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Preface

This book covers the recent applications of computational intelligence tech-
niques for modelling, control and automation. The application of these techniques
has been found useful in problems when the process is either difficult to model or
difficult to solve by conventional methods. There are numerous practical applica-
tions of computational intelligence techniques in modelling, control, automation,
prediction, image processing and data mining.

Research and development work in the area of computational intelligence is
growing rapidly due to the many successful applications of these new techniques
in very diverse problems. “Computational Intelligence” covers many fields such as
neural networks, (adaptive) fuzzy logic, evolutionary computing, and their hybrids
and derivatives. Many industries have benefited from adopting this technology.
The increased number of patents and diverse range of products developed using
computational intelligence methods is evidence of this fact.

These techniques have attracted increasing attention in recent years for solv-
ing many complex problems. They are inspired by nature, biology, statistical tech-
niques, physics and neuroscience. They have been successfully applied in solving
many complex problems where traditional problem-solving methods have failed.
These modern techniques are taking firm steps as robust problem-solving mecha-
nisms.

This volume aims to be a repository for the current and cutting-edge applica-
tions of computational intelligent techniques in modelling control and automation,
an area with great demand in the market nowadays.

With roots in modelling, automation, identification and control, computa-
tional intelligence techniques provide an interdisciplinary area that is concerned
with learning and adaptation of solutions for complex problems. This instantiated
an enormous amount of research, searching for learning methods that are capable
of controlling novel and non-trivial systems in different industries.

This book consists of open-solicited and invited papers written by leading
researchers in the field of computational intelligence. All full papers have been
peer review by at least two recognised reviewers. Our goal is to provide a book
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viii

that covers the foundation as well as the practical side of the computational intel-
ligence.

The book consists of 17 chapters in the fields of self-learning and adaptive
control, robotics and manufacturing, machine learning, evolutionary optimisation,
information retrieval, fuzzy logic, Bayesian systems, neural networks and hybrid
evolutionary computing.

This book will be highly useful to postgraduate students, researchers, doc-
toral students, instructors, and partitioners of computational intelligence techniques,
industrial engineers, computer scientists and mathematicians with interest in mod-
elling and control.

We would like to thank the senior and assistant editors of Idea Group Pub-
lishing for their professional and technical assistance during the preparation of this
book. We are grateful to the unknown reviewers for the book proposal for their
review and approval of the book proposal. Our special thanks goes to Michele
Rossi and Mehdi Khosrowpour for their assistance and their valuable advise in
finalizing this book.

We would like to acknowledge the assistance of all involved in the collation
and review process of the book, without whose support and encouragement this
book could not have been successfully completed.

We wish to thank all the authors for their insights and excellent contributions
to this book. We would like also to thank our families for their understanding and
support throughout this book project.

M. Mohammadian, R. Sarker and X. Yao
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Designing Neural Network Ensembles 1

Chapterl

Designing Neural Network
Ensembles by Minimising
Mutual Information

YongLiu
The University of Aizu, Japan

XinYao
The University of Birmingham, UK

TetsuyaHiguchi
National Institute of Advanced Industrial Science and Technology, Japan

ABSTRACT

This chapter describes negative correlation learning for designing neural
network ensembles. Negative correlation learning has been firstly analysed
in terms of minimising mutual information on a regression task. By minimising
the mutual information between variables extracted by two neural networks,
they are forced to convey different information about some features of their
input. Based on the decision boundaries and correct response sets, negative
correlation learning has been further studied on two pattern classification
problems. The purpose of examining the decision boundaries and the correct
response sets is not only to illustrate the learning behavior of negative
correlation learning, but also to cast light on how to design more effective
neural network ensembles. The experimental results showed the decision
boundary of the trained neural network ensemble by negative correlation
learning is almost as good as the optimum decision boundary.

Copyright © 2003, Idea Group Inc.
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2 Liu, Yao and Higuchi

INTRODUCTION

Insingle neural network methods, the neural network learning problemis often
formulated as an optimisation problem, i.e., minimising certain criteria, e.g.,
minimum error, fastest learning, lowest complexity, etc., about architectures.
Learningalgorithms, suchasbackpropagation (BP) (Rumelhart, Hinton & Williams,
1986), are used as optimisation algorithms to minimise an error function. Despite
the different error functions used, these learning algorithms reduce a learning
problem to the same kind of optimisation problem.

Learningis different from optimisation because we want the learned systemto
havebest generalisation, whichis different from minimising an error function. The
neural network with the minimum error onthe training set does notnecessarily have
the best generalisationunless thereis an equivalence between generalisationand the
error function. Unfortunately, measuring generalisation exactly and accurately is
almostimpossible in practice (Wolpert, 1990), although there are many theories
and criteria on generalisation, such as the minimum description length (Rissanen,
1978), Akaike’s information criteria (Akaike, 1974) and minimum message length
(Wallace & Patrick, 1991). Inpractice, these criteria are often used to define better
error functions inthe hope thatminimising the functions will maximise generalisation.
Whilebetter error functions often lead to better generalisation of learned systems,
there is no guarantee. Regardless of the error functions used, single network
methods are stillused as optimisation algorithms. They just optimise different error
functions. The nature ofthe problem is unchanged.

While there is little we can do in single neural network methods, there are
opportunities in neural network ensemble methods. Neural network ensembles
adoptthe divide-and-conquer strategy. Instead of using a single network to solve
atask, aneural network ensemble combines a set of neural networks which learn
to subdivide the task and thereby solve it more efficiently and elegantly. A neural
network ensemble offers several advantages over amonolithic neural network.
First, itcan perform more complex tasks than any ofits components (i.e., individual
neural networks in the ensemble). Secondly, it can make an overall system easier
tounderstand and modify. Finally, itis morerobust than amonolithicneural network
and can show graceful performance degradation in situations where only a subset
ofneural networks in the ensemble are performing correctly. Given the advantages
ofneural network ensembles and the complexity of the problems thatare beginning
tobe investigated, itis clear that the neural network ensemble method will be an
importantand pervasive problem-solving technique.

The idea of designing an ensemble learning system consisting of many
subsystems can be traced back to as early as 1958 (Selfridge, 1958; Nilsson,
1965). Since the early 1990s, algorithms based on similar ideas have been
developed in many different butrelated forms, such as neural network ensembles
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Designing Neural Network Ensembles 3

(Hansen & Salamon, 1990; Sharkey, 1996), mixtures of experts (Jacobs, Jordan,
Nowlan & Hinton, 1991; Jacobs & Jordan, 1991; Jacobs, Jordan & Barto, 1991;
Jacobs, 1997), various boosting and bagging methods (Drucker, Cortes, Jackel,
LeCun & Vapnik, 1994; Schapire, 1990; Drucker, Schapire & Simard, 1993)and
many others. There are a number of methods of designing neural network
ensembles. To summarise, there are three ways of designing neural network
ensemblesinthesemethods: independenttraining, sequential trainingand simultaneous
training.

A number of methods have been proposed to train a set of neural networks
independently by varying initial random weights, the architectures, the learning
algorithm used and the data (Hansen etal., 1990; Sarkar, 1996). Experimental
results have shown that networks obtained from a given network architecture for
differentinitialrandom weights often correctly recognize different subsets ofa given
test set (Hansen etal., 1990; Sarkar, 1996). As argued in Hansen et al. (1990),
because each network makes generalisation errors on different subsets of the input
space, the collective decision produced by the ensemble is less likely to be in error
than the decision made by any of the individual networks.

Mostindependenttrainingmethods emphasised independenceamong individual
neural networks inan ensemble. One ofthe disadvantages of such amethod is the
loss of interaction among the individual networks during learning. Thereis no
consideration of whether what one individual learns has already been learned by
otherindividuals. The errors of independently trained neural networks may still be
positively correlated. Ithas been found that the combining results are weakened if
the errors of individual networks are positively correlated (Clemen & Winkler,
1985). In orderto decorrelate the individual neural networks, sequential training
methods train aset of networks in a particular order (Drucker etal., 1993; Opitz
& Shavlik, 1996; Rosen, 1996). Druckeretal. (1993) suggested training the neural
networks using the boosting algorithm. The boosting algorithm was originally
proposed by Schapire (1990). Schapire proved thatitis theoretically possible to
converta weak learning algorithm that performs only slightly better thanrandom
guessing into one that achieves arbitrary accuracy. The proof presented by
Schapire (1990) is constructive. The construction uses filtering to modify the
distribution of examples in such a way as to force the weak learning algorithm to
focus on the harder-to-learn parts of the distribution.

Most of the independent training methods and sequential training methods
follow atwo-stage design process: first generating individual networks, and then
combining them. The possible interactionsamong the individual networks cannotbe
exploited until the integration stage. There isno feedback from the integration stage
tothe individual network design stage. Itis possiblethatsome ofthe independently
designed networks do not make much contribution to the integrated system. In
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4 Liu, Yao and Higuchi

ordertousethe feedback from the integration, simultaneous training methods train
a set of networks together. Negative correlation learning (Liu & Yao, 1998a,
1998b, 1999) and the mixtures-of-experts (ME) architectures (Jacobsetal., 1991;
Jordan & Jacobs, 1994) are two examples of simultaneous training methods. The
ideaofnegative correlation learning isto encourage differentindividual networks in
the ensemble to learn different parts or aspects of the training data, so that the
ensemble can better learn the entire training data. In negative correlation learning,
the individual networks are trained simultaneously rather than independently or
sequentially. This provides an opportunity for the individual networks to interact
with each other and to specialise.

Inthis chapter, negative correlation learning has been firstly analysed in terms
of minimising mutual information onaregression task. The similarity measurement
between two neural networks in an ensemble can be defined by the explicit mutual
information of output variables extracted by two neural networks. The mutual
informationbetween two variables, output 7 of network ;and outputF, ofnetwork

J,isgivenby

I(F,; F) = h(F) + h(F) = h(F,, F) (1)

where h(F) isthe entropy of ', h(F ) isthe entropy ofFj, andh(F, F ) isthejoint
differential entropy of F, andFj. The equation shows thatjointdifferential entropy
canonly have high entropy ifthe mutual information between two variables is low,
while each variablehashighindividual entropy. Thatis, thelowermutual information
twovariableshave, themore differentthey are. By minimising the mutual information
between variables extracted by two neural networks, they are forced to convey
different information about some features of their input. The idea of minimising
mutual informationis to encourage differentindividual networks to learn different
parts oraspects of the training data so that the ensemble can learn the whole training
databetter.

Based on the decision boundaries and correct response sets, negative
correlation learning has been further studied on two pattern classification problems.
The purpose of examining the decision boundaries and the correctresponse sets is
notonlytoillustrates the learning behavior of negative correlation learning, butalso
to cast light on how to design more effective neural network ensembles. The
experimental results showed the decision boundary of the trained neural network
ensemblebynegative correlation learning is almostas good as the optimum decision
boundary.

Therestofthis chapteris organised as follows: Next, the chapter explores the
connections between the mutual information and the correlation coefficient, and
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Designing Neural Network Ensembles 5

explains how negative correlation learning can be used to minimise mutual informa-
tion; then the chapter analyses negative correlation learning viathe metrics of mutual
information onaregression task; the chapter then discusses the decision boundaries
constructed by negative correlation learning on a pattern classification problem;
finally the chapter examines the correctresponse sets of individual networks trained
bynegative correlation learning and their intersections, and the chapter concludes
withasummary of the chapter and a few remarks.

MINIMISINGMUTUALINFORMATIONBY
NEGATIVE CORRELATIONLEARNING

Minimisation of Mutual Information

Suppose the output F, of network i and the output F of network j are
Gaussianrandomvariables. Theirvariancesare 6> and sz, respectively. Themutual
information between F and Fcan be defined by Eq.(1) (van der Lubbe, 1997,
1999). The differential entropy 4 (F) and h(F l) are given by

h(F)=[1+ log(2nc?)]/2 )
and

h(F)=[1+ log(2mnc )] /2 3)
Thejointdifferential entropy h(F, F’ l) isgivenby

h(F,, F]) =1+ log(2m) + logldet(X)| 4)
where X is the 2-by-2 covariance matrix of /7, and F. The determinant of Zis

det(¥)=0707(1-p,?) 5)

where p,; is the correlation coefficientof Fand F,
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6 Liu, Yao and Higuchi

p, =EI(F,~E[F)(F,~E[F]]/ (575?) ©)
Using the formula of'Eq.(5), we get

h(F, F) =1+ log(2m) + log[c’c? (1 - p,7)]/ 2 7
By substituting Egs.(2), (3),and (7)in(1), we get

I(F,; F)=—log(1-p2)/2 )

From Eq.(8), we may make the following statements:

1. IfF, andFj areuncorrelated, the correlation coefficient P; isreducedto zero,
and the mutual information /(F; F) becomes very small.

2. IfFand Fare highly positively correlated, the correlation coefficient P; is
closeto 1, and mutual information /(F; FF ,) becomes very large.

Both theoretical and experimental results (Clemenetal., 1985) have indicated
thatwhen individual networks in an ensemble are unbiased, average procedures are
most effective in combining them when errors in the individual networks are
negatively correlated and moderately effective when the errors are uncorrelated.
Thereislittleto be gained from average procedures when the errors are positively
correlated. In order to create a population of neural networks that are as
uncorrelated as possible, the mutual information between each individual neural
network and therest of the population should be minimised. Minimising the mutual
information between each individual neural network and the rest of the population
isequivalentto minimising the correlation coefficientbetween them.

Negative Correlation Learning

Giventhe training dataset D= {(x(1),y(1)), ..., (x(N),y(N))}, we consider
estimating y by forming a neural network ensemble whose output is a simple
averaging of outputs /,of asetof neural networks. All the individual networks in
the ensemble are trained on the same training data set D

Fin)=+ 2 Fi(n) ©)
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Designing Neural Network Ensembles 7

where F'(n) is the outputofindividual network i on the nth training pattern x(n), F'(n)
isthe output of the neural network ensemble on the nth training pattern, and Mis
the number of individual networks in the neural network ensemble.
Theideaofnegative correlation learning is to introduce a correlation penalty
terminto the error function of each individual network so that the individual network
canbetrained simultaneously andinteractively. The error function £, for individual
ionthetraining data set D in negative correlation learning is defined by

Ei= 22 [AE) - y () + ()] (10)

where Nis the number of training patterns, £ (n) is the value of the error function
ofnetwork 7 at presentation of the nth training pattern and y(n) is the desired output
ofthe nth training pattern. The first term in the right side of Eq.(10) is the mean-
squared error of individual network i. The second termp, is a correlation penalty
function. The purpose of minimisingp, is tonegatively correlate each individual’s
error with errors for the rest of the ensemble. The parameter A is used to adjust the
strength of the penalty.
The penalty functionp has the form

pm) =—(F(n)-Fn)/2 (11

The partial derivative of £, withrespect to the output of individual 7 on the nth
training patternis

22— Fi(n) - y(n) — MEn) — F(n)) (12)

where we have made use of the assumption that the output of ensemble F(n) has
constantvalue withrespectto F'(n). The value of parameter A lies inside the range
0<A<1sothatboth(1-A)and A have nonnegative values. BP (Rumelhartetal.,
1996) algorithm has been used for weight adjustments in the mode of pattern-by-
patternupdating. Thatis, weightupdating ofall the individual networks is performed
simultaneously using Eq.(12) after the presentation of each training pattern. One
complete presentation of the entire training set during the learning process is called
anepoch. Negative correlation learning from Eq.(12) isasimple extension to the
standard BP algorithm. In fact, the only modification thatisneeded is to calculate
an extraterm of the form A(F'(n) — F'(n)) for the ith neural network.
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8 Liu, Yao and Higuchi

FromEqgs.(10),(11)and(12), we may make the following observations:

1. Duringthetraining process, all the individual networks interact with each other
through their penalty terms in the error functions. Each network £, minimises
not only the difference between F(n) and y(n), but also the difference
between F(n)andy(n). Thatis, negative correlation learning considers errors
whatall other neural networks have learned while training aneural network.

2. ForA=0.0,thereareno correlation penalty terms in the error functions of the
individual networks, and the individual networks are just trained indepen-
dentlyusing BP. Thatis, independent training using BP for the individual
networksis aspecial case of negative correlation learning.

3. ForA=1, fromEq.(12) we get

JE;(n
a?.((n; = F(n) - y(n) (13)

Note that the error of the ensemble for the nth training pattern is defined by

E cnsempbie = %(ﬁz f‘i 1 Fl(l’l) - y(l’l))2 (14)

Thepartial derivativeof £, withrespectto /', onthe nthtraining patternis

aEensem €

Spetle = JH(F(n) - y(n)) (15)
In this case, we get

aEi(n ) aEensemble (1 6)

oF;(n) oF;(n)

Theminimisationoftheerror functionofthe ensembleis achieved by minimising
the error functions of the individual networks. From this point of view, negative
correlation learning provides anovel way to decompose the learning task of the
ensemble into anumber of subtasks for different individual networks.
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ANALYSIS BASED ONMEASURING
MUTUALINFORMATION

Inorderto understand why and how negative correlation learning works, this
section analyses it through measuring mutual information on aregression task in
three cases: noise-free condition, small noise condition and large noise condition.

Simulation Setup
Theregression functioninvestigated here is

f(x) = F10sin(x x2) + 20(xs —3)* + 10x,4 + 5x5)] -1 (17)

where x=[x , ..., x ] isaninput vector whose components lie between zero and
one. The value of f(x) liesintheinterval [-1, 1]. Thisregression task has been used
by Jacobs (1997) to estimate the bias of mixture-of-experts architectures and the
variance and covariance of experts’ weighted outputs.

Twenty-five training sets, (x® (1), y¥(1)),1=1,...,L,L=500,k=1, ...,K,
K =25, were created atrandom. Each set consisted of 500 input-output patterns
inwhich the components of the input vectors were independently sampled froma
uniformdistribution over the interval (0, 1). Inthe noise-free condition, the target
outputs were not corrupted by noise; in the small noise condition, the target outputs
were created by adding noise sampled from a Gaussian distribution with amean of
zeroandavariance of 6>=0.1 to the function f(x); in the large noise condition, the
target outputs were created by adding noise sampled from a Gaussian distribution
withamean ofzero and a variance of 6>=0.2 to the function {x). A testing set of
1,024 input-output patterns, (t(n), d(n)), n=1, ..., N, N = 1024, was also
generated. For this set, the components of the input vectors were independently
sampled from auniformdistribution over the interval (0, 1), and the target outputs
were not corrupted by noise in all three conditions. Each individual network in the
ensemble is a multi-layer perceptron with one hidden layer. All the individual
networks have 5 hidden nodes in an ensemble architecture. The hidden node
functionis defined by the logistic function

00) = Trow (18)

Thenetwork outputis alinear combination of the outputs of the hidden nodes.
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Foreachestimation of mutual informationamong an ensemble, 25 simulations
were conducted. Ineach simulation, the ensemble was trained on adifferent training
set from the same initial weights distributed inside a small range so that different
simulations ofan ensemble yielded different performances solely due to the use of
differenttraining sets. Such simulation setup follows the suggestions from Jacobs
(1997).

Measurement of Mutual Information

The average outputs of the ensemble and the individual network i on the nth
pattern in the testing set, (t(n), d(n)), n =1, ..., N, are denoted and given
respectively by

Ftmn) = +Z & F(t(n)) (19)

and
Ftn) = 2 1, F (t(n) (20)

where F'(#(n)) and F ' (t(n)) are the outputs of the ensemble and the individual
network i on the nth pattern in the testing set from the Ath simulation, respectively,
and K=25 isthenumber of simulations. From Eq.(6), the correlation coefficient
between network i and network j is given by

B, BE, (FPtetn) - Futttn))) (FP(tim)) - Fittn) ) (21)

Piy =
BB, (e - Fueo) BB, (B ) — Fteton)’

From Eq.(8), the integrated mutual information among the ensembles can be
definedby

Fu= AN IV, ol ) @
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Wemay also define the integrated mean-squared error (MSE) on the testing set as

Eme = %2 0152 1o (FO(t () — dn))? (23)

The integrated mean-squared error £

train_mse

onthetraining setis given by

Etrain_mis :LLZ 5;1 11(_ kK=1 (F(k)(x(k)(l)) _y(k)(l))2 (24)

Results in the Noise-Free Condition

Theresults ofnegative correlation learning in the noise-free condition for the
differentvalues of Aatepoch2000are givenin Table 1. Theresults suggest thatboth
E . andE__ appeared to decrease with the increasing value of A. The
mutual information £, _among the ensemble decreased as the value of A increased
when 0<A<0.5. However, when A increased further to 0.75 and 1, the mutual
information £, hadlargervalues. Thereason ofhaving larger mutual information
atA=0.75 and A= 1 isthatsome correlation coefficients had negative values and
the mutual information depends on the absolute values of correlation coefficients.

Inordertofindoutwhy £ . decreased with increasing value of A, the
conceptofcapability ofatrained ensemble is introduced. The capability ofa trained
ensembleis measured by its ability of producing correct input-output mapping on
thetraining setused, specifically, by its integrated mean-squarederror £, on
thetraining set. Thesmaller £, s, thelargercapability the trained ensemble
has.

Results in the Noise Conditions

Table2 and Table 3 compare the performance of negative correlation learning
for different strength parameters in both small noise (variance 6>=0.1) and large

Table 1: The results of negative correlation learning in the noise-free
condition for different | values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 0.3706 |0.1478 | 0.1038 | 0.1704 | 0.6308
Eiest mse 0.0016 [0.0013 |0.0011 |0.0007 |0.0002
Eirain mse | 0.0013 1 0.0010 | 0.0008 | 0.0005 | 0.0001
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noise (variance 6*= (.2) conditions. The results show that there were same trends
forE E and £ inboth noise-free and noise conditions when A <0.5.

mi® " test_mse train_mse . . ]
Thatis,E, ,E and E£ . appeared to decrease with the increasing value

of A. Howevet?,tﬁ;  se atf)‘;)né’;éred to decrease first and then increase with the
increasing value of A..

Inordertofindoutwhy £, showeddifferent trendsinnoise-free andnoise
conditions whenA=0.75and A =1, the integrated mean-squared error £,
on the training set was also shown in Tables 1, 2 and 3. When A = 0, the neural
network ensemble trained had relatively large £, . It indicated that the
capability of the neural network ensemble trained was not big enough to produce
correct input-output mapping (i.e., it was underfitting) for this regression task.
WhenA= 1, the neural network ensemble trained learned too many specific input-
outputrelations (i.e., it was overfitting), and itmight memorise the training data and
therefore be less able to generalise between similar input-output patterns. Although
the overfitting was not observed for the neural network ensemble used in the noise-
free condition, too large capability of the neural network ensemble will lead to
overfitting for both noise-free and noise conditions because of the ill-posedness of
any finite training set (Friedman, 1994).

Choosinga proper value of A is important, and also problem dependent. For
the noise conditions used for this regression task and the ensemble architectured
used, the performance of the ensemble was optimal for A=0.5 among the tested

values of A inthe sense of minimising the MSE on the testing set.

Table 2: The results of negative correlation learning in the small noise
condition for different A values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 6.5495 |3.8761 | 1.4547 | 0.3877 |0.2431
Eest mse 0.0137 10.0128 | 0.0124 | 0.0126 | 0.0290
Etrain mse | 0.0962 | 0.0940 | 0.0915 | 0.0873 | 0.0778

Table 3: The results of negative correlation learning in the large noise
condition for different A values at epoch 2000

A 0 0.25 0.5 0.75 1

Emi 6.7503 |3.9652 | 1.6957 |0.4341 |0.2030
Eest mse 0.0249 ]0.0235 |0.0228 |0.0248 |0.0633
Erain mse | 0.1895 | 0.1863 | 0.1813 | 0.1721 | 0.1512
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ANALYSIS BASED ONDECISION BOUNDARIES

This section analyses the decision boundaries constructed by both negative
correlation learning and the independent training. The independent trainingis a
special case of negative correlation learning for A=0.0in Eq.(12).

Simulation Setup

The objective of the pattern classification problem is to distinguish between two
classes of overlapping, two-dimensional, Gaussian-distributed patterns labeled 1
and 2. LetClass 1 and Class 2 denote the set of events for which arandom vector
x belongs to patters 1 and 2, respectively. We may then express the conditional
probability density functions forthe two classes:

A0 = Few (- llx ulP) (25)

2
T[Gl
where mean vector L, =[0,0]" and variance 6 *=1.
fx(x) = s=exp (- s2llx— wl ) (26)
2no, 20,

where mean vector ., =[0,0]" and variance 6,’=4. The two classes are assumed
tobeequiprobable; thatisp, =p,="2. The costs for misclassifications are assumed
tobe equal, and the costs for correct classifications are assumed to be zero. On this
basis, the (optimum) Bayes classifierachieves aprobability of correct classification
p.=81.51 percent. The boundary of the Bayes classifier consists of a circle of
center[—2/3,0]"and radiusr=2.34; 1000 points from each of two processes were
generated for the training set. The testing set consists of 16,000 points from each
oftwo classes.

Figure 1 shows individual scatter diagrams for classes and the joint scatter
diagramrepresenting the superposition of scatter plots of 500 points from each of
two processes. This latter diagram clearly shows that the two distributions overlap
eachothersignificantly, indicating thatthereis inevitably a significant probability of
misclassification.

The ensemblearchitecture used in the experiments has three networks. Each
individual network inthe ensemble isamulti-layer perceptron with onehidden layer.
Alltheindividual networks have three hidden nodes in an ensemble architecture.
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14 Liu, Yao and Higuchi

Figure 1: (a) Scatter plot of Class 1, (b) Scatter plot of Class 2, (c) Combined
scatter plot of both classes, the circle represents the optimum Bayes solution

(@) ' (b) ‘ ©

Both hidden node function and output node function are defined by the logistic
functionin Eq.(18).

Experimental Results

Theresults presented in Table 4 pertain to 10 differentruns ofthe experiment,
with each run involving the use 02,000 data points for training and 32,000 for
testing. Figures 2 and 3 compare the decision boundaries constructed by negative

Figure 2: Decision boundaries formed by the different networks trained by the
negative correlation learning (A = 0.75): (a) Network 1; (b) Network 2; (c)
Network 3; (d) Ensemble, the circle represents the optimum Bayes solution

boundaryofnetworks ——
boundary of Bayesian decision -----------
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Figure 3: Decision boundaries formed by the different networks trained by the
independent training (i.e., A = 0.0 in negative correlation learning): (a)
Network 1, (b) Network 2; (c) Network 3; (d) Ensemble, the circle represents
the optimum Bayes solution

(b)

boundary ofnetworks ————

boundary of Bayesian decision -----------
correlation learning and the independent training. In comparison ofthe average
correctclassification percentage and the decision boundaries obtained by the two
ensemblelearningmethods, itis clear thatnegative correlation learning outperformed
the independent training method. Although the classification performance of
individual networks in the independent training is relatively good, the overall
performance of the entire ensemble was not improved because different networks,
such as Network 1 and Network 3 in Figure 3, tended to generate the similar
decisionboundaries.

The percentage of correct classification of the ensemble trained by negative
correlationis 81.41, whichisalmostequal to thatrealised by the Bayesian classifier.
Figure 2 clearly demonstrates that negative correlation learning is capable of
constructing adecision between Class 1 and Class 2 thatis almost as good as the
optimum decision boundary. Itis evident from Figure 2 that different individual
networks trained by negative correlation learning were able to specialise to different
parts of the testing set.
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16 Liu, Yao and Higuchi

Table 4: Comparison between negativecorrelation learning (NCL) (A=0.75)
and the independent training (i.e., A = 0.0 in negative correlation learning)
on the classification performance of individual networks and the ensemble;
the results are the average correct classification percentage on the testing set
over 10 independent runs

Methods Net 1 Net 2 Net 3 Ensemble
NCL 81.11 75.26 73.09 81.03
Independent 81.13 80.49 81.13 80.99
Training

ANALYSIS BASED ONTHE CORRECT
RESPONSE SETS

Inthissection, negative correlation learning was tested on the Australian credit
card assessment problem. The problem is how to assess applications for credit
cards based on anumber of attributes. There are 690 patterns in total. The output
hastwo classes. The 14 attributes include 6 numeric values and 8 discrete ones, the
latter having from 2 to 14 possible values. The Australian credit card assessment
problemisaclassification problem which is different from the regression type of
tasks, whose outputs are continuous. The data set was obtained from the UCI
machine learning benchmark repository. It is available by anonymous ftp at
ics.uci.edu(128.195.1.1)indirectory /pub/machine-learning-databases.

Experimental Setup

The data set was partitioned into two sets: atraining setand a testing set. The
first 518 examples were used for the training set, and the remaining 172 examples
for the testing set. The input attributes were rescaled to between 0.0 and 1.0 by
alinear function. The outputattributes of all the problems were encoded using a /-
of-m output representation for mclasses. The output with the highest activation
designated the class. The aim of this section is to study the difference between
negative correlation learning and independent training, rather than to compare
negative correlation learning with previous work. The experimentsused sucha
single train-and-test partition.

The ensemble architecture used in the experiments has 4 networks. Each
individual network is a feedforward network with one hidden layer. Both hidden
node function and output node function are defined by the logistic function in
Eq.(18). Alltheindividual networks have 10 hiddennodes. Thenumber oftraining
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epochs was setto250. The strength parameter A was setto 1.0. These parameters
were chosen after limited preliminary experiments. They are not meant to be
optimal.

Experimental Results

Table 5 shows the average results of negative correlation learning over 25 runs.
Eachrun ofnegative correlation learning was from different initial weights. The
ensemble with the same initial weight setup was also trained using BP without the
correlation penalty terms (i.e., A=0.0 innegative correlation learning). Results are
alsoshowninTable 5. Forthis problem, the simple averaging defined in Eq.(9) was
firstapplied to decide the output of the ensemble. For the simple averaging, it was
surprising that the results of negative correlation learning with A= 1.0 were similar
tothose ofindependent training. This phenomenon seems contradictory tothe claim
thatthe effect ofthe correlation penalty termis to encourage different individual
networks in an ensemble to learn different parts or aspects of the training data. In
orderto verify and quantify this claim, we compared the outputs of the individual
networks trained with the correlation penalty terms to those of the individual
networks trained without the correlation penalty terms.

Table 5: Comparison of error rates between negative correlation learning (A
= 1.0) and independent training (i.e., A= 0.0 in negative correlation learning)
on the Australian credit card assessment problem; the results were averaged
over 25 runs. “Simple Averaging” and “Winner-Takes-All” indicate two
different combination methods used in negative correlation learning, Mean,
SD, Min and Max indicate the mean value,standard deviation, minimum and
maximum value, respectively

Error Rate | Simple Averageing | Winner-Takes-All

A=1.0 Mean 0.1337 0.1195
SD 0.0068 0.0052

Min 0.1163 0.1105

Max 0.1454 0.1279

A=0.0 Mean 0.1368 0.1384
SD 0.0048 0.0049

Min 0.1279 0.1279

Max 0.1454 0.1512
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Table 6: The sizes of the correct response sets of individual networks created
respectively by negative correlation learning (A = 1.0) and independent
training (i.e., A = 0.0 in negative correlation learning) on the testing set and
the sizes of their intersections for the Australian credit card assessment
problem; the results were obtained from the first run among the 25 runs

A=1.0 A=0.0
Q=147 Q=143 Q, =138 | Q=149 Q=147 Q, =148
Q=143 Q=138 Q3=124 | Qs4=148 Q=147 Qi3 =147
Qy=141 Q=116 Q=133 | Q=147 Q3 =147 Qs =146
Q34 =123 Qi3 =115 Q24 =133 | Q34 =146 Qi3 =147 Q24 = 146
Qi34 =121 Q34 =113 Q34= 113 | Qi34 =146 Q34 =146  Qi234= 146

Twonotions were introduced to analyse negative correlation learning. They
are the correctresponse sets of individual networks and their intersections. The
correctresponse setS ofindividual network i on the testing set consists of all the
patterns inthe testing set which are classified correctly by the individual network .
LetQ denotethesizeofsetS,and Q2 . denotethesizeofsetS, NS M-S, .
Table 6 showsthe sizes of the correctresponse sets of individual networks and their
intersections on the testing set, where the individual networks were respectively
created by negative correlation learning and independent training. Itis evident from
Table 6 thatdifferent individual networks created by negative correlation learning
were able to specialise to different parts of the testing set. For instance, in Table 6
the sizes of both correctresponse sets S and S, at L = 1.0 were 143, but the size
of their intersection S, NS, was 133. The size of S, NS, NS . NS, wasonly 113.
Incontrast, the individual networks in the ensemble created by independent training
were quite similar. The sizes of correctresponse sets S, S, S and S, at A=0.0
were from 147 to 149, while the size of their intersection set S NS, NS .S,
reached 146. There were only three different patterns correctly classified by the
fourindividual networks inthe ensemble.

Insimple averaging, all the individual networks have the same combination
weights and are treated equally. However, not all the networks are equally
important. Because different individual networks created by negative correlation
learning were able to specialise to different parts of the testing set, only the outputs
of these specialists should be considered to make the final decision about the
ensemble for this part of the testing set. In this experiment, a winner-takes-all
method was applied to select suchnetworks. For each pattern of the testing set,
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the output ofthe ensemble was only decided by the network whose output had the
highestactivation. Table 5 showstheaverageresults ofnegative correlation learning
over 25 runs using the winner-takes-all combination method. The winner-takes-
allcombinationmethod improved negative correlation learning significantly because
there were good and poor networks for each pattern in the testing set, and winner-
takes-all selected the best one. However, it did not improve the independent
training much because the individual networks created by the independent training
wereall similarto each other.

CONCLUSIONS

This chapter describes negative correlation learning for designing neural
network ensembles. It can be regarded as one way of decomposing a large
probleminto smaller and specialised ones, so that each sub-problem can be dealt
withbyanindividual neural network relatively easily. A correlation penalty termin
the error function was proposed to minimise mutual information and encourage the
formation of specialists inthe ensemble.

Negative correlation learninghas beenanalysed interms of mutual information
onaregression task in the different noise conditions. Unlike independent training
which creates larger mutual information among the ensemble, negative correlation
learning can produce smaller mutual information among the ensemble. Through
minimisation of mutual information, very competitive results have been produced by
negative correlation learning in comparison with independent training.

This chapter compares the decision boundaries and the correctresponse sets
constructed by negative correlation learning and the independent training for two
pattern classification problems. The experimental results show that negative
correlation learning has a very good classification performance. In fact, the decision
boundary formed by negative correlation learning is nearly close to the optimum
decision boundary generated by the Bayes classifier.

Thereare,however, someissues thatneed resolving. Nospecial considerations
were made in optimisation of the size of the ensemble and strength parameter A in
thischapter. Evolutionary ensembles withnegative correlationlearning foroptimisation
ofthesize ofthe ensemblehad been studied on the classification problems (Liu, Yao
& Higuchi, 2000).
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ChapterlIl

A Perturbation Size-
Independent Analysis
of Robustness in Neural
Networks by Randomized
Algorithms

C.Alippi
PolitecnicodiMilano, Italy

ABSTRACT

This chapter presents ageneral methodology for evaluating the loss inperformance
of a generic neural network once its weights are affected by perturbations. Since
weights represent the “knowledge space” of the neural model, the robustness
analysis can beusedto study theweights/performancerelationship. Theperturbation
analysis, whichis closelyrelatedto sensitivity issues, relaxes all assumptions made
in the related literature, such as the small perturbation hypothesis, specific
requirements on the distribution of perturbations and neural variables, the
number of hidden units and a given neural structure. The methodology, based on
Randomized Algorithms, allows reformulating the computationally intractable
problem of robustness/sensitivity analysis in a probabilistic framework
characterised by a polynomial time solution in the accuracy and confidence
degrees.

Copyright © 2003, Idea Group Inc.
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INTRODUCTION

The evaluation of the effects induced by perturbations affecting a neural
computation is relevant from the theoretical point of view and in developing an
embedded device dedicated to a specific application.

Inthe first case, the interest is in obtaining areliable and easy to be generated
measure of the performance loss induced by perturbations affecting the weights of
aneural network. Therelevance ofthe analysisis obvious since weights characterise
the “knowledge space” of the neural model and, hence, its inner nature. In this
direction, astudy ofthe evolution ofthe network’s weights over training time allows
forunderstanding the mechanism behind the generation ofthe knowledge space.
Conversely, the analysis ofa specific knowledge space (fixed configuration for
weights) provides hints about the relationship between the weights space and the
performance function. The latter aspectis of primary interest in recurrent neural
networks where even small modifications of the weight values are critical to
performance (e.g., think of the stability of an intelligent controller comprising a
neural network and issues leading to robust control).

The second case is somehow strictly related to the first one and covers the
situation where the neural network mustbe implemented ina physical device. The
optimally trained neural network becomes the “golden unit” to be implemented
withina finite precisionrepresentation environmentas ithappens inmission-critical
applicationsand embedded systems. Intheseapplications, behavioural perturbations
affecting the weights ofaneural network abstract uncertainties associated with the
implementation process, such as finite precision representations (e.g., truncation or
roundinginadigital hardware, fixed or low resolution floating pointrepresentations),
fluctuations of the parameters representing the weights in analog solutions (e.g.,
associated with the production process of a physical component), ageing effects,
ormore complex and subtle uncertainties inmixed implementations.

The sensitivity/robustness issue has been widely addressed in the neural
network community with a particular focus on specific neural topologies.

More in detail, when the neural network is composed of linear units, the
analysis is straightforward and the relationship between perturbations and the
induced performance loss can be obtained in a closed form (Alippi & Briozzo,
1998). Conversely, when the neural topology is non-linear, which is mostly the
case, several authors assume the small perturbation hypothesis or particular
hypothesis aboutthe stochastic nature of the neural computation. Inboth cases, the
assumptions make the mathematics more amenable with the positive consequence
thatarelationship between perturbations and performance loss can be derived
(e.g.,see Alippi & Briozzo, 1998; Piche, 1995). Unfortunately, these analyses
introduce hypotheses which arenotalways satisfied inall real applications.
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Anotherclassicapproachrequires expanding with Taylor theneural computation
around thenominal value of the trained weights. A subsequent linearearised analysis
follows whichallows for solving the sensitivity issue (e.g., Piche, 1995). Anyway,
the validity of such approaches depend, in turn, on the validity of the small
perturbation hypothesis: how tounderstand a priori ifa perturbation is small fora
givenapplication?

In other applications the small perturbation hypothesis cannot be accepted
being the involved perturbations everything butsmall. As an example we have the
development ofadigital embedded system. There, the designer has toreduce as
possible the dimension ofthe weights by saving bits; this produces a positive impact
on cost, memory size and power consumption of the final device.

Differently, otherauthors avoid the small perturbation assumption by focusing
the attention on very specific neural network topologies and/or introducing
particular assumptions regarding the distribution of perturbations, internal neural
variables and inputs (Stevenson, Winter & Widrow, 1990; Alippi, Piuri & Sami,
1995).

Otherauthorshave considered thesensitivity analysisunderthe small perturbation
hypothesis to deal with implementation aspects. In this case, perturbations are
specifically related to finite precision representations of the interim variables
characterising the neural computation (Holt & Hwang, 1993; Dundar & Rose,
1995).

Differently fromthe limitingapproaches provided inthe literature, this chapter
suggests a robustness/sensitivity analysis in the large, i.e., without assuming
constraints on the size or nature of the perturbation; as such, small perturbation
situations become only a subcase of the theory. The analysis is general and can be
applied to all neural topologies, both static and recurrent in order to quantify the
performance loss of the neural model when perturbations affect the model’s
weights.

The suggested sensitivity/robustness analysis can be applied to 4// neural
network models involved in system identification, control signal/image processing
and automation-based applications without any restriction. In particular, the
analysisallows for solving the following problems:

*  Quantifytherobustness ofa generically trained neural network by means ofa
suitable, easily to be computed and reliable robustness index;

*  Comparedifferent neural networks, solving a given application by ranking
them according to their robustness;

» Investigatethecriticality ofarecurrentmodel (“stability” issue) by means ofits
robustnessindex;
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+  Studytheefficacy and effectiveness of techniques developed to improve the
robustness degree of a neural network by inspecting the improvement in
robustness.

Thekey elements of the perturbation analysis are Randomised Algorithms—
RAs-(Vidyasagar, 1996, 1998; Tempo & Dabbene, 1999; Alippi, 2002), which
transform the computationally intractable problem of evaluating the robustness of
a generic neural network with respect to generic, continuous perturbations, ina
tractable problem solvable with a polynomial time algorithm by resorting to
probability.

The increasing interest and the extensive use of Randomised Algorithms in
control theory, and in particular in the robust control area (Djavan, Tulleken,
Voetter, Verbruggen & Olsder, 1989; Battarcharyya, Chapellat & Keel, 1995; Bai
& Tempo, 1997; Chen & Zhou, 1997; Vidyasagar, 1998; Tempo & Dabbene,
1999, Calafiore, Dabbene & Tempo, 1999), make this versatile technique
extremely interesting also for the neural network researcher.

We suggestthe interested reader to refer to Vidyasagar (1998) and Tempo
and Dabbene (1999) foradeep analysis of the use of RAs in control applications;
the author forecasts anincreasing use of Randomised Algorithms in the analysisand
synthesis of intelligent controllers in the neural network community.

The structure of the chapter is as follows. We first formalise the concept of
robustness by identifying anatural and general index for robustness. Randomised
Algorithms are then briefly introduced to provide a comprehensive analysis and
adapted to estimate the robustness index. Experiments then follow to shed light on
theuse ofthe theory inidentifying therobustness index for static and recurrent neural
models.

A GENERALROBUSTNESS/SENSITIVITY
ANALYSISFORNEURALNETWORKS

In the following we consider a generic neural network implementing the
$= f(é, x) function where g isthe weight (and biases) vector containing all the
trained free parameters of the neural model.

Inseveralneural models, and in particular inthoserelated to systemidentification
and control, the relationship between the inputs and the output of the system are
captured by considering a regressor vector ¢, which contains a limited time-
window of actual and past inputs, outputs and possibly predicted outputs.
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Ofparticular interest, in the zoo of neural models, are those which can be
represented by means of the model structures §(7) = f(p) where function f(-) is
aregression-type neural network, characterised by NV, inputs, N, non-linear
hiddenunits and a single effective linear/non-linear output (Ljung, 1987; Hertz,
Krog & Palmer, 1991; Hassoun, 1995; Ljung, Sjoberg & Hjalmarsson, 1996).

The absence/presence of a dynamic in the system can be modelled by a
suitable number of delay elements (or time lags), which may affect inputs (time
history on external inputs «) system outputs (time history on y(¢) ) onpredicted
outputs (time history on j(¢)) or residuals (time history on e(t) = $(¢) - y(1)).
Whereitisneeded y(¢), j(r) and e(r) are vectorial entities, acomponent foreach
independent distinct variable.

Several neural model structures have been suggested in the literature, which
basically differ in the regressor vector. Examples are, NARMAX and NOE
topologies. NARMA X structure can be obtained by considering both past inputs
and outputs of the system to infer (7). We have:

@ = |u(0),u(t=1);u(t=n), y(t=1), -, y(t=n)se(t=1), - e(t = n,) |

Differently, the NOE structure processes only past inputs and predicted
outputs, i.e.:
@ = |u(0.u(t=1); - u(t=n,).5(t=1. -3t =n,)].

Static neural networks, such as classifiers, can be obtained by simply

consideringexternal inputs:
@ =u(t),u(t=1), - u(t—n,)].

Of course, different neural models can be considered, e.g., fully recurrent
and well fitwith the suggested robustness analysis.

A general, perturbation size independent, model-independent robustness
analysisrequires the evaluation of the loss in performance induced by a generic
perturbation, in our analysis affecting the weights of a generic neural network. We
denote by y,(x)= f,(6,A,x) the mathematical description of the perturbed
computationand by Ae p c %» a generic p-dimensional perturbation vector, a
component for each independent perturbation affecting the neural computation
7(¢). The perturbation space Dis characterised in stochastic terms by providing the

probability density function pdf, .

Tomeasure the discrepancy between y, (x) and y(¢) or j(r), we considera
generic loss function U(A). Inthe following we only assume that such performance
loss function is measurable according to Lebesgue with respect to D. Lebesgue
measurability for U(A) allows us for taking into accountan extremely large class
ofloss functions.
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Commonexamples for {/ arethe Mean Square Erro—MSE—Ioss functions
1 N, . . ) _ 1 Nx . )
V)= -2 00) =304 and U(A)—E;(y(x[)—y(x,-,m) Y

More specifically, (1)-left compares the perturbed network with 3 ,whichis
supposedto bethe“golden” error-freeunit while (1)-right estimates the performance
of the error-affected (perturbed) neural network (generalisation ability of the
perturbed neural model).

The formalisation of the impact of perturbation on the performance function
canbe simply derived:

Definition: Robustness Index
Wessay thataneural network isrobustatlevel ¥ in D, when the robustness
index 7 istheminimum positive value for which

Immediately, from the definition of robustness index we have thata generic
neural network NN is more robust than NN, if ¥, < ¥, and the property holds
independently from the topology ofthe two neural networks.

Themainproblemrelated to the determination of the robustness index ¥ isthat
wehavetocompute U(A), VA e D ifwewishatightbound. The ¥ -identification
problem s therefore intractable from a computational point of view if we relax all
assumptions made in the literature as we do.

To deal with the computational aspect we associate a dual probabilistic
problemto (2):

Robustness Index: Dual Problem We say thataneural network is robust
atlevel 7 inDwithconfidence 17, when ¥ isthe minimum positive value forwhich

PrUA)<7)2n  holds VAe D, Vy27 3)

Theprobabilistic problemis weaker than the deterministic one since ittolerates
the existence ofaset of perturbations (whose measure according to Lebesgueis 1-
1) forwhich u(A) > 7 . In other words, not more than 1001 % of perturbations
Ae Dwill generate aloss in performance largerthan 7 .
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Probabilistic and deterministic problems are “close” to each other when we
choose,aswedo, 11=1.Notethat 7 dependsonly onthesize of D and the neural
network structure.

The non-linearity with respect to A and the lack of a priori assumptions
regarding the neural network do notallow computing (2) inaclosed form for the
general perturbation case. The analysis, which would imply testing UA in
correspondence with a continuous perturbation space, can be solved by resorting
to probability according to the dual problem and by applying Randomised
Algorithmsto solve therobustness/sensitivity problem.

RANDOMIZED ALGORITHMS AND

PERTURBATION ANALYSIS

Inthis paragraph we briefly review the theory behind Randomised Algorithms
and adapt them to the robustness analysis problem.

Inthe following we denote by P~ Pr{U(A)<y} theprobabilitythattheloss
inperformance associated with perturbations in D is below a given—but arbitrary—
valuey.

Probability p, isunknown, cannotbe computedina close form fora generic
U function and neural network topology, and its evaluation requires exploration of
the whole perturbation space D.

Theunknown probability pycanbe estimated by sampling Dwith Nindependent
andidentically distributed samples A ; extraction must be carried outaccording to
the pdfofthe perturbation.

Foreachsample A we then generate the triplet

LifUA) <y
{A,UA), I(A)}i=1,N where I(A,)= 0ifUA) >y 4
The true probability p,cannow simply be estimated as
. 1 <
Py =—21(A) (5)
N i=1

Of course, when Ntendstoinfinity, p, convergesto p, Conversely, onafinite
data set of cardinality N, the discrepancy between p, and p.existsand canbe
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simply measuredas ‘ P, — Py ‘ . ‘ P, — Dy ‘ isarandom variable which depends onthe
particular extraction of the Nsamples since different extractions of Nsamples from
Dwillprovide differentestimates for p,, . By introducinganaccuracy degree £ on
‘ p,—D N‘ and a confidence level 1—§ (which requests that the ‘ p,— Db N‘ <eg
inequality is satisfied atleast with probability | — § ), our problem can be formalised
by requiring thatthe inequality

Prip, - py|<ef21-6 ©6)

is satisfied for Vy > 0. Of course, we wish to control the accuracy and the
confidence degrees of (6) by allowing the user to choose the most appropriate
values for the particular need. Finally, by extracting anumber of samples from D
accordingto the Chernoffinequality (Chernoft, 1952)

()

we have that Pr{py - 13,\,‘ < 8}2 1-6 holds for Vy >0,V8,c e [0,1].

Asanexample, by considering 5% in accuracy and 99% in confidence, we
havetoextract 1060 samples from D; with such choice we can approximate P, with
py introducing themaximumerror0.05( p, —0.05< p, < p,, +0.05)andthe
inequality holds atleast with the probability 0.99.

Other bounds can be considered instead of the Chernoftf’s one as suggested
by Bernoulli and Bienaymé, (e.g., see Tempo & Dabbene, 1999). Nevertheless,
the Chernoff’sbound improves upon the others and, therefore, should be preferred
ifwe wish to keep minimal the number of samples to be extracted. The Chernoft
bound grants that:

* Nisindependent fromthe dimension of D (and hence itdoes notdepend onthe

number of perturbations we are considering in the neural network);
1

1 . i
5 and pe (henceitis polynomial inthe accuracy and confidence

* Nislinearin In
degrees).
Asaconsequence, the dual probabilistic problemrelated to the identification
oftherobustnessindex 7 canbesolved withrandomised algorithms and therefore
with a polynomial complexity in the accuracy and the confidence degrees
independently from the number of weights of the neural model network. Infact, by

expanding the (6) we have that
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Prip, —py|sef21-6 = Pr{

pr(u(A)gy)_]‘vzz(qgg}a_s ®)

Ifaccuracy € andconfidence § are small enough, we can confuse P, and
P by committing asmall error. Asaconsequence, the dual probabilistic problem
requiring p, 21] becomes p, =1 .Wesurelyassume € and § to besmall
enough insubsequent derivations.
The final algorithm, which allows for testing the robustness degree ¥ ofa
neural network, is:
1. Select € and § sufficiently smallto have enough accuracy and confidence.
2. Extract from D, according to its pdf, a number of perturbations N as
suggested by (7).
3. Generate the indicator function I(A) and generate the estimate
Dy = Dy (¥) according to (5).
4. Select the minimum value Y, from the p, = p,(y) function so that
py(v,) =1 is satisfied Ny 2v,. v, is the estimate of the robustness
index ¥ .

Note that with a simple algorithm we are able to estimate in polynomial time
therobustness degree ¥ ofageneric neural network. Theaccuracy in estimating
¥ canbemade arbitrarily good at the expense of a larger number of samples as
suggested by Chernoff’sbound.

APPLYINGTHEMETHODOLOGY TOSTUDY
THE ROBUSTNESS OF NEURALNETWORKS

In the experimental section we show how the robustness index for neural
networks can be computed and how it can be used to characterise aneural model.
Afterhavingpresented and experimentally justified the theory supporting Randomised
Algorithms, we will focus on the following problems:
 testtherobustness ofa given static neural network (robustness analysis);

+ studytherelationships between the robustness ofa static neural network and
thenumber ofhidden units (structure redundancy);

» analyse the robustness of recurrent neural networks (robustness/stability
analysis).

Inthe following experiments we consider perturbations affecting weights and
biases ofaneural network defined in D and subject to uniformdistributions. Here,

TLFeBOOK



Robustness in Neural Networks 31

a perturbation A, affecting a generic weight w, must be intended as a relative
perturbation with respect to the weight magnitude according to the multiplicative
perturbation model w, =w(l+A), Vi=1,n.A t%perturbation implies thatA,
isdrawn froma symmetrlcal ‘uniform distribution of extremes

_t ot
100°100 |

a5% perturbation affecting weights and biases composing vector g implies
thateach weight/bias is affected by an independent perturbation extracted from the
[-0.05,0.05] interval and applied to the nominal value according to the multiplicative
perturbation model.

Experiment 1: The impact of € 6 and N on the evaluation of the
robustness index
Thereference application to be learned is the simple error-free function

—0.23-x
T, xel-33]

y=—x-sin(x’)+
1+x

A set of 41 training data have been extracted from the function domain
according to a uniform distribution. We considered static feedforward neural
networks with hiddenunits characterised by ahyperbolic tangent activation function
andasingle linear output. Training was accomplished by considering a Levenberg-
Marquardtalgorithm applied toan MSE training function; atest set was considered
during the training phase to determine the optimal stopping point so as to monitor
theupsurgence of overfitting effects.

Wediscovered thatall neural networks with atleast 6 hidden units are able to
solvethe function approximation task with excellent performance.

Inthis experiment we focus the attention on the neural network characterised
by 10hidden units. After training we run the robustness algorithm by considering
7.5% of perturbations (weights are affected by perturbations up to 7.5% of their
magnitude) and we chose €=0.02 and 6=0.01 from which we have to extract
N=6624 samples from D. We carried out three extractions of Nsamples and, for
eachset, we computed therelated p, = p, (¥) curve.

The p, = p,(y)curvesaregiveninFigure 1. Aswe canseethe curves are
very close to each other. In fact, we know from the theory, that the estimated
probability belongs to a neighbourhood of the true one according to the
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Figure 1: Py = Py(Y) for three different runs
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py —0.02< p, < p, +0.02 relationship. A single curveis therefore enoughto
characterise the robustness of the envisaged neural network and there isnoneed
to consider multiple runs. By inspecting Figure 1 we obtain thatthe estimate ofthe
robustnessindex ¥ is ¥, =11 which implies that U(A) <11, VAe D with high
probability.

We wishnow to study the impactofNon p, = p, (y) byconsidering three
runs with different £ and § accordingto Table 1.

The p, = p,(y) curvesaregiveninFigure2. Itisinterestingtonote, atleast
for the specific application, that even with low values of N, the estimates for
Dy = Py(y) and 7, are reasonable and not far from each other. We should
anyway extract the number of samples according to Chernoff’s inequality.

Experiment 2: Testing the robustness of a given neural network

Inthe second experiment we test the robustness of the 10 hidden units network
by considering its behaviour once affected by stronger perturbations (larger D) and,
inparticular, for perturbations 1%, 3%, 5%, 10%, 30%. We selected €=0.02 and
0=0.01.

The p, = p, (y) function corresponding to the differentperturbationsis given
inFigure 3.

Table 1: €, § and N

£ o N
0.02 0.01 6624
0.05 0.05 738
0.1 0.1 150
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Figure 2: p,, = p, () for different runs with parameters given in Table 1
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Again, fromits definition, ¥ isthe smallestvalue for which f)y =1,y>7;as
anexample, ifwe consider the 5% perturbation case, ¥ assumes a value around

7. It is obvious, but interesting to point out that, by increasing the strength of
perturbation (i.e., by enlarging the extremes of theuniformdistribution characterising

thepdfofD), ¥ increases. Infact, stronger perturbations have a worse impacton

the performance loss function since the error-affected neural network diverges from
the error-free one. Conversely, we see that small perturbations, e.g., the 1% one,
induceavery smallloss in performance since the robustnessindex ¥,, isvery small.

Figure 3: P, as a function of Y for the 10 hidden units neural network
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Experiment 3: Testing the robustness of a hierarchy of performance-
equivalent neural networks

Once we haveidentified the robustness degree ofaneural network solving an
application, we can investigate whether it is possible to improve the robustness
degree ofthe application by considering asort of structural redundancy ornot. This
issue can be tackled by considering the neural hierarchyM:M, c M,...c M, ...
where M, represents aneural network with khidden units.

Tothis end, we consider a set of performance-equivalent neural networks,
eachof whichisableto solve the application with a performance tolerable by the
user. All neural networks are characterised by a different topological complexity
(number ofhiddenunits).

The p, = p, (y) curves parameterised in the number of hidden units are given
inFigure4inthe case of 1% perturbation. We cansee that by increasing the number
ofhiddenunits, ¥ decreases. Weimmediately realise that neural networks witha
reduced number of hidden units are, for this application, less robust than the ones
possessing more degrees of freedom. Large networks provide, inaway, asort of
spatial redundancy: information characterising the knowledge space of the neural
networks is distributed over more degrees of freedom.

We discovered cases where a larger neural network was less robust than a
smallerone: insuchacase probably the complex model degenerates into asimpler
one.

Theevolutionof 7 overthe numberofhiddenunits parameterised with respect
to the different perturbations 5%, 10% and 30%is givenin Figure 5. Wenote that
theminimal network, namely the smallest network able to solve the application, is
notthe more robust one for this application (in factit possesses large values for the

¥ s).

Figure 4: p, over Y and parameterised in the number of hidden units
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Thistrend—verified also with otherapplications—suggests that therobustness
degree of the neural network improves on the average by increasing the number of
hiddenunits (spatial redundancy). Anyway, withasmall increase in the topological
complexity (e.g., by considering the 13 hidden units model instead of the 6 one), we
obtainasignificantimprovementaccording to therobustness level. Thereisnoneed
to consider more complex neural networks since the improvement in robustness is
small.

Experiment 4: Testing the robustness of recurrent neural networks

The goal of the last experiment is to study the robustness/stability of recurrent
neural networks with the suggested theory. The chosen application refers to the
identification ofthe open-loop stable, nonlinear, continuous system suggested in
Norgaard (2000). The input and the corresponding output sequence of the system
tobeidentifiedis givenin Figure 6.

We first considered an NOE recurrent neural network with 5 hidden units
characterised by the regressor vector ¢ = [u(t —1),u(t - 2), p(¢ —1), (¢ - 2)] The
non-linear core of the neural network is a static regression type neural network as
the one considered in the function approximation experiments. The topology of the
NOEnetwork s givenin figure 7.

Once trained, the network we applied the methodology to estimates the
robustness of the recurrent model. The ij = f?y (]/ ) curve, evaluated with
e =38 =0.05,forthe 0.1% perturbation case is given in Figure 8. Aswe could
have expected, differently from the static function approximation application, the
recurrent NOE neural network is sensitive even to small perturbations affecting the
knowledge space of the network.

Figure 5: ¥ as function of the hidden units, € =0.04, § =0.01
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We identified the dynamic system with a NARMAX neural network
characterised by 5 hidden units and the structure given in Figure 9. For such
topology we selected the regressor vector

@ =[u(t=1),u(t=2),y(t - 1), y(t - 2),e(t—1),e(t - 2)]

Figure 10 shows the p, = p, (7/ ) curve. It is interesting to note that the
NARMAX neural network is less robust than the corresponding NOE model. The
basicreason for such behaviouris due to the fact that the recurrent model does not
receive directly as input the fed-back network output but only the residual e.

Duringtraining the NOE model mustsomehow learn more deeply the concept
of stability since even small variations of weights associated with the training phase
weights update would produce a trajectory diverging from the system outputto be
mimicked. Thiseffectis due to the pure fed-back structure ofthe NOE model which

Figure 6: The input and the corresponding output of the dynamic system
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Figure 7: The considered NOE neural network
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Figure 8: The p, function for the NOE neural network
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Figure 9: The considered NARMAX neural network
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receives as inputs past predicted output and not direct information from the process.
Interestingly, this requires the neural model to implicitly learn, during the training
phase, the concept of robustness as provenbythe p, = p, (y) curve. Conversely,
the NARMAX model has a smoother and less complex training phase since it
receives freshinformationdirectly fromthe process (y values) which help the neural
model to be stable. As such, the training procedure will not search for weights
configuration particularly robust since small deviations, which could make the
systemunstable, will be directly stabilised by the true information coming fromthe
process.
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Figure 10: The p, function for the NARMAX neural network
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CONCLUSION

Themainresults ofthe chapter can be summarised as follows. Once givenatrained

neural network:

» theeffects of perturbations affecting the network weights can be evaluated
regardless of the topology and structure of the neural network, the strength of
the perturbation by considering a probabilistic approach;

»  therobustness/sensitivity analysis canbe carried out witha Poly-time algorithm
by resortingto Randomised Algorithms;

» theanalysisisindependent from the figure of meritconsidered to evaluate the
loss in performance induced by the perturbations.
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ABSTRACT
This chapter describes the application of a general regression neural network
(GRNN) to control the flight of a helicopter. This GRNN is an adaptive
network that provides estimates of continuous variables and is a one-pass
learning algorithm with a highly parallel structure. Even with sparse data in
a multidimensional measurement space, the algorithm provides smooth
transitions from one observed value to another. An important reason for
using the GRNN as a controller is the fast learning capability and its non-
iterative process. The disadvantage of this neural network is the amount of
computation required to produce an estimate, which can become large if
many training instances are gathered. To overcome this problem, it is
described as a clustering algorithm to produce representative exemplars
from a group of training instances that are close to one another reducing the
computation amount to obtain an estimate. The reduction of training data
used by the GRNN can make it possible to separate the obtained representative
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exemplars, for example, in two data sets for the coarse and fine control.
Experiments are performed to determine the degradation of the performance
of the clustering algorithm with less training data. In the control flight system,
data training is also reduced to obtain faster controllers, maintaining the
desired performance.

INTRODUCTION

Theapplication ofa general regression neural network to control anon-linear
systemsuch asthe flight ofahelicopter atornear hoveris described. This general
regression neural network in an adaptive network that provides estimates of
continuous variables and is a one-pass learning algorithm with a highly parallel
structure. Even with sparse data in amultidimensional measurement space, the
algorithm provides smooth transitions from one observed value to another. The
automatic flight control system, through the longitudinal and lateral cyclic, the
collective and pedals are used to enable a helicopter to maintain its position fixed
inspace foralongperiod oftime. In order to reduce the computation amount of the
gathered data for training, and to obtain an estimate, a clustering algorithm was
implemented. Simulationresults are presented and the performance ofthe controller
isanalysed.

HELICOPTERMOTION CONTROL

Recently, unmanned helicopters, particularly large-scale ones, have been
expected not only for the industrial fields such as agricultural spraying and aerial
photography, butalso for such fields as observation, rescuing and fire fighting. For
monotonous and dangerous tasks, an autonomous flight control of the helicopteris
advantageous.

Ingeneral, theunmanned helicopteris an example of an intelligent autonomous
agent. Autonomous flight control involves some difficulties due to the following:

* itisnon-linear;

+ flightmodesarecross-coupled;

+ itsdynamicsareunstable;

« itisamultivariate (i.e., there are many input-output variables) system;

+  itissensitive to external disturbances and environmental conditions such as
wind, temperature, etc;

* itcanbeusedinmany different flight modes (e.g., hoveror forward flight), each
of whichrequires different control laws;

* it is often used in dangerous environments (e.g., at low altitudes near
obstacles).
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These characteristics make the conventional control difficult and create a
challenge to the design of intelligent control systems.

Forexample, although helicopters are non-linear systems, NN controllers are
capable of controlling them because they are also inherently non-linear. The
instabilities that result from time delays between changes in the system input and
output can be addressed with the previous learning ofthe network with aset of data
thatrepresents the pilots knowledge to stabilize the helicopter. Linear NN canbe
implemented to compensate the cross-couplings between control inputs, mainly
when the helicopter makes a significant change iniits flight.

