂✌

0
❇
❇❇◆

1

Fig. 3.6

Theorem 3.9. Let T be a nondegenerate decision table with n columns and
m be a natural number such that m ≤ n. Then a proof-tree for the bound
h(T ) ≥ m exists if and only if the inequality h(T ) ≥ m holds.

Proof. Let columns of T be labeled with attributes f1, . . . , fn.
Let G be a proof-tree for the bound h(T ) ≥ m. We prove that h(T ) ≥ m.

Let Γ be a decision tree for T such that h(Γ ) = h(T ). Choose a path in Γ
from the root to some node, and a path in G from the root to a terminal node
in the following way. Let the root of Γ be labeled with the attribute fi1 . We
find an edge which starts in the root of G and is labeled with a pair (fi1 , δ1).
We pass along this edge in the tree G and pass along the edge labeled with δ1

in the tree Γ . Then we will repeat the considered procedure until we come in
the tree G to a terminal node v. In the same time we will come to a node w of
the tree Γ . It is clear that T (v) coincides with the subtable of T consisting of
rows for which during the work of Γ we pass through the node w. Since T (v)
is a not a degenerate table, w is not a terminal node. Therefore the depth of
Γ is at least m. Since h(Γ ) = h(T ), we obtain h(T ) ≥ m.

Let h(T ) ≥ m. We prove by induction on m that there exists a proof-
tree for the bound h(T ) ≥ m. Let m = 1. Then in the capacity of such
proof-tree we can take the tree which consists of exactly one node. Let us
assume that for some m ≥ 1 for each decision table T with h(T ) ≥ m there
exists a proof-tree for the bound h(T ) ≥ m. Let T be a decision table for
which h(T ) ≥ m + 1. We show that there exists a proof-tree for the bound
h(T ) ≥ m + 1. Let i ∈ {1, . . . , n}. It is clear that there exists δi ∈ {0, 1} such
that h(T (fi, δi)) ≥ m (in the opposite case, h(T ) ≤ m which is impossible).
Using inductive hypothesis we obtain that for the table T (fi, δi) there exists
a proof-tree Gi for the bound h(T (fi, δi)) ≥ m. Let us construct a proof-tree
G. In the root of G, n edges start. These edges enter the roots of the trees
G1, . . . , Gn and are labeled with pairs (f1, δ1), . . . , (fn, δn). One can show
that G is a proof-tree for the bound h(T ) ≥ m + 1. ⊓⊔
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Example 3.10. Let us consider the decision table T depicted in Fig. 3.1. We
know that h(T ) = 2 (see Example 3.3). We construct a proof-tree for the
bound h(T ) ≥ 2. To this end we must find for each i ∈ {1, 2, 3} a number
δi ∈ {0, 1} such that T (fi, δi) is a nondegenerate table.

It is clear that T (f1, 1), T (f2, 1), and T (f3, 1) are nondegenerate tables.
Corresponding proof-tree for the bound h(T ) ≥ 2 is depicted in Fig. 3.7.

❞
❄

����������

✏✏✏✏✏✏✏✏✏✮ ❞❞❞(f1, 1) (f2, 1) (f3, 1)

Fig. 3.7

We can find exact formula for the value L(T ) in terms of parameters
M(T, δ̄).

Theorem 3.11. Let T be a decision table and Δ(T ) be the set of rows of T .
Then L(T, δ̄) = M(T, δ̄) for any row δ̄ ∈ Δ(T ) and L(T ) = max{M(T, δ̄) :
δ̄ ∈ Δ(T )}.

Proof. Let δ̄ be a row of T . We know that M(T, δ̄) is the minimum number of
columns on which δ̄ is different from all rows with other decisions. It is clear
that M(T, δ̄) is equal to the minimum length L(T, δ̄) of a decision rule which
is realizable for δ̄ and true for T . Therefore L(T ) = maxδ̄∈∆(T ) M(T, δ̄). ⊓⊔

Corollary 3.12. L(T ) ≤ M(T ) ≤ h(T ) ≤ R(T ).

Example 3.13. For the table T1 depicted in Fig. 3.1 we have max{M(T1, δ̄) :
δ̄ ∈ Δ(T1)} = 2 (see Example 3.5). Therefore L(T1) = 2.

For the decision table T2 depicted in Fig. 3.4 we have max{M(T2, δ̄) : δ̄ ∈
Δ(T2)} = 2 (see Example 3.8). Therefore L(T2) = 2.

3.2 Upper Bounds

First, we consider an upper bound on the value R(T ). It will be also an upper
bound on the values L(T ) and h(T ). We denote by N(T ) the number of rows
in the table T .

Theorem 3.14. Let T be a decision table. Then

R(T ) ≤ N(T )− 1 .

Proof. We prove this inequality by induction on N(T ). If N(T ) = 1 then,
evidently, R(T ) = 0 since there are no pairs of rows with different decisions.
Let m ≥ 1 and for any decision table T with N(T ) ≤ m the inequality
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R(T ) ≤ N(T ) − 1 holds. Let T be a decision table with N(T ) = m + 1.
We prove that R(T ) ≤ m. Since T has at least two rows and rows of T are
pairwise different, there exists a column fi of T which has both 0 and 1.

Let us consider subtables T (fi, 0) and T (fi, 1). It is clear that each of
these subtables has at most m rows. Using induction hypothesis we conclude
that for δ ∈ {0, 1}, there exists a test Bδ for the table T (fi, δ) such that
|Bδ| ≤ N(T (fi, δ)) − 1. Denote B = {fi} ∪ B0 ∪ B1. It is clear that B is a
test for the table T and |B| ≤ 1 + N(T (fi, 0)) − 1 + N(T (fi, 1)) − 1.

Since N(T ) = N(T (fi, 0))+N(T (fi, 1)), we have |B| ≤ N(T )−1. Therefore
R(T ) ≤ N(T ) − 1. ⊓⊔

Example 3.15. Let n be a natural number. We consider a decision table Tn

which contains n columns labeled with conditional attributes f1, . . . , fn and
n + 1 rows. For i = 1, . . . , n, the i-th row has 1 only at the intersection with
the column fi. This row is labeled with the decision 1. The last (n + 1)-th
row is filled by 0 only and is labeled with the decision 2. One can show that
N(Tn) = n + 1 and R(Tn) = n. Thus, the bound from Theorem 3.14 is
unimprovable in the general case.

Example 3.16. Let T be the table depicted in Fig. 3.1. We know (see Example
3.3) that R(T ) = 2. Theorem 3.14 gives us the upper bound R(T ) ≤ 4.

Now, we consider an upper bound on the value h(T ). It will be also an upper
bound on the value L(T ).

Let our decision table T have a column fi in which the number of 0 is
equal to the number of 1. Then after computation of fi value we localize
the considered row in a subtable which has one-half rows of the table T . If
at every step such attribute is found, then we will construct a decision tree
which depth is about log2 N(T ).

Of course, very often we have no such attributes. What to do in this case?
We will try to find a set of attributes {fi1 , . . . , fim

} such that if we compute
values of attributes fi1 , . . . , fim

then we either will know the decision corre-
sponding to the considered row, or localize the considered row in a subtable,
which has at most one-half of rows of the table T .

Theorem 3.17. Let T be a decision table. Then

h(T ) ≤ M(T ) log2 N(T ) .

Proof. Let T be a degenerate table. Then h(T ) = 0, M(T ) = 0 and the
considered inequality holds. Let T be a nondegenerate table with n columns
which are labeled with attributes f1, . . . , fn. For i = 1, . . . , n, let σi be a
number from {0, 1} such that

N(T (fi, σi)) = max{N(T (fi, 0)), N(T (fi, 1))} .

Then there exist attributes fi1 , . . . , fim
∈ {f1, . . . , fn} such that m ≤ M(T )

and T (fi1 , σi1 ) . . . (fim
, σim

) is a degenerate table.
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Now we begin to describe the work of a decision tree Γ on a row r of the de-
cision table T . First, we find sequentially values of the attributes fi1 , . . . , fim

on the considered row. If fi1 = σi1 , . . . , fim
= σim

then our row is local-
ized in the degenerate table T (fi1 , σi1) . . . (fim

, σim
). So we know the de-

cision attached to this row. Let now there exist k ∈ {1, . . . , m} such that
fi1 = σi1 , . . . , fik−1

= σik−1
and fik

�= σik
. In this case, the considered row is

localized in the subtable

T ′ = T (fi1 , σi1 ) . . . (fik−1
, σik−1

)(fik
,¬σik

)

where ¬σ = 0 if σ = 1, and ¬σ = 1 if σ = 0. Since

N(T (fik
, σik

)) ≥ N(T (fik
,¬σik

))

and N(T ) = N(T (fik
, σik

)) + N(T (fik
,¬σik

)), we obtain N(T (fik
,¬σik

)) ≤
N(T )/2 and N(T ′) ≤ N(T )/2.

Later the tree Γ works similarly but instead of the table T we will consider
its subtable T ′. From Lemma 3.4 it follows that M(T ′) ≤ M(T ).

The process described above will be called a big step of the decision tree
Γ work. During a big step we find values of at most M(T ) attributes. As a
result we either find the decision attached to the considered row, or localize
this row in a subtable which has at most one-half of rows of the initial table.

Let during the work with the row r the decision tree Γ make p big steps.
After the big step number p − 1 the considered row will be localized in a
subtable T ′′ of the table T . Since we must make additional big step, N(T ′′) ≥
2. It is clear that N(T ′′) ≤ N(T )/2p−1. Therefore, 2p ≤ N(T ) and p ≤
log2 N(T ). Taking into account that during each big step we compute values
of at most M(T ) attributes, we conclude that the depth of Γ is at most
M(T ) log2 N(T ). ⊓⊔

Example 3.18. Let us apply the considered in the proof of Theorem 3.17 pro-
cedure to the decision table T depicted in Fig. 3.1. As a result we obtain the
decision tree depicted in Fig. 3.2. So, h(T ) ≤ 2. When we apply the bound
from this theorem to the table T we obtain h(T ) ≤ 2 log2 5.

In the general case, it is impossible to use procedure from the proof of
Theorem 3.17 as an effective algorithm for decision tree construction. When
we choose for the tuple (σ1, . . . , σn) attributes fi1 , . . . , fim

such that m ≤
M(T ) and T (fi1 , σi1) . . . (fim

, σim
) is a degenerate table, we (in the general

case) solve an NP -complete problem.
It is possible to improve the bound from Theorem 3.17 and show that

h(T ) ≤

⎧

⎨

⎩

M(T ), if M(T ) ≤ 1 ,
2 log2 N(T ) + M(T ), if 2 ≤ M(T ) ≤ 3 ,
M(T ) log2 N(T )

log2 M(T ) + M(T ), if M(T ) ≥ 4 .
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It is possible to show also that this bound does not allow for essential im-
provement. Corresponding results can be found in [37].

A nonempty decision table T will be called a diagnostic table if rows of this
table are labeled with pairwise different decisions. Note, that for a diagnostic
table T the equality D(T ) = N(T ) holds.

Corollary 3.19. Let T be a diagnostic decision table. Then

max{M(T ), log2 N(T )} ≤ h(T ) ≤ M(T ) log2 N(T ) .

3.3 Conclusions

The chapter is devoted to the study of lower and upper bounds on the depth
of decision trees, length of decision rules, and cardinality of tests. Bounds
h(T ) ≥ M(T ) (Theorem 3.6) and h(T ) ≤ M(T ) log2 N(T ) (Theorem 3.17)
were published in [37]. Note that the parameter M(T ) is close to the notion
of extended teaching dimension [24, 25], and the parameter L(T ) (see Theo-
rem 3.11) is close to the notion of teaching dimension [22] . The algorithm of
decision tree construction considered in the proof of Theorem 3.17 is in some
sense similar to the “halving” algorithm [31]. The rest of results (with the ex-
ception of Theorems 3.11 and 3.14 which should be considered as “folklore”)
was published in [53].

We can consider not only binary decision tables filled by numbers from
{0, 1} but also k-valued tables filled by numbers from the set {0, 1, . . . , k−1}
where k > 2. For such tables, all results considered above are true with the
exception of Theorem 3.1, Theorem 3.2, and Corollary 3.19.

Instead of the bounds h(T ) ≥ log2 D(T ) and h(T ) ≥ log2(R(T ) + 1),
for k-valued tables we will have the bounds h(T ) ≥ logk D(T ) and h(T ) ≥
logk((k − 1)R(T ) + 1).

Instead of the bounds max{M(T ), log2 N(T )} ≤ h(T ) ≤ M(T ) log2 N(T ),
for k-valued diagnostic tables we will have the bounds

max{M(T ), logk N(T )} ≤ h(T ) ≤ M(T ) log2 N(T ) .
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Algorithms for Construction of Tests,
Decision Rules and Trees

This chapter is devoted to the study of algorithms for construction of tests,
decision rules and trees. Our aim is to construct tests with minimum cardi-
nality, decision rules with minimum length, and decision trees with minimum
depth. Unfortunately, all the three optimization problems are NP -hard. So
we consider not only exact but also approximate algorithms for optimization.

The chapter consists of four sections. In Sect. 4.1, we study approximate
(greedy) algorithms for optimization of tests and decision rules. These algo-
rithms are based on greedy algorithm for the set cover problem.

Section 4.2 deals with greedy algorithm for decision tree construction.
In Sect. 4.3, we study exact algorithms for optimization of decision trees

and rules which are based on dynamic programming approach. We show that
if P �= NP then there is no similar algorithms for test optimization.

Section 4.4 contains conclusions.

4.1 Approximate Algorithms for Optimization of Tests

and Decision Rules

In this section, we consider three problems of optimization connected with
decision tables. Problem of minimization of test cardinality: for a given de-
cision table T we should construct a test for this table, which has minimum
cardinality. Problem of minimization of decision rule length: for a given de-
cision table T and row r of T we need to construct a decision rule over T
which is true for T , realizable for r, and has minimum length. Problem of
optimization of decision rule system: for a given decision table T we should
construct a complete decision rule system S for T with minimum value of
parameter L(S).

We will show that these problems are NP -hard and consider some results
on precision of approximate polynomial algorithms for the problem solving.
Also we will study greedy (approximate) algorithms for these problems. First,
we consider well known set cover problem.

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 47–67.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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4.1.1 Set Cover Problem

Let A be a set containing N > 0 elements, and F = {S1, . . . , Sp} be a family
of subsets of the set A such that A =

⋃p
i=1 Si. A subfamily {Si1 , . . . , Sit

} of

the family F will be called a cover if
⋃t

j=1 Sij
= A. The problem of searching

for a cover with minimum cardinality t is called the set cover problem. It is
well known that this problem is an NP -hard problem. U. Feige [19] proved
that if NP � DTIME(nO(log log n)) then for any ε, 0 < ε < 1, there is no
polynomial algorithm that constructs a cover which cardinality is at most
(1 − ε)Cmin lnN where Cmin is the minimum cardinality of a cover.

We now consider well known greedy algorithm for set cover problem.

Set B := A, and COV ER := ∅.
(*) In the family F we find a set Si with minimum index i such that

|Si ∩ B| = max{|Sj ∩ B| : Sj ∈ F} .

Then we set B := B \ Si and COV ER := COV ER ∪ {Si}. If B = ∅ then
we finish the work of the algorithm. The set COV ER is the result of the
algorithm work. If B �= ∅ then we return to the label (*).

We denote by Cgreedy the cardinality of the cover constructed by greedy
algorithm. Remind that Cmin is the minimum cardinality of a cover.

Theorem 4.1. Cgreedy ≤ Cmin lnN + 1.

Proof. Denote m = Cmin. If m = 1 then, as it is not difficult to show,
Cgreedy = 1, and the considered inequality holds. Let m ≥ 2. Let Si be a
subset of maximum cardinality in the family F . It is clear that |Si| ≥ N/m
(in the opposite case Cmin > m which is impossible). So, after the first step
we will have at most N −N/m = N(1− 1/m) uncovered elements in the set
A. After the first step we will have the following set cover problem: the set
A \ Si and the family {S1 \ Si, . . . , Sp \ Si}. For this problem, the minimum
cardinality of a cover is at most m. So, after the second step, when we choose
a set Sj \ Si with maximum cardinality, the number of uncovered elements

in the set A will be at most N(1 − 1/m)2, etc.
Let the greedy algorithm in the process of cover construction make g steps

(and construct a cover of cardinality g). Then after the step number g−1 we

have at least one uncovered element in the set A. Therefore N(1 − 1/m)
g−1 ≥

1 and N ≥ (1+1/(m−1))g−1. If we take the natural logarithm of both sides
of this inequality we obtain lnN ≥ (g − 1) ln(1 + 1/(m − 1)).

It is known that for any natural r the inequality ln(1 + 1/r) > 1/(r + 1)
holds. Therefore lnN > (g − 1)/m and g < m lnN + 1. Taking into account
that m = Cmin and g = Cgreedy we obtain Cgreedy < Cmin lnN + 1. ⊓⊔

The considered bound was obtained independently by different authors: by
R. G Nigmatullin [68], D. S. Johnson [26], etc. It was improved by P. Slav́ık
in [81, 82]:
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Cgreedy ≤ Cmin(lnN − ln lnN + 1) .

Also P. Slav́ık has shown that it is impossible to improve this bound
essentially.

Using the mentioned result of U. Feige we obtain that if NP � DTIME
(nO(log log n)) then the greedy algorithm is close to the best (from the point
of view of precision) approximate polynomial algorithms for solving the set
cover problem. Unfortunately, the approximation ratio of greedy algorithm
grows almost as ln N .

Example 4.2. Consider a set cover problem depicted in Fig. 4.1. The set A

a1 a3 a5

a2 a4 a6

S2 S3 S4

S1

✛
✚

✘
✙

✛

✚

✘

✙

✛

✚

✘

✙

✛

✚

✘

✙
Fig. 4.1

consists of six elements a1, . . . , a6, and F = {S1, S2, S3, S4}. Let us apply
to this problem the greedy algorithm considered above. It is clear that this
algorithm constructs the cover {S1, S2, S3, S4}. One can show that the mini-
mum cover (cover with minimum cardinality) is {S2, S3, S4}. So, sometimes
the greedy algorithm constructs covers which are not optimal.

All the result relating to the set cover problem are true if we consider the
class of all individual set cover problems. But often we deal with subclasses
of this class. Let us consider, for example, the vertex cover problem. Let G
be an undirected graph. A subset B of vertices of G is called a vertex cover
if for any edge of G at least one vertex from B is incident to this edge (an
edge is incident to two vertices which are the ends of this edge). We will say
that a vertex covers edges that are incident to this vertex.

The problem of searching for a vertex cover with minimum cardinality is
known as the vertex cover problem. It is an NP -hard problem. It is known
that the approximation ratio of greedy algorithm for this problem grows
almost as natural logarithm on the number of edges.

Let us consider the following simple algorithm for the vertex cover problem
solving. During each step we choose an uncovered edge and add the ends of
this edge (two vertices which are incident to this edge) to the constructed
vertex cover. It is clear that at least one end of the chosen edge must be in
any vertex cover. So, the cardinality of constructed vertex cover is at most
two times to the minimum cardinality of vertex cover.
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4.1.2 Tests: From Decision Table to Set Cover

Problem

We can use the greedy algorithm for set cover problem to construct a test for
given decision table T .

Let T be a decision table containing n columns labeled with f1, . . . , fn. We
consider a set cover problem A(T ), F (T ) = {S1, . . . , Sn} where A(T ) is the
set of all unordered pairs of rows of the table T with different decisions. For
i = 1, . . . , n, the set Si coincides with the set of all pairs of rows from A(T )
which are different in the column fi. One can show that the set of columns
{fi1 , . . . , fim

} is a test for the table T iff the subfamily {Si1 , . . . , Sim
} is a

cover for the set cover problem A(T ), F (T ).
We denote by P (T ) the number of unordered pairs of rows of T which have

different decisions. It is clear that |A(T )| = P (T ). It is clear also that for the
considered set cover problem Cmin = R(T ).

Let us apply the greedy algorithm to the considered set cover problem.
This algorithm constructs a cover which corresponds to a test for the table
T . From Theorem 4.1 it follows that the cardinality of this test is at most

R(T ) lnP (T ) + 1 .

We denote by Rgreedy(T ) the cardinality of the test constructed by the follow-
ing algorithm: for a given decision table T we construct the set cover problem
A(T ), F (T ) and then apply to this problem the greedy algorithm for set cover
problem. According to what has been said we have the following statement.

Theorem 4.3. Let T be a nondegenerate decision table. Then

Rgreedy(T ) ≤ R(T ) lnP (T ) + 1 .

It is clear that the considered algorithm for test construction has polynomial
time complexity.

Example 4.4. Let us apply the considered algorithm to the table T depicted in
Fig. 3.1. For this table A(T ) = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4),
(3, 5)} (we are writing here pairs of numbers of rows instead of pairs of rows),
F (T ) = {S1, S2, S3}, S1 = {(1, 2), (1, 4), (2, 5), (3, 4)}, S2 = {(1, 4), (1, 5),
(2, 4), (2, 5), (3, 4), (3, 5)} and S3 = {(1, 2), (1, 3), (1, 5), (2, 4), (3, 4)}. At the
first step, the greedy algorithm chooses S2, and at the second step this algo-
rithm chooses S3. The constructed cover is {S2, S3}. The corresponding test
is equal to {f2, f3}. As we know, this is the reduct with minimum cardinality.

4.1.3 Decision Rules: From Decision Table to Set

Cover Problem

We can apply the greedy algorithm for set cover problem to construct decision
rules.
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Let T be a nondegenerate decision table containing n columns labeled
with attributes f1, . . . , fn, and r = (b1, . . . , bn) be a row of T labeled with a
decision t. We consider a set cover problem A(T, r), F (T, r) = {S1, . . . , Sn}
where A(T, r) is the set of all rows of T with decisions different from t. For
i = 1, . . . , n, the set Si coincides with the set of all rows from A(T, r) which
are different from r in the column fi. One can show that the decision rule

fi1 = bi1 ∧ . . . ∧ fim
= bim

→ t

is true for T (it is clear that this rule is realizable for r) if and only if the
subfamily {Si1 , . . . , Sim

} is a cover for the set cover problem A(T, r), F (T, r).
We denote by P (T, r) the number of rows of T with decisions different from

t. It is clear that |A(T, r)| = P (T, r). It is clear also that for the considered
set cover problem Cmin = L(T, r).

Let us apply the greedy algorithm to the considered set cover problem.
This algorithm constructs a cover which corresponds to a decision rule that
is true for T and realizable for r. From Theorem 4.1 it follows that the length
of this decision rule is at most

L(T, r) lnP (T, r) + 1 .

We denote by Lgreedy(T, r) the length of the rule constructed by the following
polynomial algorithm: for a given decision table T and row r of T we construct
the set cover problem A(T, r), F (T, r) and then apply to this problem greedy
algorithm for set cover problem. According to what has been said above we
have the following statement.

Theorem 4.5. Let T be a nondegenerate decision table and r be a row of T .
Then

Lgreedy(T, r) ≤ L(T, r) lnP (T, r) + 1 .

Example 4.6. Let us apply the considered algorithm to the table T depicted
in Fig. 3.1 and to the first row of this table. For i = 1, . . . , 5, we denote by ri

the i-th row of T . We have A(T, r1) = {r2, r3, r4, r5}, F (T, r1) = {S1, S2, S3},
S1 = {r2, r4}, S2 = {r4, r5}, S3 = {r2, r3, r5}. At the first step, the greedy
algorithm chooses S3, and at the second step this algorithm chooses S1. The
constructed cover is {S1, S3}. The corresponding decision rule

f1 = 1 ∧ f3 = 1 → 1

has minimum length among rules over T that are true for T and realizable
for r1.

We can use the considered algorithm to construct a complete decision rule
system for T . To this end we apply this algorithm sequentially to the table
T and to each row r of T . As a result we obtain a system of rules S in which
each rule is true for T and for every row of T there exists a rule from S which
is realizable for this row.
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We denote Lgreedy(T ) = L(S) and K(T ) = max{P (T, r) : r ∈ Δ(T )},
where Δ(T ) is the set of rows of T . It is clear that L(T ) = max{L(T, r) : r ∈
Δ(T )}. Using Theorem 4.5 we obtain

Theorem 4.7. Let T be a nondegenerate decision table. Then

Lgreedy(T ) ≤ L(T ) lnK(T ) + 1 .

Example 4.8. Let us apply the considered algorithm to the table T depicted
in Fig. 3.1. As a result we obtain the following complete decision rules system
for T :

S = {f1 = 1 ∧ f3 = 1 → 1, f1 = 0 ∧ f2 = 1 → 2,

f2 = 1 ∧ f3 = 0 → 2, f2 = 0 → 3, f2 = 0 → 3} .

For this system L(S) = 2. We know (see example 3.13) that L(T ) = 2.

4.1.4 From Set Cover Problem to Decision Table

To understand the complexity of the problem of minimization of test car-
dinality we consider a reduction of an arbitrary set cover problem to the
problem of minimization of test cardinality for a decision table.

Let us consider a set cover problem A, F where A = {a1, . . . , aN} and
F = {S1, . . . , Sm}. Define a decision table T (A, F ). This table has m columns,
corresponding to sets S1, . . . , Sm respectively (these columns are labeled with
f1, . . . , fm), and N + 1 rows. For j = 1, . . . , N , the j-th row corresponds to
the element aj . The last (N + 1)-th row is filled by 0. For j = 1, . . . , N and
i = 1, . . . , m, at the intersection of j-th row and i-th column 1 stays if and
only if aj ∈ Si. The decision, corresponding to the last row, is equal to 2. All
other rows are labeled with the decision 1.

Example 4.9. For the set cover problem A, F considered in Example 4.2 we
construct the decision table T (A, F ). We have A = {a1, a2, a3, a4, a5, a6},
F = {S1, S2, S3, S4}, S1 = {a1, a3, a5}, S2 = {a1, a2}, S3 = {a3, a4} and
S4 = {a5, a6}. The corresponding decision table T (A, F ) is depicted in
Fig. 4.2.

One can show that a subfamily {Si1 , . . . , Sit
} is a cover for A, F if and

only if the set of columns {fi1 , . . . , fit
} is a test for the table T (A, F ).

So we have a polynomial time reduction of the set cover problem to the
problem of minimization of test cardinality. Since the set cover problem is
NP -hard, we have the following statement:

Proposition 4.10. The problem of minimization of test cardinality is NP -
hard.
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f1 f2 f3 f4

a1 1 1 0 0 1
a2 0 1 0 0 1
a3 1 0 1 0 1
a4 0 0 1 0 1
a5 1 0 0 1 1
a6 0 0 0 1 1

0 0 0 0 2

Fig. 4.2

Assume that for some ε, 0 < ε < 1, there exists a polynomial algorithm
which for a given nondegenerate decision table T constructs a test for T
which cardinality is at most

(1 − ε)R(T ) lnP (T ) .

Let us apply this algorithm to the decision table T (A, F ). As a result we
obtain a cover for A, F which cardinality is at most (1 − ε)Cmin lnN (since
Cmin = R(T (A, F )) and P (T (A, F )) = N = |A|) which is impossible if
NP � DTIME(nO(log log n)). Thus, we have

Theorem 4.11. If NP � DTIME(nO(log log n)) then for any ε, 0 < ε < 1,
there is no polynomial algorithm that for a given nondegenerate decision table
T constructs a test for T which cardinality is at most

(1 − ε)R(T ) lnP (T ) .

Now we evaluate the complexity of problem of minimization of decision
rule length and the complexity of problem of optimization of decision rule
system.

One can show that a subfamily {Si1 , . . . , Sit
} is a cover for A, F if and

only if the decision rule

fi1 = 0 ∧ . . . ∧ fit
= 0 → 2

is true for T (A, F ) and is realizable for the last row of the table T (A, F ).
So we have a polynomial time reduction of the set cover problem to the
problem of minimization of decision rule length. Since the set cover problem
is NP -hard, we have the following statement:

Proposition 4.12. The problem of minimization of decision rule length is
NP -hard.

Let us assume that for some ε, 0 < ε < 1, there exists a polynomial algorithm
which for a given nondegenerate decision table T and row r of T constructs
a decision rule which is true for T and realizable for r, and which length is
at most
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(1 − ε)L(T, r) lnP (T, r) .

Let us apply this algorithm to the decision table T (A, F ) and the last row r
of T (A, F ). As a result we obtain a cover for A, F which cardinality is at most
(1 − ε)Cmin lnN (since Cmin = L(T (A, F ), r) and P (T (A, F ), r) = N = |A|)
which is impossible if NP � DTIME(nO(log log n)). Thus, we have

Theorem 4.13. If NP � DTIME(nO(log log n)) then for any ε, 0 < ε < 1,
there is no polynomial algorithm that for a given nondegenerate decision table
T and row r of T constructs a decision rule which is true for T , realizable
for r, and which length is at most

(1 − ε)L(T, r) lnP (T, r) .

Let us consider the decision table T (A, F ). For j = 1, . . . , N + 1, we denote
by rj the j-th row of T (A, F ). Let j ∈ {1, . . . , N}. We know that there exists
a subset Si ∈ F such that aj ∈ Si. Therefore the decision rule

fi = 1 → 1

is true for T (A, F ) and realizable for rj . Thus L(T (A, F ), rj) = 1 for any j ∈
{1, . . . , N}. Hence L(T (A, F )) = L(T (A, F ), r) where r = rN+1. So if we find
a complete decision rule system S for T (A, F ) such that L(S) = L(T (A, F ))
then in this system we will find a decision rule of the kind

fi1 = 0 ∧ . . . ∧ fit
= 0 → 2

for which t = L(T (A, F ), r). We know that {Si1 , . . . , Sit
} is a set cover for

A, F with minimum cardinality. Since the set cover problem is NP -hard, we
have the following statement:

Proposition 4.14. The problem of optimization of decision rule system is
NP -hard.

Let us assume that for some ε, 0 < ε < 1, there exists a polynomial algo-
rithm which for a given nondegenerate decision table T constructs a complete
decision rule system S for T such that

L(S) ≤ (1 − ε)L(T ) lnK(T ) .

Let us apply this algorithm to the decision table T (A, F ). In the constructed
complete decision rule system for T (A, F ) we will find a decision rule of the
kind

fi1 = 0 ∧ . . . ∧ fit
= 0 → 2

which is true for T and realizable for the last row r of the table T (A, F ). We
know that {Si1 , . . . , Sit

} is a cover for A, F and t ≤ (1−ε)L(T (A, F )) lnK(T ).
We know also that L(T (A, F )) = L(T (A, F ), r) = Cmin and K(T ) = N .
Therefore we have a polynomial algorithm that for a given set cover problem
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A, F constructs a cover for A, F which cardinality is at most (1−ε)Cmin lnN ,
which is impossible if NP � DTIME(nO(log log n)).

Thus, we have

Theorem 4.15. If NP � DTIME(nO(log log n)) then for any ε, 0 < ε < 1,
there is no polynomial algorithm that for a given nondegenerate decision table
T constructs a complete decision rule system S for T such that

L(S) ≤ (1 − ε)L(T ) lnK(T ) .

4.2 Approximate Algorithm for Decision Tree

Optimization

In this section, we study problem of minimization of decision tree depth: for
a given decision table T it is required to construct a decision tree for this
table which has minimum depth.

This problem is NP -hard. We will consider some results on precision of
polynomial approximate algorithms for the problem solving and will concen-
trate on the study of greedy algorithm for decision tree depth minimization.

We now describe an algorithm U which for a decision table T constructs
a decision tree U(T ) for the table T . Let T have n columns labeled with
attributes f1, . . . , fn.

Step 1: Construct a tree consisting of a single node labeled with the table
T and proceed to the second step.

Suppose t ≥ 1 steps have been made already. The tree obtained at the
step t will be denoted by G.

Step (t + 1): If no one node of the tree G is labeled with a table then we
denote by U(T ) the tree G. The work of the algorithm U is completed.

Otherwise, we choose certain node v in the tree G which is labeled with a
subtable of the table T . Let the node v be labeled with the table T ′. If T ′ is
a degenerate table (all rows of the table are labeled with the same decision
d) then instead of T ′ we mark the node v by the number d and proceed to
the step (t + 2). Let T ′ be a nondegenerate table. Then, for i = 1, . . . , n, we
compute the value

Q(fi) = max{P (T ′(fi, 0)), P (T ′(fi, 1))} .

We mark the node v by the attribute fi0 where i0 is the minimum i for which
Q(fi) has minimum value. For each δ ∈ {0, 1}, we add to the tree G the node
v(δ), mark this node by the table T ′(fi0 , δ), draw the edge from v to v(δ),
and mark this edge by δ. Proceed to the step (t + 2).

Example 4.16. Let us apply the algorithm U to the decision table T depicted
in Fig. 3.1. After the first step, we obtain the tree which has only one node
v that is labeled with the table T . The table T is not degenerate. So, for
i = 1, 2, 3, we compute the value
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Q(fi) = max{P (T (fi, 0)), P (T (fi, 1))} .

It is not difficult to see that Q(f1) = max{1, 3} = 3, Q(f2) = max{0, 2} = 2,
and Q(f3) = max{2, 1} = 2. It is clear that 2 is the minimum index for which
the value of Q(f2) is minimum. So, after the second step we will have the tree
G depicted in Fig. 4.3. We omit next steps. One can show that as a result of
the algorithm U work for the table T , we will obtain the tree U(T ) depicted
in Fig. 3.2.

✒✑✓✏✟✟✟✟✟✙

❍❍❍❍❍❥❞ ❞
f2

0 1

1 0 0 3

0 0 1 3

f1 f2 f3

1 1 1 1

0 1 0 2

1 1 0 2

f1 f2 f3

Fig. 4.3

Now, we evaluate the number of steps which the algorithm U makes during
the construction of the decision tree U(T ).

Theorem 4.17. Let T be a decision table. Then during the construction of
the tree U(T ) the algorithm U makes at most 2N(T ) + 1 steps.

Proof. One can show that for each terminal node of the tree U(T ) there
exists a row of T for which the work of U(T ) finishes in this node. Therefore
the number of terminal nodes in U(T ) is at most N(T ). It is not difficult
to prove that the number of working nodes in U(T ) is equal to the number
of terminal nodes minus 1. Simple analysis of the algorithm U work shows
that the number of steps of U in the process of the tree U(T ) construction is
equal to the number of nodes in U(T ) plus 2. Therefore the number of steps
is bounded from above by 2N(T ) + 1. ⊓⊔

Using this theorem it is not difficult to prove that the algorithm U has poly-
nomial time complexity.

We now consider a lemma which will be used later in the proof of a bound
on algorithm U precision (as an algorithm for minimization of decision tree
depth).

Lemma 4.18. Let T be a decision table, T ′ be a subtable of T , fi be an
attribute attached to a column of T , and δ ∈ {0, 1}. Then

P (T ) − P (T (fi, δ)) ≥ P (T ′) − P (T ′(fi, δ)) .
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Proof. Denote by B (respectively by B′) the set of pairs of rows of T (respec-
tively of T ′) which have different decisions and in each of which at least one
row has in the column fi the number that is not equal to δ. One can show
that B′ ⊆ B, |B′| = P (T ′) − P (T ′(fi, δ)) and |B| = P (T ) − P (T (fi, δ)). ⊓⊔

Theorem 4.19. Let T be a nondegenerate decision table. Then

h(U(T )) ≤ M(T ) lnP (T ) + 1 .

Proof. Let T be a table with n columns labeled with attributes f1, . . . , fn.
For i = 1, . . . , n, denote by σi a number from {0, 1} such that P (T (fi, σi)) =
max{P (T (fi, σ)) : σ ∈ {0, 1}}. It is clear that the root of the tree U(T ) is
labeled with attribute fi0 where i0 is the minimum i for which P (T (fi, σi))
has minimum value. Of course, Q(fi) = P (T (fi, σi)).

Let us show that

P (T (fi0 , σi0 )) ≤ (1 − 1/M(T ))P (T ) .

It is clear that there exist attributes fi1 , . . . , fim
∈ {f1, . . . , fn} such that

T (fi1 , σi1) . . . (fim
, σim

) is a degenerate table and m ≤ M(T ). Evidently,
P (T (fi1 , σi1 ) . . . (fim

, σim
)) = 0. Therefore P (T )− [P (T )− P (T (fi1 , σi1 ))] −

[P (T (fi1 , σi1 ))−P (T (fi1 , σi1)(fi2 , σi2 ))]−. . .−[P (T (fi1 , σi1). . .(fim−1 , σim−1))
−P (T (fi1 , σi1) . . . (fim

, σim
))] = P (T (fi1 , σi1 ) . . . (fim

, σim
)) = 0.

