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Preface

Man has learned much from studies of natural systems, using what has been learned
to develop new algorithmic models to solve complex problems. This book presents
an introduction to some of these technological paradigms, under the umbrella of
computational intelligence (CI). In this context, the book includes artificial neural
networks, evolutionary computing, swarm intelligence and fuzzy logic, which are
respectively models of the following natural systems: biological neural networks,
evolution, swarm behavior of social organisms, and human thinking processes.

Why this book on computational intelligence? Need arose from a graduate course,
where students do not have a deep background of artificial intelligence and mathe-
matics. Therefore the introductory nature, both in terms of the CI paradigms and
mathematical depth. While the material is introductory in nature, it does not shy
away from details, and does present the mathematical foundations to the interested
reader. The intention of the book is not to provide thorough attention to all compu-
tational intelligence paradigms and algorithms, but to give an overview of the most
popular and frequently used models. As such, the book is appropriate for beginners
in the CI field. The book is therefore also applicable as prescribed material for a
third year undergraduate course.

In addition to providing an overview of CI paradigms, the book provides insights
into many new developments on the CI research front (including material to be
published in 2002) - just to tempt the interested reader. As such, the material is
useful to graduate students and researchers who want a broader view of the dif-
ferent CI paradigms, also researchers from other fields who have no knowledge of
the power of CI techniques, e.g. bioinformaticians, biochemists, mechanical and
chemical engineers, economists, musicians and medical practitioners.

The book is organized in five parts. Part I provides a short introduction to the
different CI paradigms and a historical overview. Parts II to V cover the different
paradigms, and can be presented in any order.

Part II deals with artificial neural networks (NN), including the following topics:
Chapter 2 introduces the artificial neuron as the fundamental part of a neural net-
work, including discussions on different activation functions, neuron geometry and



learning rules. Chapter 3 covers supervised learning, with an introduction to differ-
ent types of supervised networks. These include feedforward NNs, functional link
NNs, product unit NNs and recurrent NNs. Different supervised learning algorithms
are discussed, including gradient descent, scaled conjugate gradient, LeapFrog and
particle swarm optimization. Chapter 4 covers unsupervised learning. Different un-
supervised NN models are discussed, including the learning vector quantizer and
self-organizing feature maps. Chapter 5 introduces radial basis function NNs which
are hybrid unsupervised and supervised learners. Reinforcement learning is dealt
with in chapter 6. Much attention is given to performance issues of supervised net-
works in chapter 7. Aspects that are included are measures of accuracy, analysis of
performance, data preparation, weight initialization, optimal learning parameters,
network architecture selection, adaptive activation functions and active learning.

Part III introduces several evolutionary computation models. Topics covered in-
clude: an overview of the computational evolution process in chapter 8. Chapter 9
covers genetic algorithms, chapter 10 genetic programming, chapter 11 evolutionary
programming, chapter 12 evolutionary strategies, chapter 13 differential evolution,
chapter 14 cultural evolution, and chapter 15 covers coevolution, introducing both
competitive and symbiotic coevolution.

Part IV presents an introduction to two types of swarm-based models: Chapter 16
discusses particle swarm optimization and covers some of the new developments
in particle swarm optimization research. Ant colony optimization is overviewed in
chapter 17.

Part V deals with fuzzy systems. Chapter 18 presents an introduction to fuzzy
systems with a discussion on membership functions, linguistic variables and hedges.
Fuzzy inferencing systems are explained in chapter 19, while fuzzy controllers are
discussed in chapter 20. An overview of rough sets is given in chapter 21.

The conclusion brings together the different paradigms and shows that hybrid sys-
tems can be developed to attack difficult real-world problems.

Throughout the book, assignments are given to highlight certain aspects of the
covered material and to stimulate thought. Some example applications are given
where they seemed appropriate to better illustrate the theoretical concepts.

Several Internet sites will be helpful as an additional. These include:

e http://citeseer.nj.nec.com,/ which is an excellent search engine for Al-related
publications;

e http://www.ics.uci.edu/~mlearn/MLRepository.html, a repository of data
bases maintained by UCI;

e http://www.cs.toronto.edu/~delve/, another repository of benchmark prob-
lems.



http://www . lirmm.fr/ ~reitz/copie/siftware.html, a source of commercial and
free software.

http://www.aic.nrl.navy.mil/~aha/research/machine-learning.html, a reposi-
tory of machine learning resources

http://dsp.jpl.nasa.gov/members/payman/swarm/, with resources on swarm
intelligence.

http://www.cse.dmu.ac.uk/~rij/fuzzy.html and
http://www.austinlinks.com/Fuzzy/ with information on fuzzy logic.

http://www.informatik.uni-stuttgart.de/ifi/fk/evolalg/, a repository for evo-
lutionary computing.

http://www.evalife.dk/bbase, another evolutionary computing and artificial
life repository.

http://news.alife.org/, a source for information and software on Artificial Life.
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Chapter 1

Introduction to Computational
Intelligence

“Keep it simple:
as simple as possible,
but no simpler.”