Therefore, a supervised general regression neural network can be used to
control the flight modes of anunmanned helicopter. The regression is the least-
mean-squares estimation of the value ofa variable based on datasamples. The term
generalregressionimplies that the regression surface is not restricted by being
linear. Ifthe values of the variables to be estimated are future values, the general
regressionnetwork (GRNN) isapredictor. Ifthey are dependent variables related
to input variables ina process, system or plant, the GRNN can be used to model
the process, system or plant. Once the system is modelled, a control surface can
be defined in terms of samples of control variables that, given a state vector of the
system, improve the output of the system. Ifa GRNN is trained using these samples,
itcan estimate the entire control surface, becominga controller. A GRNN canbe
used to map from one set of sample points to another. Ifthe target space has the
same dimension as the input space, and if the mapping is one-to-one, aninverse
mapping can easily be formed using the same examples. When the variables tobe
estimated are for intermediate values between given points, thenthe GRNN canbe
used as an interpolator.

Inall cases, the GRNN instantly adapts to new data points. This could be a
particular advantage for training robots to emulate a teacher or for any system
whosemodel changes frequently.

SYSTEMMODELLING

The helicopter control is one of the popular non-linear educational control
problems. Duetoitshighlynon-lineardynamics, itgives thepossibility todemonstrate
basic features and limits of non-linear control concepts. Sugeno (1997, 1998)
developeda fuzzy-logic based control system to replace the aircraft’s normal set
of control inputs. Other researchers, such has Phillips etal. (1994), Wade et al
(1994),and Wade and Walker (1994), have developed fuzzy logic flight controls
describing systems thatinclude mechanisms for discovering and tuning fuzzy rules
inadaptive controllers. (Larkin, 1984)described amodel ofan autopilot controller
based on fuzzy algorithms. An alternative approach to real-time control of an

TLFeBOOK



44  Amaral, Criséstomo and Pires

autonomous flying vehicle based on behavioral, orreactive, approach is proposed
by Faggetal. (1993). A recurrent neural network used to forward modeling of
helicopter flight dynamics was described by Walker and Mo (1994). The NN-
based controllers can indirectly model human cognitive performance by emulating
thebiological processes underlying human skill acquisition.

The maindifference between NN-based controllers and conventional control
systemsisthat, inthe NN case, systems are built from indirectly representations of
control knowledge similar to those employed by skilled humans, while in the
conventional design case, adeep analytical understanding ofthe system dynamics
isneeded. Theability ofhumansto pilotmanned helicopters with only the qualitative
knowledge indicate that NN-based controllers with similar capabilities can also be
developed.

The helicopter canbe modelled as a linear system around trim points, i.e., a
flight withno accelerations and nomoments. The state space equations are anatural
form, which canrepresent the helicopter motion. The general mathematical model
isgivenby:

XzAx+Buc

y=Cx+Du,

where x, u_ and y are the state vector, control vector and output vector,
respectively.

The helicopterused to simulate the flight in hover position was a single main
rotor helicopter of 15,000 pounds. The control and state vectors are defined as:

u. =16, 8, 6. 8,] (1)
xI=uvwpgro6oxyz| 2)
where

0 isthe collective control [inches];
0, and 6 arethe longitudinal and lateral cyclic controls, respectively
[inches];
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Figure 1: Helicopter coordinates

roume &/ A
: b e
X = {5 TAWING
i

0,is the pedal control [inches];
u,vandware the perturbation linear velocities [f#/sec];
p,q and rare the perturbation angular velocities [rad/sec];

¢, @ and @ arethe perturbation eulerangles forroll, pitchand yaw [rad];

45

x, y and 7 aretheperturbation linear displacements over the ground [f7].

Figure 1showsthe coordinate system to describe the motion ofthe helicopter.

The origin of the helicopter axes is placed on the center of gravity.

Thethrust ofthe mainrotor, thus mainly the vertical acceleration, is controlled
by the collective control (8 ). The pitching moment, that is, nose pointing up or
down, is controlled by the longitudinal cyclic control ( §,). Therollingmoment, that
is, right wing tip down, left wing tip up, and vice versa, is controlled by the lateral
cycliccontrol (8, ). The yawing moment, thatis, nose leftand right, is controlled

by the pedal control ( 6,).

The corresponding differential equations thatrepresent the behavior ofthe

helicopter in hover position are:

du

— =-0.069u—0.032v+116.8p +1168.5¢ —6.15r —32.196 +0.1189,,

dt
—2.796, —0.2556, +0.00436,
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d
j‘; =0.017u —0.085v—-0.0021w—430.5p +381.3¢ + 30.75r + 32.14¢

+0.0230 —0.148, — 5, +0.6655, —1.398,

d
7W =-0.0021v —0.257w+7.99 p + 46.74¢ +135.3r +1.85¢ — 0.4040

t
-9.238,-0.1078, —0.015,

z—p = 0.45u — 0.687v — 0.002 1w — 6027.2 p + 5043.16 + 664.2r —1.825,,
t
~13.75, +8.585, —5.156,,

% =0.665u+0.429v —0.043w—1537.5p —15744.5g —12.3r —0.9660,,
+37.135, +3.436, + 0.758,,

dr =-0.0214u + 0.515v + 0.0064w —369.0 p — 44.28¢ —1266.9r + 25.976,

dt
~0.158, +0.0755, +40.785,,
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Since eachmotionisnotindependentofd, d,, 8 and J,, there exists across-
coupling.

Figure 2 shows the root locus for the model described above. Figure 2(a)
showstherootlocus, considering the collective control as the input and the vertical
displacementas the output. In Figure 2(¢), the longitudinal cyclic and the forward
displacementare the inputand the output, respectively. Figure 2(e) shows the root
locus considering the lateral cyclic as the input and the lateral displacement as the
output. Figures 2(b), (d) and (f) show the zoom of the region near the imaginary axis
aswell astheroots thatdominate the transient response. In general, the contribution

Figure 2: Root locus of the helicopter model

RootLocus

1350
100
Rl
Y
T
L=
m Py
E
100
-150 i .
0 3 10 15
RBaaliui 11011
(@)
0.035 .
I
E :
% :
o ]
o '
E :
Toig
-0.05 . . . . . i
-025 -0z -043F -0 -0.0F 0 0.0%
Raealfum

TLFeBOOK



48 Amaral, Criséstomo and Pires

Figure 2: Root locus of the helicopter model (continued)
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inthetimeresponse ofroots thatlierelatively farto the left in the s-plane will be small.
Thesethree Figure s clearly show thatsome ofthe eigenvalues corresponding tothe
helicoptermodel are in the right side of the s-plane, with positive real-part values,
makingthe systemunstable.
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Figure 2: Root locus of the helicopter model (continued)
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GENERALREGRESSIONNEURALNETWORK

The generalized regression neural networks are memory-based feed-forward
networks originally developed in the statistics literature by Nadaraya (1964) and
known as Nadaraya-Watson kernel regression. Then the GRNN was ‘re-
discovered’ by Specht(1991)and Chen, C. (1996), with the desired capability of
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learning ina one-shot manner from incoming training data being independentupon
time-consumingiterative algorithms. This quick learning ability allows the GRNN
to adaptto changing system parameters more rapidly than other methods such as
geneticalgorithms, back-propagation orreinforcement learning. Thisisachieved by
the estimation of continuous variables with asingle training instance and refining this
estimation inanon-iterative manner since the training data is added to the network.
Therefore, this neural network can be used as an intelligent controller for the
autonomous helicopter.

GRNN Architecture

The GRNN isaspecial extension ofthe radial basis function network. This
neural network is based on nonlinear regression theory consisting of four layers: the
inputlayer, the pattern layer, the summation layer and the output layer (see Figure
3).Itcanapproximate any arbitrary mapping between the inputand output vectors.
While the neurons in the first three layers are fully connected, each output neuron
isconnected only to some processing units in the summation layer. The summation
layerhastwo different types of processing units: the summationunits and the division
unit. Thenumber of summation units in the summation layeris always the same as
the number of GRNN output units. The division unit only sums the weighted
activations ofthe pattern units without using any activation function. Each of the
outputunitsis connected only toits corresponding summationunitandto the division
unit. There are no weights in these connections. The function of the output units
consists ofasimple division of the signal coming from the summation unitby the
signal coming fromthe divisionunit.

Figure 3: Topology of the generalized regression neural network
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Consider X and Yindependent and dependent variables respectively. The
regression of Y on Xis the computation of the most probable value of Y for each
value of Xbased on a finite number of possibly noisy measurements of X and the
associated values of Y. The variables X and Y can be vectors. In parametric
regression, some functional form with unknown parameters, a , is assumed and the
values of the parameters are chosen to make the best fit to the observed data. For
example, in linear regression, the output Yis assumed to be alinear function of the
input X, and the unknown parameters a, are linear coefficients. Innonparametric
regression, no assumptionabout the statistical structure ofincoming training data is
made.

The equation form used for the GRNN is presented in (3) and (4) (Specht,
1991). Theresulting regression, which involves summations over the observations,
isdirectly applicableto problems involving numerical data.

D} =(x-x;) (x-X,) 3)

n — 2
Y eXp[Dg]
" i=1 20
Y(x)= :
n -D, “4)
2. exp 2o?

i=l (o}

X and Y; are earlier samples that compose the training data setand »
represents the number of training data.

The estimated output Y( X ) isaweighted average ofall the observed values
Y, whereeach observed valueis weighted exponentially according to the Euclidean
distance between Xand X.. The smoothing parameter ¢ (orbandwidth) controls
how tightly the estimate is made to fit the data. Figure 4 shows the shapes of the
i" pattern unitnode in the pattern layer 7’ of the GRNN for three different values
ofthe smoothing parameter. The output value ineach patternunit 7' is given by the
followingexpression:

1y =exp(-|x - x| 207 ©
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Figure 4: Structure of the i pattern unit

where T; : R" — %R and i = 1,..., p represents all the pattern units in the pattern
layer.

When the smoothing parameter ¢ is made large, the estimate is forced to be
smooth and in the limitbecomes amultivariate Gaussian with covariance 6*/. On
the other hand, a smaller G allows the estimate to more closely fit the data and
assume non-Gaussian shapes (see Figure 5(a)). In this case, the disadvantage
happens when the wild points could have a great effect on the estimate. As ¢
becomeslarge, y(x ) assumesthe value ofthe samplemean ofthe observed Y; (see
Figure5(c)). When o goesto0, y(y) becomesthevalue ofthe ¥ associated with
the data closest to X. For intermediate values of ¢ , all values of Y are used, but
those corresponding to observed values closer to X are given heavier weight (see
Figure 5(b)).

Ifwe have much confidence in the input data, asmall ¢ canbeusedto give
greater weightto individual measurements. However, ifthere is uncertainty in the
input data due to noise, alarge ¢ mustbe used to reduce the effect of spurious
measurements on an estimate. The optimisation of the smoothing parameter is
critical to the performance of the GRNN. Usually this parameter is chosen by the
cross-validation procedure or by esoteric methods that are not well known in the
neural net literature.

Inthenextsubsections it will be shown the application ofthe GRNN tomodel
a piecewise linear function, and to control an unmanned helicopter. It is also
discussed the clustering algorithmto obtain the representative samples betweenthe
training data (Lefteri, 1997).
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Figure 5: Possible shapes for different smoothing parameter values
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Clustering and Adaptation to Nonstationary Statistics

Forsome problems, the number of sample points (X, Y) may be not sufficient
sinceitis desired touse all the data obtainable directly in the estimator (4). In other
problems, thenumber of sample points can be sufficiently large, becomingnolonger
practical to assign a separate node to each sample. There exist various clustering
techniques that can be used to group samples. Therefore the group can be
represented by only one node (Moody & Darken, 1989), (Burrascano, 1991),and
(Tou& Gonzalez, 1974). A sample pointbelongs to a group ifthe distance between
this samplepointand the cluster centeris less thanaspecific value. This value, which
canbe considered theradius of influence - ofthe cluster, mustneed to be specified
beforethe training starts.

Inthe developed clustering algorithm, representative samples are produced
from a group of training instances that are close to one another. The training is
completed after presenting to the GRNN input layer, only once, each input-output
vector pair fromthe training set. The Euclidean distance to obtain the representative
samples and to reject all the other data points was used in the algorithm.

Suppose that we have a set of n data samples {(X,Y)e (X, Y);i=1,...,n}
where Xand Yrepresentthe inputand output data sets, respectively. X and Y, are
a2Dvector (x, ,x,)andasingle value, respectively. Initially, the first sample point
(X}, Y))inthetraining setbecomes the center of the cluster of the first pattern unit
at.X. Thenextsample pointis then compared with this center of the first pattern unit,
anditis assigned to the same cluster (pattern unit) ifits distance from this center is
lessthan the prespecified radius of influence. Then, equation (7) should beupdated
forthis cluster. Otherwise, ifthe distance \ X-X,; \ ishigherthanr, thenthe sample
becomes the center of the cluster of the next pattern unit. Figure 6 showshow the

clustering algorithm works considering three points (x,,,x,,), (x )and (x

21’x22 31°

Figure 6: Cluster generation
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x,,). The first two points belong to the same cluster because the distance between
themisless thanr. The third pointis the center of the new cluster since the distance
ishigherthanr.

Inthe same manner, all the other sample points are compared one-by-one with
all patternunits already set, and the whole pattern layer is thus gradually built. During
thistraining, the determined values of individual elements of the center clusters are
directly assigned to the weights in connections between the input units and the
corresponding pattern units.

After the determination of the cluster centers, the equation (4) can then be
rewrittenas (Specht, 1991):

2
iAi CXP[_D; ]
" i=1 20
Y(X)= ; o3 ©
2B CXI{ ;J

i=1 20

where

A;(k=1)+Y;
B,(k—1)+1 @

{Az’ (k)

B; (k)

The value p(n represents the number of clusters. 4 (k) and B (k) are the
coefficients for the clusterafter ksamples. 4 (k) is the sum ofthe Y valuesand B (k)
isthenumber of samples assigned to cluster ; . The 4 (k) and B (k) coefficients are
completely determined in one iteration for each data sample.

Reducing the Number of Clusters in Dynamic Systems

Ifthe network isused to model a system with changing characteristics, it is
necessary to eliminate the clusters that were notupdated during a period of time.
Thejustification for thisis thatin the dynamic systems appears new cluster centers
thatrepresent the new behavior of the model. Then, the number of clusters will
increase and also the computation time to produce an output. Since the 4 and B
coefficients canbe determined by using the recursive equations (7), itis introduced
a forgetting function allowing to reduce the number of clusters as shown in the
followingexpressions,
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FA,~ (k)= A (k - 1)exp(— :}(1 - exp(— ;JJyj
LBI. (K)=B, (k- 1)exp(— ;}r (1 _ exp(_ fT D ®)

and

A (k)= 4, (k - l)exp(— ’f)

T

B,(k)= B, (k- 1)exp(_ %J ©)

T

Equation (8) is the update expression when anew sample is assigned to the
clusteri. Equation (9)isapplied to all other clusters. The parameters zand T are the
time passed after the lastupdate of the clusteri and a constant that determines when
the cluster disappears after the last update, respectively. Figure 7 shows the
exponential decay and increase functions represented by solid and dashed lines
respectively. Theexponential decay function will attenuate all the coefficients 4 and
Boftheclusters. The increasing exponential function allows the new sample data
tohave aninfluence inthe local area around its assigned cluster center.

When the coefficient B is zero then the corresponding cluster would be
eliminated. Forexample, considering Figure 7, if the clusteriis notupdated during
60 seconds then the cluster i (and its associated 4, and B, coefficients) will be
eliminated.

Comparison with other Non-Linear Regression Techniques
The advantages of GRNN relative to other non-linear regression techniques

are:

1. The network learns in one pass through the data and can generalize from
samples as soon as they are stored.

2. Withtheincreasingnumberof observed samples, the estimates convergetothe
conditional mean regression surfaces. However, using a few number of
samples, it forms very reasonable regression surfaces.
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Figure 7: Exponential decay function
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3. Theestimateislimited withinarange defined by the minimum and maximum
ofthe observations.

4. Theestimate cannotconverge to poor solutions corresponding tolocal minima
ofthe error criterion.

5. Asoftwaresimulationis easy to develop and touse.

6. Thenetwork can provide amapping from one set of sample points to another.
Ifthe mapping is one-to-one, an inverse mapping can easily be generated from
the same sample points.

7. Theclustering version of GRNN, equation (6), limits the numbers ofnodes.
Optionally it can provide amechanism for forgetting old data.

The main disadvantage of GRNN is the amount of computation required to
produce an estimate, since it can become large if many training instances are
gathered. Toovercomethis problemitwas implementeda clusteringalgorithm. This
additional processing stage brings the questions regarding when to do the initial
clustering and if the re-clustering should be done after additional training data is
gathered.

GRNN-Based Model

The described GRNN type has many potential uses as models and inverse
models (see Figure 8). A simple problem with one independent variable isused as
anexampleto show how the regression technique is applied tomodelling asystem.
Suppose that we have a piecewise linear function and training instances taken from
this function (see Figure 9) (Montgomery, 1999). The samples X = [-4,-3,-2,~
1,0,1,2,3,4]and ¥, = [-1,-1,-1,-1,-1,0,1,1,1] are represented by circles.
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Since GRNN always estimates using a weighted average of the given samples,
the estimate is always within the observed range of the dependent variable. Inthe
inputrange, the estimator takes on aset of curves that depend on 6, each of which
isareasonableapproximation to the piecewise linear function (see Figure 9). Figure
10 shows the GRNN estimates of this function for different sigma values. For 6=
0.5 the curve is the best approximation. A small sigma allows the estimate to more
closely fitthe training data, while a large sigma produces a smoother estimate. It is
possibleto over fitthe data with very small values of 6.

Besides the advantages ofthe GRNN when compared with other non-linear
regression techniques, there exists another four benefits fromthe use of the GRNN.
First,ithasanon-iterative, fast-learning capability. Second, the smoothing parameter,
o, canbemade large to smooth outnoisy data or made small to allow the estimated
regression surface to be asnon-linear as required to more closely approximate the
actual observed training data. Third, it is not necessary to specify the form ofa
regression equation. Finally, the addition of new samples to the training data set
doesnotrequire re-calibrating the model. The disadvantage of the network is the

Figure 8: Modelling the system using GRNN
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Figure 10: Example of GRNN application
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difficulty to analyze and to provide a clear understanding of how its behavioris
related toits contents. The inexistence of an intuitive method for selecting the optimal
smoothing parameteris also adifficulttask tosolve.

GRNN-Based Controller

Thenon-linear control helicopter and robotic systems are particularly good
application areas that can be used to demonstrate the potential speed of neural
networks implemented in parallel hardware and the adaptability ofinstant learning.
First,the GRNN learns the relation between the state vector ofthe system and the
control variables. After the GRNN-based model is trained, it can be used to
determine control inputs. One way in which the neural network could be used to
control asystemisshowninFigure 11.

The GRNN isnottrained in the traditional neural network sense where weights
areadjusted iteratively. Rather, all training data is stored inmemory (thus the term
memory-based network) and only when the output is necessary foradifferent input

Figure 11: A GRNN controller
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Table 1: Vector prototype for each control input

Control Inputs State Variables
Collective {6,.z,w}
Longitudinal cyclic {5 by X,u,0, q}
Lateral cyclic {6..v.v.0,p}
Pedals 64.0.r}

anew computation is performed. In controlling the helicopter each data training is
avector withthe input variables and the corresponding output for each controller.
Only the samples that represent the cluster centers are used to populate the
network. Thereduction oftraining dataused by the GRNN is an important problem
because we can obtain a faster controller maintaining a good performance. Itis also
possibleto separate the obtained representative clusters' center, for example, in
two data sets for the coarse and fine control.

To control the helicopter flight mode in hover position, four data sets
corresponding to each input control were used. In each data set exists a set of
vectors that correspond to the representative clusters obtained after the clustering
algorithmis applied. The vector structure ineach data setis givenin Table 1.

SIMULATED RESULTS

Anexperiment was performed to determine the extentto which performance
ofthe clustering algorithm degrades with less training data. Figure 12 shows the
output of the sine function and the model when the identification procedure was
carried out for only nine patterns instead of the fifty-five used to represent the sine
function.

Figures 13 and 14 show the openloopresponses of the helicopter displacements
and euler angles corresponding to impulse control inputs in the longitudinal and
lateral cyclic. Firstit was applied an impulse in the longitudinal control and then in
thelateral control input. The initial conditions for the helicoptermodel are as follows:

ug =0,vg =0,wy =0, ¢, =-0.0576, 6, =0.0126, ¢, = 0.

The initial conditions corresponding to the derivatives of the state variables
described above are zero.
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Figure 12: Output of sine function (solid line) and of GRNN model (dotted
line) after training with only nine patterns
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Figures 15to 23 showsthe system response using the GRNN controllerusing
the data set for each controller. Each data set contains the representative clusters
obtained afterthe clustering process. Figures 15 to 17 show the displacement ofthe
helicopter in the longitudinal, lateral and vertical axis, respectively. These three
Figures show thatthe higher displacement changes occur in the forward and lateral
axisrather thaninthe vertical axis. This happens because the impulse control inputs
wereapplied to the longitudinal and lateral cyclic which are the commands to control
the forward and lateral displacements of the helicopter.

Figure 18 shows the trajectory of the helicopter in the 2D plan. The arrows
indicate the direction of the helicopter displacement after applied impulses in the
controlinputs. After approximately five minutes the helicopteris stabilized in the

initial position(i.e. x = y =z =0).

Figure 13: Simulated results of (x,y,z) to an impulse control input, in the
longitudinal cyclic
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Figure 14: Simulated results of ($,0,¢) to an impulse control input, in the
longitudinal cyclic
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Figure 19showstheroll, pitchand yaw angles. Even when the initial conditions
oftherolland pitch angles are different from zero, these angles stabilize, permitting
the control of the helicopter.

Figures 20to23 show the control inputs applied to the helicopter. The control
inputs were limited to+5V for simulate practical limitations of the actuators. Since
the higher perturbation occurs in the longitudinal and lateral displacements than it
was the longitudinal and lateral cyclic control inputs the actuators with higher
performance.

Figure 15: Simulated results of x for an impulse control input, in the
longitudinal and lateral cyclic
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Figure 16: Simulated results of y for impulse control inputs, in the
longitudinal and lateral cyclic
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Figure 17: Simulated results of z for impulse control inputs, in the
longitudinal and lateral cyclic
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Since foreach flight mode it can be used one distinct GRNN controller, then
itisnotnecessary toreduce the number of clusters. Each controllerhas a cluster set
thatrepresents the dynamic behavior of the helicopter for the specific flight mode.

CONCLUSIONS

To control the displacement of a single main rotor helicopter ofa 15,000-
pound using the longitudinal, lateral and collective control inputs, three GRNN
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Figure 18: Trajectory of the helicopter in the (x,y) plan
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Figure 19: Simulated results of ($,0,¢) to an impulse control input, in the
longitudinal and lateral cyclic
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controllers have been used. The direction of the helicopter nose was controlled by
the pedals control inputusing another GRNN controller. With these controllers it
was possible to enable the helicopter to maintain its stationary position foralong
period oftime. Theadvantage ofthe GRNN controlleris the fast-learning capability
andthenoniterative process. Formany gathered training instances, the computation
amountbecame large. Therefore, to overcome this problemaclustering algorithm
wasimplemented.
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Figure 20: Simulated result of the collective control input
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Figure 21: Simulated result of the longitudinal cyclic control
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FUTUREDIRECTIONS

A fuzzy algorithm canalso control the helicopter. Fuzzy rule base systems are
linguistic in nature and can be inspected by ahuman expert. However, GRNN and
fuzzy algorithms could be used together. Fuzzy logic gives acommon framework
forcombiningnumerical training dataand expertlinguisticknowledge along with the
compacttransparency and computational efficiency of rule bases, while the GRNN
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Figure 22: Simulated result of the lateral cyclic control
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Figure 23: Simulated result of the pedals control
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gives the approach rapid adaptive capability. For this reason, one of the future
research directions may be the hybrid fuzzy logic/GRNN approach.
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Chapter 1V

A Biologically Inspired
Neural Network Approach
to Real-Time Map Building
and Path Planning

Simon X. Yang
University of Guelph, Canada

ABSTRACT

A novel biologically inspired neural network approach is proposed for real-
time simultaneous map building and path planning with limited sensor
information in a non-stationary environment. The dynamics of each neuron
is characterized by a shunting equation with both excitatory and inhibitory
connections. There are only local connections in the proposed neural network.
The map of the environment is built during the real-time robot navigation
with its sensor information that is limited to a short range. The real-time robot
path is generated through the dynamic activity landscape of the neural
network. The effectiveness and the efficiency are demonstrated by simulation
studies.

INTRODUCTION

Real-time path planning with collision free inanon-stationary environment is
avery importantissueinrobotics. Therearealot of studies on the path planning for
robotsusing various approaches. Most of the previous models use global methods
to search the possible paths inthe workspace (e.g., Lozano-Perez, 1983; Zelinsky,

Copyright © 2003, Idea Group Inc.
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1994; Al-Sultan & Aliyu, 1996; Li& Bui, 1998). Ong and Gilbert (1998) proposed
anew searching-based model for path planning with penetration growth distance,
which searches over collision paths instead of the free workspace. Most searching-
based models can deal with static environment only and are computationally
complicated when the environmentis complex. Some of the early models deal with
static environment only, and may suffer from undesired local minima (e.g., Ilari &
Torras, 1990; Zelinsky, 1994; Glasius etal., 1994). Some previous robot motion
planning models require the prior information of the non-stationary environment,
including the varying target and obstacles. For example, Chang and Song (1997)
proposeda virtual force guidance model for dynamic motion planning of amobile
robotinapredictable environment, where an artificial neural network isused to
predictthe future environment through arelative-error-back-propagation learning.

Several neural network models were proposed to generate real-time trajectory
throughlearning(e.g., Li& Ogmen, 1994; Beom & Cho, 1995; Glasiusetal., 1994;
1995; Zalama, Gaudiano & Lopez Coronado, 1995; Chang & Song, 1997;
Gaudiano etal., 1996; Yang, 1999; Yang & Meng, 2000a, 2000b, 2001). The
learning based approaches suffer from extra computational cost because of the
learning procedures. In addition, the planned robot motion using learning based
approachesis notoptimal, especially during the initial learning phase of the neural
network. Forexample, Zalamaetal. (1995) proposed aneural network model for
the navigation of amobilerobot, which can generate dynamical trajectory with
obstacle avoidance through unsupervised learning.

Glasiusetal. (1995) proposed aneural network model for real-time trajectory
formationwith collision free inanon-stationary environment. However, thismodel
suffers from slow dynamics and cannot perform properly in a fast changing
environment. Inspired by Hodgkin and Huxley’s (1952) membrane equation and
the later developed Grossberg’s (1988) shunting model, Yang and Meng (2000a)
proposed a neural network approach to dynamical trajectory generation with
collision free inan arbitrarily changing environment. These models are capable of
planning areal-time optimal path in non-stationary situations withoutany learning
process. Butthe planned paths in Glasiusetal. (1995)and Yangand Meng (2000a)
donottake into accountthe clearance from obstacles, whichis demanded inmany
situations. By introducing inhibitory lateral connections in the neural network, Yang
and Meng (2000b) proposed a new model for path planning with safety
consideration, which is capable of generating a “comfortable” path foramobile
robot, without suffering either the “too close” (narrow safety margin) or the “too far”
(waste) problems. However, the models in Ilari and Torras (1990), Zelinsky
(1994), Zalamaetal. (1995), Glasius etal. (1995) and Yang and Meng (2000a,
2000b) assume that the workspace is known, which is not practically feasible in
many applications.
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Inthis chapter, anovel biologically inspired neural network approach, based
onthemodelin Yang and Meng (2000b) for path planning of mobile robots with
completely known environment, is proposed for real-time simultaneous map
building and path planning of mobile robots in adynamic environment, where the
environmentis assumed completely unknown. The state space of the topologically
organized neural network is the Cartesian workspace, where the dynamics of each
neuronis characterized by a shunting equation that was derived from Hodgkin and
Huxley’s (1952) membrane model for abiological system. The robot navigationis
based on the target location, and robot sensor readings that are limited to a short
range. Thereal-time robot path is generated from the neural activity landscape of
the neural network that adapts changes according to the target location and the
knownmap ofthe workspace. A map oftheenvironmentisbuiltinreal time whenthe
robot is moving toward the target, where the sensor readings are obtained from the
onboard sensors of the mobile robot thatare limited to a certain local range only.

THEMODEL

In this section, the originality of the proposed neural network approach is
briefly introduced. Then, the philosophy ofthe proposed neural network approach
and themodel algorithm are presented. Finally, the stability of the proposed model
is provenusing both qualitative analysis and a Lyapunov stability theory.

Originality

Hodgkinand Huxley (1952) proposed a computational model for a patch of
membrane in a biological neural system using electrical circuit elements. This
modeling work, together with other experimental work, led them toaNobel Prize
in 1963 for their discoveries concerning the ionic mechanisms involved in excitation
and inhibition in the peripheral and central portions of the nerve cell membrane. In
Hodgkinand Huxley’s (1952) membrane model, the dynamics of voltage across
themembrane, V ,is described using a state equation technique such as:

dv
Cm dtm = _(Ep + I/m)gp + (ENa + I/m)gNa - (EK + I/m)gl( (1)

where C isthe membrane capacitance. Parameters £, £, and E are the Nernst
potentials (saturation potentials) for potassiumions, sodium ions and the passive
leak currentinthe membrane, respectively. Parameters g, g, and g, represent the
conductance of potassium, sodium and passive channels, respectively. Thismodel
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provided the foundation of the shunting model and led to alot of model variations
and applications (Grossberg, 1988).

By setting C| =1, substituting x; =E+V, A=g, B=E +E D=E-E,
S¢=g,,andS’ =g, inEqn.(1),atypical shunting equationis obtained (Ogmen
& Gagne, 1990a, 1990b) as:

CZ[ :_Axi +(B_xi)Sie(t)_(D+xi)Sii(t) (2)

where variablex is the neural activity (membrane potential) of the i-thneuron.
Parameters 4, Band D are non-negative constants representing the passive decay
rate, the upper and lower bounds of the neural activity, respectively. Variables S ¢
and S are the excitatory and inhibitory inputs to the neuron (Ogmen & Gagne,
1990a, 1990b; Yang, 1999). This shunting model was first proposed by Grossberg
to understand the real-time adaptive behavior of individuals to complex and
dynamic environmental contingencies (Grossberg, 1973,1982, 1983, 1988),and
hasalotofapplications inbiological and machine vision, sensory motor control, and
many other areas (e.g., Grossberg, 1982, 1988; Ogmen & Gagne, 1990a, 1990b;
Ogmen, 1993; Zalamaetal., 1995; Gaudiano etal., 1996; Yang, 1999).

Model Algorithm

The fundamental concept of the proposed model is to develop a neural
network architecture, whose dynamic neural activity landscape represents the
limited knowledge of the dynamically varying environment from onboard robot
sensors. By properly defining the external inputs from the varying environment and
internal neural connections, the target and obstacles are guaranteed to stay at the
peak andthe valley ofthe activity landscape of the neural network, respectively. The
target globally attracts the robot in the whole state space through neural activity
propagation, while the obstacles have only local effect ina small region to avoid
collisions and to achieve the clearance from obstacles. Thereal-time collision-free
robot motion is planned through the dynamic activity landscape of the neural
network.

Theneural network architecture ofthe proposed modelisadiscrete topologically
organized map thatisused in several neural network models (Glasiusetal., 1995;
Yang & Meng, 2000a, 2000b). The proposed model is expressed in a finite (F-
)dimensional (F-D) state space, which can be either the Cartesian workspace or
the configuration joint space ofa multi-joint manipulator. The location of the i-th
neuron at the grid in the F-D state space, denoted by avector g€ R", represents
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apositioninthe workspace oraconfigurationinthe jointspace. The target globally
attracts the robot through neural activity propagation, while the obstacles push the
robot only locally in a small region to avoid collision. To take into account the
clearance fromobstacles, thereare both excitatory and inhibitory lateral connections.
The dynamics of the i-th neuron in the neuron network is given by a shunting
equation:

By +(B—xi)([l,]* +ﬁw,,-[x,]*]—(D+x,)([l,.]' Sl —o]‘] 3)

k

where the excitatory and inhibitory inputs are [/ + 2 w,lx, T and U1+ ZWA/
respectively. The external input / to the i-thneuron is defined as: I=E, if there is
atarget; [ =—FE, if there is an obstacle; /. =0, otherwise, where E'is a very large
positive constantoverits total lateral input. Unlike those models in Yangand Meng
(2000a,2000b) where the whole environment is assumed to be completely known,
the proposed model assumes that initially the environment is completely unknown,
exceptthatthe robotknows the targetlocation. Thus the external input/ depends
on the known information of the environment from its onboard sensors whose
capacityislimited toacertain local range. A map ofthe environmentis building from
the sensor information during the real-time robotnavigation.

The function [a]" is a linear-above-threshold function defined as, [a]*=
max(a,0), and the non-linear function [a] is defined as [a]”=max(-a,0). The
weights of the excitatory and inhibitory connections, w, and Vi, fromthei-thneuron
to the j-thneuron are defined as:

= f(| 4, — 94, |) and Vi = ﬁwy (4)

respectively, where Bis a positive constant, S€ [0,1],and|q - qj| represents the
Euclidean distance between vectors g and q; inthe state space. Functionf(a)isa
monotonically decreasing function, such as a functiondefined as: fla) = t/a,1f0<
a<r,;fla)=0,ifa >r , where u and r, are positive constants. Therefore, it is
obV10us thatthe neural connection welghts w, and v, are symmetric. The neuron
has onlylocal connectionsinasmallregion (0,7 ) 1e. 1ts receptive field isthe space
whose distance to the i-thneuron is less than ;. The neurons located within the
receptive field of the i-th neuron are referred as its neighboring neurons. The
parameter kis the total number of neighboring neurons ofthe i-thneuron. Parameter
oisthethreshold ofthe inhibitory lateral neural connections. The threshold of the
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Figure 1: Schematic diagram of the neural network for robot path planning
when the state space is 2D; the i-th neuron has only 8 lateral connections to
its neighboring neurons that are within its receptive field

Nz
ZINY

excitatory connections is chosen as a constant zero. A schematic diagram ofthe
neuralnetworkin2DisshowninFigure 1, wherer, ischosenasr,=2. Thereceptive
field of the i-thneuronisrepresented by a circle with aradius of .

The proposed neural network characterized by Eqn. (3) guarantees that the
positive neural activity can propagate to the whole state space. However, the
negative activity stays locally only in a small region, due to the existence of the
threshold oofthe inhibitory lateral connections. Therefore, the target globally
influences the whole state space to attract the robot, while the obstacles have only
local effecttoavoid collision. Inaddition, by choosing different Sand/or ovalues,
thelocal influence from the obstacles s adjusted, and a suitable strength of clearance
from obstaclesis selected. Therefore, the proposed model is capable of planning
the shortest path from the starting position to the target, or a safer path, or the safest
path, depending on the differentrequirement.

The positions of the target and obstacles may vary with time. The activity
landscape ofthe neuron network dynamically changes due to the varying external
inputs and the internal lateral connections. The optimal path is generated from the
dynamic activity landscape by a gradient ascentrule. Fora givenpresent position
inthe workspace or in the robot manipulator joint space, denoted by d, the next
positionq (alsocalled “command position”) is obtained by:
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p, &= X, = max{xj,j =1,2,...k} (5)

where kis the number of the neighboring neurons, i.e., all the possible next positions
ofthe presentpositiong,. Afterthe present positionreaches its next position, the
next position becomes a new present position. The present position adaptively
changes according to the varying environment. The speed of the robot can be
defined asa function ofits distance to the nearest obstacle, e.g., a function defined
as:

Vs ifd>d,
“|v.d/d,, otherwise ©)

where v is the maximum robot speed, d, is a positive constant and d, is the
Euclidean distance fromrobotto its nearest obstacle.

Thedynamicactivity landscape of the topologically organized neural network
isusedto determine where the nextrobot position should be. However, when the
robotmoves to the next positionis determined by therobot moving speed. Inastatic
environment, the activity landscape of the neural network will reach a steady state,
which will later be proven using the Lyapunov stability theory. Mostly the robot
reaches the target much earlier than the activity landscape reaches the steady state
oftheneural network. Whenarobotisinadynamically changing environment, the
neural activity landscape will never reach a steady state. Due to the very large
external inputconstant £, the target and the obstacles stay atthe peak and the valley
ofthe activity landscape of the neural network, respectively. The robot keeps
moving toward the target with obstacle avoidance till the designated objectives are
achieved.

Stability Analysis

In the shunting modelin Eqn. (2) and (3), the neural activity x, increases ata
rate of (B—x))S ¢, whichis not only proportional to the excitatory input S ¢, butalso
proportional to an auto gain control term (B —x,). Thus, withan equal amount of
input §¢, the closer the values of x, and B are, the slower x, increases. When the
activityx isbelow B, the excitatory termis positive, causing anincrease inthe neural
activity. Ifx;isequal to B, the excitatory term becomes zero, and x, willno longer
increase no matter how strong the excitatory inputis. In case the activity x exceeds
B, B -x becomes negative and the shunting term pulls x back to B. Therefore, x,
is forced to stay below B, the upper bound of the neural activity. Similarly, the
inhibitory term forces the neural activity to stay above the lower bound —D.
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Therefore, once the activity goes into the finite region [-D, B], itis guaranteed that
the neural activity will stay in this region for any value of the total excitatory and
inhibitory inputs (Yang, 1999).

The stability and convergence of the proposed model can also be rigorously
provenusingaLyapunov stability theory. From the definition of [a]*, [a]"andv,,
Eqn. (3) isrewritten into Grossberg’s general form (Grossberg, 1988):

& a(xl-)(a(xi) - gc,,d(xi)) o

by the following substitutions:

B-x, ifx;20
GE=N Dy ifx, <0

b,(x;) =(;_)(B[11-]+ ~CLLY —(A+[L] +[L])x,)

i i

Cp =Wy
and
X if x; 20
d,(x;)=1B(x,-0), ifx; <o
0, otherwise

Since theneural connection weightis symmetric, W, =W, then ¢;=¢; (symmetry).
Since Band D are non-negative constants and x € [-D, B], thenai(xi) thena (x)
> 0 (positivity). Since d ’J,(xj) =1at x, > 0;d ’J,(xj) =P at X,>0; and d ’J,(xj) =0,
otherwise, then dj(xj) >0 (monotonicity). Therefore, Eqn. (5) satisfies all the three
stability conditions required by Grossberg’s general form (Grossberg, 1988). The
Lyapunov function candidate for Eqn. (7) canbe chosenas:

v= X[ B0 0 5 Ved, (3)d ) ®

Jok=1
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The derivative of valongall the trajectories is given as:

N N
@ = _Zaidi'(bi - Zcijdj)z
dr 55 =

Sincea,20andd;’ 20, thendv/dt<0alongall the trajectories. Therigorous proof
of'the stability and convergence of Eqn. (7) can be found in Grossberg (1983).
Therefore, the proposed neural network system is stable. The dynamics of the
network is guaranteed to converge to an equilibrium state of the system.

SIMULATIONS

To demonstrate the effectiveness of the proposed neural network model, the
proposed neural network model for real-time map building and path planning is
applied toaroom-like environmentin Figure 2A, where the static obstacles are
shown by solid squares. The targetis located at position (30,30), while the starting
position of the robot is at (4,4). The neural network has 50x50 topologically
organized neurons, with zero initial neural activities. The model parameters are
chosen as: 4=10 and B= D=1 for the shunting equation; u=1, =0.8, 6 =—
0.8 andr, =2 for the lateral connections; and £= 100 for the external inputs. Three
cases are carried out. In the first case, same as the models in Yang and Meng
(2000a,2000b), itis assumed that the environment is completely known by some
additional sensors in the workspace. The generated robot path is shown in Figure
2A,wheretherobotisrepresented by circles. It shows that the robot canreach the
target without obstacle avoidance. The neural activity landscape when the robot
arrives atthe targetlocation is shown in Figure 2A, where the peak is at the target
location, while the valleys are at the obstacle locations.

Inthe second case, the environment is assumed to be completely unknown,
exceptthe targetlocation. The onboard robot sensors can “see” ina limited range
withinaradius of R=5 (see the circle in lowerright corner of Figure 3A). Asshown
inFigure 3A, initially the robot sees some obstacles on its back, but there are no
obstacles in its front direction toward the target. Thus the robot moves straight
forward to the target. However, when the robotarrives at location (16,16), it starts
to sense the obstacle in its front. When the robot arrives at (18,18), the built map
isshowninFigure 3A, where a few obstacles are detected by its onboard sensors,
and the activity landscape is shown in Figure 3B. The robotis moving toward the
targetalonga collision-free path; more and more obstacles were detected. When
therobotarrivesat(18,41),the builtmap and the activity landscape are shown in
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Figure 2: Path planning with safety consideration when the environment is
completely known--A: the dynamic robot path; B: the activity landscape when
the robot reaches the target
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Figure 3: Map building and path planning with sensor information limited to
a radius or R=5--A and B: the dynamic robot path and the environment map
(A) and the neural activity landscape (B) when the robot arrives at (18,18);
Cand D: the dynamic robot path and the environment map (C) and the neural
activity landscape (D) when the robot arrives at (18,41)
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Figure 3: (continued) (C) the neural activity landscape (D) when the robot
arrives at (18,41)
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Figure 4: Map building and path planning with limited sensor information--
A: the robot path and the built map in same case in Figure 3; B: the robot path
and the built map when there are obstacles suddenly placedin its front to close
to the gate to the target when the robot arrives at (42,41) (marked by an
arrow) in the case in left panel
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Figure 3C and Figure 3D, respectively. The robot continues to move toward the
target. Therobottraveling path to reach the target and the built map are shown in
Figure3A.

Inthethird case, the conditioninitially is the same asin Case 2. However, when
the robotarrives at (42, 41), there are obstacles suddenly placed in front of the
robot, which close the gate for the robot to reach the target. The robothastomove
around there, and finally the robot has to move back, pass around the obstacles and
finally reach the target fromthe other side. The robot path after the sudden obstacles
were placed is shown in Figure 4B. It shows that the robot is capable of reaching
the target with obstacle clearance.

DISCUSSIONS

Inthis section, the parameter sensitivity of the proposed neural network model
will be discussed. Then a simple model characterized by an additive equation is
obtained from the proposed shuntingmodel by removing the auto gain control terms
and lumping together the excitatory and inhibitory inputs.

Parameter Sensitivity

Parameter sensitivity isa very important factor to be considered when amodel
is proposed or evaluated. An acceptable model should be robust, i.e., not very
sensitiveto changes in its parameter values. There are only few parameters in the
proposed model in Eqn. (3). The upper and lower activity bounds B and D, the
receptive field parameter r, and the external input constant £'are not important
factors. The passive decay rate A determines the transient response of the neurons,
whichis very important for the model dynamics, particularly whenthe targetand the
obstacle are varying fast. The lateral connection weight parameter uis also an
important factor, which determines the propagation of the neural activity in the
neural network. The relative inhibitory lateral connection parameter Sand the
threshold ofthe inhibitory connections odetermine the strength of the clearance
from obstacles. They are very important factors as well. A detailed discussion
through description and simulation of the model parameters can be found in Yang
and Meng (2000b, 2001).

The proposed modelisnot very sensitive to the variations of model parameters
and the connection weight function. The parameters can be choseninavery wide
range. The weight function can be any monotonically decreasing function (Yang &
Meng,2001).
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Model Variation

Ifthe excitatory and inhibitory connections in the shunting equationin Eqn. (3)
are lumped together and the auto gain control terms are removed, then a simpler
form canbe obtained from Eqn. (3):

dx; . FoN B
P =—Ax,+ 1+ wylx, ] =Y v, [x, —oT ©)

j:] j:]

Thisisanadditive equation (Grossberg, 1988). The term /; 2 w;l 2 Vi
represents the total inputs to the i-th neuron from the external and 1nternal
connections. Thenon-linear functions [a]",[a]” and the threshold ¢ are defined as
the same as earlier in this chapter, which together guarantee that the positive neural
activity can propagate to the whole workspace while the negative activity can
propagate locally inasmall region only. Thus the target globally attracts the robot
in the whole workspace, while the obstacles have only local effects to achieve
clearance from obstacles. Therefore this additive model satisfies the fundamental
concepts of the proposed approach described earlier in this chapter. Itis capable
of simultaneously planning robot path and building environment map in most
situations. From the definition of [a]", [a] and v, Eqn. (9) canbe further rewritten
into acompact formas:

dx,
dt

=—Ax, +1 + ﬁ d(x)) 1)

where d(xj) isdefined in Eqn. (7). The stability of this additive model can also be
provenusinga Lyapunov stability theory, although its neural activity does nothave
any bounds. Eqn. (9) canbe rewritten into Grossberg’s general formin Eqn. (7) by
variable substitutions. Itis easy to prove that Eqn. (9) satisfies all the three stability
conditions of Eqn. (7) (Grossberg, 1988; Yang, 1999, Yang & Meng, 2001).
Therefore this additive neural network system s stable.

There are many important differences between the shunting model and the
additivemodel, although the additive model is computationally simpler. By rewriting
them into the general form in Eqn. (7), unlike the additive model in Eqn. (9), the
amplification function a (x,) of the shunting model in Eqn. (3) isnota constant, and
the self-signal function b (x) isnon-linear. The shuntingmodel in Eqn. (3) has two
auto gain controlterms, (B—x ) and (D+x,), whichresultin that the dynamics of
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Eqn. (3) remain sensitive to input fluctuations (Grossberg, 1988). Such a property
isimportant for the real-time robot path planning when the target and obstacles are
varying. In contrast, the dynamics of the additive equation may saturate in many
situations (Grossberg, 1988). Furthermore, the activity ofthe shunting model is
boundedinthe finite interval [-D, B], while the activity in the additive model does
nothave any bounds (Grossberg, 1988; Ogmen & Gagne, 1990a,1990b; Yang &
Meng, 2000a, 2000b, 2001).

CONCLUSION

Inthis chapter, anovel biologically inspired neural network model is proposed
forthereal-time map building and path planning with safety consideration. Several
points are worth noticing about the proposed model:

»  The strength of the clearance from obstacles is adjustable. By changing
suitable model parameters, this model is capable of planning the shortest path,
or acomfortable path, or the safest path (Yang & Meng, 2000b).

*  Thealgorithmis computationally efficient. The map is built during the robot
navigation, and the robot path is planned through the dynamic neural activity
landscape without any prior knowledge of the dynamic environment, without
explicitly searching over the free space or the collision paths, without explicitly
optimizing any cost functions and without any learning procedures.

*  Themodel canperformproperly inan arbitrarily varying environment, even
with asudden environmental change, such as suddenly adding or removing
obstacles.

*  Themodelisbiologically plausible. Theneural activity isa continuous analog
signal and has both upper and lower bounds. In addition, the continuous
activity prevents the possible oscillations related to parallel dynamics of
discrete neurons (Glasiusetal., 1995; Marcus, Waugh & Westervelt, 1990).

*  Thismodelisnot very sensitive to the model parameters and the connection
weight function. The parameters can be chosen in a very wide range. The
weight function can be any monotonically decreasing function.
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ChapterV

Evolutionary Learning
of Fuzzy Control
in Robot-Soccer

P.J. ThomasandR.J.Stonier
Central Queensland University, Australia

ABSTRACT

In this chapter an evolutionary algorithm is developed to learn a fuzzy
knowledge base for the control of a soccer micro-robot from any configuration
belonging to a grid of initial configurations, to hit the ball along the ball to
goal line of sight. A relative coordinate system is used. Forward and reverse
mode of the robot and its physical dimensions are incorporated, as well as
special considerations to cases when in its initial configuration, the robot is
touching the ball.

INTRODUCTION

Animportantaspect of fuzzy logic application is the determination ofa fuzzy
logic knowledge base to satisfactorily control the specified system, whether this is
derivable from an appropriate mathematical model or just from system input-output
data. Inherent in this are two main problems. The firstis to obtain an adequate
knowledge base (KB) for the controller, usually obtained from expertknowledge,
and second is that of selection ofkey parameters defined in the method.

Copyright © 2003, Idea Group Inc.
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The KB is typically generated by expert knowledge but a fundamental
weakness with this staticacquisitionis thatitis frequently incomplete, andits control
strategies are conservative. To overcome this one approach is to construct self-
organising fuzzy logic controllers (Yan, 1994). These self-organising fuzzy logic
controllers are used mainly for the creation and modification of the rule base. Of
interestis the question ofhow this self-organisation and adaptation can be carried
outinanautomated fashion. Onewayistoincorporate genetic/evolutionary algorithms
to form genetic fuzzy systems, (Karr, 1991; Thrift, 1991; Cordon, 1995).

Evolutionary learning of fuzzy controllers ina three-level hierarchical, fuzzy
logic system to solve a collision-avoidance problem in a simulated two-robot
system is discussed in Mohammadian (1998a). A key issue is that of learning
knowledgeinagiven layer sufficient forusein higherlayers. Weneedto findaKB
thatis effective, to some acceptable measure, in controlling the robot to its target
from ‘any’ initial configuration. One way is to first learn a set of local fuzzy
controllers, each KB learned by an evolutionary algorithm from a given initial
configuration within a set of initial configurations spread uniformly over the
configuration space. These KBs canthenbe fused through a fuzzy amalgamation
process (Mohammadian, 1994, 1998b; Stonier, 1995a, 1995b), into the global
(final), fuzzy control knowledge base. Analternative approach (Mohammadian,
1996; Stonier, 1998), isto develop an evolutionary algorithm to learn directly the
‘final’ KB by itselfover theregion of initial configurations.

Inthis chapter we use this latter approach and incorporate special attributes
to cover the difficult cases for control when the robotis close and touching the ball.
A relative coordinate system is used and terms are introduced into the fitness
evaluations thatallow both forward and reverse motion ofthe soccerrobot. We
definetherobotsoccer system, the design ofthe fuzzy controller, the design of the
evolutionary algorithm and finish with a short presentation of results for control of
the robot from a far distance from the ball and from configurations close and
touchingtheball.

ROBOTSOCCERSYSTEM

The basic robotsoccer system considered is that defined for the Federation
of Robot-Soccer Association, Robot World Cup (www.fira.nef). All calculations
for vision data processing, strategies and position control of the robots are
performed on a centralised host computer. Full specifications of hardware,
software and basic robot strategies that are employed in this type of micro-robot
soccer system can be found in Kim (1998).
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Kinematics

The kinematics ofa wheelchair-style robotis given by Equation 1 from Jung
(1999).

Ve /72 1/2||v,

Lo}{—l/L 1/L:||:VR:| M
where v, is the instantaneous speed at the left wheel of the robot, v, is the
instantaneous speed at the right wheel of the robot, L is the wheel base length, v,
istheinstantaneous speed ofthe robot centre, @is the instantaneous angular speed
about the instantaneous point of rotation (x,, y,). The radius of the arc 7 is
determined from v_.=r @, which is the distance between (x, y,) and v ..

Let the next robot position be approximated by a small time interval Az.
Assumev, and v, are constant over this interval. If @ =0, therobotis moving in

astraightline. Equation 2 gives the nextrobot position using linear displacement
As =v At

Xp X As cos(¢,)
y;a = |y || As sin(gy) )
O 0 Pr

Figure 1: Curvilinear formulae symbols
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When w#0, the robotscribes anarc. Curvilinear robot paths are calculated

using translation, rotation and translation Equation 3. Refer to Figure 1 for the
followingderivation:

First, determine the pointofrotation (x,,,):
|:x0] |:xR:| |:cos(¢R —7r/2):| [XR]+ |:—sin(¢R)]
= -re . = r
Mo Yr Sln((pR _77:/2) Yr COS(¢R)
Translate point of rotation to origin:
y }e Yr Yo - COS(¢R )
Rotate about the z-axis (counter-clockwise positive):
X, cos(AB) sin(AB) || x} sin(¢, +A0)
= = r
Vi —sin(A@) cos(AO) || y, —cos(¢, +AB)
Translate origin to point of rotation:
[x;] _ [x§]+[xo] _ [xR]H[ sin(9y +A9)—sin(¢R)}
Vi el Lo Vr —cos(@y +A0)+cos(¢y)

Finish offbyaddinginrobotangle correction:

Xp Xp sin(¢, +A0) —sin(g,) O][
v | = |ve| + | —cos(@, +A0) cos(¢,) Of r 3)
Br r 0 0 1| a6
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where ¢, € [0,27) isnecessarily constrained for inputinto the fuzzy system. The
following parameter values wereused: L=68.5(mm), At=1/60(s) At = 1/60(s).

Theplayableregion was defined asarectangle from coordinate (0,0)to(1500,1300)
(measurements inmm.), ignoring the goal box ateach end of the field.

FUZZY CONTROLSYSTEMDESIGN

Thediscussion onkinematics above shows, excludingmomentumand friction,
thatonly two variables, the velocity of the leftand right wheels, y =v, andy,=
v, control the motion of the robot. These two variables are taken as output of the
fuzzy control system now described below. Input variables for the fuzzy control
system are taken to be the position ofthe robot relative to the ball, described by
=3 variables x, =d*, x, = 6 and x, = ¢ as shown in Figure 2.

Theserelative coordinates were used in preference to Cartesian coordinate
variables foranumber of reasons, one being thatitreduced the number of rules in
the fuzzy KB. Distance squared was used toreduce the calculation costby notusing
asquareroot function, effectively applyinga“more orless” hedge. The angle ofthe
robotrelativeto the ball goal line was used instead of the ball robot line because of
positional error arising from image capture pixel size in determining the position of
eachobject. The visionsystem has aninherent+4.5 mm error caused by pixel size.
The pixel size error causes the angle of the line error to be inversely proportional
to the distance between the points used to calculate the line. However, one of the
points used to calculate the BG lineis atthe centre ofthe goal line. The allowable
anglerange when close to the goal offsets the error caused in determining the line.
The vision system error has negligible effect on placing the ball into the goal when
using BG asareference.

Figure 2: Relative coordinate parameters

G(x.v)
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Figure 3: Fuzzy input sets

2y |
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0 X ' y PE— '
0 3 3 T 3 3 27'5
(b) o(rad)
MO Vs s sv M ML L VL
1_
0 L ' P '
0 3 3 T 3 3 27'5
(C) o(rad)

Figure 3 shows the fuzzy input sets used to define the “attack ball strategy.” For
allrules seven sets are defined forbothangles 0 and ¢ : VS is Very Small, Sis Small,
SMis Small Medium, M is Medium, ML is Medium Large, L.is Large and VL.
is Very Large. Five sets are defined for distance squared: VCis Very Close, Cis
Close, Nis Near, F is Far and VF is Very Far.

Thevaluesof y, andy, aretaken tobe integers lying inthe interval [-128, 127].
Wetake256 B, outputfuzzy sets each correspondingtocentre y, = —128+ (k —1)
fork=1,...,256. Inthis case the name of the sets are the same as the output centres
v, of the sets.

The purpose of taking 256 B, output fuzzy sets instead 0f 255, B € [-127,
127], is a technical issue to allow the use of a binary mutation operator in the
evolutionary algorithm. The velocities are in factcappedtov,, v, € [-127,127]
before transmission to the robots.

Taking alarge number of output sets serves three purposes:

(1) Itdoesnotaffectthecomputational costofthe fuzzy controller; the solution can
be as fine as it needs to be.
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(i) The y, are the control values used for the left and right wheel motors -
eliminatingconversion.

(i) Itreduceserraticbehaviouroftheevolutionaryalgorithm (finer control) during
mutation.

Therewere 7x7x5 = 245 rulesinacomplete fuzzy knowledge base for this
system. In general, the j” fuzzy rule has the form:

If (x,is 4/ and x, is 4/ and x; is 4])

Then( y,is B/ and y, is B))

where 4/, k=1,2,3 are normalised fuzzy sets for input variablesx , k=1,2,3,
and where B /,m=1,2 are normalised fuzzy sets for outputvariablesy , m=1,2.

Givenafuzzyrulebase with Mrules,a fuzzy controlleras givenin Equation4
uses asingleton fuzzifier, Mamdani product inference engine and centre average
defuzzifierto determine output variables:

M n
Zl _kj l_Il.uAl_f(x;)
yk = ]_M —

Z i MA/(X,-)

j=1 i

“)

where y/ are centres of the output sets B/.

These values, 490 ofthem, are typically unknown and require determination
inestablishing valid output for controls to each wheel of the robot. Since thereis
lack of a priori knowledge about the system control, we used evolutionary
algorithms (EAs) (Michalewicz, 1994)to search for an acceptable solution.

EVOLUTIONARY LEARNING

Ourobjective hereisto learn arule base for the control of this system. The
firstproblemis how to formulate the knowledge base as a string in the population.

Each output fuzzy setisrepresented by an integer inthe interval [-128, 127].
Wecanformanindividual string P asastringof 2M = 490 consequents (integers
undertheidentificationabove):
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{ 11 ko k M M}
S= 151 82y cee 5815 82, o3 815 52,

where s,j=1,2 is an integer in the interval [-128,127].

The population at generation ¢, P(f) =s" :n = 1,...,N, where N isthe
number of individuals in the population. The population atthe next generation P(¢
=1)wasbuiltusinga fullreplacement policy. Tournamentselection, withn, being
the tournament size, determined two parent strings for mating in the current
generation. Geometric crossover with probability p was used for generating two
childstrings from the parent strings, for insertion in the next generation’s population.
Ineachsstring, the integer components were stored as two’s complement byte-sized
quantities, and binary mutation was undertaken on each string in the new population
with probability p . (Elitism was notused, for it was found to cause premature
convergence of thealgorithm.)

Fitness evaluation ofeachindividual was calculated by scribing apathusing the
fuzzy controller and stopping when either:

(1) iteration (time steps)reached aprescribed limit(100), or
(i) thepathexceeded the maximum allowable distance fromtheball, or
(i) therobotcollideswiththeball.

In (ii1) care needs to be taken recognising the finite size of the robot. Therobot
isasquare with size of 80 mm and the ball has adiameter of42.7 mm. Detecting
acollision oftherobotandball is made by calculating the distance of the ball centre
(x, ¥,)=(750, 650) perpendicular to the line in the direction of the robot d,,
passing through the centre of the updated position of the robot (x',, y',), and the
distance of theballd , projected onto thatline. These values are determined as:

d _ |(x3_x;a)+m(y3_y;a)|
AL T

m* +1

d. = |(YB_)};2)_m(x3_x;e)|
NL T

m? +1

where m isthe gradientofthe line passing through the robot centre, in the direction
oftherobot. The following quantity isused to define an exclusionregion determined
by the physical size of the robot:

A flag“HitBall” israised when the following conditionis true:
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IF ((d,, <40)AND(d, < 61.35))OR((d,, < 61.35)
AND(d ,, < 40))OR(r> < 61.35%))THEN (HitBall=TRUE)

corner

where, = (d, —40) +(d,, —40)".
The final position of the path was used to evaluate the fitness of each individual
as givenby Equation 5:

STH+TL+T+T) (5)

C

The fitness is calculated as a sum of anumber of different quantities, overaset
Cofinitial starting configurations, each configuration specifying robot coordinates
X, Vp-andangle ¢ describing the orientation of therobotrelativetothe BG line.

There were 273 initial configurations. The first 28 are defined with the robot
touching the ball on each of its four sides in seven different orientations 0 around
theball. Theremaininginitial configurations were defined with seven 6 angles on five
distancerings fromthe ball withseven ¢ angles.

The first 28 configurations c e [0,28),are given by:

X, =x, +61.35cos(0), y, = y, +61.35sin(0),and ¢ with:
0e{0,n/3,2r/3,,4n /3,57 /3,71 /36} ,and ¢ € {0, /2,7m,3m /2}.
Theremaining initial configurations c € [28,273), are givenby:

X, =X, +d cos(0), y, =y, +d sin(0),and ¢ with:

d € {77.92,122.75,310.4,784.94,1900} ,
0e{0,m/3,2rn/3,m,4 /3,57 /3,711 /36},
¢ {0,m/3,2rn/3,m,4r /3,57 /3,71m / 36} .

The first quantity in the fitness sumis 7, =@*(R, DP). Itis the final squared
distance between the robot centre R and the destination point DP=(688.5, 650)
when the path is terminated as described above. The term is used to determine
accuracy of the fuzzy controller to control the system to the desired destination
configuration.
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The second term T is the iteration count for each path. This quantity isused
to minimise the time taken to reach the desired destination configuration.

The third quantityis 7,=1000sin?( ¢ ) where ¢ is the final angle of the robot

relativetoline BG . Thistermisincluded toenable forward facing andreverse facing
solutionsto be accepted atthe final destination.

The fourth quantity 7, is a penalty function that is only applied for those
configurations c € [0, 28). Itis described in Equation 6:

10000 if @e[l1x/12,137/12) and sin®(9)>0.25
T,=310000 if O¢[l1n/12,13n/12)

0 otherwise

(6)

Itis aconstant penalty used to drive the solution away from paths thathit the
ball when considering the first28 initial configurations. Withoutthis penalty, the best
solutions obtained via evolutionary learning are invariably ones that try to run
through theball.

The evolutionary algorithm was terminated after a prescribed number of
generations. Thebestindividual, thatis, the one with the minimum fitness, is taken
asthe “best” fuzzy logic controller determined by the algorithm for this problem.

RESULTS

Theevolutionary algorithm was found to easily learn a fuzzy controller forwhen
fitness was evaluated fora single initial configuration.

Establishing learning overaset ofinitial configurations fromc=0to c=28
where the robot was placed in contact with the ball was difficult; appropriate sets
ofevolutionary parameters needed to be defined withamutation schedule to ensure
diversity inthe population atdifferent stages inthe learning, for example after every
1,000 generations. The reason for the difficulty was that the algorithm tended to
lock fuzzy control into always forward or always reverse motion of the robot, with
the consequence that not the shortest distance path was achieved, and invariable
penalty constraints were broken.

Learning the fuzzy control over the set of all configurations incorporated the
difficulties thathad to be overcome for those configurations close to the ball. The
algorithmtendedtolockinto local minimawhen consideringmultiple configurations.
Thelocal minima existed due to the algorithm finding a good single pathamongstthe
many thatinfluenced nearby paths.
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Typical values in simulations were: the size of the population N = 200,
probability of crossover p =0.6 and the number of tournament contestants n,=
8.Mutation probability was defined asaschedule: p, =0.05 —0.00048(gen mod
(1000)), which decreased mutation with increasing generation number and
recommenced with high mutation every 1,000 generations. The evolutionary
algorithm was usually run for batches of 10,000 generations.