From Lemma 4.18 it follows that, for j = 1, . . . , m − 1, P (T (fi1 , σi1 ) . . .
(fij

, σij
))−P (T (fi1 , σi1). . .(fij

, σij
)(fij+1 , σij+1 ))≤ P (T )−P (T (fij+1 , σij+1 )).

Therefore P (T )−
∑m

j=1(P (T )−P (T (fij
, σij

))) ≤ 0. Since P (T (fi0 , σi0 )) ≤
P (T (fij

, σij
)), j = 1, . . . , m, we have P (T ) − m(P (T ) − P (T (fi0 , σi0))) ≤ 0

and P (T (fi0 , σi0)) ≤ (1 − 1/m)P (T ). Taking into account that m ≤ M(T )
we obtain P (T (fi0 , σi0)) ≤ (1 − 1/M(T ))P (T ).

Assume that M(T ) = 1. From the obtained inequality and from the de-
scription of the algorithm U it follows that h(U(T )) = 1. So, if M(T ) = 1
then the statement of theorem is true.

Let now M(T ) ≥ 2. Consider a longest path in the tree U(T ) from the
root to a terminal node. Let its length be equal to k. Let working nodes of
this path be labeled with attributes fj1 , . . . , fjk

, where fj1 = fi0 , and edges
be labeled with numbers δ1, . . . , δk. For t = 1, . . . , k, we denote by Tt the
table T (fj1 , δ1) . . . (fjt

, δt). From Lemma 3.4 it follows that M(Tt) ≤ M(T )
for t = 1, . . . , k. We have proved that P (T1) ≤ P (T )(1 − 1/M(T )).

One can prove in the same way that P (Tt) ≤ P (T )(1 − 1/M(T ))t. Con-
sider the table Tk−1. For this table P (Tk−1) ≤ P (T )(1− 1/M(T ))k−1. Using
the description of the algorithm U we conclude that Tk−1 is a nondegener-
ate table. Therefore P (Tk−1) ≥ 1. So, we have 1 ≤ P (T )(1 − 1/M(T ))k−1,
(M(T )/(M(T ) − 1))k−1 ≤ P (T ) and (1 + 1/(M(T ) − 1))k−1 ≤ P (T ).
If we take natural logarithm of both sides of this inequality we obtain
(k − 1) ln(1 + 1/(M(T ) − 1)) ≤ lnP (T ). It is known that for any natural
r the inequality ln(1 + 1/r) > 1/(r + 1) holds. Since M(T ) ≥ 2, we obtain
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(k−1)/M(T ) < lnP (T ) and k < M(T ) lnP (T )+1. Taking into account that
k = h(U(T )) we obtain h(U(T )) < M(T ) lnP (T ) + 1. ⊓⊔

Using the bound from Theorem 3.6 we obtain the following

Corollary 4.20. For any nondegenerate decision table T

h(U(T )) ≤ h(T ) lnP (T ) + 1 .

It is possible to improve the considered bounds and show that for any decision
table T

h(U(T )) ≤

{

M(T ), if M(T ) ≤ 1 ,
M(T )(lnP (T ) − lnM(T ) + 1), if M(T ) ≥ 2 ,

and

h(U(T )) ≤

{

h(T ), if h(T ) ≤ 1 ,
h(T )(lnP (T ) − lnh(T ) + 1), if h(T ) ≥ 2 .

The last two bounds do not allow for essential improvement (see details in
[37]).

To understand the complexity of the problem of decision tree depth min-
imization, we consider a reduction of an arbitrary set cover problem to the
problem of minimization of decision tree depth for a decision table.

Let us consider a set cover problem A, F where A = {a1, . . . , aN} and
F = {S1, . . . , Sm}, and the decision table T (A, F ) described above. This
table has m columns, corresponding to sets S1, . . . , Sm respectively (these
columns are labeled with f1, . . . , fm), and N + 1 rows. For j = 1, . . . , N , the
j-th row corresponds to the element aj . The last (N + 1)-th row is filled by
0. For j = 1, . . . , N and i = 1, . . . , m, at the intersection of j-th row and i-th
column 1 stays if and only if aj ∈ Si. The decision, attached to the last row,
is equal to 2. All other rows are labeled with the decision 1. One can show
that P (T (A, F )) = N and h(T (A, F )) = Cmin where Cmin is the minimum
cardinality of a cover for the considered set cover problem.

Proposition 4.21. The problem of minimization of decision tree depth is
NP -hard.

Proof. Let A, F be an arbitrary set cover problem. It is clear that in polyno-
mial time we can construct the decision table T (A, F ). Let Γ be a decision
tree for T (A, F ) such that h(Γ ) = h(T (A, F )). Consider the path in this tree
from the root to a terminal node in which each edge is labeled with 0. Let
{fi1 , . . . , fit

} be the set of attributes attached to working nodes of this path.
One can show that {Si1 , . . . , Sit

} is a cover with minimum cardinality for
the problem A, F . So, we have a polynomial time reduction of the set cover
problem to the problem of minimization of decision tree depth. Taking into
account that the set cover problem is NP -hard we obtain that the problem
of minimization of decision tree depth is NP -hard too. ⊓⊔
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Theorem 4.22. If NP � DTIME(nO(log log n)) then for any ε > 0 there
is no polynomial algorithm which for a given nondegenerate decision table T
constructs a decision tree for T which depth is at most (1 − ε)h(T ) lnP (T ).

Proof. Let us assume that NP � DTIME(nO(log log n)) and such an al-
gorithm exists. Let A, F be an arbitrary set cover problem. Construct
the decision table T (A, F ) and apply to this table the considered algo-
rithm. As a result we obtain a decision tree Γ for T (A, F ) such that
h(Γ ) ≤ (1 − ε)h(T (A, F )) lnP (T (A, F )). We know that h(T (A, F )) = Cmin

which is the minimum cardinality of a cover for the problem A, F , and
P (T (A, F )) = N where N = |A|.

Consider the path in Γ in which all edges are labeled with 0. Let
{fi1 , . . . , fit

} be the set of attributes attached to nodes of this path. Then the
set {Si1 , . . . , Sit

} is a cover for the problem A, F . The cardinality of this cover
is at most (1 − ε)Cmin lnN . But this contradicts to the results of U. Feige
considered in Sect. 4.1.1. ⊓⊔

4.3 Exact Algorithms for Optimization of Trees, Rules

and Tests

In this subsection, we consider some possibilities (mainly based on dynamic
programming) to design exact algorithms for optimization of trees, rules and
tests.

4.3.1 Optimization of Decision Trees

We consider an algorithm based on dynamic programming approach which for
a given decision table constructs a decision tree for this table with minimum
depth (see also [55]). Of course, in the worst case the considered algorithm
has exponential time complexity. However, later (when we consider local ap-
proach to decision tree investigation over infinite information systems) we
will describe infinite information systems for each of which this algorithm
has (for decision tables over the considered system) polynomial time com-
plexity depending on the number of columns (attributes) in the table.

The idea of algorithm is very simple. Let T be a decision table with n
columns labeled with attributes f1, . . . , fn. If T is a degenerate decision table
which rows are labeled with the same decision d, the tree, which has exactly
one node labeled with d, is an optimal decision tree for T . Let T be a nonde-
generate table. In this case, h(T ) ≥ 1, and the root of any optimal decision
tree for the table T is labeled with an attribute. Denote by E(T ) the set of
columns (attributes) of T which have both 0 and 1 values. Of course, we must
consider only attributes from E(T ).

What can we say about the minimum depth of a decision tree for the table
T in which the root is labeled with the attribute fi ∈ E(T )? We denote the
minimum depth of such a tree by h(T, fi). It is clear that
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h(T, fi) = 1 + max{h(T (fi, 0)), h(T (fi, 1))} .

So, if we know values of h(T (fi, δ)) for any fi ∈ E(T ) and δ ∈ {0, 1}, we can
find the value

h(T ) = min{h(T, fi) : fi ∈ E(T )}

and at least one attribute fi for which h(T ) = h(T, fi).
How can we construct an optimal decision tree (decision tree with mini-

mum depth), using attribute fi in the capacity of an attribute attached to
the root? Let Γ0 and Γ1 be optimal decision trees for the subtables T (fi, 0)
and T (fi, 1) respectively. Then the decision tree depicted in Fig. 4.4 is an
optimal decision tree for the table T . So, if we know optimal decision trees

✒✑✓✏✟✟✟✟✟✙

❍❍❍❍❍❥
❆
❆
❆❆

✁
✁
✁✁

❆
❆
❆❆

✁
✁
✁✁

fi

0 1

Γ0 Γ1

Fig. 4.4

for subtables of the table T we can construct an optimal decision tree for the
table T .

We now describe the algorithm for minimization of decision tree depth
more formally. We denote this algorithm by W . A nonempty subtable T ′ of
the table T will be called a separable subtable of T if there exist attributes
fi1 , . . . , fit

from {f1, . . . , fn} and numbers δ1, . . . , δt from {0, 1} such that
T ′ = T (fi1 , δ1) . . . (fit

, δt). We denote by SEP (T ) the set of all separable
subtables of the table T including T .

The first part of the algorithm W work is the construction of the set
SEP (T ).

Step 1: We set SEP (T ) = {T } and pass to the second step. After the first
step T is not labeled as a treated table.

Suppose t ≥ 1 steps have been made already.
Step (t+1): Let all tables in the set SEP (T ) are labeled as treated tables.

In this case, we finish the first part of the algorithm W work. Let there exist
a table D ∈ SEP (T ) which is not treated. We add to the set SEP (T ) all
subtables of the kind D(fi, δ), where fi ∈ E(D) and δ ∈ {0, 1}, which were
not in SEP (T ), mark the table D as treated and pass to the step (t + 2).

It is clear that during the first part the algorithm W makes exactly
|SEP (T )| + 2 steps.

The second part of the algorithm W work is the construction of an
optimal decision tree W (T ) for the table T . Beginning with smallest subtables
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from SEP (T ), the algorithm W at each step will correspond to a subtable
from SEP (T ) an optimal decision tree for this subtable.

Suppose that p ≥ 0 steps of the second part of algorithm W have been
made already.

Step (p + 1): If the table T in the set SEP (T ) is labeled with a decision
tree then this tree is the result of the algorithm W work (we denote this tree
by W (T )). Otherwise, choose in the set SEP (T ) a table D satisfying the
following conditions:

a) the table D is not labeled with a decision tree;
b) either D is a degenerate table, or a nondegenerate table such that all

separable subtables of D of the kind D(fi, δ), fi ∈ E(D), δ ∈ {0, 1}, are
labeled with decision trees.

Let D be a degenerate table in which all rows are labeled with the same
decision d. Then we mark the table D by the decision tree consisting of one
node which is labeled with the number d.

Otherwise, for any fi ∈ E(D) we construct a decision tree Γ (fi). The root
of this tree is labeled with the attribute fi. The root is the initial node of
exactly two edges which are labeled with 0 and 1. These edges enter to roots
of decision trees Γ (fi, 0) and Γ (fi, 1) respectively, where Γ (fi, 0) and Γ (fi, 1)
are decision trees attached to tables D(fi, 0) and D(fi, 1). Mark the table D
by one of the trees Γ (fj), fj ∈ E(D), having minimum depth, and proceed
to the step (p + 2).

It is clear that during the second part, the algorithm W makes exactly
|SEP (T ) + 1| steps.

It is not difficult to prove the following statement.

Theorem 4.23. For any nondegenerate decision table T the algorithm W
constructs a decision tree W (T ) for the table T such that h(W (T )) = h(T ),
and makes exactly 2|SEP (T )| + 3 steps. The time of the algorithm W work
is bounded from below by |SEP (T )|, and bounded from above by a polynomial
on |SEP (T )| and on the number of columns in the table T .

Example 4.24. Let us apply the algorithm W to the table T depicted in Fig.
3.1. As a result, we obtain the set SEP (T ) in which each subtable is labeled
with an optimal decision tree for this subtable (see Fig. 4.5).

Similar algorithms exist also for other complexity measures, for example,
for average depth of decision trees and number of nodes in decision trees
[11, 10, 12].

4.3.2 Optimization of Decision Rules

We now describe an algorithm V for minimization of the length of decision
rules (see also [97]). The algorithm V work consists of two parts. The first
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part is the construction of the set SEP (T ). This part coincides with the first
part of the algorithm W .

The second part of the algorithm V work is the construction of an
optimal decision rule V (T, r) for each row r of T . Beginning with the smallest
subtables from SEP (T ), the algorithm V at each step will correspond to each
row r of a subtable T ′ an optimal decision rule for T ′ and r (an optimal rule
for T ′ and r means a decision rule with minimum length which is true for T ′

and realizable for r).
Suppose p ≥ 0 steps of the second part of algorithm V have been made

already.
Step (p + 1). If each row r of the table T is labeled with a decision rule,

then the rule attached to r is the result of the work of V for T and r (we
denote this rule by V (T, r)). Otherwise, choose in the set SEP (T ) a table D
satisfying the following conditions:
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a) rows of D are not labeled with decision rules;
b) either D is a degenerate table, or a nondegenerate table such that for all

separable subtables of D of the kind D(fi, δ), fi ∈ E(D), δ ∈ {0, 1}, each
row is labeled with a decision rule.

Let D be a degenerate table in which all rows are labeled with the same
decision d. Then we mark each row of D by the decision rule → d.

Let D be a nondegenerate decision table and r = (δ1, . . . , δn) be a row of
D labeled with a decision d. For any fi ∈ E(D) we construct a rule rule(r, fi).
Let the row r in the table D(fi, δi) be labeled with the rule αi → d. Then the
rule rule(r, fi) is equal to fi = δi ∧ αi → d. We mark the row r of the table
D with one of the rules rule(r, fi), fi ∈ E(D), having minimum length. We
denote this rule by V (T, r). We attach a rule to each row of D in the same
way, and proceed to the step (p + 2). It is clear that during the second part
the algorithm V makes exactly |SEP (T )| + 1 steps.

Lemma 4.25. For any table D ∈ SEP (T ) and any row r of D the decision
rule attached to r after the end of algorithm V work is true for D, realizable
for r and has minimum length L(D, r).

Proof. We will prove this statement by induction on tables from SEP (T ).
It is clear that for each degenerate table D from SEP (T ) the considered
statement is true.

Let D ∈ SEP (T ), D be a nondegenerate table and for each fi ∈ E(D)
and δ ∈ {0, 1} the considered statement hold for the table D(fi, δ). Let
r = (δ1, . . . , δn) be a row of D. Then for some fi ∈ E(D) the row r is labeled
with the decision rule fi = δi ∧ αi → d where d is the decision attached to
r and αi → d is the decision rule attached to row r in the table D(fi, δi).
According to the inductive hypothesis, the rule αi → d is true for D(fi, δi)
and is realizable for r. Therefore the rule fi = δi ∧ αi → d is true for D and
realizable for r.

Let us assume that there exists a shorter decision rule which is true for D
and realizable for r. Since D is nondegenerate, the left-hand side of this rule
should contain an equality of the kind fj = δj for some fj ∈ E(D). Therefore
this rule can be represented in the form fj = δj ∧ β → d. Since this rule
is true for D and realizable for r, the rule β → d is true for D(fj , δj) and
realizable for r. According to the inductive hypothesis, the row r in the table
D(fj , δj) is labeled with a rule γ → d which length is at most the length of
the rule β → d. From here and from the description of the algorithm V it
follows that the row r in D is labeled with a rule which length is at most the
length of the rule fj = δj ∧ γ → d which is impossible. Therefore, the rule
attached to the row r in D has minimum length among rules which are true
for D and realizable for r. ⊓⊔

Using this lemma it is not difficult to prove the following statement:
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Theorem 4.26. For any nondegenerate decision table T and any row r of
T the algorithm V constructs a decision rule V (T, r) which is true for T ,
realizable for r, and has minimum length L(T, r). During the construction of
optimal rules for rows of T , the algorithm V makes exactly 2|SEP (T )| + 3
steps. The time of the algorithm V work is bounded from below by |SEP (T )|,
and bounded from above by a polynomial on |SEP (T )| and on the number of
columns in the table T .

4.3.3 Optimization of Tests

It would be very well to have similar algorithm for the problem of mini-
mization of test cardinality. Unfortunately, if P �= NP , then such algorithms
do not exist. To prove this result, we consider an interesting example of a
class of decision tables with relatively small number of separable subtables
(see also [12]).

Let we have a finite set S = {(a1, b1), . . . , (an, bn)} of points in the plane
and a mapping μ which colors these points into two colors: green and white.
We must separate white points from green ones. To this end, we can use
straight lines which are defined by equations of the kind x = α or y = β. It
is known that the problem of construction of minimum separating set (a set
of straight lines with minimum cardinality which separate green and white
points) is NP -hard (result of B.S. Chlebus and S.H. Nguyen [15]).

Let us transform this problem into a problem of minimization of test car-
dinality. It is possible that ai = aj or bi = bj for different i and j. Let
ai1 , . . . , aim

be all pairwise different numbers from the set {a1, . . . , an} which
are ordered such that ai1 < . . . < aim

. Let bj1 , . . . , bjt
be all pairwise different

numbers from the set {b1, . . . , bn} which are ordered such that bj1 < . . . < bjt
.

It is clear that there exists a minimum separating set which is a subset of
the set of straight lines defined by equations x = ai1−1, x = (ai1 +ai2)/2, . . .,
x = (aim−1 + aim

)/2, x = aim
+ 1, y = bj1 − 1, y = (bj1 + bj2)/2, . . .,

y = (bjt−1 + bjt
)/2, y = bjt

+ 1.
Let us correspond an attribute to each such straight line. This attribute

is defined on the set S and takes values from the set {0, 1}. Consider the
line defined by equation x = α. Then the value of corresponding attribute is
equal to 0 on a point (a, b) ∈ S if and only if a < α. Consider the line defined
by equation y = β. Then the value of corresponding attribute is equal to 0 if
and only if b < β.

Let us construct a decision table T (S, μ) with m + t + 2 columns and
n rows. Columns are labeled with attributes f1, . . . , fm+t+2, correspond-
ing to the considered m + t + 2 lines. Attributes f1, . . . , fm+1 correspond
to lines defined by equations x = ai1 − 1, x = (ai1 + ai2)/2, . . . , x =
(aim−1 + aim

)/2, x = aim
+ 1 respectively. Attributes fm+2, . . . , fm+t+2 cor-

respond to lines defined by equations y = bj1 − 1, y = (bj1 + bj2)/2, . . . , y =
(bjt−1 + bjt

)/2, y = bjt
+ 1 respectively. Rows of the table T (S, μ) correspond

to points (a1, b1), . . . , (an, bn). At the intersection of the column fl and row
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(ap, bp) the value fl(ap, bp) stays. For p = 1, . . . , n, the row (ap, bp) is labeled
with the decision 1 if (ap, bp) is a white point, and with the decision 2 if
(ap, bp) is a green point.

It is clear that the minimum cardinality of a separating set is equal to the
minimum cardinality of a test for the table T (S, μ). Also, it is clear that there
is a polynomial algorithm which for a given set of points S and given mapping
μ constructs the decision table T (S, μ). Since the problem of minimization of
separating set cardinality is NP -hard, the problem of minimization of test
cardinality for decision tables of the kind T (S, μ) is NP -hard.

Let us evaluate the number of separable subtables of the table T (S, μ).
It is not difficult to show that each separable subtable T ′ of this table can
be represented in the following form: T ′ = T (fi, 1)(fj , 0)(fl, 1)(fk, 0), where
T = T (S, μ) and 1 ≤ i < j ≤ m + 1 < l < k ≤ t + m + 2.

Therefore the number of separable subtables of the table T (S, μ) is at
most (m + t + 2)4. So, the number of separable subtables is bounded from
above by a polynomial on the number of columns in the table. Note that
(m + t + 2) ≤ 2n + 2.

Now we can prove the following statement.

Theorem 4.27. If P �= NP , then there is no algorithm which for a given
decision table T constructs a test for T with minimum cardinality, and for
which the time of work is bounded from above by a polynomial depending on
the number of columns in T and the number of separable subtables of T .

Proof. Assume that P �= NP but such an algorithm exists. Then we can
construct a polynomial algorithm for NP -hard problem of minimization of
separating set cardinality, but it is impossible. ⊓⊔

It should be pointed out that the problem of decision tree depth minimization
can be solved for decision tables of the kind T (S, μ) by the algorithm W which
for such tables has polynomial time complexity depending on the number of
columns in the table.

Tables T (S, μ) have interesting property which will be used in our
examples.

Proposition 4.28

M(T (S, μ)) ≤ 4 .

Proof. Denote T = T (S, μ). Let δ̄ = (δ1, . . . , δm+t+2) ∈ {0, 1}m+t+2. If
δ1 = 0, or δm+1 = 1, or δm+2 = 0, or δm+t+2 = 1, then T (f1, δ1), or
T (fm+1, δm+1), or T (fm+2, δm+2), or T (fm+t+2, δm+t+2) is empty table and
M(T, δ̄) ≤ 1. Let δ1 = 1, δm+1 = 0, δm+2 = 1 and δm+t+2 = 0. One can show
that in this case there exist i ∈ {1, . . . , m} and j ∈ {m + 2, . . . , m + t + 1}
such that δi = 1, δi+1 = 0, δj = 1, and δj+1 = 0. It is clear that
the table T (fi, δi)(fi+1, δi+1)(fj , δj)(fj+1, δj+1) contains exactly one row. So
M(T, δ̄) ≤ 4 and M(T ) ≤ 4. ⊓⊔

Using Theorem 3.11 we obtain
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Corollary 4.29

L(T (S, μ)) ≤ 4 .

What can we do if we would like to solve the problem of minimization of test
cardinality exactly? One of possible ways is to use so-called Boolean reasoning
[80, 89].

Let T be a decision table with n columns labeled with attributes f1, . . . , fn.
Consider boolean variables x1, . . . , xn. We will try to describe the notion of
test for T using these variables. The value of the variable xi is equal to 1
if and only if we include the attribute fi into the considered set. For any
pair of rows with different decisions we can represent the fact that on the
considered set of columns these two rows are different in the following way:
xi1 ∨ . . .∨xim

= 1 where fi1 , . . . , fim
are all columns on which the considered

two rows are different. The formula of the kind xi1 ∨ . . . ∨ xim
is called

an elementary disjunction. Consider the conjunction of all such elementary
disjunctions corresponding to pairs of rows with different decisions.

Let us multiply the elementary disjunctions (here the conjunction is con-
sidered as an analog of multiplication). After that we will use operations
of absorption A ∨ A ∧ B = A and A ∧ A = A ∨ A = A while it is possi-
ble. As a result, we obtain a disjunction of elementary conjunctions of the
kind xj1 ∧ . . . ∧ xjp

. Each such conjunction xj1 ∧ . . . ∧ xjp
corresponds to a

reduct {fj1 , . . . , fjp
}, and the set of all conjunctions corresponds to the set

of all reducts. Among the constructed reducts we can choose a reduct with
minimum cardinality.

Example 4.30. Consider the table T depicted in Fig. 4.6. Let us construct for
this table a conjunction of elementary disjunctions (describing the notion of
test for T ) and transform it to a disjunction of elementary conjunctions cor-
responding to reducts of the table T . We will omit the symbol ∧ in formulas:
(x1 ∨ x3)(x2 ∨ x3) = x1x2 ∨ x1x3 ∨ x3x2 ∨ x3x3 = x1x2 ∨ x1x3 ∨ x3x2 ∨ x3 =
x1x2 ∨ x3. So, the considered table T has exactly two reducts: {f3} and
{f1, f2}. The set {f3} is a test with minimum cardinality for T .

T =

f1 f2 f3

1 1 1 1
0 1 0 2
1 0 0 2

Fig. 4.6

Note that similar approach to construction of all reducts was considered
in Sect. 2.2.2.
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4.4 Conclusions

This chapter is devoted to the study of approximate and exact algorithms for
the minimization of cardinality of tests, length of decision rules and depth of
decision trees, and also for the optimization of decision rules systems.

The comparison of Theorems 4.3 and 4.11, 4.5 and 4.13, 4.7 and 4.15,
4.19 (Corollary 4.20) and 4.22 shows that, under the assumption NP �
DTIME(nO(log log n)), the considered in the chapter greedy algorithms are
close (from the point of view of accuracy) to the best polynomial approximate
algorithms for the minimization of test cardinality, rule length and tree depth,
and also for the optimization of decision rule systems.

We found an interesting difference between rules and trees, and tests. If
P �= NP , then there are no algorithms for test cardinality minimization
which are polynomial depending on the number of separable subtables and
the number of attributes in the considered decision table. For trees and rules
such algorithms exist.

All results considered in this chapter are true also (after small natu-
ral changes) for k-valued decision tables filled by numbers from the set
{0, 1, . . . , k − 1}, k ≥ 3.

Note also that information obtained during the work of greedy algorithms
for construction of decision rules end tests can be used for creation of lower
bounds on the minimum length of decision rules and minimum cardinality of
tests (see [59]).
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Decision Tables with Many-Valued
Decisions

Decision tables with many-valued decisions arise often in various applications.
In contrast to decision tables with one-valued decisions, in decision tables
with many-valued decisions each row is labeled with a nonempty finite set of
natural numbers (decisions). If we want to find all decisions corresponding to
a row, we deal with the same mathematical object as decision table with one-
valued decisions: it is enough to code different sets of decisions by different
numbers. However, if we want to find one (arbitrary) decision from the set
attached to a row, we have essentially different situation.

In particular, in rough set theory [70, 80] decision tables are considered
often that have equal rows labeled with different decisions. The set of de-
cisions attached to equal rows is called the generalized decision for each of
these equal rows. The usual way is to find for a given row its generalized
decision. However, the problems of finding an arbitrary decision or one of the
most frequent decisions from the generalized decision look also reasonable.

This chapter consists of ten sections. Section 5.1 contains examples of
decision tables with many-valued decisions. In Sect. 5.2, main notions are
discussed. In Sect. 5.3, relationships among decision trees, rules and tests are
considered. In Sects. 5.4 and 5.5, lower and upper bounds on complexity of
trees, rules and tests are studied. Approximate algorithms for optimization
of tests, rules and trees are considered in Sects. 5.6 and 5.7. Section 5.8 is
devoted to the discussion of exact algorithms for optimization of trees, rules
and tests. Section 5.9 contains an example which illustrates the constructions
considered in this chapter. Section 5.10 contains conclusions.

5.1 Examples Connected with Applications

Consider some examples of decision tables with many-valued decisions. In
these examples, instead of numbers sometimes we will use letters in the
capacity of decisions.

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 69–86.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Example 5.1. Let we have three inverted cups and a small ball under one of
these cups (see Fig. 1.5). We should find a number of cup without ball. To
this end, we will use the same attributes f1, f2, f3 as in the example Three
Cups and Small Ball (see Sect. 1.3.1). The decision table, corresponding to

f1 f2 f3

1 0 0 {2, 3}
0 1 0 {1, 3}
0 0 1 {1, 2}

Fig. 5.1

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏ ✒✑✓✏
f1

1 2

0 1

Fig. 5.2

this problem is represented in Fig. 5.1, and a decision tree for this problem
solving is represented in Fig. 5.2. The decision rule system

{f1 = 0 → 1, f2 = 0 → 2}

is a complete decision rule system for the considered table.

Example 5.2. Let we have two real numbers x and y. We should find a maxi-
mum number among x and y. To this end, we will use two binary attributes
f1 and f2: f1 = 0 if and only if x < y, and f2 = 0 if and only if y < x.
Corresponding decision table is depicted in Fig. 5.3, and a decision tree for
this table is depicted in Fig. 5.4. The decision rule system

{f1 = 1 → x, f2 = 1 → y}

is a complete decision rule system for the considered table.

f1 f2

x < y 0 1 {y}
y < x 1 0 {x}
x = y 1 1 {x, y}

Fig. 5.3

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏ ✒✑✓✏
f1

y x

0 1

Fig. 5.4

Example 5.3. Consider now the combinatorial circuit S depicted in Fig. 5.5.
Each input of S can work correctly or can have constant fault 1 (see the
example Diagnosis of One-Gate Circuit in Sect. 1.3.2). Let we know that at
least one such fault exists in S. We should find an input with fault. To this
end, we can use attributes from the set {0, 1}3. We give a tuple from this set
on inputs of S and observe the value of the output of S which is the value
of the considered attribute. It is clear that the circuit S with at least one fault
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x ∧ y ∧ z

Fig. 5.5

1 on an input realizes one of functions from the set {1, x, y, z, xy, xz, yz} (we
write xy instead of x ∧ y). Corresponding decision table is represented in
Fig. 5.6.

000 001 010 011 100 101 110 111

1 1 1 1 1 1 1 1 1 {x, y, z}
x 0 0 0 0 1 1 1 1 {y, z}
y 0 0 1 1 0 0 1 1 {x, z}
z 0 1 0 1 0 1 0 1 {x, y}
xy 0 0 0 0 0 0 1 1 {z}
xz 0 0 0 0 0 1 0 1 {y}
yz 0 0 0 1 0 0 0 1 {x}

Fig. 5.6

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏✚
✚❂ ◗

◗�
✒✑✓✏
✒✑✓✏✒✑✓✏
110

101

0 1

0 1

x y

z

Fig. 5.7

In Fig. 5.7, we see a decision tree for this table (which solves the problem
of searching for an input with fault). Each decision tree for this table must
have at least 3 terminal nodes since there are three rows with pairwise dis-
joint sets of decisions {x}, {y} and {z}. Thus, the decision tree depicted in
Fig. 5.7 has minimum depth. A decision rule system

{011 = 1 → x, 101 = 1 → y, 110 = 1 → z}

is a complete decision rule system for the considered table.

Decision tables with many-valued decisions arise often in different exactly for-
mulated problems: in discrete optimization (see example Traveling Salesman
Problem with Four Cities in Sect. 1.3.5 and Example 5.2), in fault diagnosis
(Example 5.3), in computational geometry (example Problem of Three Post-
Offices in Sect. 1.3.3). It is possible to point out on such problems in the area
of pattern recognition.

However, the main source of decision tables with many-valued decisions
is data tables with experimental data. It is possible that in such a table
there are equal rows with different decisions. It is clear that for equal rows
a constructed decision tree will give us the same decision. If we want to
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have minimum number of incorrect answers, we must choose a decision for
which the number of the considered equal rows labeled with this decision is
maximum. It is possible that there exist more than one such decision. In this
case we obtain a decision table with many-valued decisions.

Example 5.4. Let we have the data table D depicted in Fig. 5.8. All variables
x1, x2, x3 and y are discrete. We must predict the value of y using variables
x1, x2, x3 or, more exactly, values of attributes f1 = x1, f2 = x2, and f3 =
x3. Corresponding decision table with many-valued decisions is depicted in
Fig. 5.9.

D =

x1 x2 x3 y

0 0 1 1
0 0 1 2
0 0 1 2
0 0 1 3
0 0 1 3
1 0 0 1
1 0 0 1
1 0 0 3
1 0 0 3
1 0 1 2
1 0 1 3
0 1 1 1
0 1 1 2
0 1 1 2
1 1 0 1
1 1 0 1
1 1 0 3

Fig. 5.8

T =

f1 f2 f3

0 0 1 {2, 3}
1 0 0 {1, 3}
1 0 1 {2, 3}
0 1 1 {2}
1 1 0 {1}

Fig. 5.9

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏ ✒✑✓✏
f3

1 2

0 1

Fig. 5.10

A decision tree for this decision table is represented in Fig. 5.10. A decision
rule system

{f3 = 0 → 1, f3 = 1 → 2}

is a complete decision rule system for the considered table.

Note that there are other ways to form a set of decisions attached to a row:
we can include to this set all decisions attached to equal rows, or the first k
most frequent decisions for equal rows, etc.

5.2 Main Notions

Now we consider formal definitions of notions corresponding to many-valued
decision tables.
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A decision table with many-valued decisions is a rectangular table T filled
by numbers from the set {0, 1}. Columns of this table are labeled with names
of attributes f1, . . . , fn. Rows of the table are pairwise different, and each row
is labeled with a nonempty finite set of natural numbers (set of decisions).
Note that each decision table with one-valued decisions can be interpreted
also as a decision table with many-valued decisions. In such table each row
is labeled with a set of decisions which has one element.

We will associate a game of two players with this table. The first player
chooses a row of the table, and the second player must find a number from the
set corresponding to this row. To this end, he can choose columns (attributes)
and ask the first player what is at the intersection of the considered row and
these columns.

The notion of a decision tree over T coincides with the notion of a decision
tree over a decision table with one-valued decisions.

We will say that a decision tree Γ over the decision table T is a decision
tree for T if for any row of T the work of Γ finishes in a terminal node which
is labeled with a number from the set attached to the considered row.

A decision tree for the table T can be interpreted as a right strategy of
the second player in the considered game.

We denote by h(T ) the minimum depth of a decision tree for the table T .
The notions of a decision rule over T and a decision rule realizable for

a row r of T coincide with corresponding notions for decision tables with
one-valued decisions.

A rule over T with the right-hand side t is called true for T if for any row
r of T , such that this rule is realizable for the row r, the number t belongs to
the set of decisions attached to the row r. We denote by L(T, r) the minimum
length of a rule over T which is true for T and realizable for r.

A nonempty set S of decision rules over T is called a complete decision
rule system for T if each rule from S is true for T , and for every row of T
there exists a rule from S which is realizable for this row. We denote by L(S)
the maximum length of a rule from S, and by L(T ) we denote the minimum
value of L(S) among all complete decision rule systems S for T .

We will say that T is a degenerate table if either T has no rows, or the
intersection of sets of decisions attached to rows of T is nonempty (in this
case, we will say that rows of T have common decision).

A test for the table T is a subset of columns {fi1 , . . . , fim
} such that for

any numbers δ1, . . . , δm ∈ {0, 1} the subtable T (fi1 , δm) . . . T (fim
, δm) is a

degenerate table. Empty set is a test for T iff T is a degenerate table. Note
that for decision tables with one-valued decisions this notion is equivalent to
the notion of the test considered earlier.

A reduct for the table T is a test for T for which each proper subset is not
a test. It is clear that each test has a reduct as a subset. We denote by R(T )
the minimum cardinality of a reduct for T .
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5.3 Relationships among Decision Trees, Rules and

Tests

Theorem 5.5. Let T be a decision table with many-valued decisions.

a) If Γ is a decision tree for T then the set of attributes attached to working
nodes of Γ is a test for the table T .

b) Let {fi1 , . . . , fim
} be a test for T . Then there exists a decision tree for T

which uses only attributes from {fi1 , . . . , fim
} and for which h(Γ ) = m.

Proof. Let T have n columns labeled with attributes f1, . . . , fn.

a) Let Γ be a decision tree for the table T . Let, for simplicity, {f1, . . . , ft}
be the set of attributes attached to working nodes of Γ . Let (δ1, . . . , δt) ∈
{0, 1}t. We show that T ′ = T (f1, δ1) . . . (ft, δt) is a degenerate table. Con-
sider a path in Γ from the root to a terminal node v which satisfies
the following condition: let fi1 , . . . , fim

be attributes attached to working
nodes of this path. Then the edges of this path are labeled with numbers
δi1 , . . . , δim

. Consider the table T ′′ = T (fi1 , δi1) . . . (fim
, δim

). It is clear
that the set of rows of T ′′ coincides with the set of rows of T for which
the work of Γ finishes in the node v. Since Γ is a decision tree for T , the
table T ′′ is degenerate. It is clear that T ′ is a subtable of T ′′. Therefore
T ′ is a degenerate subtable of T . Taking into account that (δ1, . . . , δt)
is an arbitrary tuple from {0, 1}t we obtain {f1, . . . , ft} is a test for the
table T .

b) Let {fi1 , . . . , fim
} be a test for the table T . Consider a decision tree Γ

which consists of (m + 1) layers. For j = 1, . . . , m, all nodes of the j-th
layer are working nodes labeled with the attribute fij

. All nodes from
(m + 1)-th layer are terminal nodes. Let v be an arbitrary terminal node,
and let the edges in the path from the root to v be labeled with numbers
δ1, . . . , δm. Denote T (v) = T (fi1 , δ1) . . . (fim

, δm). Since {fi1 , . . . , fim
} is a

test for T , the table T (v) is degenerate. If there are no rows in T (v) then
the node v is labeled with the number 1. If T (v) has nodes, and d is a
common decision for all rows of T (v) then v is labeled with d. It is clear
that Γ is a decision tree for T , and h(Γ ) = m. ⊓⊔

Corollary 5.6. Let T be a decision table with many-valued decisions. Then

h(T ) ≤ R(T ) .

Theorem 5.7. Let T be a decision table with many-valued decisions contain-
ing n columns labeled with attributes f1, . . . , fn.