- A. Einstein

A major thrust in algorithmic development is the design of algorithmic models
to solve increasingly complex problems. Enormous successes have been achieved
through the modeling of biological and natural intelligence, resulting in so-called
“intelligent systems”. These intelligent algorithms include artificial neural net-
works, evolutionary computing, swarm intelligence, and fuzzy systems. Together
with logic, deductive reasoning, expert systems, case-based reasoning and symbolic
machine learning systems, these intelligent algorithms form part of the field of Arti-
ficial Intelligence (AI). Just looking at this wide variety of Al techniques, Al can be
seen as a combination of several research disciplines, for example, computer science,
physiology, philosophy, sociology and biology.

But what s intelligence? Attempts to find definitions of intelligence still provoke
heavy debate. Dictionaries define intelligence as the ability to comprehend, to un-
derstand and profit from experience, to interpret intelligence, having the capacity
for thought and reason (especially to a high degree). Other keywords that describe
aspects of intelligence include creativity, skill, consciousness, emotion and intuition.

Can computers be intelligent? This is a question that to this day causes more
debate than do definitions of intelligence. In the mid-1900s, Alan Turing gave much
thought to this question. He believed that machines could be created that would
mimic the processes of the human brain. Turing strongly believed that there was
nothing the brain could do that a well-designed computer could not. Fifty years later



4 CHAPTER 1. INTRODUCTION TO COMPUTATIONAL INTELLIGENCE

his statements are still visionary. While successes have been achieved in modeling
biological neural systems, there are still no solutions to the complex problem of
modeling intuition, consciousness and emotion — which form integral parts of human
intelligence.

In 1950 Turing published his test of computer intelligence, referred to as the Turing
test [Turing 1950]. The test consisted of a person asking questions via a keyboard
to both a person and a computer. If the interrogator could not tell the computer
apart from the human, the computer could be perceived as being intelligent. Turing
believed that it would be possible for a computer with 10° bits of storage space to
pass a 5-minute version of the test with 70% probability by the year 2000. Has his
belief come true? The answer to this question is left to the reader, in fear of running
head first into another debate! However, the contents of this book may help to shed
some light on the answer to this question.

A more recent definition of artificial intelligence came from the IEEE Neural Net-
works Council of 1996: the study of how to make computers do things at which
people are doing better. A definition that is flawed, but this is left to the reader to
explore in one of the assignments at the end of this chapter.

This book concentrates on a sub-branch of Al, namely Computational Intelligence
(CI) - the study of adaptive mechanisms to enable or facilitate intelligent behavior in
complex and changing environments. These mechanisms include those Al paradigms
that exhibit an ability to learn or adapt to new situations, to generalize, abstract,
discover and associate. The following CI paradigms are covered: artificial neural
networks, evolutionary computing, swarm intelligence and fuzzy systems. While
individual techniques from these CI paradigms have been applied successfully to
solve real-world problems, the current trend is to develop hybrids of paradigms,
since no one paradigm is superior to the others in all situations. In doing so, we
capitalize on the respective strengths of the components of the hybrid CI system,
and eliminate weaknesses of individual components.

The rest of this book is organized as follows: Section 1.1 presents a short overview
of the different CI paradigms, also discussing the biological motivation for each
paradigm. A short history of Al is presented in Section 1.2. Artificial neural net-
works are covered in Part II, evolutionary computing in Part III, swarm intelligence
in Part IV and fuzzy systems in Part V. A short discussion on hybrid CI models is
given in the conclusion of this book.

At this point it is necessary to state that there are different definitions of what
constitutes CI. This book reflects the opinion of the author, and may well cause
some debate. For example, Swarm Intelligence (SI) is classified as a CI paradigm,
while most researchers are of the belief that it belongs only under Artificial Life.
However, both Particle Swarm Optimization (PSO) and Anto Colony Optimization
(ACO), as treated under SI, satisfy the definition of CI given above, and are therefore
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included in this book as being CI techniques.