Due to limited space we present here a few results obtained from the
evolutionary learning ofthe knowledge base, two examples showing the control of
therobot fromalarge distance from the ball, and two showing control of the robot
touchingtheball.

Learning of the Fuzzy Control at a Distance

Figure4(a) shows the path frominitial configuration c=175. Forthis initial
configuration the robot s placed to the far right of the ball and on the ball to goal
line. Ittook 53 time steps to reach the destination point DP with a final angle of
¢ (rad).

InFigure 4(b) the path frominitial configuration c=199, with the robot to the
farleft, facing away from the ball on the ball to goal line, took just 31 time steps to
reach the destination point DP with a final angle of ¢ (rad ). Note thatin both
cases therobotapproached the destination in reverse mode.

These graphs are typical of the fuzzy control of the robot starting from initial
positionsata“large” distance from the ball. Destination and final angle accuracy
was excellent. Evolutionary learning was quite rapid, with acceptable solutions
resulting insmooth paths to the destination started appearing within a few hundred
generations. Furtherlearning resulted in faster control to the destination.

Figure 4: Long distance paths

=t/

T~
B(750,650), G(1500,650), c175(1534.94,650,0), DP(688.65,650), iteration=53
€)

o

B(750,650), G(1500,650), c199(-34.94,650,r), DP(688.65,650), iteration=31
(b)
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Learning of Fuzzy Control Close to the Ball

Learning ofthe fuzzy control of the robot close to the ball was more difficult.
Figure 5(a) shows the path from initial configuration ¢ =1 which took 19 time steps
toreach the destination point DP with final angle of 0 (rad). InFigure 5(b) the
path from the initial configuration c= 13 took 24 time steps toreach the destination
point DP with a final angle of 0 (rad ). In both cases the robot approached the
final destination in forward mode.

The starting initial configurations in which the robot was touching the ball were
the mostdifficultto learn, for they were responsible for the majority ofthe penalty
functionevaluationsinthe fitness calculations foreach individual of the evolutionary
algorithm. The hardestinitial configurationtolearn wasc=13.

COMMENTS

This chapter detailed the learning ofa fuzzy logic controller to control asoccer
robottoapointbehind the ball in the direction of the goal by using an evolutionary
algorithm. Learning ofa single robot path was very easy. However, learning of
several paths form differentinitial configurations caused many difficulties.

Several starting configuration evaluations caused the final approach ofall paths
tobe either forward orreverse facing. Toachieve the final approach heading, the
evolutionary algorithmlearnttouse chatterand highmomentumturns. Ifarestriction
onturning was applied, the algorithm learnt to execute low momentum turns.

The cause of these difficulties wasidentified as:

(1) Insufficientnumber of inputs to the fuzzy system, the rule base could not cater
forall ofthe informationneed to control the robot to forward and reverse facing
solutions.

(i) Multi-criteriaoptimisation problems caused by summingall terms fromall path
evaluations forming the fitness value.

Figure 5: Short distance paths

==X X
c001(811.35,650,t/2), ¢013(688.65,650,r/2),
iteration=19 iteration=24
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B(750.650). G(1500.650). DP(688.65.650)
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NEWRESEARCH

Theresearch presented here has since been extended and a briefdescription
is given. The full analysis and results will be published elsewhere.

The number of input variables for the given problem was extended to include
leftwheel and right wheel velocities, with the number of membership sets for each
variable extended to 7, yielding 7°= 16807 rules in the complete fuzzy knowledge
base.

The output variables were changed from left and right wheel velocities to
changesinthese velocities, namely: Av, and Av,, with final wheel velocities v, =
v,+Av,and v, ,=v + Av,. The number of output member sets was reduced to
eight B, € [-28,28], k=0, ..., 7.

The number ofinitial configuration was increased to a grid: x=—750+100(k
—1)fork=1,..,31and y=—-650+ 100(k— 1) for k=1, ..., 27 excluding the
ball position. Each grid pointhas fiveangles: 0 = 2(k —1)z /5 fork=1,...,5. The
total number of'initial configurations is therefore C=5(31x27—-1)=4180. All
initial configurations start with zero, leftand right, wheel velocity.

Each output fuzzy setis represented by an integer in the interval [0, 7]. An
individual string P is now of length 2M =33614 consequents:

5= {si S3r e Sty S20 s 51 s?} where s, j =12 is an integer in the
interval [0, 7].

Evolutionary learning was again used with a population of size N=2000, full
replacementpolicy, tournamentselection withsize n, =3 and one point crossover
withprobability p =0.6. Elitism wasnow used, with the 10 bestindividuals carried
from the old population to thenew population. Anincremental mutation operator
with probability p =0.01 replaced the binary mutation used previously. This
mutation operator increments/decrements s, by one with equal probability and has
boundary checking, thatis, if's, =0, it was incremented tos, = 1, and if s, =7, it
was decremented to s, = 6.

The final position of the path was again used to evaluate the fitness of each
individual as given by Equation 7:

D@1 +oT, + ol +o,T,) 7)
C

where o, = 1.0, o, = 1.0, o, = 100.0, o, = 0.0. The weight coefficients for the
firsttwo terms were equal, the terminal angle coefficients was heavily weighted and
constant penalty was turned off.
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Anew learning forthe algorithm was implemented as follows. Theevolutionary
algorithm wasrunsequentially through the fullnumber of initial configurations, being
allowedto run for 10 generations at each configuration before moving to the next.
It was stopped after atotal of 500,000 generations in all were completed.

The results obtained in the final “best” fuzzy knowledge were excellent,
obtaining very smooth continuous paths to the target with both forward and reverse
facinginthe final position depending on the initial configuration. Only a very small
number of aberrations existed, but the paths to the target were stillacceptable. Due

Figure 6. Long distant path
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Figure 7: Short distant path
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tolimited reporting space, we show only two of the many images obtained in Figures
6and 7. Note one has final approach to the ball forward facing, the other reverse
facing; oneis froma far distance and one is close to the ball.

Thisresearchis being further extended for initial input left and right wheel
velocities lying in the full range ofadmissible values.
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Chapter VI

Evolutionary Learning of a
Box-Pushing Controller

Pieter Spronck, Ida Sprinkhuizen-Kuyper, Eric Postma and Rens Kortmann
Universiteit Maastricht, The Netherlands

Abstract

Inourresearch we use evolutionary algorithms to evolve robot controllers for
executing elementary behaviours. This chapter focuses on the behaviour of
pushing a box between two walls. The main research question addressed in
this chapter is: how can a neural network learn to control the box-pushing
task using evolutionary-computation techniques? In answering this question
we study the following three characteristics by means of simulation
experiments: (1) the fitness function, (2) the neural network topology and (3)
the parameters of the evolutionary algorithm. We find that appropriate
choices for these characteristics are: (1) a global external fitness function, (2)
a recurrent neural network, and (3) a regular evolutionary algorithm
augmented with the doping technique in which the initial population is
supplied with a solution to a hard task instance. We conclude by stating that
our findings on the relatively simple box-pushing behaviour form a good
starting point for the evolutionary learning of more complex behaviours.

Copyright © 2003, Idea Group Inc.
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Introduction

Imagineacatonarooftop. Ithasjustspotted ajuicy pigeonsitting ona window
silland is wondering how to catch this prey. The situation is tricky: there are two
routes the cat can take, both of them involving walking on narrow ledges and
requiring daring tricks ofbalance. The catdecides to take the shortestroute and tries
toloweritselfonto aledge beneath. While trying to do so, itnotices thatthe chance
of toppling over and falling three stories down onto a busy shopping street is
becoming increasingly morerealistic. The catnow decides to abandonits plan and
sets its senses to something more practical.

Fromatraditional Artificial Intelligence point of view, this navigation problem
isnotthatdifficult. The startand goal positions are known, the possible routes are
clear,and apparently, the cathas developed a plan to catch the bird. However, the
successful execution ofthe plan critically depends on the cat’s low-level interactions
with its environment, rather than its high-level planning capabilities. Hitherto, the
Artificial Intelligence community has given little attention to low-level control
mechanisms (e.g., equilibrium controllers) as compared to high-level controllers
(e.g.,symbolic problem-solving systems).

Low-level controllers are typically needed for autonomous systems dealing
withelementary tasks indynamic partially observable environments. They formthe
foundation ofhigh-level controllers executingmore complex tasks inthe environment
(Brooks, 1986). In this chapter we focus on the elementary task of pushing abox
between two walls. The box-pushing task was originally introduced (albeitina
slightly different form) by Lee, Hallam and Lund (1997). Pushing an objectis an
important aspect of robot soccer, a modern platform for autonomous systems
research (Asada & Kitano, 1999), and underlies many more complex behaviours
suchastarget following, navigation and objectmanipulation. While the deceptively
simple task of pushing an objectis usually disregarded in favour of the seemingly
more challenging task of determining a strategic position, pushing s far from trivial
and deserves at least as much attention as the strategic task.

The main research question addressed in this chapter is: how can a neural
network learn to control the box-pushing task using evolutionary-computation
techniques? Inanswering this question we study the following three characteristics
by means of simulation experiments: (1) the fitness function, (2) the neural network
topology and (3) the parameters ofthe evolutionary algorithm.

The outline ofthe remainder of this chapteris as follows. First, we discuss some
background on the use of neural networks and evolutionary algorithms inlearning
to control arobot. Then we describe the goal of the research in terms of the three
characteristics discussed above (i.e., the fitness function, the neural-network
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topology and the parameters of the evolutionary algorithm). We give an overview
of the standard procedure used in our simulation experiments, followed by a
presentation and discussion of the results. Finally, we draw conclusions.

Background

This section provides some background on the approach pursued in our
experiments by discussing theuse of neural and evolutionary computation techniques
in controlling an autonomousrobot.

Neural networks offer useful models for learning to control autonomous
robots. Although there exist many effective learning algorithms for automatically
setting the weights ofthe network, most algorithms require a carefully prepared set
of training examples consisting of pairs of input and desired-output patterns. For
freely movingrobots inasemi-realisticenvironment, the preparation ofa training set
is rather tedious. It is not uncommon that a set of training examples cannot be
generated atall. Forinstance, ifthe environment in which the controller has to work
is (partially) unknown, a training set cannot take into account all the situations that
the controllermay encounter.

Analternative way to determine the neural network weights is by employing
evolutionary algorithms (Béck, 1996; Yao, 1995). Evolutionary algorithms have
many advantages over regular training methods especially for controlling robots
(Arkin, 1998). Besides the fact that evolutionary algorithms offer the ability to learn
both the weight values and the topology (whereas regular training methods often are
limited to determining only the weight values), the only requirement for evolutionary
algorithmstowork is theavailability ofaso-called fitness function. A fitness function
isanevaluation function indicating the relative success of one solution compared
to all the others. Such a fitness function can be defined on a set of examples,
comparableto thetraining setused inmostregular training methods. Alternatively,
the fitness function canbe defined as the quality of the actual behaviour ofaneural-
network-controlled robot during a testrun. This last form of evolutionary learning
is called Genetic Reinforcement Learning and was relatively unknown until
Darrell Whitley (1993) introduced it in his experiments with the GENITOR
algorithm.

Themaindisadvantage ofevolutionary algorithmsistheirinherentunpredictability
withrespectto the computation time and the quality of the final solution found. Itis
very hard to predict the time before the algorithm comes up with a satisfactory
solutiontothe problemathand, and itis often difficultto judge whether significantly
better solutions are possible (Goldberg, 1989). In view of these limitations, we
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decided to study the application of evolutionary algorithms to arelatively simple
box-pushingtask extensively in order to find an optimal configuration for the neural
controllerand the evolutionary algorithm.

Goal

The goal of our study is to find an optimal design of the evolutionary
experiments in order to optimise the quality of a box-pushing controller. In
particular, our aimisto increase ourunderstanding ofhow to setup the experiments
inan optimal way so that we can be more effective in designing neural controllers
formore complex tasks.

In the box-pushing task, therobot is faced with the task of pushing abox as
faraspossible betweentwo walls inalimited period of time. The inputs of the neural
network are the signals received by the robot’s proximity sensors. The output of
the network rotates the wheels of the robot.

Asexemplified in our research question, the following three questions of the
experimental set-up are addressed in our research.

1. What is a suitable fitness function for the evolutionary algorithm? The
fitness function isameasurement ofthe success ofa solution proposed by the
evolutionary algorithm, and is the single most important aspect of any
evolutionary system.

2. Whatis an appropriate neural network topology to solve the box-pushing
task? The main candidates for the neural network are the feedforward and
recurrent network topologies. The main advantage of a feedforward network
is that it is quick and simple to evolve. The main advantage of a recurrent
network is thatithas the ability to store and recall values from previous cycles
oftherobotrun.

3. Whatis aproper choice for the parameters of the evolutionary algorithm?

In the next section, we discuss the experimental procedure followed in
answering these questions.

Experimental Procedure

The Robot

The robot we used in our studies is of the Khepera type (Mondada et al.,
1993). Forthisrobota good simulationis publicly available. Controllers developed
with this simulation have shown to work well in practice. Weused the simulatoron
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Figure 1: Screenshot from the Unix Khepera simulator. To the left the robot
world, with the walls (rectangular blocks), the robot (grey circle) and the box
(blackcircle). The small black spots indicate the starting positions used for the
robot (the lower three spots) and the box (the upper three spots).
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Figure 2: Overview of the Khepera robot

Neural controller inputs:

0to7: Sensor 0to 7 distance values.

8: Sensor 0 - 1
9: Sensor 1 -2
10: Sensor 2 - 3
11: Sensor 3 -4
12: Sensor 4 - 5
13: Sensor 6 - 7

Inputs 8 to 13 are the edge detectors.

its original Unix-platform (Figure 1) and also ported it to a Windows-based
environment called “Elegance” (Spronck & Kerckhoffs, 1997), thatis particularly
suited to experiment with different configurations for the evolutionary algorithm.
The Khepera robot possesses eight infra-red light and proximity sensors
(Figure2). In our experiments, we disregarded the light sensors and only used the
proximity values (except for the experiments for determining a suitable fitness
function). The sensors are numbered clockwise from 0 to 7 starting from the left of
therobot. Sensors 2 and 3 point forward, while sensors 6 and 7 point backwards.
To control the robot, the two wheels of the robot are supplied with input values
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ranging from—10 to +10 in integer numbers, where the sign of the input value
determines the direction of rotation of the wheels. The robot moves in discrete steps
and requires new inputs ateach step.

Ascanbeseen from Figure 1, therobotis placed within ashort distance from
the box, close to the back wall. In order to move the box as far as possible from
its initial position, the only viable pushing direction is towards the top of the area.
Thetwo walls arerough. The robotmay use awall as support while pushing the box,
butthen has to deal with the roughness that may cause the box to get stuck.

The Controller

Theneural controller we use has 14 inputs. Eightinputs are delivered by the
proximity sensors. The other six are defined as the differences between the values
ofneighbouring proximity sensors (leaving out the differences between sensors 5
and 6 and between sensors 0 and 7, because these pairs are too widely separated).
We call these (virtual) sensors “edge detectors,” because they deliver large inputs
when an edge (i.e., a spatial discontinuity in proximity values) is detected. Ina
mathematical sense, the virtual sensors are redundant. However, in our earlier

Figure 3: Exploiting the mirror symmetry of the robot to derive a neural
controller for one wheel from the neural controller for the other wheel. The
left network drives the left motor, the right network the right motor. The
network inputs are proximity values derived from the Khepera robot shown
in Figure 2. The neural networks are equal, but the inputs have been moved
around and the signs of the edge-detecting inputs have been switched.
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studies we found them to be beneficial to the evolution process (Sprinkhuizen-
Kuyper, 2001). The use of edge-detecting inputs is inspired by biological visual
systems which are more sensitive to differences than to the absolute level of light
intensity. Forinstance, in the human visual system, edge-detecting neurons are
omni-present (Cornsweet, 1970). Detecting edges is an important prerequisite for
visual-guided behaviour, and allows the controller to distinguish the box from the
walls.

Since therobot has two wheels, either a neural network with two outputs is
needed, or two separate neural networks are needed. Because of the symmetric
placement of the sensors around the robot (see Figure 2), a mirrored copy of a
neural network that drives one of the wheels can be used to drive the other wheel.
Themirrored copy ofthe network requires exchanged inputs for the proximity and
virtual sensors. In addition, the signals delivered by the virtual edge-detecting
sensors have to be negated (see Figure 3). The use of two (almost) identical
networks reduces the number of free parameters considerably which makes the
search forasolution easier. The output of the neural networks ismapped onto alegal
interval for the motor values by using a sigmoid transfer function.

Theneural activation functions employed in our neural controller are defined
as linear functions. Although the use of linear transfer functions in a multi-layer
network does not make much sense from amathematical viewpoint (a multi-layer
network of linear layers can always be reduced to a single linear-layer network),
preliminaryresultsrevealed only small differences in performance with the (traditional)
non-linear transfer functions (Sprinkhuizen-Kuyper, 2001). It turns out that the
extra layer may help the evolution process by keeping the connection weights
relatively small.

The Evolutionary Algorithm

The evolutionary algorithmused in our experiments works on a population of
about 100 individuals. Tournament selection with size 3 isused to get parents for
the genetic operators. Newly generated individuals are inserted back in the original
population, usingacrowding scheme with a factor of 3. We used elitism to prevent
loss ofthe best solutions, and the evolution process continues until no significant
increase in fitness is visible any more. Usually this takes 25 to 35 generations.

The chromosome representing a neural network consists of an array of
“connection genes.” Each connection gene represents asingle possible connection
of the network and is defined as a pair of one bit and one real number. The bit
represents the presence or absence of aconnection and the real value specifies the
weight of the connection. During absence, the weight value is maintained in the
chromosome which facilitates the evolution process by functioning asa “memory”
forremoved weight values.
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Figure 4: The nine different starting positions used in the experiments. The
lines and ending positions illustrate typical box-pushing behaviour.

Selection of Task Instances

Formany tasks, the detailed characteristics of the environment are unknown
inadvance. The evolution ofa controller for such a task needs to take the unknown
environment into account. By randomly generating task instances (environments)
foreach controllerto be tested, itis ensured that most situations are tested at some
point. However, withrandomly generated instances evolutionary selection tends to
favour lucky controllers over good controllers. Therefore, a better approachisto
pre-selectanumber of specific task instances for the controller to work on, and to
define the fitness as a function on the results achieved on those task instances (e.g.,
the mean fitness). Of course, care should be taken that these task instances form
agood sample from the distribution of all instances (i.e., they coverall relevant
aspects of the task as a whole).

Based on these considerations we determine the fitness on a pre-selected
number of relevant task instances. For our experiments, we use nine different
starting positions for the robotand the box as input for the fitness determination (see
Figure4). Defining the originas theupperleftcorner (inthe world as shown in Figure
1), the x and y coordinates range from 0 to 1000. The three coordinates of the
starting positions of the robot are defined as (470,900), (500,900) and (540,900)
and those ofthe box are (480,800), (500,800) and (545,800). Combining starting
positions of the robot and box yields nine distinct starting positions. Therobot is
allowed to push the box as far as possible for 100 time steps. To average out the
noise inherentin the simulator, we calculated the fitness by taking the mean of 100
trials for each of the nine starting positions.

Experiments

The experiments performed on the box-pushing task focus on the three
questions stated previously, i.e., (1) What is a suitable fitness function for the
evolutionary algorithm? (2) What s the best neural network topology to solve the
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box-pushingtask? (3) Whatis the best choice for the parameters of the evolutionary
algorithm? Below, we discuss the experiments and their results for each of these
questions.

The Fitness Function

The fitness ofan individual solution canbe assessed from different viewpoints.

For the first series of experiments, we varied the fitness measure along two
dimensions:

Globalvs. local. A global fitness measure assesses an individual based on the
difference betweenbeginand end state ofboth the individual andits environment.
Alocal fitness measure, instead, follows thebehaviour of the individual atevery
time step inthe simulation.

Internalvs. external. The internal fitness takes the agent’s perspective, i.e.,
itonly uses information delivered by the sensors of the robot. In contrast, an
external fitness measure takes a “bird’s eye” perspective, i.e., itmeasures the
positions of the robot and the box in environmental coordinates.

Combiningthe global versus local and the internal versus external dimensions,

wearriveatthe following four different combinations for defining the fitness function:

1.

Global external (GE). The fitness is defined as the distance between the
starting and end position of the box minus halfthe distance between the robot
and the box at the end position.

Local external (LE). The local fitness (determined at each time step) is
defined as the sum of the distance change of the box minus halfthe change in
distance between therobotand the box. The overall local external fitness value
is defined as the sum ofthe local fitness values at each time step.
Globalinternal (GI). Toallow the robot to derive a fitness measure, itneeds
some landmark. We added a collection of lights at the end of the desired
pushingroute. The lightintensity sensed by the robot is inversely proportional
to the distance to the goal. Atthe end ofthe run, the fitness is calculated as the
sumoftwonormalised sums: the values delivered by the two frontal distance
sensors (ahigh value means an object s close, so if the front sensors have a
high value, therobot is pushing against something) and the values delivered by
the four frontlight sensors.

Local internal (LI). For the local internal fitness function, we employ a
variation of the functionused by Leeetal. (1997). Ateachtime stepalocal
resultis calculated by adding the normalised sum of the two frontal distance
sensors to halfthe normalised average of the motor values minus one-third of
the normalised rotation component of the motor values. As aresult, pushing
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Table 1: Cross-comparison of the best controller evolved with each of the four
fitness functions tested with each of the four fitness functions. Underlined:
comparison with the same measure as evolved with. Bold: best score.

Evolved Cross-comparison

controller GE LE GI LI
GE 286.7 346.6 1.75 132.7
LE 278.8 341.0 1.70 132.3
GI 245.3 304.4 1.61 125.2
LI 168.3 238.9 1.34 139.5

against something and forward motion add to the fitness, whereas turning
behaviouris costly in terms of fitness.

Wetested the four fitness functions on a feedforward neural controller without
hidden nodes. We used a straightforward configuration for the evolutionary
algorithm, using only auniform crossover and a simple mutation operator, without
the option of changing the architecture by removing connections. We generated
controllers with each of the fitness functions, and then cross-compared the resulting
controllers with the other fitness functions. The cross-comparisonresults of the best
controllersare givenin Table 1. We found that controllers evolved from the global
external viewpoint, evaluated with the other fitness functions, performed significantly
better than the controllers evolved with those other fitness functions. This is a
fortunateresultsince evolution runsusing the global external viewpointrequired the
least number of computations, and the global external fitness measure is easily
implemented.

The other fitness measures also did quite well in cross-comparison (though
they did notyield better results than achieved with the global external measure),
except forthelocal internal fitness measure (see Table 1). Thelocal internal fitness
measure was copied from Leeetal. (1997),and works well in the absence of walls,
butis of limited use for our experimental set-up: pushing full-speed againsta wall
results inanundesirable high evaluation score with this fitness measure.

Thesuccess ofthe global external fitness measure isnota surprising result. An
external fitness measure can use more objective information than an internal fitness
measure and is therefore often more reliable and easier to implement (for instance,
inour box-pushing experiments for the internal fitness functions, we needed toadd
an extralandmark to the world). As far as local fitness measures are concerned,
having established the “best strategy” to deal with a task, the fitness of a controller
canbe determined at each ofthe constituent steps. However, in practice the best
strategy isnotknownifit were, it could be programmed directly and learning would
not be necessary. Using a global fitness measure which judges fitness by the
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performance of a controller on the task as a whole leaves the derivation of the
strategy tothe learning algorithm, instead of making possibly incorrect presumptions
aboutitwhenimplementingalocal fitness measure.

Wetherefore conclude thata global external fitness measure is best suitable
forevolving box-pushing behaviour between two walls from scratch, notonly from
an experimental but also from a theoretical viewpoint. For the remainder of our
experiments, we used the global external fitness measure.

Neural Controller Configuration
To determine the best neural controller topology, we compared two neural

networks:

* A feedforward network with five hidden nodes (Figure 5, left). This
feedforward network is the most general feedforward configuration (with five
hidden nodes) possible. It is more general than the more common layered
feedforward network, since every connection is allowed as long as a
feedforward flow of data through the network is possible. For that purpose,
the hiddennodes in the network are ordered and connections between hidden
nodes arerestricted to run from “lower” nodes towards “higher”” nodes. Also,
the input nodes may be directly connected to the output nodes.

*  Alayeredrecurrent networkwith four hidden nodes (Figure 5, right). This
network is less general than a completely recurrent network, because only

Figure 5: lllustration of a feedforward network (left) and a recurrent network
(right) as used in the experiments. The hidden nodes in the feedforward
network are ordered. Connections between hidden nodes in this network are
restricted in the sense that “lower” nodes are only allowed to connect to
“higher” nodes. Recurrent connections are represented by dotted arrows.
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recurrent connections within a layer are allowed. This was done to ease the
implementation of recurrentinputs. The recurrentconnections are used to input
the node values from the previous cycle through the network into the new
cycle. As such, they function as a memory for previous node values. The
number of connections in the recurrent network with four hidden nodes is
slightly higher than in the feedforward network with five hidden nodes.

Weused the same evolutionary algorithm to develop these neural controllers
aswe did in the previous experiment. To increase the evolution speed, only the
fitness results of the candidates for the best individual were averaged over 100 trials.
The fitness values of the other individuals were obtained by averaging over 10 trials.
Subsequently, we experimented with different genetic operators. These experiments
didnotyieldresults that differed significantly from those reported below. However,
sincethe new genetic operators added the ability to vary the size of the hidden layer,
these experiments did reveal that for our problem ahidden layer consisting of three
nodesyields optimal results.

Ascanbe concluded from Figure 6, the experiments showed that recurrent
controllers tend to perform better (have a higher fitness) and more reliable (have a
lower standard deviation) than feedforward controllers. We also discovered the

Figure 6: Mean values of the results of the best feedforward (grey bars) and
recurrent (black bars) controllers, averaged over 7 evolution runs. The left
chart gives the fitness values, the right chart the standard deviation. On the
horizontal axis the different starting positions are presented, with the mean
values over all starting position presented as “all.” The overall values are as
follows: for the feedforward controller, the fitness is 282.9 with a standard
deviation of 90.2; for the recurrent controller, the fitness is 311.2 with a
standard deviation of 49.6.

Fitness Standard deviation
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probable reason for that. When observing how the wheels of a feedforward
controlled robotmove, we noticed that they almost exclusively take on one the two
extreme control values: —10 and +10, which initiate the behaviours “very fast
backwards” and “very fast forwards.” This behaviour works well when pushing the
box without hindrance, but makes it difficult for the robot to manoeuvre itself out
of a problematic position. This causes the robot controlled by a feedforward
network to get stuck regularly. A recurrent controller, on the other hand, shows
more subtle behaviour, and even though it sporadically gets stuck, it does so less
oftenthan the feedforward controller. This explains both the higher fitness and the
lower standard deviation of recurrent controllers.

Some parallels can be drawn between global characteristics of our successful
controllerand those ofthe biological visual systems. The processing of information
invisual systemsis mainly bi-directional. Atthe level of neural networks, reciprocal
connections are the rule rather than the exception (Shepherd, 1990). Evenat the
level of brain systems, the communication among systems is bi-directional. In
agreement with these biological characteristics, ourmost successful controllers are
recurrent controllers with linear feedback. Inbiological systems, linear feedback is
characteristic of temporal filters, short-term memory and noise suppression
mechanisms.

The Evolutionary Algorithm

Our third series of experiments aims at enhancing the evolutionary algorithm
inorder to significantly increase the final fitness values reached.

We previously sketched the basic evolutionary algorithm. The algorithm
employs the following six genetic operators, one of which was randomly selected
ateach evolution step:

1. Uniformcrossover

2. Biased weightmutation (Montana & Davis, 1989) with a probability of 10%
to change each weight, inarange of[-0.3,+0.3]

3. Biasednodes mutation (Montana & Davis, 1989), changing just onenode
within the samerange as the biased weight mutation

4. Nodescrossover (Montana & Davis, 1989) picking halfthe nodes of each
parent

5. Nodeexistence mutation (Spronck & Kerckhoffs, 1997), with a probability
0f95%toremoveanode andaprobability of 5%to completely activate anode

6. Connectivity mutation (Spronck & Kerckhofts, 1997), with each connection
havinga 10% probability to flip.

For the crossover operators, the best of the children was added to the
population, and the other one removed. Thierens et al.’s (1993) treatment of
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competing conventions was used to support the crossover operators. Our earlier
experiments showed that the kind of genetic operators used does not really
influence the final results (even the simplest operators do not yield significantly
differentresults); but the six genetic operators listed above provide areasonable
evolutionrate and the ability to reduce the size ofthe neural controllers.

We found that changes to the genetic operators and changes to minor
parameters of the algorithm (such as population size, the selection mechanism and
the maximumnumber of generations) would notbring significantchanges tothe best
fitness valuesreached. However, we also found that the final solution found would
often have more problems with the “harder’ task instances (starting positions) than
withthe easiertask instances. This isnotsurprising, because standard evolutionary-
learning algorithms tend to favour a larger number of solutions to easy problem
instances over a smaller number of solutions to hard ones (Spronck etal.,2001).

Inmulti-objective evolutionary learning (Fonseca & Fleming, 1995), asolution
with multiple objectives has to be found. Our task instances (the nine starting
positions) correspond to the separate objectives inmulti-objective learning. The
main difference between these two forms of learning is that for multi-objective
learning, the separate objectives areusually very different, whereas in task learning
the objectiveis the same foreach ofthe task instances. Therefore, with task learning
problems, itismore than likely thata solution to one of the task instances also works
well onsome other task instances. This is especially true for the solutions to hard
instances because they often incorporate solutions to the easier instances.

Atechniquesometimesused inmulti-objective evolutionary learningis “doping.”
Here solutions for some ofthe objectives, for instance generated using well-known
heuristics, are inserted into the initial population (see, for instance, Matthews,
2000). Thishelpsthealgorithmevolveasolution forall objectives which incorporates
the pre-supplied solutions to single objectives. Note that “doping” of initial
populations does not work when applying evolutionary algorithms to a single task
because the doped solution will not be further improved in terms of fitness.

Since we suspected that solutions to the harder task instances in our box-
pushing problem would probably encompass characteristics required to solve the
easiertasks, we proposed that doping our initial populations with asolution forone
ofthe harder task instances could lead to higher final fitness rates. To test this, two
steps had to be undertaken: the hardest task instances needed to be identified, and
agoodsolution for one of these task instances had to be generated and inserted in
theinitial population for ourregular evolutionary algorithm.

Good solutions for each of the starting positions were evolved using the
standard evolutionary algorithm. Weallowed 75 (instead of 35) generations to be
created and (obviously) the fitness was defined for a single starting position only.
Wedefined the hardest starting positions as those that took the longest to converge
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and even then could notreach a very high fitness value. Starting positions 3 and 5
(see Figure4) proved to be the most difficultin thisrespect. It should be noted that
one would expect starting positions 2 and 6 to be more difficult since for these
positions the separation between the robot and the box is the largest, but positions
3 and 5 appear to be more difficult due to the roughness of the walls and the angle
under which the robot first tends to push the box against one of the walls.

Wethenrananumber ofregular experiments (with 35 generations), whereby
for eachinitial population one of the winning individuals on an isolated starting
position was inserted. For each of these, we ran five or six experiments. We also
ran a series of experiments where we doped the initial population with a good
solution for each of the nine starting positions.

The results for the experiments with doping with a single starting position,
withoutdoping, and withdoping withall starting positions, are graphically compared
inFigure 7. The average fitness forall of the experiments with the doped populations
settles around the same fitness value as the experiments without doping, namely
311, except for those doped with a winning individual for one of the two hardest
starting positions (3 and 5). Doping with starting position 3 yielded an average
fitness 0£320, and doping with starting position 5, an average fitness of 318. Both
fitness values obtained are significant improvements over our previous results
(preliminary experiments showed that the standard error of the mean (Cohen,
1995) for evolved controllers with 100 experimentsisabout 1.3, sotheresultshave
anaccuracy ofabout 2.5 fitness points with 95% reliability). Furthermore, the
overallbestresultoverall experiments was achieved with doping of starting position
5,namely afitness 0f323.

Figure 7: Fitness values of experiments with doping with a single starting
position (“0” to “87), without doping (‘“no”) and with doping with all
starting positions (“all”).
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Doping withall nine starting positions led to an average fitness of 316. This is
notasignificantdifference with theresultsachieved for doping with starting positions
3 or 5 (especially not since for the experiments with doping of all nine starting
positions also, an individual with a fitness of 323 was found).

Totestwhether doping with ahard starting position always manages toachieve
these high fitnessresults, we generated four different versions ofawinning controller
forstartingposition 5. All of these had aboutequal, high fitness ratings onthe isolated
starting position. Four repetitions of experiments with doping with each of these
individuals were executed. In three experiments the final result was equal to what
we found in our firsttest with doping with asolution tostarting position 5. The fourth,
however, achieved only the same average results we achieved in our experiments
withoutdoping.

Theseresults show that for the box-pushing task, doping of an initial population,
with awinning individual thathas been evolved on one of the hard task instances,
generally leadsto better overall results than an evolution withoutdoping. However,
theresults ofthe experiments with alternative versions ofa winning individual for
starting position 5 show thata fitness improvement over experiments withoutdoping
isnot guaranteed, since itis possible to dope with an “unlucky” individual.

Itis important to remark that our experiment differs from standard machine
learning experiments in the sense that our aimis to determine the effect of doping
rather than to determine generalization performance. In the latter case, inclusion of
the starting position on which the algorithm s trained in the test data would give a
positively biased and wrong indication of generalization performance. Ourresults
should therefore be interpreted in terms of overall task performance due to doping,
rather than in terms of generalization performance. Incidentally, we know that the
generalization effect is present because doping with a solution for one of the hard
starting positions not only improves the results of the final controller on that
particular starting position, butalso on mostofthe other starting positions, especially
the harder ones. We confirmed this with experiments in a more deterministic
environment.

Conclusion
Our experiments aimed atanswering the following question. How cananeural
network learn to control the box-pushing task using evolutionary-computation
techniques? We investigated three characteristics of relevance to evolving robot
controllers, i.e., the fitness measure, the neural network topology and the parameters
ofthe evolutionary algorithm. On these three characteristics and their associated
questions, we conclude the following.

TLFeBOOK



120 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

1. A global external fitness measure gives the best results and is easiest to
implement.

2. Arecurrentneural controller, while more difficult to implement and evolve,
gives significantly better results than a feedforward controller.

3. Whileneitherchanges tomostparameters of the evolutionary algorithmnorthe
selection of genetic operators significantly influence the final results of the
evolution process, doping the initial population with anindividual thatsolves
one of the harder task instances improves upon the final fitness reached.

Clearly, future work has to establish to what extent these conclusions
generalize to other (more complex) tasks. In preliminary studies on an entirely
different and more complex foraging task involving the capture of food and
avoidance of poison, we obtained similar results. Therefore, we are confident that
our results generalize beyond the box-pushing task. The simplicity of the box-
pushing task allowed us to analyse the results of our experiments and draw
conclusions onthe fitness function, the neural network topology and parameters of
the evolutionary algorithm. We therefore conclude that the detailed analysis of
evolvingacontroller onasimpletask forms a good starting point formore complex
tasks.
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Chapter VII

Computational Intelligence
for Modelling and Control
of Multi-Robot Systems

M. Mohammadian
University of Canberra, Australia

ABSTRACT

With increased application of fuzzy logic in complex control systems, there is
a need for a structured methodological approach in the development of fuzzy
logic systems. Current fuzzy logic systems are developed based on
individualistic bases and cannot face the challenge of interacting with other
(fuzzy) systems in a dynamic environment. In this chapter a method for
development of fuzzy systems that can interact with other (fuzzy) systems is
proposed. Specifically amethod for designing hierarchical self-learning fuzzy
logic control systems based on the integration of genetic algorithms and fuzzy
logicto provide an integrated knowledge base for intelligent control of mobile
robots for collision-avoidance in a common workspace. The robots are
considered as point masses moving in a common work space. Genetic
algorithms are employed as an adaptive method for learning the fuzzy rules
of the control systems as well as learning, the mapping and interaction
between fuzzy knowledge bases of different fuzzy logic systems.

INTRODUCTION

Fuzzylogic systems areincreasingly used in control applications. Theirability
to cope with uncertainty inherent in complex systems makes them an attractive

Copyright © 2003, Idea Group Inc.
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method for solving complex, uncertain and dynamic systems. Current fuzzy logic
systems are developed based on the individualistic systems. These systems are
unableto face the challenge of interaction that mightbe necessary between different
fuzzy logic systems solving acomplex problem. There is aneed for a structured
approachtodesign fuzzy logic systems for controlling complex systems consisting
of multiple fuzzy logic systems and fuzzy knowledge bases as is the case in a
hierarchical fuzzylogic system.

In general hierarchical fuzzy logic systems consist of several fuzzy logic
systems, each performing a specific task which are combined to form asystemto
solve a complex task. These controllers interact with each other to solve the
problem athand. The output of each fuzzy logic controller ina hierarchical fuzzy
logic systemhas an effect on other fuzzy logic systems and consequently to the final
output ofthe system.

Thedivision of individual fuzzy systems required to solve complex problems
demands that those problems be decomposed and distributed among different
fuzzy logic systems. One ofthe main limitations on the application ofhierarchical
fuzzy logic systems in complex problem-solving domains is the lack of methods to
structure the development of the hierarchical fuzzy logic systems. This is an
importantissue when considering therobustness and efficiency of the system. A well
structured hierarchical fuzzy logic system can performits tasks more efficiently.

The design of the fuzzy knowledge base of complex fuzzy logic systems are
based upon human experience and the operator’s knowledge of the system to be
controlled (Lee, 1990). The fuzzy rules are formulated by a trial and error method
whichisnotonly time consuming butalso does not guarantee ‘optimal’ fuzzy rules
for the system. Incorporating genetic algorithms into the design of a fuzzy logic
system ensures automatic generation of fuzzy rules for a fuzzy logic system.

This chapteris organised as follows: in the next section the learning of fuzzy
rules of fuzzy logic systems using genetic algorithms are described. The application
ofthis learning method to control a simulated multi-robot systemusing hierarchical
fuzzy logic systemsis considered and simulation results are presented. Conclusions
arethen drawn and furtherresearch directions are given.

LEARNINGOFFUZZY LOGICSYSTEM

USINGGENETICALGORITHMS

Earlier inthe following papers (Mohammadian, 1994; Mohammadian, 1996;
Stonier, 1998)an integrated architecture consisting of genetic algorithms and fuzzy
logic for automatic rule generation of fuzzy logic systems was proposed. A block
diagram ofthe fuzzy rule generation architecture is shown in Figure 1.
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Figure 1: Fuzzy-GA rule generator architecture
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Letus considera fuzzy logic controller with two inputs (x and y) and asingle
output(z). Asafirststep to generating the fuzzy rules, the domain intervals of the
inputand output variables are divided into differentregions, called fuzzy sets. The
number of fuzzy sets is application dependent. Assume thatx, yandzare all divided
into five fuzzy regions each, with x and y denoted by the linguistic terms VL, LO,
MD, HI, VH and z denoted by the linguistic terms VS, SM, MD, HI, VH. A fuzzy
membership functionis assigned to each fuzzy set. Since xand y are divided into
five fuzzy sets each, amaximum oftwenty five fuzzy rules canbe written for the fuzzy
logic system. The consequent for each fuzzy rule is determined using a genetic
algorithm. In order to do so, the output fuzzy sets need to be encoded. It is not
necessary to encode the input fuzzy sets because they are static. The fuzzy rules
relating the input variables (x and y) to the output variable (z) have twenty five
possible combinations. The consequent of each fuzzy rule canbe any one of the five
output fuzzy sets. The output fuzzy sets are encoded by assigning anumber for each
fuzzy setforexample, 1 =VS (Very Small),2=SM (Small), 3=MD (Medium),
4=HI(High)and 5=VH (Very High). The genetic algorithm randomly encodes
eachoutput fuzzy setintoanumberranging from 1 to 5 forall possible combinations
of the input fuzzy variables. An individual string (chromosome) can then be
represented in the following way:

413]5|3 _ 1

1234 25

Each string is a member of a population, and a population of size n has n
numberofindividual stringsrandomly encoded by genetic algorithm. Eachindividual
string is then decoded into the output linguistic terms. The set of fuzzy rules thus
developedisevaluated by the fuzzy logic controllerbased upona fitness value which
is specific to the system. The fitness value is application dependent. Atthe end of
each generation, copies of the best performing string from the parent generation are
included inthe next generation to ensure that the best performing strings are not lost.
The genetic algorithm then performs the process of selection, crossover and
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Figure 3: A three-layer hierarchical fuzzy logic system for controlling the
multi-robot system
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Hierarchical Fuzzy Logic Systems for Multi-Robot Control

Inthis section we use the method proposed in the above section to develop
ahierarchical fuzzy logic system to control asimulated multi-robot system. Figure
2 shows the diagram of simulated robots and their targets in the workspace.

A hierarchical fuzzy logic system consisting of three layers is developed to
control and guide the robots to their target. In the firstlayer, a fuzzy logic systemis
developed for each robot that controls each robot from any position in the
workspacetoits target. The knowledge on how to control the robot is learned by
aself-learningmethod using genetic algorithms (see Figure 1). Inthe second layer
anew fuzzy logic systemis developed for each robot thatlearns to control the speed
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and slow down therobots when arriving to their target. The second layer fuzzy logic
controllers work with the first layer fuzzy logic controllers, and the knowledge base
ofthe second layer fuzzy logic controllers are learned upon the first fuzzy logic
system’s knowledge base. A mapping of the knowledge bases in the firstlayer to
the second layeris learned using genetic algorithms. In this way the system adapts
itself to the current knowledge (fuzzy control rules) available and uses this
knowledge to improve the performance ofthe system by learningnew concepts. In
this case the current knowledge is how to control each robot to its target, and the
new concepts are the knowledge learned about how to control the speed of robots
and slow them down at their targets. For the third layer anew fuzzy logic system
isdevelopedto avoid collision of the robots working incommon workspace. Here
amapping of the knowledge base ofthe second layer fuzzy logic controllers to the
third layer fuzzy logic controllersis learned using genetic algorithms. Figure 3 shows
the structure of the Hierarchical Fuzzy Logic Control system (HFLCs).

The first genetic algorithm learns the fuzzy knowledge base to control each
robottoits targetusing constant speed. Below adescription of the fuzzy knowledge
base for layer oneis given. For eachrobot there are three inputs.x, y, ¢and single
output 0. Herex, y are the cartesian coordinates in the plane, and is the heading
anglerelativeto the x-axis,and O is the control steering angle alsomeasured relative
to the x-axis (Mohammadian, 1994; Stonier, 1998).

Wedivide the domainregions forx, y, and@into 5, 5,7 and 7 regions (fuzzy
sets) respectively and assign appropriate linguistic variables. For eachregion (fuzzy

Figure 4: Fuzzy regions and the corresponding membership functions of
x, y, fand q
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Figure 5: Spread of the initial configurations in the workspace for robot,
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set), afuzzy membership functionis assigned; the shape isassumed tobe triangular,
see (Figure4).

A grid of 180 configurations is chosen on the plane and associated with each
pointthereare 6 chosen heading directions. For this analysis the heading directions
are-50°,45°,90°,135°and 240°. Figure 5 shows the spread of initial configurations
inthe workspace and the target.

Therobotis started random at an initial configuration chosen fromthe 180
available initial configurations. Genetic algorithm was used to determine a set of
fuzzy rules that will best determine the steering angle to control the robot to the
desired target (with final heading angle 180° for the firstrobot and 0° for the second
robot) in the first layer, (see Figure 2). Figure 6 shows the spread of initial
configurations inthe workspace and the target.
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Figure 6. Spread of the initial configurations in the workspace for robot,
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Thetwoindividual fuzzy rule bases, one for each robot, constitute the full fuzzy
knowledgebaseinlayer 1. Inall there are 175 rules learned for the control of each
robottoitstarget.

The objective function for the firstlayer HFLC system s calculated as:

Objective = \/(xr —x[)2 +(yr —yt)2 +(¢r _¢[)2

where x,,y,,¢, and x,, y,,9, are therobot’s coordinates and the heading angle
and the target's coordinates respectively. We wish to minimise the objective
function. Anillustrationofhow the knowledge contained inthe final fuzzy knowledge
base controls the robots to their targets is shown in Figure 7. Good trajectories were
obtained fromallinitial configurations.
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Figure 7: Robot trajectory from initial configurations:
(a) (90, 10, 135°), (b) (90, 70, 135°); and for robot, (c) (90, 10, 135°), (d) (70,
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Wenow consider the adaptive learning of the rules in the second layer of the
hierarchical fuzzy logic controller using genetic algorithm. Having learned the
fundamental knowledge base for steering control of eachrobot to its target, we
would like to control the speed of each robot to its target. The objective hereis to
develop another fuzzy knowledge base for a fuzzy logic system to determine
corrections to steering angles and speed of each robot while approaching its target.
There are two inputs which is the distance D between the robot and its target and
the current steering angle of each robot and output, 0., S, i=1.2, which is the

correction to the speed and steering angle of each robot for the next iteration.
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Figure 8 shows the fuzzy sets and fuzzy membership functionsof Dand S.
Intervals of definition D, S,0 and 0, are each divided into 5x5x7x7 regions (fuzzy
membership of® and 0 are the same). Thereare thirty five fuzzy rules forthe second
layer fuzzy knowledge base. The fuzzy knowledge base can be formed asa 5 by
7 table with cells to hold the two outputs for the corresponding actions that mustbe
taken, given the conditions corresponding to Dand O are satisfied. Forexample, a
fuzzy rulemay look like :

If D=VCand 8 =VS, then S =VSalso ¢ =PB

The choice of output control signal to be set for each fuzzy rule is made by
genetic algorithm. The genetic algorithm then performs a self-directed search,
learning fuzzy rules for the second fuzzy knowledge base ofthe HFLC. The learning
isperformed quickly and automatically withnoneed for operational guidance other
than the fitness values supplied toitby the HFLC.

Againhereagrid of 180 configurationsis chosen on the plane, and associated
with each pointthere are 6 chosen heading directions (same as for the first layer).
The analysis then proceeds as in the first layer, a genetic algorithm is used to
determine a setof fuzzy rules that will best determine the steering angle and speed
correctionstodrivearobottoits desired target from arandomly choseninitial triplet
(x,y,0)with speed equal to zero at the target. The same fitness function that was
usedinthe firstlayerisused, butapenalty of 1,000 is added if the speed of the robot
whenithasreached its targetis greater than zero. The genetic algorithm is then
allowed to evolve through the normal processes of reproduction, crossover and
mutation to minimise this fitness. Againan ‘elite’ option wasused indevelopinga

Figure 8: The fuzzy sets and membership functions of D and S
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new population from the old and prescaling used to improve convergence. The best
chromosome in the final population defines the fuzzy knowledge base for this, the
second layer HFLC. Anillustration ofhow the knowledge contained in the second
layer fuzzy knowledge base is shown in Figure 9 and 10. Next we consider the
adaptivelearningoftherulesinthethird layerofthe hierarchical fuzzy logic controller
usingthe genetic algorithm.

Having learned the fundamental rule bases for steering control and speed of
eachrobottoitstarget, the objective hereis to develop another fuzzy knowledge
base to determine corrections to steering angles 6" for each robot to avoid the
collision of robots while approaching their target. In this layer there are three inputs

Figure 9: Robot trajectory of robot, from initial configurations:
(a) (90, 60, 45°) and (b) (90, 10, -50°)
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Figure 10 Robot trajectory of robot, from initial configurations:
(@) (50, 90, -50°), and (b) (60, 90, 90°)
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Figure 11: (a) Robot trajectories at initial configuration:
(a) robot, = (50, 50, 45°), robot, = (10, 60, -50°) and
(b) robot, = (60, 50, 90°), robot,= (10, 60, -50°)

(a) (b)

Dr, 8, and 6,, with outputs 6 "and 8,’, S, and S, for each robot. Here Dr is the
calculated physical distance between robots, 6,"and 0" is a correction to the
steering angle of eachrobotand S,"and S, "is the correction to the speed of each
robot.

We divided the domain regions for Dr, 6 'and 6,, into 5, 7 and 7 regions
respectively and assigned appropriate linguistic variables, as before. Again foreach
region a fuzzy membership function is assigned. and the shape is assumed to be
triangular. Weuse genetic algorithmto learn the fuzzy knowledge base for the third
layer of HFLC. The fitness of each chromosome is calculated as for second layer
fuzzy logic system and a penalty (of 1,000) is added if the robots collide. In all
simulations the genetic algorithm had a population size of 100 with mutationrate=
0.01 and crossoverrate=0.6. The genetic algorithm was run for 500 generations.
Figure 11 shows the robot trajectories using HFLC with three layers. The robots
arriveto their target while avoiding collision, and their speed is reduced as they
approach their target.

Using a hierarchical fuzzy logic control system and a genetic fuzzy rules
generator architecture, quick convergenceto a collision free path in learning the
fuzzy rules ofthe third layer was observed. This can be attributed to the fact that the
architecture was able to learn and modify rules in the third layer fuzzy rulebase using
knowledge inthe second layer fuzzy rule bases.
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CONCLUSION

We proposed using HFLC for amulti-robot control problem. We tackled the
complexity of the multi-robot control problem by dividing the problem into smaller
manageable parts. By using HFLC the number of control laws isreduced. In the first
layer of HFLC, ignoring the possibility of collision, steering angles for the control
ofeachrobotto their associated target were determined by genetic algorithms. In
the second layer genetic algorithm was used to determine adjustments to steering
angle and speed of each robot to control the speed of the robot when arriving to
itstarget. Nextanother layer is developed to adjust the speed and steering angle of
therobots to avoid collision of the robots. Ifonly one fuzzy logic system was used
tosolve this problem with the inputs x, y, ¢ of each robotand D, each with the same
fuzzy sets described in this chapter then there would be 153,125 fuzzy ruleneeded
for its fuzzy knowledge base. Using a HFLC system we have a total number of
1,645 fuzzy rules for this system. The hierarchical concept learning using the
proposed method makes easier the development of fuzzy logic control systems, by
encouraging the development of fuzzy logic controllers where the large number of
systems parameters inhibits the construction of such controllers.
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Chapter VIII

Integrating Genetic
Algorithms and Finite
Element Analyses for

Structural Inverse Problems

D.C.Panniand A.D. Nurse
Loughborough University, UK

ABSTRACT

A general method for integrating genetic algorithms within a commercially
available finite element (FE) package to solve a range of structural inverse
problems is presented. The described method exploits a user-programmable
interface to control the genetic algorithm from within the FE package. This
general approach is presented with specific reference to three illustrative
system identification problems. In two of these the aim is to deduce the
damaged state of composite structures from a known physical response to a
given static loading. In the third the manufactured lay-up of a composite
component is designed using the proposed methodology.

INTRODUCTION

Inverseanalyses havea variety of applications in structural mechanics inwhich
unknowns in a structure are determined using system identification techniques.
These techniques allow the state of the structure to be deduced from the observed

Copyright © 2003, Idea Group Inc.
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response to given inputs. Depending on the problem to be solved, the unknowns
to be determined may be the material properties, applied loads, boundary
conditions or even the geometry of the specimen.

Ingeneral, inverse systemidentificationtechniquesinvolveupdatingananalytical
model representing the structure, where the difference between some measure of
analytical response and equivalent experimental response is minimised. In this
sense, the inverse problem canalso be considered an optimisation problem. Central
tothe analysisistheappropriate selection ofan analytical model that can accurately
predict the response of the structure, and an efficient and robust optimisation
algorithm for updating the model. Both ofthese components can be programmed
for specific problems, however the programming of an analytical model is largely
problem dependent and can be cumbersome. This is particularly true of structures
inwhich the geometry and to a lesser extent the material properties are complex.
Therefore itis considered, beneficial to develop arobust tool that can be readily
appliedtoawiderange of structural inverse problems withoutbeing concerned with
the complexity of geometry and/or material properties.

Themethod described here exploits the versatility of the LUSAS finite element
package (distributed by FEA Ltd.,v13.3,2001, www.lusas.com) by integrating it
as an object within a genetic algorithm (GA). The principal advantage of this
approach s thatthe broad functionality of the finite elementapplication can be used
tomodel many structural scenarios, without needing to know the exact form ofthe
analyticalmodel. Itis sufficientto enter the geometry, the loading and the boundary
conditions withoutexplicitly stating the form of theanalytical model. Thisishandled
inside the FE code and effectively hidden tothe analyst. Itis expected that this work
will provide the basis of future automated and robust inverse analysis inawiderange
ofapplications.

The described method is applicable to many structural problems inwhich the
state of the structure isunknown. GAs offer apowerful means of finding the global
optima of functions, particularly those in which the solution space is irregular or
discontinuous. One area in which system identification problems can be of
considerable benefitisindamage detection and quantification. Anotherapplication
isthe design of the manufacturing lay-up for producing composites optimised for
strength and/or lightweightrigidity. This chapter will pay particular interest to this
latterapplicationand will reference two examples ofhow the described method has
been successfully applied in the former. Of particular benefit to this method is the
factthattheresultofthealgorithm is an updated finite element model that represents
the actual structure that can subsequently be used under in-situ loading conditions.

Early investigations into inverse damage detection were summarised by Hajela
and Soeiro (1990), who considered damage in the analytical model to be
represented by alocal, reduced elastic modulus. The unknowns to be solved were
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typically aset of continuous damage parameters between lower and upper limits of
Oand 1 respectively. This approach presents the advantage that the general form
of the analytical model remains the same between iterations. However, some
damage scenarios cannot be easily represented by a continuous variable between
upper and lower constraints. Often, damage is discontinuous and of a discrete
nature, complicated by the fact that the form ofthe stiffness matrix may change as
themodel isupdated. Aninvestigation by Louis etal. (1997)useda GA and the
boundary elementmethod to locate damage represented by rectangular cut-outs in
aplate, while Chouand Ghaboussi(1997) combined the FE method and GAsto
resolve damage in truss structures. Another form of system identification problem
inwhichthe distribution ofinclusions inastructure was deduced using GAsand an
FE model was investigated by Schoenauer etal. (1997). While these and similar
investigations are largely problem specific, Rodic & Gresovnik (1998) described
a general computer method, in which the Elfen package was combined with a
programmable shell to solve inverse structural problems.

This chapter focuses on the use ofthe FE package to solve structural inverse
problems of a generalised nature that unlike the above references requires no
problem specific coding once the GA has been setup to identify the attributes of
the FE model that require optimisation.. It can be readily adapted for use as a
powerful design tool to optimise the design of structures subject to physical and
performance constraints as well as being available to determine damaged properties
ofastructure fromits response to loading as shown by Sherrattetal. (2001) and
Panni & Nurse (2001).

GENETICALGORITHMS

Genetic algorithms are a set of powerful optimisation tools thatareused ina
widerange of disciplines and engineering applications. They take their inspiration
from Darwin’s theory of natural selection and the survival of the fittest. Unlike
gradientbased optimisation techniques, GAs operate ona ‘population’ of solutions
and are well suited to the optimisation of discrete or non-continuous functions. A
wide range of suitable texts is available to the interested reader (e.g., Goldberg,
1989) and only arudimentary introduction is presented here.

At the heart of the algorithm is the concept that string-like (genotype)
representations of actual numerical solutions (phenotype) to apotential problemare
manipulated using simple genetic operators. Inmost cases this is an appropriate
binary representation butmore sophisticated representations have been successfully
used. Tobegin, aninitially random population of potential solutions is generated.
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Eachsolution inthe population is then converted into its genotype representation
and assigned anumerical fitness value based on how well that particular solution
minimises an objective function. Subsequent generations are developed by
probabilistically selecting pairs of parent solutions to combine and produce
offspring solutions in the next generation. Combination of the parents to produce
offspring is achieved using a ‘crossover’ operator that combines certain
characteristics of both parent solutions. The selection of parents is biased in favour
ofthosethathavethe best fitness values. In this way, subsequent generations exhibit
the beneficial characteristics of the previous generation, and any characteristics that
lead topoor fitness values are rapidly excluded from the population. In general the
average fitness of subsequent generations can be seen torapidly improve, and the
fittestsolutionineach populationshould converge to that value whichminimises the
objective function.
A pseudo-coderepresentation of the GA to solve inverse problems is listed
below:
1. Input GA control parameters, (size of population, probabilities of mutation
and crossover, etc.)
2. Generateapopulation ofrandom solutions representing possible damage
scenarios
3. Foreach individual
Convert solutions into suitable coded form
Build FE model
Solve FE model
Extract response data
Evaluate fitness
4. Generate subsequent population of coded solutions, based on the fittest
individuals from the previous generation applying crossover, reproduction
and mutation
5. Loopsteps 3-4 for fixed number of iterations or until specified convergence
criterion is met

The essential advantage of genetic algorithms is the capacity to very quickly
search the complete solution space and locate optimal areas. These optimal areas
canthen be rapidly exploited to find the global optima.

Thetwo genetic operators at the heart ofa genetic algorithmare crossover and
mutation. Incrossover, the parents are splitatarandom location and swapped over
sothathalfofthe solution comes from each parent. Inmutation, arandombitin the
stringisinverted froma ‘1’ to ‘0’ and vice versa. Each of these operations is applied
withagivenprobability.
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IMPLEMENTATION

The method uses the LUSAS finite element package. This commercially
available general-purpose finite element application incorporates a user
programmable interface, which was designed to help automate repetitive FE
actions.

The interface allows ASCllI script (command) files to be executed within the
application. These script files contain the GA code and the LUSAS-specific
instructions for building the geometry of the model, solving itand interrogating the
results database to extract the response data. The output response data is thenused
to formulate the objective function and determine the fitness of that particular
solution.

The scriptable interface is built around a set of core objects which an
applications programmer canmanipulate using specificmethods. Both VBSCRIPT
and JSCRIPT canbeused to write the scripts. Although these scripting languages
arerelatively basic, they have sufficient functionality to describe even complicated
geneticalgorithms.

The script file takes the general form shown below:

$ENGINE=scriptingengine

{scriptbody}

{procedures and functions}

The script body contains the main sub-routines (see below) that control the
GA, whilethe procedures and functions represent often-repeated standard routines
thatare called from more than one of the sub-routines in the script body:

Input_Data (Requestsuser input of GA parameters)

Generate_Original_Population (Randomly generates initial population)

Evaluate Population (Builds and solves FE models, extracts
dataand evaluates solution fitness
values)

Generate_New Population (Uses genetic operators to build anew
population)

Output GA_Data (Monitors the progress of the GA)

On executing the command file from within LUSAS, the user is prompted to
input the control parameters of the GA including the size of the population. No
further user inputis required, and dataregarding the progress of the algorithm is
outputtoaresultstextfile.
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EXAMPLES

Damage Detection

The following examples demonstrate how the method hasbeen used toresolve
anumber of different damage scenarios incorporating different encoding methods
and aprioriknowledge.

Firstly, withreference to damage detection in composites, the central idea of
the approach is that an analytical model representing a loaded structure is
systematically updated tominimise the difference in structural response between the
model and equivalent experimentally obtained data. Mathematically, the problem
isstated as:

Minimise objective function, f= dexp -d,
whered, isavectorofjexperimentally determined structuralresponses, z; and
d , isthecorresponding vector of;j analytically determined responses, Z.

op = 1ZpZ5 -2, r

d,,=12,Z,.2]"

Experimental input data is fed into a GA, which automatically uses it to
iteratively update the analytical model and minimise the above objective function.

Figure 1: General approachtoresolve inverse system identification problems
in which the damaged state of a structure is sought

Measure experimental
response

;

Build analytical model containing
damage and solve for structural
response

;

Compare experimental and
analytical response

v

Update analytical model
and solve for structural
response

Is the difference between
analytical and experimental
response minimised?

Terminate algorithm
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Ontermination ofthe algorithm, the analytical model should represent the actual
damage that is present in the structure.

A general system identification procedure is represented as a flow chartin
Figure 1.

Inthe firstinstance, we wish to fully define adelamination within alaminated
composite panel using whole-field measurements of out-of-plane deformation
when the panel is subject to vacuum loading. In this case, both the delamination
depthand shape are the unknowns to be solved. The delaminationis encoded inthe
GA by converting the surface of the panel into a 1 6x16 square grid, Figure 2(a).
Each ofthese 256 grids can either contain a delamination or not. Therefore the
coding comprises a256 long binary string with each bitrepresentingagrid. A “1°
represents the presence ofadelamination while a ‘0’ represents no delamination.
The remaining unknown is the depth. Since there are a finite number of integer
depths thata delamination can occur at, the depth is represented by appending an
integer to the front of the binary bitstring. This encoding of the information allows
various shapes of delamination to be considered—with greater resolution afforded
by afinermesh. The fitness value can be determined by evaluating the difference in
peak displacement values for the experimental and analyticalmodels. However, this
doesnot guarantee convergence to aunique solution. Therefore, the fitness function
isconstrained using penalty functions thataccommodate a prioriknowledge of the
solution. Inthis case, the pattern of the surface displacement plots is approximated
usingaseries of inequality rules. Any solution that violates any rule has a penalty
function appended to the fitness function. In this manner the GA favours those
solutions that best match the overall pattern of the experimental data and ensure
convergence toaunique solution.

Anotherapplication involves the detection of longitudinal cracks along the
corners of pultruded composite beams, Figure 2(b) using a set of reduced beam
bending stiffnesses obtained from 3-pointbend tests as input forthe GA. Assuming

Figure 2: (a) Deformation pattern of composite laminate surface under
vacuum loading; (b) FE mesh including longitudinal cracks in a box-section
beam

(@) (b)
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the a prioriknowledge thatthe cracks appear in pairs along the edges of a surface
and thatthey are of equal length, the crack information can be encoded in terms of
a surface, a length of crack and the starting point. By definition the model is
discretised in terms of the finite element mesh and therefore, rather thanrepresent
crack length and starting position in terms of continuous values, they can be
represented interms of discrete numbers of elements along the length of the beam.
These integer values are then converted into binary code and concatenated to
represent the full solution code. This application is described in more detail in
Sherrattetal. (2001).