1. If S is a complete system of decision rules for T then the set of attributes
from rules in S is a test for T .

2. If F = {fi1 , . . . , fim
} is a test for T then there exists a complete system

S of decision rules for T which uses only attributes from F and for which
L(S) = m.
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Proof. 1. Let S be a complete system of decision rules for T . Let, for simplic-
ity, {f1, . . . , ft} be the set of attributes from rules in S, and (δ1, . . . , δt) ∈
{0, 1}t. We show that T ′ = T (f1, δ1) . . . (ft, δt) is a degenerate table. If T ′

has no rows, then T ′ is a degenerate table. Let T ′ have at least one row
δ̄ = (δ1, . . . , δt, δt+1, . . . , δn). Since S is a complete system of decision rules
for T , there is a rule

fi1 = δi1 ∧ . . . ∧ fim
= δim

→ d

in S which is realizable for δ̄ and true for T . Consider the table T ′′ =
T (fi1 , δi1) . . . (fim

, δim
). It is clear that the set of rows of T ′′ coincides

with the set of rows of T for which the considered rule is realizable. Since
this rule is true for T , the set of rows of T ′′ has common decision d. It
is clear that T ′ is a subtable of T ′′. Therefore T ′ is a degenerate table.
Taking into account that (δ1, . . . , δt) is an arbitrary tuple from {0, 1}t we
obtain {f1, . . . , ft} is a test for the table T .

2. Let F = {fi1 , . . . , fim
} be a test for the table T . For each δ̄ = (δ1, . . . , δm) ∈

{0, 1}m such that the subtable T (δ̄) = T (fi1 , δ1) . . . (fim
, δm) is nonempty,

we construct a decision rule

fi1 = δ1 ∧ . . . ∧ fim
= δm → d ,

where d is a common decision for the set of rows of T (δ̄). Such common
decision exists since F is a test for T . We denote by S the set of constructed
rules. It is clear that each rule from S is true for T , and for each row of
T there exists a rule in S which is realizable for this row. Thus, S is a
complete decision rule system for T , L(S) = m and S uses only attributes
from F . ⊓⊔

Corollary 5.8. L(T ) ≤ R(T ).

Theorem 5.9. Let Γ be a decision tree for T , and S be the set of decision
rules corresponding to paths in Γ from the root to terminal nodes. Then S is
a complete system of decision rules for T and L(S) = h(Γ ).

Proof. Since Γ is a decison tree for T , for each row r of T there exists a path
τ from the root to a terminal node v of Γ such that the work of Γ for r
finishes in v, and v is labeled with a decision t which belongs to the set of
decisions attached to r. It is clear that the rule rule(τ) corresponding to the
path τ is realizable for r. It is clear also that for each row r′ of T such that
the rule rule(τ) is realizable for r′, the set of decisions attached to r′ contains
the decision t. So rule(τ) is true for T . It is clear that the length of rule(τ) is
equal to the length of path τ . Therefore S is a complete decision rule system
for T and L(S) = h(Γ ). ⊓⊔

Corollary 5.10. L(T ) ≤ h(T ).
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5.4 Lower Bounds

From Corollaries 5.6 and 5.10 it follows that L(T ) ≤ h(T ) ≤ R(T ). So each
lower bound on L(T ) is also a lower bound on h(T ) and R(T ), and each lower
bound on h(T ) is also a lower bound on R(T ). Example which illustrates the
obtained bounds can be found in Sect. 5.9.

Let T be a nonempty decision table with many-valued decisions. A
nonempty finite set B of natural numbers is called a system of representa-
tives for the table T if for each row of T the set of decisions attached to this
row has a nonempty intersection with B. We denote by S(T ) the minimum
cardinality of a system of representatives for the table T .

Theorem 5.11. Let T be a nonempty decision table with many-valued deci-
sions. Then

h(T ) ≥ log2 S(T ) .

The proof of this theorem coincides with the proof of Theorem 3.1 if instead
of the parameter D(T ) we will use the parameter S(T ).

Theorem 5.12. Let T be a decision table. Then

h(T ) ≥ log2(R(T ) + 1) .

Proof of this statement coincides with the proof of Theorem 3.2, but instead
of Theorem 2.23 we must use Theorem 5.5.

Let T be a decision table with many-valued decisions, which has n columns
labeled with attributes {f1, . . . , fn}. We will use the following definition of the
parameter M(T ). If T is a degenerate table then M(T ) = 0. Let now T be a
nondegenerate table. Let δ̄ = (δ1, . . . , δn) ∈ {0, 1}n. Then M(T, δ̄) is the min-
imum natural m such that there exist attributes fi1 , . . . , fim

∈ {f1, . . . , fn}
for which T (fi1 , δi1) . . . (fim

, δim
) is a degenerate table. We denote M(T ) =

max{M(T, δ̄) : δ̄ ∈ {0, 1}n}.

Lemma 5.13. Let T be a decision table with many-valued decisions, and T ′

be a subtable of T . Then
M(T ) ≥ M(T ′) .

Proof of this lemma coincides with the proof of Lemma 3.4.

Theorem 5.14. Let T be a decision table with many-valued decisions. Then

h(T ) ≥ M(T ) .

The proof of this theorem coincides with the proof of Theorem 3.6.
Let T be a decision table with many-valued decisions having n columns,

and let m ≤ n. The notions of a (T, m)-proof-tree and a proof-tree for the
bound h(T ) ≥ m for the table T are the same as for decisions tables with
one-valued decisions.
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Theorem 5.15. Let T be a nondegenerate decision table with many-valued
decisions having n columns, and m be a natural number such that m ≤ n.
Then a proof-tree for the bound h(T ) ≥ m exists if and only if the inequality
h(T ) ≥ m holds.

The proof of this theorem coincides with the proof of Theorem 3.9.

Theorem 5.16. Let T be a decision table with many-valued decisions and
Δ(T ) be the set of rows of T . Then L(T, δ̄) = M(T, δ̄) for any row δ̄ ∈ Δ(T )
and L(T ) = max{M(T, δ̄) : δ̄ ∈ Δ(T )}.

Proof. Let T have n columns labeled with attributes f1, . . . , fn, and δ̄ =
(δ1, . . . , δn) be a row of T . One can show that a decision rule

fi1 = b1 ∧ . . . ∧ fim
= bm → d

is true for T and realizable for δ̄ if and only if b1 = δi1 , . . . , bm = δim
and d is a

common decision for the set of rows of the table T (fi1 , b1) . . . (fim
, bm). From

here it follows that L(T, δ̄) = M(T, δ̄) and L(T ) = max{M(T, δ̄) : δ̄ ∈ Δ(T )}.

5.5 Upper Bounds

We know that L(T ) ≤ h(T ) ≤ R(T ). Therefore each upper bound on R(T )
is also an upper bound on h(T ) and L(T ), and each upper bound on h(T ) is
also an upper bound on L(T ). Example which illustrates these bounds can
be found in Sect. 5.9.

Theorem 5.17. Let T be a decision table with many-valued decisions. Then

R(T ) ≤ N(T )− 1 .

Proof. We prove this inequality by induction on N(T ). If N(T ) = 1 then,
evidently, R(T ) = 0. Let m ≥ 1 and for any decision table with many-valued
decisions having at most m rows the inequality R(T ) ≤ N(T ) − 1 holds.

Let T be a decision table with many-valued decisions for which N(T ) =
m + 1. Let us prove that R(T ) ≤ m. Since T has at least two rows, and rows
of T are pairwise different, there exists a column fi of T , which has both 0
and 1. Let us consider subtables T (fi, 0) and T (fi, 1). It is clear that each of
these subtables has at most m rows. Using inductive hypothesis we obtain
that for any δ ∈ {0, 1} there exists a test Bδ for the table T (fi, δ) such that
|Bδ| ≤ N(T (fi, δ)) − 1. We denote B = {fi} ∪ B0 ∪ B1. Let us show that B
is a test for the table T .

Let, for the definiteness, B = {f1, . . . , fm}, B0 = {fk1 , . . . , fkt
} and B1 =

{fj1 , . . . , fjp
}. Consider an arbitrary tuple (δ1, . . . , δm) ∈ {0, 1}m. If δi = 0

then, evidently, T (fi, 0)(fk1 , δk1) . . . (fkt
, δkt

) is degenerate. If δi = 1 then,
evidently, T (fi, 1)(fj1 , δj1) . . . (fjp

, δjp
) is degenerate. Therefore
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T (f1, δ1) . . . (fm, δm)

is degenerate. Hence B is a test for T .
Since N(T ) = N(T (fi, 0)) + N(T (fi, 1)), we have |B| ≤ 1 + N(T (fi, 0))−

1 + N(T (fi, 1)) − 1 = N(T ) − 1. ⊓⊔

Theorem 5.18. Let T be a decision table with many-valued decisions. Then

h(T ) ≤ M(T ) log2 N(T ) .

Proof of this theorem coincides with the proof of Theorem 3.17.
A nonempty decision table T with many-valued decisions will be called a

diagnostic table if rows of this table are labeled with pairwise disjoint sets of
decisions.

Corollary 5.19. Let T be a diagnostic table with many-valued decisions.
Then

max{M(T ), log2 N(T )} ≤ h(T ) ≤ M(T ) log2 N(T ) .

Note, that for diagnostic table T with many-valued decisions S(T ) = N(T ).

5.6 Approximate Algorithms for Optimization of Tests

and Decision Rules

In this section, we consider approximate polynomial algorithms for problem
of minimization of test cardinality, problem of minimization of decision rule
length, and problem of optimization of decision rule system. Corresponding
examples can be found in Sect. 5.9.

5.6.1 Optimization of Tests

Let T be a decision table with many-valued decisions. A subtable T ′ of T is
called boundary subtable if T ′ is not degenerate but each proper subtable of
T ′ is degenerate.

We denote by B(T ) the number of boundary subtables of the table T . We
denote by Tab(t), where t is a natural number, the set of decision tables with
many-valued decisions such that each row in the table has at most t decisions
(labeled with a set of decisions which cardinality is at most t).

Proposition 5.20. Let T ′ be a boundary subtable with m rows. Then each
row of T ′ is labeled with a set of decisions which cardinality is at least m− 1.

Proof. Let rows of T ′ be labeled with sets of decisions D1, . . . , Dm re-
spectively. Then D1 ∩ . . . ∩ Dm = ∅ and for any i ∈ {1, . . . , m}, the set
D1 ∩ . . . ∩ Di−1 ∩ Di+1 ∩ . . . ∩ Dm contains a number di. Assume that
i �= j and di = dj . Then D1 ∩ . . . ∩ Dm �= ∅ which is impossible. Therefore
d1, . . . , dm are pairwise different numbers. It is clear that for i = 1, . . . , m,
the set {d1, . . . , dm} \ {di} is a subset of the set Di. ⊓⊔
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Corollary 5.21. Each boundary subtable of a table T ∈ Tab(t) has at most
t + 1 rows.

Therefore, for tables from Tab(t), there exists a polynomial algorithm for
computation of the parameter B(T ), and for construction of the set of bound-
ary subtables of the table T . For example, for any decision table T with
one-valued decisions (for any table from Tab(1)) the equality B(T ) = P (T )
holds.

Let T be a decision table with many-valued decisions. It is clear that T is
a degenerate table if and only if B(T ) = 0.

Let us consider an algorithm which for a given decision table with many-
valued decisions T constructs a test for T . Let T contain n columns labeled
with attributes f1, . . . , fn. We construct a set cover problem A(T ), F (T )
corresponding to the table T , where A(T ) is the set of all boundary subtables
of T , F (T ) = {S1, . . . , Sn}, and, for i = 1, . . . , n, Si is the set of boundary
subtables from A(T ) in each of which there exists a pair of rows that are
different in the column fi. One can show that {fi1 , . . . , fim

} is a test for T if
and only if {Si1 , . . . , Sim

} is a cover for A(T ), F (T ). Let us apply the greedy
algorithm for set cover problem to A(T ), F (T ). As a result, we obtain a cover
corresponding to a test for T . This test is a result of the considered algorithm
work. We denote by Rgreedy(T ) the cardinality of the constructed test.

Theorem 5.22. Let T be a decision table with many-valued decisions. Then

Rgreedy(T ) ≤ R(T ) lnB(T ) + 1 .

This result follows immediately from the description of the considered algo-
rithm and from Theorem 4.1.

For any natural t, for tables from the class Tab(t) the considered algorithm
has polynomial time complexity.

Proposition 5.23. The problem of minimization of test cardinality for deci-
sion tables with many-valued decisions is NP -hard.

This result follows immediately from Proposition 4.10.

Theorem 5.24. If NP � DTIME(nO(log log n)) then for any ε, 0 < ε < 1,
there is no polynomial algorithm which for a given decision table T with
many-valued decisions constructs a test for T which cardinality is at most

(1 − ε)R(T ) lnB(T ) .

The considered theorem follows directly from Theorem 4.11.

5.6.2 Optimization of Decision Rules

We can apply greedy algorithm for set cover problem to construct decision
rules for decision tables with many-valued decisions.
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Let T be a nondegenerate table with many-valued decisions containing n
columns labeled with attributes f1, . . . , fn. Let r = (b1, . . . , bn) be a row of
T , D(r) be the set of decisions attached to r and d ∈ D(r).

We consider a set cover problem A(T, r, d), F (T, r, d) = {S1, . . . , Sn},
where A(T, r, d) is the set of all rows r′ of T such that d /∈ D(r′). For
i = 1, . . . , n, the set Si coincides with the set of all rows from A(T, r, d)
which are different from r in the column fi. One can show that the decision
rule

fi1 = bi1 ∧ . . . ∧ fim
= bim

→ d

is true for T (it is clear that this rule is realizable for r) if and only if the sub-
family {Si1 , . . . , Sim

} is a cover for the set cover problem A(T, r, d), F (T, r, d).
We denote P (T, r, d) = |A(T, r, d)| and L(T, r, d) the minimum length of

a decision rule over T which is true for T , realizable for r and has d on
the right-hand side. It is clear that for the constructed set cover problem
Cmin = L(T, r, d).

Let us apply the greedy algorithm to the set cover problem A(T, r, d),
F (T, r, d). This algorithm constructs a cover which corresponds to a deci-
sion rule rule(T, r, d) which is true for T , realizable for r and has d on the
right-hand side. We denote by Lgreedy(T, r, d) the length of rule(T, r, d). From
Theorem 4.1 it follows that

Lgreedy(T, r, d) ≤ L(T, r, d) lnP (T, r, d) + 1 .

We denote by Lgreedy(T, r) the length of the rule constructed by the fol-
lowing polynomial algorithm (we will say about this algorithm as about
modified greedy algorithm). For a given decision table T with many-valued
decisions and row r of T , for each d ∈ D(r) we construct the set cover problem
A(T, r, d), F (T, r, d) and then apply to this problem the greedy algorithm.
We transform the constructed cover to the rule rule(T, r, d). Among the rules
rule(T, r, d), d ∈ D(r), we choose a rule with minimum length. This rule is
the output of considered algorithm. We have

Lgreedy(T, r) = min{Lgreedy(T, r, d) : d ∈ D(r)} .

It is clear that
L(T, r) = min{L(T, r, d) : d ∈ D(r)} .

Let K(T, r) = max{P (T, r, d) : d ∈ D(r)}.
Then

Lgreedy(T, r) ≤ L(T, r) lnK(T, r) + 1 .

So we have the following statement.

Theorem 5.25. Let T be a nondegenerate decision table with many-valued
decisions and r be a row of T . Then

Lgreedy(T, r) ≤ L(T, r) lnK(T, r) + 1 .



5.7 Approximate Algorithms for Decision Tree Optimization 81

We can use the considered modified greedy algorithm to construct a complete
decision rule system for the decision table T with many-valued decisions. To
this end, we apply this algorithm sequentially to the table T and to each row
r of T . As a result, we obtain a system of rules S in which each rule is true
for T and for every row of T there exists a rule from S which is realizable for
this row.

We denote Lgreedy(T ) = L(S) and

K(T ) = max{K(T, r) : r ∈ Δ(T )} ,

where Δ(T ) is the set of rows of T . It is clear that L(T ) = max{L(T, r) : r ∈
Δ(T )}. Using Theorem 5.25 we obtain

Theorem 5.26. Let T be a nondegenerate decision table with many-valued
decisions. Then

Lgreedy(T ) ≤ L(T ) lnK(T ) + 1 .

Proposition 5.27. The problem of minimization of decision rule length for
decision tables with many-valued decisions is NP -hard.

This result follows immediately from Proposition 4.12.

Theorem 5.28. If NP /∈ DTIME(nO(log log n)) then for any ε, 0 < ε < 1,
there is no polynomial algorithm that for a given nondegenerate decision table
T with many-valued decisions and row r of T constructs a decision rule which
is true for T , realizable for r, and which length is at most

(1 − ε)L(T, r) lnK(T, r) .

The considered theorem follows directly from Theorem 4.13.

Proposition 5.29. The problem of optimization of decision rule system is
NP -hard.

This result follows immediately from Proposition 4.14.

Theorem 5.30. If NP /∈ DTIME(nO(log log n)) then for any ε, 0 < ε < 1,
there is no polynomial algorithm that for a given nondegenerate decision table
T with many-valued decisions constructs a decision rule system S for T such
that

L(S) ≤ (1 − ε)L(T ) lnK(T ) .

This theorem follows immediately from Theorem 4.15.

5.7 Approximate Algorithms for Decision Tree

Optimization

Now we consider modified algorithm U which for a given decision table with
many-valued decisions T constructs a decision tree U(T ) for the table T . The
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unique modification is the following: instead of P (T ) we will consider the
parameter B(T ).

Theorem 5.31. Let T be a decision table with many-valued decisions. Then
during the construction of the tree U(T ) the algorithm U makes at most
2N(T ) + 1 steps.

The proof of this theorem coincides with the proof of Theorem 4.17. From
this theorem it follows that for any natural t the algorithm U has polynomial
time complexity on the set Tab(t). An example of this algorithm use can be
found in Sect. 5.9.

Lemma 5.32. Let T be a decision table with many-valued decisions, T ′ be
a subtable of the table T , fi be an attribute attached to a column of T , and
δ ∈ {0, 1}. Then

B(T ) − B(T (fi, δ)) ≥ B(T ′) − B(T ′(fi, δ)) .

Proof. Denote by J (respectively by J ′) the set of boundary subtables of T
(respectively of T ′) in each of which at least one row has at the intersection
with column fi a number which is not equal to δ. One can show that J ′ ⊆ J ,
|J ′| = B(T ′) − B(T ′(fi, δ)) and |J | = B(T ) − B(T (fi, δ)). ⊓⊔

Theorem 5.33. Let T be a nondegenerate decision table with many-valued
decisions. Then

h(U(T )) ≤ M(T ) lnB(T ) + 1 .

If in the proof of Theorem 4.19 instead of the parameter P we will use the
parameter B, then we obtain a proof of Theorem 5.33.

Using Theorem 5.14 we obtain the following

Corollary 5.34. For any nondegenerate decision table T with many-valued
decisions

h(U(T )) ≤ h(T ) lnB(T ) + 1 .

Proposition 5.35. The problem of minimization of decision tree depth for
decision tables with many-valued decisions is NP -hard.

This proposition follows immediately from Proposition 4.21, and the next
theorem follows directly from Theorem 4.22.

Theorem 5.36. If NP � DTIME(nO(log log n)) then for any ε > 0 there
is no polynomial algorithm which for a given nondegenerate decision table T
with many-valued decisions constructs a decision tree for T which depth is at
most

(1 − ε)h(T ) lnB(T ) .
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5.8 Exact Algorithms for Optimization of Trees, Rules

and Tests

The algorithm W can be applied to an arbitrary decision table T with many-
valued decisions practically without any modification. Note only, that in the
case when the subtable D is degenerate, in the capacity of d we should choose
a common decision for all rows of D.

From Theorem 4.23 the following statement follows

Theorem 5.37. For any nondegenerate decision table T with many-valued
decisions, the algorithm W constructs a decision tree W (T ) for the table T
such that h(W (T )) = h(T ), and makes exactly 2|SEP (T )|+3 steps. The time
of the algorithm W work is bounded from below by |SEP (T )|, and bounded
from above by a polynomial on |SEP (T )| and the number of columns in the
table T .

The same situation is with the algorithm V . We can almost repeat the proof
of Lemma 4.25 and prove

Lemma 5.38. For any table D ∈ SEP (T ) and any row r of D the decision
rule attached to r after the end of algorithm V work is true for D, realizable
for r, and has minimum length L(D, r).

Using this lemma it is not difficult to prove the following statement:

Theorem 5.39. For any nondegenerate decision table T with many-valued
decisions and any row r of T , the algorithm V constructs a decision rule
V (T, r) which is true for T , realizable for r and has minimum length L(T, r).
During the construction of optimal rules for rows of T the algorithm V
makes exactly 2|SEP (T )| + 3 steps. The time of the algorithm V work is
bounded from below by |SEP (T )|, and bounded from above by a polynomial
on |SEP (T )| and on the number of columns in the table T .

From Theorem 4.27 the next statement follows immediately:

Theorem 5.40. If P �= NP then there is no algorithm which for a given
decision table T with many-valued decisions constructs a test for T with min-
imum cardinality, and for which the time of work is bounded from above by
a polynomial depending on the number of columns in T and the number of
separable subtables of T .

5.9 Example

Let us consider the decision table with many-valued decisions depicted in
Fig. 5.11. One can show that this table has exactly two tests {f1, f3} and
{f1, f2, f3}, and exactly one reduct {f1, f3}. Therefore R(T ) = 2. It is not
difficult to show that {1, 2} is the minimum system of representatives for this
table. Therefore S(T ) = 2.
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f1 f2 f3

1 1 1 1 {1}
2 0 1 0 {1, 3}
3 1 1 0 {2}
4 0 0 1 {2, 3}
5 1 0 0 {1, 2}

Fig. 5.11

Let us evaluate the value M(T ). One can show that M(T, (1, 1, 1)) > 1.
Using the fact that {f1, f3} is a test for T , we obtain T (f1, δ1)(f3, δ3) is a
degenerate table for any tuple δ̄ = (δ1, δ2, δ3) ∈ {0, 1}3. Therefore M(T, δ̄) ≤
2 for any δ̄ ∈ {0, 1}3. Thus, M(T ) = 2 and max{M(T, δ̄) : δ̄ ∈ Δ(T )} = 2.

So, we have the following lower bounds: h(T ) ≥ log2 S(T ) = 1, h(T ) ≥
log2(R(T )+1) = log2 3 and h(T ) ≥ M(T ) = 2, and an exact bound L(T ) = 2.
A proof-tree for the bound h(T ) ≥ 2 is represented in Fig. 5.12.

❞
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✏✏✏✏✏✏✏✏✏✮ ❞❞❞(f1, 1) (f2, 1) (f3, 1)

Fig. 5.12

✒✑✓✏✑
✑✰

◗
◗�
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◗
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✒✑✓✏

✒✑✓✏ ✒✑✓✏
f1

3

0 1

0

12

1
f3

Fig. 5.13

It is clear that N(T ) = 5. So we have the following upper bounds on
the value h(T ): h(T ) ≤ R(T ) = 2, h(T ) ≤ R(T ) ≤ N(T ) − 1 = 4 and
h(T ) ≤ M(T ) log2 N(T ) = 2 log2 5. Thus, h(T ) = 2. A decision tree for T
which depth is equal to two is depicted in Fig. 5.13.

Let us find the set of boundary subtables of the table T . It is clear that
T ∈ Tab(2). From Corollary 5.21 it follows that each boundary subtable of
the table T contains at most three rows. From Proposition 5.20 it follows
that if T ′ is a boundary subtable of T containing three rows then each row
of T ′ is labeled with a set of decision having at least two elements. We have
exactly one such subtable {2, 4, 5}. Here 2, 4 and 5 are numbers of rows of
the table T which form the considered subtable. It is clear that {2, 4, 5} is a
boundary subtable of the table T . Each other boundary subtable of the table
T has exactly two rows. There are three such subtables: {1, 3}, {1, 4}, and
{2, 3}.

Let us apply the greedy algorithm for set cover problem for construction of
a test for the table T . First, we transform the table T into a set cover problem
A(T ), F (T ) = {S1, S2, S3}, where A(T ) is the set of boundary subtables of
T , and, for i = 1, 2, 3, the set Si coincides with the set of all subtables from
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A(T ) in each of which at least two rows are different in the column fi. We
have A(T ) = {{2, 4, 5}, {1, 3}, {1, 4}, {2, 3}}, S1 = {{2, 4, 5}, {1, 4}, {2, 3}},
S2 = {{2, 4, 5}, {1, 4}}, and S3 = {{2, 4, 5}, {1, 3}}.

Now, we can apply the greedy algorithm for set cover problem to the prob-
lem A(T ), F (T ). As a result we obtain the cover {S1, S3} and corresponding
test {f1, f3}.

Let us apply the greedy algorithm for set cover problem for construction
of a decision rule which is true for T and realizable for r, where r is the
second row of T . For each d ∈ D(r) = {1, 3} we construct the set cover
problem A(T, r, d), F (T, r, d) = {S1, S2, S3}, where A(T, r, d) is the set of all
rows r′ of T such that d /∈ D(r′), and Si coincides with the set of rows from
A(T, r, d) which are different from r in the column fi, i = 1, 2, 3. We have
A(T, r, 1) = {3, 4} (3 and 4 are numbers of rows), F (T, r, 1) = {S1 = {3},
S2 = {4}, S3 = {4}}, and A(T, r, 3) = {1, 3, 5}, F (T, r, 3) = {S1 = {1, 3, 5},
S2 = {5}, S3 = {1}}. Now, we apply the greedy algorithm for set cover
problem to each of the constructed set cover problems, and transform the
obtained covers into decision rules. For the case d = 1, we obtain the cover
{S1, S2} and corresponding decision rule f1 = 0 ∧ f2 = 1 → 1. For the case
d = 3, we obtain the cover {S1} and corresponding decision rule f1 = 0 → 3.
We choose the shortest rule f1 = 0 → 3 which is the result of our algorithm
work.

Let us apply the greedy algorithm U to the construction of a decision tree
U(T ) for the table T . After the first step, we will have the tree which consists
of one node labeled with the table T . Let us describe the second step. The
table T is not degenerate. So, for i = 1, 2, 3, we compute the value

Q(fi) = max{B(T (fi, 0)), B(T (fi, 1))} .

One can show that Q(f1) = max{0, 1} = 1, Q(f2) = max{0, 2} = 2, and
Q(f3) = max{1, 1} = 1. It is clear that 1 is the minimum number for which
the value Q(f1) is minimum. So after the second step we will have the tree
depicted in Fig 5.14.

✒✑✓✏✟✟✟✟✟✙

❍❍❍❍❍❥❞ ❞
f1

0 1

0 0 1 {2, 3}

0 1 0 {1, 3}

f1 f2 f3

1 1 1 {1}

1 1 0 {2}

1 0 0 {1, 2}

f1 f2 f3

Fig. 5.14



86 5 Decision Tables with Many-Valued Decisions

We omit next steps. One can show that the result of the algorithm U work
for the table T is the decision tree U(T ) represented in Fig. 5.13.

5.10 Conclusions

This chapter is devoted to the study of decision tables with many-valued
decisions. We consider examples of such tables; relationships among deci-
sion trees, rules and tests; lower and upper bounds on the depth of decision
trees, length of decision rules and cardinality of tests; approximate and exact
algorithms for optimization of tests, rules and trees.

The most part of lower and upper bounds on the minimum depth of de-
cision trees and minimum cardinality of tests considered in this chapter was
published in [13, 45]. Greedy algorithm for decision tree construction similar
to the algorithm considered in this chapter was studied in [51].

For k-valued tables filled by numbers from the set {0, 1, . . . , k − 1}, k ≥ 3,
all results considered in the chapter are true with the exception of Theorems
5.11, 5.12 and Corollary 5.19.

Instead of bounds h(T ) ≥ log2 S(T ) and h(T ) ≥ log2(R(T ) + 1), for
k-valued tables we have bounds h(T ) ≥ logk S(T ) and h(T ) ≥ logk((k −
1)R(T ) + 1). Instead of the bounds

max{M(T ), log2 N(T )} ≤ h(T ) ≤ M(T ) log2 N(T ) ,

which are true for diagnostic 2-valued decision tables, for diagnostic k-valued
decision tables we have bounds

max{M(T ), logk N(T )} ≤ h(T ) ≤ M(T ) log2 N(T ) .
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Approximate Tests, Decision Trees and
Rules

When we use decision trees, rules and tests as ways for knowledge repre-
sentation, we would like to have relatively simple trees, rules and tests. If
exact decision rules, trees or tests have large complexity, we can consider
approximate trees, rules and tests.

If we use tests, decision rules or trees in classifiers, then exact tests, rules
and trees can be overfitted, i.e., dependent essentially on the noise or adjusted
too much to the existing examples. In this case, it is more appropriate to work
with approximate tests, rules and trees.

Therefore approximate reducts [83, 88], approximate decision rules [59, 67],
and approximate decision trees [8, 52, 71] are studied intensively during many
years.

This chapter is devoted to the consideration of α-tests, α-decision trees and
α-decision rules which are special types of approximate tests, trees and rules.
It contains nine sections. In Sect. 6.1, main notions are discussed. In Sect.
6.2, relationships among α-trees, α-rules and α-tests are studied. In Sects.
6.3 and 6.4, lower and upper bounds on complexity of α-rules, α-trees and
α-tests are considered. Sections 6.5, 6.6 and 6.7 are devoted to the discussion
of approximate algorithms for optimization of α-rules, α-trees and α-tests.
In Sect. 6.8, exact algorithms for optimization of α-decision trees and rules
are considered. Section 6.9 contains conclusions.

6.1 Main Notions

We will consider in this chapter only decision tables with one-valued decisions,
which are filled by numbers from {0, 1}. Let T be a decision table with one-
valued decisions, and T have n columns labeled with attributes f1, . . . , fn. A
decision which is attached to the maximum number of rows in T is called the
most common decision for T . If we have more than one such decisions we
choose the minimum one. If T is empty then 1 is the most common decision
for T . Let α be a real number such that 0 ≤ α < 1. We define the notion of
α-decision tree for T .

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 87–109.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Let Γ be a decision tree over T and v be a terminal node of Γ . Let
nodes and edges in the path from the root to v be labeled with attributes
fi1 , . . . , fim

and numbers δ1, . . . , δm respectively. We denote by T (v) the sub-
table T (fi1 , δ1) . . . (fim

, δm) of the table T . We will say that Γ is an α-decision
tree for T if for any terminal node v of Γ the inequality P (T (v)) ≤ αP (T )
holds, v is labeled with the most common decision for T (v) and for any row
r of T there exists a terminal node v of Γ such that r belongs to the table
T (v).

We denote by hα(T ) the minimum depth of an α-decision tree for T . It
is clear that the notion of 0-decision tree for T coincides with the notion of
decision tree for T . So, h0(T ) = h(T ). Let α, β be real numbers such that
0 ≤ α ≤ β < 1. It is not difficult to show that each α-decision tree for T is
also a β-decision tree for T . Thus, hα(T ) ≥ hβ(T ).

Let us define the notion of α-test for the table T . An α-test for the table T
is a subset of columns {fi1 , . . . , fim

} such that P (T (fi1 , δ1) . . . (fim
, δm)) ≤

αP (T ) for any numbers δ1, . . . , δm ∈ {0, 1}. Empty set is an α-test for T iff
T is a degenerate table. An α-reduct for the table T is an α-test for T for
which each proper subset is not an α-test. We denote by Rα(T ) the minimum
cardinality of an α-test for the table T . It is clear that each α-test has an
α-reduct as a subset. Therefore Rα(T ) is the minimum cardinality of an α-
reduct. It is clear also that the set of tests for the table T coincides with the
set of 0-tests for T . Therefore R0(T ) = R(T ). Let α, β be real numbers such
that 0 ≤ α ≤ β < 1. One can show that each α-test for T is also a β-test for
T . Thus Rα(T ) ≥ Rβ(T ).

Let r = (δ1, . . . , δn) be a row of T . A decision rule over T

fi1 = b1 ∧ . . . ∧ fim
= bm → d

is called an α-decision rule for T and r if b1 = δi1 , . . . , bm = δim
, d is

the most common decision for the table T ′ = T (fi1 , b1) . . . (fim
, bm) and

P (T ′) ≤ αP (T ). We denote by Lα(T, r) the minimum length of α-decision
rule for T and r. The considered decision rule is called realizable for r if
b1 = δi1 , . . . , bm = δim

. The considered rule is α-true for T if d is the most
common decision for T ′ and P (T ′) ≤ αP (T ). A system S of decision rules
over T is called an α-complete system of decision rules for T , if each rule
from S is an α-true for T and for each row r of T there exists a rule from S
which is realizable for r. We denote L(S) the maximum length of a rule from
S and by Lα(T ) we denote the minimum value of L(S) where minimum is
considered among all α-complete systems of decision rules for T .

Example 6.1. Let us consider a decision table T depicted in Fig. 6.1. This
is the decision table from the example Three Cups and Small Ball in Sect.
1.3.1. For this table, P (T ) = 3. Let α be a real number such that 0 ≤ α < 1.
We consider two cases.
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f1 f2 f3

1 0 0 1
0 1 0 2
0 0 1 3

Fig. 6.1

Let 0 ≤ α < 1/3. In this case, the decision tree depicted in Fig. 6.2 is
an α-decision tree for T which has minimum depth. So, hα(T ) = 2. All
α-tests for T are represented in Fig. 6.3. Therefore Rα(T ) = 2. A system
S = {f1 = 1 → 1, f2 = 1 → 2, f3 = 1 → 3} is an α-complete system of
decision rules for T . Therefore Lα(T ) = 1.

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏✚
✚❂ ◗

◗�
✒✑✓✏
✒✑✓✏✒✑✓✏

f1

f2

0 1

0 1

3 2

1

Fig. 6.2

{f1, f2, f3}
{f1, f2}
{f1, f3}
{f2, f3}

Fig. 6.3

Let 1/3 ≤ α < 1. In this case, the decision tree depicted in Fig. 6.4 is
an α-decision tree for T which has minimum depth. Thus, hα(T ) = 1. All
α-tests for T are represented in Fig. 6.5. So, we have Rα(T ) = 1. A system
S = {f2 = 0 → 1, f2 = 1 → 2} is an α-complete system of decision rules for
T . Therefore, Lα(T ) = 1.

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏ ✒✑✓✏
f1

2 1

0 1

Fig. 6.4

{f1, f2, f3}
{f1, f2}
{f1, f3}
{f2, f3}
{f1}
{f2}
{f3}

Fig. 6.5

6.2 Relationships among α-Trees, α-Rules and α-Tests

Theorem 6.2. Let T be a decision table with n columns labeled with at-
tributes f1, . . . , fn and α be a real number such that 0 ≤ α < 1.

1. If Γ is an α-decision tree for T then the set of attributes attached to
working nodes of Γ is an α-test for the table T .
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2. Let {fi1 , . . . , fim
} be an α-test for T . Then there exists an α-decision tree Γ

for T which uses only attributes from {fi1 , . . . , fim
} and for which h(Γ ) =

m.

Proof. 1. Let Γ be an α-decision tree for the table T . Let, for simplic-
ity, {f1, . . . , ft} be the set of attributes attached to working nodes of
Γ . Let (δ1, . . . , δt) ∈ {0, 1}t. We show that for the subtable T ′ =
T (f1, δ1) . . . (ft, δt) the inequality P (T ′) ≤ αP (T ) holds. Let us consider a
path in Γ from the root to a terminal node v which satisfies the following
condition. Let fi1 , . . . , fim

be attributes attached to working nodes of this
path. Then the edges of this path are labeled with numbers δi1 , . . . , δim

re-
spectively. Consider the table T ′′ = T (fi1 , δi1) . . . (fim

, δim
). It is clear that

T ′′ = T (v). Since Γ is an α-decision tree for T , we have P (T (v)) ≤ αP (T ).
It is clear also that T ′ is a subtable of T ′′. Therefore P (T ′) ≤ αP (T ). Tak-
ing into account that (δ1, . . . , δt) is an arbitrary tuple from {0, 1}t we
obtain {f1, . . . , ft} is an α-test for the table T .

2. Let {fi1 , . . . , fim
} be an α-test for the table T . Let us consider a decision

tree Γ over T which consists of m+1 layers. For j = 1, . . . , m, all nodes of
the j-th layer are working nodes labeled with the attribute fij

. All nodes
from the (m+1)-th layer are terminal nodes. Let v be an arbitrary terminal
node of Γ , and let the edges in the path from the root to v be labeled with
numbers δ1, . . . , δm. Then T (v) = T (fi1 , δ1) . . . (fim

, δm) and the node v
is labeled with the most common decision for T (v). Since {fi1 , . . . , fim

} is
an α-test for T , we have P (T (v)) ≤ αP (T ). Taking into account that v is
an arbitrary terminal node of Γ , we obtain Γ is an α-decision tree for T
for which h(Γ ) = m. ⊓⊔

Corollary 6.3. Let T be a decision table, and α be a real number such that
0 ≤ α < 1. Then

hα(T ) ≤ Rα(T ) .