1.1 Computational Intelligence Paradigms

This book considers four main paradigms of Computation Intelligence (CI), namely
artificial neural networks (NN), evolutionary computing (EC), swarm intelligence
(SI) and fuzzy systems (FS). Figure 1.1 gives a summary of the aim of the book.
In addition to CI paradigms, probabilistic methods are frequently used together
with CI techniques, which is therefore shown in the figure. Soft computing, a term
coined by Lotfi Zadeh, is a different grouping of paradigms, which usually refers to
the collective set of CI paradigms and probabilistic methods. The arrows indicate
that techniques from different paradigms can be combined to form hybrid systems.

~ A,/ -

-

N

Probabilistic
Methods

Figure 1.1: Illustration of CI paradigms

Each of the CI paradigms has its origins in biological systems. NNs model biolog-
ical neural systems, EC models natural evolution (including genetic and behavioral
evolution), SI models the social behavior of organisms living in swarms or colonies,
and FS originated from studies of how organisms interact with their environment.
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1.1.1 Artificial Neural Networks

The brain is a complex, nonlinear and parallel computer. It has the ability to perform
tasks such as pattern recognition, perception and motor control much faster than
any computer — even though events occur in the nanosecond range for silicon gates,
and milliseconds for neural systems. In addition to these characteristics, others
such as the ability to learn, memorize and still generalize, prompted research in
algorithmic modeling of biological neural systems — referred to as artificial neural
networks (NN).

It is estimated that there is in the order of 10-500 billion neurons in the human
cortex, with 60 trillion synapses. The neurons are arranged in approximately 1000
main modules, each having about 500 neural networks. Will it then be possible to
truly model the human brain? Not now. Current successes in neural modeling are
for small artificial NNs aimed at solving a specific task. We can thus solve problems
with a single objective quite easily with moderate-sized NNs as constrained by the
capabilities of modern computing power and storage space. The brain has, however,
the ability to solve several problems simultaneously using distributed parts of the
brain. We still have a long way to go ...

The basic building blocks of biological neural systems are nerve cells, referred to as
neurons. As illustrated in Figure 1.2, a neuron consists of a cell body, dendrites
and an axon. Neurons are massively interconnected, where an interconnection is
between the axon of one neuron and a dendrite of another neuron. This connection
is referred to as a synapse. Signals propagate from the dendrites, through the cell
body to the axon; from where the signals are propagated to all connected dendrites.
A signal is transmitted to the axon of a neuron only when the cell “fires”. A neuron
can either inhibit or excite a signal.

An artificial neuron (AN) is a model of a biological neuron (BN). Each AN receives
signals from the environment or other ANs, gathers these signals, and when fired,
transmits a signal to all connected ANs. Figure 1.3 is a representation of an arti-
ficial neuron. Input signals are inhibited or excited through negative and positive
numerical weights associated with each connection to the AN. The firing of an AN
and the strength of the exiting signal are controlled via a function, referred to as
the activation function. The AN collects all incoming signals, and computes a net
input signal as a function of the respective weights. The net signal serves as input
to the activation function which calculates the output signal of the AN.

An artificial neural network (NN) is a layered network of ANs. An NN may consist
of an input layer, hidden layers and an output layer. ANs in one layer are connected,
fully or partially, to the ANs in the next layer. Feedback connections to previous
layers are also possible. A typical NN structure is depicted in Figure 1.4.

Several different NN types have been developed, for example (the reader should note
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Nucleus Dendrite

Cell Body
Axon

Figure 1.2: Illustration of a biological neuron
that the list below is by no means complete):

e single-layer NNs, such as the Hopfield network;

e multilayer feedforward NNs, including, for example, standard backpropaga-
tion, functional link and product unit networks;

e temporal NNs, such as the Elman and Jordan simple recurrent networks as
well as time-delay neural networks;

e self-organizing NNs, such as the Kohonen self-organizing feature maps and the
learning vector quantizer;

e combined feedforward and self-organizing NNs, such as the radial basis func-
tion networks.

These NN types have been used for a wide range of applications, including diagnosis
of diseases, speech recognition, data mining, composing music, image processing,
forecasting, robot control, credit approval, classification, pattern recognition, plan-
ning game strategies, compression and many others.
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Input signals

Output signal

Figure 1.3: Illustration of an artificial neuron

1.1.2 Evolutionary Computing

Evolutionary computing has as its objective the model of natural evolution, where
the main concept is survival of the fittest: the weak must die. In natural evolution,
survival is achieved through reproduction. Offspring, reproduced from two parents
(sometimes more than two), contain genetic material of both (or all) parents —
hopefully the best characteristics of each parent. Those individuals that inherit bad
characteristics are weak and lose the battle to survive. This is nicely illustrated in
some bird species where one hatchling manages to get more food, gets stronger, and
at the end kicks out all its siblings from the nest to die.