Manufacturing Lay-Up Design

The high strength-to-weightratio properties of fibre-matrix composites are a
function of the orientation of different laminae within the sandwiched structure.
Consequently, the design engineer must carefully select and optimise where
possible the orientation of the fibres to produce the desired strength and stiffness
characteristics. Thoughin current practice thisis still something ofa ‘black art” and
new designs rely much on ‘tried and trusted’ solutions.

Here, the FE/GA tool is applied to a laminated box-section beam shown in
Figure 3 (dimensions in mm) with the aim of finding the laminate lay-up that
minimises boom-tip deflectionsubjectto given design and strength constraints. The
objectivefunctiontobeminimisedis formulatedasapenalisedboom-tip displacement,
whichincludes a penalty term for violation of the strength constraint. Since the aim
of the problem is to find a stacking sequence, which comprises a list of ply
orientations for both the box-section flanges and the webs which minimises the
overall deflection of the box-section, itisnecessary to develop achromosomal or
genotyperepresentation for the design variables. The stacking sequence or lay-up
of the laminate is simply a list of ply fibre orientations that make up the entire
thickness of the laminate.

Figure 3: Geometry and loading of box section beam for minimum deflection
lay-up design
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Figure 4: Chromosome definition for box-section beam lay-up optimisation
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Three discrete ply orientations will be adopted (0°,£45°and 90°). This lends
itselfwell torepresentation using athree integer string-like genotype code with each
integer in the string representing a different ply orientation (Figure 4). Additional
constraints are enforced by the particular genotype encoding adopted and by
introducing arepair strategy that eliminates infeasible solutions from the gene-pool
and replaces them with feasible ones. The method uses a 3 digit real encoding
system torepresent the discrete laminate ply orientations in both the flange and

webs.
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Figure 5: Distribution of algorithm test runs versus orientation combination
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Flange-Web Orientation Combinations

The problem s a classical laminated composite optimisation problem and
similar problems have been previously addressed, though only to simple geometry
panels subjectto either in-plane and/or out of plane bending. Significantly less
research has been performed onmore complex geometry models, without which
itisunlikely thatindustry will adopt the method. In this particular area the work
represents a significant contribution to the present body of knowledge.

Analysis of the results from the perspective of proportions of ply orientations
in the laminate shows a clear convergence among the tests to a smaller set of
solutions that have the same proportion of 0°, +45° and 90° fibres. These are
summarised in Figure 5.

The fittestindividual found by the GA in 100 testrunsis in good agreement with
resultsthatmightbe expected using sound engineering principles. Thisindicates that
the approach adopted here may prove to be a valuable tool in this type of design
optimisation problem.

FUTURE TRENDS

The principal advantage ofthis method is the relative ease of implementation,
whichrequires only knowledge of GAs and simple script language programming.
Itavoidstherelatively complex and tedious task of manually assembling and solving
FE problems. Although the authors recognise that the present method may be
computationally expensive, since itrequires many standard FE solutions to be
solved, thismay be offset in the future with the increasing availability of computing
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power. Furthermore, the inherent parallelism in GAs means that the described
method may significantly benefit from developments in parallel computing.

CONCLUSIONS

A method for integrating GAs within a finite element environment has been
presented. This approach allows the possibility of applying the undoubted benefits
of GAstoawide variety of structural problems. This present chapter has described
how anintegrated GA and FE analysis can be used to solve structural problems
associated with composites. However, the same method can be used to solve a
whole range of system identification for structural inverse problems in which
unknowns such as applied load may be resolved. A further application of this
method is the automated optimisation of structural design, in which astructure and
amaterial are designed subject to physical, costand manufacturing constraints.
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Chapter IX

On the Modelling
of a Human Pilot
Using Fuzzy Logic Control

M. Gestwa and J.-M. Bauschat
German Aerospace Center, Germany

ABSTRACT

This chapter discusses the possibility to model the control behaviour of a
human pilot by fuzzy logic control. For this investigation a special flight task
is considered, the ILS tracking task, and an evaluation pilot has to perform
this task in a ground based flight simulator. During the ILS tracking task all
necessary flight data are stored in a database and additionally the pilot
commands are recorded. The development of the described fuzzy controller
(the fuzzy pilot) is based on cognitive analysis by evaluating the recorded flight
data with the associated pilot comments. Finally the fuzzy pilot is compared
with the human pilot and it can be verified that the fuzzy pilot and the human
pilot are based on the same control concept.

INTRODUCTION

Itis amust for manned real-time simulations to take Man/Machine Interface
(MMI) aspects into account. The demanded quality of the MMI-simulation
depends on the particular aim of the simulation. Up to now, however, no clear

Copyright © 2003, Idea Group Inc.
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answer is given to the question: how realistic the real-time simulation atleasthas to
beinrelationtoacertain flighttask? One typical example is theapplication of motion
cues. Simulated motion is notnecessary in the case of so-called Flight Training
Devices (FTDs) used generally for initial and procedure training. These less
complex simulatorsreplicate the actual aircraft cockpit, but donot provide a visual
system or motion system. On the other hand, it is well known that the pilot’s
behaviourisinfluenced by the aircraftmotion in the case ofhigh precisiontasks, e.g.,
when he has to perform an ILS-approach under bad weather conditions such as
heavy wind shear, turbulence and gusts (see, e.g., Bussolarietal., 1984; Schanzer
etal., 1995). High gain tasks increase the workload of the pilot significantly. Hence,
a deeper understanding of these subjectively sensed influences on the pilot’s
reactionsisnecessary.

Particular aspects of MMI problems are covered at the Institute of Flight
Research of the German Aerospace Center (DLR) by a project named AIDA
(Airborne Identification and Development of simulation fidelity criteria using
ATTAS).Itdeals with the comparison of ground-based simulation and real flight.
Differentexperienced commercial pilots have to perform well defined tasks ontwo
simulators with different equipment standards and on the DLR in-flight simulator
ATTAS. Theresultsareused twofold: (1) to classify the pilottasks and (2) to define
the demands on the simulator equipment to enable an adequate conduction of the
given task. The project also provides additional information related to pilot
workload aspects, which leads to a better understanding of the man/machine
interface between pilot and aircraft (see Bauschat, 2000).

The data gained from the simulator sessions and flight-tests are evaluated in
various ways to gain as much information as possible. Data evaluation in the time
domaindeliversa goodideaabout the quality ofatask solution. The assessment of
the solution quality isadditionally supported by statistical evaluations. Pilot’s effort
to solve atask can be described in the frequency domain, where power spectral
density dataareused. Butthe investigation of the individual strategies pilots are using
toachieveagood performance duringa particular task makes itnecessary tomodel
the pilot and the MMI. Investigations based on pilot models support a better
understanding of the interaction between pilotand MMI. Sub-models describing
particular behaviour patterns, which have been found evaluating the AIDA
database, should be easily added to the pilot model. Such a sub-model may, for
example, include the influence of the pilot’s subjective impressions on his task
performance.

With respect to the idea of the AIDA project, it was soon clear that a
knowledge-based method should be used to model the control characteristic ofa
pilot. Inthis particular case a fuzzy logic approach has been chosen. Fuzzy logic
provides alotofbenefits, because verbal descriptions which an experthas givencan
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be introduced directly into a controller approach. The controller itselfis easy to
handle from the point of view of an engineer, whichmeans itis easy to modify.

BACKGROUND

Inthe field ofairplane systemtechnology, investigations focusing on Human
Factors or Man/Machine Interface have played an important role for decades.
Airplane handling qualities can only be evaluated properly, if pilots and their
subjective impressions are taken into account. Basic work has been done here by
Cooper et al. (1969). The so-called Cooper/Harper Rating Scale provides the
evaluation pilot with a tool to rate handling qualities and own effort between 1
(excellent) and 10 (not controllable). Pilot models with different degrees of
complexity have been used for theoretical investigations based on computer
simulations (see, e.g., McRuer, 1988).

A typical example forthe necessity of investigations based onreal-time ground
simulationsis described by Ashkenasetal. (1983). During one ofthe first free flights
ofthe shuttle orbiter, a PIO incident occurred during the approach to the runway.
PIO stands for Pilot Induced Oscillation and can be observed in airplanes with fly-
by wire control systems. PIO is characterised by disharmonic pilot control inputs
leading to unintended heavy aircraft motions. Mainly system time delays in
combination with closed loop pilot tasks can trigger PIO prone situations. Duda
(1997) describes the effectin greater detail. The PIO problem of the space shuttle
hasbeeninvestigated with the help ofa very simplereal-time simulatorand has been
solved. The effect observed in the ground-based simulation was modelled and
simulated additionally usingalinear pilot model.

How realistic a flight simulation is depends on the quality of the simulator.
Fixed-based simulators are useful ifthe pilot has to perform tasks where the motion
cueshaveminimal importance. Typical startor landing procedures, under Instrumental
Flight Rules (IFR) conditions, with minimum external disturbances, can be easily
performed.

Movingbased simulators give a pilotamorerealistic impression ofa flying
aircraftifthe simulators are additionally equipped with a good visual system.

However, deficiencies of ground based simulators are well-known (see, e.g.,
Harper, 1991). Some of them are as follows:

* Inthecaseofafixed-based simulator, there are no proprioceptive cues.

*  Amotion-system has physical limits and therefore some cues are more or less
suppressed (i.e.,only 10-15% ofthereal roll acceleration is available).

»  Some cues, such asthe load factor in the vertical aircraft axis, are missing.

*  Becauseofwashoutfiltering, some cues are generated which never appearin

areal airplane. The design of washout filters is stillakind of black art .
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*  Theharmonisationbetweenaircraft motion-systemand visual-system dynamics
isaproblem area.

*  Theworkload ofthepilotinasimulatorandinreal flightis generally different.
Investigations concerning P10 effects, for instance, have shown this.

Theinfluence ofthese effects ona pilotneed further investigation and is done
wthinthe AIDA framework. Ifthe effects canbe modelled, they can be implemented
within the software system of the above mentioned MMI model.

Most ofthe pilot models mentioned at the beginning of this section have the
disadvantagethattheir potential concerningadaptationtoaparticular pilotperforming
aparticular task isnot very high. Atthe DLR Institute of Flight Research, it was
decidedto find asuitable pilotmodel approach, which satisfies most of the demands
inthe above mentioned AIDA project. Broad discussions with soft computing
experts and an intensive literature study (e.g., Zadeh, 1964; Mamdani, 1974)
ended in the decision to try a fuzzy logic control approach.

THEILS TRACKING TASK

In order to get the necessary data for the development of the fuzzy pilot, a
particular flight task was performed in a fixed base ground simulator (no motion
system). During the task all necessary data are stored, e.g., flight path angle,
airspeed, altitude, etc. Additionally the pilot documented control commands and his
strategy. These pilot commentaries were recorded with a dicta phone. This
particular flighttask is called ILS tracking task (abbrev.ITT) and can be described
inthe following way (see Bauschat, 2000):

TheITT consists of seven phases. Atthe beginning the aircraft flies with

thetargetspeed established onthe glide slope. After 70 sec the glide slope

transmitter shifts toanew position so thatthe glide slope indicator on the
display in the cockpit moves downwards or upwards to its maximal
deflection. Inthe case thatthe aircraft is above the glide slope, the pilot
hastoreducethealtitude. For thismaneuver he has 70 seconds. After this
procedure the glide slope transmitter is shifted again so that the glide slope
indicator moves upward to its maximal deflection. Now the aircraft is
underthe glide slope and the pilothas to climb with the aircraft. Againthe
pilothas 70 seconds to compensate the glide slope deviation. In the next
phase the glide path indicator moves downward again, afterwards
upward again, etc. The whole ITT task requires 490 seconds, whereby

the glide path indicator moves three times downward and three times

upward ina given sequence.
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Figure 1: Artificial ILS
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Theimplementation ofthe ITT inthe flightsimulatorisbased onasynthetic glide
slope transmitterresp. asynthetic navigation system. Onthe artificial glide slope, the
aircrafthasaglide pathangle of 1.5°. The maximal deviation amounts to 0.25° (see
Figure 1). Atthe firsttransmitter movement, the pilothas to compensate an altitude
difference of 196 m. The described ITT focuses only the longitudinal motion ofthe
aircraft.

DEVELOPMENT OF THE FUZZY PILOT

Thepilothasto observealotofdifferent instruments in the cockpit. To find out
the information an evaluation pilot uses to perform the ITT, he has to fill ina
questionnaire. Inthis questionnaire the pilotdescribes the priority of the instruments
heneeded. A givenscaleis divided into ten priorities, which are subdivided into
three classes again (see Table 1).

This information is a basis to find the measurements for the fuzzy pilot. The
circled numbers in Table 1 are the priorities of a professional pilot who has
performedthe ITT. The priorities of the pilot show that five indicators are important
toperformthe ITT. By three ofthem the signal dynamic is important, too. All very
importantindicators listed in Table 1 can be used for the fuzzy pilot model. The
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Table 1: Questionnaire of the instrument priority

(1) Priority of the instrument

very important important unimportant
pitch 1 2 3 4 ® 6 7 8 9 10
speed trend 1 2 ® 4 5 6 7 8 9 10
speed difference 1 2 ® 4 5 6 7 8 9 10
glide slope O) 2 3 4 5 6 7 8 9 10
flight path angle O) 2 3 4 5 6 7 8 9 10
altitude 1 2 3 4 5 6 7 8 9
vertical speed 1 2 3 4 5 ® 7 8 9 10
DME 1 2 ® 4 5 6 7 8 9 10
(2) Priority of the instrument dynamic

very important important unimportant
pitch 1 2 3 4 5 ® 7 8 9 10
speed trend 1 2 3 4 5 6 7 9 10
speed difference 1 2 ©) 4 5 6 7 8 9 10
glide slope ©O) 2 3 4 5 6 7 8 9 10
flight path angle 1 2 3 @ 5 6 7 8 9 10
altitude 1 2 3 4 5 6 7 8 9
vertical speed 1 2 3 4 5 6 7 8 9
DME 1 2 ® 4 5 6 7 8 9 10

dynamics ofthe indicators can be substituted with the ratio of difference without
information loss. Itis obtained by

X = Xe+rar ~ X
- At

Between some information exists adependence, which canbe used toreduce
thenumber of measurements. Forexample the flight path angle canbe derived from
the glide slope and its change due to time. Ifan aircraftis established on the glide
slope withthe properairspeed, the flight path angle will be proper too. Consequently
the flight path angle can be disregarded as ameasurement. The distance (DME) can
be derived from the sensitivity of the glide slope indicator. A reduction of the
distance causes a fastmovement and a frequent change of the glide slope indicator.
The commentary of the pilot reflects this reduction, too. So, the number of
measurements can bereduced fromsevento four. These are the glide slope Ag, the
derivative ofthe glide slope A€ , the speed difference Av and the derivative ofthe
speed difference Av . The control commands of the fiizzy pilot are defined by the
control elements in the cockpit. Consequently the fuzzy pilot delivers a side stick
command and a thrustcommand.

TLFeBOOK



154 Gestwa and Bauschat
Figure 2: Glide slope derivative
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Specification of the Linguistic Terms and their Fuzzy >ets

Inthe following subsections the specification of the linguistic terms and their
associated fuzzy sets are described. As examples the glide slope derivative and the
side stick command are explained in detail. The specificationis based on the pilot
commentary and therecorded flight data.

Derivative of the Glide Slope A¢

Inthe diagram of the glide slope derivative, the movement of the glide slope
transmitter can be clearly recognised. After the glide slope transmitter has moved,
the derivative reduces its value always in the range from-0.02°/sec to 0.02°/sec
(seethe marked range in Figure 2).

Theinvestigation of the pilotreaction shows thathe doesn’t make any control
command immediately after the glide slope transmitter starts to move. This
behaviouris normal because the pilot knows that he cannot follow the glide slope
directly and that a new phase of the I'TT starts. So, the pilot waits until a quasi-
stabilised situation is indicated and then he starts to compensate the glide slope
deviation.

Tomodel this effectthe fiizzy pilothas a separate controller. The measurement
ofthis controlleristhe glide slope derivative with the universe[-0.1°/5,0.1°/s],and
inagreement with Figure 2, the three linguistic terms below, zero and above are
defined. This fuzzy setoverlaps atthe broken lines. Table 2 includes the definition
points.
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Table 2: Points of the measurement

u below Zero above
0 -0.100 -0.025 0.015
1 -0.025 -0.015 0.025
1 -0.025 0.015 0.025
0 -0.015 0.025 0.100

The control commands ofthe separate controller are the two linguistic terms
yes and no which indicate that the glide slope transmitter has moved. So, therule
base contains the three rules:

IF A€ 1S above THEN  shiftingISyes
IF A€ 1S zero THEN  shiftingISno
IF A€ IS below THEN  shiftingISyes

Now the linguistic terms of the glide slope derivative have tobe defined in the
universe [-0.025°/s,0.025°/s]. Todescribe the strategy of the glide slope derivative
inthisuniverse, the area between the two broken lines in Figure 2 is enlarged in
Figure 3.

InFigure 3 six horizontal lines and the zero line can be seen. Based on this
classification theuniverseis divided into six areas and each arearepresents aspecial
situation. Firstthe three areas above the zero line will be explained:

Figure 3: Zoom of the marked area of Figure 2
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+ [0.01°/,0.02°/s]:
The glide slope transmitter has reached anew position. Themotion of the glide
slope indicator is normal. The pilot starts to stabilize the aircraft on the glide
slope.

+ [0.0025°/5,0.01 °/s]:
The aircraft is in stationary descent or climb. The glide slope deviation is
reduced.

*  [0.0°/5,0.0025 °/s]:
Theaircraftisnearto the glide slope and has to be stabilized on the glide slope.
Accordingtothe commands ofthe pilot the airplane oscillates around the glide
slope.

« 0%s:
Onthe glide slope the derivative should have a value of zero. Consequently the
aircraftisinastationary state.

This description can be transferred to the area below the zero line. With the
help ofthe commentaries of the pilot seven linguistic terms can be defined. The terms
are:

descent rapidly, descent, descent slightly, zero, climb slightly,
climb, climb heavily
and the determining points of their fuzzy sets are summarized in Table 3.

Side Stick Command q

The side stick deflections are given as inputs to arate-command system and
Figure 4 shows the side stick commands of an ITT. It can be seen that the pilot
commands have mainly the shape of short peaks. This control behaviouris typical
forapilot whoisusing arate command system. A rate command systemis a flight
control system which stabilises anaircraftonapitch angle the pilothas commanded.
Tomodelthis control behaviour the maximummethod will be used for defuzzification
because this method causes a pulsed behaviour (see Kruse et. al., 1993; Kahlert
et.al, 1993). With this approach the output of the firzzy pilot will be defined by the
maximum ofthe fuzzy-set. To find these maximum an investigation of the pilotside
stick commands is helpful. The maxima can be defined roughly within three positive
and three negative classes (dashed lines in Figure 4).

Table 3: Points of the glide slope deviation

n descent descent descent Zero climb climb climb

rapidly slightly slightly rapidly
0 -0.0250 -0.0150 -0.0050 -0.0010 0.0 0.0020 0.0120
1 -0.0150 -0.0120 -0.0025 0.0 0.0025 0.0075 0.0150
1 -0.0150 -0.0075 -0.0025 0.0 0.0025 0.0120 0.0150
0 -0.0120 -0.0020 0.0 0.001 0.0050 0.0150 0.0250
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Figure 4: Side stick command of the pilot
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With the values in Figure 4 and the pilot comments in addition the number of

linguistic term ofthe side stick commands can be derived. They are:
pull heavily, pull, pull slightly, zero, push slightly, push, push heavily

Theuniverse ofthe side stick command is defined by the side stick signal with
theinterval [-1,1]. The linguistic terms are represented by triangular fuzzy sets and
arepresented in Table 4.

Afterall fuzzy sets ofthe measurements and the control commands are defined,
the structure of the fuzzy pilot can be developed (see Figure 5).

Definition of the Rule Base

Now itisnecessary to define the rule base of the fuzzy pilotusing the specified
linguistic terms. First the basic strategy of the pilot control behaviour should be
determined from the time histories (see Figure 6) and the pilot comments. The basic
strategy ofthe pilotto performthe ITT canbe divided into three phases:

Inthe firstphase the glide slope transmitter ismoving. The absolute value of
the glide slope derivativeis large. Since he knows that he cannot follow the glide
slope indicator, he waits until the indication moves slowly.

Table 4. Points of the side stick command

n pull pull pull null push push push
heavily slightly slightly heavily

0 -1.0 -0.4 -0.2 -0.1 0.0 0.1 0.2

1 -0.4 -0.2 -0.1 0.0 0.1 0.2 0.4

0 -0.2 -0.1 0.0 0.1 0.2 0.4 1.0
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Figure 5: Structure of the fuzzy pilot
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Inthe second phase the glide slope indicator moves slowly. Now the pilot
starts compensating the glide slope deviation. Depending on the actual situation, he
initiatesadescentor climb. In this phase he isreducing the glide slope deviation very
fast. He brings the aircraft as fastas possible close to the glide slope. During the
descent or climb, the pilot only has to wait and to observe.

In the third phase the aircraft is near the glide slope. Now the pilot has to
stabilize the aircraft on the glide slope. For this procedure he stops the descent or
climb by pulling or pushing the side stick. Consequently the descent or climb is
interrupted and the aircraft will be stabilized on the glide slope as well as possible.
Inthis state only slight glide slope deviations have to be compensated by the pilot.

Evaluating the airspeed difference itisremarkable that in some situation the
power leverhasreached the lower limitbut the speed s still too high. In this situation
the pilotcanreduce the speed difference only with the side stick. Ifhe pulls the side
stick, the aircraft interrupts the descent and the glide slope deviation is not
decreasing. Butitis the task ofthe pilotto compensate the glide slope deviation as
quickly aspossible. So, he hasto accept the interim speed deviation. Furthermore
astrongrelationship between the side stick and the thrust command exists which
arises from the energy balance and is considered by the pilot. The energy balance
isthe sum ofkinetic and potential energy:
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Figure 6: Strategy of the pilot
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Duringasmallinterval the weight of the aircraft changes very slowly. With the
assumption the potential energy depends only on the altitude and kinetic energy
depends only onthe speed. Inthis case the pilot pushes the side stick until the aircraft
reducesthealtitude. Potential energy will be transformed inkinetic energy. Without
a thrust command the energy balance is constant and consequently the speed
increases. According to this the pilot pulls the side stick without a thrust command.
The aircraftreduces the speed and increases the altitude. The control strategy and
the comments ofthe pilotreflect this factand can be described as follows:

»  Ifthepilotpullsthesidestick, the corresponding thrustcommand results from
the followingaspects: Ifthe aircrafthas a positive speed difference, no thrust
is given because the climbreduces the speed difference. Ifthe speed difference
isroughly equal zero, a very small amount of thrust has to be set to hold the
speed. Ifthe aircraft has anegative speed difference, thrust has to be given
because the climbwill increase the existing speed difference.

»  Ifthepilotpushesthesidestick, the thrustcommandresults fromthe following
aspects: If the aircraft has a negative speed difference, no thrust is given
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because the descent reduces the speed difference. Ifthe speed difference is
roughly equal to zero, thrusthas to be reduced a little bit to hold the speed. If
the aircrafthas a positive speed difference, thrust has to be reduced because
the descent will increase the existing speed difference.

*  Thepilotincreases only the thrust. The engines of the aircraft are beyond the
centre of gravity. Onaccountofthis anincrement ofthe thrust produces apitch
up moment. To compensate this upward movement, the pilot gives a small
pitchdown command.

*  Thepilotreduces only the thrustand the aircraft pitches, because areduction
of the thrust produces a pitch down moment. To compensate this downward
movement, the pilot gives a small pitch up command.

Therulebase of the fuzzy pilothas to be designed taking the above mentioned
aspectsintoaccount. To define additional necessary rules aniterative process has
tobe included into the design process. The development of the fuzzy pilot starts
with only onerule and the other rules are defined one after the other. Ifa situation
during the ITT occurs where the fuzzy pilothas no rule, the algorithm aborts the
ITT and reports the current flight state. Then the new rule can be defined by
analysing the current flight state. The rules on the next page are defined with this
method.

The control behaviour of these eight rules are shown in Figure 7 on the base
ofthe firstmovement of the glide slope transmitter. This method was used to define
the whole rule base of the fuzzy pilot.

The development ofthe fiizzy pilot model is based on the information gained
fromonepilot. This has the consequence thatonly the specific control characteristics
ofthis subject will be matched. Taking the control characteristic of other pilots into
accountmakes model modifications necessary. However, the main partofthe rule
base canbeusedunmodified because most of the rules are based on flight mechanic
equations.

THE FUZZY PILOT IN COMPARISON WITH

THE HUMAN PILOT

How the fuzzy pilot performs the ITT can be seen in Figure 8. The fuzzy logic
system compensates all glide slope deviations caused by the movements ofthe
transmitter.

The fuzzy pilot stabilises the aircraft on the glide slope with the demanded
target speed.
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IF Ae IS zero A AE 1S zero A Av IS zero A AV 1S zero A shifting IS no

THEN q_ISzeron PLA IS hold

IF Ae IS over A AE IS climb A AV IS zero A AV IS sink A shifting IS no

THEN q_ IS push heavily A PLA IS raise

IF Ae 1S over A AE IS climb A Av IS zero A Av IS sink A shifting IS no

THEN q_ IS push heavily A PLA IS raise slightly

IF Ac IS over A A€ IS climb A AV IS zero A Av IS climb A shifting IS no

THEN q_ IS push A PLA IS raise

IF Ae 1S over A A& 1S climb slightly A Av IS zero A Av IS climb A shifting IS no
THEN q_IS push A PLA IS raise

IF Ae IS over A A€ IS zero A AV IS zero A Av 1S climb A shifting IS no

THEN q_ IS push A PLA IS raise heavily

‘IF Ae IS over A A€ IS descent rapidly A Av IS zero A AV IS climb A shifting IS no
THEN q_ISnull A PLA IS hold

IF Ae IS over A Ag 1S descent A Av IS zero A A¥ IS climb A shifting IS no
THEN q_ISnulla PLA IShold

Figure 7: A control result of the fuzzy pilot
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Itwas further investigated in this project, ifa fuzzy logic control approachisa
suitable method to model the human control behaviour. An assessment of the
control behaviour of the fuzzy pilot makes acomparison with the control behaviour
ofthe human pilotnecessary. The human control behaviouris additionally influenced
by differentenvironmental aspects (see Bubb, 1992). Itisnot possible to take all
these aspects into account in this chapter, so the comparisonis based here on pilot’s
control strategy.

Comparison of the Glide Slope Compensation Strategy

Example glide slope deviations of the pilot and the fuzzy pilot are compared.
Forthis purpose the deviation of the pilotand the fuzzy pilot during the ITT will be
plottedin one diagram. Figure 9 shows that the curves of the glide slope deviations
are quite similar.

During the 2nd, 4th and 5th transmitter movements, the two curves are
matchingacceptably. Onthe basis of the mean value and the standard deviation of
the glide slope deviation, it can be assessed how the pilot and the fuzzy pilot
maintain the glide slope. Table 5 shows that all mean values can be found in the
proximity of the ideal mean value zero and all standard deviations are in an
acceptablerange.

Figure 8: Control policy of the fuzzy pilot by the ITT
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Figure 9: Glide slope deviation of the pilot and the fuzzy pilot
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Table 5: Mean value and standard deviation of the glide slope signal Ag

fuzzy pilot pilot (L. ITT) pilot (2. ITT) pilot (3. ITT)
u 0.0099 0.00083 0.0014 0.0083
o 0.1010 0.10600 0.0940 0.0970
o 0.0103 0.01130 0.0088 0.0095

Comparison of the Side Stick Commands

The fuzzy pilot commands are short pulsed side stick inputs like those of the
human pilot. This can be seen clearly in Figure 10, which shows the side stick
commands of the pilotand the fuzzy pilot for the ITT. Figure 10 illustrates also that
the activity ofthe fuzzy pilot s similar to the human pilot. Table 6 also reflects this
result, because the mean value and the standard deviation are nearly identical.

The maximum values of the side stick commands of the fuzzy pilot are
acceptable. The commands ofthe human pilot can be characterized as jerky, short
inputs in contrastto the fuzzy pilot, which prefers weak, long inputs. But the result
ofthe commandsisthe same. However, atthe end of the ITT, the fuzzy pilotismore
activethanatthe beginning. This higheractivity canbe described by the cone-effect
ofthe glide slope signal. The sensitivity ofthe glide slope signals increases with
decreasing distance to the glide slope transmitter.

Figure 10: Side stick command of the pilot and the fuzzy pilot
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Table 6: Mean values and standard deviations of the side stick command

fuzzy pilot pilot (1. ITT) pilot (2. ITT) pilot (3. 1TT)
U 0.0061 0.0068 0.0062 0.0058
o> 0.1020 0.1410 0.1360 0.1470
Oy 0.0110 0.0200 0.0180 0.0220

Comparison of the Control Strategy

The comparison between the human control strategy and the control strategy
ofthe fuzzy pilotimplies, that the previously discussed measurements can be seen
asaninherent part ofacontrol concept. This concept defines how the pilothas to
reactinasituationand determines his control behaviour. During the ITT the situation
is described by means of the glide slope and the speed. The control strategy is
characterized by the side stick command and the thrust command. In the following
example one ITT sectionis evaluated with respect to the control strategy.

Thereaction of the fuzzy pilotis very similar to the reaction of the pilot (see
Figure 11). Bothreactonaglide slope transmitter shifting with a stationary climb.
During the stationary climb, the pilot waits until the aircraftis near the glide slope.
Bothbegin to interrupt the climb so that the aircraft is stabilized on the glide slope.
Bothpilots stop the climbtoo early. The aircraft overshoots the glide slope. In this
situation the pilotand the fizzy pilot as well push the side stick toreturn on the glide
slope. Inthe final phase of the ITT both pilots succeed to stabilize the aircrafton the
glide slope. In this part of the experiment it can be observed that a side stick
command is coupled with a thrust command. The commands push and thrust
reduction aswell as pull and thrust increase define a control unit. Itis noticeable
thatthe pilot pushes the side stick during the climb, because the aircraft overshoots
the glide slope (see Figure 11 from 168 to 182 seconds). The fuzzy pilot has this
control behaviour, too. The flight section in Figure 11 points out that the control
strategy of both pilots during anegative, maximal movement of the glide slope
transmitter is very similar. The previously described control strategy can be
observed in every phase of the tracking task. An investigation of all opposed
reactions of the fuzzy pilot and the human pilot shows that they are based on
different flight states and so both reactions are correct. Although some differences
between the reaction ofthe human pilotand the fuzzy pilot exist, the control strategy
ofthe fuzzy pilot was correct and proper during this particular task.

FUTURE TRENDS

The importantmessage of this investigation is that fuzzy control canbeused to
model the control behaviour ofahuman pilot. The nextaimisthe adaptation ofthe
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Figure 11: Control strategy of the fuzzy pilot in comparison with the one of
the human pilot
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control behaviourto individual pilots. The fuzzy pilot canbe used as a pilot model
fordefined flight tasks. The adaptation of the fuzzy pilot can be done using neural
networks or evolution strategy. During the adaptation process the fuzzy sets of the
fuzzypilothave to be optimised. Before the rule base can be adapted all rules have
tobe checked. Ithas to be found outifarule describes a particular pilotorifitis
ageneral rule, which is describing the control characteristic of atypical pilot (e.g.
analtitude overshoot with constantairspeed causes the pilot to decrease the thrust).
The comparison of the control behaviour is another aspect which can be
optimised. Inthis project the control behaviour is compared with asimple method.
Thedifference between two signals can usually be computed with the least squares
method. In the case of the fuzzy pilot, this method cannot be used, because the
fuzzy pilot and the human pilot did not start their control activities exactly at the
same time. The use of the least squares method would result in an unrealistic
difference. But withrespect to the comparison ofthe control strategy, a small time
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delay is notas important as the reaction. Therefore the time warp method canbe
used, becauseitis applied to find similar time histories in database. The time warp
method makes it possible to define a fitting weighting function for an optimisation
of'the fuzzy pilot.

Fuzzy clustering makes it possible to derive fuzzy rules directly out of the
cluster. Forthis purposeaclusteris interpreted as one rule and the accessory fuzzy
sets can be evaluated by the projection ofthe cluster on the axes (Hoppneretal.,
1997). Inthe case of the modelling of a human pilot, fuzzy clustering can probably
beused to compute the fuzzy pilot directly out of the recorded flight data. Therefore
the structure of the fuzzy pilot can be used to initialise and control the clustering.
Attention should be paid to the fact that the projection of the cluster contains an
information gap. However ithas to be noticed that the data points are dependent
onthemselves. The datapointatthe time stept_is depending on the datapoint
t , etc.

n-1°

CONCLUSION

Theresults of the comparison of the fuzzy pilot and the human pilot show that

*  Thefuzzypilotfulfilstherequirements of the ITT tohold the aircraft witha fixed
target speed on the glide slope.

*  Themeasurements and the control commands ofboth pilots are very similar
inmagnitude and trend.

»  Control behaviour of the fuzzy pilot is based on the control strategy of the
humanpilot

*  Thefuzzypilothas primarily the same reaction time as the human pilot.

Inthis work it could be proven that the developed fuzzy pilot uses the same
control strategy as the human pilot. It could also be shown that the control
commands ofthe fuzzy pilot indicate the same characteristics as those of the pilot.
Furthermorethe fuzzy pilothas in some situation the same reaction time as the pilot
sothatthis aspect of the human control behaviouris also taken into account.
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Chapter X

Bayesian Agencies
in Control

Anet Potgieter and Judith Bishop
University of Pretoria, South Africa

ABSTRACT

Most agent architectures implement autonomous agents that use extensive
interaction protocols and social laws to control interactions in order to ensure
that the correct behaviors result during run-time. These agents, organized
into multi-agent systems in which all agents adhere to predefined interaction
protocols, are well suited to the analysis, design and implementation of
complex systems in environments where it is possible to predict interactions
during the analysis and design phases. In these multi-agent systems, intelligence
resides in individual autonomous agents, rather thanin the collective behavior
of the individual agents. These agents are commonly referred to as “next-
generation” or intelligent components, which are difficult to implement using
current component-based architectures.

In most distributed environments, such as the Internet, it is not possible
to predict interactions during analysis and design. For a complex system to
be able to adapt in such an uncertain and non-deterministic environment, we
proposetheuse of agencies, consisting of simple agents, which use probabilistic
reasoning to adapt to their environment. Our agents collectively implement
distributed Bayesian networks, used by the agencies to control behaviors in
response to environmental states. Each agency is responsible for one or more
behaviors, and the agencies are structured into heterarchies according to the
topology of the underlying Bayesian networks. We refer to our agents and
agencies as “Bayesian agents” and “Bayesian agencies.”

Copyright © 2003, Idea Group Inc.
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Due to the simplicity of the Bayesian agents and the minimal interaction
between them, they can be implemented as reusable components using any
current component-based architecture. We implemented prototype Bayesian
agencies using Sun’s Enterprise JavaBeans™ component architecture.

INTRODUCTION

Forasystemto exhibitcomputational intelligence, itmustbe able to learn from
and adapt to changes in its environment. Most distributed environments are
characterized by uncertainty and non-determinism. Bayesian networks provide the
ideal mechanism for systems inhabiting environments such as these, to learn from,
reason aboutand adaptto changes in their environment. Our research focuses on
the implementation of distributed Bayesian networks using simple agents organized
into agencies. These agencies are structured into heterarchies according to the
structure of the Bayesian networks thatthey collectively implement. Each agency
is responsible for one or more behaviors. We call these agents and agencies
“Bayesianagents” and “Bayesianagencies.”

This chapteris organized as follows: itbegins by giving abackground on the
underlying technologies that we use in our research. We define agents, agencies,
heterarchies, intelligence and artificial life. We further describe Bayesian networks,
Bayesian beliefpropagation and Bayesian learning algorithms.

Nextwe describe how these agencies collectively adapt to environmental
statesusing asimple Web personalization example. We further describe emergent
beliefpropagationinthe Bayesianagencies and a prototype implementation thereof
usingacomponent-based architecture.

Then we describe future research and in finally we give our conclusion.

BACKGROUND

Agents, Agencies and Heterarchies

There are two differentapproaches to the definition of the concepts ofagents
in the research community. In the first (most popular) approach, agents are
autonomous entities as reflected in the following definition:

An agentis an encapsulated computer system situated in some environment
and capable of flexible, autonomous action in that environment in order to
meet its design objectives (Jennings, 2001).

In the second approach, which was started by Minsky (1988), simple,
unintelligentagents are organized into agencies, which in turn can be organized into
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hierarchies or heterarchies. The intelligence lies in the behavior of the agencies and
nottheindividual agents. The intelligence of the agencies emerges frominteractions
between the simple agents and the environment. Agencies organized into a
heterarchy can achieve more than agencies organized into a hierarchy (Minsky,
1988). We view ahierarchy as a simplified heterarchy.

Interaction is at the core of emergence and emergence causes intelligence
(Brooks, 1991). Mostautonomous agents do not exhibitemergent behavior, as the
emergenceisrestricted by complex interaction protocols (Wooldridge, Jennings &
Kinny, 2000) and social laws that agents must follow (Zambonelli, Jennings,
Omicini & Wooldridge,2000). Autonomous agents thatdoreactto theirenvironment
using emergentbehaviorinclude the Subsumption Architecture (Brooks, 1985)and
autonomous agents controlled by Behavior Networks (Maes, 1989). These agents
consistofsimple (sub)agents and theirbehavioremerges from interactions between
thesimple (sub)agentsand theenvironment. The (sub)agents in Brooks’ Subsumption
Architectureare task-accomplishing behaviors, and Maes implemented behaviors
as simple (sub)agents organized into single autonomous agents using Behavior
Networks.

Behavior Networks consistofnodes, representing behaviors, linked together
by causal links. Eachnode represents the selection of a particular behavior as an
emergentproperty ofanunderlying process. The behaviors are simple (sub)agents
thatactivate and inhibit each other according to causal links. During execution,
activationaccumulates inthe nodes thatrepresent the bestactions to take, giventhe
currentenvironmental states and the global goals of the autonomous agent (Maes,
1989).

Intelligence

Traditional artificial intelligence attempts tomodel the world, and thenreason
about it using complex control strategies. The control strategies can either be
centralized or distributed. The traditional distributed control strategies are very
complex and have high communication overhead.

Brooks (1991) started anew trend in Artificial Intelligence with hiskey ideas
of “situatedness, embodiment, intelligence and emergence.”” According to Brooks,
the world is its own best model, and it cannot be modeled successfully. Anagent
must be situated in the world and must react to inputs from the world rather than
attempt to model the world internally. Situatedness can be described as the state
ofbeinginthe world. Embodimentis the method by whichsituatednessis achieved,
namely to be in the world and to react to inputs from the world. Intelligence and
emergencearetightly interwoven—intelligence emerges out of interactions between
behaviors and the environment.
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Artificial Life

Artificial lifeis often described as attempting tounderstand high-level behavior
from low-level rules (Liekens, 2000) in systems such as ant colonies, swarms,
flocks ofbirds and schools of fish. In these systems, coherent behavior emerges
fromthe interactions between the individual organisms inorderto collectively learn
fromandadaptto theirenvironments. The basic laws governing emergentbehavior
innature canbeused to achieve computational intelligence. Asanexample, Dorigo,
DiCaroand Gambardella(1999) developed algorithms based on an ant colony for
collective optimization.

Anantcolonyisanexample innature ofanagency consisting of simple agents.
Theants (simpleagents) collectively reason about the state of their environmentand
food sources using pheromone trials. Ants are capable of finding a shortest path
from a food source to the nest given a set of external constraints. The variables of
interestin their problem domain are the food sources, the nestand obstacles, linked
together by different paths between the different food sources and the nest. The
constraints are obstacles that the ants might encounter along the way. Ants “learn”
and maintain the shortest path between the nest and a food source, given certain
obstacles, by using pheromone trails. Ants deposita certainamount of pheromone
while walking, and each ant probabilistically prefers to choose a path rich in
pheromonerather thanapoorer one (Dorigoetal., 1999). Only through collective
behavior doants achieve their global goal namely to gather food using the shortest
paths between the food sources and the nest. This is an example of collective
probabilistic reasoning found in nature.

Bayesian networks provide the ideal mechanism for collective probabilistic
reasoning incomputational systems. Inthe nextsection, we will give abackground
on Bayesian networks, belief propagation and learning.

Bayesian Networks

Bayesiannetworks providea powerful technology for probabilistic reasoning
and statistical inference thatcanbeused toreason inuncertain environments. These
networks are “direct representations of the world, not of reasoning processes”
(Pearl & Russel, 2000). A Bayesian network (BN)is adirected acyclic graph that
represents asetofrandom variables inanapplication domain. The nodes represent
variables of interest. The links represent informational or causal dependencies
amongthevariables. The dependencies are givenin terms of conditional probabilities
of states thatanode can have given the values of the parentnodes (Dechter, 1996;
Pearl & Russel, 2000). Each probability reflects a degree of beliefrather than a
frequency of occurrence.

Dechter (1996) uses the following notation: LetX={X , ..., X } beasetof
random variables. A BN isapair (G, P) where Gis adirected acyclic graph and
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P={P}.Each P isthe conditional probability matrix associated with X, where P,
= {P(X,|pa(X))} and where pa(X) represents the parents of X.. An assignment
(X,=x,,...,X =x )canbeabbreviatedtox=(x,, ..., x ). The BN represents

aglobal joint probability distribution over X having the product form

P(x,.x,)= H;P(xi | pa(x;))

Figure 1 illustrates a Bayesian network based on the user-words aspect model
proposed by Popescul, Ungar, Pennock and Lawrence (2001). This network
models the relationship betweenusers (U), the contents of browsed Web pages
characterized in terms of concepts (C) and products bought from these pages (P).

Figure 1: Bayesian network
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This simple model includes three-way co-occurrence dataamong two users, two
products and two concepts.

The users are represented by u € U = {mathematician (m), rugby
player(r)}, the products by p € P = {book authored by Michael Jordan on
neural networks (nn), book authored by Michael Jordan on basketball (bb)}
and the concepts inferred from the Web pages the users viewed by ce C=
{statistics(st), sport(sp)}. The users (U), products (P) and concepts (C) form
observations (u, ¢, p), which are associated with a latent variable class (Z). This
simplemodel hastwo latentclasses,ze Z={classI(cl),class2(c2)}.InFigure
1, the conditional probability matrices are shown nextto theirnodes.

The example Bayesian network represents the joint distribution:

P(u,z,¢, p) = P(u)P(z|u)P(c| 2)P(p | 2) )

From(1)and(2)itcanbeseenthatthe global distributionis described interms
oflocal distributions. Pearl and Russel (2000) refer to equation (1) as the “global
semantics’” ofa Bayesian network, and further describe the “local semantics,” which

assertsthateach variableis independent of itsnondescendants in the network given
its parents. For example, in Figure 1:

P(c|u,z)=P(c|z) €)

Thelocalized nature of Bayesian networks as well as its local semantics makes
thistechnology ideal for distributed implementation.
Using Bayesrule, an equivalentjoint distribution for (2)is given by:

P(u,z,c,p) = P(z)P(u | 2)P(c | 2)P(p | z) 4)

Thejointdistribution overusers, contents and products is given by:

Psep)= 3, PEPul2)Pe|2Pp]2) )

Inachanging environment, some variables can have values that change over
time. Indynamic Bayesiannetworks, multiple copies ofthe variables arerepresented,
one for each time step (Pearl & Russel, 2000).
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Belief Propagation

Beliefpropagation is the process of finding the most probable explanation
(MPE) in the presence of evidence (e). Dechter (1996) defines the MPE as the
maximumassignmentxin:

max,, P(x) = max, [ [", P&x| pa(x,).e) (6)

Figure2 illustrates the results of belief propagationin the presence of evidence.

Node C, the evidence node, is circled. The new beliefs updated during belief
propagation are indicated onnodes P, Z and U. In the presence of the evidence,
namely thatauseris interested in statistical concepts, the probability thathe will be
interested in abook on neural networks authored by professor Michael Jordanrises
from 0.46 to 0.62.

Beliefpropagation is NP-hard (Pearl & Russel, 2000; Dechter, 1996). Judea
Pearl developed a belief propagation algorithm for tree-structured Bayesian
networks (Carnegie Mellon University, 1991). This algorithm was extended to
general multi-connected networks by different researchers. Pearl and Russel

Figure 2: Belief propagation in the presence of evidence

P: Product
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describe three main approaches, namely cycle-cutset conditioning, join-tree
propagation (also called the tree-clustering approach) and variable elimination.
Cycle-cutsetconditioning and join-tree propagation work well for sparse networks
with small cycle-cutsets or clusters (Dechter, 1996). Variable elimination is based
onnon-serial dynamic programming algorithms (Dechter, 1996), which suffer from
exponential space and exponential time difficulties. Dechter combined elimination
and conditioning in order to address the problems associated with dynamic
programming.

The belief propagation algorithms for general multi-connected networks
generally have two phases of execution. In the first phase, a secondary tree is
constructed. This can forexamplebea‘““‘good” cycle-cutsetused during conditioning
(Beckeretal.,2000) or an optimal junction tree used by tree-clustering algorithms
(Jensen, Jensen & Dittmer, 1994). In the second phase, the secondary tree
structure is used for inference. Finding a “good” cycle-cutset is NP-complete
(Beckeretal.)and finding an optimal junction tree is also NP-complete (Becker &
Geiger, 1996). Anumber of approximation algorithms for the secondary trees were
developed, as in Becker etal. and Becker and Geiger (1996).

Diez(1996) describes alocal conditioning algorithm that uses the original
Bayesian network during belief propagation and detects loops using the DFS
(Depth-First Search) algorithm.

Bayesian Learning

Bayesian learning can be viewed as finding the local maxima on the likelihood
surface defined by the Bayesian network variables (Russel, Binder, Koller &
Kanazawa, 1995). Assume that the network must be trained from D, aset of data
casesD,,...,D, generatedindependently fromsomeunderlying distribution. Ineach
datacase, values are given for some subset of the variables; this subset may differ
from case to case—in other words, the data can be incomplete. Russel etal. (1995)
describethe learning task as the calculation of the parameters mofthe conditional
probability matricesthat best model the data. Ifthe assumption is made that each
setting of wis equally likely a priori, the maximum likelihood model is appropriate.
Thismeansthat P (D) mustbe maximized. Inother words, the probability assigned
by the network to the observed data when the parameters of the conditional
probability matrices are set to @ must be maximized.

Examples oflearning algorithms include alocal gradient-descent learning
algorithm (Russel etal.) and the EM algorithm. Popescul etal. (2001 ) illustrated the
EM algorithm applied to their three-way aspect model. Applied to our three-way
aspectmodel, these calculations will change as follows:

Let n(u,c,p) be the number of times that a user u, interested in concepts c,
bought product p. This can be calculated from n(u,c,p) =n(u,c) x n(c,p), where
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n(u,c)isthenumber of times thatauser u accessed Web pages containing concepts
cand n(c,p) =the number of times product p was bought by users interested in
concepts c. Inthe EM algorithm, alocal maximum is found for the log likelihood L
ofthe data (Popescul etal.,2001), whichis:

L= n(u,c, p)log P(u,c, p) (7N

u,c,p

where P(u, ¢, p) is given by equation (5).

BAYESIAN AGENCIES

Collectively Adapting to Changes in Uncertain

Environments

Computational intelligence emerges fromthe interactions between agents that
collectively learn from, reason about and adapt to changing environmental states.
Mostagentarchitectures implementautonomousagents thatuse extensive interaction
protocols and social laws to control interactions in order to ensure that the correct
behaviorsresultduring runtime. These agents, organized into multi-agent systems
inwhich agents adhere to pre-defined interaction protocols, are well suited to the
analysis, design and implementation of complex systems in environments where
interactions can be predicted. Asthe intelligence resides in the individual agents,
autonomous agents are commonly referred to as “next-generation” or intelligent
components, which are difficult to implement using current component-based
architectures.

Webelieve thatthe only way to adaptto changes in uncertain environments is
through emergentbehaviorasin Minsky (1988), Maes (1989) and Brooks (1991).
Ourworkisbased on Minsky’s concepts of agents, agencies and heterarchies. We
adapted Minsky’s definition of agents, agencies and heterarchies as follows: an
agency consists of a society of agents that inhabit some complex dynamic
environment, where the agents collectively sense and actin this environment so that
the agency accomplishes what its composite agents set out to accomplish by
interacting with each other. Ifagents in a society belong to more than one agency,
the setof“overlapping” agencies forms a heterarchy. Collective intelligence ofa
heterarchy emerges through the interaction of the agents within the agencies in the
heterarchy.

Ouragencies collectively implementdistributed Bayesian networks inorderto
control behaviors in uncertain environments. These agencies are structured into
heterarchies according to the topology of the underlying Bayesian networks
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collectively implemented by them. Wereferto ouragents and agencies as “Bayesian
agents” and “Bayesianagencies.”

Inthe Behavior Networks defined by Maes (1989), eachnode determines the
activation ofaparticularbehavioras anemergent property ofanunderlying process.
Inasimilar way, each Bayesian agency determines the activation of one or more
behaviors as an emergent property of belief propagation in the subtree of that

agency.

Figure 3 illustrates the use of Bayesian agencies in a simplified Web
personalization application. There are two sets of Bayesian agencies in this

Figure 3. Bayesian agencies in Web personalization
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example, namely the clickstream and the content Bayesianagencies. The clickstream
Bayesianagencies collectively implementadynamic Bayesian network, modeling
atwo-way contents-product aspect model at each time step. The content Bayesian
agencies collectively implement a Bayesian network that models a hierarchical
conceptmodel, representing the relationships between words extracted from Web
pages and higher-level concepts, at different levels of abstraction.

Duringtime stept,abag of words, BOW(t)= {w2, w4, w5}, was extracted
from the PageView(t) that a user browsed. BOW(t) was then presented to the
content Bayesianagencies thatcollectively reduced the dimensionality of the words
toabagofconcepts BOC(t)= {col,co4}. Contentagency | added conceptcol
to BOC(t) and content agency 2 added co4 to BOC(t) because their beliefs
exceededacertainthreshold asaresultofbeliefpropagation. EachBOCis “filled”
through the emergentbehavior of the contentagencies. Clickstream agency(t)used
BOC(t)asevidencetogether with products purchased from PageView(t) to predict
the contents and products that might interest the user next. The behavior associated
with clickstream agency(t) is the personalization of PageView(t+1). BOW(t+1)is
extracted from the personalized PageView(t+1) viewed by the user. This process
isrepeated until the session ends.

Emergent Belief Propagation Using Bayesian Agencies

Emergentbeliefpropagationisthe collective behavior ofthe Bayesian agents,
while collectively solving the joint probability distribution of the Bayesian network
distributed between them inresponse to evidence received from the environment.

Every link in the Bayesian network is managed by a Bayesian agent. These
agents are organized into agencies, where each agency is responsible for one or
more behaviors. Each Bayesian agency implements a subtree of the underlying
Bayesiannetwork. The agencies are structured into heterarchies. For example, in
Figure 3, the clickstream agencies formaheterarchy, and the conceptagencies form
ahierarchy (asimple heterarchy).

Beliefpropagationislocalized within the Bayesian agencies. Bayesian agents
can only propagate beliefs between themselves and their direct neighbors along
links defined by the underlying subtree for thatagency. These agents cooperate to
find the local MPE ofthe subtree ofthe agency it belongs to by communicating »
A and I'T messages amongst themselves as in Judea Pearl’s belief propagation
algorithm (Carnegie Mellon University, 1991). Within an agency, each agent
communicates a» A message on each of the incoming links ofits parent nodes, and
a [Tmessage on each ofthe outgoing links ofits child node. An agent thatbelongs
to more than one agency must contribute to the local MPEs of all the agencies it
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belongs to in such a way that the maximum local MPE of each agency is found.
Collectively the agents inaheterarchy ofagencies willmaximize the global MPE of
the underlying Bayesian network.

In our current implementation the belief propagation is performed on the
original network and loops are handled using local conditioning as described by
Diez(1996).

A Component-Based Approach to Emergent Belief
Propagation in Bayesian Agencies

Thesimplicity ofthe Bayesianagents as well as the minimal interaction between
themallowedusto implementthemasre-usable components using Sun’s Enterprise
JavaBeans™componentarchitecture. In our prototype implementation, the Bayesian
agents are implemented using message beans and the links are implemented using
JMS queues. The topology ofthe Bayesian networks, the subtrees, the conditional
probability matrices and the beliefs are maintained in adatabase and administrated
by entity beans.

FUTURERESEARCH

Futureresearch will include the refinement of belief propagation by replacing
the DFS algorithm with the self-organization ofagents to handle loops innetworks.
Incremental emergent learning from evidence received from the environment will
also form a very important part of our future research. This emergent Bayesian
learning will enable the Bayesian agents to collectively “discover” or “mine”
relationships in dataand to self-organize according to the evolving topology of the
Bayesiannetwork.

CONCLUSION

Wehave shownhow Bayesian agencies, based onartificial life principles, can
control behaviors inuncertain environments. These agencies consist of simple
agents that collectively implement distributed Bayesian networks, which the
agencies use to control behaviors in response to environmental states. With our
prototype implementation, using Sun’s Enterprise JavaBeans™component archi-
tecture, we have shown that due to the simplicity of the Bayesian agents and the
minimal interaction between them, they can be implemented as re-usable compo-
nents using any commercially available componentarchitecture.
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Chapter XI

Simulation Model for the
Control of Olive Fly
Bactrocera Oleae Using
Artificial Life Technique

Hongfei Gong and Agostinho Claudio daRosa
LaSEEB-ISR, Portugal

ABSTRACT

In this chapter we present a novel method for modelling of the development
of olive fly—Bactrocera oleae (Gmelin)—based on artificial life technique.
The fly’s artificial life model consists of a set of distinct agents, each
representing one phase in the insect’s lifecycle. Each agent is defined mainly
by two internal state variables: health and development. Simulation results
have provided development times and mortality rates that closely resemble
those observations in biological experiment. The model presented has proven
to offer good results in replicating the insect’s behaviour under monitored
climatic conditions. The model’s potential uses are discussed.

INTRODUCTION

Pest management and control, as it is readily understood, are vital to a
sustained agricultural production since, withoutit, long-termreliable income cannot

Copyright © 2003, Idea Group Inc.
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beensured. Nowadays chemical protection is the most widely used method for pest
control. However, control methods relying on the use of chemical products pose
ahealth risk for man and animals, unnecessary treatments increase production
costs, cause more environmental pollution and can lead to the development of
resistance to pesticide. Therefore, it becomes more and more important and
necessary to know or estimate the state of pest population, because if the control
actionisapplied atthe correct moment, areduced number of pesticide treatments
canachievethe same level of pest control.

Olive growing is an importantactivity for the economic, social and ecological
well-being of the Mediterranean region. Itrepresents arelatively cheap source of
high quality vegetable fat, and its importance spans the areas of agriculture and food
industry. In Portugal this crop represents a significant proportion of the total
agricultural production. Theolive fly, Bactroceraoleae, s generally considered the
most damaging of the insect pests that attack the olive trees. Its attacks may
potentially account for 50-60% of the total insect pest damage, causing areduction
inthe number and/or size of the fruits, with a subsequent reduction in yield and
quality of the fruitand oil (Michelakis, 1986; Bento, 1999).

Simulation models have been introduced as a way to assess its current state
of pestpopulation and estimate the risk based on climatic data, especially in some
cases, theideal timing for treating acrop isacertain stage of the infestation’s lifecycle
that is not easily detectable in the field. The quality of a decision support tool
concerning the timing and kind of crop-protection actions are highly dependent on
theeffectiveness ofthe simulationmodel used to assess and forecast the development
of crop pests.

BACKGROUND

Traditional mathematical and statistical population dynamics analysis methods
may satisfactorily reproduce the observed behavior. Most of these models aim at
describing the evolution of the parasite population as a whole, using statistical
interpolation or differential equations methods, in order to find a set of equations and
parameters that correctly fit the available test data. The main problems of this
approachare the lack ofbiological significance of the resulting systems and the
difficulty intesting the resulting models, requiring extensive periods of climatic and
biological datato increase the confidence in the system. Most of the time, italways
failstoestablishacorrespondence between its low-level causes and the macroscopic
parameters involved in the model (Pitzalis, 1984; Crovetti, 1982; Dicola &
Crovetti, 1984).

Furthermore, using a single simulation model as the sole indicator for crop
control decision should be avoided; combination of both traditional assessment
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methods and other models will increase the necessary confidence level of the
decisionstobemade. Inaddition, the interaction between the different players may
only be captured by complex and non-linearmodels thatare difficultto manipulate,
integrate or optimize.

Inrecentyears, availability of affordable computational power has allowed the
appearance of new approaches to ecological system analysis. One such approach
isartificial life. Ecological systems, by nature, are composed by aset of interdependent
entities, namely living and non-living beings. A typical artificial life approach to
studying such systems consists of creating artificial beings, or agents, thatresemble
ascloselyas possible thereal beings thatlive in the natural ecological system. Also,
lower-level entities are modeled explicitly and interact freely with each other
(Langton, 1992; Noble, 1997) Whole population behavior emerges as aresult of
the free interaction of the agents in the artificial environment. For a good reference
on emergence of order in complex systems, see the work of Stuart Kauffman
(1993), which gives a rich and compelling picture of the principle of self-
organizationandselectioninevolution.

Anartificial lifemodeling approach addresses the problem by focusing efforts
inindividual agent modeling, incorporating information on each ofthe system’s
constituents and the laws through which they interact. The modeling are bottom-up
explicitsimulations of basic players of the target ecosystem, like plants, fungus,
insects oranimals, left to evolve inan artificial environment fed with climatic and
biological data. Artificial life modeling of different biological systems has been
described inrecentyears, such as with flocks of bird (Craig, 1992), schools of fish
(Craig, 1992; Terzoupolos, 1996), basic cells (Carnahan, 1997), and forests
(Lange, 1998; Wilber & Shapiro, 1997), with success. These examples are based
oncellular automata (von Neumann, 1966), proven to be a very powerful concept
forthe simulation of local interaction.

Asfortheapplicationtopest control, an epidemiological model for the asexual
phase of grapevine Downy Mildew, Plasmopara viticola, has been developed
usingartificial life technique. Downy Mildew is one of the most destructive diseases
of grapevines occurring in most grape-growing areas of the world, with the
reductioninyield and the quality ofthe fruitand wine.

Themodel simulates the evolution ofa population of artificial fungi in artificial
environment vineyard conditions (Costa & Rosa, 1997). Detection of primary
infections is one of the most important goals of an effective control of Downy
Mildew by fungicides. Theinitial peak observed intheartificial germinated oospore
curve (oospore_gm in Figure 1) by the end of April indicates the possibility of
primary infection occurrence once favorable climatic conditions are present.
Fungicide application before this time would be premature, useless and potentially
harmful forauxiliary fauna.

TLFeBOOK



186 Gong and Rosa

Figure 1: Artificial oospores population
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Figure 2: Artificial mycelia
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AsshowninFigure 2, primary infections, shown by the appearance of artificial
mycelia, actually occurred shortly after the germination of the firstartificial oospore,
dueto favorable climatic conditions (temperature above 10°C and rainfall above
10mm). Inreality themyceliawill develop inside of the leaftissue, which isnoteasy
todetect. The visible lesions will only appear due to the destruction of the cellular
leaf tissue and the germination of oospore; when this happens, the fungicide
treatment can only limitthe damage.

MAINTHRUST OF THE CHAPTER
The Olive Fly’s Lifecycle

Theolive fly’slifecycle is composed of four distinct phases: egg, larva, pupa
and adult(Figure 3). The firstthree phases are called pre-imaginary phases. The first
two phases mustdevelop inside the olive fruit. Also, itis important to consider that
the pupal phase is the one that better resists low temperature values in all pre-
imaginary phases.
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adults pass through three stages: pre-oviposition, oviposition and post-oviposition.
Male adults pass through a premature stage before reaching sexual maturity.

Heat Unit Accumulation Concept

The heat unit accumulation concept, also referred to as the degree-day
method, is widely used inagronomy to express the relationship between temperature

values submitted toaplantandits developmenttime. Anditisapplicable toinsects.

Ataconstanttemperature, the degree-days is formulated as: D°=T (y-c); the
insectneeds to accumulate certain degree days to evolve into the next phase. When
the degree-days reach Thermal Constant K, D°is the physiological time (degree-
days)required to complete development ofastage, T is the number of days required

Figure 4: lllustration of the degree-days under a) constant temperatures,

b) variable temperatures
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Table 1: The thermal constant for the olive fly’s phases

Table 1 Egg to Adult Egg Larva Pupa

Thermal Constant (D°) 375.03 48.66 125.3 201.7

to complete development at temperature y, and c is the threshold temperature,
below which no development occurs. In other words, degree-days is the product
of time and the temperature degree above the threshold temperature. The
computation for degree-days under constanttemperatureisillustrated in Figure4.a.

Thetheory is easily extended to fluctuating temperature as indicated in Figure
4.b, which shows curve of daily temperature and the daily integral of AD(t) above
C. The method to compute degree-day is to integrate the area under the curve
above C, whichis formulated as:

D= X, AD(Y)

Asapoikilothermic animal, lacking an efficient body temperature control
mechanism, the insect would be expected to complete its development when the
sum of D° reach its thermal constant. This is the simplest and most widely used
method forpredicting the physiological age and time for populations of poikilothermic
organisms.

Table 1 shows each phase’s thermal constant of olive fly is expressed in D°,
which stands for degree-days. In order to evolve into the next phase, the insect
needs to accumulate the amount ofenergy during its development (Crovetti, 1982).

Description of the Model

The fly’sartificial lifemodel consists ofasetof distinctagents, each representing
one phaseintheinsect’s lifecycle. In order to represent the insect throughout its
lifecycle, sevendifferentagents mustbe created, eachreplicating the corresponding
phase’sbehaviour: egg, larva, pupa, maleadult, female adultin the pre-oviposition,
oviposition and post-oviposition periods.

Oviposition ofanew egginreality will correspond to the creation ofanew egg
agent. Aninsect’s transition from one phase to another corresponds to the creation
ofanew agentdepicting the insectin the following phase and the destruction of the
agentthatrepresented the insectin the completed phase.

Atacertain instant, each agentis defined by its two internal state variables:
Health (H) and Development (D). These state variables bear a concrete
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correspondence to the insect’s condition: H encapsulates the insect’s general
physical condition, and D represents its accumulated energy, using the degree-day
conceptabove mentioned.