Theorem 6.4. Let T be a decision table with n columns labeled with at-
tributes f1, . . . , fn, and α be a real number such that 0 ≤ α < 1.

1. If S is an α-complete system of decision rules for T then the set of at-
tributes from rules in S is an α-test for T .

2. If F = {fi1 , . . . , fim
} is a test for T then there exists an α-complete system

S of decision rules for T which uses only attributes from F and for which
L(S) = m.

Proof. 1. Let S be an α-complete system of decision rules for T . Let,
for simplicity, {f1, . . . , ft} be the set of attributes from rules in S and
(δ1, . . . , δt) ∈ {0, 1}t. We show that for the table T ′ = T (f1, δ1) . . . (ft, δt)
the inequality P (T ′) ≤ αP (T ) holds. If T ′ has no rows then the considered
inequality is true. Let T ′ have at least one row δ̄ = (δ1, . . . , δt, δt+1, . . . , δn).
Since S is an α-complete system of decision rules for T , there is a rule

fi1 = δi1 ∧ . . . ∧ fim
= δim

→ d
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in S which is realizable for δ̄ and α-true for T . Consider the table
T ′′ = T (fi1 , δi1) . . . (fim

, δim
). Since the considered rule is α-true, P (T ′′) ≤

αP (T ). It is clear that T ′ is a subtable of T ′′. Therefore P (T ′) ≤ αP (T ).
Taking into account that (δ1, . . . , δt) is an arbitrary tuple from {0, 1}t we
obtain {f1, . . . , ft} is an α-test for the table T .

2. Let F = {fi1 , . . . , fim
} be an α-test for the table T . For each δ̄ =

(δ1, . . . , δm) ∈ {0, 1}m such that the subtable

T (δ̄) = T (fi1 , δ1) . . . (fim
, δm)

is nonempty, we construct a decision rule

fi1 = δ1 ∧ . . . ∧ fim
= δm → d ,

where d is the most common decision for T (δ̄). Since F is an α-test for
T , the considered decision rule is α-true for T . We denote by S the set
of constructed rules. It is clear that for each row of T there exists a rule
from S which is realizable for the considered row. So, S is an α-complete
system of decision rules for T , and L(S) = m. ⊓⊔

Corollary 6.5. Lα(T ) ≤ Rα(T ).

Theorem 6.6. Let Γ be an α-decision tree for a decision table T , 0 ≤ α < 1,
and S be the set of decision rules corresponding to paths in Γ from the root
to terminal nodes. Then S is an α-complete system of decision rules for T
and L(S) = h(Γ ).

Proof. Since Γ is an α-decision tree for T , for each row r of T there exists a
path τ from the root to a terminal node v of Γ such that r belongs to T (v),
and v is labeled with the most common decision for T (v). It is clear that
the rule rule(τ) corresponding to the path τ is realizable for r. Since Γ is an
α-decision tree for T , we have P (T (v)) ≤ αP (T ). Therefore, rule(τ) is α-true
for T . It is clear that the length of rule(τ) is equal to the length of path τ .
Therefore S is an α-complete decision rule system for T and L(S) = h(Γ ).⊓⊔

Corollary 6.7. Lα(T ) ≤ hα(T ).

6.3 Lower Bounds

We try to generalize results obtained for exact test, decision rules and de-
cision trees to the case of approximate tests, rules and trees. Unfortunately,
sometimes it is impossible. Let us show that we can not obtain a nontrivial
lower bound on the value hα(T ) depending on the value D(T ) which is the
number of different decisions attached to rows of the table T .

Theorem 6.8. For any real number α, 0 < α < 1, and for any natural m,
there exists a decision table T such that D(T ) = m + 1 and hα(T ) = 1.
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Proof. Set r = ⌈m/2α⌉ and consider a decision table T with r + m rows and
r + m columns. The columns of T are labeled with attributes f1, . . . , fr+m.
The first column has 0 at the intersection with the first r rows and 1 at the
intersection with the last m rows. For i = 2, . . . , r + m, the column fi has
1 at the intersection with i-th row, and 0 at the intersection with all other
rows. The first r rows are labeled with the decision 1. The last m rows are
labeled with decisions 2, . . . , m + 1 respectively (see Fig. 6.6).

f1 f2 ... fr ... fr+m

0 0 0 0 0 1
0 1 0 0 0 1

r ... ...
0 0 1 0 0 1

1 0 0 1 0 2
m ... ...

1 0 0 0 1 m + 1

Fig. 6.6

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏ ✒✑✓✏
f1

1 2

v0 v1

0 1

Fig. 6.7

It is clear that D(T ) = m + 1 and P (T ) = rm + m(m − 1)/2. Denote
T0 = T (f1, 0) and T1 = T (f1, 1). One can easily show that P (T0) = 0 and
P (T1) = m(m − 1)/2.

Evidently, P (T0) < αP (T ). Let us show that P (T1) ≤ αP (T ). Since r =
⌈m/2α⌉, we have m/2α ≤ r, m/2 ≤ rα, (m − 1)/2 ≤ rα and m(m − 1)/2 ≤
αrm. Therefore P (T1) = m(m − 1)/2 ≤ α(rm + m(m − 1)/2) = αP (T ). Let
us consider the decision tree depicted in Fig. 6.7. It is clear that T (v0) = T0,
T (v1) = T1, 1 is the most common decision for T0, and 2 is the most common
decision for T1. So, Γ is an α-decision tree for T . Therefore hα(T ) ≤ 1.
Evidently, P (T ) > αP (T ). Hence hα(T ) > 0 and hα(T ) = 1. ⊓⊔

Another situation is with the lower bound depending on R(T ).

Theorem 6.9. Let T be a decision table and α be a real number such that
0 ≤ α < 1. Then

hα(T ) ≥ log2(Rα(T ) + 1) .

Proof. Let Γ be an α-decision tree for T such that h(Γ ) = hα(T ). Denote
by Lw(Γ ) the number of working nodes in Γ . From Theorem 6.2 it follows
that the set of attributes attached to working nodes of Γ is an α-test for T .
Therefore Lw(Γ ) ≥ Rα(T ). One can show that Lw(Γ ) ≤ 2h(Γ ) − 1. Hence
2h(Γ ) − 1 ≥ Rα(T ), 2h(Γ ) ≥ Rα(T ) + 1 and h(Γ ) ≥ log2(Rα(T ) + 1). Since
h(Γ ) = hα(T ) we obtain hα(T ) ≥ log2(Rα(T ) + 1). ⊓⊔

Example 6.10. Consider the decision table T depicted in Fig. 3.1. For this
table, P (T ) = 8.

One can show that T has exactly three 1/8-reducts: {f1, f2}, {f1, f3} and
{f2, f3}. Therefore R1/8(T ) = 2. Using Theorem 6.9 we obtain h1/8(T ) ≥
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log2 3 and h1/8(T ) ≥ 2. We know that h0(T ) = 2 (see Example 3.3). Therefore
h1/8(T ) = 2.

One can show that the table T has exactly two 1/4-reducts: {f2} and {f3}.
Therefore R1/4(T ) = 1. Using Theorem 6.9 we obtain h1/4(T ) ≥ 1. Consider
the decision tree Γ depicted in Fig. 6.8. One can show that P (T (v0)) = 0,

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏ ✒✑✓✏
f2

3 2

v0 v1

0 1

Fig. 6.8

P (T (v1)) = 2, 3 is the most common decision for T (v0), and 2 is the most
common decision for T (v1). Therefore Γ is a 1/4-decision tree for T . Thus,
h1/4(T ) = 1.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn,
and α be a real number such that 0 ≤ α < 1. Define a parameter Mα(T )
for the table T . If T is a degenerate table then Mα(T ) = 0. Let T be a
nondegenerate table, and δ̄ = (δ1, . . . , δn) ∈ {0, 1}n. We denote by Mα(T, δ̄)
the minimum natural m such that there exist fi1 , . . . , fim

∈ {f1, . . . , fn} for
which P (T (fi1 , δi1) . . . (fim

, δim
)) ≤ αP (T ). Then Mα(T ) = max{Mα(T, δ̄) :

δ̄ ∈ {0, 1}n}.
Let α and β be real numbers such that 0 ≤ α < β < 1. Then Mα(T ) ≥

Mβ(T ). It is clear that M0(T ) = M(T ).

Theorem 6.11. Let T be a decision table and α be a real number such that
0 ≤ α < 1. Then

hα(T ) ≥ Mα(T ) .

Proof. If T is a degenerate table then hα(T ) = 0 and Mα(T ) = 0. Let now T
be a nondegenerate decision table having n columns labeled with attributes
f1, . . . , fn.

Let Γ be an α-decision tree for T such that h(Γ ) = hα(T ) and δ̄ =
(δ1, . . . , δn) ∈ {0, 1}n be an n-tuple such that Mα(T, δ̄) = Mα(T ). Let us
consider a path τ = v1, d1, . . . , vm, dm, vm+1 from the root v1 to a terminal
node vm+1 in Γ which satisfies the following condition: if nodes v1, . . . , vm

are labeled with attributes fi1 , . . . , fim
then edges d1, . . . , dm are labeled with

numbers δi1 , . . . , δim
. We denote T ′ = T (fi1 , δi1) . . . (fim

, δim
). It is clear that

T ′ = T (vm+1). Since Γ is an α-decision tree for T , we have P (T ′) ≤ αP (T ).
Therefore m ≥ Mα(T, δ̄) and h(Γ ) ≥ Mα(T, δ̄). Since h(Γ ) = hα(T ) and
Mα(T, δ̄) = Mα(T ) we have hα(T ) ≥ Mα(T ). ⊓⊔

Example 6.12. Consider the decision table T depicted in Fig. 3.3. We showed
in Example 3.5 that M0(T ) = 2. Since T is a nondegenerate table, we have
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Mα(T ) ≥ 1 for any α, 0 ≤ α < 1. Let us find the threshold β such that if
α < β then Mα(T ) = 2, and if α ≥ β we have Mα(T ) = 1. One can show
that

β =
min{max(P (T (fi, 0)), P (T (fi, 1)) : i = 1, 2, 3}

P (T )

and β = 2/8 = 0.25.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn,
and m be a natural number such that m ≤ n. Let us remind the notion of
(T, m)-proof-tree.

A (T, m)-proof-tree is a finite directed tree G with the root in which the
length of each path from the root to a terminal node is equal to m−1. Nodes
of this tree are not labeled. In each nonterminal node exactly n edges start.
These edges are labeled with pairs of the kind (f1, δ1) . . . (fn, δn) respectively
where δ1, . . . , δn ∈ {0, 1}.

Let v be an arbitrary terminal node of G and (fi1 , δ1), . . . , (fim−1 , δm−1)
be pairs attached to edges in the path from the root of G to the terminal
node v. Denote T (v) = T (fi1 , δ1) . . . (fim−1 , δm−1).

Let α be a real number such that 0 ≤ α < 1. We will say that G is a
proof-tree for the bound hα(T ) ≥ m if P (T (v)) > αP (T ) for any terminal
node v of the tree G.

Theorem 6.13. Let T be a nondegenerate decision table with n columns, m
be a natural number such that m ≤ n, and α be a real number such that
0 ≤ α < 1. Then a proof-tree for the bound hα(T ) ≥ m exists if and only if
the inequality hα(T ) ≥ m holds.

Proof. Let columns of T be labeled with attributes f1, . . . , fn.

1. Let G be a proof-tree for the bound hα(T ) ≥ m. Let us prove that hα(T ) ≥
m. Let Γ be an α-decision tree for T such that h(Γ ) = hα(T ).

Choose a path in Γ from the root to some node, and a path in G from
the root to a terminal node in the following way. Let the root of Γ be
labeled with the attribute fi1 . We find an edge which starts in the root of
G and is labeled with a pair (fi1 , δ1). We pass along this edge in the tree
G, and pass along the edge labeled with δ1 (which starts in the root) in
the tree Γ . Then we will repeat the considered procedure until we come
in the tree G to a terminal node v. In the same time, we will come to a
node w of the tree Γ . It is clear that T (v) coincides with the subtable of
T consisting of rows for which during the work of Γ we pass through the
node w. Since P (T (v)) > αP (T ), w is not a terminal node. Therefore, the
depth of Γ is at least m. Since h(Γ ) = hα(T ), we obtain hα(T ) ≥ m.

2. Let hα(T ) ≥ m. We prove by induction on m that there exists a proof-tree
for the bound hα(T ) ≥ m.

Let m = 1. Then in the capacity of such proof-tree we can take the tree
which consists of exactly one node. Let us assume that for some m ≥ 1
for each decision table T and for any real β, 0 ≤ β < 1, if hβ(T ) ≥ m
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then there exists a proof-tree for the bound hβ(T ) ≥ m. Let now T be a
decision table, α be a real number such that 0 ≤ α < 1, and the inequality
hα(T ) ≥ m+1 hold. Let us show that there exists a proof-tree for the bound
hα(T ) ≥ m + 1. Let T have n columns labeled with f1, . . . , fn. Let i ∈
{1, . . . , n}. It is clear that there exists δi ∈ {0, 1} such that hβi

(T (fi, δi)) ≥
m where βi = αP (T )/P (T (fi, δi)). In the opposite case, we havehα(T ) ≤ m
which is impossible. Using inductive hypothesis we obtain that for the table
T (fi, δi) there exists a proof-tree Gi for the bound hβi

(T (fi, δi)) ≥ m.
Let us construct a proof-tree G. In the root of G, n edges start. These

edges enter the roots of the trees G1, . . . , Gn and are labeled with pairs
(f1, δ1), . . . , (fn, δn) respectively. One can show that G is a proof-tree for
the bound hα(T ) ≥ m + 1. ⊓⊔

Example 6.14. It is not difficult to show that the tree depicted in Fig. 6.9 is
a proof-tree for the bound h0.2(T ) ≥ 2, where T is the table depicted in Fig.
3.1. Using Theorem 6.13 we obtain h0.2(T ) ≥ 2. Really, the tree depicted in
Fig. 6.9 is a proof-tree for the bound hα(T ) ≥ 2, where α < 0.25.

❞
❄

����������

✏✏✏✏✏✏✏✏✏✮ ❞❞❞(f1, 1) (f2, 1) (f3, 0)

Fig. 6.9

Theorem 6.15. Let T be a decision table, α be a real number such that
0 ≤ α < 1 and Δ(T ) be the set of rows of T . Then Lα(T, δ̄) = Mα(T, δ̄) for
any δ̄ ∈ Δ(T ) and Lα(T ) = max{Mα(T, δ̄) : δ̄ ∈ Δ(T )}.

Proof. Let T have n columns labeled with attributes f1, . . . , fn, and δ̄ =
(δ1, . . . , δn) be a row of T . One can show that a decision rule

fi1 = b1 ∧ . . . ∧ fim
= bm → d

is α-true for T and realizable for δ̄ if and only if b1 = δi1 , . . . , bm = δim
,

d is the most common decision for the table T ′ = T (fi1 , b1) . . . (fim
, bm)

and P (T ′) ≤ αP (T ). From here it follows that Lα(T, δ̄) = Mα(T, δ̄) and
Lα(T ) = max{Mα(T, δ̄) : δ̄ ∈ Δ(T )}. ⊓⊔

Example 6.16. Let us consider the decision table T depicted in Fig. 3.3. In
Example 3.5, we found that max{M(T, δ̄) : δ̄ ∈ Δ(T )} = 2. Therefore
L0(T ) = 2. Since T is a nondegenerate table, Lα(T ) ≥ 1 for any α, 0 ≤ α < 1.
Let us find the threshold β such that if α < β then Lα(T ) = 2, and if
α ≥ β then Lα(T ) = 1. We know (see Example 6.12) that if α ≥ 0.25 then
Mα(T ) = 1 and therefore Lα(T ) = 1. Let α < 0.25 and δ̄ = (1, 1, 0). One can
show that Lα(T, δ̄) > 1. Therefore, Lα(T ) = 2 if α < 0.25. So β = 0.25.
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6.4 Upper Bounds

First, we consider an upper bound of the value Rα(T ). Let us remind that
N(T ) is the number of rows in the table T .

Theorem 6.17. Let T be a decision table and α be a real number such that
0 < α < 1. Then

Rα(T ) ≤ (1 − α)N(T ) + 1 .

Proof. We will prove the considered inequality by induction on N(T ). If
N(T ) = 1 then Rα(T ) = 0 and the considered inequality holds. Let for a
natural m ≥ 1 for any decision table T with N(T ) ≤ m and for any real β,
0 < β < 1, the inequality Rβ(T ) ≤ (1 − β)N(T ) + 1 hold.

Let T be a decision table with N(T ) = m + 1 and α be a real number,
0 < α < 1. If T is a degenerate table then Rα(T ) = 0, and the considered
inequality holds. Let us assume now that there exist two rows in T , which are
labeled with different decisions. Let these rows be different in a column fi of
the table T . We denote T0 = T (fi, 0), T1 = T (fi, 1), N = N(T ), N0 = N(T0)
and N1 = N(T1). It is clear that 1 ≤ N0 ≤ m and 1 ≤ N1 ≤ m. We consider
three cases.

1. Let P (T0) ≤ αP (T ) and P (T1) ≤ αP (T ). In this case {fi} is an α-test for
the table T , and

Rα(T ) ≤ 1 ≤ (1 − α)N(T ) + 1 .

2. Let P (T0) ≤ αP (T ) and P (T1) > αP (T ). We denote β1 = αP (T )/P (T1).
It is clear that 0 < β1 < 1. Using inductive hypothesis we conclude that
there exists β1-test B1 for the table T1 such that |B1| ≤ (1−β1)N(T1)+1.
It is not difficult to show that B1 ∪ {fi} is an α-test for the table T .

Let us prove that β1 ≥ αN/N1. To this end, we will show that N/N1 ≤
P (T )/P (T1). It is clear that P (T ) = P (T0) + P (T1) + P (T0, T1) where
P (T0, T1) is the number of pairs of rows (r′, r′′) with different decisions
such that r′ is from T0 and r′′ is from T1. Thus,

N

N1
=

N1

N1
+

N0

N1
= 1 +

N0

N1
and

P (T )

P (T1)
= 1 +

P (T0)

P (T1)
+

P (T0, T1)

P (T1)
.

We will show that N0/N1 ≤ P (T0, T1)/P (T1). Let r1, . . . , rN0 be all rows
from T0. For i = 1, . . . , N0, we denote by Pi the number of pairs of rows
(ri, r

′′) with different decisions such that r′′ is from T1. Then

P (T0, T1)

P (T1)
=

∑N0

i=1 Pi

P (T1)
.

Let us show that Pi/P (T1) ≥ 1/N1 for any i ∈ {1, . . . , N0}. We consider
rows of the table T1. Let b be the number of rows which have the same
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decision as ri. Let a be the number of rows which have other decisions.
Then Pi = a, P (T1) ≤ ab + a(a − 1)/2 and N1 = a + b. Since P (T1) >
αP (T ), we have T1 is a nondegenerate table. Therefore, N1 ≥ 2 and a ≥ 1.
So,

Pi

P (T1)
≥

a

ab + a(a−1)
2

=
1

b + a−1
2

≥
1

b + a
.

Thus,

P (T0, T1)

P (T1)
≥

N0

N1
,

P (T )

P (T1)
≥

N

N1
, and β1 =

αP (T )

P (T1)
≥

αN

N1
.

Therefore,

|B1 ∪ {f1}| ≤ (1 − β1)N1 + 2 ≤

(

1 −
αN

N1

)

N1 + 2

= N1 − αN + 2 ≤ N − αN + 1 = N(1 − α) + 1 .

We used here evident inequality N1 + 1 ≤ N .
The case P (T0) > αP (T ) and P (T1) ≤ αP (T ) can be considered in the

same way.
3. Let P (T0) > αP (T ) and P (T1) > αP (T ). We denote β0 = αP (T )/P (T0)

and β1 = αP (T )/P (T1). It is clear that 0 < β0 < 1 and 0 < β1 < 1. Using
inductive hypothesis we obtain that there exists a β0-test B0 for the table
T0 such that |B0| ≤ (1− β0)N0 + 1. Also, there exists a β1-test B1 for the
table T1 such that |B1| ≤ (1 − β1)N1 + 1. It is not difficult to show that
B0∪B1∪{fi} is an α-test for the table T . As for the case 2, one can prove
that β0 ≥ αN/N0 and β1 ≥ αN/N1. Therefore,

|B0 ∪ B1 ∪ {fi}| ≤

(

1 −
αN

N0

)

N0 + 1 +

(

1 −
αN

N1

)

N1 + 1 + 1

= N0 − αN + N1 − αN + 3 = N − αN + 1 + 2 − αN

= (1 − α)N + 1 + 2 − αN .

Let αN ≥ 2. Then we have Rα(T ) ≤ (1 − α)N + 1.
Let now αN < 2. Using Theorem 3.14 we have Rα(T ) ≤ R0(T ) ≤

N − 1 ≤ N − 1 + 2 − αN = (1 − α)N + 1. ⊓⊔

We now consider an upper bound on hα(T ) which depends on Mα(T ) and α
only.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn,
and t be a nonnegative real number. We define a parameter M t(T ) for the
table T . If T is a degenerate table or t ≥ P (T ) then M t(T ) = 0. Let T be a
nondegenerate table, t < P (T ) and δ̄ = (δ1, . . . , δn) ∈ {0, 1}n. We denote by
M t(T, δ̄) the minimum natural m such that there exist fi1 , . . . , fim

for which

P (T (fi1 , δi1) . . . (fim
, δim

)) ≤ t .
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Then
M t(T ) = max{M t(T, δ̄) : δ̄ ∈ {0, 1}n} .

Lemma 6.18. Let T be a decision table, T ′ be a subtable of T and t be a real
number such that 0 ≤ t ≤ P (T ). Then

M t(T ′) ≤ M t(T ) .

Proof. Let Θ be a decision table and Θ′ be a subtable of Θ. It is clear that
P (Θ′) ≤ P (Θ). In particular, if Θ is a degenerate table then Θ′ is a degenerate
table too. From here and from the definition of the parameter M t it follows
that M t(T ′) ≤ M t(T ). ⊓⊔

Theorem 6.19. Let T be a decision table and α be a real number such that
0 < α < 1. Then

hα(T ) ≤ Mα(T )

(

log2

1

α
+ 1

)

.

Proof. Denote t = αP (T ). Let T be a degenerate table. Then hα(T ) = 0,
Mα(T ) = 0 and the considered inequality holds. Let T be a nondegenerate
table with n columns labeled with attributes f1, . . . , fn. For i = 1, . . . , n, let
σi be a number from {0, 1} such that

P (T (fi, σi)) = max{P (T (fi, 0)), P (T (fi, 1))} .

Then there exist attributes fi1 , . . . , fim
∈ {f1, . . . , fn} such that m ≤ M t(T )

and P (T (fi1 , σi1) . . . (fim
, σim

)) ≤ t.
Now we begin to describe the work of an α-decision tree Γ on a row r of the

decision table T . First, we find sequentially values of attributes fi1 , . . . , fim

on the considered row. If fi1 = σi1 , . . . , fim
= σim

then our row is localized in
the subtable T ′ = T (fi1 , σi1) . . . (fim

, σim
) such that P (T ′) ≤ t. So, the work

of Γ can be finished. The result of Γ work on r is the most common decision
for the table T ′.

Let now there exists k ∈ {1, . . . , m} such that fi1 = σi1 , . . . , fik−1
= σik−1

and fik
�= σik

. In this case, the considered row is localized in the sub-
table T ′′ = T (fi1 , σi1) . . . (fik−1

, σik−1
)(fik

,¬σik
) where ¬σ = 0 if σ = 1

and ¬σ = 1 if σ = 0. Since P (T (fik
, σik

)) ≥ P (T (fik
,¬σik

)) and P (T ) ≥
P (T (fik

, σk)) + P (T (fik
,¬σk)), we obtain P (T (fik

,¬σik
)) ≤ P (T )/2 and

P (T ′′) ≤ P (T )/2.
Later the tree Γ works similarly but instead of the table T we will consider

its subtable T ′′. From Lemma 6.18 it follows that M t(T ′′) ≤ M t(T ).
The process described above will be called a big step of the decision tree

Γ work. During a big step we find values of at most M t(T ) attributes. As a
result, we either localize the considered row in a subtable which uncertainty
is at most t (and finish the work of Γ ) or localize this row in a subtable which
uncertainty is at most one-half of the uncertainty of initial table.



6.4 Upper Bounds 99

Let during the work with row r the decision tree Γ make q big steps. After
the big step number q−1 the considered row will be localized in a subtable Θ
of the table T . Since we must make additional big step, P (Θ) > t = αP (T ).
It is clear that P (Θ) ≤ P (T )/2q−1. Therefore P (T )/2q−1 > αP (T ) and
2q−1 < 1/α. Thus, q < log2(1/α)+1. Taking into account that during each big
step we compute values of at most M t(T ) attributes and M t(T ) = Mα(T ),
we obtain h(Γ ) ≤ Mα(T )(log2(1/α) + 1). ⊓⊔

In Sect. 4.3, we considered the problem of separation of green and white points
in the plane and corresponding decision table T (S, μ). From Proposition 4.28
it follows that M(T (S, μ)) ≤ 4. So, we have for any α, 0 < α < 1,

Corollary 6.20. hα(T (S, μ)) ≤ 4(log2(1/α) + 1).

Let us consider simple statement which allows us to obtain upper bounds
on parameters of decision tables which are connected with the set cover
problem.

Lemma 6.21. Let A be a finite set, and S1, . . . , St be subsets of A such that
S1 ∪ . . . ∪ St = A. Then for any m ∈ {1, . . . , t} there exist Si1 . . . , Sim

∈
{S1, . . . , St} such that |Si1 ∪ . . . ∪ Sim

| ≥ |A|m/t.

Proof. We prove this statement by induction on m. Let m = 1. Since S1∪. . .∪
St = A, there exists Si1 ∈ {S1, . . . , St} such that |Si1 | ≥ |A|/t. Let for some
m, 1 ≤ m < t, the considered statement hold, i.e., there exist Si1 , . . . , Sim

such that |Si1 ∪ . . . ∪ Sim
| ≥ |A|m/t.

Let us prove that the considered statement holds for m + 1 too. Let, for
the definiteness, i1 = 1, . . . , im = m and |S1 ∪ . . . ∪ Sm| = |A|m/t + x where
x ≥ 0. Then, evidently, there exists Sj ∈ {Sm+1, . . . , St} such that

|Sj \ (S1 ∪ . . . ∪ Sm)| ≥
|A| − |A|mt − x

t − m
.

We have that

|S1 ∪ . . . ∪ Sm ∪ Sj | ≥ |A|
m

t
+ x +

|A| − |A|mt − x

t − m

= |A|
m

t
+ x + |A|

1

t
−

x

t − m
≥ |A|

m + 1

t
.

⊓⊔

Proposition 6.22. Let T be a nondegenerate decision table with n columns
labeled with attributes f1, . . . , fn, δ̄ = (δ1, . . . , δn) ∈ {0, 1}n, and α be a real
number such that 0 ≤ α < 1. Then

Mα(T, δ̄) ≤ ⌈(1 − α)M(T, δ̄)⌉ .
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Proof. Let M(T, δ̄) = t and, for the definiteness, P (T (f1, δ1) . . . (ft, δt)) = 0.
We denote by A the set of all unordered pairs of rows of T with different
decisions. For i = 1, . . . , t, we denote by Si the set of all pairs of rows from
A such that at least one row from the pair has in the column fi a number
which is not equal to δi. It is clear that A = S1 ∪ . . . ∪ St and |A| = P (T ).

Set m = ⌈(1 − α)t⌉. From Lemma 6.21 it follows that there exist
Si1 , . . . , Sim

∈ {S1, . . . , St} such that |Si1 ∪ . . . ∪ Sim
| ≥ |A|m/t ≥ (1 −

α)|A|. One can show that P (T (fi1 , δi1) . . . (fim
, δim

)) ≤ αP (T ). Therefore
Mα(T, δ̄) ≤ ⌈(1 − α)M(T, δ̄)⌉. ⊓⊔

Corollary 6.23. Mα(T ) ≤ ⌈(1 − α)M(T )⌉.

Corollary 6.24. Lα(T, r) ≤ ⌈(1 − α)L(T, r)⌉ for any row r of T .

Corollary 6.25. Lα(T ) ≤ ⌈(1 − α)L(T )⌉.

Corollary 6.26. hα(T ) ≤ ⌈(1 − α)M(T )⌉(log2(1/α) + 1).

6.5 Approximate Algorithm for α-Decision Rule

Optimization

We begin from approximate algorithm for minimization of cardinality of α-
cover. Let α be a real number such that 0 ≤ α < 1.

Let A be a set containing N > 0 elements, and F = {S1, . . . , Sp} be a fam-
ily of subsets of the set A such that A =

⋃p
i=1 Si. A subfamily {Si1 , . . . , Sit

} of

the family F will be called an α-cover for A, F if |
⋃t

j=1 Sij
| ≥ (1−α)|A|. The

problem of searching for an α-cover with minimum cardinality is NP -hard.
We consider a greedy algorithm for construction of α-cover. During each

step this algorithm chooses a subset from F which covers maximum number
of uncovered elements from A. This algorithm stops when the constructed
subfamily is an α-cover for A, F . We denote by Cgreedy(α) the cardinality of
constructed α-cover, and by Cmin(α) we denote the minimum cardinality of
α-cover for A, F . The following statement was obtained by J. Cheriyan and
R. Ravi in [9].

Theorem 6.27. Let 0 < α < 1. Then Cgreedy(α) < Cmin(0) ln(1/α) + 1.

Proof. Denote m = Cmin(0). If m = 1 then, as it is not difficult to show,
Cgreedy(α) = 1 and the considered inequality holds. Let m ≥ 2 and Si be a
subset of maximum cardinality in F . It is clear that |Si| ≥ N/m. So, after the
first step we will have at most N − N/m = N(1 − 1/m) uncovered elements
in the set A. After the first step we have the following set cover problem:
the set A \ Si and the family {S1 \ Si, . . . , Sp \ Si}. For this problem, the
minimum cardinality of a cover is at most m. So, after the second step, when
we choose a set Sj \ Si with maximum cardinality, the number of uncovered
elements in the set A will be at most N(1 − 1/m)2, etc.
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Let the greedy algorithm in the process of α-cover construction make g
steps and construct an α-cover of cardinality g. Then after the step number
g−1 more then αN elements in A are uncovered. Therefore N(1−1/m)g−1 >
αN and 1/α > (1 + 1/(m− 1))g−1. If we take the natural logarithm of both
sides of this inequality we obtain ln 1/α > (g−1) ln(1+1/(m−1)). It is known
that for any natural r, the inequality ln(1+1/r) > 1/(r+1) holds. Therefore
ln(1/α) > (g − 1)/m and g < m ln(1/α) + 1. Taking into account that m =
Cmin(0) and g = Cgreedy(α), we obtain Cgreedy(α) < Cmin(0) ln(1/α) + 1. ⊓⊔

We can apply the greedy algorithm for construction of α-cover to construct
α-decision rules.

Let T be a nondegenerate decision table containing n columns labeled
with attributes f1, . . . , fn, r = (b1, . . . , bn) be a row of T , and α be a real
number such that 0 < α < 1. We consider a set cover problem A′(T, r),
F ′(T, r) = {S1, . . . , Sn} where A′(T, r) is the set of all unordered pairs of
rows from T with different decisions. For i = 1, . . . , n, the set Si coincides
with the set of all pairs from A′(T, r) such that at least one row from the
pair has at the intersection with the column fi a number different from bi.
One can show that the decision rule

fi1 = bi1 ∧ . . . ∧ fim
= bim

→ d

is α-true for T (it is clear that this rule is realizable for r) if and only if
d is the most common decision for the table T (fi1 , bi1) . . . (fim

, bim
) and

{Si1 , . . . , Sim
} is an α-cover for the set cover problem A′(T, r), F ′(T, r). Ev-

idently, for the considered set cover problem Cmin(0) = L(T, r).
Let us apply the greedy algorithm to the considered set cover problem.

This algorithm constructs an α-cover which corresponds to an α-decision
rule for T and r. From Theorem 6.27 it follows that the length of this rule is
at most

L(T, r) ln
1

α
+ 1 .

We denote by Lgreedy(T, r, α) the length of the rule constructed by the fol-
lowing polynomial algorithm: for a given decision table T , row r of T and α,
0 < α < 1, we construct the set cover problem A′(T, r), F ′(T, r) and then
apply to this problem the greedy algorithm for construction of α-cover. We
transform the obtained α-cover into an α-decision rule for T and r. According
to what has been said above we have the following statement.

Theorem 6.28. Let T be a nondegenerate decision table, r be a row of T
and α be a real number such that 0 < α < 1. Then

Lgreedy(T, r, α) ≤ L(T, r) ln
1

α
+ 1 .

Example 6.29. Let us apply the considered algorithm to the table T
depicted in Fig. 3.1, to the first row of this table and α = 1/8.



102 6 Approximate Tests, Decision Trees and Rules

For i = 1, . . . , 5, we denote by ri the i-th row of T . We have
A′(T, r1) = {(r1, r2),(r1, r3),(r1, r4),(r1, r5), (r2, r4),(r2, r5),(r3, r4),(r3, r5)},
F ′(T, r) = {S1, S2, S3}. S1 = {(r1, r2),(r1, r4), (r2, r4),(r2, r5),(r3, r4)},
S2 = {(r1, r4),(r1, r5),(r2, r4),(r2, r5),(r3, r4),(r3, r5)} and S3 =
{(r1, r2),(r1, r3),(r1, r5),(r2, r4),(r2, r5),(r3, r4), (r3, r5)}. At the first step,
the greedy algorithm chooses S3. The set {S3} is an 1/8-cover for A′(T, r1),
F ′(T, r). The corresponding decision rule f3 = 1 → 1 is an 1/8-decision rule
for T and r1.

We can use the considered algorithm to construct an α-complete decision rule
system for T . To this end, we apply this algorithm sequentially to the table
T , number α and each row r of T . As a result, we obtain a system of rules
S in which each rule is α-true for T and for every row of T there exists a
rule from S which is realizable for this row. We denote Lgreedy(T, α) = L(S).
From Theorem 6.28 it follows

Theorem 6.30. Let T be a nondegenerate decision table and α be a real
number such that 0 < α < 1. Then

Lgreedy(T, α) ≤ L(T ) ln
1

α
+ 1 .

In Sect. 4.3, we considered the problem of separation of green and white
points in the plane. From Corollary 4.29 it follows that for the table T (S, μ),
corresponding to the considered problem, L(T (S, μ)) ≤ 4. So we have for any
α, 0 < α < 1,

Corollary 6.31. Lgreedy(T (S, μ), α) ≤ 4 ln(1/α) + 1.

Example 6.32. Let us apply the considered algorithm to the table T depicted
in Fig. 3.1 and α = 1/8. As a result we obtain the following 1/8-complete
decision rule system for T : S = {f3 = 1 → 1, f1 = 0 → 2, f2 = 1 ∧ f3 = 0 →
2, f2 = 0 → 3}. For this system, L(S) = 2. One can show that L1/8(T ) = 2.

Let us consider a set cover problem A, F where A = {a1, . . . , aN} and F =
{S1, . . . , Sm}. We defined earlier the decision table T (A, F ). This table has
m columns corresponding to the sets S1, . . . , Sm respectively, and N + 1
rows. For j = 1, . . . , N , the j-th row corresponds to the element aj . The
last (N + 1)-th row is filled by 0. For j = 1, . . . , N and i = 1, . . . , m, at the
intersection of j-th row and i-th column 1 stays if and only if aj ∈ Si. The
decision corresponding to the last row is equal to 2. All other rows are labeled
with the decision 1.

One can show that a subfamily {Si1 , . . . , Sit
} is an α-cover for A, F , 0 ≤

α < 1, if and only if the decision rule

fi1 = 0 ∧ . . . ∧ fit
= 0 → d

is an α-decision rule for T (A, F ) and the last row of T (A, F ) for some d ∈
{1, 2}.
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So we have a polynomial time reduction of the problem of minimization of
α-cover cardinality to the problem of minimization of α-decision rule length.
Since the first problem is NP -hard [83], we have

Proposition 6.33. For any α, 0 ≤ α < 1, the problem of minimization of
α-decision rule length is NP -hard.