In evolutionary computing we model a population of individuals, where an individual
is referred to as a chromosome. A chromosome defines the characteristics of indi-
viduals in the population. Each characteristic is referred to as a gene. The value of
a gene is referred to as an allele. For each generation, individuals compete to repro-
duce offspring. Those individuals with the best survival capabilities have the best
chance to reproduce. Offspring is generated by combining parts of the parents, a
process referred to as crossover. Each individual in the population can also undergo
mutation which alters some of the allele of the chromosome. The survival strength
of an individual is measured using a fitness function which reflects the objectives
and constraints of the problem to be solved. After each generation, individuals may
undergo culling, or individuals may survive to the next generation (referred to as
elitism). Additionally, behavioral characteristics (as encapsulated in phenotypes)
can be used to influence the evolutionary process in two ways: phenotypes may
influence genetic changes, and/or behavioral characteristics evolve separately.

Different classes of EC algorithms have been developed:

e Genetic algorithms which model genetic evolution.

¢ Genetic programming which is based on genetic algorithms, but individuals
are programs (represented as trees).
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Figure 1.4: Illustration of an artificial neural network

e Evolutionary programming which is derived from the simulation of adapt-
ive behavior in evolution (phenotypic evolution).

e Evolution strategies which are geared toward modeling the strategic pa-
rameters that control variation in evolution, i.e. the evolution of evolution.

¢ Differential evolution, which is similar to genetic algorithms, differing in
the reproduction mechanism used.

e Cultural evolution which models the evolution of culture of a population and
how the culture influences the genetic and phenotypic evolution of individuals.

o Co-evolution where initially “dumb” individuals evolve through cooperation,
or in competition with one another, acquiring the necessary characteristics to
survive.

Other aspects of natural evolution have also been modeled. For example, the ex-
tinction of dinosaurs, and distributed (island) genetic algorithms, where different
populations are maintained with genetic evolution taking place in each population.
In addition, aspects such as migration among populations are modeled. The model-
ing of parasitic behavior has also contributed to improved evolutionary techniques.
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In this case parasites infect individuals. Those individuals that are too weak die.
On the other hand, immunology has been used to study the evolution of viruses and
how antibodies should evolve to kill virus infections.

Evolutionary computing has been used successfully in real-world applications, for
example, data mining, combinatorial optimization, fault diagnosis, classification,
clustering, scheduling and time series approximation.

1.1.3 Swarm Intelligence

Swarm intelligence originated from the study of colonies, or swarms of social organ-
isms. Studies of the social behavior of organisms (individuals) in swarms prompted
the design of very efficient optimization and clustering algorithms. For example,
simulation studies of the graceful, but unpredictable, choreography of bird flocks
led to the design of the particle swarm optimization algorithm, and studies of the
foraging behavior of ants resulted in ant colony optimization algorithms.

Particle swarm optimization (PSO) is a global optimization approach, modeled on
the social behavior of bird flocks. PSO is a population-based search procedure where
the individuals, referred to as particles, are grouped into a swarm. Each particle in
the swarm represents a candidate solution to the optimization problem. In a PSO
system, each particle is “flown” through the multidimensional search space, adjusting
its position in search space according to its own experience and that of neighbor-
ing particles. A particle therefore makes use of the best position encountered by
itself and the best position of its neighbors to position itself toward an optimum
solution. The effect is that particles “fly” toward the global minimum, while still
searching a wide area around the best solution. The performance of each particle
(i-e. the “closeness” of a particle to the global minimum) is measured according to
a predefined fitness function which is related to the problem being solved. Applica-
tions of PSO include function approximation, clustering, optimization of mechanical
structures, and solving systems of equations.

Studies of ant colonies have contributed in abundance to the set of intelligent al-
gorithms. The modeling of pheromone depositing by ants in their search for the
shortest paths to food sources resulted in the development of shortest path opti-
mization algorithms. Other applications of ant colony optimization include routing
optimization in telecommunications networks, graph coloring, scheduling and solv-
ing the quadratic assignment problem. Studies of the nest building of ants and bees
resulted in the development of clustering and structural optimization algorithms.

As it is a very young field in Computer Science, with much potential, not many
applications to real-world problems exist. However, initial applications were shown
to be promising, and much more can be expected.
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1.1.4 Fuzzy Systems

Traditional set theory requires elements to be either part of a set or not. Similarly,
binary-valued logic requires the values of parameters to be either 0 or 1, with similar
constraints on the outcome of an inferencing process. Human reasoning is, however,
almost always not this exact. Our observations and reasoning usually include a
measure of uncertainty. For example, humans are capable of understanding the
sentence: “Some Computer Science students can program in most languages”. But
how can a computer represent and reason with this fact?