Onagentcreation, the H variable starts with an optimum health value. Ifby any
reasonitreacheszero, thentheartificial insectdies. The artificial insect’s D variable
starts withazero value atthe beginning of a certain phase, and will rise until itreaches
the phase’s thermal constant. Atthat moment, the insect will have accumulated
enough energy to pass unto the next phase ofits cycle. The agent that represented
the insectin the passed phase will be erased and anew one created, representing
the insectin the following phase, with convenientinitial H value and zero D value,
meaning thatithas notyetaccumulated any energy.

State changingrules are explainedifone follows the steps takenin oneiteration.
Each agent ofthe artificial insect will be left to evolve in a series of consecutive
iterations, which is a certain time period that provides new, different temperature
andrelative humidity values. Figure 5 depicts the main steps taken in one iteration.

Firstly, the setof (Temperature, Relative Humidity) = (T, RH) values for the
presentiteration will be evaluated through a function Damage, aR*— R function
that establishes a correspondence between temperature and relative humidity
values and the amount of damage, which will affect the artificial insect’s H counter
(Step 1) oneach phase. The Damage function was synthesized from consideration
and experimental data of the available literature. The approximate shape ofthe

Figure 5: Iteration scheme
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Table 2: Description of the variables in the model

H,, An intermediate H value to evaluate whether or
not the insect has sustained lethal damage and
dies

Available Energy | Energy available to insect at that iteration;
Energy is measured in degree-days
Distribute_Energy | Function will calculate the fraction of
Available Energy used in health restoration

En F H inc Energy fraction used in Health increment

En H inc Amount of Energy used in Health restoration
En D inc The remaining Energy used in Development
Conv(En H inc) | Energy to Health conversion function

H inc Health increment from the Energy

Figure 6: Function Damage (T, RH)
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function presents in Figure 6. Itis visible that lower damage regions inthe (7, RH)
plane correspond to optimum climatic conditions, and higher damage correspond
to extreme climatic conditions.

One calculates, thus, an intermediate H value, H, (Step 1a). It is at this
momentthatthe /_ ischeckedto evaluate whether ornotthe insecthas sustained
lethal damage and dies.

H =H - Damage (T, RH)

int

The following step is to calculate the energy available to the insect at that
iteration (Step 2). Energy is measured in heat units, namely degree-days.

Available Energy = %
P
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Figure 7. Distribute_Energy (H, , T)
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Where Tis the iteration’s temperature value and Sampling period Sp=24/ the
real time span for one iteration.

Note thatthe temperature value 7'isused as amean temperature value for the
time represented by one iteration, and thatithas not been subtracted from the zero
development temperature value, ¢, as in the calculation of the above mentioned
modified average temperature. Thismeans that the artificial insect will still receive
some small amountofenergy eveniftemperatures fall below c. Null development
rates observed atthose temperatures will be achieved by the simultaneous effects
ofhigh damage values and small available energy.

Itislogical thatuponbeing damaged, the insect will react by trying to repair
the inflicted damage, consuming some ofthe available energy. How much energy
isused inheath restoration, thatis, in increasing the H variable value, is decided by
calculating the value of Distribute Energy function, alsoa R*—R functionthathas
inputvariable (H, ,T),showninFigure7. This function will calculate the fraction
of Available Energy that will be used to restore health. (Step 3):

En_F_H_inc = Distribute_Energy (H, , T)

The followingexpression, En_H _inc,determinesthe amount of Energyused
in Health increment (Step4):

En H inc=En F H incxAvailable Energy

The remaining energy, En D _inc, will be used in development (Step 5),
increasing Dvalue:

En_D inc = Available Energy—En H inc

TLFeBOOK



192 Gong and Rosa

The next step will be to determine the intermediate health increment, H _inc,
correspondent to the amount of energy used in healthrestoration, En_H _inc(Step
6). Thatis therole of Conv, energy to health conversion function:

H inc = Conv(En_H inc)

Fromabiological pointof view, itisn’treasonable to assume possible too large
healthincrements. Itis, thus, necessary to limit H_inctoacertain maximum value,
asafunctionofboth /. and D values, asdifferenthealth recuperation efficiencies
existatdifferenthealth and development values (Step 7).

En_D _incwilldirectly beused inraising D value, afterithas passed through
alimiting function, analogous in purpose to the oneused in limiting H_inc (Step 8).

Finally, D value is inspected and compared to the phase’s thermal constant,
whichhasbeenshowninTable 1. IfD is greater than it, then the insect will have
completed its development and pass unto the next phase.

Toachieve the different environmental influence, every time that Damage
function is evaluated (Step 1), a random value following a zero mean normal
distribution is added to the obtained value.

CONCLUSION

Inthissimulation, the iteration’s time was 2 hours, namely the model will be fed
bynew temperature and relative humidity values every 2 hours. A typical behaviour
ofanartificial insect’s internal state variables, healthand development, is presented
inFigure 8, duringasimulation.

Inorderto compare the simulationresults with available experimental data, the
development for N artificial insects was simulated in the same time, which implied
aninitial insectpopulationsize N; theaverage of eachartificial insect’s develop time
and sum of dead insect were counted at the end of simulation. Mortality rates were
obtained from the dead fraction of the initial population at the end.

In Table 3 we present the obtained results for pupa’s development in
population size 100, with variable constant temperature and relative humidity of

Figure 8: Internal state variables during simulation
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Table 3: Simulation results for pupa’s development in population size 100

Table 3 Development Time (Days) Mortality Rate (%)
Constant Observation Simulation Observation Simulation
Temperature from Results from Results
(Celsius) Crovetti (82a) Crovetti (82a)
10 89.6 87.89 70.2 71
13 54.8 53.62 46.4 42
15 39.3 38.43 22.6 21
16 30.4 28.88 19.2 20
17 27.9 27.33 7.9 8
18 25.9 24.95 6.3 6
21 17.5 16.45 3.2 3
22 14.8 14.70 16 14
23 14.7 13.71 18.3 17
25 11.8 11.31 21.2 21
26 10.5 10.82 35.6 31
27 10.9 10.28 39.8 37
28 10.6 10.47 64.5 61
29 10.1 10.10 46.2 53
30 9.97 9.72 85.4 86
31 9.24 9.29 96.2 96

75%(£10%), comparable to those experimental data from Crovetti (1982). The
root mean square error of Development Time and Mortality Rate are 0.85 and
2.70%.

In order to apply the model to the olive protection in Portugal, manual
parameter tuning is performed on the Damage and Distribute_Energy functions,
with slightly decreases for the Damage under relative humidity of 75% and

Table 4: Simulation results for pupa’s development for olive fly subspecies at
north of Portugal

Table 4 Development Time (Days) Mortality Rate (%)
Constant Observation | Simulation | Observation | Simulati
Temperature from Results from on
(Celsius) Portugal Portugal Results
10 89.62 90.01 20 19
13 57 57.08 12 13
15 38.9 39.51 10 10
16 29.8 30.16 10 10
17 27.8 28.34 10 10
18 25 25.41 5 6
21 17.5 17.66 0 0
22 14.7 14.66 0 0
23 144 14.33 0 0
25 11.85 11.83 0 0
26 11.85 11.58 0 0
27 10.9 10.91 10 11
28 10.6 10.33 20 21
29 10.25 10.02 30 31
30 9.93 9.66 38 38
31 9.45 9.41 45 47
35 - 8.33 - 52
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Figure 9: lllustration for the simulation of the insect population dynamics
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increases forthe Distribute Energy. The simulationresultsalso fitthe observation
datavery well. In Table 4, the simulation results in population size 100 closely
resemble those data observed in lab experiment, which is from an olive fly
subspecies atthe north of Portugal. The root mean square error of Development
Time and Mortality Rateare 0.298 and 0.791%.

Themodel was also fed by real monitored climatic data of 1993 from north of
Portugal with variable temperature and relative humidity. Simulationresults have
provided developmenttimes and mortality rates. The simulation resultsresemble
the datatrends of adults capture by yellow panel traps.

Availability of weather forecastup to several days allows the prediction of the
pestdevelopment. This information is a very important component for the risk
evaluationandtreatmentdecision processes interms ofeconomical and environmental
costs.

Theknowledge of the pesticide and control method action curves enables the
precise time positioning of the treatment in order to achieve maximum efficacy.

FUTURE TRENDS

The model has shown its potential for further research on insect population
dynamics. Theimprovement ofthe insect’s agent definition will use a distributed
starting value of Health and an initial population where the insect’s age isnormally
distributed.

Furthermore, the simulated artificial agents evolving in the olive tree, olive fruit
and micro-environmental changes due to the olive’s state will also be considered.
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Forexample, the existence of the food providing the necessary nutrients will be
simulated; the oviposition should also consider the picking time and the residuum
ofthe fruit, and so on.

Inthis approach, the large number of parameters mustbe tuned manually. The
proposed solutionistouseevolutionary algorithms, possibly genetic algorithms, in
distributed configurations, to search for good combinations of parameters, obviously
restricted to biologically plausible values (Goldberg, 1989). Each agent of the
artificial insect will be defined and coded by “chromosome.”

Asan added benefit, the same technique can be used to adapt the model to
otherregionsnotinitially considered. With anautomatic parameter adjustmentusing
genetic algorithms, the model would account for regional differences in insect
species, that is, the existence of subspecies of insects that behave somewhat
differently one fromanother. Subspecies, with differentreactions to environmental
variables or different sensitivity to control, will be represented in the difference of
internal artificial agents.

Asevery model should always be subject to arigorous validation phase, the
simulation results of population development should then be compared with those
data obtained in field experiments, such as the trapped insects number, the data of
field sampling investigation, etc., thus improveits accuracy and confirm the validity
ofthe model.

The outputofthe model will integrate with acontrol measure to help protection
decision making. With this decision support tool, the farmers and pest control
advisors canselecta given climatic datarange from the climatic database, or with
the weather prediction, then execute the simulation; it can help the user pinpointan
adequate program for olive fly control, minimizing the damage, economic loss and
the pollution of pesticide.
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Chapter XII

Applications of Data-Driven
Modelling and Machine
Learning in Control of Water
Resources

D.P. Solomatine
International Institute for Infrastructural, Hydraulicand Environmental Engineering
(IHE-Delft), The Netherlands

ABSTRACT

Traditionally, management and control of water resources is based on
behavior-driven or physically based models based on equations describing
the behavior of water bodies. Since recently models built on the basis of large
amounts of collected data are gaining popularity. This modelling approach
we will call data-driven modelling; it borrows methods from various areas
related to computational intelligence—machine learning, data mining, soft
computing, etc. The chapter gives an overview of successful applications of
several data-driven techniques in the problems of water resources management
and control. The list of such applications includes: using decision trees in
classifying flood conditions and water levels in the coastal zone depending on
the hydrometeorological data, using artificial neural networks (ANN) and
fuzzy rule-based systems for building controllers for real-time control of
water resources, using ANNs and M5 model trees in flood control, using chaos
theory in predicting water levels for ship guidance, etc. Conclusions are
drawn on the applicability of the mentioned methods and the future role of
computational intelligence in modelling and control of water resources.

Copyright © 2003, Idea Group Inc.
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INTRODUCTION

A model can be defined as a simplified representation of reality with an
objective of its explanation or prediction. In engineering, the term modelis used
traditionally in one of two senses:

(a) amathematical model based onthe description of behaviour (often physics,
or first-order principles) ofa phenomenon or systemunder study, referred to
later as behavioural (also process, or physically based) models;

(b) amodelbuiltof material components or objects, which is often referred to as
scale (or physical) model (sinceitis usually smaller than the real system).
These views ofamodel are widely adopted and taught. Understandingly, in

social and economical studies, scalemodelling would be adifficultundertaking, but

behavioural models based on mathematical descriptions of processes are widely
spread and used.

Traditionally, managementand control of water resources was based on good
understanding of the underlying processes and use so-called “physically based” (or
“knowledge-driven,” behavioral) models. These could be for example models
based on Navier-Stokes' equation describing behavior of water in particular
circumstances. Examples are surface (river) water | D models, coastal 2D models,
groundwater models, etc. Equations are solved using finite-difference, finite-
element or other schemes, and results—normally water levels, discharges—are
presented to decision makers. Often suchmodels are called simulation models.
Knowledge-driven models canbe also “social,” “economic,” etc.

On the contrary, a “data-driven” model of a system is defined as a model
connecting the systemstate variables (input, internal and output variables) with only
alimited knowledge ofthe details about the “physical” behavior ofthe system.
“Hybrid models” combine both types of models.

Itshould be stated that the process of modelling includes studying the system,
posing the problem, data preparation, building the model (normally amachine
learning model), testing the model, using the model , interpreting the results and,
possibly, reiterating. In this chapter we will consider only the techniques for data-
drivenmodelling proper.

Techniques used in data-driven modelling originate in various areas (often
overlapping):

* machine learning (decision trees, Bayesian and instance-based methods,

neural networks, reinforcement learning);

*  softcomputing, and in particular fuzzy rule-base systems induced from data;

*  datamining (uses methods of machine learning and statistics);

* methodsofnon-linear dynamics and chaos theory (often considered as part

oftime series analysis, but which are actually oriented towards the analysis of

large data sets).
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In this chapter the main techniques used for data-driven modelling will be
mentioned, and an overview of their use in the problems of water resources
managementand control will be given.

MACHINE LEARNING ASTHE BASIS
OF DATA-DRIVENMODELLING

Machine learningisthe mainsource of methods for the data-driven modelling
problem (Figure 1). A machine learning method is an algorithm that estimates
hitherto unknown mapping (or dependency) between a system’s inputs and its
outputs from the available data (Mitchell, 1998). By data we understand the known
samples that are combinations of inputs and corresponding outputs. As such a
dependency is discovered, it can be used to predict (or effectively deduce) the
future system’s outputs from the known input values.

There are four main styles of learning considered:

*  Classification—On the basis of classified examples, a way of classifying
unseen examples is to be found.

*  Association—Association between features (which combinations of values
are most frequent) is to be identified.

*  Clustering—Groups of objects (examples) thatare “close” are to be identified.

*  Numeric prediction—QOutcome is not a class, but a numeric (real) value.
Oftenitiscalled regression.

Theoldestareaofestimating dependencies from datais statistics, as represented
by multivariate regression and classification. In the 60s and 70s, new techniques
which were often not based on the assumptions of “well-behaved” statistical
distributions of random processes started to emerge, and these were used inmany
successful applications. Among these techniques were: pattern recognition and
cluster analysis, methods trying to imitate the human brain and perception, like

Figure 1: Learning in data-driven modelling

S Modelled Actual (observed)
. Input data x | (real) OUtP:tY
S g system
Learning is aimed
at minimizing this
difference
Data-
»  driven |*
model .
Predicted output Y'
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neural networksand fuzzy systems (Tsoukalas & Uhrig, 1997), genetic programming
(Koza, 1992),decisiontrees (Quinlan, 1992), and reinforcement learning (Watkins
& Dayan, 1992).

In statistics the following four types of data are considered: nominal, ordinal,
interval andratio (real-valued). In machine learning, for simplicity, we often speak
only of two data types: nominal (classes) and real-valued. We will divide the
applications withrespect to the main data types involved—nominal or real-valued.

PROBLEMS DESCRIBED BY NOMINAL DATA

Classification is treated often as finding classes of data points {a.} € R"
Classes mustbe such that points in a class are close to each other in some sense,
and classes are far from each other. Clusteringis finding groups (subsets) of data
withoutassigning themto particular classes.

Among the most important methods currently used, the following can be
mentioned:

* partition-based clustering (K-means, fuzzy C-means, based on Euclidean
distance);

*  density-based spatial clustering DBScan (for clusters of arbitrary shapes);

*  SOF maps (Kohonenneural networks) clustering;

*  Bayesianclassification;

* decisiontrees classification (Quinlan, 1992; Witten & Frank, 2000);

*  supportvectormachines (SVM)classification.

Researchinto extending statistically based induction principles resulted in the
increased interest to classification methods such as Bayesian learning. Another
important development in this area is statistical learning theory (Vapnik, 1998).

Statistical Learning Theory (Support Vector Machines)

Statistical learning theory is associated with the research performed in the
1960-80sin the Institute for Control Problems ofthe Russian Academy of Sciences
inthe department of Aizerman (see, for example, Aizermanetal., 1963). Later
these early results were extended and generalised to provide the subject currently
known as statistical learning theory of Vapnik (1998) which serves as a basis of
support vector machine (SVM) technique. Vapnik’s theory is based on solid
principles and allows for generalising and the finding of common elements among
various machine learning techniques.

Statistical learning theory made an important step: instead of trying to choose
the approximating function based on how well it reproduces the training set
(minimizing the empirical risk), it chooses the function thatreproduces well also the
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verification set (thus minimizing the structural risk). On the basis of statistical
learning theory, amethod of building the discriminating surfaces based on the so-
called support vector machines (SVM) was developed. This theory and the
SVM methods show the superior qualities in complex classification problems.

Decision Trees

Adecisiontreeis quite asimpletool (however effective) representing a step-
wise decision-making process aboutassigning an instance toa predetermined class.
Inthistree-like structure, the nodes contain the conditions on the attributes’ values,
and the leaves—the classes. The choice of an attribute on which partitioning is
performed is based on the maximum information gain (the expected reduction in
entropy caused by partitioning the examples according to this attribute).

Decisiontrees classify instances by sorting them down the trees from the root
to some leafnode that provides the classification of the instance. Eachnode inthe
trees specifies atest of some attribute of the instance, and each branch descending
fromnode corresponds to one of the possible values for this attribute. Aninstance
isclassified by starting atthe root node of the trees, testing the attribute specified
by thisnode, then moving down the tree’s branch corresponding to the value of the
attribute in the given example. This process is then repeated for the subtree rooted
atthe new node.

Classificationand clustering plays animportantrole in patternrecognition, that
isidentification ofa class to which anew data point (pattern) could be attributed.
One of'the popular applications of classification is classifying a customerto a
particular class of consumer behavior, or acompany described by anumber of
parameters canbe classified toclasses like “very safe,”““safe,

9966

unsafe,” ““‘unknown.”

Practical Applications
Anumberofexamplesofusingclassificationand clustering in watermanagement

and control were reported:

*  Halletal.(2000)used SOFM for classifying catchments into groups based on
their 12 characterisitics, and then applying ANN to model the regional flood
frequency.

*  Hannahetal. (2000)used clustering for finding groups ofhydrographs on the
basis of their shape and magnitude; clusters are then used for classification by
experts.

* Inasimilarfashion Harrisetal. (2000) applied clustering toidentify the classes
of riverregimes.

*  Frapportietal. (1993)used the method of fuzzy c-means clustering in the
problem of classifying shallow Dutch groundwater sites into homogeneous

groups.
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*  Theuseoffuzzy classification in the problem of soil classification on the basis
of’cone penetration tests (CPTs) is addressed by Zhang et al. (1999).

Ourexperience of using classification methods includes the following:

»  Usingself-organizing feature maps (Kohonen neural networks) as clustering
methods, and SVM as classification method in aerial photos interpretation. In
this application various classification methods were used in the problem of
interpreting an aerial photo of the size 0f4387x2786 pixels. Four land cover
classes were identified—wood and scrub, agriculture, meadow and urban
area (Velickov, Solomatine, Yu & Price, 2000).

»  Using decision trees in classifying surge water levels in the coastal zone
depending on the hydrometeorological data (Solomatine, Velickov, Rojas &
Waust, 2000).

*  Classificationoftheriver flow levels according to their severity in the problem
of flood control (the constructed decision tree is given above).

Classification of Flows in a Flood Management Problem
This latestexample of adecision tree built for making prediction of river flow

class(low, mediumorhigh flow)is given below. The dataofa catchment in Southern

Europe included hourly data onrainfall R, evapotranspiration £and runoffR. The

problem posed was to predict the class of flow 3 hours ahead. The variables for

buildingadecisiontree model were selected on the basis of correlation analysis (RE

stands for the effectiverainfall, thatis rainfall minus evapotranspiration):

¢ inputs:RE,RE_,RE _,,RE ,,Q,Q,

* output: classofQ (L, MorH).

t+3

Thesetof 1,854 examples was used for training and 300 for verification. Value
for Low flow (denoted in the tree as L) was chosen to be 50 m?/s, for Medium flow
(denoted as M)-350 m?/s and for High (H)-750 m?/s. The built tree (shown
horizontally)follows:

Decision tree in a flood control problem

Q. <= 51.45

| RE_, <= 0.6686: L (815.0/10.0)
| RE_, > 0.6686
| | Q, <= 25.59: L (24.0)
| | Q, > 25.59: M (24.0/7.0)
Q. > 51.45
| RE_, <= 2.3955
| | Q, <= 59.04
| | | RE_ <= -0.0255
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| Q, <= 52.67: L (5.0)
| Q > 52.67: M (7.0/1.0)
RE_ > -0.0255: M (63.0/4.0)

|

|

|

|

| Q . <= 348.55: M (271.0)
| Q,, > 348.55

| | Q, <= 630.2: M (7.0)
| | Q > 630.2: H (3.0)
RE_, > 2.3955

| Q<= 247.68

| | RE_ <= 3.3031: M (3.0)

| | RE_ > 3.3031: H (7.0/3.0)
| Q, > 247.68: H (9.0)

Number of Leaves : 12
Size of the Tree: 23

Figure 2 shows the performance of the model. The tree model is transparent

andis easily understood by decision makers.

Table 1: Performance of several classification methods in a problem of flood

control
Evaluation for Decision Decision Naive K-Nearest
Tree Tree Bayes Neighbor
(unpruned) (pruned) (k=3)
Train. Test| Train| Test.| Train| Test. | Train.| Test
Incorrectly classified
instances, % 1.02 5 210 667 | 6.09| 1067 [ 183 | 733

Figure 2: Predicting the class of flow by decision tree in a problem of flood

control
Class of | Flow [mJ/s] Classification of Q .3 using Decision tree, pruned
flow 800 (10/02/70, 04:00 to 22/02/70, 16:00)
High >
700 _‘}
600 = = = =Observed class l
500 +— Predicted class 1,
400 !
Med. +—> r T
300 I T ‘. ,'
200 ! t :‘
100 !
Low —> —
0 T T T T T T
0 50 100 150 200 250 300 350
t [hrs]
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The problem of classification of flows was solved using several classification
methods; their performanceis givenin the following table.

Interpretation of Aerial Photos

Anotherapplication of clustering and classification techniques was oriented
towards interpretation of aerial photos with the help of self-organizing feature maps
(SOFM), vector quantization, SVM and C4.5 decision trees (Velickov et al.,
2000). The performance of several classifiers—vector quantization VQ (part of
SOFM approach), C4.5 decision tree algorithm and SVM—was compared on a
problem ofanaerial photo interpretation; see Table 2 and Figure 3. For VQ and
SVM, the SOFM clustering was applied first. The bestresults were achieved with
the SVM classifierusing theradial basis functions.

Table 2: Performance of classifiers in aerial photo interpretation (% of the
misclassified examples)

VQ C45 SVMs
radial basis simple full
function polynomial kernel | polynomial kernel
3.12 2.87 0.19 0.78 0.39

Figure 3: Approximation by RBF’s in one dimension

Centers: 1 2 J
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PROBLEMS DESCRIBED BY
REAL-VALUED DATA

Mostengineering problems are formulated with the view of real-valued data.
The problem of prediction of real-valued variables is also called a regression
problem. Often a choice of engineers is to apply linear methods like linear
regressionand more sophisticated variation for time series, butstill linear, a family
of ARIMA methods.

RBF: A Method of Combining Functions Inspired by
Function Fitting

Since machine learning aims at finding a function that would bestapproximate
some given function, it can be seen also as a problem of function fitting, and this
prompts for the use of the corresponding methods already available. This problem
was studied inmathematics formorethan 150 years. In function fitting (Gershenfeld,
2000)anattemptis madeto find functions that, being combined, would approximate
agiven function (or adataset).

Traditionally, linear (asin linear regression) or polynomial functions were used.
Examples could be splines—combinations of functions thatuse cubic polynomials
to match the values and first and second derivatives (at the boundaries) of the
functionto beapproximated. Another exampleis orthogonal so-called orthogonal
polynomial functions, e.g., Chebyshevpolynomials.

The problem of combining complex polynomial functionsis thatin order to
improvethe fit, itisnecessary toadd higher-order terms, and they may diverge very
quickly (being a good approximator close to one point, and a very bad one a bit
further). Matching datarequires a delicate balancing of the coefficients, resulting in
afunctionthatisincreasingly “wiggly.” Evenifitpassesnearthe training data, it will
beuseless forinterpolation or extrapolation. This is particularly true for functions
that have sharp peaks (which are actually so frequent in many engineering
applications).

Radial basis functions (RBFs) (quite simple in nature) could be seen as a
sensiblealternativetotheuse of complex polynomials. Considera functionz = f(x),
where xisavector {X,,...,X,} in/-dimensional space. The ideais approximate—
afunctionz = f(x) by another function F(x) ina proximity to some “representative”
locations (centers) wj=l,...J (Figure4).

The question is then how to find the position of centers w, and the “height
parameter” of the functions F(x). This can be done by building a radial-basis
function (RBF) neural network (Schalkoft, 1997); its training allows us to identify
the unknown parameters.
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Figure 4. ANN reproducing the behaviour of one-dimensional river model
(water level), Apure river basin (Venezuela): training

Feservoirs optimization: water levels of Apure river, Venezuela
Training MM

Target

out1
4.180E+00

1.410E+00

1 examples 104

MMM: Meural network tool. wew.ihe.nl/hidsol/nnnhtm

MLP: A Method of Combining Functions Inspired by the
Workings of the Brain

Animportantstep towards non-linearity in functionrepresentation was amulti-
layer perceptron (MLP), the most widely used class of artificial neural networks
(ANNSs). Ithasbeen mathematically proven thatadding up simple functions, as an
ANN does, allows foruniversal approximation of functions (Kolmogorov, 1957).
Afterthe mid-1980s, when methods for finding these functions (trainingan MLP)
were found, it became the most successful machine learning method currently
known. Various types of ANNs are widely used in numerical prediction and also
inclassification.

ANNsareapplied inmany areas, including patternrecognition, voicerecognition,
cryptography, prediction of stock market trends, consumer behavior, etc. ANN
canbealsoused toreplicate the behavior of complex models. This may be needed
when models are slow but the results of modelling are needed in real time. An
application of ANN, inapproximating the behavior ofacomplex hydrodynamic
model (25 inputs and 1 output), is considered by Solomatine and Torres (1996);
see Figures 5 and 6. Neural network code developed for that application can be
run across the Internet (see www.ihe.nl/hi/sol). Experience shows that ANNs,
being highly non-linear models, are superior to regression and ARIMA models.
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Figure 5: ANN reproducing the behaviour of one-dimensional river model
(water level), Apure river basin (Venezuela): verification

§ L Verification Pesformance

1l Reservois optimization: water level: of Apue tives, Venezuela
Trained MM

erification target

out 1,
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1AAOES00 [ S :
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{1 HNN: Hewrad retwork tool, s el /hidsolfnen birm

M5E for Ope

Figure 6: M5 model tree (pruned) in predicting flow Q(t+1)

FLOW-S1: MT Verification (01/12/59, 7:00 to 13/12/59, 18:00)
Inputs: RE;, RE+, RE, REi3, RE4, REs, Qt, Qr1, Qi2; Pruning factor =1

Discharge [m3/s] Output : Qg
350
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MS5 Model Tree: A Method of Combining Functions

Inspired by a Decision Tree
Decisiontrees can be generalised to regression trees and model trees that can
deal with continuous attributes. Trees-structured regressionis builton the assumption
that the functional dependency is not constant in the whole domain, but can be
approximate as such on smaller subdomains. For the continuous variables, these
subdomains then can be searched for and characterized with some “local” model.
Depending on the nature of suchamodel, there are two types of trees used for
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numerical prediction:

+ Ifthelocalmodel gives anaverage value of the instances for this local scope
(zero-order model), then the overall approach is called a regression tree.
Regression trees were introduced in the CART system of Breiman et al.
(1984). CART, for “classification and regression trees,” incorporated a
decisiontrees inducer for discrete classes very much like that of C4.5, which
was developed independently, as well as a scheme for inducing regression
trees.

+ Ifalocalmodelisalinearregression function ofthe input variables, then the
overallapproachis called amodel tree. There are two (similar) approaches
known:

* MS5 models trees (Quinlan, 1992) implemented in Cubist software
(www.rulequest.com) and, with some changes, Weka software (Witten &
Frank, 2000). Some details of the M5 algorithms are given by Wang and
Witten (1997).

*  Approachby Friedman (1991)inhis MARS (multiple adaptive regression
splines) algorithm implemented as MARS software (www.salford-
software.com).

Notethatthemodel tree approachis oriented at building a linear model locally,
sothatoverall it can be said that this piece-wise linear model has some properties
ofanon-linearmodel.

The construction of model trees is similar to that used in construction of
decisiontrees, although the splitting criterionis different. Each leafthen represents
alocalmodel and in principle could be (locally) more accurate than a globalmodel
(evenanon-linear one, e.g.,aneural network) trained on the whole data set. The
M5 modeltrees splitting criterion is SDR (standard deviation reduction), whichis
used to determine which attribute isthe best to splitthe portion 7'of the training data
thatreaches aparticularnode:

T,
SDR = sd(T) —Z%Xm’(ﬂ)

where T, T,,... are the sets that result from splitting the node according to the
chosen attribute; sd (.) is the standard deviation.

The linearregression method is based onan assumption oflinear dependencies
between input and output. In an M5 model tree, a step towards non-linearity is
made—sinceitbuildsamodel thatis locally linear, but overall isnon-linear. In fact
an M5 tree is amodular model—it consists of modules that are responsible for
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modelling particular subspace of the input space. Model trees may serve as an

alternative to ANNs (which are global models), are often almost as accurate as

ANNsand have importantadvantages:

*  Trainingof MT is much faster than ANN, and italways converges.

*  Theresultscanbe easily understood by decision makers.

*  Byapplyingpruning (thatismaking trees smaller by combining subtrees inone
node),itis possible to generate arange of MTs—froman inaccurate but simple
linear regression (one leaf only) to a much more accurate but complex
combination oflocalmodels (many branches and leaves).

Practical Applications
Data-drivenmethods, especially neural networks, know dozens of successful

applications in the water sector. The use of ANNs to model the rainfall-runoff

process is addressed in the works of Hsu et al. (1995), Minns and Hall (1996),

Abrahartand See (2000), and in a collection of papers edited by Govindarajuand

RamachandraRao (2000).

Our experience of using machine learning methods inreal-valued prediction
includes:

*  replicatingbehavior ofhydrodynamic/hydrologicalmodel of Apureriverbasin
(Venezuela) with the objective of using the ANN in model-based optimal
control ofareservoir (Solomatine & Torres, 1996);

*  modellingachannel network using ANN (Priceetal., 1998);

*  building ANN-based intelligent controller for real-time control of water levels
inapolder (Lobbrecht & Solomatine, 1999);

*  modellingrainfall-runoffprocess with ANNs (Dibike, Solomatine & Abbott,
1999);

+  surgewater level prediction in the problem of ship guidance using ANN;

*  reconstructing stage-discharge relationship using ANN (Bhattacharya &
Solomatine, 2000);

* usingM5 modeltrees to predictdischarge in ariver (see example below);

* using SVMs in prediction of water flows for flood management (Dibike,
Velickov, Solomatine & Abbott,2001).

Here we will mention the application of model trees to the same data setas was
mentioned inthe application of classificationalgorithms. Itincludes the hourly data
onrainfall and flow in a catchment for 3 months. Training setincludes 1,854, and
the verification set—300 instances. The problem s to predict the discharge value
Q,,,forthe nexthour. Analysis of the catchment and the mutual dependencies
between variables allowed for selecting the following input variables: effective
rainfall (RE) for timest, t-1,t-2,t-3,t-4,t-5, and discharges Q at times t,
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t-1, t-2, t-3.

Multiple linear regression model was builtand has the following form:

Qt+1 =

0.842 + 1.04REt + 5.05REt-1 -

3 + 0.419REt-4

1.23REt-2 -

- 0.429REt-5 + 1.87Qt - 1.20Q0t-1 + 0.295Qt-2

withthe RMSE on a verification set of 82.6 m?/s.

M5 model tree was built for the same problem with the help of Weka software

(Witten & Frank, 2000) and itis shown below:

0.0842REt-

LM1:

LM2:

Qt <= 59.4

| Qt <= 32.5 : LMLl (1011/1.64%)

| Qt > 32.5 : LM2 (396/6.17%)

Qt > 59.4 :

| Ot <= 128

| | Qt <= 87.5

| | | REt-3 <= 0.264 : LM3 (170/5.44%)

| | | REt-3 > 0.264

| | | | REt-2 <= 1.13 : LM4 (36/6.43%)

| | | | REt-2 > 1.13

| | | | | REt-3 <= 1.45 : LM5 (9/20.4%)

| | | | | REt-3 > 1.45

| | | | | | REt-4 <= 1.35 : LM6 (3/10%)

| | | | | | REt-4 > 1.35 : LM7 (3/22.2%)
| | ot > 87.5 :

| | | Qt <= 103

| | | | REt <= 0.121

L ot <= 95

| | | | | | Qt-2 <= 88.1 : LM8 (5/9.21%)
| | | | | | Qt-2 > 88.1 : LM9 (18/7.53%)
| | | | | Qt > 95 : LM10 (19/7.04%)

| | | | REt > 0.121 :

| | | | | REt <= 1.68

| | | | | | REt-5 <= 0.167 : LM11l (2/6.82%)
| | | | | | REt-5 > 0.167 : LM12 (5/17.1%)
| | | | | REt > 1.68

| | | | | | REt <= 3.83 : LM13 (2/7.08%)
| | | | | | REt > 3.83 : LM14 (2/0.144%)
| | | Qt > 103 : LM15 (50/7.77%)

| Qt > 128 : LM16 (123/38.6%)

Models at the leaves:
Qt+1 =

0.0388 + 0.0176REt + 0.0535REt-1 + 0.00866REt-2 +

0.037REt-3 + 1.01Qt - 0.0127Qt-1 + 0.00311Qt-2

Qt+1 =
3 + 1Qt - 0.0127Qt-1 +

0.00311Qt-2

-0.221 + 0.0277REt + 1.68REt-1 + 0.0411REt-2 + 7.3REt-
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LM3: Qt+1 = 3.33 + 0.284REt + 0.761REt-1 + 0.927REt-2 + 0.43REt-3
- 0.488REt-4 - 0.0852REt-5 + 1.04Qt - 0.147Qt-1 + 0.0351Qt-2
LM4: Qt+1 = 7.14 + 0.452REt + 0.761REt-1 + 7.46REt-2 + 1.04REt-3

1.1REt-4 - 0.0852REt-5 + 0.983Qt - 0.147Qt-1 + 0.0351Qt-2
LM5: Qt+1 = 35.9 + 0.771REt + 0.761REt-1 + 7.72REt-2 + 2.69REt-3 -
1.1REt-4 - 0.0852REt-5 + 0.622Q0t - 0.147Qt-1 + 0.0351Qt-2
LM6: Qt+1 = 39.5 + 0.452REt + 0.761REt-1 + 7.72REt-2 + 2.92REt-3 -
1.1REt-4 - 0.0852REt-5 + 0.622Q0t - 0.147Qt-1 + 0.0351Qt-2
LM7: Qt+1 = 38.8 + 0.452REt + 0.761REt-1 + 7.72REt-2 + 2.92REt-3 -
1.1REt-4 - 0.0852REt-5 + 0.622Q0t - 0.147Qt-1 + 0.0351Qt-2

LM8: Qt+1 = 29.3 + 2.58REt + 1.14REt-1 + 0.241REt-2 + 0.186REt-3
0.3REt-4 - 1.51REt-5 + 1.02Qt - 0.422Q0t-1 + 0.085Qt-2

LMS9: Qt+1 = 37.1 + 2.58REt + 1.14REt-1 + 0.241REt-2 + 0.186REt-3
0.3REt-4 - 1.51REt-5 + 1.02Qt - 0.422Qt-1 - 0.0197Qt-2

LM10: Qt+1 = 34.2 + 2.58REt + 1.14REt-1 + 0.241REt-2 + 0.186REt-3
- 0.3REt-4 - 1.51REt-5 + 1.03Qt - 0.422Qt-1 + 0.0148Qt-2

LM11l: Qt+1 = 32.8 + 4.1REt + 3.85REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 2.76REt-5 + 1.11Qt - 0.422Qt-1 - 0.05240Qt-2

LM12: Qt+l1 = 32.6 + 4.1REt + 3.85REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 2.76REt-5 + 1.11Qt - 0.422Qt-1 - 0.05240Qt-2

LM13: Qt+l1 = 35.9 + 4.1REt + 4.28REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 2.76REt-5 + 1.11Qt - 0.422Qt-1 - 0.05240Qt-2

LM14: Qt+1 = 36 + 4.1REt + 4.28REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 2.76REt-5 + 1.11Qt - 0.422Qt-1 - 0.05240Qt-2

LM15: Qt+1 = 9.39 + 1.37REt + 3.78REt-1 + 0.241REt-2 + 0.186REt-3
- 0.3REt-4 - 0.473REt-5 + 1.66Qt - 0.97Qt-1 + 0.211Qt-2

LMl6: Qt+1 = 0.432 + 3.99REt + 3.24REt-1 - 0.04REt-2 + 1.76Qt -

1.07Qt-1 + 0.257Qt-2

(here the RMSE on a verification set dropped down to just 3.85 m?/s.)

This tree was found to be too complex. The pruned (reduced) model tree (to
3rules) fromthetotal of 16 rules is shown below:

Qt <= 59.4
| Qt <= 32.5 : LMl (1011/1.64%)
| ot > 32.5 : LM2 (396/6.17%)
Qt > 59.4 : LM3 (447/23.5%)

LM1l: Qt+1 = 0.0388 + 0.0108REt + 0.0535REt-1 + 0.0173REt-2 +
0.0346REt-3 + 1.01Q0t - 0.0127Qt-1 + 0.00311Qt-2

LM2: Qt+1 = -0.221 + 0.0108REt + 1.68REt-1 + 0.0626REt-2 + 7.3REt-
3 + 10t - 0.0127Qt-1 + 0.00311Qt-2

LM3: Qt+1 = 3.04 + 2.46REt + 4.97REt-1 - 0.04REt-2 + 1.75Qt -

1.08Qt-1 + 0.265Qt-2

The RMSE on a verification set dropped even further downto 3.6 m%/s. (The
reduction of the error may show that the original large tree was overfit.) Figure 7
shows the predicted discharge against the measured one.
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Figure 7: ANN (MLP) in predicting flow Q(t+1): 9 inputs, 5 hidden nodes, 1

output
FLOW-S1 set: Prediction of flow Q(t+1)

Discharge Inputs: REt, REt-1, REt-2, REt-3, Qt, Qt-1
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Note that the final pruned model tree model does not use variables RE _,
RE ,, RE . Thetreeactually generated three models which are associated with

-4’

thethree levels of flow: very low (below 32.5 m?/s), low (from 32.5t0 59.6 m*/s),
and high (above 59.5 m*/s). The analysis of regression coefficients may help the
hydrological analysis: for example, it can be seen thatin LM3 (high flows), the
influence of the previous values of flows (Q, ,and Q, ,)ismuch higher thaninthe
models for lower flows.

This final tree is very simple, understandable, needs even less input variables

Figure 8: ANN (MLP) in predcting flow Q(t+3)
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Figure 9: Interpretation of an aerial photo using Kohonen network (SOFM)
and SVM classifiers (Velickov et al., 2000), the predicted class labels are
shown:W:Woodandscrub, A: Agriculture, M: Meadow, U: Urban area

original image (256*256 pixels) gray scale of window
average (16*16) class labels

reproduced image
by the VQ classifier

reproduced image by the SVM predicted class labels
classifier (radial basis functions)

to feed and gives the lowest verification error. Its accuracy was found to be
practically the same as of the ANN (RMSE=5.3 m%/s) (Figure 8). Itis interesting
tosee howtheaccuracy decreases (however, not considerably) for the problem of
predicting flow Q(#+3), that is 3 hours ahead (Figure 9; this ANN has 6 inputs
instead of 9 due to the fact that there are not enough past measurements that would
influence the flow 3 hours ahead).

FUZZY RULE-BASED SYSTEMS

Thenotion of fuzzy logic was introduced by L. Zadeh in 1965 and since then
fuzzy systems are used inmany applications, including, for example, controllers of
washing machines or video cameras. Ideas of fuzzy logic are alsoused in building
data-driven models trained on large data sets. Fuzzy rule-based systems (FRBSs)
canbe builtby interrogating humans, or by processing the historical data. We used
the second type of rules, and the basics of this approach are described in the books
of Bardossy and Duckstein (1995), and Kosko (1993, 1997). Applications of
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FRBS inwaterresources can be found in Pestietal. (1996), Pongraczetal. (1999)
and Abebe et al. (1999).

Practical Applications
Fuzzy logic had a significant number of applications; some of them are

mentionedbelow:

*  Bardossyetal.(1995)modeled the movement of water in the unsaturated zone
using a fuzzy rule-based approach. Data generated by numerical solution of
Richard’s equation was used as examples to train (i.e., formulate the rules of)
afuzzyrule-based model.

*  Bardossyand Duckstein (1995) alsoused adaptive fuzzy systems to model
daily water demand time series in the Ruhrbasin, Germany, and used fuzzy
rulesto predict future water demand. The approachused three input variables:
the day ofthe week (working day or holiday), the daily maximum temperature
and the general weather conditions ofthe previous days.

*  Pestietal.(1996) proposed amethodology for predicting regional droughts
from large-scale atmospheric patterns. A fuzzy rule-based model wasused to
predict the so-called Palmer’s Drought Severity Index (PDSI) of the New
Mexico area based on atmospheric circulation patterns of the United States.
With pastrecords split for training and verification, good predictive abilities
werereported in addition to easy implementation, simple coding and little
computertime.

Ourexperience includes:

*  Abebe, Solomatine and Venneker (1999) used FRBS for prediction of
precipitation events.

*  Abebe, Guinot and Solomatine (2000) used fuzzy logic approach in the
analysis of groundwater model uncertainty.

*  Lobbrecht and Solomatine (1999) used FRBS in building an intelligent
controller for water management in polder areas.

NON-LINEARDYNAMICS: CHAOS THEORY

Chaos theory (formulated by Lorentzin 1963) appeared to be an excellent
predictive tool fortime series. It uses only the time series itself, without the use of
other related variables, so it is applicable when the time series carries enough
information about the behavior of the system.

Chaos comprises a class of signal intermediate between regular sinusoidal
or quasiperiodic motions and unpredictable, truly stochastic behavior (Tsonis,
1992). Chaotic systems are treated as “slightly predictable” and normally are
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studied in the framework of non-linear system dynamics. With conventional linear
tools such as Fourier transform, chaos looks like “‘noise,” but chaos has structure
seenin the phase (state) space. The mainreason for applying chaos theory is the
existence of methods permitting prediction of the future positions of the systemin
the state space. The predictive capacity of chaos theory is by far better than any of
the linear models like ARIMA.

Practical Application

Weused chaos theory to predict the surge water level in the North Sea close
to Hook of Holland; the data setincluded measurements of surge for 5 years with
the 10-minute interval. For two-hours prediction the error was aslow as 10 cmand
superceded the methods used earlier (Solomatine etal.,2000).

CONCLUSION

Data-driven methods (in other words, methods of machine learning and data
mining) haveproventheirapplicability inmany areas, including the financial sector,
customer resource management, engineering, etc. Our experience shows their
applicability to a wide range of problems associated with control of water
resources. Normally a particular domain area will benefit from data-driven
modellingif:

e thereisaconsiderable amountofdataavailable;

» thereareno considerable changes to the modeled system during the period
covered by modelling;

+ itisdifficulttobuildknowledge-drivensimulationmodels, orinparticular cases
they are notadequate enough;

» thereisanecessity to validate the results of simulation models with other types
ofmodels.

Successful analysis and prediction should be always based on the use of
various types of models. For example, our experience shows that M5 model trees,
combining local and global properties, could be close in accuracy to neural
networks (being global, thatis trained on the whole data set), and are more easily
accepted by decision makers due to their simplicity.

The future is seen inusing the 4ybrid models combining models of different
types and following different modelling paradigms. It can be foreseen that the
computational intelligence (machine learning) willbe used notonly for building data-
drivenmodels, butalso for building optimal and adaptive model structures of such
hybridmodels.
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Chapter XIII

Solving Two Multi-Objective
Optimization Problems Using
Evolutionary Algorithm

Ruhul A. Sarker, Hussein A. Abbass and Charles S. Newton
University of New South Wales, Australia

ABSTRACT

Being capable of finding a set of pareto-optimal solutions in a single run is a
necessary feature for multi-criteria decision making, Evolutionary algorithms
(EAs) have attracted many researchers and practitioners to address the
solution of Multi-objective Optimization Problems (MOPs). In a previous
work, we developed a Pareto Differential Evolution (PDE) algorithm to
handle multi-objective optimization problems. Despite the overwhelming
number of Multi-objective Evolutionary Algorithms (MEAs) in the literature,
little work has been done to identify the best MEA using an appropriate
assessment methodology. In this chapter, we compare our algorithm with
twelve other well-known MEAs, using a popular assessment methodology, by
solving two benchmark problems. The comparison shows the superiority of
our algorithm over others.

INTRODUCTION

Multi-objective optimization problems (MOPs) optimize a set of conflicting
objectives simultaneously. MOPs are a very important research topic, not only
because of the multi-objective nature of most real-world decision problems, but

Copyright © 2003, Idea Group Inc.
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alsobecause there are still many open questions in this area. In fact, there isnoone
universally accepted definition of optimum in MOP as opposed to single-objective
optimization problems, which makes it difficult to even compare results of one
method to another. Normally, the decision about what the best answer is
corresponds to the so-called human decision maker (Coello Coello, 1999).

Traditionally, there are several methods available inthe Operational Research
(OR) literature for solving MOPs as mathematical programming models (Coello
Coello, 1999). None of the OR methods treat all the objectives simultaneously
which is a basic requirement in most MOPs. In addition, these methods handle
MOPs witha set of impractical assumptions such as linearity and convexity.

In MOPs, there is no single optimal solution, but rather a set of alternative
solutions. These solutions are optimal in the wider sense since there are no other
solutions in the search space that are superior to (dominate) them when all
objectives are simultaneously considered. They are known as pareto-optimal
solutions. Pareto-optimality is expected in MOPs to provide flexibility for the
human decisionmaker.

Recently, evolutionary algorithms (EAs) were found to be useful for solving
MOPs (Zitzler & Thiele, 1999). EAs have some advantages over traditional OR
techniques. Forexample, considerations for convexity, concavity and/or continuity
of functionsarenotnecessary in EAs, whereas they formareal concernintraditional
OR techniques. Although EAsare successful, to some extent, in solving MOPs, the
methods appearing in the literature vary alotin terms of their solutions and the way
of comparing their bestresults with other existing algorithms. In other words, there
isno well-accepted method for MOPs that will produce a good set of solutions for
all problems. This motivates the further development of good approaches to
MOPs.

Recently, we developed anovel Differential Evolution (DE) algorithm for
MOPs (Abbass, Sarker & Newton, 2001). The approach showed promising
results when compared with the Strength Pareto Evolutionary Algorithm
(SPEA) (Zitzler & Thiele, 1999) for two benchmark problems. However there are
several other known methods such as Fonseca and Fleming’s genetic algorithm
(FFGA) (Fonseca & Fleming, 1993), Hajela’s and Lin’s genetic algorithm
(HLGA)(Hajela & Lin, 1992), Niched Pareto Genetic Algorithm (NPGA) (Horn,
Nafpliotis & Golberg, 1994), Non-dominated Sorting Genetic Algorithms (NSGA)
(Srininas & Dev, 1994), Random Sampling Algorithm (RAND) (Zitzler & Thiele,
1999), Single Objective Evolutionary Algorithm (SOEA) (Zitzler & Thiele, 1999),
Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) and Pareto
Archived Evolution Strategy (PAES) (Knowles & Corne, 1999,2000). There are
several versions of PAES like PAES, PAES20, PAES98 and PAES98mut3p. In
this chapter, we compare the solutions of two benchmark problems, produced by
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our DE algorithm with all these methods, using a statistical comparison technique
recently proposed by Knowles and Corne (1999, 2000). From the comparison,
itis clearthat ouralgorithm outperforms mostalgorithms whenapplied to these two
testproblems.

The chapteris organized as follows. After introducing the research context,
previous research is scrutinized. This is followed by the proposed algorithm.
Experiments are then presented and conclusions are drawn.

PREVIOUS RESEARCH

Existing MEAs

MEAs for solving MOPs can be categorized as plain aggregating, population-
based non-pareto and pareto-based approaches (Coello Coello, 1999). In this
section, we would briefly discuss several population-based approaches as they are
more successful when solving MOPs, and are popular among researchers and
practitioners.

The Random Sampling Evolutionary Algorithm (RAND) (Zitzler & Thiele,
1999) generates randomly a certainnumber of individuals per generation, according
to the rate of crossover and mutation (though neither crossover, mutation nor
selection are performed). Hence the number of fitness evaluations was the same as
forthe EAs. Anotheralgorithm called Single Objective Evolutionary Algorithm
(SOEA) (Zitzler & Thiele, 1999) uses the weighted-sum aggregation. In contrast
to otheralgorithms, 100 independent runs were performed per test problem, each
runbeing optimized towards another randomly chosen linear combination ofthe
objectives. Thenon-dominated solutions among all solutions generated in the 100
runs form the trade-off frontier achieved on a particular test problem.

The Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) is a
population-based non-Pareto approach. In this approach, the total population is
divided into anumber of populations equal to the number of objective functions to
be optimized. Each population is used to optimize each objective function
independently. The populations are then shuffled together followed by conventional
crossover and mutation operators. Schaffer (Schaffer, 1985) realized that the
solutions generated by his system were non-dominated ina local sense, because
their non-dominance was limited to the current population, and while alocally
dominated individual is also globally dominated, the converseisnotnecessarily true.

Hajelaand Lin’s geneticalgorithm (HLGA) (Hajela& Lin, 1992)isalsoanon-
Pareto approach that uses the weighted-sum method for fitness assignment.
Thereby, each objective is assigned a weight between zero and one, with the sum
ofall weights being exactly equal to one. To search formultiple solutions in parallel,
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the weights are encoded in the genotype. The diversity ofthe weight combinations
is promoted by phenotypic fitness sharing. As a consequence, the EA evolves
solutions and weight combinations simultaneously.

Inthe pareto-based approaches, the dominated and non-dominated solutions
in the current population are separated. Goldberg (1989) suggested a non-
dominated ranking procedure to decide the fitness of the individuals. Later, Srinivas
and Dev (1994) introduced Non-dominated Sorting Genetic Algorithms (NSGAs)
based ontheidea of Goldberg’s procedure. In this method, the fitness assignment
is carried out through several steps. In each step, the non-dominated solutions
constituting anon-dominated frontier are assigned the same dummy fitness value.
These solutions have the same fitness values and are ignored in the further
classification process. Finally, the dummy fitness is set to a value less than the
smallestshared fitness value in the current non-dominated frontier. Then the next
frontierisextracted. This procedureisrepeated until all individuals in the population
are classified.

Fonsecaand Fleming (1993) proposed aslightly different scheme whichis
known as Fonsecaand Fleming’s genetic algorithm (FFGA). Inthis approach, an
individual’srank is determined by the number of individuals dominating it. Without
using any non-dominated ranking methods, Horn, Nafpliotis and Golberg (1994)
proposed the Niched Pareto Genetic Algorithm (NPGA) that combines tournament
selection and the concept of Pareto dominance. Two competing individualsand a
comparison setof otherindividuals are picked atrandom from the population; the
size of the comparison set is given by a user-defined parameter. If one of the
competing individuals is dominated by any member of the setand the otheris not,
then the latter is chosen as the winner of the tournament. If both individuals are
dominated (or not dominated), the result of the tournament is decided by sharing:
theindividual thathasthe leastindividualsinits niche (defined by the niche radius)
is selected for reproduction. Horn et al. (1994) used phenotypic sharing on the
objective vectors.

The common features ofthe Pareto-based approaches mentioned above are:
(1) the Pareto-optimal solutions in each generation are assigned either the same
fitness orrank, and (ii) some sharing and niche techniques are applied in the selection
procedure. Recently, Zitler and Thiele (1999) proposed a Pareto-based method,
the Strength Pareto Evolutionary Algorithm (SPEA). The main features of this
approachare: it (i) sorts the non-dominated solutions externally and continuously
updates the population, (ii) evaluates an individual’s fitness depending on the
number of external non-dominated points that dominate it, (iii) preserves population
diversity using the Pareto dominance relationship and (iv) incorporates aclustering
procedure in order to reduce the non-dominated set without destroying its
characteristics.
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Mostrecently, Knowles and Corne (1999, 2000) proposed asimple Evolution
Strategy (ES), (1+1)-ES, known as the Pareto Archived Evolution Strategy
(PAES) that keeps a record of limited non-dominated individuals. The non-
dominated individuals areaccepted forrecording based on the degree of crowdiness
intheir grid (defined regions on the Pareto frontier) location to ensure diversity of
individuals in the final solution. They also proposed an extension to this basic
approach, whichresults in some variants ofa (u+ A)-ES. These are recognized as
PAES (on-line performance using an archive of 100 solutions), PAES20 (oft-line
performanceusing anarchive of 20 solutions), PAES98 (off-line performanceusing
anarchive of98 solutions) and PAES98mut3p (PAES98 but with amutation rate
of3%).

Our algorithmis a Pareto-based approach using Differential Evolution (DE)
formulti-objective optimization (Abbass, Sarker & Newton,2001). This algorithm
isbriefly introduced in alater section.

Comparison Techniques

MOPs require multiple, butuniformly distributed, solutions to form a Pareto
trade-off frontier. When comparing two algorithms, these two factors (number of
alternative solution points and their distributions) must be considered inaddition to
the quality of solutions. There are anumber of assessment methodologies available
inthe literature to compare the performance of differentalgorithms. The errorratio
and the generational distance are used as the performance measure indicators
when the Pareto optimal solutions are known (Veldhuizen & Mamont, 1999). The
spread measuring technique expresses the distribution of individuals over the non-
dominated region (Srininas & Deb, 1994). The method is based on a chi-square-
like deviation distribution measure, and it requires several parameters to be
estimated before calculating the spread indicator. The method of coverage metrics
(Zitzler & Thiele, 1999) compares the performances of different multi-objective
evolutionary algorithms by indicating whether the outcomes of one algorithm
dominate those of another without measuring how much betteritis.

A statistical comparisonmethod called “attainment surfaces” was introduced
by Fonseca and Fleming (1996). For two objective problems, the attainment
surfaceis defined as the lines joining the points (candidate solutions) on the Pareto
frontier generated by analgorithm. Therefore, fortwo algorithms 4 and B, there are
twoattainment surfaces. Anattainment surface divides the objective space into two
regions: one containing vectors which are dominated by the results produced by the
algorithm, and another that contains vectors that dominate the results produced by
the algorithm. A number of sampling lines can be drawn from the origin, which
intersects with the attainment surfaces, across the full range of the Pareto frontier.
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Foragivensampling line, the intersection of an algorithm closer to the origin (for
both minimization) is the winner. Fonseca and Fleming’s idea was to considera
collection of sampling lines which intersect the attainment surfaces across the full
range of the Pareto frontier.

IfMEAsarerunrtimes, eachalgorithm will return rattainment surfaces, one
fromeachrun. Havingthese rattainment surfaces, some fromalgorithm 4 and some
fromalgorithm B, asingle sampling lineyields rpoints of intersection, one for each
surface. These intersections form a univariate distribution, and therefore, we can
perform standard non-parametric statistical procedures to determine whether or
notthe intersections for one of the algorithms occurs closer to the origin with some
statistical significance. Such statistical tests have been performed by Knowles and
Corne (2000) for each ofthe lines covering the Pareto trade-off area. Insofaras the
lines provide auniform sampling of the Pareto surface, the result of this analysis
yields twonumbers: a percentage ofthe surface in which algorithm 4 outperforms
algorithm B with statistical significance, and that when algorithm B outperforms
algorithm 4.

Knowles and Corne (2000) presented their results ofacomparison in the form
ofapair[a, b], wherea gives the percentage of the space (i.e., the percentage of
lines) on which algorithm 4 was found statistically superior to B, and b gives the
similar percentage for algorithm B. Typically, ifboth 4 and B are ‘good,’ thena+
b<100. The quantity [100 - (a+b)], of course, gives the percentage of the space
onwhichtheresults were statistically inconclusive. They use statistical significance
at the 95% confidence level. Knowles and Corne (2000) also extended their
comparison methodology to comparing more than two algorithms.

Ifthe algorithms are competitive, the results of the statistical testmay vary with
the number of sampling lines drawn since the procedure considers only the
intersection points of sampling lines and attainment surfaces. Knowles and Corne
(2000) proposed that 100 lines should be adequate, although, obviously, more lines
the better. They have shown experimentally that the percentage of the space (a+
b)increases, to give statistically significantresults, with the increased number of
lines.

Differential Evolution

DE is a branch of evolutionary algorithms developed by Storn and Price
(1995) for optimization problems over continuous domains. In DE, each variable’s
value inthe chromosome is represented by areal number. The approach works by
creatingarandomiinitial population of potential solutions, where itis guaranteed, by
some repair rules, that the value of each variable is within its boundaries. An
individualisthen selected atrandom forreplacement and three different individuals
are selected as parents. One of these three individuals is selected as the main parent.
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Withsome probability, each variable in the main parentis changed butat least one
variable should be changed. The change is undertaken by adding to the variable’s
value aratio of the difference between the two values of this variable in the other
two parents. In essence, the main parent’s vector is perturbed by the other two
parents’ vectors. This process represents the crossover operator in DE. If the
resultant vector is better than the one chosen for replacement, it replaces it;
otherwise the chosen vector forreplacementisretained in the population. Therefore,
DE differs from GA inanumber of points:
1. DE uses real number representation while conventional GA uses binary,
although GA sometimes uses integer or real number representation as well.
2. InGA,twoparentsare selected for crossover and the child isarecombination
ofthe parents. In DE, three parents are selected for crossover and the child
isaperturbation of one of them.
3. Thenewchildin DEreplaces arandomly selected vector from the population
onlyifitisbetterthanit. Inconventional GA, children replace the parents with
some probability regardless of their fitness.

In DE, a solution, /, in generation & is a multi-dimensional vector
X k:( X, .. xﬁv) ! .Apopulation,PG:K, atgeneration G =kisavectorof M
. -y : < PR
solutions (M > 4). The initial population, Poo= XGI:O,--- X G=0} Jisinitialized as
xiG:O = lower(x,) +rand [0,1]X (upper(x;) — lower(x,)),  =1,.... M,
i=12,..,.N

where Misthe populationsize, Nisthe solution’s dimension, and each variable x;,
inasolution vector/inthe initial generation G=0, x| ;_,, isinitialized within its
boundaries (lower(x, ),upper(x ,)). Selectionis carried out to select four different

solutionsindices andje [ 1,M]. The values of each variable in the child are changed
with some crossover probability, CR, to:

xir,}G:k—l + Fx(xir,lG,k—l _xir,zG:k—l )if (random[0,]) < CR Vv i=i,,,)

Vi<N,x .= / .
’ X ool otherwise

where F e (0,1)isaproblem parameter representing the amount of perturbation
added to the main parent. The new solution replaces the old one ifitis better than
itand atleast one ofthe variables should be changed. The latter is represented in
thealgorithmbyrandomly selectingavariable,i e (1,N). Aftercrossover,ifone
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or more of the variables in the new solution are outside their boundaries, the
followingrepairrule is applied until the boundary constraints are satisfied:

X, ; +lower(x,)

. if X/ g < lower(x;)
x/. —upper(x,) . :
X g =1 lower(x;)+ LY 5 : if X/ g >upper(x;)
X G otherwise

ADIFFERENTIALEVOLUTION ALGORITHM
FOR MOPS

A generic version of the adopted algorithm is presented at the end of this

chapterin Figure 3 with the following modifications:

1. Theinitial populationisinitialized according to a Gaussian distribution N
(0.5,0.15).

2. Thestep-length parameter F is generated from a Gaussian distribution N (0,1).

3. Reproductionisundertaken only among non-dominated solutions in each
generation.

4. Offspringare placed into the population ifthey dominate the main parent.

5. Theboundary constraints are preserved either by reversing the sign if the
variableislessthan O orkeep subtracting 1 ifitis greater than 1 until the variable
iswithinits boundaries.

The algorithm works as follows. Aninitial populationis generated atrandom
from a Gaussian distribution with mean 0.5 and standard deviation 0.15. All
dominated solutions are removed from the population. The remaining non-
dominated solutions areretained for reproduction. Ifthe number of non-dominated
solutions exceeds some threshold, a distance metric relation (Abbass, Sarker &
Newton,2001)is used to remove those parents who are very close to each other.
Three parents are selected atrandom. A child is generated from the three parents
andis placed into the populationifitdominates the first selected parent; otherwise
anew selection process takes place. This process continues until the populationis
completed.

A maximum number of non-dominated solutions in each generation was setto
50.Ifthis maximum s exceeded, the following nearest neighborhood distance
functionisadopted:

TLFeBOOK



226 Sarker, Abbass and Newton

(min || x —x, || +min | x - x, )

D(x) = 5

2

where x # x, # x.. That is, the nearest neighborhood distance is the average
Euclidean distance between the closest two points. The non-dominated solution
with the smallest neighborhood distance isremoved from the population until the
total number of non-dominated solutions is retained at 50.

EXPERIMENTS

Test Problems
Thealgorithm s tested using the following two benchmark problems from
Zitlerand Thiele (1999):

Test Problem 1: Convex function

fl(x) =X
£ =gx- Loy
g
g=1+9x(zl’-2x")
(n—1)

x, €[01],i=1,...,30

Test Problem 2: Discontinuous function

fl (x) = x,
fr)=g* (- J? ~ 1y sinqom, )
g g

()

(n=1)
x, €[01],i=1,...,30

g=1+9x
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Both test problems contain two objective functions and 30 variables. The
computational results of these test problems are provided in the next section.

Experimental Setup

For ouralgorithm, the initial population size is setto 100 and the maximum
number of generations to 200. Twenty different crossover rates changing from O to
1.00 with an increment of 0.05 are tested without mutation. The initial population
isinitialized according to a Gaussiandistribution N(0.5,0.15). Therefore, with high
probability, the Gaussian distribution will generate values between 0.5 + 3 x0.15
which fits with the variables' boundaries. If a variable’s value is not within its
boundary, arepairruleisused torepair the boundary constraints. Therepairruleis
applied simply to truncate the constant part of the value; therefore if, forexample, the
valueis 3.3, therepaired value will be 0.3 assuming that the variable is between 0 and
1. The step-length parameter F'is generated for each variable from a Gaussian
distribution N(0,1). The algorithmis writteninstandard C ++ and run ona Sun Sparc
4.