Let α be a real number such that 0 < α < 1. Let us consider the decision
table T (A, F ). For j = 1, . . . , N +1, we denote by rj the j-th row of T (A, F ).
Let j ∈ {1, . . . , N}. We know that there exists a subset Si ∈ F such that
aj ∈ Si. Therefore the decision rule

fi = 1 → 1

is an α-decision rule for T (A, F ) and rj . It is clear that Lα(T (A, F ), rj) ≥
1. Hence, Lα(T (A, F ), rj) = 1. From here it follows that Lα(T (A, F )) =
Lα(T (A, F ), r) where r = rN+1. So if we find an α-complete decision rule
system S for T (A, F ) such that L(S) = Lα(T (A, F )) then in this system we
will find an α-decision rule of the kind

fi1 = 0 ∧ . . . ∧ fit
= 0 → d

for which t = Lα(T (A, F ), r). We know that {Si1 , . . . , Sit
} is an α-cover for

A, F with minimum cardinality. So we have a polynomial time reduction of
the problem of minimization of α-cover cardinality to the problem of op-
timization of α-decision rule system. Since the problem of minimization of
cardinality of α-cover is NP -hard, we have

Proposition 6.34. The problem of optimization of α-decision rule system is
NP -hard for any α, 0 < α < 1.

6.6 Approximate Algorithm for α-Decision Tree

Optimization

Let α be a real number such that 0 ≤ α < 1. We now describe an algorithm
Uα which for a given decision table T constructs an α-decision tree Uα(T )
for the table T . Let T have n columns labeled with attributes f1, . . . , fn. Set
s = αP (T ).

Step 1. Construct a tree consisting of a single node labeled with the table
T and proceed to the second step.

Suppose t ≥ 1 steps have been made already. The tree obtained at the
step t will be denoted by G.

Step (t + 1). If no one node of the tree G is labeled with a table then we
denote by Uα(T ) the tree G. The work of the algorithm Uα is completed.

Otherwise, we choose a node v in the tree G which is labeled with a
subtable of the table T . Let the node v be labeled with the table T ′. If
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P (T ′) ≤ s then instead of T ′ we mark the node v with the most common
decision for T ′ and proceed to the step (t + 2). Let P (T ′) > s. Then for
i = 1, . . . , n, we compute the value

Q(fi) = max{P (T ′(fi, 0)), P (T ′(fi, 1))} .

We mark the node v with the attribute fi0 where i0 is the minimum i for
which Q(fi) has the minimum value. For each δ ∈ {0, 1}, we add to the tree
G the node v(δ), mark this node with the subtable T ′(fi0 , δ), draw the edge
from v to v(δ), and mark this edge with δ. Proceed to the step (t + 2).

Example 6.35. Let us apply the algorithm U0.25 to the table T depicted in
Fig. 3.1. As a result we obtain the tree U0.25 depicted in Fig. 6.10.

✒✑✓✏✚
✚❂ ◗

◗�✒✑✓✏ ✒✑✓✏
f2

3 2

0 1

Fig. 6.10

We now evaluate the number of steps which the algorithm Uα makes during
the construction of the decision tree Uα(T ).

Theorem 6.36. Let α be a real number such that 0 ≤ α < 1, and T be a
decision table. Then during the construction of the tree Uα(T ) the algorithm
Uα makes at most 2N(T ) + 1 steps.

The proof of this theorem is similar to the proof of Theorem 4.17. From The-
orem 6.36 it follows that the algorithm Uα has polynomial time complexity.

Theorem 6.37. Let α be a real number such that 0 < α < 1, and T be a
nondegenerate decision table. Then

h(Uα(T )) ≤ M(T ) ln
1

α
+ 1 .

Proof. Let T be a table with n columns labeled with attributes f1, . . . , fn. For
i = 1, . . . , n, we denote by σi a number from {0, 1} such that P (T (fi, σi)) =
max{P (T (fi, σ)) : σ ∈ {0, 1}}. It is clear that the root of the tree Uα(T ) is
labeled with attribute fi0 where i0 is the minimum i for which P (T (fi, σi))
has the minimum value (it is clear that Q(fi) = P (T (fi, σi))).

As in the proof of Theorem 4.19, we can prove that

P (T (fi0 , σi0)) ≤

(

1 −
1

M(T )

)

P (T ) .
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Assume that M(T ) = 1. From the considered inequality and from the de-
scription of algorithm Uα it follows that h(Uα(T )) = 1. So if M(T ) = 1 then
the statement of theorem is true.

Let now M(T ) ≥ 2. Consider a longest path in the tree Uα(T ) from the
root to a terminal node. Let its length be equal to k, working nodes of this
path be labeled with attributes fj1 , . . . , fjk

, where fj1 = fi0 , and edges be
labeled with numbers δ1, . . . , δk. For t = 1, . . . , k, we denote by Tt the table
T (fj1 , δ1) . . . (fjt

, δt). From Lemma 3.4 it follows that M(Tt) ≤ M(T ) for
t = 1, . . . , k. We know that P (T1) ≤ P (T )(1 − 1/M(T )). In the same way, it
is possible to prove that P (Tt) ≤ P (T )(1 − 1/M(T ))t for t = 2, . . . , k.

Let us consider the table Tk−1. For this table, P (Tk−1) ≤ P (T )(1 −
1/M(T ))k−1. Using the description of the algorithm Uα we obtain P (Tk−1) >
αP (T ). Therefore α < (1 − 1/M(T ))k−1 and (1 + 1/(M(T )− 1))k−1 < 1/α.
If we take natural logarithm of both sides of this inequality we obtain
(k − 1) ln(1 + 1/(M(T ) − 1)) < ln(1/α). It is known that for any natural
r the inequality ln(1 + 1/r) > 1/(r + 1) holds. Since M(T ) ≥ 2, we obtain
(k−1)/M(T ) < ln(1/α) and k < M(T ) ln(1/α)+1. Taking into account that
k = h(Uα(T )) we obtain h(Uα(T )) < M(T ) ln(1/α) + 1. ⊓⊔

Using Theorem 3.6 we obtain

Corollary 6.38. For any real α, 0 < α < 1, and for any nondegenerate
decision table T

h(Uα(T )) < h(T ) ln
1

α
+ 1 .

From Proposition 4.28 it follows that M(T (S, μ)) ≤ 4 where T (S, μ) is the
decision table corresponding to the problem S, μ of separation of green and
white points in the plane (see Sect. 4.3). So, for any α, 0 < α < 1, we have

Corollary 6.39. h(Uα(T (S, μ))) ≤ 4 ln(1/α) + 1.

We now show that the problem of minimization of α-decision tree depth is
NP -hard for any α, 0 ≤ α < 1.

For a given set cover problem A, F , we can construct the decision table
T (A, F ) (see previous subsection) in polynomial time. Let A = {a1, . . . , aN}
and F = {S1, . . . , Sm}. Let Γ be an α-decision tree for T (A, F ) such that
h(Γ ) = hα(T (A, F )). We consider the path in Γ in which each edge is labeled
with 0. Let {fi1 , . . . , fit

} be the set of attributes attached to working nodes
of this path. One can show that {Si1 , . . . , Sit

} is an α-cover with minimum
cardinality for the problem A, F . So, we have a polynomial time reduction
of the problem of α-cover cardinality minimization to the problem of α-
decision tree depth minimization. Taking into account that the problem of
minimization of α-cover cardinality is NP -hard we obtain

Proposition 6.40. For any α, 0 ≤ α < 1, the problem of minimization of
α-decision tree depth is NP -hard.
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6.7 Algorithms for α-Test Optimization

We will prove that the problem of minimization of α-test cardinality is NP -
hard for any α, 0 ≤ α < 1. For a given set cover problem A, F , where
A = {1, . . . , N} and F = {S1, . . . , Sm}, we can construct in polynomial time
the decision table T (A, F ). One can show that a subfamily {Si1 , . . . , Sit

}
is an α-cover for A, F if and only if the set of columns {fi1 , . . . , fit

} is an
α-test for the table T (A, F ). So we have a polynomial time reduction of
the problem of α-cover cardinality minimization to the problem of α-test
cardinality minimization. The problem of minimization of α-cover cardinality
is NP -hard. As a result, we obtain

Proposition 6.41. For any α, 0 ≤ α < 1, the problem of minimization of
α-test cardinality is NP -hard.

Unfortunately, we do not know polynomial approximate algorithms for the
problem of minimization of α-test cardinality with nontrivial bounds of
accuracy.

6.8 Exact Algorithms for Optimization of α-Decision

Trees and Rules

Let α be a real number such that 0 ≤ α < 1. We describe an algorithm Wα

which for a given nondegenerate decision table T constructs an α-decision
tree for T with minimum depth.

The first part of Wα work coincides with the first part of the algorithm
W work (see Sect. 4.3). During this part, the algorithm W (and also the
algorithm Wα) constructs the set SEP (T ) of separable subtables of T
including T .

The second part of the algorithm Wα work is the construction of an
optimal α-decision tree Wα(T ) for the table T . Begining with the smallest
subtables from SEP (T ), the algorithm Wα at each step will correspond to a
subtable from SEP (T ) a decision tree over this subtable.

Suppose that p ≥ 0 steps of the second part of algorithm Wα have been
made already.

Step (p + 1): If the table T in the set SEP (T ) is labeled with a decision
tree then this tree is the result of the algorithm Wα work (we denote this
tree by Wα(T )). Otherwise, choose in the set SEP (T ) a table D satisfying
the following conditions:

a) the table D is not labeled with a decision tree;
b) either P (D) ≤ αP (T ) or P (D) > αP (T ) and all separable subtables of D

of the kind D(fi, δ), fi ∈ E(D), δ ∈ {0, 1}, are labeled with decision trees.

Let P (D) ≤ αP (T ) and d be the most common decision for T . Then we mark
the table D with the decision tree consisting of one node which is labeled
with d.
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Otherwise, for each fi ∈ E(D) we construct a decision tree Γ (fi). The
root of this tree is labeled with the attribute fi. The root is the initial node
of exactly two edges which are labeled with 0 and 1 respectively. These edges
enter to roots of decision trees Γ (fi, 0) and Γ (fi, 1) respectively where Γ (fi, 0)
and Γ (fi, 1) are decision trees attached to tables D(fi, 0) and D(fi, 1). Mark
the table D with one of the trees Γ (fi), fi ∈ E(D), having minimum depth,
and proceed to the step (p + 2).

It is not difficult to prove that after the finish of the algorithm Wα work
each degenerate table D from SEP (T ) will be labeled with a 0-decision tree
for D with minimum depth, and each nondegenerate table D from SEP (T )
will be labeled with an αP (T )/P (D)-decision tree for D with minimum
depth. Using this fact one can prove

Theorem 6.42. Let α be a real number such that 0 ≤ α < 1. Then for
any nondegenerate decision table T the algorithm Wα constructs an α-
decision tree Wα(T ) for T such that h(Wα(T )) = hα(T ), and makes exactly
2|SEP (T )| + 3 steps. The time of the algorithm Wα work is bounded from
below by |SEP (T )|, and bounded from above by a polynomial on |SEP (T )|
and on the number of columns in the table T .

We now describe an algorithm Vα for the minimization of length of α-decision
rules.

The first part of Vα work coincides with the first part of the algorithm
W work. As a result, the set SEP (T ) of separable subtables of the table T
will be constructed.

The second part of the algorithm Vα is the construction for each row r
of a given decision table T an α-decision rule for T and r which has minimum
length. Beginning with the smallest subtables from SEP (T ), the algorithm
Vα at each step will correspond to each row r of a subtable T ′ ∈ SEP (T ) a
decision rule.

Suppose p ≥ 0 steps of the second part of the algorithm Vα have been
made already.

Step (p + 1): If each row r of the table T is labeled with a decision rule
then the rule attached to r is the result of the work of Vα for T and r (we
denote this rule by Vα(T, r)). Otherwise, choose in the set SEP (T ) a table
D satisfying the following conditions:

a) rows of D are not labeled with decision rules;
b) either P (D) ≤ αP (T ), or P (D) > αP (T ) and for all separable subtables

of D of the kind D(fi, δ), fi ∈ E(D), δ ∈ {0, 1}, each row is labeled with
a decision rule.

Let P (D) ≤ αP (T ) and d be the most common decision for D. Then we
mark each row of D with the decision rule → d.

Let P (D) > αP (T ) and r = (δ1, . . . , δn) be a row of D. For any fi ∈ E(D)
we construct a rule rule(r, fi). Let the row r in the table D(fi, δi) be labeled
with the rule βi → di. Then the rule rule(r, fi) is equal to fi = δi ∧ βi → di.
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We mark the row r of the table D with one of the rules rule(r, fi), fi ∈ E(D),
having minimum length and proceed to the step (p + 2).

It is not difficult to show that after the finish of the algorithm Wα work for
each degenerate table D ∈ SEP (T ), each row r of D will be labeled with a 0-
decision rule for T and r with minimum length. For each nondegenerate table
D ∈ SEP (T ), each row r of D will be labeled with an αP (T )/P (D)-decision
rule for T and r having minimum length.

Using this fact one can prove

Theorem 6.43. Let α be a real number such that 0 ≤ α < 1. Then for
any nondegenerate decision table T and any row r of T the algorithm Vα

constructs an α-decision rule Vα(T, r) for T and r having minimum length
Lα(T, r). During the construction of optimal rules for rows of T the algorithm
Vα makes exactly 2|SEP (T )|+3 steps. The time of the algorithm Vα work is
bounded from below by |SEP (T )|, and bounded from above by a polynomial
on |SEP (T )| and on the number of columns in the table T .

6.9 Conclusions

This chapter is devoted to the study of α-tests, α-decision trees and α-decision
rules. We consider relationships among these objects, bounds on complexity
and algorithms for construction of such trees, rules and tests.

The bound from Theorem 6.17 and a statement close to Theorem 6.19
were published in [14, 52]. An algorithm similar to the algorithm Wα for
optimization of α-decision trees was considered in [2].

Note that there are different approaches to the definition of notions of
approximate decision trees, rules and tests. In particular, in the book [59]
α-tests and α-decision rules are studied which are defined in other ways than
in this chapter.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn.
A subset B of the set {f1, . . . , fn} is called an α-test for T if attributes from
B separate at least (1 − α)P (T ) unordered pairs of rows with different deci-
sions from T (an attribute fi separates two rows if these rows have different
numbers at the intersection with the column fi).

Let r = (δ1, . . . , δn) be a row of T labeled with the decision d. We denote
by P (T, r) the number of rows from T with decisions different from d. A
decision rule

fi1 = δi1 ∧ . . . ∧ fim
= δim

→ d

is called an α-decision rule for T and r if attributes fi1 , . . . , fim
separate

from r at least (1 − α)P (T, r) rows with decisions different from d.
The book [59] contains bounds on complexity and algorithms for construc-

tion of such α-tests and α-decision rules. In contrast with this chapter, in [59]
it is proven that, under some natural assumptions on the class NP , a simple
greedy algorithm is close to the best polynomial approximate algorithms for
the minimization of α-test cardinality.
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Next four chapters are devoted to the consideration of various applications
of tools created in the first part of book. In Chap. 7, we discuss the use
of tests, decision trees and rules in supervised machine learning including
lazy learning algorithms. Chapter 8 is devoted to the study of complexity
of decision trees and decision rules over infinite systems of attributes. In
Chap. 9, we study decision trees with so-called quasilinear attributes, and
applications of the obtained results to problems of discrete optimization and
analysis of acyclic programs. In Chap. 10, we consider two more applications:
the diagnosis of constant faults in combinatorial circuits and the recognition
of regular language words.



Part II

Applications
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Supervised Learning

In the previous chapters, we considered algorithms for construction of classi-
fiers—decision trees and decision rule systems for a given decision table T .
If T contains complete information (we know all possible tuples of values of
attributes, and these tuples are rows of T ) then depending on our aims we
should construct either exact or approximate classifiers. In the last case, we
can control the accuracy of approximate classifiers.

If T contains incomplete information (we do not know all possible tuples
of values of attributes and corresponding decisions) then we have essentially
more complicated problem known as supervised learning. For a given decision
table T with conditional attributes f1, . . . , fn and the decision attribute d, we
should construct a classifier which will predict values of the decision attribute
for tuples of values of conditional attributes which, possible, are not rows of
the table T . In this case, exact classifiers can be overfitted, i.e., have a good
accuracy for T and a bad one for tuples of values of attributes that are not
rows of T .

The usual way in this situation is to divide initial table T into three sub-
tables: training subtable T1, validation subtable T2 and test subtable T3. The
subtable T1 is used for construction of initial classifier. The subtable T2 is
used for pruning of this classifier: we step by step decrease the accuracy of
the classifier relative to T1 by removal of its parts (nodes of decision tree
or conditions from the left-hand side of decision rules), and stop when the
accuracy of obtained classifier relative to T2 will be maximum. The subtable
T3 is used to evaluate the accuracy of classifier obtained after pruning. If the
accuracy is enough good we can use this classifier to predict decisions for
tuples of values of attributes that are not rows of T .

In this chapter, we consider three known approaches to the supervised
learning problem: based on decision trees (see, for example, [8, 71]), based
on decision rule systems (see, for example, [73]) and so-called lazy learning
algorithms (we omit the construction of classifier and work directly with input
tuple of attribute values and decision table T [1, 20]).

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 113–126.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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This chapter contains four sections. In Sect. 7.1, we consider classifiers
based on decision trees. In Sect. 7.2, we study classifiers based on decision
rules. Section 7.3 is devoted to the consideration of lazy learning algorithms.
Section 7.4 contains conclusions.

7.1 Classifiers Based on Decision Trees

We studied two ways for exact decision tree construction: based on greedy
algorithm (algorithm U) and based on dynamic programming approach
(algorithm W ). Modifications of these algorithms (algorithms Uα and Wα)
allow us to construct approximate trees—α-decision trees, 0 ≤ α < 1.

The considered algorithms are trying to minimize or minimize the depth
of decision trees. We can have also other aims, for example, to minimize the
number of nodes in decision trees. It is easy to modify algorithms W and
Wα for the minimization of number of nodes in exact and α-decision trees
(see [12, 2]. If in the algorithms U and Uα under the selection of attribute
we minimize the parameter P (T (fi, 0)) + P (T (fi, 1)) instead of the parame-
ter max{P (T (fi, 0)), P (T (fi, 1))} we will obtain algorithms which are more
adjusted to the minimization of the number of nodes in decision trees.

Let Γ be an α-decision tree for T . We can use Γ as a classifier to predict
the value of decision attribute for a tuple δ̄ of values of conditional attributes
which is not a row of T . Let us describe the work of Γ on δ̄. We begin from
the root of Γ . Let us assume that we reached a node v of Γ . If v is a terminal
node of Γ labeled with a decision c, then c is the result of work of Γ on δ̄. Let
v be a nonterminal node labeled with an attribute fi, and δi be the value of
fi in the tuple δ̄. If there is no edge which issues from v and is labeled with δi

then the result of Γ work on δ̄ is the most common decision for the table T (v)
(see explanation of the notation T (v) in the next paragraph). Otherwise, we
pass along the edge that issues from v and is labeled with δi, etc.

Let us assume now that we divided given nondegenerate decision table
T into three nondegenerate subtables T1, T2 and T3, and constructed an
α-decision tree Γ for the subtable T1. We describe now the procedure of
decision tree Γ pruning based on decision tables T1 and T2. For each node
v of Γ , we construct a subtable T1(v) of the table T1, where T1(v) = T1 if v
is the root of Γ , and T1(v) = T1(fi1 , a1) . . . (fim

, am) if v is not a root of Γ ,
fi1 , . . . , fim

are attributes attached to nodes of the path from the root of Γ
to v, and a1, . . . , am are numbers attached to edges of this path. We denote
α(v) = P (T1(v))/P (T1).

Let Γ contain t nonterminal nodes, and v1, . . . , vt be all nonterminal nodes
of Γ in an order such that α(v1) ≤ α(v2) ≤ . . . ≤ α(vt), and for any i ∈
{1, . . . , t − 1}, if α(vi) = α(vi+1) then the distance from the root of Γ to vi

is at least the distance from the root to vi+1. We construct now a sequence
Γ0, Γ1, . . . , Γt of decision trees. Let Γ0 = Γ , and let us assume that for some
i ∈ {0, . . . , t−1} the decision tree Γi is already constructed. We now construct
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the decision tree Γi+1. Let D be a subtree of Γi with the root vi+1. We remove
from Γi all nodes and edges of D with the exception of vi+1. We transform
the node vi+1 into a terminal node which is labeled with the most common
decision for T1(vi+1). As a result, we obtain the decision tree Γi+1.

For i = 0, . . . , t, we apply the decision tree Γi to each row of the table
T2 and find the number of misclassifications—the number of rows in T2 for
which the result of Γi work does not equal to the decision attached to the
considered row.

We choose minimum i0 ∈ {0, . . . , t} for which the tree Γi0 has the mini-
mum number of misclassifications. This tree will be considered as the final
classifier. We apply Γi0 to the table T3 and evaluate its quality—the number
of misclassifications on the rows of T3.

Note that we can consider different approaches to the pruning of decision
trees.

Example 7.1. Let us consider the decision table T depicted in Fig. 3.1 and
the decision tree Γ depicted in Fig. 3.2. We know that Γ is a decision tree
for T with minimum depth. We can apply Γ to the three tuples of values of
conditional attributes f1, f2, f3 which are not rows of T to predict the values
of decision attribute d (see Fig. 7.1).

T =

f1 f2 f3 d

1 1 1 1
0 1 0 2
1 1 0 2
0 0 1 3
1 0 0 3

0 0 0 3

0 1 1 1

1 0 1 3

✒✑✓✏✑
✑✰

◗
◗�

✒✑✓✏ ✑
✑✰

◗
◗�
✒✑✓✏

✒✑✓✏ ✒✑✓✏
f2

3

Γ
0 1

0

12

1
f3

Fig. 7.1

7.2 Classifiers Based on Decision Rules

We considered a number of ways to construct for a given decision table T a
complete system of decision rules or an α-complete system of decision rules,
0 ≤ α < 1. First, we should list these ways.

7.2.1 Use of Greedy Algorithms

We apply to each row r of T the greedy algorithm (see Sect. 4.1.3) which
constructs a decision rule for T and r. As a result, we obtain a complete
system of decision rules for T .
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Let α be a real number such that 0 ≤ α < 1. We can apply to each row r
of T the greedy algorithm (see Sect. 6.5) which constructs an α-decision rule
for T and r. As a result, we obtain an α-complete system of decision rules
for T .

Example 7.2. Let us apply the greedy algorithm for construction of exact
decision rules and the greedy algorithm for construction of 1/8-decision rules
to each row of the decision table T depicted in Fig. 3.1 (see also Fig. 7.1). As
a result, we obtain a complete system of decision rules for T

{f1 = 1 ∧ f3 = 1 → 1, f1 = 0 ∧ f2 = 1 → 2, f2 = 1 ∧ f3 = 0 → 2,

f2 = 0 → 3, f2 = 0 → 3} ,

and a 1/8-complete system of decision rules for T

{f3 = 1 → 1, f1 = 0 → 2, f2 = 1 ∧ f3 = 0 → 2, f2 = 0 → 3, f2 = 0 → 3} .

7.2.2 Use of Dynamic Programming Approach

We can apply to each row r of T the algorithm V (see Sect. 4.3) which
constructs a decision rule for T and r with minimum length. As a result, we
obtain a complete system of decision rules for T .

Let 0 ≤ α < 1. We apply to each row r of T the algorithm Vα (see Sect.
6.8) which constructs an α-decision rule for T and r with minimum length.
As a result, we obtain an α-complete system of decision rules for T .

7.2.3 From Test to Complete System of Decision

Rules

Let F = {fi1 , . . . , fim
} be a test for T . For each row r of T , we construct the

decision rule
fi1 = a1 ∧ . . . ∧ fim

= am → t

where a1, . . . , am are numbers at the intersection of the row r and columns
fi1 , . . . , fim

and t is the decision attached to the row r. Since F is a test
for T , the obtained system of decision rules is a complete system for T
(see Theorem 2.25).

Let α be a real number, 0 ≤ α < 1, and F = {fi1 , . . . , fim
} be an α-test

for T . For each row r of T , we construct the decision rule

fi1 = a1 ∧ . . . ∧ fim
= am → t

where a1, . . . , am are numbers at the intersection of the row r and columns
fi1 , . . . , fim

and t is the most common decision for the table T (fi1 , a1) . . .
(fim

, am). Since F is an α-test for T , the obtained system of decision rules is
an α-complete system for T (see Theorem 6.4).
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Example 7.3. Let us consider the decision table T depicted in Fig. 3.1. We
know that {f2, f3} is a test for T . One can show that {f2} is a 1/4-test for
T . Therefore

{f2 = 1 ∧ f3 = 1 → 1, f2 = 1 ∧ f3 = 0 → 2, f2 = 1 ∧ f3 = 0 → 2,

f2 = 0 ∧ f3 = 1 → 3, f2 = 0 ∧ f3 = 0 → 3}

is a complete system of decision rules for T , and

{f2 = 1 → 2, f2 = 1 → 2, f2 = 1 → 2, f2 = 0 → 3, f2 = 0 → 3}

is a 1/4-complete system of decision rules for T .

7.2.4 From Decision Tree to Complete System of

Decision Rules

Let Γ be an α-decision tree, 0 ≤ α < 1. If α = 0 then we have an exact
decision tree. Let τ be a path in Γ from the root to a terminal node in which
working nodes are labeled with attributes fi1 , . . . , fim

, edges are labeled with
numbers b1, . . . , bm, and the terminal node of τ is labeled with the decision
t. We correspond to τ the decision rule

fi1 = b1 ∧ . . . ∧ fim
= bm → t .

We know that the set of decision rules corresponding to paths in Γ from the
root to terminal nodes is an α-complete system of decision rules for T (see
Theorem 6.6). In particular, if Γ is a decision tree for T then the considered
system of decision rules is a complete system for T (see Theorem 2.27).

Example 7.4. Let us consider the decision table T depicted in Fig. 3.1 and
the decision tree Γ for T depicted in Fig. 3.2 (see also Fig. 7.1). Then

{f2 = 0 → 3, f2 = 1 ∧ f3 = 0 → 2, f2 = 1 ∧ f3 = 1 → 1}

is the set of decision rules corresponding to paths in Γ from the root to
terminal nodes. This system is a complete system of decision rules for T .

7.2.5 Simplification of Rule System

Let 0 ≤ α < 1 and S be an α-complete system of decision rules for T
constructed by one of the considered algorithms. We can try to simplify S:
try to minimize the total length of rules in S and the number of rules in S.
Let

fi1 = a1 ∧ . . . ∧ fim
= am → t (7.1)
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be a rule from S. We try to remove from the left-hand side of the rule
(7.1) as much as possible conditions fij

= aj , j ∈ {1, . . . , m}, such that
for remaining conditions fij(1)

= aj(1), . . . , fij(k)
= aj(k) for subtable T ′ =

T (fij(1)
, aj(1)) . . . (fij(k)

, aj(k)) the inequality P (T ′) ≤ αP (T ) holds. Then in-
stead of rule (7.1) we add to S the rule

fij(1)
= aj(1) ∧ . . . ∧ fij(k)

= aj(k) → t′ (7.2)

where t′ is the most common decision for T ′. It is clear that the set of rules
obtained from S by substitution of reduced rule (7.2) for each rule (7.1) from
S is an α-decision rule system for T .

We will say that a rule from S covers a row r from T if this rule is realizable
for r. Since S is an α-complete system of decision rules for T , rules from S
cover all rows from T . Let S′ be a subsystem of S such that rules from S′

cover all rows from T . It is clear that S′ is an α-complete system of decision
rules for T . We can try to minimize the number of rules in S′. To this end,
we can use the greedy algorithm for set cover problem.

7.2.6 System of Rules as Classifier

Let T be a decision table with conditional attributes f1, . . . , fn and the deci-
sion attribute d. Let S be an α-complete system of decision rules for T . We
can use S as a classifier for the prediction of value of decision attribute d for
a tuple ā = (a1, . . . , an) of values of conditional attributes f1, . . . , fn in the
case when ā is not a row of T . We will say that a decision rule

fi1 = b1 ∧ . . . ∧ fim
= bm → t

is realizable for ā if b1 = ai1 , . . . , bm = aim
. If S does not contain rules which

are realizable for ā then the value of the attribute d for ā will be equal to the
most common decision for T . Let S contain rules which are realizable for ā
and c be the minimum value of d such that the number of rules from S which
are realizable for ā and have c on the right-hand side is maximum. Then the
value of d for ā will be equal to c.

7.2.7 Pruning

A complete system of rules or an α-complete system of rules with small value
of α can be overfitted, i.e., can have high accuracy on T and low accuracy
for tuples which are not rows of T . To improve this situation, we can use a
procedure of pruning of decision rules.

Let a nondegenerate decision table T is divided into three nondegenerate
subtables T1, T2 and T3. We use one of the considered approaches to construct
an α-complete system of decision rules for T1. After that, we can simplify this
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system. Let S be the obtained α-complete system of decision rules for T1. Let
us consider an arbitrary decision rule from S

fi1 = a1 ∧ . . . ∧ fim
= am → t . (7.3)

For j ∈ {1, . . . , m}, we consider the subrule

fij
= aj ∧ . . . ∧ fim

= am → t′ (7.4)

of the rule (7.3), where t′ is the most common decision for the subtable
T1(fij

, aj) . . . (fim
, am)), and find inaccuracy

P (T1(fij
, aj) . . . (fim

, am))

P (T1)

of the subrule (7.4) relative to the table T1.
Let α1 < α2 < . . . < αq be all different inaccuracies for all subrules of

rules from S which are greater than or equal to α. For every k ∈ {1, . . . , q},
we construct a system of decision rules Sk. For any rule (7.3) from S we add
to Sk a subrule (7.4) of (7.3) with maximum j ∈ {1, . . . , m} for which the
inaccuracy of (7.4) is at most αk.

For each k ∈ {1, . . . , q}, we apply the decision rule system Sk as classifier
to the table T2 and find the number of misclassifications—the number of rows
in T2 for which the result of Sk work does not equal to the decision attached
to the considered row.

We choose minimum k0 ∈ {1, . . . , q} for which the rule system Sk0 has the
minimum number of misclassifications. This system will be considered as the
final classifier. We apply Sk0 to the table T3 and evaluate its quality—the
number of misclassifications on the rows of T3.

Example 7.5. Let us consider the decision table T depicted in Fig. 3.1 and
1/8-complete system of decision rules for T

S = {f3 = 1 → 1, f1 = 0 → 2, f2 = 1 ∧ f3 = 0 → 2, f2 = 0 → 3}

constructed by the greedy algorithm (see Example 7.2, we removed from the
considered system one of two equal rules f2 = 0 → 3). We apply S to three
tuples of values of attributes f1, f2, f3 which are not rows of T to predict
values of the decision attribute d (see Fig. 7.2).

7.3 Lazy Learning Algorithms

Let T be a decision table with n conditional attributes f1, . . . , fn and the
decision attribute d.

Instead of construction of classifier, we can use information contained in
the decision table T directly to predict the value of decision attribute for a
tuple of values of conditional attributes which is not a row of T [1].
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T =

f1 f2 f3 d

1 1 1 1
0 1 0 2
1 1 0 2
0 0 1 3
1 0 0 3

0 0 0 2

0 1 1 1

1 0 1 1

Fig. 7.2

7.3.1 k-Nearest Neighbor Algorithm

Let a distance function is defined on the set of possible tuples of
attribute f1, . . . , fn values, k be a natural number and δ̄ be a tuple of values
of attributes f1, . . . , fn which is not a row of T . To assign a value of the
decision attribute d to δ̄ we find k rows σ1, . . . , σk from T which are nearest
to δ̄ (relative to the considered distance). More precisely, we put all rows of
T in order such that the i-th row ri precedes the j-th row rj if the distance
from δ̄ to ri is less than the distance from δ̄ to rj . If the considered distances
are equal then ri precedes rj if i < j. We assign to δ̄ the minimum decision
which is attached to the maximum number of rows σ1, . . . , σk (see also [16]).

Example 7.6. Let us consider the decision table T depicted in Fig. 3.1. We
apply 3NN (k = 3) algorithm based on Hamming distance to the table T
and to three tuples of values of attributes f1, f2, f3 which are not rows of
T to predict values of the decision attribute d (see Fig. 7.3). The Hamming
distance between two tuples of attribute f1, . . . , fn values is the number of
attributes for which the considered tuples have different values. In particular,
the Hamming distance between the tuple (0, 0, 0) and any row of T is equal to
the number of units in the considered row. There are three rows for which the
distance is equal to 1: (0, 1, 0), (0, 0, 1) and (1, 0, 0). These rows are labeled
with decisions 2, 3, 3. Therefore we assign the decision 3 to the tuple (0, 0, 0).

7.3.2 Lazy Decision Trees and Rules

Let δ̄ = (δ1, . . . , δn) be a tuple of values of attributes f1, . . . , fn which is not
a row of T .

Instead of construction of an α-decision tree Γ for T by greedy algorithm
and use Γ to assign a decision to δ̄, we can simulate the work of Γ on δ̄
by construction of corresponding path from the root of Γ to some node (see
description of the work of Γ on δ̄ in Sect. 7.1).
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T =

f1 f2 f3 d

1 1 1 1
0 1 0 2
1 1 0 2
0 0 1 3
1 0 0 3

0 0 0 3

0 1 1 1

1 0 1 3

Fig. 7.3

Let us assume that we already constructed a path v1, . . . , vm from the root
v1 of Γ to a node vm of Γ . Let nodes v1, . . . , vm−1 be labeled with attributes
fi1 , . . . , fim−1 . Set T (vm) = T (fi1 , δi1) . . . (fim−1 , δim−1). If P (T (vm)) ≤
αP (T ) then vm is a terminal node of Γ . We assign to vm (and to δ̄) the
most common decision for T (vm).

Let P (T (vm)) > αP (T ) and im is the minimum number from {1, . . . , n}
for which the column fim

in T (vm) contains different numbers and

max
σ∈Dim

P (T (vm)(fim
, σ)) = min{max

σ∈Dj

P (T (vm)(fj , σ)) : j = 1, . . . , n}

where Dj, j ∈ {1, . . . , n}, is the set of values of the attribute fj in the table
T (vm). If T (vm)(fim

, δim
) is the empty table then we assign to δ̄ the most

common decision for T (vm). Otherwise, we attach the attribute fim
to the

node vm, add new node vm+1 and the edge from vm to vm+1 which is labeled
with the number δim

, etc.
We will say about this approach to prediction as about lazy decision trees.
To avoid the appearance of empty table T (vm)(fim

, δim
) as long as possible

we can modify a bit the described procedure and choose fim
only among such

fj , j ∈ {1, . . . , n}, for which the table T (vm)(fj , δj) is nonempty. If there are
no such fj then we assign to δ̄ the most common decision for T (vm).

After the considered modification, we can not say that we simulate the
work of an α-decision tree. However, we will say about this approach to
prediction also as about lazy decision trees.

We can consider not only lazy decision trees but also lazy decision rules:
instead of construction of an α-complete system of decision rules for T we
can construct an α-decision rule for T and δ̄ by slightly modified greedy
algorithm.

Let us assume that we already constructed a prefix fi1 = δi1 ∧ . . .∧fim−1 =
δim−1 of the left-hand side of a decision rule. We denote this prefix by β, and
by T ′ we denote the table T (fi1 , δi1) . . . (fim−1 , δim−1). If P (T ′) ≤ αP (T )
then we construct the α-decision rule
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β → b

where b is the most common decision for T ′. We assign the decision b to δ̄.
Let P (T ′) > αP (T ) and im be the minimum number from {1, . . . , n}

for which T ′(fim
, δim

) is nonempty and P (T ′(fim
, δim

)) = minP (T ′(fj , δj))
where minimum is considered among all j ∈ {1, . . . , n} for which T ′(fj , δj) is
a nonempty table. If there are no such j then we construct the decision rule

β → b

where b is the most common decision for T ′. We assign the decision b to
δ̄. Otherwise, we form new prefix β ∧ fim

= δim
and continue the work of

algorithm.
We will say about this approach to prediction as about lazy decision rules.

It should be noted that similar approaches are considered also as lazy decision
trees [20].

Example 7.7. Let T be the decision table depicted in Fig. 3.1. We apply “lazy
decision rules” to α = 1/8, T and three tuples of values of attributes f1, f2,
f3 which are not rows of T to predict values of the decision attribute d (see
Fig. 7.4).

T =

f1 f2 f3 d

1 1 1 1
0 1 0 2
1 1 0 2
0 0 1 3
1 0 0 3

0 0 0 3 f2 = 0 → 3

0 1 1 2 f1 = 0 → 2

1 0 1 3 f2 = 0 → 3

Fig. 7.4

We have P (T ) = 8, P (T (f1, 0)) = 1, P (T (f1, 1)) = 3, P (T (f2, 0)) = 0,
P (T (f2, 1)) = 2, P (T (f3, 0)) = 2, and P (T (f3, 1)) = 1. Using this information
it is easy to check that “lazy decision rules” algorithm constructs for the
considered three tuples 1/8-decision rules depicted in Fig. 7.4.

7.3.3 Lazy Learning Algorithm Based on Decision

Rules

In this section, we consider the same classification (prediction) problem as
in the previous sections: for a given decision table T with n columns labeled
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with attributes f1, . . . , fn and a new object δ̄ given by the tuple (δ1, . . . , δn)
of values of conditional attributes f1, . . . , fn we should generate the value of
the decision attribute for δ̄.

We can construct a complete system of decision rules for T and use it for
prediction, or use “lazy decision rules” approach and construct a decision
rule for δ̄ directly based on the decision table T .

In this section, we consider another way proposed and studied by J. Bazan
[3, 4, 5]. For new object δ̄ and each decision b from T , we find (using
polynomial-time algorithm) the number D(T, b, δ̄) of rows r from T such
that there exists a decision rule over T which is true for T , realizable for
r and δ̄, and has b on the right-hand side. For δ̄, we choose the minimum
decision b for which the value of D(T, b, δ̄) is maximum.

For a row r = (r1, . . . , rn) of T , we denote by M(r, δ̄) the set of attributes
fi ∈ {f1, . . . , fn} for which ri = δi.

Proposition 7.8. A rule over T , which is true for T , realizable for r and δ̄,
and has b on the right-hand side, exists if and only if the rule

∧

fj∈M(r,δ̄)

fj = δj → b (7.5)

is true for T . If (7.5) is true for T then (7.5) is a desired rule.

Proof. Let (7.5) be true for T . It is clear that (7.5) is realizable for r and δ̄,
and has b on the right-hand side. So (7.5) is a desired rule.

Let there exist a decision rule

fj1 = b1 ∧ . . . ∧ fjt
= bt → b (7.6)

over T which is true for T , realizable for r and δ̄, and has b on the right-hand
side. Since this rule is realizable for r and δ̄, we have fj1 , . . . , fjt

∈ M(r, δ̄).
Since (7.6) is true for T , the rule (7.5) is true for T . ⊓⊔

Note that (7.5) is not true if b is not the decision attached to the row r.
Now we have simple way for implementation of the classification algorithm

described at the beginning of this section: D(T, b, δ̄) is equal to the number
of rows r from T such that (i) the row r is labeled with the decision b, and
(ii) the rule (7.5) is true for T .

Example 7.9. Let us consider the decision table T depicted in Fig. 3.1. We
apply the lazy learning algorithm based on decision rules to the table T and
to three tuples of values of attributes f1, f2, f3 which are not rows of T to
predict values of the decision attribute d (see Fig. 7.5). Let us consider the
work of our algorithm on the tuple δ̄ = (0, 0, 0). There are three possible
decisions: 1, 2 and 3.

There is only one row in T which is labeled with the decision 1. The rule
(7.5) corresponding to this row and new object δ̄ is → 1. This rule is not true
for T . Therefore D(T, 1, δ̄) = 0.
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T =

f1 f2 f3 d

1 1 1 1
0 1 0 2
1 1 0 2
0 0 1 3
1 0 0 3

0 0 0 3

0 1 1 1

1 0 1 3

Fig. 7.5

There are two rows in T which are labeled with the decision 2. The rules
(7.5) corresponding to these rows and δ̄ are f1 = 0 ∧ f3 = 0 → 2 and
f3 = 0 → 2. The first rule is true for T , and the second one is not true for T .
Therefore D(T, 2, δ̄) = 1.

There are two rows in T which are labeled with the decision 3. The corre-
sponding rules are f1 = 0 ∧ f2 = 0 → 3 and f2 = 0 ∧ f3 = 0 → 3. Both rules
are true for T . Therefore D(T, 3, δ̄) = 2.

As a result, we attach to δ̄ the decision 3.

7.3.4 Lazy Learning Algorithm Based on Reducts

It is very difficult to construct the whole set of true decision rules for a given
decision table T but we can efficiently extract some useful information about
this set and based on this information predict value of the decision attribute
for a new object given by values of conditional attributes (see Sect. 7.3.3 for
details).

In this section, we consider similar approach but based on an information
about the set of reducts. In general case, the number of reducts can grow
exponentially with the growth of the number of columns and rows in decision
tables. However, we can extract efficiently some information about the set
of reducts and use this information for the prediction of decision attribute
values.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn

that have values from the set {0, 1}. Let δ̄ = (δ1, . . . , δn) be a new object given
by values of attributes f1, . . . , fn.

We construct in polynomial time the canonical form C(T ) of the table T
(see Sect. 2.2.2) We know (see Lemma 2.7) that the set of rows of the table
C(T ) with the exception of the first row coincides with the set of upper zeros
UT of the characteristic function fT : {0, 1}n → {0, 1} corresponding to the
table T .

Let β̄ ∈ {0, 1}n and i1, . . . , im be numbers of digits from β̄ which are equal
to 1. Then fT (β̄) = 1 if and only if the set of attributes {fi1 , . . . , fim

} is
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a test for T . We know (see Lemma 2.4) that the set of lower units of fT

coincides with the set of tuples corresponding to reducts for the table T . It is
too complicated for us to construct the set of lower units (reducts) but we can
construct efficiently the set of upper zeros of fT which describes complectly
the set of lower units.

The idea of lazy learning algorithm based on reducts is the following. For
any decision b from the decision table T , we add to T the row δ̄ labeled with
the decision b. As a result, we obtain new decision table T (b). We construct
the canonical form C(T (b)) of the table T (b) and the set UT (b) of upper zeros
of the characteristic function fT (b) corresponding to the table T (b).

We find the number |(UT ∪UT (b)) \ (UT ∩UT (b))| which will be considered
as the distance between UT and UT (b). We assign to δ̄ a decision b for which
the distance between UT and UT (b) is minimum.

Example 7.10. Let us consider the decision table T depicted in Fig. 7.6 and
the new object δ̄ = (0, 0, 0). We construct tables C(T ), T (1), C(T (1)), T (2)
and C(T (2)) (see Fig. 7.6).

T =

f1 f2 f3

1 1 1 1
1 0 0 1
0 0 1 2

C(T ) =

f1 f2 f3

1 1 1 1
0 0 1 2
0 1 0 2

f1 f2 f3

1 1 1 1
T (1)= 1 0 0 1

0 0 1 2
0 0 0 1

C(T (1)) =

f1 f2 f3

1 1 1 1
0 0 1 2
1 1 0 2

f1 f2 f3

1 1 1 1
T (2)= 1 0 0 1

0 0 1 2
0 0 0 2

C(T (2)) =
f1 f2 f3

1 1 1 1
0 1 1 2

Fig. 7.6

As a result, we have UT = {(0, 0, 1), (0, 1, 0)}, UT (1) = {(0, 0, 1), (1, 1, 0)},
and UT (2) = {(0, 1, 1)}. The distance between UT and UT (1) is equal to 2.
The distance between UT and UT (2) is equal to 3. Therefore we assign to δ̄
the decision 1.

7.4 Conclusions

The chapter is devoted to the consideration of the problem of supervised
learning: for a given decision table T and a tuple δ̄ of values of conditional
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attributes of T which is not a row of T we should predict the value of decision
attribute for δ̄.

To this end, we either create a classifier (decision tree or decision rule
system) which allows us to predict a decision for δ̄, or we can omit the con-
struction of classifier and use the information contained in T and δ̄ directly
(lazy decision trees and rules, and lazy learning algorithms based on rules
and reducts).

It is interesting to compare different results of prediction for different ap-
proaches (see Figs. 7.1–7.5). The variety of approaches increases the chance
to find an appropriate way for prediction for a given decision table.



8

Local and Global Approaches to Study
of Trees and Rules

In this chapter, we consider two approaches to the study of decision trees
and decision rule systems for problems over finite and infinite information
systems. Local approach is based on the assumption that only attributes
contained in a problem description are used in decision trees and decision
rules systems solving this problem. Global approach is based on the assump-
tion that any attributes from the considered information system can be used
in decision trees and decision rule systems solving the problem.

The main difficulty in the global approach is the necessity to choose ap-
propriate attributes in large or infinite set of attributes. However, in the
frameworks of the global approach we can often construct more simple de-
cision trees and decision rule systems rather than in the frameworks of the
local approach.

This chapter is devoted to the study of growth in the worst case of time
(and, sometimes, space) complexity of decision trees and decision rule systems
with the growth of the number of attributes in problem description.

The chapter contains four sections. In Sect. 8.1, basic notions are discussed.
Section 8.2 is devoted to the consideration of local approach for infinite and
finite information systems. In Sect. 8.3, results related to the global approach
are considered. Section 8.4 contains conclusions.

8.1 Basic Notions

Let A be a nonempty set, B be a finite nonempty set with at least two
elements, and F be a nonempty set of functions from A to B. Functions
from F will be called attributes and the triple U = (A, B, F ) will be called
an information system. If F is a finite set then U will be called a finite
information system. If F is an infinite set then U will be called an infinite
information system.

We will consider problems over the information system U . A problem over
U is an arbitrary (n + 1)-tuple z = (ν, f1, . . . , fn) where ν : Bn → ω,

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 127–142.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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ω = {0, 1, 2, . . .}, and f1, . . . , fn ∈ F . The number dim z = n will be called
the dimension of the problem z. The problem z may be interpreted as a
problem of searching for the value z(a) = ν(f1(a), . . . , fn(a)) for an arbitrary
a ∈ A. Different problems of pattern recognition, discrete optimization, fault
diagnosis and computational geometry can be represented in such form. We
denote by P(U) the set of all problems over the information system U .

As algorithms for problem solving we will consider decision trees and de-
cision rule systems.

A decision tree over U is a marked finite tree with the root in which
each terminal node is labeled with a number from ω; each node which is not
terminal (such nodes are called working) is labeled with an attribute from
F ; each edge is labeled with an element from B. Edges starting in a working
node are labeled with pairwise different elements.

Let Γ be a decision tree over U . A complete path in Γ is an arbitrary
sequence ξ = v1, d1, . . . , vm, dm, vm+1 of nodes and edges of Γ such that v1

is the root, vm+1 is a terminal node, and vi is the initial and vi+1 is the
terminal node of the edge di for i = 1, . . . , m. Now we define a system of
equations S(ξ) and a subset A(ξ) of the set A associated with ξ. If m = 0
then S(ξ) is empty system and A(ξ) = A. Let m > 0, the node vi be labeled
with the attribute fi, and the edge di be labeled with the element δi from B,
i = 1, . . . , m. Then S(ξ) = {f1(x) = δ1, . . . , fm(x) = δm} and A(ξ) is the set
of solutions of S(ξ) from A.

We will say that a decision tree Γ over U solves a problem z over U if for
any a ∈ A there exists a complete path ξ in Γ such that a ∈ A(ξ), and the
terminal node of the path ξ is labeled with the number z(a).

For decision trees, as time complexity measure we will consider the depth of
a decision tree which is the maximum number of working nodes in a complete
path in the tree. As space complexity measure we will consider the number
of nodes in a decision tree. We denote by h(Γ ) the depth of a decision tree Γ ,
and by #(Γ ) we denote the number of nodes in Γ . Note that for each problem
z over U there exists a decision tree Γ over U which solves the problem z
and for which h(Γ ) ≤ dim z and #(Γ ) ≤ |B|dim z+1.

A decision rule over U is an arbitrary expression of the kind

f1 = δ1 ∧ . . . ∧ fm = δm → σ

where f1, . . . , fm ∈ F , δ1, . . . , δm ∈ B and σ ∈ ω. Denote this decision rule
by ̺. The number m will be called the length of the rule ̺. Now we define
a system of equations S(̺) and a subset A(̺) of the set A associated with
̺. If m = 0 then S(̺) is empty system and A(̺) = A. Let m > 0. Then
S(̺) = {f1(x) = δ1, . . . , fm(x) = δm} and A(̺) is the set of solutions of S(̺)
from A. The number σ will be called the right-hand side of the rule ̺.

A decision rule system over U is a nonempty finite set of decision rules
over U . Let S be a decision rule system over U and z be a problem over U .
We will say that the decision rule system S is complete for the problem z if
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for any a ∈ A there exists a rule ̺ ∈ S such that a ∈ A(̺), and for each rule
̺ ∈ S such that a is a solution of S(̺), the right-hand side of ̺ coincides
with the number z(a).

For decision rule systems, as time complexity measure we will consider the
maximum length L(S) of a rule from the system S. We will say about L(S)
as about the depth of decision rule system S. As space complexity measure
we will consider the number of rules in a system. Note that for each problem
z over U there exists a decision rule system S over U which is complete for
the problem z and for which L(S) ≤ dim z and |S| ≤ |B|dim z.

The investigation of decision trees and decision rule systems for a problem
z = (ν, f1, . . . , fn) which use only attributes from the set {f1, . . . , fn} is based
on the study of the decision table T (z) associated with the problem z. The
table T (z) is a rectangular table with n columns which contains elements
from B. The row (δ1, . . . , δn) is contained in the table T (z) if and only if the
equation system

{f1(x) = δ1, . . . , fn(x) = δn}

is compatible on A (has a solution from the set A). This row is labeled with
the number ν(δ1, . . . , δn). For i = 1, . . . , n, the i-th column is labeled with
the attribute fi. We know that a decision tree over T (z) solves the problem
z if and only if this tree is a decision tree for T (z). We know also that a
decision rule system over T (z) is complete for the problem z if and only if
this system is a complete decision rule system for T (z).

If we would like to consider additional attributes fn+1, . . . , fn+m, we can
study a new problem z′ = (μ, f1, . . . , fn, fn+1, . . . , fn+m) such that

μ(x1, . . . , xn+m) = ν(x1, . . . , xn) ,

and corresponding decision table T (z′).

8.2 Local Approach to Study of Decision Trees and

Rules

Let U = (A, B, F ) be an information system. For a problem z = (ν, f1, . . . ,
fn) over U we denote by hl

U (z) the minimum depth of a decision tree over U
which solves the problem z and uses only attributes from the set {f1, . . . , fn}.
We denote by Ll

U (z) the minimum depth of a complete decision rule system
for z which uses only attributes from the set {f1, . . . , fn}. We will consider re-
lationships among the parameters hl

U (z), Ll
U (z) and dim z. One can interpret

the value dim z for the problem z = (ν, f1, . . . , fn) as the depth of decision
tree which solves the problem z in trivial way by computing sequentially the
values of the attributes f1, . . . , fn. One can interpret also the value dim z for
the problem z = (ν, f1, . . . , fn) as the depth of trivial complete decision rule
system for z in which each rule is of the kind f1 = δ1 ∧ . . . ∧ fn = δn → σ.
So we will consider relationships between depth of locally optimal and trivial
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decision trees and decision rule systems. To this end, we define the functions
hl

U : ω \ {0} → ω and Ll
U : ω \ {0} → ω in the following way:

hl
U (n) = max{hl

U (z) : z ∈ P(U), dim z ≤ n} ,

Ll
U (n) = max{Ll

U (z) : z ∈ P(U), dim z ≤ n}

for any n ∈ ω \ {0}, where P(U) is the set of all problems over U . The value
hl

U (n) is the unimprovable upper bound on the value hl
U (z) for problems

z ∈ P(U) such that dim z ≤ n. The value Ll
U (n) is the unimprovable upper

bound on the value Ll
U (z) for problems z ∈ P(U) such that dim z ≤ n.

The functions hl
U and Ll

U will be called the local Shannon functions for the
information system U . Using Corollary 2.28 we obtain Ll

U (n) ≤ hl
U (n) for

any n ∈ ω \ {0}.

8.2.1 Local Shannon Functions for Arbitrary

Information Systems

In [41] it was shown (see also [47, 53]) that for an arbitrary information
system U either hl

U (n) = O(1), or hl
U (n) = Θ(log2 n), or hl

U (n) = n for each
n ∈ ω \ {0}.

The first type of behavior (hl
U (n) = O(1)) realizes only for finite informa-

tion systems.
The second type of behavior (hl

U (n) = Θ(log2 n)) is the most interesting
for us since there exist two natural numbers c1 and c2 such that for each
problem z over U the inequality hl

U (z) ≤ c1 log2(dim z) + c2 holds.
The third type of behavior (hl

U (n) = n for each n ∈ ω\{0}) is bad for us: for
each n ∈ ω\{0}, there exists a problem z over U such that hl

U (z) = dim z = n.
So, in the worst case the depth of locally optimal decision tree is equal to the
depth of trivial decision tree.

Thus we must have possibility to discern the types of behavior. Now we
consider the criterions of the local Shannon function hl

U behavior.
We will say that the information system U = (A, B, F ) satisfies the con-

dition of reduction if there exists a number m ∈ ω \ {0} such that for each
compatible on A system of equations

{f1(x) = δ1, . . . , fr(x) = δr}

where r ∈ ω \ {0}, f1, . . . , fr ∈ F and δ1, . . . , δr ∈ B there exists a subsystem
of this system which has the same set of solutions and contains at most m
equations.

In the following theorem, the criterions of the local Shannon function hl
U

behavior are considered.
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Theorem 8.1. ([41]) Let U be an information system. Then the following
statements hold:

a) if U is a finite information system then hl
U (n) = O(1);

b) if U is an infinite information system which satisfies the condition of
reduction then hl

U (n) = Θ(log2 n);
c) if U is an infinite information system which does not satisfy the condi-

tion of reduction then hl
U (n) = n for each n ∈ ω \ {0}.

There are only two types of behavior of the local Shannon function Ll
U .

Theorem 8.2. Let U = (A, B, F ) be an information system. Then the fol-
lowing statements hold:

a) if U is a finite information system then Ll
U (n) = O(1);

b) if U is an infinite information system which satisfies the condition of
reduction then Ll

U (n) = O(1);
c) if U is an infinite information system which does not satisfy the condi-

tion of reduction then Ll
U (n) = n for each n ∈ ω \ {0}.

Proof. We know that Ll
U (n) ≤ hl

U (n) for any n ∈ ω \ {0}. By Theorem 8.1,
if U is a finite information system then Ll

U (n) = O(1).
Let U be an infinite information system which satisfies the condition of

reduction. Then there exists a number m ∈ ω \ {0} such that for each com-
patible on A system of equations

{f1(x) = δ1, . . . , fr(x) = δr} ,

where r ∈ ω\{0}, f1, . . . , fr ∈ F and δ1, . . . , δr ∈ B, there exists a subsystem
of this system which has the same set of solutions and contains at most m
equations. From here it follows that for any problem z over U and for any
row δ̄ of the decision table T (z) the inequality M(T (z), δ̄) ≤ m holds. From
Theorem 3.11 it follows that L(T (z)) ≤ m. Therefore there exists a decision
rule system S over U which is complete for the problem z, use only attributes
from the description of z and for which L(S) ≤ m. Thus, Ll

U (n) ≤ m for any
n ∈ ω \ {0}, and Ll

U (n) = O(1).
Let U be an infinite information system which does not satisfy the condi-

tion of reduction. By Theorem 8.1, hl
U (n) = n and therefore Ll

U (n) ≤ n for
any n ∈ ω \ {0}.

It is not difficult to show that for any n ∈ ω\{0}, there exists a compatible
on A system of equations

{f1(x) = δ1, . . . , fn(x) = δn} ,

where f1, . . . , fn ∈ F and δ1, . . . , δn ∈ B, such that for any proper subsystem
of this system the set of solutions of the subsystem on A is different from the
set of solutions of the initial system on A.

We consider the problem z = (ν, f1, . . . , fn) such that ν(δ̄) = 1 where
δ̄ = (δ1, . . . , δn) and for any row σ̄ of the table T (z) different from δ̄, ν(σ̄) =
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2. One can show that M(T (z), δ̄) = n. From Theorem 3.11 it follows that
L(T (z)) = n. Therefore Ll

U (n) ≥ n and Ll
U (n) = n. ⊓⊔

Now we consider an example.

Example 8.3. Let m, t ∈ ω \ {0}. We denote by Pol(m) the set of all polyno-
mials which have integer coefficients and depend on variables x1, . . . , xm. We
denote by Pol(m, t) the set of all polynomials from Pol(m) such that the de-
gree of each polynomial is at most t. We define information systems U(m) and
U(m, t) as follows: U(m) = (IRm, E, F (m)) and U(m, t) = (IRm, E, F (m, t))
where E = {−1, 0, +1}, F (m) = {sign(p) : p ∈ Pol(m)} and F (m, t) =
{sign(p) : p ∈ Pol(m, t)}. Here sign(x) = −1 if x < 0, sign(x) = 0 if x = 0,
and sign(x) = +1 if x > 0. One can prove that hl

U(m)(n) = Ll
U(m)(n) = n for

each n ∈ ω \ {0}, hl
U(1,1)(n) = Θ(log2 n), Ll

U(1,1)(n) = O(1), and if m > 1 or

t > 1 then hl
U(m,t)(n) = Ll

U(m,t)(n) = n for each n ∈ ω \ {0}.

8.2.2 Restricted Binary Information Systems

An information system U = (A, B, F ) is called binary if B = {0, 1}. A binary
information system U = (A, {0, 1}, F ) is called restricted it it satisfies the
condition of reduction.

Let U = (A, {0, 1}, F ) be a restricted binary information system. Then
there exists a number m ∈ ω \{0} such that for each compatible on A system
of equations

{f1(x) = δ1, . . . , fr(x) = δr} ,

where r ∈ ω \ {0}, f1, . . . , fr ∈ F and δ1, . . . , δr ∈ {0, 1}, there exists a
subsystem of this system which has the same set of solutions and contains at
most m equations.

Let z = (ν, f1, . . . , fn) be a problem over U and T (z) be the decision table
corresponding to this problem.

Let us show that
M(T (z)) ≤ m + 1 . (8.1)

Let δ̄ = (δ1, . . . , δn) ∈ {0, 1}n and δ̄ be a row of T (z). Then the system of
equations

{f1(x) = δ1, . . . , fn(x) = δn} (8.2)

is compatible on A and there exists a subsystem of this system which has the
same set of solutions and contains at most m equations. From here it follows
that M(T (z), δ̄) ≤ m. Let δ̄ be not a row of T (z). Then the system (8.2) is not
compatible on A. Let us show that this system has a subsystem with at most
m + 1 equations which is not compatible on A. If the system {f1(x) = δ1} is
not compatible on A then the considered statement holds. Let this system is
compatible on A. Then there exists a number t from {1, . . . , n− 1} such that
the system
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H = {f1(x) = δ1, . . . , ft(x) = δt}

is compatible on A but the system H ∪ {ft+1(x) = δt+1} is incompatible on
A. Then there exists a subsystem H ′ of the system H which has the same set
of solutions and contains at most m equations. Then H ′ ∪ {ft+1(x) = δt+1}
is a subsystem of the system (8.2) which has at most m + 1 equations and is
not compatible on A. Therefore M(T (z), δ̄) ≤ m + 1 and the inequality (8.1)
holds.

Let α be a real number such that 0 < α < 1. From (8.1) and Theorem
6.19 it follows that the minimum depth of α-decision tree for the table T (z)
is at most (m + 1)(log2(1/α) + 1). From (8.1) and Theorem 3.11 it follows
that L(T (z)) ≤ m + 1. From Theorem 6.30 it follows that for α-complete
decision rule system S for T (z) constructed by the greedy algorithm, the
inequality L(S) ≤ (m + 1) ln(1/α) + 1 holds. From Theorem 6.37 it follows
that the depth of α-decision tree for the table T (z) constructed by the greedy
algorithm is at most (m + 1) ln(1/α) + 1. Note that the obtained bounds do
not depend on the dimension of problems.

Let us show that
N(T (z)) ≤ 2mnm . (8.3)

We know that for any system of equations of the kind

{f1(x) = δ1, . . . , fn(x) = δn} ,

where δ1, . . . , δn ∈ {0, 1}, which is compatible on A there exists a subsystem
with at most m equations that has the same set of solutions. One can show
that the number of systems of equations of the kind

{fi1(x) = δ1, . . . , fit
(x) = δt} ,

where 1 ≤ t ≤ m, fi1 , . . . , fit
∈ {f1, . . . , fn} and δ1, . . . , δt ∈ {0, 1} is at most

2mnm. Therefore the equation (8.3) holds. From (8.1), (8.3) and Theorem
3.17 it follows that the minimum depth of a decision tree for the table T (z) is
at most m(m + 1)(log2 n + 1). So, we have at most logarithmic growth of the
minimum depth of decision trees depending on the dimension of problems.

Let us show that
|SEP (T (z))| ≤ 2mnm + 1 , (8.4)

where SEP (T (z)) is the set of all separable subtables of the table T (z) in-
cluding T (z). Each separable subtable of T (z) is a nonempty subtable of
T (z) which can be represented in the form T = T (z)(fi1 , δi1) . . . (fir

, δir
)

where r ∈ {0, 1, . . . , n}, fi1 , . . . , fir
∈ {f1, . . . , fn} and δi1 , . . . , δir

∈ {0, 1}.
Let r > 0. Since the considered subtable is nonempty, the system of equations

{fi1(x) = δi1 , . . . , fir
(x) = δir

}

is compatible on A, and there exists a subsystem
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{fj1(x) = δj1 , . . . , fjt
(x) = δjt

}

of this system, which has the same set of solutions and for which t ≤ m. It is
clear that T = T (z)(fj1 , δj1) . . . (fjt

, δjt
). Using this fact it is not difficult to

show that the number of separable subtables of the table T (z) which are not
equal to T (z) is at most 2mnm. As a result, we have |SEP (T (z))| ≤ 2mnm+1.

From (8.3) and (8.4) and from Theorems 4.23, 4.26, 6.42, and 6.43 it follows
that algorithms W , V , Wα, and Vα for exact optimization of decision and
α-decision trees and rules have on tables T (z) polynomial time complexity
depending on dim z.

The mentioned facts determine the interest of studying restricted informa-
tion systems.

We now consider restricted binary linear information systems. Let P be
the set of all points in the plane and l be a straight line (line in short) in the
plane. This line divides the plane into two open half-planes H1 and H2 and
the line l. Two attributes correspond to the line l. The first attribute takes
value 0 on points from H1, and value 1 on points from H2 and l. The second
one takes value 0 on points from H2, and value 1 on points from H1 and
l. Denote by L the set of all attributes corresponding to lines in the plane.
Information systems of the kind (P, {0, 1}, F ), where F ⊆ L, will be called
binary linear information systems in the plane. We will describe all restricted
binary linear information systems in the plane.

Let l be a line in the plane. Denote by L(l) the set of all attributes corre-
sponding to lines which are parallel to l (see Fig. 8.1). Let p be a point in the
plane. Denote by L(p) the set of all attributes corresponding to lines which
pass through p (see Fig. 8.2). A set C of attributes from L will be called a
clone if C ⊆ L(l) for some line l or C ⊆ L(p) for some point p.
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Proof of the next statement can be found in [54].

Theorem 8.4. A binary linear information system in the plane (P, {0, 1}, F )
is restricted if and only if F is the union of a finite number of clones.

8.2.3 Local Shannon Functions for Finite

Information Systems

Theorems 8.1 and 8.2 give us some information about the behavior of local
Shannon functions for infinite information systems. But for a finite informa-
tion system U we have only the relations hl

U (n) = O(1) and Ll
U (n) = O(1).

However, finite information systems are important for different applications.
Now we consider the behavior of the local Shannon functions for an arbi-

trary finite information system U = (A, B, F ) such that f �≡ const for any
f ∈ F .

A set {f1, . . . , fn} ⊆ F will be called redundant if n ≥ 2 and there exist
i ∈ {1, . . . , n} and μ : Bn−1 → B such that

fi(a) = μ(f1(a), . . . , fi−1(a), fi+1(a), . . . , fn(a))

for each a ∈ A. If the set {f1, . . . , fn} is not redundant then it will be called
irredundant. We denote by ir(U) the maximum number of attributes in an
irredundant subset of the set F .

A systems of equations over U is an arbitrary system

{f1(x) = δ1, . . . , fn(x) = δn} (8.5)

such that n ∈ ω \ {0}, f1, . . . , fn ∈ F and δ1, . . . , δn ∈ B. The system (8.5)
will be called cancelable if n ≥ 2 and there exists a number i ∈ {1, . . . , n}
such that the system

{f1(x) = δ1, . . . , fi−1(x) = δi−1, fi+1(x) = δi+1, . . . , fn(x) = δn}

has the same set of solutions just as the system (8.5). If the system (8.5)
is not cancelable then it will be called uncancelable. We denote by un(U)
the maximum number of equations in an uncancelable compatible system
over U .

One can show that
1 ≤ un(U) ≤ ir(U) .

The values un(U) and ir(U) will be called the first and the second local crit-
ical points of the information system U = (A, B, F ). Now we describe the
behaviors of the local Shannon functions in terms of local critical points of U
and the cardinality of the set B. The next two theorems follow immediately
from results obtained in [43] for problems with many-valued decisions.
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Theorem 8.5. Let U = (A, B, F ) be a finite information system such that
f �≡ const for any f ∈ F , and n ∈ ω \ {0}. Then the following statements
hold:

a) if n ≤ un(U) then hl
U (n) = n;

b) if un(U) ≤ n ≤ ir(U) then

max{un(U), logk(n + 1)} ≤ hl
U (n) ≤ min{n, 2(un(U))2 log2 2(kn + 1)}

where k = |B|;
c) if n ≥ ir(U) then hl

U (n) = hl
U (ir(U)).

Theorem 8.6. Let U = (A, B, F ) be a finite information system such that
f �≡ const for any f ∈ F , and n ∈ ω \ {0}. Then the following statements
hold:

a) if n ≤ un(U) then Ll
U (n) = n;

b) if n ≥ un(U) then Ll
U (n) = un(U).

Of course, the problem of computing the values un(U) and ir(U) for a given
finite information system U is very complicated problem. But obtained results
allow us to constrict essentially the class of possible types of local Shannon
functions for finite information systems.

Example 8.7. Denote by P the set of all points in the plane. Consider an
arbitrary straight line l, which divides the plane into positive and negative
open half-planes, and the line l itself. Assign a function f : P → {0, 1} to the
line l. The function f takes the value 1 if a point is situated on the positive
half-plane, and f takes the value 0 if a point is situated on the negative half-
plane or on the line l. Denote by F the set of functions which correspond to
certain r mutually disjoint finite classes of parallel straight lines. Consider a
finite information system U = (P, {0, 1}, F ). One can show that ir(U) = |F |
and un(U) ≤ 2r.

8.3 Global Approach to Study of Decision Trees and

Rules

First, we consider arbitrary infinite information systems. Later, we will study
two-valued finite information systems.

8.3.1 Infinite Information Systems

We will study not only time but also space complexity of decision trees and
decision rule systems. It is possible to consider time and space complexity
independently. For an arbitrary infinite information system, in the worst case,
the following observations can be made (see [50]):
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- the minimum depth of decision tree (as a function on the number of at-
tributes in a problem description) either is bounded from below by logarithm
and from above by logarithm to the power 1 + ε, where ε is an arbitrary
positive constant, or grows linearly;

- the minimum depth of complete decision rule system (as a function on
the number of attributes in a problem description) either is bounded from
above by a constant or grows linearly;

- the minimum number of nodes in decision tree (as a function on the
number of attributes in a problem description) has either polynomial or ex-
ponential growth;

- the minimum number of rules in complete decision rule system (as a
function on the number of attributes in a problem description) has either
polynomial or exponential growth.

The joint consideration of time and space complexity is more interesting
for us. In this section, a partition of the set of all infinite information systems
into two classes is considered. Information systems from the first class are
close to the best ones from the point of view of time and space complexity
of decision trees and decision rule systems. Decision trees and decision rule
systems for information systems from the second class have in the worst case
large time or space complexity.

For information systems from the first class, the following observations can
be made (see [50]):

- there exist decision trees whose depth grows almost as logarithm, and the
number of nodes grows almost as a polynomial on the number of attributes
in a problem description;

- there exist complete decision rule systems whose depth is bounded from
above by a constant, and the number of rules grows almost as a polynomial
on the number of attributes in a problem description.

For an arbitrary information system from the second class in the worst
case, the following observations can be made (see [50]):

- the minimum depth of decision tree (as a function on the number of
attributes in a problem description) grows linearly;

- complete decision rule systems have at least linear growth of the depth
or have at least exponential growth of the number of rules (depending on the
number of attributes in a problem description).

Partition of the Set of Infinite Information Systems

Let U = (A, B, F ) be an infinite information system.
Define the notion of independence dimension (or, in short, I-dimension)

of information system U . A finite subset {f1, . . . , fp} of the set F is called
an independent set if there exist two-element subsets B1, . . . , Bp of the set B
such that for any δ1 ∈ B1, . . . , δp ∈ Bp the system of equations

{f1(x) = δ1, . . . , fp(x) = δp} (8.6)
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is compatible on the set A (has a solution from A). If for any natural p there
exists a subset of the set F , which cardinality is equal to p and which is an
independent set, then we will say that the information system U has infinite
I-dimension. Otherwise, I-dimension of U is the maximum cardinality of a
subset of F , which is an independent set.

The notion of I-dimension is closely connected with well known notion of
Vapnik-Chervonenkis dimension [87]. In particular, an information system
(A, {0, 1}, F ) has finite I-dimension if and only if it has finite VC-dimension
[30].

Now we consider the condition of decomposition for the information system
U . Let p ∈ ω\{0}. A nonempty subset D of the set A will be called (p, U)-set
if D coincides with the set of solutions on A of a system of the kind (8.6)
where f1, . . . , fp ∈ F and δ1, . . . , δp ∈ B (we admit that among the attributes
f1, . . . , fp there are identical ones).

We will say that the information system U satisfies the condition of decom-
position if there exist numbers m, t ∈ ω \ {0} such that every (m + 1, U)-set
is a union of t sets each of which is an (m, U)-set (we admit that among the
considered t sets there are identical ones).

We consider partition of the set of infinite information systems into two
classes: C1 and C2. The class C1 consists of all infinite information systems each
of which has finite I-dimension and satisfies the condition of decomposition.
The class C2 consists of all infinite information systems each of which has
infinite I-dimension or does not satisfy the condition of decomposition.
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Fig. 8.3

We now consider an example of information system from the class C1.

Example 8.8. Let P be the set of all points in the plane and l be a straight line
in the plane. This line divides the plane into two open half-planes H1 and H2

and the line l. We correspond one attribute to the line l. This attribute takes
value 0 on points from H1, and value 1 on points from H2 and l. Denote by
F the set of all attributes corresponding to lines in the plane. Let us consider
the information system U = (P, {0, 1},F).
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The information system U has finite I-dimension: there are no three lines
which divide the plane into eight domains (see Fig. 8.3). The information
system U satisfies the condition of decomposition: each (4,U)-set is a union
of two (3,U)-sets (see Fig. 8.4). Therefore U ∈ C1.
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Bounds on Time and Space Complexity

In this section, we consider three theorems and an example from [50]. In the
following theorem, time and space complexity of decision trees are considered.

Theorem 8.9. Let U = (A, B, F ) be an infinite information system. Then
the following statements hold:

a) if U ∈ C1 then for any ε, 0 < ε < 1, there exists a positive constant
c such that for each problem z over U there exists a decision tree Γ over
U which solves the problem z and for which h(Γ ) ≤ c(log2 n)1+ε + 1 and

#(Γ ) ≤ |B|c(log2 n)1+ε+2 where n = dim z;
b) if U ∈ C1 then for any n ∈ ω \ {0} there exists a problem z over U with

dim z = n such that for each decision tree Γ over U , which solves the problem
z, the inequality h(Γ ) ≥ log|B|(n + 1) holds;

c) if U ∈ C2 then for any n ∈ ω \ {0} there exists a problem z over U with
dim z = n such that for each decision tree Γ over U , which solves the problem
z, the inequality h(Γ ) ≥ n holds.

In the next theorem, time and space complexity of decision rule systems are
considered.

Theorem 8.10. Let U = (A, B, F ) be an infinite information system. Then
the following statements hold:

a) if U ∈ C1 then for any ε, 0 < ε < 1, there exist positive constants c1

and c2 such that for each problem z over U there exists a decision rule system
S over U which is complete for the problem z and for which L(S) ≤ c1 and

|S| ≤ |B|c2(log2 n)1+ε+1 where n = dim z;
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b) if U ∈ C2 then for any n ∈ ω \ {0} there exists a problem z over U
with dim z = n such that for each decision rule system S over U , which is
complete for the problem z, the inequality L(S) ≥ n holds or the inequality
|S| ≥ 2n holds.