Experimental Results and Discussions

In this section, the solutions of two test problems, provided by our PDE
algorithm, are compared with the solutions of 12 other MEAs (FFGA,HLGA,
NPGA,NSGA,RAND, SOEA, SPEA, VEGA, PAES, PAES20, PAES98 and
PAES98mut3p) using a statistical comparison technique. The results of other
algorithms, except PAESs, were obtained from the website http//
www.tik.ee.ethz.ch/~zitzler/testdata.html. The results for all PAESs were
obtained from Attp.//www.rdg.ac.uk/~ssr97jdk/multi/PAES. html.

To perform the statistical analysis using the Knowles and Corne (2000)
method, we used the solutions of 20 runs of the DE algorithm for each crossover
rate. Theresults ofthe comparison are presented in the form ofapair [a, b] foreach
crossoverrate, where a gives the percentage of the space (i.e., the percentage of
lines) onwhich PDE algorithm is found statistically superior to the other,and b gives
the similar percentage for the other algorithm. For example, fortest problem 1, the
best result using PDE [84.3,15.1] is achieved with crossover rate 0.15 when
comparedto SPEA. This means, ouralgorithm outperforms SPEA onabout 84.3%
ofthe Pareto surface whereas SPEA is statistically superior than our algorithm for
15.1%. For problem 2, the best result is obtained with crossover 0.05 when
compared to SPEA.

InFigures 1 and 2, the x-axis represents the crossover rate used in our PDE
algorithm and the y-axisis the percentage of superiority. Each figure contains a plot
of*“a” for our PDE algorithm and “b” for one of the other existing algorithms fora
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Figure 1: Test problem 1
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Figure 2: Test problem 2
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givenproblem. Twelveplotsin Figure 1 show the comparison of PDE with each of
the other MEAs for test problem 1, and Figure 2 shows the same for test problem
2.

For both test problems, PDE is significantly better than FFGA, HLGA,
NPGA,RAND and VEGA irrespective of the crossover rate. PDE ismuch better
than NSGA forany crossoverrate less than 0.85 for problem 1 and 0.8 for problem
2.PDEis superior than SOEA within the crossoverrate 0.05t0 0.65 and SPEA
within 0.05t0 0.5 fortest problem 1. These figures for test problem 2 are 0to 0.45
and 0.05 to 0.1 respectively. PDE is clearly better than PAES, PAES98 and
PAES98mut3p for both test problems within a certain range of crossover rate.
Although PDE shows superiority over PAES20 for test problem 1, it shows very
little success for test problem 2. For test problem 1, arange of crossover rate for
PDE cansuccessfully challenge all other MEAs. For example, the solution of PDE
atacrossoverrate of0.35 outperforms all other algorithms. From these results, it
canbe stated that no algorithm (out of 12) produces optimal solutions. However,
PDE solutions could be close to the Pareto frontier though there is no guarantee.
Forproblem 2, there isno single crossover rate for which PDE is superior than all
the other MEAs. However such arate can be found when we exclude one ortwo
MEAs. Thatmeans, no one is close to optimal although PDE outperforms most
algorithms.

CONCLUSIONSAND FUTURE RESEARCH

Inthis chapter, anovel differential evolution approach is discussed for multi-
objective optimization problems. The approach generates a step by mutation,
where the step is randomly generated from a Gaussian distribution. We tested the
approach on two benchmark problems and it was found that our approach
outperformed almost all existing MEAs. We also experimented with different
crossover and mutation rates, on these two test problems, to find their best
solutions. The crossover rates are found to be sensitive when compared with certain
MEAs. However, atrend was found which suggests that a large number of non-
dominated solutions were found with low-crossover rates. In future work, we
intend to testthe algorithm on more problems.

Also, the parameters chosen in this chapter were generated experimentally. It
would be interesting to see the effect of these parameters on the problem.
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APPENDIX: THE PARETO DIFFERENTIAL
EVOLUTIONALGORITHM

Figure 3: The Pareto frontier Differential Evolution Algorithm (PDE)

Let G denote a generation, P a population of size M, and ;C{: r the j’h individual of dimension N
in population P in generation k, and CR denotes the crossover probability

input N, M > 4, ¢, CR € [0,1], and initial bounds: Iower(xl.),upper(xi), i=1,..N

initialize - M
Pg-o= {Xc;:o,--- » X G=0

for each individual je P,_,

x{;Gzoz Gaussian(0.5,0.15),i =1,..., N

repair x(‘;/= r if any variable is outside its boundaries
end for each
evaluate PG:O
k=1
while the stopping criterion is not satisfied do
remove all dominated solutions from P,_,
if the number of non-dominated solutions in P._, | > ¢, then apply the neighborhood

rule

_ o o —j o
fOl‘.J Qto number of non-dominated solutions in Pooj Xk <X Goioi
while j <M

randomly select 1,,7,,7; € (1,...,0), from the non-dominated solutions of
P._, |, where HED D
randomly select i,,, € (1,...,N)
. ’
forall i< N,x; ;. =

ran.

Ly

{ X oy + Gaussian(0,1)X (x]'o_,_, —x7%_,_) if (random[0,]]< CR Ai=1i,,,)

j .
Xi G=k-1 otherwise

end forall

Repair xrj if any variable is outside its boundaries
G=k

> —
If x dominates X G3=k— 1 then

X Z;: kX
j=j+1
end if
end while
k=k+1
end while
return the set of non-dominated solutions.
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Chapter X1V

Flexible Job-Shop Scheduling
Problems: Formulation,
Lower Bounds, Encoding
and Controlled Evolutionary
Approach

Imed Kacem, Slim Hammadi and Pierre Borne
Laboratoire d’ Automatique et Informatique de Lille, France

ABSTRACT

The Job-shop Scheduling Problem (JSP) is one of hardest problems, it is
classified NP-complete (Carlier & Chretienne, 1988; Garey & Johnson,
1979). In the most part of cases, the combination of goals and resources can
exponentially increase the problem complexity, because we have a very large
search space and precedence constraints between tasks. Exact methods such
as dynamic programming and branch and bound take considerable computing
time (Carlier, 1989, Djerid & Portmann, 1996). Front to this difficulty, meta-
heuristic techniques such as evolutionary algorithms can be used to find a
good solution. The literature shows that they could be successfully used for
combinatorial optimization such as wire routing, transportation problems,
scheduling problems, etc. (Banzhaf, Nordin, Keller & Francone, 1998;
Dasgupta & Michalewicz, 1997).

Copyright © 2003, Idea Group Inc.
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In this chapter we deal with the problem of flexible JSP which presents
two difficulties: the first one is the assignment of each operation to a machine,
and the second one is the scheduling of this set of operations in order to
minimize a global criterion defined by a combination of many criteria (the
makespan, the workload of the critical machine and the total workload of the
machines). Practical and theoretical aspects of this problem are presented
and carefully studied. Then we describe the state of the art concerning
scheduling problems and evolutionary techniques. The evaluation function
will be constructed by combination of the criteria and the corresponding
lower bounds. The resolution method is based on many original direct
chromosome representations. Also, based on practical examples, we present
the efficiency of the suggested approach and some discussions about this
research work.

INTRODUCTION

Several problems in various industrial environments are combinatorial. Thisis
the case of numerous scheduling and planning problems. Generally, itis extremely
difficultto solve thistype of probleminits general form. Scheduling can be defined
as a problem of finding the optimal sequence to execute a set of operations
respecting the different problem’s constraints. The problem setis extremely difficult
tosolve, itconsists generally inasimultaneous optimization ofaset of conflictingand
concurrentgoals. Therefore, the exact methods such as branch and bound, dynamic
programming and constraintlogic programming need alot of time to find an optimal
solution. So, we expectto find not necessary the optimal solution, buta good one
tosolve the problem. New search techniques such as genetic algorithms (Banzhaf,
Nordin, Keller & Francone, 1998), simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1983), tabu search (Golver, Taillard & De werra, 1993) are able toreach
ouraim: find near optimal solutions for a wide range of combinatorial optimization
problems.

Inthis work, we propose anew controlled evolutionary approach for solving
aJSP and we describe the incorporation of the scheduling specific knowledge in
the genetic operators and in the different chromosome representations.

This chapteris organized as follows: the first section presents the formulation
of our flexible job-shop scheduling problem. In the second section, we present the
lower bounds and we constructa global fitness function. Some definitions and a
shortdescription of genetic and evolutionary algorithms are presented in the third
section. Inthe section four, the different codings and the implemented operators of
the proposed methodology are described. Finally, the experimental results, discus-
sions and conclusions are presented in the last section.
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PROBLEM FORMULATION

The structure of the flexible job-shop scheduling problem can be described as

follows:

Setof Njobs {J f} 1<j<n, these jobs are independent of each other.
Eachjob J, represents a number of n, ordered operations.

The execution ofeach operation O ;; requires aresource or machine selected

fromaset of machines, U= {M} 1<c<u. M is the total number of machines
existing inthe shop, this imply the existence of the assignment problem.
Foreachjob, the order of operations is fixed (precedence constraints).

All machines are available at # = 0 and each job J, can be started atz = r
Thereisapredefined setof processing times; fora givenmachine M,,anda
givenoperation O, ., the processingtimeis definedand calledd, , .
Anoperation which has started runs to completion (non-preemption condi-
tion).

Each machine can perform operations one after the other (resource con-
straints).

Toeachoperation Oi’j, weassociate an earliest starting time rl.yjcalculated by
the following formula:

rij =I"jV]SjSN and rivij =rij+Yij V]SiSnj—],V]SjSN

where 7:./=min (di,j,k),

Foreach flexible job-shop problem, we canassociate atable D of processing
times asinthe following example:

D=td €N+ /1<j<N; 1<i<nji 1Sk<M,).
L),

S
S

011
J1 021
03,1
012
J2 022
032
013
J3 023

-l;ooow.l;wu»—ag
wn|an|—=|w]—=|wn]oc|w
==} I°F) [N} [N=3 o) B [NS) BN
._‘u-t\)w-l;\lv—‘—ag
EN

The flexible job-shop scheduling problems present two difficulties. The first

oneistoassigneach operation 0, toa machine M, (selected fromthe set U). The
second one is the computation ofthe starting times L andthe completion times tf”
of'each operation 0,
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The considered objectiveis to globally minimize the following criteria:
Themakespan: C./=max (ffis.;).
*  Theworkload ofthemostloaded machine: ;.= max (7 ) (7, isthe workload
ofM,).
*  Thetotal workload of machines: Crs=2Ik .

LOWERBOUNDS

Theorem
C+, Cyand C arerespectively lower bounds for the considered criteria
Cn, C2 and G5 , Where:

| RuAXXvii
% — . L J 1
Cﬂ— max m?x[l”_/ +;/}/l,_/ ), T . ek()’]:/
| EXye
C*=max ’T .8, |and C;BZZ‘Z'}/L ;

T}le others variables are defined as follows:
. E isanumerical function defined as follows:

if x is integer, TE(x)zx7 else INE(x)=E(x)+I with Elx) is the integer part of x
o N with N:=§nf

*  §,;=min| D! | with D* is the sum of the n shortest processing times of the

/0'V

0perat10ns thatwe can execute on the machine M,
* R, isthesumofthe Mlittle values of the starting times (7, )

9 L . . + . k C -
jo NN N TG dlz~,]Z~" o mn A ZN
I1<z<Nt-N+] ZN TN

. (C ' ) isthe sumofthe processing times of the operations of C', ;, on M,
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. C, . isanelementof E', ;, and E', ; is the setof the combinations of ( N-1)
operations chosen among the (N, - z) operations of V.
. V_isapartofthe operations set defined as follows:

Vz :{om, G Oipr 2O J} for ze|:l, N -N+I]

where {”ip ol T jN’} areranged inthe ascending order.

- Proof: see previous work (Kacem, Hammadi & Borne, 2002).

Fitness Function
So, we canreduce the multi-objective optimization to the minimization of the
following global criterion ( w, is the importance weight of the criterion Cr, ):

Ci .
Ce= Sw—= (with Sw,=I)
g

1=q<3 1<q<3

This formulation is inspired of a fuzzy evaluation technique presented ina
previous work (Kacem, Hammadi, & Borne 2001, a). Inthe ideal case, we obtain

Co=11f Cry=Cr; V1<g<3.

GENETICAND EVOLUTIONARY ALGORITHMS:
THE STATE OF THE ART

Evolutionary algorithms are general-purpose search procedures based on the
mechanisms ofnatural selectionand genetic evolution. These algorithms areapplied
by many users in differentareas of engineering framework, computer science and
operationresearch. Currentevolutionary approaches included evolutionary pro-
gramming, evolutionary strategies, genetic algorithms and genetic programming
(Banzhaf, Nordin, Keller & Francone, 1998; Dasgupta & Michalewicz, 1997;
Quagliarella, Périaux, Poloni & Winter, 1998; Goldberg, 1989; Fonseca &
Fleming, 1998).
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What Genetic Algorithms Are

Geneticalgorithms enable tomake evolve aninitial setof solutions toa final set
of solutions bringing a global improvement according to a criterion fixed at the
beginning (Quagliarella, Périaux, Poloni & Winter, 1998). These algorithms
function with the same usual genetic mechanisms (crossover, mutation, selection,
etc.). In the genetic algorithms, the solutions set is called population. Each
population is constituted of chromosomes whose each represents a particular
codingofasolution. The chromosome is constituted ofasequence of genes that can
take some values called alleles. These values are taken from an alphabet that has
tobe judiciously chosen to suitthe studied problem. The classic coding corresponds
to the binary alphabet: {0,1}. Inthis case, the chromosome represents simply a
finished table of 0 and 1. The operators that intervene in the genetic algorithms are
selection, crossover and mutation.

A genetic algorithmis an algorithm that represents a special architecture. It
operates on data withoutusing preliminary knowledge on the problem processed.
In fact, it consists of the following stages:

*  Thegenesis: it’sthe generation phase of the initial population.

*  The evaluation: in this stage, we compute the value of criterion for each
individual ofthe current population.

*  Theselection: after the evaluation, we choose better adapted elements for the
reproduction phase.

*  Thereproduction: weapply genetic operators (crossover, mutation. . .) onthe
selected individuals.

*  Thetest:inthisphase, we evaluate the improvementand decideifthe solution
isefficient. Ifthe criterion reaches a satisfactory value, we take the current
solution. Iftheresultisinsufficient, we return to the second stage and we repeat
the same process until reaching the maximal iterations number.

Encoding Requirements

The implementation difficulty of these algorithms is in the conception of the
gene content in order to describe all data of the problem and to represent the
solutions. Choosing a good representation is amain stage of solving any optimiza-
tion problem. However, choosing a good representation foraproblemis as difficult
aschoosinga good search algorithmto solveit. Care mustto be taken to adopt both
representational schemes and the associated genetic operators for an efficient
genetic search.

Problems ofencoding have been observed in the genetic algorithms literature
(Dasgupta & Michalewicz, 1997). Traditionally, chromosomes are simple binary
vectors. This simplerepresentation is an excellent choice for the problems inwhich
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solutions canberepresented by lists of zeros and ones. Unfortunately, this approach
cannotusually beused for real-word engineering problems such asacombinatorial
one (Portmann, 1996). Many modifications should be made, such as the permu-
tation of a basic string like that used for a Travelling Salesman Problem (Della
Croce, Tadei & Volta, 1995). Anillegal solution can obviously be obtained by
applying traditional genetic operators (crossover and mutation). Some different
encodings are proposed in the literature (Baghi, Uckun, Miyab & Kawamura,
1991; Uckun, Baghi & Kawamura, 1993; Bruns, 1993). The encoding is presented
intwo categories. The first one is the direct chromosome representation; we can
representa scheduling problem by using the schedule itselfas achromosome; this
method generally requires developing specific genetic operators. The second one
is the indirect chromosome representation; the chromosome does not directly
representaschedule, and transition from the chromosome representation to alegal
schedule decoderisneeded.

Concerning evolutionary algorithms and flexible job-shop scheduling prob-
lems, the literature presents many interesting propositions. Some of them can be
usedtosolve the considered optimization problem. As examples, wehave chosen
to present the following codings:

1) PMR ( Parallel Machine Representation) (Mesghouni, 1999)
The chromosomeisalistofmachines placed in parallel. For each machine, we
associate operations to execute. Each operation is coded by three elements:
*  i:theoperationindex
A the corresponding job
ot starting time of 0,,on the corresponding machine M,

M1 (l’,.]j,l[’j)
M2
M3 (i’, Jj', l,"J')

Thisrepresentation is based on the Parallel Machine Encoding (PME) which
represents directly feasible schedules, gives all the necessary information to the
foreman, and also enables us to treat the assignment problem. But itrepresents
many difficulties to be implemented (Mesghouni, 1999). In fact, by using this
representation, itis possible to obtainillegal solutions. Then, a corrective algorithm
isneeded. Unfortunately, these corrections increase the computation time and
reduce the representation efficiency.
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2) PJsR ( Parallel Jobs Representation) (Mesghouni, Hammadi & Borne,
1997)

The chromosome is represented by alist of jobs. Each job isrepresented by
the correspondentrow where each place is constituted of two terms. The first term
represents the machine thatexecutes the operation. The second termrepresents the
corresponding starting time (see the following figure).

J1 (M, t 1, 1) (M>, t 5, 1) -

J2 (Ms, t 1, 2) (M), t 5 2) (M>, t3,2)
J3

Jn

This representation is a direct encoding which permits us to solve some
problems met in the first encoding such as illegal solution (schedule) after a
crossover operation and the creation of the first population (Mesghouni, 1999).
Thisencoding integrates the precedence constraints, consequently we can create
randomly the first population, and the genetic operators are very simple and give a
feasible schedule, but we will see in the fifth section that this coding has a limited
exploration capacity of the search space compared to other possible codings.

Mesghouni (1999) has proposed crossover and mutation operators for the
two precedent chromosome representations, but, they are completely based onthe
exchanging ofassignment informations and are not able to deal with the problem
partofthe tasks sequencing.

Portmann (1996) has presented other interesting coding possibilities for
scheduling problems with or without assignment. As an example, Portmann etal.
have proposed touse “ternary permutation matrix” with an “Assignment Vector.”
But, these codings are not specified for the flexible JSP.

Inthis paper, we have chosento use adirectrepresentation to give conviviality
andlegibility toachromosomeand simplicity of use fora foreman. We suggestthree
new direct chromosome representations with their genetic operators.

CONTROLLED EVOLUTIONARY APPROACH

Inthis section, we presentanew controlled evolutionary approachto solve the
flexiblejob-shop scheduling problems.

The first stage of this method makes it possible to solve the problem of
resources allocation and to build an ideal assignments model (assignments sche-
mata).
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Figure 1: Controlled evolutionary approach
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The second stage is an evolutionary approach controlled by the assignment
model (generated in the first step). In this approach, we apply advanced genetic
manipulations in order to enhance solution quality and accelerate the convergence.

In the next paragraphs, we explain in details the different stages of this
approach (see Figure 1).

First Stage: Approach by Localization
1) Resolution of the assignment problem

Inordertosolvethis problem, the Approach by Localization (AL)isbased on
asetofassignmentheuristics. These heuristics enable us to assign each operation
to the suitable machine, taking into account the processing times and workloads of
machines on which we have already assigned operations (Kacem, Hammadi &
Borne, 2001, ¢). The obtained solutions can be represented in a table with the same
size that the processing times table as for the following example:

S ={Sijk €IN* /I<j<N; 1<i<n; 1 <k<M}

M1
011 0

J1 021
031
012
J2 022
032
013
J3 023

M3

(=]

OOHOP—‘OOOg
)

'—'OOOOO'—"—‘&
N

(=3 k=) k== P k) ) Rl
(=3 I f=] (=] [~ () o)
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Eachcase S, ik ,of the assignment S can take 0 or 1 as value:
« §,,~1l,means that Oi,j is assigned to the machine M.
* §,,~0,means that Oi,j is not assigned to the machlne M,.

The AL enables us to construct a set of good assignments in balancing the
machines'workloads (Kacem, Hammadi & Borne, 2001, ¢). Wenote E'the set of
these assignments: £={$", suchas / <z<cardinal(E)}.

2) Resolution of the scheduling problem

The resolution of this problem is based on a modular algorithm called
“Scheduling Algorithm”which calculates the starting times . by takingintoaccount
the availabilities of the machines and the precedence constraints. The conflictsare
solved by applying traditional rules of priority (SPT, LPT, FIFO, LIFO, FIRO...
(Boucon, 1991), thus, we obtain aschedule set according to the applied priority
rules (Kacem, Hammadi & Borne, 2001, ¢). This set will represent the initial
populationused by the Controlled Evolutionary Algorithm (see Figure 1).

3) Generation of an assignment model

The AL enablesus to constructaset £ ofassignments in minimizing the sum
of machines' workloads. The idea is to generate, from the set £, an assignment
schematathat will serve us to control the genetic algorithm. This schematais going
therefore torepresenta constraint whichnew created individuals mustrespect. The
construction of this schemata consists od collecting the assignments $*
(1 <z<cardinal(E)) givenby the AL and to determine (for each operation) the set
of possible machines according to a procedure called “Schemata Generation
Algorithm” (Kacem, Hammadi & Borne, 2001, 6). Asanexample, for the following
Job-shop problem D (with total flexibility), we obtain the schemata S as follows:

D={d  /1<jSN; 1<i<n; ISkS My §h={8t SISGEN IS i< ISKS M}
Ml M2 M3 M4 Ml M2 M3 M4
Jy 011 1 3 4 1 Jy 011 e 0 0 e
021 3 8 2 1 021 0 0 e e
03,1 3 5 4 7 _> 03,1 e 0 e 0
J> 012 4 1 1 4 J> 012 0 & & 0
022 2 3 9 3 022 & & 0 *
032 9 1 2 2 032 0 & & &
Js 013 8 6 3 5 Js 013 0 0 1 0
023 4 5 8 1 023 0 0 0 1

Thevalue“ SC’“ =07 indicates thatthe assignment of the operation O, ;to the
machine M, is forbzda’en Thevalue “Sf" =1"indicatesthatthe a551gnment ofthe
operation O jto themachine M, is oblzgatory, inthis case, all values ofthe other
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elements oftherow (7, j) are inevitably equal to“0”. The symbol: ““*indicates that
the assignmentis possible, in this case, we cannot have the value “1” for the other
elements oftherow (7, /).

Inconclusion, this schemata covers the majority of the interesting assignment
possibilities and avoids expensive prohibitions in terms of machine workloads
(Kacem, Hammadi & Borne, 2001,b).

4) Results given by the AL

Theresults show thatthe AL enables us to constructsolutions as interesting as
solutions obtained using the classic genetic method (Mesghouni, Hammadi &
Borne, 1997) or the Temporal Decomposition (Chetouane, 1995). The large
advantage ofthis method is the importantreduction of the computationtime. In fact,
theassignment procedures localize mostinteresting zones of the search space. Thus
the schedulingis increasingly easy and becomes more efficient.

In general, the solutions ofthe previously evoked approach are acceptable and
satisfactory. Therefore, it is worthwhile to investigate possible gains from the
Controlled Evolutionary Algorithm which can be used to produce appropriate
solutions for our problem while the other techniques do not guarantee the optimality
ofthe final solution.

Remark: Case of a partial flexibility: in this case, some tasks can only be
executed on a part of the available machines set. In the following example, the
symbol “X” indicates thatthe assignment is impossible:

011
J1 021
03,1
012
J2 022
032
013
J3 023

o]0 [ s v~ =
~

NQNW”MNNE

[y

—mxwx\).—.—s

According to some authors (Mesghouni, Hammadi & Borne, 1997), this
constraintis going to make the problem more difficult, complicate the search space
and increase the computation time. But, in Kacem, Hammadiand Borne (2001, ¢),
we show thatour assignment procedures are applicable too in this caseand we have
shown the equivalence between the two problems.

Second Stage: Controlled Evolutionary Approach (CEA)
In this stage, we apply an advanced evolutionary approach on the initial
solution set given by the AL. This approach is based on the application of the
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schemata theorem. Itconsists of conceiving amodel of chromosomes that suits the
problem. Thismodel is going to serve us in the construction of new individuals in
order to integrate the good properties contained in the schemata. The objective is
tomake genetic algorithms more efficientand more rapid in constructing the solution
by giving the priority to the reproduction of individuals respecting the model
generated by the schemata and not from the whole set of chromosomes (Kacem,
Hammadi & Borne, 2001, b).

In the case of scheduling problems, the implementation of this technique
necessitates to elaborate a particular coding that could have described the problem
dataand exploited the schemata theorem that we propose in the next paragraph.

1) Modeling
In this paragraph, we present three direct chromosome representations

suitable for the considered problem:

a) Coding1: Operations-Machines Coding (OMC) (Kacem, Hammadi &
Borne, 2001, b): itconsists to represent the schedule in the same assignment
tableS. Wereplace eachplace S, =1 bythecouple (7, , ¢, ) where L -isthe
startingtimeand #f, isthe cornpletlon time. Theplaces S o ~Oare unchanged
Asanexample, the followmg schedule Sisapossible solution ofthe job-shop
problem D (already presented in the second section):

S
g
3

J 011
021
03,1
J> 012
022
032
J3 013
023

N —

w

IS

ololol=|olx|=]e|x
o
olo|wlole|eo]e|e
—
SSSEEEEE

&~

wlolo]|o|o|o|~|e

Remark: We use the same example D to explain the different genetic
operators in the next paragraphs.

b) Coding2: List Operations Coding (LOC) (Kacem, Hammadi & Borne,
2001, a): itconsiststorepresent the schedule ina 3 columns-table. In the first
columnwe putthe operationslist (O, ) Thesecondindicates the machine M,
selected to execute the operation O, N and the third columnisreserved for the
starting and completion times (t tf ). The precedent example can be
represented in LOC as follows on the next page:
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=~
T

S I b IS B P R
1 B S el K= LS B 1N

011
021
031
012
022
032
013
023

alofo|=|v]=ls|s[=

¢) Coding3:Jobs Sequencings List Coding (JSLC) (Kacem, Hammadi &
Borne, 2001,c¢): it consists in representing the schedule in a table with z
columns, (Z:Max(l’l ). Each column will representajobs sequencing in the
form ofan N-cellslist. Each celliscoded inthe following way: (j, &, Ly tfl BE

Task 1 Task i Task z
3,0,3

il

j’kﬂ t,’,jatf‘,’./

Asanexample, the precedent schedule can be presented in JSLC as follows:

Task 1 Task 2 Task 3
1,4,0,1 1,4,1,2 2,2,3,4
2,2,0,1 3,4,3,4 1,1,3,6
3,3,0,3 2,1,1,3 R

Figure 2: Genetic manipulations algorithm

Genetic | e > Genetically Modified

< J. Holland > < Our Approach >
Genetic Algorithms for Algorithms with Genetic
Optimization Problems Manipulations for Optimization
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2) Genetic Manipulations, Crossover and Mutation Operators

a) Genetic Manipulations Operators: these operators of mutation presenta
new way of application ofthe evolutionary algorithms: its the way of “genetic
manipulations.” Ingenetic biology, these manipulations enable usto generate
GMO (Genetically Modified Organisms). Our method is inspired by this
principleand intervenes in the construction phase of the new chromosomes by
applying the “artificial manipulations” in order to accelerate the convergence
and insure a high quality of final solutions (see Figure 2).

*  Manipulationreducing the Effective Processing Time (¢, =23.Sikedh )ofa
jobJ: l

Manipulation 1

- Select randomly an individual S;
- Choose the job J; whose Effective Processing Time is the greatest;
-i=1;r=20;
- WHILE (i < n; And r = 0)
e Find K such that S;; xy =1;
e FOR (k=1,k<M)
IF (d ;e <d ijw) Then {S;;xo =0; S;jx =1; r=1;}
End IF
End FOR
o =i+l
End WHILE
- Calculate starting and completion times according to the algorithm "Scheduling Algorithm."

Example: Inthisexample S, the job.J, hasthe greatestvalue ofthe ¢; (1=

6units of time). We have therefore to cover the list of its operations to reduce this

duration. The operation O, ,, can be assigned to the machine M instead of the

machine M (becaused, , <d, , ,),and thereafterwereducethe ¢ to5 units oftime

and the makespan to 6 units instead of 8. So, we obtain the schedule S,

S: before manipulation S ;: after manipulation

MI_ | M2 M3_| M4 MI__ M2 | M3_| M4
J 0l__|o 0 0 0,1 J 01,1 0 0 0 0,1
021 __|o 0 35 |0 021 0 0 0 1,2

031 |58 |0 0 0 03,1 2.5 _|o 0 0

Js 012 o 0,1 o 0 Js 012 0 0.1_|o0 0

022 |0 1,4 |0 0 02,2 0 1,4 |0 0
032 |0 0 0 4,6 032 0 0 0 4,6

Js 013 _|o 0 0,3 o Js 013 0 0 0,3 |o
023 |0 0 0 3.4 023 0 0 0 3.4

The same manipulation can be applied for the JSLC (Kacem, Hammadi &
Borne, 2001, ¢). Inthis case, the “Scheduling Algorithm” must be used without
priority rule. For the same example, we obtain the following results:
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before manipulation after manipulation

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
1,4,0,1 3,4,3,4 2,4,4,6 1,4,0,1 3,4,3,4 2,4,5,7
2,2,0,1 |1,3,3,5 |LL58 2,2,0,1 |L445 [1,1,58
3,3,0,3 2,2,1,4 ok x 3,3,0,3 2,2,1,4 koK

The same manipulation can be completely applied for the LOC (Kacem,
Hammadi & Borne, 2001, a). Using the same example, we obtain the following
results:

before manipulation after manipulation

Oij Mk tiy, Ui [ Mk i tf
011 4 0,1 011 4 0,1
021 3 3,5 021 4 1,2
03,1 1 5,8 03,1 1 2,5
012 2 0,1 01,2 2 0,1
022 2 1,4 0272 2 1,4
032 4 4,6 03,2 4 4,6
013 3 0,3 013 3 0,3
023 4 3,4 023 4 3,4

¢ Manipulationbalancing workloads of machines w, =¥ ¥ s, , -d

i

ik "

Manipulation 2

- Select randomly an individual S;

- Find the most loaded machine M,;

- Find the less loaded machine M,,;

- Choose randomly an operation O; ; such that S ;;,;, =1;

- Assign this operation to the less loaded machine: S ;;; =0; S ;;=1;

- Calculate the starting and completion times according to the algorithm "Scheduling Algorithm."

Example: In this example S”, the workload of the critical machine is W,=5
units of time (M,). The less loaded machineis M, (W, =3 units). We suppose that
the operation O,  hasrandomly been chosen among operations executed on M,
This operation will be therefore assigned to M. So, we obtain the schedule S :

S’: before manipulation S0 after manipulation

Ml M2 M3 [ M4 Ml M2 M3 | M4

J ori_lo o To To.1 J orl_lot [o Jo o
021_lo_ o o 1,2 021_|o_ o o 1,2

031 |25 o Jo To 031 |25 [0 o o

J> 012 o Jo1 o o J> 052 _lo__lo1 Jo_ o

0220 L4 Jo_ o 022 |0 1,4 [0 Jo
032 |o_Jo o [46 032 |o_lo o |46

J s 053 oo o3 [0 J s 053 oo Jo3 o
023 _|0__Jo o 3.4 023 _|0__Jo o |3.4
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Workloads are therefore balanced, and the two machines M, and M, work
during the same working time W, =W =4 units of time. The same manipulation can
be applied for the JSLC (Kacem, Hammadi & Borne, 2001, ¢). In this case, the
“Scheduling Algorithm™ mustbe used without priority rule. For the same example
D, we can obtain the following schedule O’ starting from O’:

o' o
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
1,4,0,1 3,4,3,4 2,4,5,7 1,1,0,1 3,4,3,4 2,4,5,7
2,2,0,1 1,4,4,5 1,1,5,8 2,2,0,1 1,4,4,5 1,1,5,8
3,3,0,3 2,2,1,4 ok 3,3,0,3 2,2,1,4 kol

The same manipulation can be applied for the LOC (Kacem, Hammadi &
Borne, 2001, a). For the same example, we obtain the following results:

before manipulation after manipulation
0ij My tij i 0 My tij i
011 4 0,1 011 1 0,1
021 4 1,2 021 4 1,2
031 1 2,5 03,1 1 2,5
012 2 0,1 012 2 0,1
022 2 1,4 022 2 1,4
032 4 4,6 032 4 4,6
013 3 0,3 013 3 0,3
023 4 3,4 023 4 3,4

Remark: Othermanipulations are derived of this considered one and used to
enhance solutions quality. Asan example, we can exchange assignmentbetween the
mostloaded machine and another or between the less loaded machine and another.

b) Crossover Operators: These operators are conceived in order to explore
the search space and to offer more diversity by exchanging information
betweentwo individuals.

*  OMC Assignment Crossover

OMC Crossover Algorithm
- Select randomly 2 parents S” and S7;
- Select randomly 2 integers j and j’ such that j <;’<N;
- Select randomly 2 integers 7 and i’ such that i <n; and i’ <n; (in the case where j=j', i <i’);
- The individual e’ receives the same assignments from the parent S’ for all operations betwee
the rows (i,/) and (i’j’);
- The remainder of assignments for e’ is obtained from S’
- The individual e’ receives the same assignments from the parent §° for all operations betwee
the row (i,/) and the row (i, j°);
- The remainder of assignments for ¢’ is obtained from S';
- Calculate the starting and completion times according to the algorithm "Schedulin
Algorithm."
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Example: For S’ and §?, we suppose that we have randomly chosen j =1,
Jj=2,i=2,i'=2:

S': first parent S?: second parent
Ml M2 M3 | M4 M| M2 [ M3 [ M4
J onl_|o_Jo_Jo_ Jo.1 g o51_|o1 o _Jo_ Jo
021 |0 _[o o |12 021 _|o_ Jo_ Jo 12
031 |36 |o_Jo_Jo 031 |36 0|0 Jo
J 052 |0 [o1 o o J 052 _|o__[o Jo1 Jo
022 |1,3 [o o o 022 [1,3 [o o o
032 [0 [34 o Jo 032 |o_ [3.4 |o_ o
J 013 |0 [o Jo3 Jo J 013 |0 _[o |14 |o
023 _|[0__Jo_Jo_[3.4 023 _|o_Jo_ o |45
Copyingofassignments:
] . . 2 . .
e . in construction e . in construction
MI_ | M2_|M3_| M4 M| M2 | M3 | M4
7, o5l_|%? oo o 7, o5l | 0 [ 0 [0 [2?
021 _|o__Jo_ o[22 021 | 0 [ 0 [0 [%?
031 |22 oo _ o 031 |22 0 [ 0o
J. |01z o[22 oo 7> 02 | 0 | 0 [22]0
022 |22 |lo_Jo_ o 022 [ 22 0 [0 | o
032 o[22 lo_ o 032 | 0 [22] 0] o0
J; o013 _|o__Jo_ |22 o J; 013 | 0 [0 [22]0
023 _|o__|o__Jo_ |2 023 | 0 [ 0 [ 0 |22
Computation of starting and completion times:
e': first offspring e’: second offspring
Ml [M2_ | M3 | M4 Ml | M2 | M3 | M4
J 07,1 Jo.1 Jo_Jo_ Jo J 0Ll | 0 o] o Jor1
021 _|o_[o_ o 1,2 021 | 0 [ o | o |12
031 |36 [0 |o o 031 |36] 0o | o | o
Js 012 o [o1 [o o J> 012 | 0 | o [o1] o
022 |13 o Jo o 022 [1,3] 0 | o | o
032 |0 [3,4 [0 o 032 | 0 [34] 0 | o
Js 013 _|o__|o_ o3 Jo Js 013 | 0o | o [L4] o
023 _|o__Jo_Jo |34 023 | 0 [ o[ o |45

¢ OMC Vertical Assignment Crossover

Itconsists of choosing randomly 2 machines (M, and M, ,) and exchanging all
assignments between the two selected machines. Thatmeans, ifthe operation O,
hasbeenalready assigned to M, , then the same operation will be assignedto M,
and vice versa.

Remark: We cannot apply the Vertical Crossover to LOC.
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*  LOC Assignment Crossover
The same crossover operator can be used for the LOC. Using the same
example, we obtain the following results:

s! §% e &
[ My tiy i, [ My | byt [ My 1y tfi, [ My ty i,
011 4 0, 1 011 1 0, 1 011 1 0, 1 011 4 0, 1
02,1 4 1,2 02,1 4 1,2 02,1 4 1,2 02,1 4 1,2
03,1 1 3,6 03,1 1 3,6 03,1 1 3,6 03,1 1 3,6
012 2 0,1 012 3 0,1 012 2 0,1 012 3 0,1
022 1 1,3 022 1 1,3 022 1 1,3 022 1 1,3
03,2 2 3,4 03,2 2 3,4 03,2 2 3,4 03,2 2 3,4
013 3 0,3 013 3 1,4 013 3 0,3 013 3 1,4
023 4 3,4 023 4 4,5 023 4 3,4 023 4 4,5

»  JSLC Sequencing Crossover

JSLC Sequencing Crossover Algorithm
- Select randomly 2 parents O’ and O’;
- Select randomly z integers { j i <N, I<i<z };
- For (I<i<z)
Exchange the sequencing between the parents (corresponding to the task 7) using
the same way than 10X crossover: j ; will represent the cut point;
End For
- The individual e’ receives the same assignments from the parent O’ for all operations;
- The individual e’ receives the same assignments from the parent O’ for all operations;
- Calculate the starting and completion times in applying the algorithm "Scheduling
Algorithm" according to the sequencing lists (without priority rule).

We consider the following examples and we supposethatj =1, /,=2,j,=1:

o o
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
L40,1 |L41,2 |223 4 3,3,0,3 |241,4 |1,1,58
2,2,0,1 3,4,3,4 1,1,3,6 2,2,0,1 3,4,4,5 2,2,4,5
3,3,0,3 |2,1,1,3 | weeeers LL1,0,1 |1,3,3,5 |
Exchange of sequencings:
61 62
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
L7227 [L2%n? 22522 3,257 |2%%?7 |Ln%?
3,227 3,222 |L2%2 22?7 |32%2 (2222
2,7,2,7 2,7,2,? LR 2,2,2,? 1,2,2,? AL
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Copyingofassignments:
1 2
e e
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
1,4,2,? 1,4,2,? 2,2,2,? 3,3,7,? 2,4,7,? 1,1,2,?
33,22 3,427 |1,1,2°? LL22 3,427 22772
2,207 |2.1,%,7 | reeee 2,2,%,7 | 1,3,7,7 | meeee

Computation of starting and completion times:

el 62
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
1,4,0,1 1,4,1,2 2,2,3,4 3,3,0,3 2,4,1,4 1,1,5,8
3,3,0,3 3,4,3,4 1,1,3,6 1,1,0,1 3,4,4,5 2,2,4,5
2,2,0,1 2,1,1,3 kdokdok 2,2,0,1 1,3,3,5 Hdokdoioksk

JSLC Sequencing and Assignment Crossover

JSLC Sequencing and Assignment Crossover Algorithm
- Select randomly 2 parents O’ and O’;
- Select randomly z integers { j: <N, I<i<z };

- For (I<i<z)
Exchange the sequencings and assignments (the couples (j, k)) between
the parents (corresponding to the task i) using the same way than 10X
crossover: ji will represent the cut point;

End For

- Calculate the starting and completion times in applying the algorithm

"Scheduling Algorithm" according to the sequencing lists (without priority

rule).

Example: We consider the same precedent examples and we suppose thatj, =1,

J,=0,j,=1I:
Exchange of sequencings and assignments:

eI 62
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
1,4,2,? 2,4,?7,? 2,2,2,7 3,3,2,? 1,4,2,? ,1,2,?
3,3,2,? 3,4,2,? 1,1,2,? 1,4,2,7 3,4,2,? 2,2,7,?
2,2,2,? 1,3,2,? okt 2,2,2,? 2,1,2,? R
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Computation of starting and completion times:

61 eZ
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3
1,4,0,1 2,4,1,4 2,2,4,5 3,3,0,3 1,4,1,2 1,1,3,6
3,3,0,3 3,4,4,5 1,1,5,8 1,4,0,1 3,4,3,4 2,2,4,5
2,2,0,1 1,3,3,5 kool 2,2,0,1 2,1,1,3 Hokkokkokk

Remark: It has been demonstrated that 10X crossover preserves the
sequencing propriety (Portmann, 1996), thatis why we choose to apply it in our
problem.

c¢) Random Mutation Operators: these operators represent some random

changes that can be applied on the solutions setin order to avoid premature

convergence.

» Random Sequencing Mutation

This operator is based on exchanging two random chosen couples (j, k) of
twocells belonging to the same column (we do nothave to change the assignments
oftheconsidered individual) and computing the startingand completion times using
thealgorithm “Scheduling Algorithm” according to the sequencing lists (without
priority rule). Itcan only be applied in the case of JISLC. The other codings are not
adapted for this kind of transformation.

* Random AssignmentMutation

This operator is based on arandom change that we apply on the assignment
S ,ofachosenoperation O, ona machine M, to another M, .. After this mutation,
we obtam S0 and S, —1 "The starting and completion tlmes are calculated in
applymg“Scheduhng Algonthm ”This operatorisused with all the three proposed
codings.

3) Remarks

The crossover probabilities are fixed in a traditional way (P, =0.90). The
remainder of probability is allocated for the random mutation and the genetic
manipulations (with the samerate).

Theused selectionmechanism gives the priority to the reproduction of the best
individuals according to the global criterion C, . The criteria of stop are the
following:

e Themaximumnumberoftheiterationsisreached,
*  Thethreshold of satisfactionisreached ( C, <1.1).
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COMPUTATIONALEXPERIMENTS

Computational experiments are carried out to evaluate the efficiency of our
method withalarge setofrepresentative problem instances based on practical data.
The obtained results are summarized in the next paragraphs.

Encoding Performance

Through the description of the different codings and the obtained computa-
tional experiments, many conclusions related to the encoding performance canbe
made and are summarized in the following table.

Encoding performances

OoOMC LOC JSLC
Simplicity and Simple Simple Difficult
significance
Exploration of Very difficult: | Very difficult: | Very good

sequencings space |only a single | only a single
possibility: the use | possibility: the use

of priority rules of priority rules

Exploration of Good Good Good

assignments space

Implementation Easy Easier Difficult

Computation time | Correct Correct Correct but needs
more time because
of its complexity

Quality of the Good Good Generally the best

obtained solutions solutions

In fact, we can notice a great similarity between OMC and LOC. On the one
hand, all genetic operators are equivalent and can be used for the two proposed
codings. Onthe other hand, exploration assignment and sequencing search spaces
have the same size too. The only difference is in the representation form. This
difference give more simplicity and more exploration possibilities (vertical cross-
over) for OMC.

Concerning JSLC, althoughitisrelatively difficultto be designed and difficult
to be implemented, this coding represents the most efficient representation. In fact,
itpresents the same possibilities of the exploration of the assignment space search
and offers more possibilities to explore the sequencing one. Itenables us to consider
jointly or separately the assignment and the scheduling problems and avoid the
limited use of the priority rules; thatis why it generally gives the best results.
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Solutions Quality

Inthis paragraph, we present numerous examples that we have simulated to
test the approach efficiency. Also, we present the lower bounds values of the
different criteria to give a clear idea of the solution quality. For reasons of

representation simplicity, solutions are presented in LOC:

1) Examplel: (little size 4 jobs/12 operations/ 5 machines):

ri=3, r2=5, rs=1 and rs=6. wi=0.1, w2=0.1 and w;=0.8.

Processing times table (Example 1) Obtained solution
MI_|M2_|M3_| Md_| M5 0, M, | 4,1

ol |2 |5 |4 |1 |2 011 4 3, 4

Jio o2l |5 14 |5 17 1[5 021 2 9,13
031 |4 |5 |5 14 [5 031 4 [ 13,17

052 |2 |5 |4 |7 |8 01,2 1 7,9

J2 o022 |5 l6 |9 I8 |5 022 5 9,14
032 |4 |5 |4 |54 |5 03,2 1 14, 18

053 |9 18 |6 |7 |9 013 3 1,7

J3 023 |6 |t |2 |5 [4 023 2 7,8
033 |2 |5 |4 |2 |4 033 4 8, 10

043 |4 |5 |2 11 |5 043 4| 17,18

J4 |on4 |15 |2 |4 |12 014 1 6,7
024 |5 |1 |2 |1 |2 024 2 8,9

y=16, C»=7 and Cx=32

Cri=18, Cr:=8 and Cr3=32

2) Example2: (middlesize 10jobs/29 operations/ 7 machines):

ri=2, r2=4, n=9, ri=6, =7, re=5, r:=7, re=4, ro=1 and rw =0.

wi=0.511 . w:=0.322 and ws3=0.167 .

Processing times table (Example 2) Obtained solution
MI_| M2 | M3 | M4 | M3 | M6 | M7 0, M, |t 1

oLl | 1 | 4| 6|93 5 | 2 01,1 1 2,3

JI 021 | 8 | 9 | 5 | 4 1 1 3 021 5 5,6
031 | 4 [ 8 | 10| 4 | ] 43 03,1 7 12, 15

012 | 6 | 9 | 8 | 6 | 5 | 103 012 | 7 4,7
J2 o222 |10 4] 5 98] 4 022 1 10, 12
053 | 15| 4 | 8 | 4] 8|7 1 013 7 9, 10

J3 023 | 9 | 6 10| 7 1 | 6 023 3 10, 11
033 | 11 | 2 | 7 | 5 | 2] 3 |14 03,3 5 11, 13

014 | 2 | 8 | 5 | 8191 43 014 1 6,8
J4 | 024 | 5 | 3 8 1] 9| 3|6 024 | 4 13, 14
034 | 1 2 | 6 | 4 1 7 | 2 034 | 5 14, 15

0L5 | 71 1 8 | 5 | 430 015 | 2 7,8

Js5 | 025 | 2 | 4 | 5 |06 4]0 025 1 8, 10
035 | 5 1 7 1 6 | 6 | 2 035 | 4 14,15

016 | 8 | 7 | 4 | 6] 9 | 8 | 4 016 | 3 5,9

J6 [T026 | 5 | 14| 1 9 | 6 | 5 [ 8 026 | 3 9, 10
036 | 3 | 5 1215141517 036 | 3 11, 13

Continued on next page
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Example 2, continued from previous page

017 5 6 3 6 5 15 2 017 7 7,9
J7 027 6 5 4 9 5 4 3 027 6 9,13
037 9 8 2 8 6 1 7 037 6 13,14
018 6 1 4 1 10 4 3 018 2 4,5
J8 028 11 13 9 8 9 10 8 028 4 5,13
0338 4 2 7 8 3 10 7 0338 2 13,15
019 12 5 4 5 4 5 5 019 5 1,5
J9 029 4 2 15 99 4 7 3 029 2 8,10
039 9 5 11 2 5 4 2 039 7 10, 12
01,10 9 4 13 10 7 6 8 01,10 2 0,4
J10 0210 4 3 25 3 8 1 2 0210 6 4,5
0310 1 2 6 11 13 3 5 03,10 1 12,13
Cr=15, C=9 and Cy=60 Cri=15, Cr2=11 and Crs=61

3)Example 3: (greatsize 15jobs/56 operations/ 10 machines) is located on the next
page. Theresult for this example is presented in the last of the current subsection.

Values ofthe different criteria show the efficiency of the controlled genetic
algorithm. In fact, this method enables us to have good results in a polynomial
computation times. This efficiency is explained by thejudicious choice of the search
zone (using the AL) and by the contribution of genetic manipulations in the
optimization of solutions.

Although we cannot demonstrate the solution optimality, this method makes
itpossible to ensure a good threshold of satisfaction since its solutions are always
very near to the optimal one.

Robustness of the Global Evaluation Function

In this paragraph, we show, by the following example, how the evaluation
function yields satisfactory results according the preferences of the decision-
makers and their weights for each criterion.

Example: We deal with the same “Example 1” already presented in the
precedent paragraph and we vary the preferences of the decision makers (we
remind that the lower bounds are C+=/6, C:,=7 and C35=32), so we obtain the
schedules found on page257.

These obtained results show the robustness of the form of the proposed
evaluation function. The choice of this function enables us to obtain satisfactory

solutions ( C, <1.1) according to the desired preferences and the associated
weights.

Others Results

*  Inaprevious work, the CEA has been compared to other methods like
Temporal Decomposition (Chetouane, 1995) and Classic Genetic Algorithm
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3) Example 3: (great size 15 jobs/56 operations/ 10 machines)

ri=5, r2=3,r3=6,r«=4,rs=9,re¢=/,rr=1,rs=2,ro=8, rw=0,
ru=14, ri=13, ris=I11, riu=12 and ris=5. wi=0.511, w>=0.322 and

ws3=0.167 .
Processing times table Obtained solution

Ml | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | Mio 0, M, 1 1,

011 1 4 6 9 3 5 2 3 9 4 011 1 15, 16

021 1 1 3 4 3 10 [ 4 11 4 3 021 2 16,17

J1 031 2 5 1 5 6 9 5 10 [ 3 2 031 3 18, 19
041 | 10 | 4 5 9 3 4 15 3 4 4 04,1 9 19,23

01,2 4 3 7 1 9 6 1 10 [ 7 1 012 4 3,4

022 6 11 2 7 5 3 5 14 | o 2 022 3 11,13

J2 03,2 3 5 3 9 4 3 5 3 3 1 032 10 18,19
042 9 3 6 1 2 6 4 1 7 2 042 4 22,23

o3| 7 1 3 5 4 9 1 2 3 4 013 7 15,16

023 5 10 [ 6 4 9 5 1 7 1 6 023 9 16,17

J3 033 4 2 3 8 7 4 6 9 8 4 033 2 20,22
043 7 3 12 1 6 5 3 3 5 2 043 4 23,24

01,4 ] 6 2 5 4 1 2 3 6 5 4 01,4 5 4,5

024 3 5 7 4 1 2 36 | 5 3 5 024 5 19,20

J4 034 9 6 2 4 5 1 3 6 5 2 034 6 21,22
044 | 11 4 5 6 2 7 5 4 2 1 044 10 22,23

015 | 6 9 2 3 5 3 7 4 1 2 015 9 9,10

025 5 4 6 3 5 2 28 7 4 5 025 6 16,18

J35 035 6 2 4 3 6 5 2 4 7 9 035 2 18, 20
045 6 5 4 2 3 2 5 4 7 5 045 4 20,22

016 4 1 3 2 6 9 3 5 4 2 016 2 13, 14

J6 | 026 1 3 6 5 4 7 5 4 6 5 026 1 16,17
017 1 4 2 5 3 6 9 3 5 4 017 1 14,15

J7 | 027 2 1 4 5 2 3 5 4 2 5 027 2 15,16
018 2 3 6 2 5 4 1 5 3 7 018 7 2,3

028 4 5 6 2 3 5 4 1 2 5 028 8 17,18
J& [To038 ] 3 5 4 2 5 49 3 5 4 5 03,8 4 18,20
04.8 1 2 36 5 2 3 6 4 11 2 04.8 1 20,21

019 6 3 2 22 [ 44 [ 11 [10 [ 23 5 1 01,9 10 8,9

029 2 3 2 12 | 15 [0 [ 16 029 3 9,11
J9 [To39 20 1712 5 9 6 4 7 5 6 03,9 7 16,20
049 9 3 7 4 5 3 7 4 56 2 049 3 20,24

0110 ] 5 3 7 4 56 | 3 2 5 4 1 01,10 10 0, 1
0210 | 2 5 6 9 3 5 4 2 5 4 02,10 3 15,17

JI10 170310 | 6 3 2 5 4 7 4 5 2 1 03,10 10 17,18
0410 | 3 2 5 6 5 3 7 4 5 2 04,10 1 21,24

oLl | 1 2 3 6 5 2 1 4 2 1 0111 7 14,15
0211 | 2 3 6 3 2 1 4 10 [ 12 1 0211 6 15,16

JI T o311 | 3 6 2 5 8 4 6 3 2 5 03,11 3 16,18
0411 | 4 1 45 6 2 4 1 25 2 4 04,11 7 23,24

0L12] 9 8 5 6 3 6 5 2 4 2 01,12 8 13,15
0212 | 5 3 9 5 4 75 | 63 | 6 5 21 0212 5 15,19

JI12 o312 ] 12 5 4 6 3 2 5 4 2 5 03,12 6 19,21
0412 ] 8 7 9 5 6 3 2 5 3 4 04,12 7 21,23

0113 | 4 2 5 6 3 5 6 4 6 2 01,13 2 11,13

0213 | 3 5 4 7 5 3 6 6 3 2 0213 10 13,15
JI3 0313 ] 5 4 5 3 5 4 6 5 4 2 03,13 10 15,17
0413 | 3 2 5 6 5 4 3 5 6 4 04,13 2 22,24
0114 | 2 3 5 4 6 5 4 35 | 4 5 01,14 1 12,14
0214 | 6 2 4 5 8 6 5 4 2 6 0214 9 14,16
JI14 10314 ] 3 25 4 8 5 6 3 2 5 4 03,14 8 18, 20
0414 | 8 5 6 4 2 3 6 8 5 4 04,14 5 22,24

0115 | 2 5 6 3 5 6 3 2 5 4 01,15 1 5,7

0215 | 5 6 2 5 4 2 5 3 2 5 0215 6 7.9

JIS 0315 | 4 5 2 3 5 2 8 4 7 5 03,15 3 13,15
0415 | 6 2 1[4 ] 2 3 6 5 4 8 04,15 5 20,22

Cx=23, Cu=10and C5=91

C=24, Co=l1and C;=94

(Mesghouni, 1999). In Kacem, Hammadi and Borne (2001, b), we can find
others results about this comparison that confirm the efficiency of the

suggested approach.

Other results concerning the use of CEA for solving Parallel Machines
Problems (inparticular, the case of the flexible JSP) are presented in Kacem,
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Schedules from the Example onpage 255

wi=0.1, w2=0.5 and w;=0.4

wi=0.8, w2=0.2 and w;=0

0; M Lty 0,; M, 1 1f;
011 5 3,5 011 4 3,4
021 2 9,13 021 4 4,11
03,1 4 13,17 03,1 5 11, 16
012 1 7,9 012 1 5,7
022 5 9, 14 022 1 7,12
032 1 14, 18 032 3 12, 16
013 3 1,7 013 2 1,9
023 2 7,8 023 3 9,11
033 4 8, 10 033 1 12, 14
043 4 17,18 043 4 14, 15
014 1 6,7 014 3 6, 8
024 2 8,9 024 2 9, 10

Cri=18, Cr:=7 and Cr;=33 Cri=16, Cr:=9 and Cr;=40
wi1=0.6, w2=0.1 and w;3=0.3 wi1=0.79, w2=0.01 and w;=0.2

9, My |ty th 9; M tiyy U,
01,1 4 3,4 01,1 4 3,4
02,1 5 4,9 02,1 5 4,9
03,1 4 10 14 03,1 1 12, 16
012 1 5.7 012 1 5.7
022 1 7,12 022 1 7,12
032 3 12,16 032 3 12,16
01,3 3 1,7 01,3 3 1,7
023 2 7,8 023 2 7,8
03,3 1 12, 14 03,3 4 10, 12
04,3 4 14,15 04,3 4 12,13
014 4 6, 10 014 4 6, 10
024 2 10, 11 024 2 10, 11

Cri=16, Cr:=10 and Cr;=36

Cri=16, Cr2=11 and Cr;=36

257

Hammadiand Borne (2001, a) and show the excellent performance of CEA:
for these problems, we obtain C = 1 in the majority of cases.
*  Concerning convergence speed, in all the tested numerical instances, the
criterion of stop is obtained ina short computation time. Atconvergence, the
number ofiterations is few inmost cases (<200). This efficiency is explained
by the reduction of the problem complexity (using the AL) and by the
contribution of the genetic manipulations operators. As an example, we
presentthe convergence curves of the instances already introduced in the

currentsection (Example 1, Example 2 and Example 3):

1.14

Convergence Curve: Example 1
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Convergence Curve: Example 2
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Convergence Curve: Example 3
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CONCLUSION

Inthis chapter, we deal with one of the hardest combinatorial problems (the
flexible JSP) and we propose anew evolutionary approach to solveit.

This approachis based on a controlled evolutionary optimization in which
some efficientdirect chromosome representations and advanced genetic operators
are carefully chosen.

The multi-objective evaluation of the solutions quality is reduced to asingle
criterion that measures this quality according to the lower bound values of the
differentcriteria. The theoretical formulas of these lowerbounds are presented too.

The obtained results show the efficiency ofthe proposed approach. Although
itdoes not guarantee the optimality, this approach provides good quality solutions
inareasonable time limit. Also, the general aspect ofthe considered formulation
presents a large methodological advantage that makes it possible to solve other
particular problems like Parallel Machines Problems.

Theoriginality ofthisapproachisintheapplication ofanew biological concept
inthe optimization of computing problems. This concept concerns the Genetically
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Modified Organisms; thus, we apply genetic manipulations to control the individual's
evolution and reduce the blind aspect of classic genetic algorithm in order to
accelerate the convergence and enhance the final solutions quality.

As futureresearch direction, the study of the other multi-objective consider-
ations inthe global evaluation (like Pareto principle (Fonseca, & Fleming, 1998;
Sarker, Abbas & Newton, 2001) seems aninteresting subject which can enrich the
proposed approach and give scientific benefits.
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Chapter XV

The Effect of Multi-Parent
Recombination on Evolution
Strategies for Noisy Objective
Functions

Yoshiyuki Matsumura, Kazuhiro Ohkura and Kanji Ueda
Kobe University, Japan

ABSTRACT

In this chapter we apply (W / W, M)-ES to noisy test functions, in order to

investigate the effect of multi-parent versions of both intermediate
recombination and discrete recombination. Among the many formulations of
ES, we test three in particular, Classical-ES (CES), i.e., Schwefel’s original
ES (Schwefel, 1995, Bick, 1996); Fast-ES (FES), i.e., Yao and Liu’s extended
ES (Yao & Liu, 1997); and Robust-ES (RES), i.e., our extended ES (Ohkura,

2001). Computer simulations are used to compare the performance of multi-

parent versions of intermediate recombination and discrete recombination in

CES, FES and RES. We saw that the performance of the (W / W, A)-ES
algorithms depended on the particular objective functions. However, the FES
and RES algorithms were seen to be improved by multi-parent versions of
discrete recombination applied to both object parameters and strategy
parameters.

Copyright © 2003, Idea Group Inc.
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INTRODUCTION

Noiseisacommon phenomenon inmany real-world problems. Forexample,
inthe field ofinformation engineering, any signal returned from thereal world usually
includes asignificantamount ofnoise. Also in the field of Evolutionary Robotics
(Harveyetal., 1997), simulation models are developed by taking noise into account
inorderto decrease the gap between simulated and real-world robot performance
(Jacobietal., 1995).Insuch cases, Evolutionary Algorithms (EAs) work well even
inthe presence ofnoise.

EAshave three mainapproaches, namely Evolutionary Programming (EP),
Evolution Strategies (ES)and Genetic Algorithms (GAs). EShas several formulations
(Schwefel, 1995, Bick, 1996). (L/ p, A)-ES is the general form for real-valued
parameter optimization problems, in which [ parents generate A offspring through
recombination and mutation at each generation, and the best [ offspring are
selected deterministically from the A offspring toreplace the current set of parents.
p determines the number of parents to form one new offspring, with the case where
p>2known as multi-recombination (Beyer, 2001).

In(u/p,N)-ES, Beyer (1995) theoretically investigated the case of p=p for
the sphere function, findingaA~fold speedup compared to ESs withoutrecombination.
For ESs, each individual has a pair of real-valued vectors, i.e., the object
parameters and strategy parameters, with strategy parameters roughly determining
the size of mutation applied to object parameters. Beyer used recombination only
onthe objectparameters, howeveritis necessary for ES researchers to investigate
the effect of recombination on not only object parameters but also strategy
parameters, both empirically and theoretically.

There are two popular recombination operators, namely intermediate
recombinationand discrete recombination. Many ES researchers (Bick & Schwefel,
1993, Bick & Eiben, 1998; Eiben & Bick, 1998) often apply only intermediate
recombination to strategy parameters due to Schwefel’s general recommendations
(Schwefel, 1995). However, Changetal. (2001) experimentally investigated multi-
parentversions of both intermediate recombination and discrete recombination on
strategy parameters, and showed the advantages of not only intermediate
recombination but also discrete recombination. They used 11 standard test
functions andtested ES with Gaussian mutation, or Classical-ES (CES). However,
thetest functions they used did notincorporate noise. Thus we mustinvestigate the
performance of ESs with multi-parentrecombination onnoisy test functions in order
to apply ESstoreal world optimization problems.

In this chapter we apply (1L / 1, A)-ES to noisy test functions, in order to
investigate the effect of multi-parent versions of both intermediate recombination
and discrete recombination. Among the many formulations of ESs, we testthree in
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particular; CES, i.e., Schwefel’s original ES (Schwefel, 1995; Bick, 1996); Fast-
ES (FES),i.e., Yaoand Liu’s extended ES (Yao & Liu, 1997); and Robust-ES
(RES), i.e., ourextended ES (Ohkura, 2001). Computer simulations of (W/ L, A)-
ES are conducted using both Gaussian and Cauchy mutation.

RELATED WORKS

Many types of ESs have been applied to noisy objective functions. Beyer
(1993, 1998) analyzed the (1, A)-ES for the noisy sphere function. Bick and
Hammel (1994) and Hammel and Béck (1994) empirically investigated the
performance ofthe (1, A)-ES using discrete recombination on object parameters,
and global intermediate recombination onstrategy parameters. Nissen and Propach
(1998) empirically compared the performance of point-based methods, e.g.,
Threshold Accepting and Pattern Search, with population-based methods, e.g., ES
and GA. They employed the same ES as Bick and Hammel (1994). Gruenz and
Beyer (1999) investigated the (L /, A)-ES for the noisy sphere function using both
discrete and intermediate recombination on objective parameters, and intermediate
recombination on strategy parameters. Arnold and Beyer (2001) investigated the
(u/u,A)-ES forthe noisy sphere function using intermediate recombination; while
differentkinds of recombination were applied to objectparameters, only intermediate
recombination was applied to strategy parameters.