In the following theorem, bounds are considered in which instead of ε a
function ϕ(n) stands that decreases with the growth of n.

Theorem 8.11. Let U = (A, B, F ) be an infinite information system from
the class C1. Then there exist positive constants c1, c2, c3, c4, c5 such that for
the function ϕ(n) = c1/

√

log2 log2 n for any problem z over U with dim z =
n ≥ c2 the following statements hold:

a) there exists a decision tree Γ over U which solves z and for which

h(Γ ) ≤ c3(log2 n)1+ϕ(n) and #(Γ ) ≤ |B|c3(log2 n)1+ϕ(n)+1;
b) there exists a decision rule system S over U which is complete for z and

for which L(S) ≤ c4 and |S| ≤ |B|c5(log2 n)1+ϕ(n)

.

So the class C1 is interesting from the point of view of different applications.
The following example characterizes both the wealth and the boundedness of
this class.

Example 8.12. Let m, t ∈ ω \ {0}. We consider the same information systems
U(m) and U(m, t) as in Example 8.3. One can prove that U(m) ∈ C2 and
U(m, t) ∈ C1. Note that the system U(m) has infinite I-dimension.

8.3.2 Global Shannon Function h
l

U
for Two-Valued

Finite Information Systems

An information system U = (A, B, F ) will be called two-valued if |B| = 2.
For a problem z = (ν, f1, . . . , fn) over U we denote by hg

U (z) the minimum
depth of a decision tree over U which solves the problem z. We will consider
the relationships between the parameters hg

U (z) and dim z. Recall that one
can interpret the value dim z for the problem z as the depth of the decision
tree which solves the problem z in trivial way by computing sequentially the
values of attributes f1, . . . , fn. We define the function hg

U : ω \ {0} → ω in
the following way:

hg
U (n) = max{hg

U (z) : z ∈ P(U), dim z ≤ n}

for any n ∈ ω \ {0}. The value hg
U (n) is the unimprovable upper bound on

the value hg
U (z) for problems z ∈ P(U) such that dim z ≤ n. The function

hg
U will be called a global Shannon function for the information system U .
Now we consider the behavior of this global Shannon function for an arbi-

trary two-valued finite information system U = (A, B, F ) such that f �≡ const
for any f ∈ F .
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Recall that by ir(U) we denote the maximum number of attributes in an
irredundant subset of the set F (see Sect. 8.2.3).

A problem z ∈ P (U) will be called stable if hg
U (z) = dim z. We denote by

st(U) the maximum dimension of a stable problem over U .
One can show that

1 ≤ st(U) ≤ ir(U) .

The values st(U) and ir(U) will be called the first and the second global
critical points of the information system U . Now we describe the behavior of
the global Shannon function hg

U in terms of global critical points of U .

Theorem 8.13. ([44]) Let U be a two-valued finite information system such
that f �≡ const for any f ∈ F , and n ∈ ω\{0}. Then the following statements
hold:

a) if n ≤ st(U) then hg
U (n) = n;

b) if st(U) < n ≤ ir(U) then

max {st(U), log2(n + 1)} ≤ hg
U (n) ≤ min

{

n, 8(st(U) + 1)5(log2 n)2
}

;

c) if n ≥ ir(U) then hg
U (n) = hg

U (ir(U)).

The problem of computing the values st(U) and ir(U) for a given two-valued
finite information system U is a complicated problem. However, the obtained
results allow us to constrict the class of possible types of the global Shannon
function hg

U .

Example 8.14. Let us consider the same information system U = (P, {0, 1}, F )
as in Example 8.7. One can show that st(U) ≤ 2r and ir(U) = |F |.

8.4 Conclusions

This chapter is devoted to the consideration of local and global approaches to
the study of decision trees and decision rule systems for problems over finite
and infinite information systems. Our main aim is to describe the behavior in
the worst case of minimum time and, sometimes, space complexity of decision
trees and decision rule systems depending on the number of attributes in the
problem description.

In the case of local approach, proofs of the considered results are based
on lower and upper bounds on time complexity of decision trees and decision
rule systems considered in the first part of this book. In the case of global
approach, we should use also more advanced tools.

Note that an essential part of the considered results can be generalized to
the case of problems with many-valued decisions z = (ν, f1, . . . , fn) where ν
corresponds to each tuple of attribute f1, . . . , fn values not a unique decision
but a set of decisions. Our aim is to find at least one decision from this set.
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One can show that the most complicated problems of a given dimension
with one-valued decisions and with many-valued decisions have the same
time complexity (minimum depth of a decision tree solving a problem and
minimum depth of a complete decision rule system for a problem). Therefore
Shannon functions in the case of one-valued decisions and in the case of
many-valued decisions are the same.

In particular, the most complicated problem with one-valued decisions of
the kind z = (ν, f1, . . . , fn) is a problem for which the values of ν (there are
numbers) for different inputs are different. The most complicated problem
with many-valued decisions of the kind z = (ν, f1, . . . , fn) is a problem for
which values of ν (there are sets) for different inputs are disjoint.
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Decision Trees and Rules over
Quasilinear Information Systems

In this chapter, we consider decision trees and decision rule systems over
linear and quasilinear information systems, with applications to discrete op-
timization problems and analysis of acyclic programs in the basis B0 =
{x + y, x − y, 1; sign(x)}.

Each problem over a linear information system can be represented in the
following form. We take finite number of hyperplanes in the space IRm. These
hyperplanes divide given part C of the space into domains. These domains are
numbered such that different domains can have the same number. For a given
point from C, it is required to recognize the number of domain which contains
this point. Decision trees and decision rules over the considered information
system use attributes of the kind sign (

∑m
i=1 aixi + xm+1). This attribute

allows us to recognize the position of a point relative to the hyperplane defined
by the equality

∑m
i=1 aixi + xm+1 = 0.

Quasilinear information system is simple and useful generalization of linear
information system: instead of attributes of the kind sign (

∑m
i=1 aixi + xm+1)

we consider attributes in the form sign (
∑m

i=1 aiϕi + xm+1) where ϕ1, . . . , ϕm

are functions from a set A to IR.
Upper bounds on the depth of decision trees and complete systems of deci-

sion rules over quasilinear information systems are discussed in this chapter.
We consider also a draft of the proof of similar bounds for a linear informa-
tion system. This is an illustration of the use of tools from the first part of
the book for the analysis of infinite information systems.

In the chapter, we consider two areas of applications of discussed results.
We deal with three classes of optimization problems, and study relationships
between depth of deterministic and nondeterministic acyclic programs in the
basis B0 = {x + y, x − y, 1; sign(x)}.

This chapter consists of four sections. Section 9.1 is devoted to the study of
bounds on complexity of decision trees and rules over linear and quasilinear
information systems. In Sect. 9.2, three classes of optimization problems over
quasilinear information systems are discussed. In Sect. 9.3, acyclic programs

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 143–153.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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in the basis B0 = {x + y, x − y, 1; sign(x)} are studied. Section 9.4 contains
conclusions.

9.1 Bounds on Complexity of Decision Trees and Rules

In this section, we consider bounds on complexity of decision trees and deci-
sion rule systems over linear and quasilinear information systems.

9.1.1 Quasilinear Information Systems

We will call a set K a numerical ring with unity if K ⊆ IR, 1 ∈ K, and for
every a, b ∈ K the relations a + b ∈ K, a × b ∈ K and −a ∈ K hold. For
instance, IR, Q and ZZ are numerical rings with unity.

Let K be a numerical ring with unity, A be a nonempty set and let
ϕ1, . . . , ϕm be functions from A to IR. Denote

F (A, K, ϕ1, . . . , ϕm) =

{

sign

(

m
∑

i=1

diϕi(x) + dm+1

)

: d1, . . . , dm+1 ∈ K

}

.

Here sign(x) = −1 if x < 0, sign(x) = 0 if x = 0, and sign(x) = +1 if x > 0.
Set E = {−1, 0, +1}. The information system (A, E, F (A, K, ϕ1, . . . , ϕm))
will be denoted by U(A, K, ϕ1, . . . , ϕm) and will be called a quasilinear in-
formation system.

Let f ∈ F (A, K, ϕ1, . . . , ϕm) and f = sign(
∑m

i=1 diϕi(x) + dm+1). We
define the parameter r(f) of the attribute f as follows. If (d1, . . . , dm+1) =
(0, . . . , 0) then r(f) = 0. Otherwise,

r(f) = max{0, max{log2 |di| : i ∈ {1, . . . , m + 1}, di �= 0}} .

For a problem z = (ν, f1, . . . , fn) over U(A, K, ϕ1, . . . , ϕm), set r(z) =
max{r(f1), . . . , r(fn)}. Let Γ be a decision tree over U(A, K, ϕ1, . . . , ϕm)
and F (Γ ) be the set of all attributes attached to nonterminal nodes of Γ .
Denote r(Γ ) = max{r(f) : f ∈ F (Γ )} (if F (Γ ) = ∅ then r(Γ ) = 0).

Theorem 9.1. ([42, 53]) Let U = U(A, K, ϕ1, . . . , ϕm) be a quasilinear in-
formation system. Then for each problem z over U there exists a decision tree
Γ over U which solves the problem z and for which the following inequalities
hold:

h(Γ ) ≤ (2(m + 2)3 log2(dim z + 2m + 2))/ log2(m + 2) ,

r(Γ ) ≤ 2(m + 1)2(r(z) + 1 + log2(m + 1)) .

Let U = U(A, K, ϕ1, . . . , ϕm) be a quasilinear information system. For a
problem z = (ν, f1, . . . , fn) over U , we denote by hg

U (z) the minimum depth
of a decision tree over U which solves the problem z. By Lg

U (z) we denote the



9.1 Bounds on Complexity of Decision Trees and Rules 145

minimum depth of a decision rule system over U which is complete for the
problem z. We define two functions hg

U : ω \ {0} → ω and Lg
U : ω \ {0} → ω

in the following way:

hg
U (n) = max{hg

U (z) : z ∈ P(U), dim z ≤ n} ,

Lg
U (n) = max{Lg

U (z) : z ∈ P(U), dim z ≤ n}

for any n ∈ ω\{0}. The value hg
U (n) is the unimprovable upper bound on the

value hg
U (z) for problems z ∈ P(U) such that dim z ≤ n. The value Lg

U (n)
is the unimprovable upper bound on the value Lg

U (z) for problems z ∈ P(U)
such that dim z ≤ n. The functions hg

U and Lg
U are called global Shannon

functions for the information system U .
The following theorem is a simple corollary of Theorems 8.9, 8.10 and 9.1.

Theorem 9.2. Let U = U(A, K, ϕ1, . . . , ϕm) be a quasilinear information
system. Then the following statements hold:

a) if {(ϕ1(a), . . . , ϕm(a)) : a ∈ A} is a finite set then hg
U (n) = O(1);

b) if {(ϕ1(a), . . . , ϕm(a)) : a ∈ A} is an infinite set then hg
U (n) =

Θ(log2 n);
c) Lg

U (n) = O(1).

9.1.2 Linear Information Systems

A quasilinear information system U(A, K, ϕ1, . . . , ϕm) is called linear if A ⊆
IRm and ϕ1 = x1, . . . , ϕm = xm. We will say about attributes from a linear
information system as about linear attributes.

In this section, we consider a special kind of linear information system—
the system Um

p = U(Cm
p , IR, x1, . . . , xm) where p is a positive real number

and Cm
p is the set of solutions on IRm of the equation system

{−p < x1 < p, . . . ,−p < xm < p} .

We will prove (based on some lemmas given without proofs) the following
statement.

Theorem 9.3. Let m ≥ 2 and p > 0. Then for any problem z ∈ P(Um
p ) with

dim z ≥ 2 there exist:
a) a decision tree Γ over Um

p which solves z and for which h(Γ ) ≤ 2(m +
1)3 log2(dim z + 2m);

b) a decision rule system S over Um
p which is complete for z and for which

L(S) ≤ m + 1.

Bounds similar to the considered in part a) of Theorem 9.3 were obtained
independently by two researchers and published in [36] and [33].

Denote Fm = F (Cm
p , IR, x1, . . . , xm) where
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F (Cm
p , IR, x1, . . . , xm) =

{

sign

(

m
∑

i=1

dixi(x) + dm+1

)

: d1, . . . , dm+1 ∈ IR

}

.

Let V ⊆ Cm
p and k be a natural number. A finite set F ⊂ Fm will be called a

k-functional cover for V if for any ā ∈ V there exist attributes f1, . . . , fk ∈ F
and numbers δ1, . . . , δk ∈ E = {−1, 0, +1} such that ā is a solution of the
equation system {f1(x̄) = δ1, . . . , fk(x̄) = δk}, and the set of solutions of this
system on IRm is a subset of V .

Consider three auxiliary statements.

Lemma 9.4. Let f1, . . . , fn ∈ Fm, δ1, . . . , δn ∈ E and V be the set of solu-
tions from Cm

p of the equation system {f1(x̄) = δ1, . . . , fn(x̄) = δn}. Then
if V is not empty then for V there exists an (m + 1)-functional cover F for
which |F| ≤ (m + 1)(n + 2m)m−1.

Lemma 9.5. Let f1, . . . , fn ∈ Fm. Then the number of different tuples
(δ1, . . . , δn) ∈ En for each of which the system of equations {f1(x̄) =
δ1, . . . , fn(x̄) = δn} is compatible on IRm (has a solution from IRm) is at
most 2nm + 1.

Lemma 9.6. Any incompatible on IRm system of equations of the kind

{f1(x̄) = δ1, . . . , fn(x̄) = δn} ,

where f1, . . . , fn ∈ Fm and δ1, . . . , δn ∈ E, contains an incompatible on IRm

subsystem with at most m + 1 equations.

Proof (of Theorem 9.3). Let z = (ν, f1, . . . , fn) ∈ P(Um
p ) and n ≥ 2. Let

the decision table T (z) contain k rows, and for j = 1, . . . , k, let (δj1, . . . , δjn)
be the j-th row of T (z). We denote by Wj the set of solutions on Cm

p of
the equation system {f1(x̄) = δj1, . . . , fn(x̄) = δjn}. From Lemma 9.4 it
follows that for Wj there exists an (m + 1)-functional cover Fj for which
|Fj | ≤ (m + 1)(n + 2m)m−1.

We denote F =
k
⋃

j=1

Fj ∪{f1, . . . , fn}. Let r = |F|. Then r ≤ k(m +

1)(n + 2m)m−1 + n. By Lemma 9.5, k ≤ 2nm + 1. Therefore r ≤ (2nm +
1)(m + 1)(n + 2m)m−1 + n ≤ (n + 2m)2m − 1. Let F = {g1, . . . , gr} where
f1 = g1, . . . , fn = gn. Let ν1 : Er → ω and for any δ̄ = (δ1, . . . , δr) ∈ Er let
ν1(δ̄) = ν(δ1, . . . , δn). Set z1 = (ν1, g1, . . . , gr). From Lemma 9.5 it follows

that N(T (z1)) ≤ 2((n + 2m)2m − 1)m + 1 ≤ 2(n + 2m)2m2

.
Let us show that M(T (z1)) ≤ m + 1. Let δ̄ = (δ1, . . . , δr) ∈ Er. Let us

show that there exist numbers i1, . . . , it ∈ {1, . . . , r} such that t ≤ m+1 and
the table T (z1)(gi1 , δi1) . . . (git

, δit
) is degenerate.

We consider two cases.
1) Let δ̄ be a row of T (z1) and ā ∈ Cm

p be a solution of the equation system

{g1(x̄) = δ1, . . . , gr(x̄) = δr} . (9.1)
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Then for some j ∈ {1, . . . , k} we have ā ∈ Wj .
There exist functions gi1 , . . . , gim+1 ∈ Fj and numbers σ1, . . . , σm+1 ∈ E

for which ā is a solution of the equation system {gi1(x̄) = σ1, . . . , gim+1(x̄) =
σm+1}, and W—the set of solutions of this system on IRm—is a subset of
the set Wj . Taking into account that gi1 , . . . , gim+1 ∈ Fj, we obtain σ1 =
δi1 , . . . , σm+1 = δim+1 . The function ν1(g1(x̄), . . . , gr(x̄)) is constant on Wj .
Therefore this function is a constant on W . Hence

T (z1)(gi1 , δi1) . . . (gim+1 , δim+1)

is a degenerate table and M(T (z1), δ̄) ≤ m + 1.
2) Let δ̄ be not a row of T (z1). Then the system of equations (9.1) is

incompatible on Cm
p , and the system of equations

{g1(x̄) = δ1, . . . , gr(x̄) = δr, sign(x1 − p) = −1, (9.2)

sign(x1 + p) = +1, . . . , sign(xm − p) = −1, sign(xm + p) = +1}

is incompatible on IRm. From Lemma 9.6 it follows that there is a sub-
system of the system (9.2) which is incompatible on IRm and has at most
m + 1 equations. Therefore there is a subsystem of the system (9.1) which
is incompatible on Cm

p and has at most m + 1 equations. Let this sys-
tem contain equations from (9.1) with numbers i1, . . . , it where t ≤ m +
1. Then T (z1)(gi1 , δi1) . . . (git

, δit
) is empty and therefore degenerate. So

M(T (z1), δ̄) ≤ t ≤ m + 1. Since M(T (z1), δ̄) ≤ m + 1 for any δ̄ ∈ Er,
we have M(T (z1)) ≤ m + 1.

Using Theorem 3.17, we obtain

h(T (z1)) ≤ M(T (z1)) log2 N(T (z1)) ≤ (m + 1) log2(2(n + 2m)2m2

)

= (m + 1)(2m2 log2(n + 2m) + 1) ≤ 2(m + 1)3 log2(n + 2m) .

Therefore there exists a decision tree Γ over Um
p which solves z1 and for

which h(Γ ) ≤ 2(m + 1)3 log2(dim z + 2m). By Theorem 3.11, L(T (z1)) ≤
M(T (z1)) ≤ m + 1. Therefore there exists a decision rule system S over
Um

p which is complete for z1 and for which L(S) ≤ m + 1. Evidently,
ν1(g1(x̄), . . . , gr(x̄)) ≡ ν(f1(x̄), . . . , fn(x̄)). Therefore Γ solves the problem
z, and S is complete for z. ⊓⊔

9.2 Optimization Problems over Quasilinear

Information Systems

In this section, three classes of discrete optimization problems over quasilinear
information systems are considered. For each class, examples and corollaries
of Theorem 9.1 are given. More detailed discussion of considered results can
be found in [42, 53].
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9.2.1 Some Definitions

Let U = U(A, K, ϕ1, . . . , ϕm) be a quasilinear information system. A pair
(A, φ) where φ is a function from A to a finite subset of the set ω will be
called a problem over A. The problem (A, φ) may be interpreted as a problem
of searching for the value φ(a) for a given a ∈ A. Let k ∈ ω, k ≥ 1, and
t ∈ IR, t ≥ 0. The problem (A, φ) will be called (m, k, t)-problem over U
if there exists a problem z over U such that φ(a) = z(a) for each a ∈ A,
dim z ≤ k and r(z) ≤ t. Let φ(a) = z(a) for each a ∈ A and z = (ν, f1, . . . , fp).
Then the set {f1, . . . , fp} will be called a separating set (with attributes from
F (A, K, ϕ1, . . . , ϕm)) for the problem (A, φ). We will say that a decision
tree Γ over U solves the problem (A, φ) if the decision tree Γ solves the
problem z.

Denote

L(A, K, ϕ1, . . . , ϕm) =

{

m
∑

i=1

diϕi(x) + dm+1 : d1, . . . , dm+1 ∈ K

}

.

Let g ∈ L(A, K, ϕ1, . . . , ϕm) and g =
∑m

i=1 diϕi(x) + dm+1. We define the
parameter r(g) of the function g as follows. If (d1, . . . , dm+1) = (0, . . . , 0)
then r(g) = 0. Otherwise

r(g) = max{0, max{log2 |di| : i ∈ {1, . . . , m + 1}, di �= 0}} .

In what follows we will assume that elements of the set {−1, 1}n, of the set
Πn of all n-degree permutations, and of the set {0, 1}n are enumerated by
numbers from 1 to 2n, by numbers from 1 to n!, and by numbers from 1 to
2n respectively.

9.2.2 Problems of Unconditional Optimization

Let k ∈ ω \ {0}, t ∈ IR, t ≥ 0, g1, . . . , gk ∈ L(A, K, ϕ1, . . . , ϕm), and r(gj) ≤ t
for j = 1, . . . , k.

Problem 9.7. (Unconditional optimization of values of functions g1, . . . , gk

on an element of the set A.) For a given a ∈ A it is required to find the
minimum number i ∈ {1, . . . , k} such that gi(a) = min{gj(a) : 1 ≤ j ≤ k}.

One can show that the set {sign(gi(x) − gj(x)) : i, j ∈ {1, . . . , k}, i �= j} is a
separating set for this problem, and the considered problem is (m, k2, t + 1)-
problem over the information system U(A, K, ϕ1, . . . , ϕm).

Example 9.8. (n-City traveling salesman problem.) Let n ∈ ω, n ≥ 4, and
let Gn be the complete undirected graph with n nodes. Assume that edges
in Gn are enumerated by numbers from 1 to n(n − 1)/2, and Hamiltonian
circuits in Gn are enumerated by numbers from 1 to (n−1)!/2. Let a number
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ai ∈ IR be attached to the i-th edge, i = 1, . . . , n(n − 1)/2. We will interpret
the number ai as the length of the i-th edge. It is required to find the mini-
mum number of a Hamiltonian circuit in Gn which has the minimum length.
For each j ∈ {1, . . . , (n− 1)!/2}, we will associate with the j-th Hamiltonian

circuit the function gj(x̄) =
∑n(n−1)/2

i=1 δjixi where δji = 1 if the i-th edge
is contained in the j-th Hamiltonian circuit, and δji = 0 otherwise. Obvi-
ously, the considered problem is the problem of unconditional optimization
of values of functions g1, . . . , g(n−1)!/2 on an element of the set IRn(n−1)/2.
Therefore the set {sign(gi(x̄) − gj(x̄)) : i, j ∈ {1, . . . , (n − 1)!/2}, i �= j} is
a separating set for the n-city traveling salesman problem, and this prob-
lem is (n(n − 1)/2, ((n − 1)!/2)2, 0)-problem over the information system

U = U(IRn(n−1)/2, ZZ, x1, . . . , xn(n−1)/2). From Theorem 9.1 it follows that
there exists a decision tree Γ over U which solves the n-city traveling sales-
man problem and for which h(Γ ) ≤ n7/2 and r(Γ ) ≤ n4 log2 n.

Example 9.9. (n-Dimensional quadratic assignment problem.) Let n ∈ ω and
n ≥ 2. For given aij , bij ∈ IR, 1 ≤ i, j ≤ n, it is required to find the minimum
number of n-degree permutation π which minimizes the value

n
∑

i=1

n
∑

j=1

aijbπ(i)π(j) .

Obviously, this problem is the problem of unconditional optimization of values
of functions from the set {

∑n
i=1

∑n
j=1 xijyπ(i)π(j) : π ∈ Πn} on an element

of the set IR2n2

. Hence the set

{sign(

n
∑

i=1

n
∑

j=1

xijyπ(i)π(j) −
n

∑

i=1

n
∑

j=1

xijyτ(i)τ(j)) : π, τ ∈ Πn, π �= τ}

is a separating set for this problem, and the considered problem is (n4, (n!)2, 0)-

problem over the information system U = U(IR2n2

, ZZ, x11y11, . . . , xnnynn).
From Theorem 9.1 it follows that there exists a decision tree Γ over U which
solves the n-dimensional quadratic assignment problem and for which h(Γ ) ≤
3n(n4 + 2)3 and r(Γ ) ≤ 2(n4 + 1)2 log2(2n4 + 2).

9.2.3 Problems of Unconditional Optimization of

Absolute Values

Let k ∈ ω \ {0}, t ∈ IR, t ≥ 0, g1, . . . , gk ∈ L(A, K, ϕ1, . . . , ϕm), and r(gj) ≤ t
for j = 1, . . . , k.

Problem 9.10. (Unconditional optimization of absolute values of functions
g1, . . . , gk on an element of the set A.) For a given a ∈ A it is required to find
the minimum number i ∈ {1, . . . , k} such that |gi(a)| = min{|gj(a)| : 1 ≤ j ≤
k}.
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Evidently, |gi(a)| < |gj(a)| if and only if (gi(a)+gj(a))(gi(a)−gj(a)) < 0, and
|gi(a)| = |gj(a)| if and only if (gi(a) + gj(a))(gi(a) − gj(a)) = 0. Using these
relations one can show that the set {sign(gi(x) + gj(x)), sign(gi(x) − gj(x)) :
i, j ∈ {1, . . . , k}, i �= j} is a separating set for the considered problem,
and this problem is (m, 2k2, t + 1)-problem over the information system
U(A, K, ϕ1, . . . , ϕm).

Example 9.11. (n-Stone problem.) Let n ∈ ω \ {0}. For a tuple (a1, . . . , an) ∈
IRn it is required to find the minimum number of a tuple (δ1, . . . , δn) ∈
{−1, 1}n which minimizes the value of |

∑n
i=1 δiai|. Obviously, this problem

is the problem of unconditional optimization of absolute values of functions
from the set {

∑n
i=1 δixi : (δ1, . . . , δn) ∈ {−1, 1}n} on an element of the set

IRn. Therefore the set {sign(
∑n

i=1 δixi) : (δ1, . . . , δn) ∈ {−2, 0, 2}n} and,
hence, the set {sign(

∑n
i=1 δixi) : (δ1, . . . , δn) ∈ {−1, 0, 1}n} are separat-

ing sets for the considered problem, and this problem is (n, 3n, 0)-problem
over the information system U = U(IRn, ZZ, x1, . . . , xn). From Theorem 9.1
it follows that there exists a decision tree Γ over U which solves the n-
stone problem and for which h(Γ ) ≤ 4(n + 2)4/ log2(n + 2) and r(Γ ) ≤
2(n + 1)2 log2(2n + 2).

9.2.4 Problems of Conditional Optimization

Let k, p ∈ ω \ {0}, t ∈ IR, t ≥ 0, D ⊆ IR, D �= ∅ and g1, . . . , gk be functions
from L(A, K, ϕ1, . . . , ϕm) such that r(gj) ≤ t for j = 1, . . . , k.

Problem 9.12. (Conditional optimization of values of functions g1, . . . , gk

on an element of the set A with p restrictions from A×D.) For a given tuple
(a0, a1, . . . , ap, d1, . . . , dp) ∈ Ap+1 × Dp it is required to find the minimum
number i ∈ {1, . . . , k} such that gi(a1) ≤ d1, . . . , gi(ap) ≤ dp and gi(a0) =
max{gj(a0) : gj(a1) ≤ d1, . . . , gj(ap) ≤ dp, j ∈ {1, . . . , k}} or to show that
such i does not exist. (In the last case let k+1 be the solution of the problem.)

The variables with values from A will be denoted by x0, x1, . . . , xp and the
variables with values from D will be denoted by y1, . . . , yp. One can show
that the set {sign(gi(x0) − gj(x0)) : 1 ≤ i, j ≤ k} ∪ (

⋃p
j=1{sign(gi(xj) −

yj) : 1 ≤ i ≤ k}) is a separating set for the considered problem, and this
problem is (p+m(p+1), pk+ k2, t+1)-problem over the information system
U(Ap+1 × Dp, K, ϕ1(x0), . . . , ϕm(x0), . . . , ϕ1(xp), . . . , ϕm(xp), y1, . . . , yp).

Example 9.13. (Problem on 0-1-knapsack with n objects.) Let n ∈ ω \ {0}.
For a given tuple (a1, . . . , a2n+1) ∈ ZZ

2n+1, it is required to find the minimum
number of a tuple (δ1, . . . , δn) ∈ {0, 1}n which maximizes the value

∑n
i=1 δiai

under the condition
∑n

i=1 δian+i ≤ a2n+1. This is the problem of conditional
optimization of values of functions from the set {

∑n
i=1 δixi : (δ1, . . . , δn) ∈

{0, 1}n} on an element of the set ZZ
n with one restriction from ZZ

n × ZZ.
The set {sign(

∑n
i=1 δixi) : (δ1, . . . , δn) ∈ {−1, 0, 1}n} ∪ {sign(

∑n
i=1 δixn+i −
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x2n+1) : (δ1, . . . , δn) ∈ {0, 1}n} is a separating set for the considered problem,
and this problem is (2n + 1, 3n + 2n, 0)-problem over the information system
U = U(ZZ2n+1, ZZ, x1, . . . , x2n+1). From Theorem 9.1 it follows that there
exists a decision tree Γ over U which solves the problem on 0-1-knapsack
with n objects and for which h(Γ ) ≤ 2(2n + 3)4/ log2(2n + 3) and r(Γ ) ≤
2(2n + 2)2 log2(4n + 4).

9.3 On Depth of Acyclic Programs

In this section, relationships between depth of deterministic and nondeter-
ministic acyclic programs in the basis B0 = {x + y, x − y, 1; sign(x)} are
considered. Proof of the main result of this section (see [40, 53]) is based on
Theorem 9.1 and is an example of the application of methods of decision tree
theory to analysis of algorithms which are not decision trees.

9.3.1 Main Definitions

Letters from the alphabet X = {xi : i ∈ ω} will be called input variables,
while letters from the alphabet Y = {yi : i ∈ ω} will be called working
variables.

A program in the basis B0 is a labeled finite directed graph which has
nodes of the following six kinds:

a) the only node without entering edges called the node “input”;
b) the only node without issuing edges called the node “output”;
c) functional nodes of the kinds yj := 1, yj := zl + zk and yj := zl − zk

where zl, zk ∈ X ∪ Y ;
d) predicate nodes of the kind sign(yj).
Each edge issuing from a predicate node is labeled with a number from

the set {−1, 0, +1}. The other edges are not labeled.
Further we assume that in expressions assigned to nodes of a program

there is at least one input and, hence, at least one working variable.
A program in the basis B0 will be called acyclic if it contains no directed

cycles. A program will be called deterministic if it satisfies the following con-
ditions: the node “input” and each functional node have exactly one issuing
edge, and edges issuing from a predicate node are assigned pairwise different
numbers. If a program isn’t deterministic we will call it nondeterministic.

Let P be an acyclic program in the basis B0 with the input variables
x1, . . . , xn and the working variables y1, . . . , yt.

A complete path in P is an arbitrary directed path from the node “input”
to the node “output”. Let ξ = v1, d1, . . . , vm, dm, vm+1 be a complete path in
the program P . Define the set of elements from Qn accepted by the complete
path ξ. For i = 1, . . . , m, we will attach to the node vi of the path ξ a tuple
β̄i = (βi1, . . . , βit) composed of functions from the set {

∑n
i=1 bixi + bn+1 :

b1, . . . , bn+1 ∈ ZZ}. Let β̄1 = (0, . . . , 0). Let the tuples β̄1, . . . , β̄i−1, where
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2 ≤ i ≤ m, be already defined. If vi is a predicate node then β̄i = β̄i−1. Let
vi be a functional node and let for definiteness the node vi be of the kind
yj := xl + yp. Then β̄i = (βi−11, . . . , βi−1j−1, xl + βi−1p, βi−1j+1, . . . , βi−1t).
For other kinds of functional nodes, the tuple β̄i is defined in the same way.

Let vi1 , . . . , vik
be all predicate nodes in the complete path ξ. Let k > 0,

the nodes vi1 , . . . , vik
be of the kind sign(yj1), . . . , sign(yjk

), and the edges
di1 , . . . , dik

be labeled with the numbers δ1, . . . , δk. Denote A(ξ) the set of
solutions on Qn of the equation system

{sign(βi1j1(x̄)) = δ1, . . . , sign(βikjk
(x̄)) = δk} .

If k = 0 then A(ξ) = Qn. The set A(ξ) will be called the set of elements
from Qn accepted by the complete path ξ. The set of all complete paths in the
program P will be denoted by Ξ(P ). Evidently, Ξ(P ) �= ∅. Denote A(P ) =
⋃

ξ∈Ξ(P ) A(ξ). We will say that the program P recognizes the set A(P ).

Denote by h(ξ) the number of functional and predicate nodes in a complete
path ξ. The value h(P ) = max{h(ξ) : ξ ∈ Ξ(P )} will be called the depth of
the program P .

9.3.2 Relationships between Depth of Deterministic

and Nondeterministic Acyclic Programs

Acyclic programs P1 and P2 in the basis B0 will be called equivalent if the
sets of input variables of P1 and P2 coincide, and the equality A(P1) = A(P2)
holds.

Theorem 9.14. ([40, 53]) For each nondeterministic acyclic program P1 in
the basis B0 with n input variables there exists a deterministic acyclic program
P2 in the basis B0 which is equivalent to P1 and for which the following
inequality holds:

h(P2) ≤ 8(n + 2)7(h(P1) + 2)2 .

Analogous upper bound was obtained in [34] for simulation of parallel acyclic
programs in similar basis by decision trees.

Example 9.15. (Problem of partition of n numbers.) We denote by Wn the
set of tuples (q1, . . . , qn) from Qn for each of which there exists a tuple
(σ1, . . . , σn) ∈ {−1, 1}n such that

∑n
i=1 σiqi = 0. The problem of recogni-

tion of belonging a tuple from Qn to the set Wn is known as the problem of
partition of n numbers. Figure 9.1 represents a nondeterministic acyclic pro-
gram Pn in the basis B0 with input variables x1, . . . , xn and working variable
y1 for which A(Pn) = Wn and h(Pn) = n + 1. From Theorem 9.14 it fol-
lows that there exists a deterministic acyclic program in the basis B0 which
recognizes the set Wn and for which the depth is at most 8(n + 3)9.
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input
❳❳❳❳③

✘✘✘✘✾
y1 := y1 + x1 y1 := y1 − x1❳❳❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✘✘✾ ❄❄
y1 := y1 + x2 y1 := y1 − x2❳❳❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✘✘✾ ❄❄

✘✘✘✘✘✘✘✘✘✾ ❄

❳❳❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✘✘✾❄
y1 := y1 + xn y1 := y1 − xn

❄

✘✘✘✘✾
❳❳❳❳③

sign(y1)

❄
output

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

0

Fig. 9.1

9.4 Conclusions

This chapter contains bounds (mainly without proofs) on time complexity of
decision trees and decision rule systems over linear and quasilinear informa-
tion systems, and applications of discussed results to discrete optimization
problems and analysis of acyclic programs in the basis {x+y, x−y, 1; sign(x)}.

We proved that for some known problems of discrete optimization (includ-
ing a number of NP -hard problems) there exist decision trees with small
depth. In particular, we proved that there exists a decision tree Γ with linear
attributes which solves the n-stone problem and for which the depth is at
most 4(n + 2)4. There exists a decision tree Γ with linear attributes which
solves the n-city traveling salesman problem and for which the depth is at
most n7. The question about possibilities of efficient use of such trees is open.
However, we can prove that the number of nodes in such trees is large.

In particular, in [35] (see also [49]) it was proved that the minimum car-
dinality of separating set with attributes from F (IRn, ZZ, x1, . . . , xn) for the
n-stone problem is equal to (3n − 2n − 1) /2. Using this fact one can show
that any decision tree with attributes from F (IRn, ZZ, x1, . . . , xn) which solves
the n-stone problem has at least (3n − 2n − 1) /2 working nodes. This result
can be extended to decision diagrams (branching programs).
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Recognition of Words and Diagnosis of
Faults

In this chapter, we consider two more applications: recognition of regular
language words and diagnosis of constant faults in combinatorial circuits. In
the first case, we study both decision trees and complete systems of decision
rules. In the second case, we restrict our consideration to decision trees.

Proofs are too complicated to be considered in this chapter. However, we
give some comments relative to the tools used in the proofs or ideas of proofs.

This chapter consists of three sections. In Sect. 10.1, the problem of regular
language word recognition is studied. Section 10.2 is devoted to the problem
of diagnosis of constant faults in combinatorial circuits. Section 10.3 contains
conclusions.

10.1 Regular Language Word Recognition

In this section, we consider the problem of recognition of words of fixed length
in a regular language. The word under consideration can be interpreted as a
description of certain screen image in the following way: the i-th letter of the
word encodes the color of the i-th screen cell. In this case, a decision tree (or
a decision rule system) which recognizes some words may be interpreted as
an algorithm for the recognition of images which are defined by these words.
The considered here results (mainly with proofs) can be found in [46, 53].