In this chapter we empirically investigate the (L / 1, A)-ES using both
intermediate recombination and discrete recombination, applied to both object
parameters and strategy parameters.

EVOLUTIONSTRATEGIESALGORITHMS

Classical Evolution Strategies (CES)

The Classical ES (CES) algorithms adopted in this chapter are described as

follows (Schwefel, 1995; Back, 1996):

1. Generateaninitial population of /4 individuals,and setg=1. Eachindividual is
taken as a pair of real-valued vectors (xi, i), where xi and n)i are the i-th
coordinate value in R andits strategy parameters (larger than zero), respectively.

2. Evaluatetheobjective value foreach individual (xz, 7) inthe population, based
on the objective function f{xi).

3. Eachparent(xi, ni),i=1,..., |, creates A/ L offspring on average, so thata
total of A offspring are generated. At thattime, offspring are calculated as
follows: fori=1,...,u,j=1,...,n,and p=1, ..., A
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np()=ni(j)exp {T’N(O, 1)+TNj(0,1)} (1)
xp(j) = xi(j)np())Nj(0,1) 2)

where xi(f), xp(j), Ni(j) and np(;j) denote the j-th component values of the
vectorsxi, xp, Ni andnp, respectively. N(0, 1) denotes anormally distributed
one-dimensional random number with mean zero and standard deviation one.
Nj(0,1)indicates that the random number is generated anew for each value of
Jj- The factors Tand t’are commonly set to constant (Béck, 1996). Various
types of recombination operators can also be applied before calculating
Equations (1)and(2).

4. Calculatethe fitness of each offspring (x’i, ) i), according to f{x 7).

5. Sortoffspring (x’i, /) according to their fitness values, and select the L best
offspring out of A to be parents of the next generation.

6. Stopifthehalting criterion s satisfied; otherwise, g=g+1 and go to Step 3.

Fast Evolution Strategies (FES)

Yaoand Liu(1997) proposed the Fast ES (FES) algorithm variant of (i, A.)-
ES.InFES, the Gaussian mutation (Step 3 above) isreplaced by Cauchy mutation,
using the following Cauchy distribution function:

Ft(x) =1/2+(1/m) arctan(x/¢) 3)

where7=1. The success of FES is explained as aresult of a larger probability of
escaping from local optima, due to the fatter convergence trails of the Cauchy
mutation operator. In other words the Cauchy distribution has a higher probability
than the Gaussian distribution of producing large mutations. Yaoand Liu(1997)
conducted empirical experiments using anumber of test functions, demonstrating
animprovement in performance especially on multi-modal problems.

Robust Evolution Strategies (RES)

When ESsare applied to an optimization problem successfully, the observed
evolutionary dynamics show qualitatively similarbehaviortothatofotherevolutionary
algorithms: over generations the focus of the search shifts from global regions to
smallerlocal regions. This arises from the gradual convergence ofthe population
due to the direct effects of natural selection. Associated with this, the strategy
parameters 1 tend to zero. This is the process of “self-adaptation,” which is
considered to be one of the major attractive features of ES. This may be useful for
unimodal functions, however inmany multi-modal functions, ESs are often trapped
inlocal optima.

TLFeBOOK



266 Matsumura, Ohkura and Ueda

Robust-ES (RES) (Ohkura, 2001) was designed to avoid this problem of
entrapment. Thekeyideaof RESistoutilize selectively neutralmutations (Kimura,

1983) onstrategy parameters so thatthe algorithm s capable of rapidly increasing

ordecreasing strategy parameters, irrespective of natural selection. RES follows

the same procedure as CES or FES except for the following two points:

» Adifferentindividual representation is used, incorporating redundant strategy
parameters, i.e., inactive strategy parameters, which have no effect on the
selection process.

»  Extrastochastic mutation mechanisms are used to change the original strategy
parameters. These mutations replace, swap or copy active strategy parameters
with inactive strategy parameters.

An individual Xi is represented as follows, assuming that i=1,2,..., U,
j=1,2,-..,7’l, kzo,l,-..,m:

Xi=[xi,(Ni0, ..., ik, ...,mim)] 4)
xi = (xi(1),...,xi(j), ...,xi(n)) (5)
Nik=Mik(1),...,Nik()), ..., nik(n)) (6)

where xi(j) and nik(j) denote the j-th component values of the vectors xi and nik,

respectively. Note thateach xi(j) has (m+1) strategy parameters.

We define D as same the mutation mechanism given in Equation (1). In
addition, nikis modified stochastically, according to the following new mutation
operators:

- Odup shiftsall ofnik(j) into the adjacent position of (k+1) and removesmim(y)
fromthe list. Then, Odup mutates allnik with D.

- Odeldiscardsni0(j) and moves nik(j) to the adjacent position of (k- 1). At
the m-th positionnL is calculated as the smaller value eithernmax or Znip(y).
Then, Odel mutates allmik with D.

- Oinvswapsni0(j) withone ofnik(y), k=1, ...,m and mutates ni0(7) and nik(;)
withD.

Notethat RES using Gaussian mutationis referred toas gRES, and RES using
Cauchy mutationisreferred toas cRES. When the probabilities of Odup, Odel and
Oinvaresetat 1.0,0.0and 0.0, gRES and cRES are equivalent to CES or FES,

respectively.
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Multi-Parent Recombination

Typically, recombination operators have been investigated empirically, due to
theirmathematical intractability. Traditional recombination operators reproduce
one offspring using two parents, however more recent work tends to use the multi-
parent versions of recombination operators. Where the multi-parent version of
intermediate recombination is applied to both the object parameters and strategy
parameters, the recombination operator is known as “Multi-Parent Intermediary
Recombination.” Where the multi-parent version of discrete recombination is
applied to both the object parameters and strategy parameters, it is known as
“Multi-Parent Discrete Recombination” and “Global Combined Discrete
Recombination” (Changetal.,2001).

Multi-Parent Intermediary Recombination
Intermediate recombination is some kind ofaveraging across parent solutions.
This canbe formulated as follows:

1 U

N ik(j) = 52 nik() (7
1 M

X'i(j) = 52 xi(j) ®)

Following Changetal. (2001), this type of recombinationisreferred to as I1.

Multi-Parent Discrete Recombination
Indiscrete recombination, the j-th component of the offspring is equal to the
Jj-thcomponent from arandomly selected parent:

N 'ik(j) =jk() €
x'i() = xy j(7) (10)
yjandy jdenote uniformly distributed randomintegersin {1,..., L}, respectively,

and are generated anew for each value ofj. Following Changetal. (2001), thistype
ofrecombinationisreferred toas DD.
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Global Combined Discrete Recombination

Multi-parentdiscrete recombination is separately applied to object parameters
and strategy parameters in the DD-ES introduced above. However, the two
parameter sets may be strongly coupled to each other, as the strategy parameters
determine the mutability of object parameters. Due to this possibility, a new
recombination which regards a pair of an object parameter and a strategy
parameter as aunit of recombination, can be formulated as follows:

N 'ik(j) =Mjk() (11
x'i7) = /() (12)

Following Changetal. (2001), this type of recombinationisreferred to as D.

COMPUTERSIMULATION

Test Functions and Conditions
Following Béck and Hammel (1994) and Hammel and Béck (1994), we
calculate the noisy objective function F(x7) ateach generation as follows:

F(xi) = flxi) + GNi(0, 1) (13)

where the test functions f{xi) are Sphere Model (f7), Ackley’s Function (f2) and
Generalized Rastrigin’s Function (f3) (Table 1). All the test functions define 30
dimensional problems (#n=30) with /7 a unimodal functions, and /2 and /3 multi-
modal functions. Ni(0, 1) denotes anormally distributed n-dimensional random
number with mean zero and standard deviation one which is generated anew for
each value ofi. gisthenoiselevel, and setitateither0.0,0.001,0.01,0.1 0r1.0.

Table 1: Test functions

[ Tunctions {(n = 30,100) (Range) |

A=) (—100 < x; < 100)
i=1

"

falz) = —20exp (—O.QV/ % Z :.-f

i=1

n
— exp (% Z cos 2?::1:1-) +204€ (=32 <2y < 32)

i=1

T
fa(z) = Z{xf — 10 cos(2rz;) + 10} (=512 < i < 5.12)

i=1
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The experimental setup isbased on Yao and Liu (1997): (u, A)=(30,200) with
Gaussianmutation or Cauchy mutation, recombination and no correlated mutations.
CES, FES and RES use the same initial populations, and all simulations are
independently repeated for 50 runs. The upper bound of strategy parameters nmax
issetat 3.0 for /7 and /2 and 1.0 for /3. In RES, the number of inactive strategy
parameters m for each variable is setat 5. Odup, Odel and Oinv are applied with
the probabilities of 0.6, 0.3 and 0.1, respectively. The main purpose of our
computer simulations is to investigate the effect of multi-parent recombination on
ESs fornoisy objective function. Thus, the parameters are not fully tuned.

Results

The averaged best function values of CES, gRES, FES and cRES when
appliedto the sphere model /7 are shownin Figure 1 to Figure 4 for the five different
noiselevels, 0.0,0.001,0.01,0.1 and 1.0. These results clearly demonstrate that
the different multi-parent recombination operators have a different effect on the
differenttypes of ES. InFigure 1(a), CES doesnot find function valuesless than 1.0.
InFigure 1(b),(c)and (d), [I-CES, DD-CES and D-CES can find function values
lessthan 1e-10 eveninthepresence ofnoise. These results suggest that three multi-
parentrecombination operators, i.e., [[, DD and D recombination, improve the
performance of CES onf7. InFigure 2(a), gRES does not find function values less
than 0.01 except when the noise levelis either 0.1 or 1.0. InFigure 2(b), [I-gRES
doesnotevolveinthe early generations. In Figure 2(c) and (d), DD-gRES and D-
gRES can find function values less than 1e-10. These results suggest that gRES on

fIprefers DD and D recombination to Il recombination. In Figure 3 and Figure 4,
FES and cRES show the same tendencies as gRES onf7, with both preferring DD
and D recombination to Il recombination.

The averaged best function values of CES, gRES, FES and cRES when
appliedto Ackley’s function/2 are shownin Figure 5 to Figure 8 for the five different
noiselevels, 0.0,0.001,0.01,0.1 and 1.0. The results are different from 7 for all
noise levels. In Figure 5 (a), CES does not find function values less than 1.0. In
Figure 5 (b), [I-CES can find function values less than 1e-10 except when the noise
levelis 1.0. InFigure 5 (c)and (d), DD-CES and D-CES can find function values
less than le-10. These results suggest that CES on f2 prefers DD and D
recombination to Il recombination. In Figure 6, gRES on f2 shows the same
tendenciesas gRES onf7, preferring DD and D recombination to Il recombination.
InFigure 7(a)and (b), FES does not find function values less than 1.0. In Figure
7(c)and(d), DD-FES and D-FES can find function values less than 1e-10 except
whenthenoiselevelis 1.0. Theseresults suggestthat FES on /2 prefers DD and
D recombination to [ recombination. In Figure 8(a) and (b), cRES does not find
functionvalueslessthan0.1. In Figure 8(c), DD-cRES can find function values less
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Figure I and Figure 2: Averaged best results for flwhen the noise level is 0.0,

0.001, 0.01, 0.1 and 1.0
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Figure 3 and Figure 4: Averaged best results for flwhen the noise level is 0.0,

0.001, 0.01, 0.1 and 1.0
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Figure 5 and Figure 6: Averaged best results for f2when the noise level is 0.0,

0.001, 0.01, 0.1 and 1.0
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Figure 7 and Figure 8: Averaged best results for 2 when the noise level is 0.0,
0.001, 0.01, 0.1 and 1.0
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Figure 9 and Figure 10: Averaged best results for f3when the noise levelis 0.0,

0.001, 0.01, 0.1 and 1.0
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Figure 11 and Figure 12: Averaged best results for {3 when the noise level is
0.0, 0.001, 0.01, 0.1 and 1.0
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than le-10 except when the noise levelis either 0.0,0.1 or 1.0. In Figure 8(d), D-
cRES can find function values less than 1e-10 except when the noise level is either
0.00r 1.0. Theseresults suggestthat cRES on /2 prefers D recombination to Il and
DDrecombination.

The averaged best function values of CES, gRES, FES and cRES when
appliedtothe generalized Rastrigin’s functionf3 are shown in Figure 9 to Figure 12
for the five differentnoise levels, 0.0,0.001,0.01,0.1 and 1.0. Theseresults are
different from /7 and /2 due to cases where the ESs are trapped in local optima. In
Figure 9(a), CES does not find function values less than 10.0. In Figure 9(b), I1-
CES does not evolve at all. In Figure 9(c) and (d), DD-CES and D-CES get
trapped inlocal optima. These results suggestthat CES on /3 prefers DD and D
recombination to Il recombination. In Figure 10, gRES on /3 shows the same
tendencies as gRES on f7 and 2, preferring DD and D recombination to II
recombination. InFigure 11, FES shows same tendencies as CES on /3, preferring
DD and D recombination to [l recombination. In Figure 12(a), cRES does not find
function values less than 10.0. In Figure 12(b), II-CES does notevolve atall. In
Figure 12(c), DD-cRES can find function values less than 1e-9. In Figure 12(d),
D-cRES can find function values less than 1e-10 except when the noise level is 0.0.
These results suggest that cRES on /3 prefers DD recombination to II and D
recombination.

Table 2 summarizes the results for all algorithms over all three noisy test
functionsf7, /2, /3. An"x" indicates that the algorithm failed toevolveatall, atriangle
indicates thatthe algorithm found only poor solutions, while a circle indicates that
the algorithm found good solutions inreasonable time. As canbe seen, the DD and
Drecombination shows improvement over the [l recombinationinalmostall cases.

CONCLUSIONS

Wehave empirically investigated the effect of multi-parent recombination over
three versions of the (1L / W, A)-ES algorithm with noisy objective functions.
Computer simulations were used to compare the performance of multi-parent
versions of intermediate recombination and discrete recombinationin CES, FES
and RES. We saw that the performance of the (1/1, A)-ES algorithms depended

Table 2: Summary of experiments

CES GRES FES cRES
I DD D I DD D I DD D I DD D
f1 ©) ®) ®) € ©) ©) € ©) ©) € ©) O
¥z O ®) ®) € ©) ©) € ©) ©) € A ®
3 € A | A € ® O € A A € ® ®

TLFeBOOK



Noisy Objective Functions 277

on the particular objective functions. However, the FES, gRES and cRES
algorithms were seen to be improved by multi-parent versions of discrete
recombination applied to both object parameters and strategy parameters, i.e., DD
recombination and D recombination are better than Il recombination.
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Chapter XVI

On Measuring the Attributes
of Evolutionary Algorithms:
A Comparison of Algorithms
Used for Information
Retrieval
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Universidad CarlosIII, Spain
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Intelligent Systems Laboratory, BTextract Technologies, UK

ABSTRACT

In this chapter we compare the performance of two contrasting evolutionary
algorithms addressing a similar problem, of information retrieval. The first,
BTGP, is based upon genetic programming, while the second, MGA, is a
geneticalgorithm. We analyze the performance of these evolutionary algorithms
through aspects of the evolutionary process they undergo while filtering
information. We measure aspects of the variation existing in the population
undergoing evolution, as well as properties of the selection process. We also
measure properties of the adaptive landscape in each algorithm, and quantify
the importance of neutral evolution for each algorithm. We choose measures
of these properties because they appear generally important in evolution. Our

Copyright © 2003, Idea Group Inc.
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results indicate why each algorithm is effective at information retrieval,
however they do not provide a means of quantifying the relative effectiveness
of each algorithm. We attribute this difficulty to the lack of appropriate
measures available to measure properties of evolutionary algorithms, and
suggest some criteria for useful evolutionary measures to be developed in the
future.

INTRODUCTION

Evolutionary methods have been the focus of much attention in computer
science, principally because of their potential for performing a partially directed
searchin very large combinatorial spaces (Sloman, 1998). Evolutionary algorithms
(EAs)havethe potential to balance exploration ofthe search space with exploitation
ofuseful features ofthat search space. Howeverthe correct balance is difficultto
achieve andplaces limits on what canbe predicted about the algorithm’s behaviour.
Inaddition, EAs are often implemented in system-specific ways, making it very
difficultto predict and evaluate performance on different implementations. This
makes the need for measures to evaluate and compare different algorithms all the
moreurgent.

In this chapter we focus upon the comparison between algorithms for
informationretrieval. Thisisone ofthe tasksatwhich evolutionary algorithms have
been found particularly effective. Such algorithms deal with the situation where a
relevant sub-set of documents or records mustbe isolated fromalarger pool. This
chapter considers two such algorithms which were developed for the task of
information filtering in a telecommunications context. The BTGP is a genetic
programming system where the programs produced execute Boolean searches
through keywords (Fernandez-Villacafias & Exell, 1996). The MGA is a genetic
algorithm which also uses a Boolean tree representation, through a relatively
complicated mapping between genotype and phenotype.

We compare the performance of these algorithms using a collection of
measures chosen from consideration of evolutionary processes. Suchmeasures
have been developed within an evolutionary computation contextand also within
evolutionary biology. Tounderstand why such measures mightbe useful, we first
considerthe evolutionary process itself.

Evolution can be described as “...any net directional change or any
cumulative change in the characteristics of organisms or populations over
many generations...” (Endler, 1986).

But this evolutionary change may occur as the consequence of anumber of
different processes, acting to differing extent. Comparison of biological and
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computational evolution shows the importance of three classes of phenomenain
making natural and artificial evolutionary systems evolvable. These are variation,
selection and adaptive landscape structure.

The existence of variation is crucially important for evolutionary processes
because there would otherwise be no possibility for the selection scheme to exploit
the search space. Measuring the amount of variation gives an indication of the
potential of the population to be selected, although it does not of course tell about
the potential of the population to vary in the future. Ideally we need to know about
the propensity of the population to vary in the future in order to get a full picture of
theevolvability of the system. This distinction between the amount of variation and
the variability ofa population has been emphasized, inthe context of evolvability by
Wagnerand Altenberg (1996).

Variationmay be measured through genetic variance, which canbe calculated
provideditispossibletoset values onthe different genetic variants present (Falconer,
1989; Lynch & Walsh, 1998). Depending on the evolutionary algorithm under
consideration, it may be more appropriate to take a phenotypic variance measure,
astherepresentation ofthe genotype in the phenotype may crucially affect the way
in which available variation influences the selective process. The method of
measurement of phenotypic variation will depend upon the representation used.

Mutation is an important means of generating further variation, and acts in part
to counteractthe loss of variation through selection. It musttherefore be important
forevolvability. Itis with this inmind that Wagner and Altenberg (1996) have
proposed mutational variance, the variation in effect of possible mutants that can
arise inapopulation, asameasure of the evolvability or evolutionary performance
ofasystem. While mutation variance may be very difficult to calculate innatural
populations, itisatleastin principle derivable fora given evolutionary algorithm.

While variationmay be essential for evolutionary change, itis also the case that
some means of searching through the variation is necessary for the evolutionary
algorithm to have some practical application. Most frequently this means some sort
of selection or evaluation function applied to the population of each generation,
which allows only a subset to reproduce. Fortunately there is already a large
literature dealing with the properties and performance of selection
functions (Altenberg, 1994, 1995; Blickle & Thiele, 1997; Manderick etal., 1991;
Miihlenbein & Sclierkamp-Voosen, 1993; Miihlenbein, 1998). We canalso draw
upon the theoretical tools for the analysis of natural and artificial selection which
have been developed by quantitative geneticists and animal breeders (Falconer,
1989; Lynch & Walsh, 1998; Roff, 1998).

There are a wide range of measures which have been used to characterize
selection (Brodieetal., 1995; Blickle & Thiele, 1997). In this study we focus on
twomeasures which indicate important features of selection; it will be possible to
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extend this analysis to other measures in the future. The first, opportunity for
selection (derived from Crow, 1958; Arnold & Wade, 1984), measures the
potential ofapopulation torespond to selection. The second, called here intensity
of selection (although this term has been applied to other measures, e.g., Brodie et
al., 1995; Endler, 1986) measures the strength of selection on characters under
selection. These measures allow us to build up acomparative picture of the nature
of selectionindifferentsystems.

Variation and selection do not provide a complete picture of evolutionary
progress; we also need to know something about the process ofadaptation. The
metaphor ofthe adaptive landscape has provided auseful means of studying the
process of adaptation and has led to a large range of measures of evolutionary
processes (Gavrilets, 1997; Hordijk, 1992; Kauffman, 1993). A central problem
with the view of evolution taking place on an adaptive landscape is that selection s
envisaged as driving populations up gradients of increasing fitness. Anyreasonably
complex adaptive landscape, with multiple fitness peaks, will result in populations
reaching local optimabelow the global optimum, from which they cannot escape.
It is therefore useful to obtain measures of the likelihood of transitions on the
adaptive landscape leadingto fitness increase, as these may give an indication ofthe
likelihood of adaptation proceeding without the population being stuck in local
maxima. Inthis chapter we implementa variant of epistasis variance (after Davidor,
1991), which may give such an indication. We also measure the proportion of
mutants fitter than the current variant.

Escape from local maxima may also be possible through the intermediary of
adaptively neutral mutations, which may change the genome without changing the
individual’s fitness, and thus create the circumstances inwhich furtheradvantageous
mutants caninvade. There hasbeen much interestinneutral evolutionas a facilitator
ofadaptive change inrecent evolutionary computation research (Schuster, 1996).
Ouraim hereis notto focus specifically on this area of study, butto quantify ina
simple way the potential for neutral change. We dothis by calculating the proportion
ofneutral mutants thatare possible; this allows us to establish further the properties
ofthe adaptive landscape.

Weare thus able to apply measures of variation, of selection and of properties
ofadaptive landscapes to two different evolutionary algorithms developed to solve
equivalentproblems. Thisallowsusto gaininsights into the evolutionary process
aseachalgorithm converges toasolution, and toidentify the mosteffective features
ofeachalgorithm.

There are many more measures that could be applied to the evolutionary
algorithms BTGP and MGA: our choice of measures here was dictated by
relevance to some of the mostimportant components of the evolutionary process,
and feasibility of implementation in the given algorithms. However the need to
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understand the evolutionary process in EAsis sufficiently urgent to suggest that
research involving measurement of evolutionary phenomena s essential in the
development of EAs forreal-world applications. As Mitchell and Forrest(1995),
discussing the relation of genetic algorithms to artificial life, write: “...the
formulation of macroscopic measures of evolution and adaptation, as well as
descriptions of the microscopic mechanisms by which the macroscopic
quantities emerge, is essential if artificial life is to be made into an explanatory
science ...” and “...we consider it an open problem to develop adequate
criteria and methods for evaluating artificial life systems. ” Their comments still
apply strongly to evolutionary computation and artificial life.

The outline of the chapteris as follows. Afterthisintroduction, we introduce
the evolutionary measures that we will be using, and explain their derivation. Later
we give the details of the two algorithms we consider, MGA and BTGP. Another
sections follows with the definition ofthe problem which the algorithms are used to
solve, informationretrieval. Furthermore, the implementation-specific features of
the measures we have used are presented. Wealso presentthe results ofapplying
the above measures, and interpret these results in the context of each algorithm.
Finally, we draw conclusions regarding the performance of each algorithmrelative
to the other, and suggest some guidelines regarding the definition of measures for
more general evolutionary algorithms.

EVOLUTIONARY MEASURES

The performance ofan EA is abalance between the exploration of its search
space and the exploitation of features of the same space (Holland, 1992), such as
localminima. Wehave identified anumber of parameters that are representative
of features of the evolutionary process, in particular features that affect, or are
consequences of the balance between exploration and exploitation. These features
are:

MEASURES OF VARIATION

Genetic Diversity

This measures the amount of variation among the genotypes present in a
population. Some variationis essential foran evolutionary algorithm, for without it
selection cannot take place. This measure of diversity depends upon the search
spacebeingrepresented ina gene string orequivalent. Sinceboth BTGP and MGA
dependuponsucharepresentation, this measure is appropriate. Weuseameasure
of genetic diversity, rather than the more usual genetic variance, because of the
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greater difficulty involved inderiving genetic variance in this computational context.
Measurement of genetic variance inabiological populationis discussed by Falconer
(1989); calculation of genetic variance in EAs will depend upon the representation.

Mutation Variance

Thismeasures the potential degree of variation in magnitude of mutation effect.
Such ameasure assumes that mutation effect can be quantified onan ordinal scale.
Mutational variance gives an indication of the extent to which mutation canexplore
the search space. It has been proposed as a measure of the performance of
evolutionary systems by Wagnerand Altenberg (1996). The actual, as opposed to
potential, variation in effectamong mutants will depend upon the population size,
the time period under consideration and the mutation rate, and is not considered
here. Mutation variance is typically difficult to calculate in biological systems
(Warner & Altenberg, 1996), but should be easy to identify in EAs through
definitioninthealgorithm.

Phenotypic Diversity

This measures the degree of variation in fitness between pairs of randomly
generated individuals across the fitness landscape. Phenotypic diversity is a
quantity difficulttorelate to more biologically conventional measures of diversity,
suchas variance. It may measure some of the potential for evolution, given that
genetic variation is required and the one-to-one mapping between genotype and
phenotype. Itsimplementation will be explained later on.

MEASURES OF SELECTION
Opportunity for Selection

This gives an estimate of the upper limit of the strength of selectioninasystem
(Brodie et al., 1995). It is measured by the variance in relative fitness in the
population (Arnold & Wade, 1984; Brodie et al., 1995; Crow, 1958); relative
fitness being fitness scaled by mean fitness. Relative fitnessisused inordertobe
ableto compare measures in different populations onanequivalentscale. Variance
infitness gives ameasure of the maximum strength of selection in a systemsince
fitness differences are required for selection to occur (Endler, 1986) and the size
ofthese differences determines the consequences that selection can have on the
system. Itcanbe shown thatvariance inrelative fitness bounds the effect of selection
(e.g., Arnold & Wade, 1984). The magnitude of the opportunity for selection will
depend crucially onthe way in which fitness ismeasured. There are of course many
different ways of doing thisin EAs as in biological populations, and the usefulness
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of opportunity for selection as ameasure will relate to the appropriateness of the
fitness measure used.

Intensity of Selection

This measures the overall strength of selection inasystem (Brodieetal., 1995).
Itis calculated (following Arnold & Wade, 1984, who proposed this method of
measurementinabiological context) by taking the slope of the linear regression of
fitness onaphenotypictrait. This calculation differs from themoreusual calculation
of'the effect of selection via the Breeder’s equation (Miihlenbein, 1998). The
measurementused here was derived for use upon natural populations, whereitis
more flexible, allowing for arbitrary genetic correlations between characters.
Consequently, webelieve thatitwillalso beuseful forevolutionary algorithms, away
from the specific circumstances in which methods based upon the Breeder’s
equation are most appropriate (Miihlenbein & Sclierkamp-Voosen, 1993;
Miihlenbein, 1998). Our calculationrelies on the observation that if selection were
more intense, we would expecta closerassociation between fitness and the value
ofaphenotypictraitunder selection. This measure requires that fitness be measured
as relative fitness, in order to provide comparable measurements, and that
phenotypic values are standardized by subtracting their mean and dividing by their
standard deviation (Arnold & Wade, 1984). The regression coefficient measures
the total selection differential, an estimate of the intensity of selection on that
particular trait which combines both direct selection on that trait and indirect
selection on other traits which affect that trait. Other methods which canbe used
to calculate direct selection (Arnold & Wade, 1984) are not considered here. In
an EA, there may not be much distinction between total and direct selection,
dependingupontherepresentation, butthisis likely to be very differentin biological
scenarios. The implementation of this measure depends upon fitness being
measurable, as well as some phenotypic character. These conditions should be
satisfied inmany EAs, although the details of the measurement process willusually
beimplementation-dependent.

Effect of Genetic Drift

Not directly related to selection but otherwise important as a means of
cancelling variationin the populationis the effect of genetic drift. This process occurs
because the gene pool of the offspring ina finite populationisunlikely to be the same
as that of their parents. Itis particularly important in small populations where
sampling acts on all variants of the population, under selection or not, reduce the
amountofvariation. Itseffect willbe obscured by selectioninmost EAs. A practical
implementation of the effect caused by this process will be discussed later.
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MEASURES OF ADAPTIVE LANDSCAPES

Epistasis Variance

This measures the degree of variation in epistasis in an evolutionary system
(Davidor, 1991). Epistasis is interaction between genes; its consequence is that
measurementofthe fitnessresulting fromindividual genes will notaccurately predict
the overall fitness resulting from the complete genotype. Thus epistasis variance is
ameasure of the predictability of the fitness landscape derived from the fitness of
genes whichmakeitup. Assuch, itisauseful measure ofthe performance of EAs
because it quantifies how easy it will be to explore genotype space. Epistasis
variance depends upon whatdefinitionis given toa gene, adifficultenough problem
inbiological systems, likely to be implementation-specific in EAs. Consequently its
derivationis described inmore detail later.

Proportion of Fitter Mutants

This measures the proportion of mutants which are fitter than the current fittest
individual, averaged over the fitness landscape. Although fitness increase isnot
universal under selection either in EAs or biological systems, some fitness increase
islikely inthe search forasolutioninan EA, and measures of the ability to produce
fitter mutants have been proposed as an indication of the evolvability of an
evolutionary system (Altenberg, 1994).

MEASURESOFNEUTRALEVOLUTION

Proportion of Neutral Mutants

This measures the proportion of feasible mutants which do not change
individual fitness away fromits current value, and thus are adaptively neutral. This
measure givesapreliminary indication ofthe possibility of neutral transitions within
genotype space, and thus may give an indication of the potential for populations to
escape from local maximawhich are not global maxima. The proportion ofneutral
mutants does notdirectly tell us about neutral networks that may percolate through
genotype space; this would require substantially more analysis beyond the scope
ofthis chapter (Huynen, 1995; Nimwegen & Crutchfield, 1998).

Thisis by nomeans acomplete list of possible measures of the performance
of EAs. However, these measures do encompass a range of the attributes of
evolutionary systems, and are general enoughtoapply todifferent EAs. Furthermore,
they havespecificlinkstoequivalentmeasuresinbiological systems. Implementation-
specific details are given later on.
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THE ALGORITHMS

BTGP

The genetic programming system (BTGP) maintains a population of phenotypes
(decision trees) which it operates on directly. In this sense the genotype and
phenotype can be considered to be one and the same.

After generating the initial population, the BTGP performs the genetic
programming cycle of fitness evaluation, selection of parents and reproduction with
application ofthe genetic operators to produce the children of the next generation.
The BTGP has many configuration options (see Fernandez-Villacafias & Exell,
1996), but for the experiments described in this chapter the following options were
used:

+  “Ramped growth” ofthe initial population’s trees
»  Fitnessproportionate (roulette wheel) selection
*  Geneticoperators: copy, crossover, mutation

Inadditiontotheabove settings, the following parameters can be experimentally
varied:
» Ratesatwhicheach genetic operatorisapplied
*  Maximumtreedepth
*  Nodebranching factor

Ramped growth means that the generated trees are uniformly distributed
indepth up to the maximum tree depth. Crossover is performed by randomly
choosingnodes from each parent and exchanging them, butavoiding exchanges
which would exceed the maximum tree depth. Mutation consists of replacing a
node with arandomly grown sub-tree up to the maximum depth. Further details
regardingthe BTGP andtheinformationretrieval task are givenelsewhere (Fernandez-
Villacanas & Exell, 1996).

MGA

The MGA is based on the Simple Genetic Algorithm described by
Goldberg (1989). The SGA together witharelatively complex genotype-phenotype
mapping comprise the Mapping Genetic Algorithm (MGA). The mapping takes an
unrestricted bit-string genome of fixed length from the genetic algorithm and parses
itsequentially to create alistof node descriptions which arethen assembled to form
atree.

Eachnodeisdescribed by a fixed number ofbits (a gene, typically 45 bits) of
the genome. The fields encoded are: rootand child labels; function type, negation
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flagand used flag; reference type; reference value. The meaning ofthe fieldsis as
follows: therootlabel provides abit pattern against which child labels are matched
inordertoassemblealistofnodesintoatree. Thenode’s functionis specified by
the function type, negation and used flags providing for the functions AND, OR,
NAND, NOR and NIL. The latter function allows sub-trees to be switched on or
offviamutation. Reference values are interpreted either as child labels or keywords
depending onthereferencetype. Thereference type fielduses 3 bits, building extra
redundancy into the genetic code, potentially requiring more than a single bit
mutation to change thereference type. The number ofreferences encoded pernode
defines the maximum tree branching factor (typically 4). Once the individual genes
have been decoded to generate a list of their corresponding node descriptions,
these nodes are assembled to form a decision tree comprising the phenotype by
matching child labels torootlabels of other nodes. Where amatchis found, a sub-
treeis formed. Every node which remains ultimately un-referenced by a parent
node forms the rootnode of a tree, the largest of which is taken as the phenotypic
tree.

The genetic algorithm uses fitness proportionate (roulette wheel) selection.
Themutation operatorusedis asimplebit flipmutation. Single pointcrossoverwas
available and was extended to respect gene boundaries, but was rarely used as it
was found to be too disruptive in general. Further investigations of the role of
crossover withinthe MGA are left to future research.

Possible effects on the phenotype of a point mutation of the genotype include:
addition, deletion or change of sub-tree; switching off/on a sub-tree; change of
function; replacement of a sub-tree by a keyword reference (leatnode) or vice
versa; creation or change ofa keyword reference. Mutations which change labels
caneffect quite large changes similar to those produced by the BTGP crossoverand
mutation operators. There are several sources of redundancy in the genotype-
phenotype mapping; many differentnode listarrangements could code for the same
phenotypic tree and many apparently different decision trees may be logically
equivalentwhen evaluated.

INFORMATION RETRIEVAL

The task on which BTGP and MGA have been applied is to evolve a Boolean
decision tree capable of discriminating between two document classes, those
sought in a retrieval task and those which are of no interest. The data used is
generated in a pre-processing step from Internet documents which have been
labeled by auser as either of interest (positive) or of no interest (negative). Pre-
processing consists of extraction ofaset of keywords across all the documents, and
thenrecording foreach document whetheritis apositive or negative example, and
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whether each keyword is present or absent. The resulting datarecords, one per
document, are then separated into training and test sets.

THE PHENOTYPE AND FITNESS FUNCTION

The phenotypicrepresentation is a Boolean decision tree. Eachnode ofthis
treeis eithera function node taking one of the values AND, OR, NOR, NAND or
aleafnode variable whichreferences aparticularkeyword. Fora giventraining or
testcase, each keyword variable will be instantiated to the value 1 or O denoting the
presence or absence (respectively) of the corresponding keyword for thatcase. A
tree which evaluates TRUE forapositive case or FALSE for anegative case has
thus correctly classified that case.

The fitness function is evaluated over a set of training or test cases. Itis
parameterized by the following values: thenumber of correctly identified positives
Mpos» the number ofnegatives falsely identified as positive n,,,,, the total number
ofpositives N, , . and the total number of negatives N, e The fitness functionis
designed to minimize both the number of missed positives and the number of false
positives:

f . (Npos - I’l/}os‘) n ﬁ Nneg
]vpos‘ N, neg

Notethatorand 3 and the function lie intherange [0, 1]with 0 being the best
possible fitness, 1 the worst. The aim s therefore to minimize its value.

The dataset was generated from aknown decision treeillustrated in Figure 1.
It has 16 keywords, a training set of 200 cases and a test set of 50 cases. The
training and test cases were chosen randomly from the 216 possible keyword
configurations suchthateach setcontained an equal number of positive and negative
cases.

IMPLEMENTATION OF MEASURES

Inthis section we will specify how the different evolutionary measures and
processes previously identified are applied to our algorithms (BTGP and MGA)
andtask (informationretrieval). On one hand, some of the measures’ specifications
will depend on the nature ofthe algorithm itselfand its representation of solutions
(Boolean trees) where phenotype and genotype are the same, while, on the other
hand, some will be influenced by the definition of fitness and sampling of our fitness
landscape derived from the task. Let’s analyze them in turn.
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Figure 1: Decision tree corresponding to data set

~ - T~ -
-~ ~
-~ _ OR\
— AND___ = N
- T -
OR OR NOT — — T~
| | OR OR NOQT
) car n orris | / (l)
vintage . ) OR
|
collector P cafe programming d
construction atab'fise
beans tutorial
MEASURES OF VARIATION

Genetic Diversity

In BTGP each active genomic unit that contributes to the fitness of the
individual is a functionnode; thatis, our genes are AND, OR,NAND,NOR. These
‘genes’ canonly have two allele values, either O or 1 after evaluation of theirleave
nodes.

Genetic diversity, ng ismeasured as the sum of the differences between the
average fitness fora particular combination of alleles in the population and the mean
fitness value forall combinations of alleles. This quantity is alsonormalized by the
number of possible combinations ofalleles, V, as,

2 _ I, 7
Gg—N;(fi )

where, forinstance, N=16 for BTGP with four genes.

The above measure of genetic diversity would notbe computationally feasible
to calculate over the 900 bits of the MGA genome. Consequently we have
developed a second measure of genetic diversity based on Hamming distance
between genomes. The genetic diversity is the sum of Hamming distances between
the genomes ofasample of randomly chosen pairs of individuals, normalized by the
number of samples and the genome length.

Mutation Variance
Thismeasure isimplemented by firstcalculating the average of the differences
infitness thatresult from having one gene switchedonoroff,A f;(alleles valuesof
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1 or0,) inthe population. These are later subtracted from the mean difference, A f
foreach combination. Forinstance, in BTGP, thenumber of combinations for genes
onor offis N=4. The expression for mutation variance is:

S I S
Gm—NZ,(Af,- Af)

Phenotypic Diversity

Ph j;,is theresult of randomly generating pairs of trees and measuring the
Hammingdistance overanumber ofrandomly generated environmentloci(typically
1,000 pairs over 200 cases). One locus corresponds to a combination of the 16
differentkeywords in the data set. Eachtreereturns either 1 or O for each locus;

differentreturns are counted for each pair of trees and this resultisnormalized inthe
scale[0,1].

MEASURES OF SELECTION
Opportunity for Selection

Asdescribedearlieron, Op,ymeasures the variance in the relative fitness of
the whole population: fitnessis measured for each individual in the population for
atrainingset (typically 200 cases) and then is normalized by the mean fitness of the
whole population. Variance of this relative fitness is then calculated across the
whole population.

Highvalues of Op,,,;show potential for evolution through natural selection,
hence evolvability. Inthe presence of strong selection, Op ,;should decline over
time.

Intensity of Selection

The phenotypic traits available for choice are the number ofnodes, N, , 7,and
levels, Nj,,,, inthe BTGP trees. Ateach generation, fitness is evaluated on the
training set and a linear correlation coefficient, r2, and the slope, b (regression
coefficient), fromthe fity=a+bx, are calculated for the fitness to each phenotypic
traitdiagram. Foradescription ofthese coefficients, see Pressetal. (1994). In
order to compare between different values, of phenotypic traits with their also
different fitness values we have scaled the x-data to the deviation from the mean
phenotypictrait, N, , 7,and divided by the trait’s standard deviation as:
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and the fitness (y-data) as the relative fitness, £ / ? .

IfN,,,gand N},,,, were very good phenotypic traits under selection, we would
expectacorrelation coefficient, 2~ land strong values for . Thereal situationis
far fromthat; N, , ;and N},,,,are not good phenotypic traits as, in the majority of
runs of our algorithm, the correlation is very poor (resulting from sparse clouds of
pointsinthe diagrams), and only in some cases we can establish some conclusions
astothe sign ofthe correlation coefficient, indicating predilection for bigger or
deeper trees (#>0) and smaller or shorter trees (r<0).

The algorithms used to calculate these coefficients are derived from Press et
al. (1994).Incalculating intensity of selection in this way over successive generations,
we depart from the usual use of this measure, which is usually calculated once for
each population (Arnold & Wade, 1984). We do this in order to investigate
whether the intensity of selection varies during the run of the EA.

Effect of Genetic Drift

Geneticdriftisaprocess, notameasure; its effect on the total genetic variation
may be obscured by selectioninmost EAs. Wehave decided to getaphenotypic
diversity measure in the absence of mutation and selection to getan insight on the
effectof sampling in the population from generation to generation. Aspreviously
discussed this effect is on fitness, not on genic content, so we should refer toitas
fitness sampling drift.

MEASURES ON ADAPTIVE LANDSCAPES

Epistasis Variance
Following Davidor’s (1991) approach, epistasis variance is defined as:

2 _
O, =

1 2
Nr;(f(S)—A(S))

wherel" isthe grand population ofall possible strings {0, 1 }4, A(S)isthe fitness of
string Sand A(S) is the predicted string value from the alleles separate contribution.
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In turn, if we define the excess fitness of a string Sas, £(S) = /(S)— f »
wheref istheaverage fitnessand:

E(4) = Z( 2fSN-1)

N( )SEPopAi:“

astheexcess genic value foreachallele, Nj(a) being the number of strings thatmatch
alleleaatpositioni; thenwe candefine the predictedstring value, 4(S) = E(A) + f
that we need in the epistasis variance definition.

Other variances that will be used are the fitness variance:

(E(S))*
NS;;;
and genic variance:
2
= (E(A))°
A NS;/J

Normally, the grand population and our sample population, Pop, are not
equal; thisresults indifferent values for epistasis variance whenwesumI™  or Pop.
When weare missing some ofthe combinations ofalleles from the grand population,
the statistic is subjectto sampling error; the distinction between base epistasis and
sample population epistasis variance is thus very important as the latter can
sometimes be equal or bigger than the former. When there areno sampling errors,
6’ =0°,—C"

€ oo

Each generation epistasis variance is calculated; first the fitness of the
individuals are computed together with the average population fitness; later the
population is sampled for having an instance of allele i active and counted, their
excess value calculated and all these added up to form the excess genic value E(4);
the predicted string value from the individual contributions fromthe alleles, A(S), is
thenused in conjunction with the real fitness of that string, f{.S), to calculate the
epistasis ofeachstring. Finally these values are squared and averaged forthe whole
population.
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Themeasure ofbit-wise epistasis we use in MGA is that suggested by Fonlupt
etal. (1998). Bit-wise epistasis was measured in MGA for all 45 bits ofasingle
“gene” (corresponding to one potential tree node) at each generation of each run.
Thevalues were then averaged across all runs and generations for each bitto obtain
anoverall measure of epistasis per bit.

Proportion of Fitter Mutants

Ateach generation eachindividual in the population is mutated and the mutant
and original tested over the training data set. We countamutantas fitter when the
mutant s fitter than the fittest tree in the previous generation. Werepeat this process
foralltraining cases and each individual. Finally, the total countis normalised. As
previously discussed the ability to produce fitter mutants at each generation does
notrelatedirectly to evolvability butitis arequirement for EAs to solve problems.

MEASURESOFNEUTRALEVOLUTION

Proportion of Neutral and Non-Neutral Mutants

Anumberofrandomly generated trees are generated and each tree is mutated
and evaluated foranumber of random environment loci. Equivalent phenotypic
responses are counted and normalized. Theresulting measure, Pr,,,,,, givesusthe
proportion of mutation events which have identical phenotypic effect, and isthus a
measure of neutrality with respect to phenotypic behaviour. Wealsomeasurethe
proportion of mutants which are neutral with respect to fitness.

The proportion of non-neutral mutants, Pr,,, .., is therefore, Pry,,, =1-Pr,, ...

RESULTS AND DISCUSSION

Results were obtained for both BTGP and MGA, subject to the differences
inimplementation described above. Inparticular, the interpretation ofa geneinthe
contextofeach algorithm differs, withthe BTGP having 4 ‘genes’ and the MGA
having 20 genes, each comprising 45 bits (a total of 900 bits). For instance,
calculation of epistasis variance is not computationally feasible over 900 bits, sowe
instead calculated bit-wise epistasis forthe MGA, sampled over the population.

Results were generated over 10 runs of each algorithm, for 1000 generations,
withapopulationsize of 1,000 individuals. The settings weused for BTGP were:
mutation probability of 0.05 per tree; maximum tree depth of4 levels; roulette wheel
selection; branching factor between 2 and 4. The MGA settings were: probability
of single bitmutation per genome of 0.9; roulette wheel selection. Neitheralgorithm
usedelitism.
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Each algorithm succeeded in reducing the mean fitness over the run. The
BTGP typically reached amean fitness 0f 0.25 (bestrun: 0.2) atthe end of 1,000
generations, while the MGA achieved better fitness, typically 0.09 (bestrun: 0.05).
The MGA mean fitness changed in a punctuated fashion with periods of rapid
improvement interspersed with relatively slow change, whilst the BTGP mean
fitnessimproved moreevenly. Bothalgorithms maintainedrelatively constantlevels
of fitness variance, withthe MGA having the highestlevel (0.09)and BTGP alower
level (0.005). This suggests thatthe MGA offers more scope for exploration.

The geneticdiversity in BTGP showed aslow increase on average through the
runs. InMGA the equivalent measure increased steadily, interspersed with rapid
temporary reductionsindiversity. Thisreflects high fitness neutrality in the genetic
representation allowing increases in diversity in periods when selection is not
operatingstrongly. The corresponding phenotypic diversity measure wasrecorded
for both algorithms and found to be very similar in both cases, at a level of
approximately 0.1, constant through eachrun. The difference between phenotypic
and genetic diversity measures was a result of the complex mapping between
genotype and phenotype encoded in each algorithm.

The effect of genetic drift was also studied in different runs with different
populationssizes; the results indicate that the smaller the population size, the faster
isthereduction ofthe variation and, even for some small population sizes, variation
iscancelled completely.

Mutation varianceincreasedinBTGP fromc mzz 0.002toc mzz 0.01after
1,000 generations; this implies a greater role for mutationin generatingand changing
variation towards the end of the run. However, it may be that this is an artefact
caused by the convergence of mean fitness towards a fixed lower boundary of zero.

Opportunity for selection (Figure 2) differed markedly between the two
algorithms. InBTGPitincreased from 0.05t00.09, whilein MGA the corresponding
increase was from 0.1 to 1.4. The morerapid increase measured inthe MGA isa
consequence of mean fitness decreasing morerapidly. These observations suggest
thatthe MGA offers more opportunity for selectiontoact. Itisinterestinghowever
that opportunity for selection does not decline during the run of either algorithm,
suggesting thatthe redundancy builtinto each algorithm prevents early convergence.

We considered intensity of selection withreference to tree size inanumber of
nodes. Ifthe number of nodes was under strong directional selection, we would
expectacorrelation coefficient,=*1,and high values for the regression coefficient.
The absolute value of the correlation coefficient for BTGP reaches 0.9 and the
corresponding regression coefficientis +0.3. In contrast, for MGA the correlation
coefficient reaches a maximum absolute value of 0.6 with a corresponding
regression coefficientof-0.6. Inaddition, the sign of each correlation coefficientis
always positive for BTGP and almost alwaysnegative forMGA. The implication
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Figure 2: Opportunity for selection for BTGP and MGA averaged over 10
runs
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isthatin BTGP larger trees tend to have higher fitness, while in MGA this is true of
smallertrees. This characteristic probablyresults from the different manner inwhich
trees are generated in the respective algorithms, and indicates that it may be easy
toinclude implicitbiases in the details ofalgorithm construction.

InBTGP epistasis variance displays the same spiky behaviour as the sampling
error,o Vz-c A2’ with similarmagnitude. Thismeans thatthe epistasis varianceis
being masked by sampling errors in the allele population and is in consequence
unreliable. Measurement of bit-wise epistasis in MGA revealed that certain bitshad
high epistasis valuesrelative to the others (approximately 7 times the magnitude of
the average). On inspection it was found these bits played a crucial role in tree
construction, linking nodes to one another. Thus changes in these bitsrelate strongly
to bits determining other (linked) parts of the tree. The measure is useful in
determiningrelativerelatedness between bits in the encoding.

Theproportion of fitter mutants (those fitter than the previous best individual)
was foundtobe around 0.02 for BTGP. However, thisreflects the fact that elitism
wasnotused; ifelitismisused the proportion of fitter mutants typically fallsto 0.001
orless for BTGP (corresponding to a single individual). We would need touse a
larger population size to generate amore meaningful and accurate measure.

Thelevel of phenotypicneutrality (Figure 3) was very high for MGA (inexcess
0f0.95)whilstit was approximately 0.75 for BTGP. This permits higher levels of
neutral exploration of genotype space using MGA, but suggests that neutral
transitions in genotype space may be important in the function of both algorithms.

CONCLUSIONSAND FUTURE WORK

Inthe preceding sections we have compared the BTGP and MGA, and shown
thattheirrelative performance atinformationretrieval derives from differentaspects
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Figure 3: Proportion of neutral mutants that have no phenotypic effect
averaged over 10 runs
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ofthealgorithms asimplemented (thisneeds to be specified and confirmed). In this
chapter we have only provided the preliminary steps of sucha comparative analysis,
howevertheresults presented here give indicators for the direction of future work.

MGA canberegarded as performing better as it attains alower mean fitness
atthe end of itsrun. The measures we have calculated suggest thatthis maybea
consequence of greater opportunity for selection, combined withincreased neutrality
with respect to phenotypic effect (Figure 3). However this does not mean that
BTGP isineffective at the information retrieval task: itshows high values ofthe
above parameters as well.

Our results also indicate how we may learn about possible changes in the
representation to improve algorithm performance. The calculation of bit-wise
epistasis in MGA shows how the specific representation used gives us the structure
of the fitness landscape: this information could be used to design a better
representation for solving the current problem.

Wehaveused some measures inspired by biological evolution. The difficulty
of derivingand interpreting the results of the measures here highlights the differences
between biological and computational evolution. Inbiological systems, the situation
istypically one of limited information, both about the gene pool and individual
genotypes, and about the phenotypes of organisms. In evolutionary computation
much more complete information is available, in principle, although it may be
computationally intensive to obtainit.

Despite this, measures derived frombiological sources may be difficulttouse,
forseveral reasons. Evolutionary computation typically uses small populations,
which maynotincludeall the possible variation that could occur withrespectto the
character or gene under consideration. This canlead to differences between the
properties of particular populations, as compared to the theoretical grand population,
whichreduce the usefulness of measures such as epistasis variance.
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Furthermore, evolutionary algorithms typically are initialized witharandom,
diverged population, and spend much oftheirtime away from convergence. This
isincontrasttobiological populations, inwhichmostlocihave converged to fixation,
allowing the relatively few polymorphic ones to be considered in isolation.
Evolutionary measures inspired by biology which focus onrelatively few characters
may need changing as aconsequence.

Anadditional problem for measurement of evolutionary algorithms comes
from the definition of genotype and phenotype, and their constituents, genes and
phenotypictraits. Althoughthedefinitionofageneinalivingorganismisnotentirely
withoutambiguity, there are generally agreed-upon protocols foridentifying and
defining genes. By contrast, the very flexibility of specifying the genotype and
genotype-phenotype mapping ina genetic algorithm makes itdifficultto define a
gene. This problem s exacerbated in genetic programming systems suchas BTGP,
where the programs implement Boolean trees. Is a gene one type of Boolean
function, with every instance of that function the same gene, or are we dealing with
distinct genes? We have adopted a particular view in this chapter in order to
implement our measures, butdo notbelieve that this will be auniversal solution.

InBTGPandMGA, itisalsodifficulttoidentify whatrelevant phenotypic traits
to measure are. Indeed, in BTGP it could be argued that there is no distinction
between phenotypeand genotype. Problems ofidentifying appropriate phenotypic
traits for measurement are likely to arise often when there is a complex mapping
between genotype and phenotype. Complicated genotype-to-phenotype mappings
havebeenidentified by several authors (e.g., Bicketal., 1997) asalikely route to
moreversatileapplicationsofevolutionary algorithms. Consequently theidentification
of methods which focus upon relevant phenotypic variation is an important task for
the future.

This chapter develops arange of evolutionary measures in orderto gaininsight
intotheworkings of EAs. Since our measures derive from fundamental evolutionary
attributes, this methodology should be extensible to awiderange of EAs.

Finally, we emphasize that we are interested in application of EAs toreal-
world problems. We donotsee measures such as those we have investigated here
asanend forevolutionary computationresearch inthemselves, only asapreliminary
contributiontoabetterunderstanding of problem solving by evolutionary algorithms.
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Chapter XVII
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ABSTRACT

In this chapter, a study on the effects of transforming wind speed data, from
a time series domain into a frequency domain via Fast Fourier Transform
(FFT), is presented. The wind data is first transformed into a stationary
pattern from a non-stationary pattern of time series data using statistical
software. This set of time series is then transformed using FFT for the main
purpose of the chapter. The analysis is done through MATLAB software,
which provides a very useful function in FFT algorithm. Parameters of
engineering significance such as hidden periodicities, frequency components,
absolute magnitude and phase of the transformed data, power spectral
density and cross spectral density can be obtained. Results obtained using
data from case studies involving thirty-one weather stations in Malaysia show
great potential for application in verifying the current criteria used for design
practices.

Copyright © 2003, Idea Group Inc.
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INTRODUCTION

Inthedesignofcivilengineeringstructures, the effects of the natural environment
onthese structures have to be taken into consideration. Some examples of these are
the effects of wind, currentand waves on offshore structures; and the effects of wind
andseismicactivities onbuildings. This chapter focuses mainly onthe effects of wind
onbuildings. The parameter of interest in the design and construction ofa structure
isthe design wind speed. This can be obtained from fundamental principles backed
by verification through field studies of the dynamic characteristics of the structure.
Inmany cases involving large structures, the input force cannot be created at will
orbecontrolled. This shortcoming is overcome through ambient vibration testing
andthe use of Fast Fourier Transform (FFT) to convert the raw wind data into wind
loads.

The chapter starts withareview of the general effects of wind on structures and
theinhabitants. The parameters used in the design of structures including buildings
are discussed. Itis shown here that Fast Fourier Transform (FFT) which include
Power Spectral Density (PSD), Cross Spectral Density (CSD) and Turbulence
Intensities (TI) canbe applied to derive the design parameters and subsequently,
improve awind code for structures. Examples of early studies on wind loads are
given, and the limits of tolerance for civil engineering structures and the inhabitants
therein are mentioned. Itisnoted that the criteria for design are more concerned with
thehuman tolerance rather than the structural tolerance. In the design of structures,
there is a need for a full understanding of the effects of wind at each stage of
construction since the tolerance for the final structure could vary appreciably with
the tolerance at each intermediate stage of the structure during construction.
Vibration effects due to wind on structures are given, and examples of vibration
effects on mechanical structures are also given as acomparison.

Methods of structural analysis and structural monitoring including vibration
analysis and modal analysis are mentioned. Field tests including forced vibration
methods as well as ambient vibration methods are described. Factors affecting the
design of structures as well as the incentives to better understand the complex
effects of wind on structures result in the approach to simplify these effects into
components. These components can then be utilized in defining design wind speed
and deriving design wind load, which can be used to develop the local design wind
code for civil engineering structures such as buildings.

The analysis using FFT in this chapter can be taken one step further through
frequency response function (FRF). FRF is the ratio of the output response to the
input excitation force. This measurement is typically acquired using a dedicated
instrument such as an FFT analyzer ora data acquisition system with software that
performsthe FFT. The input data in this case would be the measured wind speed
using several anemometers, which can be converted into dynamic pressure
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experienced by the structure. The output data would be the dynamic response of
the structure measured using several transducers such as accelerometers. Once the
dataare sampled, the FFT is computed to form linear spectra of the input excitation
and outputresponse. Typically, averaging is performed on power spectraobtained
fromthe linear spectra. The main averaged spectra computed are the input power
spectrum, the output and input signals.

These functions are averaged and used to compute two important functions
thatare used for modal data acquisition, which are the FRF and the coherence. The
coherence function is used as a data quality assessment tool which identifies how
much ofthe output signal isrelated to the measured input signal. The FRF contains
information regarding the system frequency and damping, and a collection of FRF
contains information regarding the mode shape of the system at the measured
locations. Thisis the mostimportant measurement related to experimental modal
analysis.

The FRF canbe viewed inthe form ofacceleration or displacementexperienced
by the structure due to the wind speed. Information such as this as well as the mode
shape obtained provides vital information fromthe design aspect. This will help to
provideadditional meaningful and significantengineering data to structural design
engineers (Avitable,2001).

BACKGROUND
Early Studies

Wind loads on structures have been studied over the last 400 years or so,
starting with some empirical work by Newton. During the next 100 years, some
work was done particularly on the determination of wind forces on objects of
differentshapes. By the middle ofthe eighteenth century, correlation for many
structures had already been developed. Research work on windmills by Smeaton
focused on wind moments, rather than wind forces. Experiments into wind loads on
static lattice frameworks by Baker followed the Tay Bridge disasterin 1879. This
demonstrated the need for more precise wind data. The present focus of interest
by researchers is the study of atmospheric turbulence in wind tunnels, and in the
investigation of the dynamic response of structures due to wind. In addition, the
development of automatic aircraft landing systems demands research and

understanding ofthe vertical and horizontal components of wind-speed correlation
(Sachs, 1972).

Limits of Tolerance
Inthe past, the vibration of tall buildings has merely been considered in terms
ofits structural implications. However, there are structures today that vibrate in
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certain wind conditions, which have notshown any structural ill effectbuthas given
concerninotheraspects. The vibration ofbuildings can have undesirable effects on
the well being of its inhabitants. Although the natural bending frequencies of many
tall structures are within the limits of between 0.1 Hzand 0.3 Hz, itis known that
these oscillations caninduce sickness.

Throughoutthe period when a structure is being erected, attention should be
paidtothe limits of structural tolerance for each stage of construction. A stable final
structure may be susceptible to damaging wind loads at some stage in its erection,
and this should be taken into accountinits design and construction procedure. For
a construction stage, a lower design wind speed than that for the completed
structure may be used with the same element ofrisk, since each erection stage lasts
forarelatively short period of time.

Civil Engineering Structures

Civilengineering structures like lattice towers which are used foranumber of
diverse purposes such as antennae for telecommunication, radio and television
broadcasting, power transmission and lighting supports, electric power transmission
lines or skyscrapers have always been affected by wind loads. A standard method
ondetermining how these loads actand the effects of certain frequency of wind on
high-rise structures need therefore to be carefully examined and calculated. This is
to ensure structural safety. Itis also for the purpose of monitoring the continued
usefulness of the structures. A lattice tower needs to be designed taking into
consideration the resonant dynamic response due to wind load, which arises when
the natural vibration frequency (fundamental frequency) of the structure is low
enough to be excited by the frequency of turbulence in the natural wind. However,
inthedesign oflattice towers, there is a further requirement for extending the basis
ofdesigntoinclude, moreexplicitly, theload effects, such as top deflection, bending
moment and shear force on the structure. In addition, wind behavior depends on
the structure and topology of the terrain, therefore for safe design of all these
structures, knowledge of wind characteristics inuneventerrainis of vital importance
(Simiu & Scanlan, 1977).

The British Standards and the Australian Standards have recommended Gust
Response Factors (GRFs) for lattice towers for different load effects like bending
moment for the design of main leg members, shear force for the design of the main
bracing members and top deflection for the serviceability criteria.

Structural Analysis

Vibration measurements and analysis are made fora variety of reasons. Itmay
be done to determine the natural frequencies ofa structure. [t may be done to verify
an analytical model of a structure. It may be done to determine the dynamic
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durability under various environmental conditions, or it may be done to monitor the
condition of a structure under various loading conditions. As structural analysis
techniques continually evolve and become increasingly sophisticated, awareness of
the potential shortcomings in their representation of structural behavior also grows.
This is especially so in the field of structural dynamics. The justification and
technology exists for vibration testing and analysis of large civil engineering
structures. However, large civil engineering structures are usually too complex for
accurate dynamic analysis using manual computation. It is usual to use matrix
algebra-based solution methods, employing the finite element method of structural
modeling and analysis, on digital computers. All linear models have dynamic
properties, which can be evaluated using techniques of dynamic analysis, such as
modal analysis. The modal analysis technique can provide the natural frequencies
and corresponding mode shapes for a numerical model of a structure. For an
existing structure, the accuracy of such alinear finite element method model canbe
validated through comparison ofthese dynamic properties with those obtained from
testing the actual structure. Vibration testing and analysis of an existing structure can
therefore provide a quantitative evaluation of its dynamic properties.

Mechanical Engineering Systems

The theories of vibration testing and analysis are well established. Common
applicationsare found inmechanical engineering, where itisused tostudy industrial
machinery noise and vibration problems. The techniques commonly use some
device whose express purpose is to artificially induce a force or displacement to
excitethe structure. Usually a controlled periodic, random, transient or impact force
isused.

Inthe field of mechanical engineering, there are anumber of integrated systems,
which canhandletheexperimental testing, systemidentificationand modal refinement.
These systems are mostly based on forced vibration tests, which range from simple
impacttests tocomplex testsetups involving several exciters. Dueto theirrelatively
small size, most mechanical specimens can be tested in laboratories under
controlled conditions. There is, however, no such luxury or advantage for the
verification of dynamic models of large civil engineering structures. The procedure
isrelatively expensive, and with very long or massive structures, such as dams, it
may be necessary to use more than one exciter, thereby increasing the costs for
testing.

Large Structures

The integrated systems, developed formechanical engineering applications,
cannotbeapplied economically to large civil engineering structures such as bridges
and buildings. Bridges form vital links in transportation networks and therefore
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traffic shutdowns associated with forced vibration testing would be costly. Controlled
forced vibration tests of buildings may disturb the occupants and may have to be
conducted after working hours, which would also increase the cost of the testing.
Therefore, routine dynamic tests of bridges and buildings must be based on ambient
methods, which do not interfere with the normal operation of the bridge or the
building.

Dynamic properties of astructure may vary over time. This could be as aresult
of changing material properties due to weathering oras aresult of response to load
history. Determination of dynamic properties before and after an extreme load
event, such as an earthquake, may indicate changed conditions not evident by
conventional means of evaluation, such as visual inspection or standardized material
non-destructive testing. Vibration testing can therefore be considered foruse asa
monitoring tool, for providing dynamic properties over time, which can be studied
toidentify structural changes.

Generally, analyticalmodels of existing large structures are based on geometric
properties taken from old drawings and material properties obtained from the
structure. A series of assumptions are also made to account for the surrounding
mediumandits interaction with the structure such as soil-structure interaction in the
case of buildings and bridges, soil-water-structure interaction in the case of dams,
wharves and bridges and the composite behavior of structural elements. This, in
general, isnotthe case formechanical systems.