10.1.1 Problem of Recognition of Words

Let k ∈ ω, k ≥ 2 and Ek = {0, 1, . . . , k−1}. By (Ek)∗ we denote the set of all
finite words over the alphabet Ek, including the empty word λ. Let L be a
regular language over the alphabet Ek. For n ∈ ω\{0}, we denote by L(n) the
set of all words from L for which the length is equal to n. Let us assume that
L(n) �= ∅. For i ∈ {1, . . . , n}, we define a function li : L(n) → Ek as follows:
li(δ1 . . . δn) = δi for each δ1 . . . δn ∈ L(n). Let us consider an information
system U(L, n) = (L(n), Ek, {l1, . . . , ln}) and a problem zL,n = (ν, l1, . . . , ln)

M. Moshkov and B. Zielosko: Combinatorial Machine Learning, SCI 360, pp. 155–170.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 10.1

over U(L, n) such that ν(δ̄1) �= ν(δ̄2) for every δ̄1, δ̄2 ∈ En
k , δ̄1 �= δ̄2. The

problem zL,n will be called the problem of recognition of words from L(n).
We denote by hL(n) the minimum depth of a decision tree over U(L, n)

which solves the problem of recognition of words from L(n). If L(n) = ∅ then
hL(n) = 0. We denote by LL(n) the minimum depth of a decision rule system
over U(L, n) which is complete for the problem of recognition of words from
L(n). If L(n) = ∅ then LL(n) = 0.

In this section, we consider the behavior of two functions HL : ω\{0} → ω
and PL : ω \ {0} → ω which are defined as follows. Let n ∈ ω \ {0}. Then

HL(n) = max{hL(m) : m ∈ ω \ {0}, m ≤ n} ,

PL(n) = max{LL(m) : m ∈ ω \ {0}, m ≤ n} .

Example 10.1. Let L be the regular language which is generated by the source
represented in Fig. 10.3. Let us consider the problem zL,4 = (ν, l1, l2, l3, l4) of
recognition of words from L(4) = {0001, 0011, 0111, 1111}. Let ν(0, 0, 0, 1) =
1, ν(0, 0, 1, 1) = 2, ν(0, 1, 1, 1) = 3 and ν(1, 1, 1, 1) = 4. The decision table
T (zL,4) is represented in Fig. 10.1(a). The decision tree in Fig. 10.1(b) solves
the problem of recognition of words from L(4). Note that instead of numbers
of words the terminal nodes in this tree are labeled with words. The depth
of the considered decision tree is equal to 2. Using Theorem 3.1, we obtain
hL(4) = 2. The decision rule system

{l3 = 0 → 1, l2 = 0 ∧ l3 = 1 → 2, l1 = 0 ∧ l2 = 1 → 3, l1 = 1 → 4}

is complete for the problem of recognition of words from L(4). The depth
of this system is equal to 2. One can show that M(T (zL,4), (0, 0, 1, 1)) = 2.
Using Theorem 3.11, we obtain LL(4) = 2.

10.1.2 A-Sources

An A-source over the alphabet Ek is a triple I = (G, q0, Q) where G is a
directed graph, possibly with multiple edges and loops, in which each edge is
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labeled with a number from Ek and any edges starting in a node are labeled
with pairwise different numbers, q0 is a node of G, and Q is a nonempty set
of the graph G nodes.

Let I = (G, q0, Q) be an A-source over the alphabet Ek. An I-trace in
the graph G is an arbitrary sequence τ = v1, d1, . . . , vm, dm, vm+1 of nodes
and edges of G such that v1 = q0, vm+1 ∈ Q, and vi is the initial and vi+1

is the terminal node of the edge di for i = 1, . . . , m. Now we define a word
word(τ) from (Ek)∗ in the following way: if m = 0 then word(τ) = λ. Let
m > 0, and let δj be the number assigned to the edge dj , j = 1, . . . , m. Then
word(τ) = δ1 . . . δm. We can extend the notation word(τ) to an arbitrary
directed path τ in the graph G. We denote by Ξ(I) the set of all I-traces in
G. Let E(I) = {word(τ) : τ ∈ Ξ(I)}. We will say that the source I generates
the language E(I). It is well known that E(I) is a regular language.

The A-source I will be called everywhere defined over the alphabet Ek

if each node of G is the initial node of exactly k edges which are assigned
pairwise different numbers from Ek. The A-source I will be called reduced
if for each node of G there exists an I-trace which contains this node. It
is known [32] that for each regular language over the alphabet Ek there
exists an everywhere defined over the alphabet Ek A-source which generates
this language. Therefore for each nonempty regular language there exists
a reduced A-source which generates this language. Further we will assume
that a considered regular language is nonempty and it is given by a reduced
A-source which generates this language.

10.1.3 Types of Reduced A-Sources

Let I = (G, q0, Q) be a reduced A-source over the alphabet Ek. A directed
path in the graph G will be called a path of the source I. A path of the source
I will be called a cycle of the source I if there is at least one edge in this
path, and the first node of this path is equal to the last node of this path. A
cycle of the source I will be called elementary if nodes of this cycle, with the
exception of the last node, are pairwise different. Sometimes, cycles of the
source I will be considered as subgraphs of the graph G.

The source I will be called simple if each two different (as subgraphs)
elementary cycles of the source I do not have common nodes. Let I be a
simple source and τ be an I-trace. The number of different (as subgraphs)
elementary cycles of the source I, which have common nodes with τ , will
be denoted by cl(τ) and will be called the cyclic length of the path τ . The
value cl(I) = max{cl(τ) : τ ∈ Ξ(I)} will be called the cyclic length of the
source I.

Let I be a simple source, C be an elementary cycle of the source I, and
v be a node of the cycle C. Beginning with the node v, the cycle C gen-
erates an infinite periodic word over the alphabet Ek. This word will be
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denoted by W (I, C, v). We denote by r(I, C, v) the minimum period of the
word W (I, C, v). We denote by l(C) the number of nodes in the elementary
cycle C (the length of C).

The source I will be called dependent if there exist two different (as sub-
graphs) elementary cycles C1 and C2 of the source I, nodes v1 and v2 of the
cycles C1 and C2 respectively, and a path π of the source I from v1 to v2

which satisfy the following conditions: W (I, C1, v1) = W (I, C2, v2) and the
length of the path π is a number divisible by r(I, C1, v1). If the source I is
not dependent then it will be called independent.

The source I will be called strongly dependent if in I there exist pairwise
different (as subgraphs) elementary cycles C1, . . . , Cm, (m ≥ 1), and pair-
wise different (as subgraphs) elementary cycles B1, . . . , Bm, D1, . . . , Dm, ver-
tices v0, . . . , vm+1, u1, . . . , vm+1, w0, . . . , wm and paths τ0, . . . , τm, π0, . . . , πm,
γ1, . . . , γm which satisfy the following conditions:

a) v0 = w0 = q0, vm+1 ∈ Q, um+1 ∈ Q;
b) for i = 1, . . . , m, the node vi belongs to the cycle Ci, the node ui belongs

to the cycle Bi, and the node wi belongs to the cycle Di;
c) τi is a path from vi to vi+1, and πi is a path from wi to ui+1, i = 0, . . . , m;
d) γi is a path from ui to wi, i = 1, . . . , m;
e) W (I, Ci, vi) = W (I, Bi, ui) = W (I, Di, wi) for i = 1, . . . , m;
f) word(τi) = word(πi) for i = 0, . . . , m;
g) for i = 1, . . . , m, the length of the path γi is a number divisible by l(Ci).

One can show that if the source I is strongly dependent then the source I is
dependent.

10.1.4 Main Result

In the following theorem, the behavior of functions HL and PL is considered.

Theorem 10.2. Let L be a nonempty regular language and I be a reduced
A-source which generates the language L. Then

a) if I is an independent simple source and cl(I) ≤ 1 then there exists a
constant c1 ∈ ω \ {0} such that for any n ∈ ω \ {0} the following inequalities
hold:

PL(n) ≤ HL(n) ≤ c1 ;

b) if I is an independent simple source and cl(I) ≥ 2 then there exist
constants c1, c2, c3, c4, c5 ∈ ω \{0} such that for any n ∈ ω \{0} the following
inequalities hold:

log2 n

c1
− c2 ≤ HL(n) ≤ c3 log2 n + c4 and PL(n) ≤ c5 ;
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c) if I is a dependent simple source which is not strongly dependent then
there exist constants c1, c2, c3 ∈ ω \ {0} such that for any n ∈ ω \ {0} the
following inequalities hold:

n

c1
− c2 ≤ HL(n) ≤ n and PL(n) ≤ c3 ;

d) if I is a strongly dependent simple source or I is not a simple source
then there exist constants c1, c2 ∈ ω \ {0} such that for any n ∈ ω \ {0} the
following inequalities hold:

n

c1
− c2 ≤ PL(n) ≤ HL(n) ≤ n .

Proof of this theorem is too long and complicated to be considered in this
book. However, we can give some explanations regarding tools used in this
proof. There are Theorem 3.1 (generalized to the case of k-valued decision
tables), Theorems 3.6, 3.11, 3.14, 3.17 and Corollary 2.24.

Let us consider, for example, the bound HL(n) ≤ c3 log2 n+c4 for the case
when I is an independent simple source and cl(I) ≥ 2. One can show that in
this case there exist two constants c1, c2 ∈ ω\{0} such that for any n ∈ ω\{0}
the following inequalities hold: N(T (zL,n)) ≤ c1n

cl(I) and M(T (zL,n)) ≤ c2.
Using Theorem 3.17, we obtain

hL(n) = h(T (zL,n)) ≤ M(T (zL,n)) log2 N(T (zL,n))

= c2cl(I)(log2 c1 + log2 n) ≤ c3 log2 n + c4 ,

where c3 = c2cl(I) and c4 = c2cl(I)⌈log2 c1⌉+1. Thus HL(n) ≤ c3 log2 n+c4.

10.1.5 Examples

Further in figures for a source I = (G, q0, Q) the node q0 will be labeled with
+, and each node from Q will be labeled with ∗.

Example 10.3. Let I1 be the source depicted in Fig. 10.2 and L1 be the regular
language which is generated by I1. The source I1 is an independent simple
A-source with cl(I1) = 1. One can show that PL1(n) = HL1(n) = 0 for any
n ∈ ω \ {0}.

Example 10.4. Let I2 be the source depicted in Fig. 10.3 and L2 be the regular
language which is generated by I2. The source I2 is an independent simple
A-source with cl(I2) = 2. One can show that HL2(n) = ⌈log2 n⌉ for any n ∈
ω\{0}, PL2(n) = n−1 for n = 1, 2 and PL2(n) = 2 for any n ∈ ω\{0}, n ≥ 3.
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Example 10.5. Let I3 be the source depicted in Fig. 10.4 and L3 be the regular
language which is generated by I3. The source I3 is a dependent simple A-
source which is not strongly dependent. One can show that HL3(n) = n − 1
for any n ∈ ω \ {0}, PL3(1) = 0, and PL3(n) = 1 for any n ∈ ω \ {0, 1}.

✉ ✉✲❄ ❄✫✪
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1

Fig. 10.4

Example 10.6. Let I4 be the source depicted in Fig. 10.5 and L4 be the regular
language which is generated by I4. The source I4 is a strongly dependent
simple A-source. One can show that HL4(n) = PL4(n) = n for any n ∈ ω\{0}.

Example 10.7. Let I5 be the source depicted in Fig. 10.6 and L5 be the regular
language which is generated by I5. The source I5 is an A-source which is not
simple. One can show that HL5(n) = PL5(n) = n for any n ∈ ω \ {0}.
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10.2 Diagnosis of Constant Faults in Circuits

The problem of constant fault diagnosis in combinatorial circuits is studied in
this section. Faults under consideration are represented in the form of Boolean
constants on some inputs of the circuit gates. The diagnosis problem consists
in the recognition of the function realized by the circuit with a fixed tuple
of constant faults from given set of tuples. For this problem solving we use
decision trees. Each attribute in a decision tree consists in observation of
output of the circuit at the inputs of which a binary tuple is given.

As for the problem of regular language word recognition, proofs are too
complicated to be considered here. The most part of lower bounds is based on
Theorem 3.6. Upper bounds are based on specific algorithms of diagnosis. We
explain the ideas of these algorithms. The results with proofs can be found
in [48, 53].

10.2.1 Basic Notions

The notions of combinatorial circuit, set of tuples of constant faults and
diagnosis problem are defined in this subsection.
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Combinatorial Circuits

A basis is an arbitrary nonempty finite set of Boolean functions. Let B be a
basis.

A combinatorial circuit in the basis B (a circuit in the basis B) is a labeled
finite directed acyclic graph with multiple edges which has nodes of the three
types: inputs, gates and outputs.

Nodes of the input type have no entering edges, each input is labeled with a
variable, and distinct inputs are labeled with distinct variables. Every circuit
has at least one input.

Each node of the gate type is labeled with a function from the set B. Let
v be a gate and let a function g depending on t variables be attached to it.
If t = 0 (this is the case when g is one of the constants 0 or 1) then the
node v has no entering edges. If t > 0 then the node v has exactly t entering
edges which are labeled with numbers 1, . . . , t respectively. Every circuit has
at least one gate.

Each node of the output type has exactly one entering edge which issues
from a gate. Let v be an output. Nothing is attached to v, and v has no
issuing edges. We will consider only circuits which have exactly one output.

Let S be a circuit in the basis B which has n inputs labeled with variables
x1, . . . , xn. Let us correspond to each node v in the circuit S a Boolean
function fv depending on variables x1, . . . , xn. If v is an input of S labeled
with the variable xi then fv = xi. If v is a gate labeled with a constant
c ∈ {0, 1} then fv = c. Let v be a gate labeled with a function g depending
on t > 0 variables. For i = 1, . . . , t, let the edge di, labeled with the number
i, issue from a node vi and enter the node v. Then fv = g(fv1 , . . . , fvt

). If
v is an output of the circuit S and an edge, issuing from a node u, enters
the node v, then fv = fu. The function corresponding to the output of the
circuit S will be denoted by fS . We will say that the circuit S realizes the
function fS .

Denote by #(S) the number of gates in the circuit S. The value #(S)
characterizes the complexity of the circuit S.

Denote by Circ(B) the set of circuits in the basis B and by F(B)—the set
{fS : S ∈ Circ(B)} of functions realized by circuits in the basis B.

Set of Tuples of Constant Faults on Inputs of Gates

Let S be a circuit in basis B. Edges entering gates of the circuit S will be
called inputs of gates. Let the circuit S have m gate inputs. The circuit S
will be called degenerate if m = 0 and nondegenerate if m > 0. Let S be
a nondegenerate circuit. Later we will assume that the gate inputs in the
circuit S are enumerated by numbers from 1 to m. Thus, each edge entering
a gate has a sequential number in the circuit besides the number attached to
it and corresponding to the gate.
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We will consider the faults in the circuit S which consist in appearance of
Boolean constants on gate inputs. Each fault of such kind is defined by a tuple
of constant faults on inputs of gates of the circuit S which is an arbitrary
m-tuple of the kind w̄ = (w1, . . . , wm) ∈ {0, 1, 2}m. If wi = 2 then the i-th
gate input in the circuit S operates properly. If wi �= 2 then the i-th gate
input in the circuit S is faulty and realizes the constant wi.

Define a circuit S(w̄) in the basis B ∪ {0, 1} which will be interpreted as
the result of action of the tuple of faults w̄ on the circuit S. Let us overlook
all gate inputs in the circuit S. Let i ∈ {1, . . . , m}. If wi = 2 then the i-th
gate input will be left without changes. Let wi �= 2 and the i-th gate input
is the edge d issuing from the node v1 and entering the node v2. Add to the
circuit S new gate v(wi) which is labeled with the constant wi. Instead of
the node v1 connect the edge d to the node v(wi).

A set of tuples of constant faults on inputs of gates of the circuit S is
a subset W of the set {0, 1, 2}m containing the tuple (2, . . . , 2). Denote
Circ(S, W ) = {S(w̄) : w̄ ∈ W}. Note that S((2, . . . , 2)) = S.

Problem of Diagnosis

Let S be a nondegenerate circuit in the basis B with n inputs and m gate
inputs, and let W be a set of tuples of constant faults on gate inputs of the
circuit S. The diagnosis problem for the circuit S relative to the faults from
W : for a given circuit S′ ∈ Circ(S, W ) it is required to recognize the function
realized by the circuit S′. To solve this problem we will use decision trees in
which the computation of the value of each attribute consists in observation
of output of the circuit S′ at the inputs of which a tuple from the set {0, 1}n

is given.
Define the diagnosis problem for the circuit S relative to the faults from

the set W as a problem over corresponding information system. With each
δ̄ ∈ {0, 1}n we associate the function δ̄ : Circ(S, W ) → {0, 1} such that
δ̄(S′) = fS′(δ̄) for any S′ ∈ Circ(S, W ). Let us consider an information system
U(S, W ) = (Circ(S, W ), {0, 1}, {0, 1}n) and a problem zS,W = (ν, δ̄1, . . . , δ̄2n)
over U(S, W ) where {δ̄1, . . . , δ̄2n} = {0, 1}n and ν(σ̄1) �= ν(σ̄2) for any
σ̄1, σ̄2 ∈ {0, 1}2n

such that σ̄1 �= σ̄2. The problem zS,W is a formalization
of the notion of the diagnosis problem for the circuit S relative to the faults
from the set W .

The mapping ν from zS,W enumerates all Boolean functions of n variables.
The solution of the problem zS,W for a circuit S′ ∈ Circ(S, W ) is the number
of function fS′ realizing by the circuit S′. In some cases, it will be convenient
for us instead of the number of the function fS′ use a formula which realizes
a function equal to fS′ .

Later, we will often consider the set {0, 1, 2}m of all possible tuples
of constant faults on inputs of gates of the circuit S. Denote U(S) =
U(S, {0, 1, 2}m), zS = zS,{0,1,2}m and h(S) = hg

U(S)(zS). Evidently,
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hg
U(S)(zS) = hl

U(S)(zS). It is clear that h(S) is the minimum depth of a

decision tree over U(S) solving the diagnostic problem for the circuit S rel-
ative to the faults from the set {0, 1, 2}m. If S is a degenerate circuit then
h(S) = 0.

10.2.2 Complexity of Decision Trees for Diagnosis of

Faults

In this subsection, the complexity of decision trees for diagnosis of arbitrary
and specially constructed circuits is considered.

Arbitrary Circuits

The first direction of investigation is the study of the complexity of fault
diagnosis algorithms (decision trees) for arbitrary circuits in the basis B. Let

us consider for this purpose the function h
(1)
B which characterizes the worst-

case dependency of h(S) on #(S) on the set Circ(B) of circuits. The function

h
(1)
B is defined in the following way:

h
(1)
B (n) = max{h(S) : S ∈ Circ(B), #(S) ≤ n} .

The basis B will be called primitive if at least one of the following conditions
holds:

a) every function from B is either a disjunction x1∨ . . .∨xn or a constant;

b) every function from B is either a conjunction x1∧ . . .∧xn or a constant;

c) every function from B is either a linear function x1+. . .+xn+c (mod 2),
c ∈ {0, 1}, or a constant.

Theorem 10.8. For any basis B the following statements hold:

a) if B is a primitive basis then h
(1)
B (n) = O(n);

b) if B is a non-primitive basis then log2 h
(1)
B (n) = Ω(n1/2).

The first part of the theorem statement is the most interesting for us. We

now describe how it is possible to obtain the bound h
(1)
B (n) = O(n) in the

case when B contains only linear functions and constants. Let n ∈ ω\{0} and
let S be a circuit from Circ(B) with #(S) ≤ n. Assume that S is a nonde-
generate circuit, and S has exactly r inputs labeled with variables x1, . . . , xr

respectively. Denote by m the number of gate inputs in the circuit S. Let
exactly t inputs of the circuit S be linked by edges to gates, and let these
inputs be labeled with variables xi1 , . . . , xit

(possibly, t = 0). One can show
that any circuit S′ from Circ(S, {0, 1, 2}m) realizes a function of the kind
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(d1 ∧ x1) + . . . + (dr ∧ xr) + d0(mod 2), where dj ∈ {0, 1}, 0 ≤ j ≤ r. It is
clear that dj = 0 for any j ∈ {1, . . . , r} \ {i1, . . . , it}.

Let us describe the work of a decision tree solving the problem zS which
is the diagnosis problem for the circuit S relative to the faults from the set
{0, 1, 2}m. Let S′ ∈ Circ(S, {0, 1, 2}m). Give on the inputs of the circuit S′

the tuple consisting of zeros. We obtain at the output of the circuit S′ the
value d0. For each j ∈ {1, . . . , t}, give some tuple on inputs of the circuit S′.
Let j ∈ {1, . . . , t}. Give the unity at the input of the circuit S′ labeled with
the variable xij

, and give zeros at the other inputs of the circuit. We obtain
value dij

+ d0(mod 2) at the output of the circuit. Thus, after the giving at
the inputs of the circuit S′ of the considered t + 1 tuples, the coefficients
d1, . . . , dr, d0 of the formula (d1 ∧ x1) + . . . + (dr ∧ xr) + d0(mod 2) will be
recognized. Hence the considered decision tree solves the problem zS , and the
depth of this decision tree is at most t + 1. Therefore h(S) ≤ t + 1. Denote
by p the maximum number of variables in functions from B. It is clear that
t ≤ pn. Set c1 = p + 1. Then h(S) ≤ c1n. If S is a degenerate circuit then
h(S) = 0 < c1n. Taking into account that S is an arbitrary circuit in the

basis B with #(S) ≤ n we obtain h
(1)
B (n) ≤ c1n. Therefore h

(1)
B (n) = O(n).

The cases when B contains only conjunctions and constants, or only dis-
junctions and constants can be considered in the same way.

Specially Constructed Circuits

As opposed to the first one, the second direction of research explores com-
plexity of diagnosis algorithms (decision trees) for circuits which are not
arbitrary but chosen as the best from the point of view of solution of the
diagnosis problem for the circuits, realizing the Boolean functions given as
formulas over B. Let Φ(B) be the set of formulas over the basis B. For a
formula ϕ ∈ Φ(B), we will denote by #(ϕ) the number of functional symbols
in ϕ. Let ϕ realize a function which does not belong to the set {0, 1}. Set
h(ϕ) = min h(S), where the minimum is taken over all possible combinatorial
circuits S (not necessarily in the basis B) which realize the same function as
the formula ϕ. If ϕ realizes a function from the set {0, 1} then h(ϕ) = 0. We

will study the behavior of a function h
(2)
B which characterizes the worst-case

dependency of h(ϕ) on #(ϕ) on the set of formulas over B and is defined as
follows:

h
(2)
B (n) = max{h(ϕ) : ϕ ∈ Φ(B), #(ϕ) ≤ n} .

Theorem 10.9. For an arbitrary basis B the following statements hold:

a) if B is a primitive basis then h
(2)
B (n) = O(n);

b) if B is a non-primitive basis then the equality log2 h
(2)
B (n) = Ω(nc) holds

for certain positive constant c which depends only on B.
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10.2.3 Complexity of Construction of Decision Trees

for Diagnosis

The third direction of research is to study the complexity of algorithms for
construction of decision trees for diagnosis problem.

A basis B will be called degenerate if B ⊆ {0, 1}, and nondegenerate
otherwise. Let B be a nondegenerate basis. Define an algorithmic problem
Con(B).

The problem Con(B): for a given circuit S from Circ(B) and a given set
W of tuples of constant faults on inputs of gates of the circuit S it is required
to construct a decision tree which solves the diagnosis problem for the circuit
S relative to the faults from W .

Note that there exists a decision tree which solves the diagnosis problem
for the circuit S relative to the faults from W and the number of nodes in
which is at most 2 |W | − 1.

Theorem 10.10. Let B be a nondegenerate basis. Then the following state-
ments hold:

a) if B is a primitive basis then there exists an algorithm which solves the
problem Con(B) with polynomial time complexity;

b) if B is a non-primitive basis then the problem Con(B) is NP-hard.

10.2.4 Diagnosis of Iteration-Free Circuits

From the point of view of the solution of the diagnosis problem for arbitrary
tuples of constant faults on inputs of gates of arbitrary circuits, only prim-
itive bases seem to be admissible. The extension of the set of such bases is
possible by the substantial restriction on the class of the circuits under con-
sideration. The fourth direction of research is the study of the complexity of
fault diagnosis algorithms (decision trees) for iteration-free circuits.

Let B be a basis. A circuit in the basis B is called iteration-free if each node
(input or gate) of it has at most one issuing edge. Let us denote by Circ1(B)
the set of iteration-free circuits in the basis B with only one output. Let us

consider the function h
(3)
B which characterizes the worst-case dependency of

h(S) on #(S) for circuits from Circ1(B) and is defined in the following way:

h
(3)
B (n) = max{h(S) : S ∈ Circ1(B), #(S) ≤ n} .

Let us call a Boolean function f(x1, . . . , xn) quasimonotone if there exist
numbers σ1, . . . , σn ∈ {0, 1} and a monotone Boolean function g(x1, . . . , xn)
such that f(x1, . . . , xn) = g(xσ1

1 , . . . , xσn
n ) where xσ = x if σ = 1, and xσ =

¬x if σ = 0.
The basis B will be called quasiprimitive if at least one of the following

conditions is true:
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a) all functions from B are linear functions or constants;
b) all functions from B are quasimonotone functions.

The class of the quasiprimitive bases is rather large: for any basis B1 there
exists a quasiprimitive basis B2 such that F(B1) = F(B2), i.e., the set of
Boolean functions realized by circuits in the basis B1 coincides with the set
of Boolean functions realized by circuits in the basis B2.

Theorem 10.11. Let B be a basis. Then the following statements hold:

a) if B is a quasiprimitive basis then h
(3)
B (n) = O(n);

b) if B is not a quasiprimitive basis then log2 h
(3)
B (n) = Ω(n).

The first part of the theorem statement is the most interesting for us. The
proof of this part is based on an efficient algorithm for diagnosis of iteration-
free circuits in a quasiprimitive basis. Unfortunately, the description of this
algorithm and the proof of its correctness are too long. However, we can
illustrate the idea of algorithm. To this end, we consider another more simple
problem of diagnosis [66].
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❙
❙
❙
❙
❙
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❡ ❡
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❙
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❡ ❡
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x3 x4
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✡
✡

❙
❙
❙

❄❡
Fig. 10.7

Let we have an iteration-free circuit S with one output in the basis
B = {x ∨ y, x ∧ y}. We know the “topology” of S (corresponding directed
acyclic graph) and variables attached to the inputs of S, but we do not know
functions attached to gates (see, for example, a circuit S0 depicted in Fig.
10.7). We should recognize functions attached to gates. To this end, we can
give binary tuples at the inputs of the circuit and observe the output of the
circuit. Note that if we give zeros on inputs of S, then at the output of S we
will have 0. If we give units at the inputs of S, then at the output of S we
will have 1.
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Let g0 be the gate of S to which the output of S is connected. Then there
are two edges entering the gate g0. These edges can be considered as outputs
of two subcircuits of S—circuits S1 and S2. Let us give zeros at the inputs
of S1 and units at the inputs of S2. If at the output of S we have 0, then the
function ∧ is attached to the gate g0. If at the output of S we have 1, then
the function ∨ is attached to the gate g0.

Let the function ∧ be attached to the gate g0. We give units at the inputs
of S1. After that we can diagnose the subcircuit S2: at the output of S we
will have the same value as at the output of S2. The same situation is with
the diagnosis of subcircuit S1.

Let the function ∨ be attached to the gate g0. We give zeros at the inputs
of S1. After that we can diagnose the subcircuit S2: at the output of S we
will have the same value as at the output of S2. The same situation is with
the diagnosis of subcircuit S1.

We see now that for the recognition of function attached to one gate we
need to give at the inputs of S one binary tuple and observe the output of
S. So we can construct a decision tree for solving of the considered problem
which depth is equal to #(S)—the number of gates in S.
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∧

Fig. 10.8

Example 10.12. We now consider the circuit S0 depicted in Fig. 10.7. Let
us give at the inputs x1, x2, x3, x4 of S0 the tuple (0, 0, 1, 1), and let at the
output we have 0. Then the function ∧ is attached to the bottom gate of S0.
We now give the tuple (0, 1, 1, 1) at the inputs of S0, and let at the output
we have 1. Then the the function ∨ is attached to the top left gate of S0. Let
us give the tuple (1, 1, 0, 1) at the inputs of S0, and let at the output we have
0. Then the function ∧ is attached to the top right gate of S0. As a result we
obtain the circuit depicted in Fig. 10.8.
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10.2.5 Approach to Circuit Construction and

Diagnosis

The fifth direction of research deals with the approach to the circuit construc-
tion and to the effective diagnosis of faults based on the results obtained for
the iteration-free circuits. Two Boolean functions will be called equal if one of
them can be obtained from the other by operations of insertion and deletion
of unessential variables.

Using results from [91, 85] one can show that for each basis B1 there exists
a quasiprimitive basis B2 with the following properties:

a) F(B1) = F(B2), i.e., the set of functions realized by circuits in the basis
B2 coincides with the set of functions realized by circuits in the basis B1;

b) there exists a polynomial p such that for any formula ϕ1 over B1 there
exists a formula ϕ2 over B2 which realizes the function equal to that realized
by ϕ1, and such that #(ϕ2) ≤ p(#(ϕ1)).

The considered approach to the circuit construction and fault diagnosis con-
sists in the following. Let ϕ1 be a formula over B1 realizing certain function f ,
f /∈ {0, 1}, and let us construct the formula ϕ2 over B2 realizing the function
equal to f and satisfying the inequality #(ϕ2) ≤ p(#(ϕ1)). Next a circuit S in
the basis B2 is constructed (according to the formula ϕ2) realizing the func-
tion f , satisfying the equality #(S) = #(ϕ2) and the condition that from each
gate of the circuit S at most one edge issues. In addition to the usual work
mode of the circuit S there exists the diagnostic mode in which the inputs of
the circuit S are “split” so that it becomes the iteration-free circuit S̃. From
Theorem 10.11 it follows that the inequalities h(S̃) ≤ c#(S) ≤ cp(#(ϕ1)),
where c is a constant depending only on the basis B2, hold for the circuit S̃.

10.3 Conclusions

The chapter is devoted to the consideration of applications of theory of deci-
sion trees and decision rules to the problem of regular language word recog-
nition and to the problem of diagnosis of constant faults in combinatorial
circuits.

Proofs of the considered results are too complicated to be reproduced in
this book. It should be noted that the most part of proofs (almost all can
be found in [53]) is based on the bounds on complexity of decision trees and
decision rule systems considered in Chap. 3.

Similar results for languages generated by some types of linear grammars
and context-free grammars were obtained in [18, 28, 29].

We should mention three series of publications which are most similar to
the results for diagnosis problem considered in this chapter. From the results

obtained in [21, 27] the bound h
(3)
B (n) = O(n) can be derived immediately for
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arbitrary basis B with the following property: each function from B is realized
by some iteration-free circuit in the basis {x∧y, x∨y,¬x}. In [74, 75, 76, 77],
for circuits in an arbitrary finite basis and faults of different types (not only
the constant) the dependence is investigated of the minimum depth of a
decision tree, which diagnoses circuit faults, on total number of inputs and
gates in the circuit. In [56, 64, 65, 78], effective methods for diagnosis of faults
of different types are considered.



Final Remarks

This book is oriented to the use of decision trees and decision rule systems
not only as predictors but also as algorithms and ways for knowledge repre-
sentation.

The main aims of the book are (i) to describe a set of tools that allow us
to work with exact and approximate decision trees, decision rule systems and
reducts (tests) for usual decision tables and decision tables with many-valued
decisions, and (ii) to give a number of examples of the use of these tools
in such areas of applications as supervised learning, discrete optimization,
analysis of acyclic programs, pattern recognition and fault diagnosis.

Usually, we have no possibility to give proofs for statements connected
with applications—proofs are too long and complicated. However, when it
is possible, we add comments connected with the use of tools from the first
part of the book. In contrast to applications, almost all statements relating
to tools are given with simple and short proofs.

In the book, we concentrate on the consideration of time complexity in
the worst case of decision trees (depth) and decision rule systems (maximum
length of a rule in the system). In the last case, we assume that we can work
with rules in parallel. The problems of minimization of average time complex-
ity (average depth) or space complexity (number of nodes) of decision trees
are essentially more complicated. However, we can generalize some results
considered in the book to these cases (in particular, dynamic programming
approach to optimization of decision trees). The problems of optimization
of average time complexity of decision rule systems (average length of rules)
and space complexity (number of rules or total length of rules) are even more
complicated.

We consider not only decision tables and finite information systems but
also study infinite information systems in the frameworks of both local and
global approaches. The global approach is essentially more complicated than
the local one: we need to choose appropriate attributes from an infinite set of
attributes. However, as a result, we often can find decision trees and decision
rule systems with relatively small time complexity in the worst case.
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(T, m)-proof-tree, 41
(m, k, t)-problem, 148
I-trace, 157
α-complete system of decision rules, 88
α-cover, 100
α-decision rule, 88
α-decision tree, 88
α-reduct, 88
α-test, 88
n-city traveling salesman problem, 148
n-dimensional quadratic assignment

problem, 149
n-stone problem, 150

A-source, 156
cycle, 157

elementary, 157
cyclic length

of path, 157
of source, 157

dependent, 158
everywhere defined over alphabet,

157
independent, 158
path, 157
reduced, 157
simple, 157
strongly dependent, 158

attribute, 5, 127
linear, 145

basis, 162
degenerate, 166
nondegenerate, 166
primitive, 164

quasiprimitive, 166
Boolean function

conjunction, 164
elementary, 66

disjunction, 164
elementary, 66

linear, 164
monotone, 25

lower unit, 25
upper zero, 25

quasimonotone, 166
Boolean reasoning, 66

canonical form
for table and row, 30
of table, 26

characteristic function
for table, 26
for table and row, 29

classifiers based
on decision rule systems, 118
on decision trees, 114

clone, 134
combinatorial circuit, 162

constant faults, 163
degenerate, 162
gate, 162
input, 162
iteration-free, 166
nondegenerate, 162
output, 162

condition of
decomposition, 138
reduction, 130
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decision rule
for table and row, 24
irreducible, 30
length, 24, 128
optimal, 62
over information system, 128
over problem, 7
over table, 24
realizable, 7, 24, 118
true, 7, 24, 73

decision rule system
complete for problem, 7, 129
complete for table, 24, 73
depth, 129
over information system, 128
over problem, 7
over table, 24

decision table, 23
associated with problem, 7, 129
common decision, 73
degenerate, 39, 73
diagnostic, 46, 78
generalized decision, 69
most common decision, 87
system of representatives, 76
with many-valued decisions, 73
with one-valued decision, 23

decision tables
almost equal, 27
consistent, 32
equal, 32
inconsistent, 32

decision tree
complete path, 128
depth, 7, 24
for problem, 6
for table, 24, 73
irreducible, 33
over information system, 128
over table, 24
solving problem, 7
working node, 24

dynamic programming algorithm
for α-decision rules, 107
for α-decision trees, 106
for decision rules, 62
for decision trees, 60

equivalent programs, 152

game, 8, 24, 73
modified, 41

strategy of the first player, 41
strategies of the second player, 8

greedy algorithm
for α-covers, 100
for α-decision rule systems, 102
for α-decision trees, 103
for α-decsision rules, 101
for covers, 48
for decision rule systems, 51
for decision rules, 50
for decision trees, 55
for test, 50

halving algorithm, 46

I-dimension, 137
incomparable tuples, 25
independence dimension, 137
independent set

of attributes, 137
of tuples, 25

information system, 127
binary, 132
binary linear in the plane, 134
finite, 127

global critical points, 141
local critical points, 135

infinite, 127
linear, 145
quasilinear, 144
restricted, 132
two-valued, 140

lazy learning algorithms
k -nearest neighbor, 120
based on decision rules, 123
based on reducts, 124
lazy decision rules, 121
lazy decision trees, 120

numerical ring with unity, 144

problem, 5
dimension, 128
over information system, 127
separating set, 148
stable, 141

problem of
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decision tree construction Con(B),
166

diagnosis for circuit, 163

minimization of decision rule length,
47

minimization of decision tree depth,
55

minimization of test cardinality, 47

optimization of decision rule system,
47

partition of n numbers, 152

recognition of words, 156

supervised learning, 113

problem on 0-1-knapsack with n

objects, 150

program, 151

acyclic, 151

complete path, 151

depth, 152

deterministic, 151

nondeterministic, 151

variable

input, 151

working, 151

proof-tree for bound, 41, 94

pruning

of decision rule system, 118
of decision tree, 114

reduct, 7, 25, 73

set cover problem, 48
cover, 48

set of attributes
irredundant, 135
redundant, 135

Shannon functions
global, 140, 145
local, 130

subrule, 119
inaccuracy, 119

subtable, 38
boundary, 78
separable, 60

system of equations, 135
cancellable, 135
uncancellable, 135

teaching dimension, 46
extended, 46

test, 7, 24, 73

vertex cover problem, 49
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