Vibration Testing Techniques

Twotechniques are available for vibration testing of large structures: forced
andambient vibration techniques. Both forced vibration and ambient methods have
beenused in the pastand are capable of determining the dynamic characteristics of
structures. Forced vibration methods can be significantly more complex than
ambient vibration tests, and are generally more expensive than ambient vibration
tests. The main advantage of forced vibration over ambient vibration is that for the
former, the level of excitation and induced vibration can be carefully controlled,
while for the latter, one has torely on the forces of nature and uncontrolled artificial
forces such as vehicle traffic on bridges. Sometimes the structure can only be
excitedtoavery low level of vibration. As aresult, the sensitivity of sensors used
forambient vibration measurements needs to be much higher than those required
for forced vibration tests.

Forced Vibration Testing

By definition, a forced vibration test constitutes the use of any source of
controlled excitation applied to a large structure in order to induce vibrations.
Ambienttests may beused totestbridges, nuclear power plants, offshore platforms
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and buildings. Although ambient tests do not require traffic shut downs or
interruptions of normal operations, the amount of data to be collected is significant
and it cantake several weeks to analyze all these data thoroughly. The techniques
for dataanalysis are also different from the forced vibration analysis technique. The
theory for forced vibration tests of large structures is well developed and is anatural
extension ofthetechniques used in forced vibration tests of mechanical systems. In
contrast, the theory and technique for ambient vibration tests still requires some
further development.

Forced vibration tests are generally conducted to determine the dynamic
characteristics ofboth simple and complex systems. Inthese tests, controlled forces
are applied to a structure to induce vibrations. By measuring the structure’s
response to these known forces, the dynamic properties of the structure can be
determined. Controlled excitation forces can be applied to a structure using several
differentmethods. The three most popular methods are:

1)  Shaker Tests: Shakers are used to produce sufficiently large forces, to
effectively excitealarge structure ina frequency range of interest. For large
structures, such as bridges or tall buildings, the frequencies of interest are
commonly lessthan 1 Hz. Atsuch low frequencies, a shaker cannot generate
sufficiently large forces,and while itmay be possible to build suchmassive, low
frequency shakers, these are expensive to construct, transport and mount.

i) Impact Tests: Impact testing is to identify the dynamic characteristics of
machine components and small assemblies. Thetestarticle is attached withan
accelerometer, and the hammer, whichisused to strike it, is attached with a
force transducer. The impact force and acceleration response time histories
areused to compute frequency response functions (FRFs) between ameasured
pointand the pointofimpact. These FRFs canbe used to determine the natural
frequencies, mode shapes and damping values of the structure using well-
established methods of analysis of impact test data.

i) Pull Back Tests: The pull back or quick-release testing method generally
involves inducing a prescribed displacement to a structure and quickly
releasing it, causing the structure to vibrate freely. The objective of this
technique is to quickly release the load and record the free vibrations of the
structure, as ittends to return to its position of static equilibrium.

Ambient Vibration Testing

Ambientvibrationanalysisisavibration testing and analysis technique, which
canbe targeted for large civil engineering structures. Since the method requires no
artificial excitation to be imparted to the structure being tested, and relies on the
naturally occurring ambient vibrations, this provides a distinct costadvantage over
othermethods.
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When ambient vibration testing is considered, a structure may be excited by
wind, by micro tremors, by machinery or by traffic. Unlike forced vibration testing,
the excitation forces cannot be controlled. Natural frequencies and mode shapes
are obtained by measuring the vibrations of the structure simultaneously at several
locations on the structure. Natural frequencies cannot be evaluated for each
independentdegree of freedom since information on the excitation is not known.
Alternative methods of analysis of ambient vibration data are then to be utilized to
identify relevantdynamic characteristics of the structure.

Severe environmental natural excitations such as earthquakes, windstorms
and large waves can also be considered ambient vibrations, except that the level of
motion is much higher and that the source of the excitation can be known. In some
casesitcanalsobe measured. However, the occurrence of such severe excitations
cannot be controlled or predicted, and the vibrations of the structure can only be
capturedif permanent instrumentation is placed in the structure and set-up torecord
vibrations at prescribed levels of shaking. In many seismically active areas,
buildings, bridges and dams are fixed with instruments capable of measuring severe
shakingatdifferentlocations within the structure. Modal analysis techniques can be
usedtoidentify the dynamic properties of such structures fromrecorded earthquake
motions.

The methods thathave been developed for analyzing data from forced and
ambient vibration tests range from linear deterministic models tononlinear stochastic
models. The applications range from improving mathematical models of systems to
damage detection, identifying the input of a system to controlling its response.
Parameter estimation methods using dynamic signals can be classified as time-
domain methods, frequency-domain methods and joint frequency-time domain
methods (Ventura,2001).

Effects of Wind

Overthe centuries, wind has caused considerable damage to buildings and
structures and induced collapse inmany. The trend to more economic design using
less material accentuates the relative importance of wind loads as compared to
gravitational loads, and this trend has greatly accelerated over the past few decades.
The situation with structural design currently is such that the assessment of
environmental loading may represent the greatest unknowns in the design ofa
proposedstructure. The nature of the wind in the earth’s boundary layer is complex.
The variation of the average wind speed isusually approximated in calculations by
apower law and depends on such factors as the surrounding ground and buildings
and the general synoptic weather pattern (Houghton & Carruthers, 1977).

The prediction of the wind response of a skeletal structure is becoming more
and more important in structural design due to the sensitivity of such structure to
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wind loads. Some data have beenreported based on wind tunnel tests. However,
reliable data from full-scale measurements are scarce. Hence a full-scale field
experimental programusing instruments such as anemometers, accelerometers and
strain gauges should be taken up using alattice tower to study the dynamic behavior
of the structure under wind loads.

For convenience of analysis, wind speed is broken down into a mean
component and a fluctuating component. While the mean speed component is
assumed toresultin static wind pressure and corresponding steady deflection, the
fluctuating component gives rise to dynamic amplification. Modern codes of
practice provide criteria for determining the design wind speed depending on
ground roughness, building size, height above ground, required life span ofthe
structure and the topography of the site. These are intended to cover the
contingencies affecting the incident wind and the way in which gustiness influences
loading. However, the magnitude ofthe design wind speed may well be the most
uncertain element ofa wind-load calculation.

Turbulence inthe wind produces fluctuating loads, which can cause motion that
ismainly inthe wind direction. Vortices shed alternately from either side of a tall
structure produce a force in the crosswind direction thatis roughly sinusoidal and
this can cause vibration of astructure of corresponding natural frequency. Whenthe
structure is stationary, the vortex-induced force has a broad bandwidth but when
it is oscillating above certain amplitude, the vortex shedding locks-on to the
vibration and the exciting force has an almost sinusoidal form (i.e., asharp peak in
itsspectrum). Winds that are not necessarily strong can cause structures to vibrate
inways such that, even ifnot disastrous, can still cause structural deterioration,
fatigue problems or human discomfort.

The main objective is to always provide, by the most economical means,
predictions of wind effects that are sufficiently accurate for the civil engineer. Ina
significantnumber of cases, the criteria are set by the tolerance ofhumans and as
sucharenotwell defined. In the case of wind speeds around pedestrian areas for
example, values between 2 m/s and 9 m/s have been suggested as upper limits.
However, the turbulence, the air temperature and humidity are also important. A
steady breeze of 2 m/s may be of no consequence whereas a breeze of 2 m/s
fluctuating in direction would be intolerable.

Design Wind Speed

The design wind speed atany given station in the United States is defined as
the peak gust at 30 ft above ground record at that station. This definition was
adopted inthe Uniform Building Code. Itfollows fromanequationthatthedesignwind
speedimplicitintheuniform Building Codeisapproximately equalto the 39-year gust
wind.
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Thedesign wind speed specified by the BS and ANSI are 50-year fastest miles
for most permanent structures, 100-year fastest miles for structures with an
unusually high degree ofhazard to life and property in case of failure, and 25-years
fastestmiles for structures having no human occupant or where there isnegligible
risk to human life. Inthe light of past experience, it may be stated, however, that both
the 39-year peak gustand the 50-year fastest mile criteriaresultin wind loads that
appear to ensure a reasonable degree of structural safety. Some criteria to be
adopted in obtaining the corresponding values for the Malaysian Standard (the case
study) for Wind Loads have to be developed.

Gust Response Factors

Initially, the design wind speeds are obtained by multiplying the mean wind
speeds with gust velocity factors. The mean wind speeds are used to allow for
fluctuations in the wind speed. However, neglecting both the dynamic properties
and size of the structure could resultin an unsafe structure ora conservative over-
designs ofastructure. The structural loads produced by wind gusts depend on the
size, natural frequency and damping of the structure. The structural failure, which
isdirectly attributable to gustaction, emphasizes the importance of these parameters
inarrivingatthe gustwind load. The gustresponse factors (GRFs) that willaccount
forinfluence ofthese important parameters, are ameasure of the effective dynamic
load produced by gusts, and are intended to translate the dynamic response
phenomena produced by gustloading into a simpler factored static design criteria.

Currently, the wind sensitive structures are designed using a semi-analytical
approachwithasimple modelrelating theupwind turbulent velocity fluctuations and
the fluctuating forces on the structure. In this approach, the dynamic response is
treated usingrandom vibration theory and modal analysis. Inmost of the international
design codes and standards, the GRF for the modal coordinate is computed using
the above approach and the same value is considered for all other load effects such
asbending moment, shear force, etc. Itis also assumed that the first mode shape
ofthe structure varies linearly with height, and the contribution of highermodes of
vibrationis neglected. This makes the GRF constant for the whole height of the
structure.

Malaysian Wind Code (The Case Study)

Malaysia is situated close to the equator and is outside the belt of severe
tropical cyclones. The monsoon winds are alsomild. Therefore, winds due to these
weather systems are relatively not severe. However, equatorial regions are prone
to tropical thunderstorms. Wind speeds of the gust fronts of these thunderstorms
canberelatively high.
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There are several codes of practice currently adopted in Malaysia for wind
loads. These are AS117-2-1989 (SAA Loading Code: Part 2 Wind Loads),
ASCE 7-95: Minimum Design Loads For Building and Other Structures and BS
6399. Generally, for wind load determination on buildings, the British Standard
(CP3: Chapter V: Part 2: Sept. 1972, Code of Basic Data For the Design Of
Buildings Chapter V, Loading, Part 2: Wind Loads) is adopted.

COMPUTATIONAL CONCEPTS

Fourier Transform

Timeand frequency aretwo different ways of expressing the characteristics of
asignal. Both the time signal itselfand a frequency analysis of it present the same
information since each frequency domain point is derived from the entire time
domain signal. The frequency domain provides an alternative perspective for
characterizing the behavior of oscillating and vibrating functions.

Waveform that exists could be generated through adding sine waves. Real-
world signals can be broken down into these same sine waves and it can be shown
thatthis combination of sine waves isunique. For measurement of any parameter,
to detect a small sine wave in the presence of large signals, it is better to use
frequency domain. When these components are separated in the frequency domain,
the small components are easily seen because larger ones do not mask them.

Fouriertransform/integral is the primary tool to analyze a periodic waveform,
the waveforms that do notrepeat themselves regularly. The essence of the Fourier
transform ofa waveformis to decompose or separate the waveform into a sum of
sinusoids of different frequencies. Ifthese sinusoids sumto the original waveform
then Fourier transform of the waveform has been determined. The pictorial
representation of the Fourier transformis adiagram thatdisplays the amplitude and
frequency of each ofthe determined sinusoids. The Fourier transformidentifies or
distinguishes the different frequency sinusoids (and their respectiveamplitudes) that
combine to form an arbitrary waveform.

A physical process x, in the time domain given by x(t), can also be described
in the frequency domain with its amplitude X and frequencies f, by X(f).
Mathematically, thisrelationshipis stated as:

x(t) = TX(f)e‘z”mdf

whichisalinear operation.
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Fourier transform equation transforms functions coming from, and extending
toinfinity. Inreal-world application, however, this isnot practical. More often than
not, only a small section of this continuum is to be transformed. Furthermore,
analysis onadigital computer requires the function to be sampled discretely intime.
Thus, a continuous waveform will be represented as a series of impulses whose
magnitude is equal to the amplitude of the waveform for that time step, each
separated by a constant interval determined by the samplingrate.

The samplingrate isavery important factor when considering analyzing some
function oftime. The Nyquisttheorem, fc=1/2, states that the critical frequency fc,
orthemaximum frequency seeninthe sampling process, is halfthat ofthe sampling
rate. Ifthe signal on samples is not bandwidth limited to fc, a process called aliasing
occurs from which information from above fc is folded back into the sampling
bandwidth. Thisresults inanincorrecttransform. High-quality-low-pass filters must
beusedtoartificially bandwidth limitthe waveform before sampling.

Thereare two types of Fourier transforms: Discrete Fourier Transform (DFT)
and Fast Fourier Transform (FFT). For N values of data, the DFT requires N2
complex operation. For data samples of moderate size, the direct determination of
the DFT can be extremely time-consuming. The FFT isan algorithm thathas been
developed to compute the DFT in economical fashion. It utilizes the results of
previous computation to reduce the number of operations. In particular, itexploits
the periodicity and symmetry of trigonometric functions to compute the transform
with approximately N log2 N operations (Brigham, 1974).

Power Spectral Density

Spectral analysis, sometimes called ‘spectrumanalysis,’ is the name given to
methods of estimating the spectral density function, or spectrum ofa given time
series. The power spectral density, PSD, describes how the power (or variance)
ofatimeseries is distributed with frequency. Mathematically, itis defined as the
Fourier Transform of the auto correlation sequence of the time series. Spectral
analysisisnotonly concerned with looking for ‘hidden periodicities’ inthe data, but
also with estimating the spectrum over the whole range of frequencies.

Spectral analysisis mainly concerned with purely indeterministic or stochastic
series, which have a continuous spectrum, butalso can be used for deterministic
series to pick out periodic component in the presence of noise. Deterministic series
isreferred to as atime series, which can be predicted exactly. Butmost time series
are stochastic, that is the future is only partly determined by past values. For
stochastic series, exact predictions are impossible and mustbe replaced by the idea
that future values have aprobability distribution, which is conditioned by knowledge
of past values. Wind speed data are categorized as stochastic series.
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Anatural way of estimating the power spectral density functionis by using the
periodogram. The averaged periodogram is called the spectrum of the data
provided, inthis case, the wind speed. It gives the distribution of the variance of wind
speedas function of frequency. The variance of each pointis equal to the expected
value atthe point. By averaging together 10-30 periodograms, the uncertainty in the
value ateach frequency can bereduced.

Inthis chapter, interpretation of the wind speed power spectrum plots consists
ofidentifying the frequency ranges over which noticeable peaks in power or energy
occur, observing any trends and comparing energy levels for different wind records
(Nezih & Davras, 1983).

Cross-Spectral Density

In another context, the cross-spectral density function is a technique for
examining the relationship between two time series overarange of frequencies in
the frequency domain. The cross-spectrum of adiscrete bivariate process measured
atunitintervals oftime is defined as the Fourier transform of the cross-covariance
function.

The ordinate value in all the cross-spectrum plots represents the gain factor,
whichis essentially aregression coefficient of the second time series on the first. For
this project, cross-spectral density is applied in the situation of wind speed records
attwodifferentheights, i.e.,43.9mand 28.1m forboth type of data: daily maximum
and 10 minute intervals.

Turbulence Intensity

Turbulence intensity isameasure of the amplitude of the velocity fluctuations,
which occurinthe flow. Itis proportional to the frequency of turbulent or eddies
angular velocities, which is arough estimate of the degree of violence of turbulent
fluctuation. The energy content ofa large eddy is much greater than that ofa small
one foragivenintensity,and energy is transferred from larger eddies to smaller ones.

Turbulenceintensity is calculated by dividing the standard deviation of the wind
speed with the mean value of the wind speed. One of the causes of atmospheric
turbulenceis terrain roughness; hence it must also be an important factor affecting
theintensity ofturbulence. Its effectistwofold. Firstly, the increase of siteroughness
willincrease the turbulent intensity. Secondly, for the same terrain roughness, the
intensity of turbulence is height dependent: thatis, it decreases with increase of
altitude.

Applications
Adherenceto current Code of Practice has notcompletely protected structures
from failures. Codes have to be continually updated and improved. Atthe same
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time, there is aneed to be abalance between degree of safety and economics. In
hurricaneareas for instance, itmay be uneconomical to build againsta storm, which
may never happen. The approach here isto see if Fast Fourier Transform (FFT)
whichincludes Power Spectral Density (PSD), Cross Spectral Density (CSD), and
Turbulence Intensities (I), could produce results that could improve the basis of the
code. Meteorological data, including wind speed, is alocal phenomenon, which
differs from one placeto another. Design codes developed elsewhere, such as the
British Standard (BS) and the American National Standard (ANSI), are therefore
notsuitable for the Malaysian case. Geological differences in terms of different
climates and topography, and choice oflife duration of a structure, are significant
features that cannotbe applied globally. We need to establish a code of practice
of our own in order to derive more realistic structural analysis and design.

The study of wind loads by using computational intelligence algorithmis anew
method to be explored and applied in structural engineering field. Norville etal.
conducted such a study. The work concentrated on validation of wind data
recorded atthe Moro test site by the Bonneville Power Administration. The scope
of the project was mainly concerned with determining wind and response
characteristics. The analysis includes plots of time histories, histograms, power
spectra, cross spectraand determination of statistical properties. The analysis in
frequency domainis done by FFT algorithm using the International Mathematical
and Statistical Libraries (IMSL) routines (Norvilleetal., 1985).

Liew also conducted the same study. The work focused on frequency domain
analysis ofthe energy contents of the wind speed. The analysis was based on actual
time series and on the selected model of time series and was performed in power
spectrumplot(Liew, 1977).

DATA COLLECTION

Two sources of data were studied in this project. First, dataof95% confidence
level of maximum wind speed, whichrecorded annually, for 30 different stations
throughout the whole Malaysia were obtained form Malaysian Meteorological
Stations (MMSs). Second, datarecorded in an interval of every 10 minutes and a
daily maximum withina certain period inthe year 1998 and 1999 obtained froma
meteorological station, whichis situated in Universiti Malaya (UM).

However, only atotal of eleven case studies were carried out to see the effect
of FFT on wind speed data. Seven cases came from the MMS, which were
collected for the years 1948-1998; and four came from the UM station, which has
awind tower with two anemometers, one at 28. 1 meter (WS 1) and another one
at43.9 meter (WS2). These four data consisted of two daily maximal data, and
another two were based on wind speed data with 10-minute intervals. The data
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used are notraw data; instead, amodel datamodeled as ARIMA (1,1,0) with the
parameterequalto-0.29451631, whichaccording to Liew is generally sufficient
asarepresentative of the actual power spectrum (Cheong, 2000).

DATA PROCESSING AND ANALYSIS
MATLAB was utilized inthis study.

Fast Fourier Transform (FFT)

InMATLAB, FFT is abuilt-in function. FFT computes the discrete Fourier
transform ofa vector or matrix. When the sequence lengthisapower oftwo, FFT
uses a high-speedradix-2 FFT algorithm. Theradix-2 FFT routine is optimized to
performareal FFT if the input sequence is purely real; otherwise it computes the
complex FFT. This causes areal power-of-two FFT to be about 40% faster than
acomplex FFT ofthe same length. When the sequence lengthisnotan exact power
oftwo, a sequence algorithm finds the prime factors of the sequence length and
computes the mixed-radix discrete Fourier transform of the shorter sequences.

Power Spectral Density (PSD) and Cross-Spectral Density
(CSD)

In MATLAB, PSD estimates power spectral density of a signal and CSD
estimates cross-spectral density of two signals. Pxx=psd(x) estimates the power
spectrum ofthe sequence x. Pxy=csd(x,y) estimates the cross-spectral density of
the lengthn sequences x and y. Both of the functions above use the Welch method
of spectral estimation, whichuses certain values of nFFT, Fs, window and noverlap.
nFFTspecifiesthe FFT length that PSD or CSD uses to determine the frequencies
at which the power spectrum or cross spectrum is estimated. Fs is a scalar that
specifies the sampling frequency. window specifies awindowing function and the
number of samples PSD or CSD uses in its segmenting of the x and y vectors.
noverlapisthe number of samples by which the segments overlap. Welchmethod

applied Hanning window with non-overlap and 95% confidence interval (Thomas
etal., 1994).

RESULTS AND DISCUSSIONS

The data processing and analysis included periodogram, PSD, turbulence
energy, TTand cyclelengths. Figure 1- Figure 3 are examples of results fromone
ofthe seven stations, namely Kuala Terengganu.
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Figure 1: Periodogram of wind speed data (Kuala Terengganu, from
years 1948 to 1998)
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Figure 2: Plot of power against period (Kuala Terengganu, from years
1948 to 1998)
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Theperiodogramis aninitial means of estimating PSD function. The average
of10-30periodograms is the spectrum ofthe wind speed. The PSD indicates the
change of variance of fluctuations in the winds with frequency of contributory wave.
Inthis study, interpretation of wind speed PSD plots consists of identifying the
frequency ranges over which noticeable peaks in energy occur, observing any
trends and comparing energy levels for different wind records.

Variation of TIwith heightabove mean sea level for these stations cannot be
compared due to different terrain roughness. From the point view of safety, wind
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Figure 3: Plot of power against period (Kuala Terengganu, from year
1948 to 1998)
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Table 1: Results of cycle length of wind speed recorded for all types of
data

Station Cycle length
Kuala Terengganu 50 years
Bayan Lepas 2.2727 years
Ipoh 4.4545 years
Mersing 47 years
Alor Star 49 years
Sandakan 44 years
Sitiawan 50 years
Daily maximum 2.4545 days
WS1
Daily maximum 2.44 days
WS2
10-minute interval 143.6667 min
WS1
10-minute interval 143.3333 min
WS2

velocity used inthe analysis of a structure subjected to wind force should notbe the
maximum observedso far, butone, whichmay occur once in “cycle length” years
depending on the importance of the structure. The cycle lengths forall datahave
been computed by FFT algorithm. The results are tabulated in Table 1.
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CSD functionisatool forexamining the linear relationship between two time
series overarange of frequencies. CSD is only applied in the situation of wind speed
records attwo differentheights, whichare43.9mand 28.1m for both types of data:
daily maximumand 10-minute intervals. Directcomparison can be done forthe UM
data. Both data show thatatthe higher level, WS1, energy spectrum s greater due
to lower viscosity effects and smaller siteroughness, i.e., less obstruction.

The results for maximum power, power spectral density and frequency
recorded forall stations are givenin Table 2. The power spectral density indicates
the change in variance of the fluctuations in the signal with the frequency of the
contributory wave. It is useful to plot the product of power spectra against the
logarithm ofthe frequency. The advantage is that the area under the curve between
any two frequencies gives the true measure of the energy in that frequency range.
Generally, the maximum turbulent energy for these stations is between the power
spectral range of 12 to 24 m/s?. Comparison between these seven stations shows
that wind data in Sitiawan contains the maximum turbulent energy; meanwhile the
minimum energy observed is at Bayan Lepas. The results for mean wind speed,
standard deviation and turbulence intensity obtained for all stations are givenin
Table 3.

Turbulence intensity (T1)is calculated by dividing the standard deviation of the
wind speed with the mean wind speed. Tl is used to measure the amplitude of the

Table 2: Results of MP, PSD and frequency recorded from all stations

Station Maximum Frequency of Power Spectral Frequency of
Power MP Density (PSD) PSD
(MP) (cycles/year) (my/s)’ (cycles/year)
Bayan Lepas 2250 0.025 16 0.004
Ipoh 1500 0.044 12 0.0012
Mersing 3000 0.022 24 0.002
Alor Setar 175 0.025 15 0.008
Sandakan 4500 0.025 24 0.003
Sitiawan 2400 0.018 15 0.0025
Kuala Terengganu 1900 0.4 24 0.0015
Maximum | Frequency of Power Spectral Frequency of
Power MP Density (PSD) PSD
(MP) (cycles/day) (nvs)* (cycles/day)
Daily Maximum WS1 700 0.4 7 0.0017 -0.0028
Daily Maximum WS2 550 0.4 7 0.0017-0.0028
Maximum Frequency of Power Spectral Frequency of
Power MP Density (PSD) PSD
(MP) (cycles/10 min) (my/s)? (cycles/10 min)
WSI (10 minute) 30 000 0.008 2.25 0.0001
WS2 (10 minute) 18 000 0.008 1.4 0.0001
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Table 3: Results of mean wind speed, standard deviation and turbulence
intensity obtained from all stations

Station/Type of Data Mean Wind Speed | Standard Turbulence
(m/s) Deviation Intensity
Mersing 23.3 1.0 0.044
Ipoh 23.2 4.0 0.174
Sandakan 17.1 1.8 0.104
Sitiawan 18.3 2.7 0.149
Kuala Terengganu 20.8 2.0 0.095
Alor Setar 20.4 2.3 0.115
Bayan Lepas 20.7 2.6 0.125
Daily maximum WS 6.5 1.8 0.272
Daily maximum WS2 6.2 1.7 0.276
WSI1 (10 minute) 1.3 1.0 0.722
WS2 (10 minute) 1.2 0.7 0.597

velocity fluctuations which occur in the flow and proportional to the angular
velocities of the eddies, which is a rough estimate of the degree of violence of
turbulent fluctuation.

One more important feature shows by almost all data that most of the energy
ofthe turbulence eddies is concentrated in the lower frequency range. The spectra
obtained for low frequencies, therefore, results inamorerational static analysis than
the one based on extreme mean winds. Mean wind spectra are useful for arriving
atdesign mean wind speed required for computing basic pressure as incorporated
by various design codes.

CONCLUSION

Fromthe study, mean wind spectra covering the entire range of frequencies
have been obtained. The presentation of mean wind speed in the form of spectra
provides importantinformation inrespectto energy at different frequencies at which
the spectral values are the highest. The maximum scale ofeddy motion that contains
the maximum energy is one of the most important indices for structural design
purpose. The major factor affecting the response of structures under wind loading
isthedynamic characteristic ofatmospheric turbulence. This canbestberepresented
by its correlation functions and spectral functions.

FUTURE WORK

The following study gives aclear view on the transformation of wind speed data
intoamoreuseful engineering tool. Thisresultcanalso be applied in wind energy
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studies. Further studies and research are required on different types of wind
conditions to see the effects of FFT.

REFERENCES

Avitable, P.(2001). Experimental modal analysis. Sound & Vibration: Structural
Analysis, 35(1),20-31.

Brigham, E.O. (1974). The Fast Fourier Transform. NJ: Prentice Hall.

Cheong, W.V. (2000). Time Series Modelling of Wind Speed in Malaysia.
Graduation Thesis. Department of Civil Engineering, University of Malaya,
KualaLumpur.

Houghton, E.L. & Carruthers, N.B. (1976). Wind Forces on Buildings and
Structures. London: Edward Arnold Ltd.

Liew, S.H. (1997). Time series analysis and frequency contents of wind loads.
Journal of Institution of Engineers, Malaysia, 58(1).

Nezih, C.G. & Davras, Y. (1983). Discrete Fourier Transformation and Its
Application to Power Spectra Estimation. Amsterdam, Netherlands:
Elsevier Scientific Publishing.

Norville, H.S., Metha, K.C. & Farwagi, A.F. (1985). 500 kV Transmission
Tower/Conductor Wind Response. Report Submitted to the Bonneville
Power Administration, Texas Tech University, Lubbock, Texas.

Sachs, P. (1972). Wind Forces in Engineering. Oxford, UK: Pergamon Press.

Simiu, E. & Scanlan, R.H. (1977). Wind Effects On Structures. CA: John Wiley
& Sons.

Thomas, P.K, Loren, S. & John, N.L. (1994). Signal Processing Toolbox
User’s Guide. The MathWorks. Inc.

Ventura, C.E. (2001). Overview of Vibration Testing of Large Structures.
Course Notes on Modal Identification of Output-Only Systems, Orlando,
Florida, USA.

TLFeBOOK



Computational Intelligence in Control 321

About the Authors

Masoud Mohammadian has completed his Bachelor, Master and PhD in
Computer Science. Hisresearchinterests lie inadaptive self-learning systems, fuzzy
logic, geneticalgorithms, neural networks and theirapplications inrobotics, control,
industrial automation, financial and business problems which involvereal time data
processing, planning and decision making. Heisamember of over 30 international
conferences and he has chaired several international conferences in computational
intelligence and intelligent agents. He is currently asenior lecturer at the school of
computing at the University of Canberra in Australia. He isamember of many
professional (computing and engineering) organizations . Heis also currently the
vice chair of the Institute of Electrical and Electronic Engineering (IEEE) ACT
section.

Ruhul Sarker received his PhD in 1991 from DalTech, Dalhousie University,
Halifax, Canada, and is currently a senior lecturer in Operations Research at the
School of Computer Science, University of New South Wales, ADFA Campus,
Canberra, Australia. Before joining at UNSW in February 1998, Dr. Sarker
worked with Monash University, Victoria, and the Bangladesh University of
Engineeringand Technology, Dhaka. His mainresearch interests are Evolutionary
Optimization, Data Mining and Applied Operations Research. He was involved
with three edited books either as editor or co-editor, and has published more than
80refereed papers ininternational journals and conference proceedings. Heis also
the editor of ASOR Bulletin, the national publication of the Australian Society for
Operations Research.

Xin Yao received the BSc degree in computer science from the University of
Science and Technology of China (USTC), Hefei, the MSc degree in computer
science from the North China Institute of Computing Technologies (NCI), Beijing,
and the PhD degree in computer science fromthe USTC, Hefei, in 1982, 1985, and
1990, respectively. Heis currently a professor of computer science at the University

Copyright © 2003, Idea Group Inc.

TLFeBOOK



322 About the Authors

of Birmingham, Birmingham, England. Xin Yaois anassociate editor oramember
ofthe editorial board of six international journals, including IEEE Transactions on
Evolutionary Computation, and an editor/co-editor of nine journal special issues.
Hismajorresearchinterests include combinations between neural and evolutionary
computation techniques, evolutionary learning, co-evolution, evolutionary design
andevolvable hardware, neural network ensembles, global optimization, simulated
annealing, computational time complexity and datamining.

* % %

Hussein A. Abbass gained his PhD in Computer Science from the Queensland
University of Technology, Brisbane, Australia. He also holds several degrees
including Business, Operational Research, and Optimisation and Constraint Logic
Programming, from Cairo University, Egypt, and Artificial Intelligence, fromthe
University of Edinburgh, UK. He started his career as a systems administrator. In
1994, he was appointed associate lecturer at the Department of Computer Science,
Institute of Statistical Studies and Research, Cairo University, Egypt. In2000, he
was appointed lecturer at the School of Computer Science, University of New
South Wales, ADFA Campus, Australia. Hisresearch interests include Swarm
Intelligence, Evolutionary Algorithms and Heuristics where he develops approaches
for the Satisfiability problem, Evolving Artificial Neural Networks, and Data
Mining. He has gained experience inapplying Artificial Intelligence Techniques to
differentareas including Budget Planning, Finance, Chemical Engineering (heat
exchangernetworks), Blood Management, Scheduling, and Animal Breedingand
genetics.

C. Alippiobtained the DrIng degree in Electronic Engineering summa cum laude
in 1990 and the PhD in Computer Engineering in 1995, both from Politecnico di
Milano, Milano, Italy. His further education includes research work in computer
sciences carried out at the University College London and the Massachussets
Institute of Technology. Currently, C.Alippi is anassociate professor in Information
Processing Systems at the Politecnico di Milano. His interests include neural
networks (learning theories, implementation issues and applications), composite
systems and high level analysis and design methodologies forembedded systems.
His research results have been published in more that 80 technical papers in
international journals and conference proceedings. Heis aseniormember of [EEE.

T.G.B. Amaral, received the Diplingand MS degrees in Electrical Engineering
from the Faculty of Science and Technology (FCT), University of Coimbra,
Portugal,in 1993 and 1997, respectively. He is currently pursuing the PhD degree,

TLFeBOOK



Computational Intelligence in Control 323

atthe FCT. Since 1996 heisamember ofthe teaching staffat Electrical Engineering
Department of Superior Technical School of Setiibal — Polytechnic Institute of
Setubal. Heis currently adjoint professor in the Electrical Engineering Department
of Superior Technical School of Setiibal — Polytechnic Institute of Setubal. His
interests include computer vision, image processing, modeling and control of
dynamicsystem.

W.H.W.Badaruzzaman obtained his BSc (Hons) Civil & Structural Engineering
and MSc Structural Engineering from the University of Bradford, UK ,in 1984 and
1986, respectively. Completed his PhD degree in Structural Engineering at
University of Wales, Cardiff, UK, in 1994. Currently, the head of the Department
of Civil & Structural Engineering, University Kebangsaan Malaysia. A corporate
member ofthe Institution of Engineers Malaysia (IEM) and aregistered professional
engineer with the Board of Engineers Malaysia. Is actively involved with the
working Group Committee in Wind Loads for building structures in Malaysia.

J.-M. Bauschat, anative of Germany, studied Aircraft Engineering and completed
his final examination atthe University of Braunschweig, Germany. In2001 hejoined
theteaching staffatthe Technical University of Berlin, leading subjects in flight
mechanics, experimental flight mechanics, and flighttestingusinga Dornier 128 and
the German Aerospace Center (DLR) flight test-bed ATTAS (Advanced
Technologies Testing Aircraft System). Prior to his current position, he served as
ascientistatthe Institue of Flight Systems of the DLR and project director of the
DLR project ATTAS In-Flight Simulation. He also previously served as head of
the DLR Group of Applied Flight Control. He has published articlesin 18 referred
publications.

Judith Bishop is professor of Computer Science at the University of Pretoria,
South Africa,apositionshe hasheld since 1991. She hasa PhD from Southampton
University, UK, inthe area of code generation for new computer architectures. Her
research interests are programming languages, distributed systems and web
technology. She is co-editor of IEEE Software and on the editorial board of
several other journals. She chairs the IFIP committee WG2.4 on Software
Implementation Technology and is South Africa’s representative on IFIP Technical
Committee 2 on Programming. She has served on many international and local
programme committees and advisory boardsand is astrategic advisor on Information
Technology to the National Research Foundation.

Pierre Borne is professor “de Classe Exceptionnelle” atthe “Ecole Centrale de
Lille”;director of Research of'this institution; and head of the Automatic Control

TLFeBOOK



324 About the Authors

Department. He has been president of [IEEE/SMC society (2000-2001) and has
been IMACS vice president (1988-1994). He is chairman of the IMACS
Technical Committee on “Robotics and Control Systems.” He was nominated a
fellow of IEEE in 1996 and received the IEEE Norbert Wiener Awardin 1998. He
isauthor or co-author of more than 250 journal articles, book chapters, a scientific
dictionary and communications in international conferences and 14 books on
automatic control. Heis a fellow ofthe Russian Academy of Non-Linear Sciences.
He is listed in the Who'’s Who in the World.In 1997, he was nominated for the
“Tunisian National Order of Meritin Education” by the president of the Tunisian
Republic, and in 1997 he was named an honorary member of the IMACS board
of directors. In 1999, he was promoted in France to “Officier dans I’ordre des
Palmes Académiques.” In2000, hereceived the IEEE Third Millennium Medal. His
activities concernautomatic control, robust control and optimization in planningand
scheduling, includingimplementationof fuzzy logic, neuralnetsand genetic algorithms.
He canbereached at: p.borne@jieee.org.

M. M. Criséstomo was born in Coimbra, Portugal, in 1952. Hereceived his BSc
degree fromthe Department of Electrical Engineering and Computer Science ofthe
University of Coimbrain 1978, his MSc from the Technical University of Lisbon,
Portugal,in 1987 and his PhD from Brunel University, UK, in 1992. He s currently
alecturerinthe Department of Electrical Engineering and Computer Science ofthe
University of Coimbraand aresearcher at the Institute for Systems and Robotics
in Coimbra, Portugal. His main research interests are robotics, sensors and
actuators forrobots, classical and fuzzy control systems.

J.L.Fernandez-Villacafias Martin graduated in Physics from the Complutense
University in Madrid and received his PhD in Astrophysicsin 1989. He then served
asamember of the Theoretical Physics Department in Oxford University until he
moved to British Telecom Research Labs in 1992. At BT he was a senior
researcherin Artificial Life and Evolutionary Computation. He left the labs tojoin
the European Commission in 1999 as a project officer in Future Emerging
Technologies. Since October 2000 he is a visiting professor at the Charles II1
University in Madrid atthe Department of Signal Theory and Communications. Dr.
Martin has published extensively and has been chair and invited speaker of a
number of conferences and events. His current field of work is GA theory,
information ecosystems and complexity in physical systems.

M. Gestwa was bornin Gelsenkirchenin 1966. From 1988 to 1991 he was trained
asacomputer assistant atthe Institute of Flight Research. Subsequently he studied
Computer Science at the Technical University of Braunschweig with a focus on

TLFeBOOK



Computational Intelligence in Control 325

computational intelligence. During his studies he worked as a freelance software
developer in the field of real-time application. Since 1997 he has worked as a
Scientistatthe Institute of Flight Research. His currentresearch project deals with
the cognitive pilotsimulation (CoPS).

Hongfei Gong,bornin 1972, graduated from the Department of Plant Protection,
Zhejiang University, China, in 1993. After graduation, he became a research
assistantatthe Biotechnology Institute of Zhejiang University. His research work
involvedbiological control, protein purification and geneisolation in plant protection
activities. In 1999, he came to the Instituto Superior Tecnico, Technical University
of Lisbon, Portugal, for his PhD study in Computer Science. His current research
interestsare: Artificial Life, Genetic Algorithms, Decision Systemandits application
in Agricultureand Ecosystem.

Slim Hammadi isan associate professor of Production Planning and Control atthe
Ecole Centralede Lille where he obtaineda PhDin 1991. Heisamember of IEEE/
SMC and has served as a referee for numerous journals, including the /EEE
Transactions on SMC. He was co-organizer of a Symposium (IMS) of the
IMACS/IEEE SMC Multiconference CESA’98 held in Hammamet (Tunisia) in
April 1998. Hehas organized several invited sessions indifferent SMC conferences
where he was session chairman. His research is related to production control,
production planning, computer science and computer-integrated manufacturing.
Hecanbereachedat: slim.hammadi@ec-lille.fr

Tetsuya Higuchireceived BE, ME, and PhD degrees in Electrical Engineering
from Keio University, Japan. He heads the New Circuits/System Technology
Group in MIRAI Project, Advanced Semiconductor Research Center (ASRC),
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba,
Japan. His current interests include evolvable Hardware Systems, Parallel
Processing Architecture in Artificial Intelligence, and Adaptive Systems. Dr.
Higuchireceived the Ichimura Award in 1994 and the ICES Best Paper Award in
1998. Heisamember ofthe Japanese Society for Artificial Intelligence (JSAI)and
ofthe Institute of Electronics, Information and Communication Engineers (IEICE).

Z.. Ibrahim graduated in 1990 with a BSc (Hons) in Civil Engineering from
Middlesex University, London, UK. She continued with her MSc degree at
Liverpool University, UK, in Structural Engineering (1994). Currently alecturerin
Structural Analysis and Dynamics at the University of Malaya, she is actively
involved with the working Group Committee in Wind Loads for building structures
inMalaysia.

TLFeBOOK



326 About the Authors

Z.. Ismail graduated in 1985 with a BA (Hons) in Mathematics from SUNY,
Newpaltz, USA. She completed her MA in Applied Mathematics from Temple
University, in 1987. She was a lecturer teaching mathematics at the Institute of
Technolgy MARA, Malaysia, between 1985 to 1992, before joining the University
of Malayaasalecturer inthe Department of Civil Engineering, a position she still
holds. Currently, pursuing her PhD degree in Structural Dynamics atthe Universiti
Malaya, Malaysia, and is actively involved with the working Group Committee in
Wind Loads for building structures in Malaysia.

Imed Kacem wasbornin Eljem, Tunisia, in 1976. Hereceived the EngDipl degree
ofthe ENSAIT (French “Grande Ecole”) and the DEA degree (MSc degree) from
the University of Lillel, France, in Control and Computer Sciences, both in
2000.He is currently pursuing a PhD in Automatic and Computer Science at
“Laboratoire d’ Automatique et Informatique de Lille” of the “Ecole Centrale de
Lille,” France. Mr. Kacem was selected from among the young Tunisian engineers
ofthe “Grandes Ecoles” toreceive the Tunisian Presidential Prize for2001.He has
served as areferee forthe Int CIMCA’01, the Int SMC’02 Conferences and the
IEEE/SMC Transactions. Hisresearch is related to the evolutionary optimization
methods for discrete events system, computer science and operational research.
Hecanbereached at: imed.kacem@ec-lille. fr.

Rens Kortmann studied Cognitive Science and Engineering atthe Rijksuniversiteit
Groningen and finished his Master’s dissertation in 1998. The dissertation was
written at the Artificial Intelligence Laboratory of the University of Edinburgh,
where he performed a one-yearresearch internship. Since 1998 he is appointed at
the Universiteit Maastricht, The Netherlands, as a PhD student, where he works on
the modelling of visually guided behaviour in computer simulations and robots.

Yong Liureceived his BSc degree from Wuhan University, Wuhan, in 1988; his
MSc degree from Huazhong University of Science and Technology, Wuhan, in
1988; his PhD from Wuhan University, Wuhanin 1994; and the University of New
South Wales, Canberra, in 1999. He is currently an associate professor at the
University of Aizu, Japan. He was aresearch fellow at AIST Tsukuba Central 2,
National Institute of Advanced Industrial Science and Technology, Japan, in 1999.
Hewas alecturer in the State Key Laboratory of Software Engineering, Wuhan
University in 1994. His research interests include evolutionary algorithms, neural
networks and evolvable hardware.

Taksiah A. Majid graduated in 1990 witha BSc (Hons) in Civil Engineering from
Middlesex University, London, UK. She completed her MSc and PhD degrees at

TLFeBOOK



Computational Intelligence in Control 327

Liverpool University, UK, in Structural Dynamics (1996). Currently alecturerin
Structural Analysis and Dynamics at Universiti Sains Malaysia, she is actively
involved with the working Group Committee in Wind Loads for building structures
inMalaysia.

P.Marrow began his career as abiologist, gaining a First Degree in Biology from
Oxford University and a Coctorate in Mathematical Biology from Y ork University.
Postdoctoral researchat Leiden and Cambridge Universities addressed evolutionary
dynamics, coevolutionary theory and the evolution of reproductive strategies. In
1997 hejoined aresearch group established by BT to focus onbiologically inspired
solutions to computing and telecommunications problems. Since then his research
has drawnupon various aspects of biological systems in developing computational
applications. Now aseniorresearch scientistin the Intelligent Systems Laboratory
BTextract, UK, heleadsateaminvestigating software agent systems for information
management, inspired by interactions between organisms in natural ecosystems.

Yoshiyuki Matsumurareceived BS and MS degrees in Mechanical Engineering
from Kobe University, Kobe, Japan, in 1998 and 2000, respectively. He is
currently working toward the PhD in the Graduate School of Science and
Technology, Kobe University. Also, heisaresearch fellow ofthe Japan Society of
the Promotionof Science (DC1). Hisresearchinterestsare evolutionary computation,
evolutionary artificial neural networks and evolutionary robotics. Mr. Matsumura
is a student member of the IEEE, SICE (Society of Instrument and Control
Engineers), ISCIE (Institute of System, Control and Information Engineers) and
JSPE (Japan Society of Precision Engineering).

Charles S. Newton is the head of Computer Science, University of New South
Wales (UNSW), at the Australian Defence Force Academy (ADFA) campus,
Canberra. Dr. Newton is also the deputy rector (Education). He obtained his PhD
inNuclear Physics from the Australian National University, Canberra,in 1975. He
joined the School of Computer Science in 1987 as a senior lecturer in Operations
Research. InMay 1993, he was appointed head of School and became professor
of Computer Science in November 1993. Priorto joining ADFA, Prof. Newton
spentnine years inthe Analytical Studies Branch ofthe Department of Defence. In
1989-91, he was the national president of the Australian Society for Operations
Research. His research interests encompass Group Decision Support Systems,
Simulation, Wargaming, Evolutionary Computation, DataMining and Operations
Research Applications. He has published extensively in national and international
journals, books and conference proceedings.

TLFeBOOK



328 About the Authors

A.D.Nurse was appointed to alectureship in Stress Analysis in the Department
of Mechanical Engineering at Loughborough University, UK, in 1992 and was
promoted to senior lecturer in 2000. He has published over 25 journal papers
mainly in the application of inverse techniques for extracting information from
experimental data. He has also prepared over 40 conference contributions
involving work on Photoelasticity, Bimaterial Interface Cracks, Adhesive Joints,
Finite Elements, and Damage Detection in Composites. He sits on the advisory
board for FEA Ltd. (www.lusas.com ), which produce the finite element software
Lusas. Heis also secretary of the Plastics Design Committee for the Institute of
Materials. Dr. Nurses's research interests include Computer-Aided Engineering,
Inverse Analysis,and Composite Materials.

Kazuhiro Ohkurareceived BS,MS, and PhD degrees in Computer Science from
Hokkaido University, Sapporo, Japan, in 1988, 1990 and 1997, respectively. He
is an associate professor in the Department of Mechanical Engineering, Kobe
University, Japan. Before joining Kobe University asaresearch associate in 1993,
he was with Fujitsu Laboratories, Ltd. for three years. In 1998, he was a visiting
research fellow inthe School of Cognitive and Computing Science, University of
Sussex, UK. Hisresearch interests are evolutionary computation, reinforcement
learning, artificial life, robotics and manufacturing systems. He isamember of the
SICE, ISCIE, JSPE, JSME (Japan Society of Mechanical Engineers) and RSJ
(Robotics Society of Japan).

D. C. Panni is a PhD candidate in the Wolfson School of Mechanical and
Manufacturing Engineering at Loughborough University, UK. Hisresearchinterests
coverthe fields of Genetic Algorithms, Finite Element Analysis, Inverse Analysis
and The Design of Advanced Composite Materials. In particular he has specialised
intheuse of novel methods of integrating GAs and the FE method to solve arange
of structural engineering problems.

V.Fernao Piresreceived his BS degree in Electrical Engineering fromthe Institute
Superior of Engineering of Lisbon, Portugal, in 1988 and his MS and PhD degrees
in Electrical and Computer Engineering from the Technical University of Lisbon,
Portugal, in 1995 and 2000, respectively. Since 1991 he is a member of the
teaching staffinthe Electrical Engineering Department of Superior Technical School
of Setubal —Polytechnic Institute of Setibal, Portugal. Presently he is a professor,
teaching Power Electronics and Control of Power Converters. Heis alsoresearcher
atCentrode Automaticaof UTL. His presentresearch interests are in the areas of
Low-Distortion Rectifiertopologies, Converter Control, Modelling and Simulation.

TLFeBOOK



Computational Intelligence in Control 329

Eric Postma studied Cognitive Scienceatthe Catholic University of Nijmegen and
received his Master’s degree in 1989. Since that year he is affiliated with the
Computer Science Department of the Universiteit Maastricht, The Netherlands,
wherehe is currently appointed as associate professor and coordinating the Neural
Networks and Adaptive Behaviour group. Dr. Postmahas published about neural
networks and adaptive behaviour in many international journals and conference
proceedings.

Anet Potgieter is currently employed by CoreProcess (Pty) Ltd. where she holds
the position of systems architect. She has extensive industrial experience in
embedded distributed applications as well as supply chainmanagement applications.
Shereceived her MSc (Computer Science) from the University of Pretoria, South
Africa,in 1994, andis currently pursuing her PhD inthe area of software engineering
and component-based systems, under the instruction of Professor Judith Bishop.
Herresearchinterests include software engineering, distributed artificial intelligence,
datamining and web-technology. She is a student member of the IEEE and the
ACM.

N. H.Ramli graduatedin2001 with a First Class Degree in Civil Engineering from
the University of Malaya, Malaysia. Currently pursuing her PhD degree in Steel
Structures at Sheftield University, UK, sheisalso a tutorat the Department of Civil
Engineering, University of Malaya, Malaysia.

Agostinho Claudio da Rosais director of Evolutionary Systems and Biomedical
Engineering Labatthe Institute for Systems and Robotics (LaSEEB-ISR), Lisbon,
Portugal, and associate professor of the Department of Electrical Engineering and
Computers of Technical University of Lisbon (UTL). She previously served as
visiting professor at the School of Medicine Stanford University in 99-00 . A fter
graduation from the Electrical Engineering & Computing at Instituo Superior
Tecnico(IST) in 1978, MSc and PhD degrees in Electronic Engineering and
Computers,in 1984 and 1990 from IST-UTL. Her mainresearch interests include:
Artificial Life, Biomedical Engineering, Signal and Image Processing, Evolutionary
Computation and Computational Intelligence.

M. Shackleton graduated from Sheffield University in Computer Science. He
joined the Image Processing and Computer Vision group at BT in 1989. In this
group he carried outresearch into novel computer vision algorithms, many inspired
by natural computation techniques. In 1996 Mr. Shackleton moved across to the
Future Technologies Group at Adastral Park, whose remit is to develop novel
solutions to BT s problems using anature-inspired approach. Withinthis grouphe

TLFeBOOK



330 About the Authors

has carried out research including, amongst other projects, developing anovel
“information chemistry” architecture, and evolutionary computation techniques.
This work has led to patents, international papers and book chapters. He also
recently edited a special issue of the BT Technology Journal (October 2000) on
nature-inspired computation. He now leads the future technologies group, where
heworksonresearchandapplications within the domain of evolutionary computation
and adaptive systems, and exploitation of these technologies within the business.

D. P. Solomatine received the MS degree in Systems Engineering from the
Moscow Aviation Institute (University) in 1979. From 1979 t01990 he worked at
the Institute for Systems Analysis ofthe Russian Academy of Sciences (from 1986
as a Senior Researcher). He received his PhD in Systems and Management
Sciences in 1984. He actively collaborated with the International Institute for
Applied Systems Analysis (Austria). In 1989-90 he spent a year as a Researcher
atthe Delft University of Technology, and since March 1990 he is a staff member
(from 2000, Associate Professor) ofthe Hydroinformatics section of the International
Institute for Infrastructural, Hydraulicand Environmental Engineering (IHE-Delft),
The Netherlands. His research interests include machine learning, data-driven
modeling, applications of chaos theory, global optimization and Internet-based
computing.

Ida Sprinkhuizen-Kuyper studied Applied Mathematics atthe Universiteit van
Amsterdam and received her Master’s degree cum laude in 1973. Shereceived her
PhD in Mathematicsin 1979. From 1984 untill 1999 she worked for the Computer
Science Department ofthe Universiteit Leiden, and since 1999 she is affiliated with
the Computer Science Department of the Universteit Maastricht, The Netherlands.
Hermainresearch interests are neural networks and evolutionary algorithms.

Pieter Spronck studied Computer Science at Delft University of Technology and
received his Master’s degree cum laude in 1996. Since 2001 he is affiliated asa
researcher with the Computer Science department of the Universiteit Maastricht,
The Netherlands, where heis also working ona PhD thesis. Before that, he worked
for 15 years in the field of Computer and Information Science as a developer,
researcher and project leader for several companies and aresearch institute.

R. J.Stonier isanassociate professor at Central Queensland University, Australia.
Hereceived his Bachelor's of Science (1968) and Honours (1969) in Mathematics
and completed aPhD (1978)in Mathematics at the University of Queensland. His
research interests are in non-linear control of multi-robot systems using Liapunov
theoryandslidingmode, fuzzy logic and neural networks, evolutionary computation

TLFeBOOK



Computational Intelligence in Control 331

including evolution algorithms to learn fuzzy logic controllers inrobot soccer and
fuzzy image enhancement filters, solutions to continuous nonlinear constrained
optimal control problems, problems of optimisation in VLSI, CPI prediction, and
irrigation strategies for water flow control in cropped soils.

G. Sundaraj obtained a Bachelor's degree in Civil Engineering with honours in
1999 from the Universiti Sains Malaysia. Heis currently pursuing amaster’s degree
in Civil Engineering from the same university. He isemployed by the Construction
Industry Board of Development (CIDB), Malaysia, as amanager of the Research
and Development Unit, Technology Division at CIDB Malaysia. He is committee
member of the Malaysian Standard of Wind Loading Working Group and a
member ofthe Australasian Wind Engineering Society.

P.J. Thomasobtained his Engineering degree from Central Queensland University,
Australia, with First Class Honours in 1998. His current PhD research is centered
on the evolutionary learning of fuzzy control in robot-soccer. Other research
interests include digital image processing, digital signal processing, participationin
robot-soccer competitions, and fostering community awareness of science and
technology through robot-soccer.

Kanji Uedaisaprofessor of Mechanical Engineering at Kobe University, Kobe,
Japan. He has been engaged inresearch and teaching in the fields of manufacturing
engineering and systems formore than 25 years, during which time he has authored
more than 300 published papers. He has led the IMS Program Next Generation
Manufacturing Systems and the international project “Biological Manufacturing
Systems” ofthe Consortium for Advanced Manufacturing. He has been chairman
ofthe Committee on Manufacturing Systems ofthe College International for I’Etude
Scientifique des Techniques de Production Mecanique (CIRP) since 1998. His
research interests include biological manufacturing systems, intelligent artifacts,
robotics, emergent synthesis and artificial life. Professor Ueda is a member of
CIRP,JSPE,JSME, SICE, ISCIE, RSJ, Society for Manufacturing Engineers, and
Danube Adria Association for Automation and Manufacturing.

Simon X. Yang received his BSc degree in Engineering Physics from Peking
University, China; his first MSc degree in Biophysics from Academia Sinicain
Beijing; his second MSc degree in Electrical Engineering from the University of
Houston, USA, and his PhD in Electrical and Computer Engineering from the
University of Alberta, Canada. He has been an assistant professor of Engineering
Systems and Computing at the University of Guelph, Canada, since 1999.
Currently heisthe director ofthe Advanced Robotics & Intelligent Systems (ARIS)

TLFeBOOK



332 About the Authors
Labatthe University of Guelph. His research areas include Robotics, Intelligent

Systems, Control Systems and Computational Neuroscience. He has published
more than 100 journal papers, book chapters and conference proceedings.

TLFeBOOK



Index 333

Index

A

adaptive landscapes 288

adaptive learning 130

agent 169

agricultural production 184

AIDA 149

aircraft cockpit 149

airplane system technology 150
ambient vibration testing 307

ant colony 171

Approach by Localization (AL) 241
artificial intelligence 170

Artificial Life modeling approach 185
Artificial Neural Networks (ANN) 197
attainment surfaces 222

ATTAS 149

autonomous agents 168, 170

B

Bactrocera oleae 184
Bayesian agencies 168
Bayesian agents 168
Bayesian networks 168, 169
behavior networks 170
binary alphabet 238

binary string 142
box-pushing controller 107
BTGP 280

C

Cartesian workspace 71
Chaos theory 215

civil engineering structures 304

classic coding 238

Classical Evolution Strategies (CES)
264

classification 200

climatic data 184

clustering 200

clusters 175

complex control systems 122

complex interaction protocols 170

computational intelligence 169

computer simulation 268

control vector 44

Controlled Evolutionary Approach
(CEA) 233, 243

conventional control difficult 43

coverage metrics 222

critical machine 234

Cross-Spectral Density (CSD) 302, 313

crossover 287

cycle-cutset conditioning 175

cycle-cutsets 175

D

damage detection 137

design wind load 302

Differential Evolution (DE) 219, 222
Discrete Fourier Transform (DFT) 312
doping 118

E

ecological system analysis 185
ensemble learning system 2

Copyright © 2003, Idea Group Inc.

TLFeBOOK



334 Index

epistasis variance 286

epoch 7

error ratio 222

Evolution Strategies (ES) 263

evolution strategies algorithms 264

Evolutionary Algorithm (EAs) 88, 104,
110, 116,218,219, 280

evolutionary biology 280

evolutionary computation context 280

Evolutionary Programming (EP) 263

existence of variation 281

F

Fast Evolution Strategies (FES) 265

Fast Fourier Transform (FFT) 302, 312

Finite Element (FE) 136

fitter mutants 286

flight simulation 150

Flight Training Devices (FTDs) 149

forced vibration methods 302

forced vibration testing 306

Fourier Transform 311

Frequency Response Function (FRF)
302

fuzzy amalgamation 89

fuzzy logic 122

fuzzy logic application 88

fuzzy logic controllers 89

Fuzzy logic systems 122

fuzzy pilot 151

fuzzy rule-based systems 197

G

general regression 43

General Regression Network (GRNN)
43

generational distance 222

generic neural network 25

genetic algorithm (GA) 123, 137, 238,
263

genetic diversity 283

genetic drift 285

genetic manipulations 246

Genetic Programming System (BTGP)
287

genetic reinforcement learning 106

Genetically Modified Organisms (GMO)

246

genotype 138

German Aerospace Center (DLR) 149

glide slope 154

Global Combined Discrete Recombina-
tion 268

Global External (GE) 112

Global Internal (GI) 112

global semantics 173

golden unit 23

ground based simulators 150

Gust Response Factors (GRF) 304

H

heat unit accumulation concept 187
helicopter control 43

hidden periodicities 312

Hierarchical Fuzzy Logic Systems 126
human decision maker 219

ILS tracking task 151

impact tests 307

information retrieval 279
intelligent components 168
intelligent control systems 43
interaction 170

inverse analyses 136

inverse system identification 137

J

Job-shop Scheduling Problem (JSP)
233
join-tree propagation 175

K

Khepera type 107
knowledge base (KB) 88
knowledge space 23

L

lay-up design 143
learning 2

Local External (LE) 112
Local Internal (LI) 112
local semantics 173

TLFeBOOK



Lyapunov stability theory 71
M

machine learning 199

main rotor 45

makespan 234

Malaysian Wind Code 310

Man/Machine Interface (MMI) 148

Mapping Genetic Algorithm (MGA) 280,
287

Mixtures-of-Experts (ME) 4

model 198

model tree 208

Most Probable Explanation (MPE) 174

Multiobjective Evolutionary Algorithms
(MEAs) 218

Multiobjective Optimization Problems
(MOPs) 218

mutation 281

mutation variance 284

N

negative correlation learning 5

neighboring neurons 73

neural computation 23

neural controller configuration 114

neural network 42, 104

neural network methods 2, 70

neural variables 22

neutral mutants 286

next-generation 168

NN-based controllers 44

Noise 263

nominal data 200

Non-dominated Sorting Genetic Algo-
rithms (NSGA) 221

non-linear dynamics 215

non-serial dynamic programming
algorithms 175

nonstationary environment 69

nonstationary statistics 54

(o)

olive fly’s life cycle 186
olive trees 184
Operational Research (OR) 219

Index 335

output vector 44
P

parameter sensitivity 82

Pareto Archived Evolution Strategy
(PAES) 222

pest management 183

phenotype 138

phenotypes (decision trees) 287

phenotypic diversity 284

pilot model approach 151

Plasmopara viticola 185

poikilothermic animal 188

population dynamics analysis methods
184

Power Spectral Density (PSD) 302,
312, 315

pre-imaginary phases 186

probability 28

pruning 209

pull back tests 307

push 164

R

Radial-Basis Function (RBF) neural
network 205

Ramped growth 287

Random Sampling Evolutionary Algo-
rithm (RAND) 220

randomized algorithms 22

real-time path planning 69

real-time trajectory 70

regression tree 208

robot soccer system 89

robot’s proximity sensors 107

Robust Evolution Strategies (RES) 265

robustness index 27

root locus 47

S

scheduling algorithm 242
schemata generation algorithm 242
sequential training methods 3
shaker tests 307

simple agents 171

simulation models 198

TLFeBOOK



336 Index

Single Objective Evolutionary Algorithm

(SOEA) 220
single sampling line 223
spectrum analysis 312
splines 205
spread 222
state vector 44
statistical learning theory 200

Strength Pareto Evolutionary Algorithm

(SPEA) 219
strength-to-weight ratio 143
support vector machine (SVM) 200

T

task instances 111

thrustincrease 164

thrust reduction 164

training set 201

travelling salesman problem 239
Turbulence Intensities (T1) 302, 313

U
uncertain environments 176

\"

variation 281

Vector Evaluated Genetic Algorithm
(VEGA) 220

verification set 201

vibration testing 305

w
wind speed 309

TLFeBOOK



	Computational.Intelligence.In.Control
	Cover

	Table of Contents
	Preface
	SECTION I:
NEURAL
NETWORKS
DESIGN, CONTROL
AND ROBOTICS
APPLICATION
	Chapter I: Designing Neural Network Ensembles by Minimising Mutual Information
	Chapter II:
 A Perturbation Size- Independent Analysis of Robustness in Neural Networks by Randomized Algorithms
	Chapter III: Helicopter Motion Control
Using a General Regression
Neural Network
	Chapter IV: A Biologically Inspired
Neural Network Approach
to Real-Time Map Building
and Path Planning

	SECTION II: HYBRID
EVOLUTIONARY
SYSTEMS FOR
MODELLING,
CONTROL
AND ROBOTICS
APPLICATIONS
	Chapter V: Evolutionary Learning
of Fuzzy Control
in Robot-Soccer
	Chapter VI: Evolutionary Learning of a
Box-Pushing Controller
	Chapter VII: Computational Intelligence
for Modelling and Control
of Multi-Robot Systems
	Chapter VIII: Integrating Genetic
Algorithms and Finite
Element Analyses for
Structural Inverse Problems

	SECTION III: FUZZY LOGIC
AND
BAYESIAN
SYSTEMS
	Chapter IX: On the Modelling
of a Human Pilot
Using Fuzzy Logic Control
	Chapter X: Bayesian Agencies
in Control

	SECTION IV: MACHINE
LEARNING,
EVOLUTIONARY
OPTIMISATION
AND
INFORMATION
RETRIEVAL
	Chapter XI: Simulation Model for the
Control of Olive Fly
Bactrocera Oleae Using
Artificial Life Technique
	Chapter XII: 
Applications of Data-Driven
Modelling and Machine
Learning in Control of Water
Resources
	Chapter XIII: Solving Two Multi-Objective
Optimization Problems Using
Evolutionary Algorithm
	Chapter XIV: Flexible Job-Shop Scheduling
Problems: Formulation,
Lower Bounds, Encoding
and Controlled Evolutionary
Approach
	Chapter XV: The Effect of Multi-Parent
Recombination on Evolution
Strategies for Noisy Objective
Functions
	Chapter XVI: On Measuring the Attributes
of Evolutionary Algorithms:
A Comparison of Algorithms
Used for Information
Retrieval
	Chapter XVII: 
Design Wind Speeds Using
Fast Fourier Transform:
A Case Study

	About the Authors
	Index