Fuzzy sets and fuzzy logic allow what is referred to as approzimate reasoning. With
fuzzy sets, an element belongs to a set to a certain degree of certainty. Fuzzy
logic allows reasoning with these uncertain facts to infer new facts, with a degree
of certainty associated with each fact. In a sense, fuzzy sets and logic allow the
modeling of common sense.

The uncertainty in fuzzy systems is referred to as nonstatistical uncertainty, and
should not be confused with statistical uncertainty. Statistical uncertainty is based
on the laws of probability, whereas nonstatistical uncertainty is based on vagueness,
imprecision and/or ambiguity. Statistical uncertainty is resolved through observa-
tions. For example, when a coin is tossed we are certain what the outcome is, while
before tossing the coin, we know that the probability of each outcome is 50%. Non-
statistical uncertainty, or fuzziness, is an inherent property of a system and cannot
be altered or resolved by observations.

Fuzzy systems have been applied successfully to control systems, gear transmission
and braking systems in vehicles, controlling lifts, home appliances, controlling traffic
signals, and many others.

1.2 Short History

Aristotle (384-322 bc) was possibly the first to move toward the concept of artificial
intelligence. His aim was to explain and codify styles of deductive reasoning, which
he referred to as syllogisms. Ramon Llull (1235-1316) developed the Ars Magna:
an optimistic attempt to build a machine, consisting of a set of wheels, which was
supposed to be able to answer all questions. Today this is still just a dream -
or rather, an illusion. The mathematician Gottfried Leibniz (1646-1716) reasoned
about the existence of a calculus philosophicus, a universal algebra that can be used
to represent all knowledge (including moral truths) in a deductive system.

The first major contribution was by George Boole in 1854, with his development
of the foundations of propositional logic. In 1879, Gottlieb Frege developed the
foundations of predicate calculus. Both propositional and predicate calculus formed
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part of the first Al tools.

It was only in the 1950s that the first definition of artificial intelligence was es-
tablished by Alan Turing. Turing studied how machinery could be used to mimic
processes of the human brain. His studies resulted in one of the first publications of
Al entitled Intelligent Machinery. In addition to his interest in intelligent machines,
he had an interest in how and why organisms developed particular shapes. In 1952
he published a paper, entitled The Chemical Basis of Morphogenesis — possibly the
first studies in what is now known as artificial life.

The term artificial intelligence was first coined in 1956 at the Dartmouth conference,
organized by John MacCarthy — now regarded as the father of AI. From 1956 to 1969
much research was done in modeling biological neurons. Most notable were the work
on perceptrons by Rosenblatt, and the adaline by Widrow and Hoff. In 1969, Minsky
and Papert caused a major setback to artificial neural network research. With their
book, called Perceptrons, they concluded that, in their “intuitive judgment”, the
extension of simple perceptrons to multilayer perceptrons “is sterile”. This caused
research in NNs to go into hibernation until the mid-1980s. During this period of
hibernation a few researchers, most notably Grossberg, Carpenter, Amari, Kohonen
and Fukushima, continued their research efforts.

The resurrection of NN research came with landmark publications from Hopfield,
Hinton, and Rumelhart and McLelland in the early and mid-1980s. From the late
1980s research in NNs started to explode, and is today one of the largest research
areas in Computer Science.

The development of evolutionary computing (EC) started with genetic algorithms
in the 1950s with the work of Fraser. However, it is John Holland who is generally
viewed as the father of EC, most specifically of genetic algorithms. In these works,
elements of Darwin’s theory of evolution [Darwin 1859} were modeled algorithmi-
cally. In the 1960s, Rechenberg developed evolutionary strategies (ES). Research in
EC was not a stormy path as was the case for NNs. Other important contributions
which shaped the field were by De Jong, Schaffer, Goldberg, Fogel and Koza.

Many people believe that the history of fuzzy logic started with Gautama Buddha
(563 bc) and Buddhism, which often described things in shades of gray. However, the
Western community considers the work of Aristotle on two-valued logic as the birth
of fuzzy logic. In 1920 Lukasiewicz published the first deviation from two-valued
logic in his work on three-valued logic — later expanded to an arbitrary number of
values. The quantum philosopher Max Black was the first to introduce quasi-fuzzy
sets, wherein degrees of membership to sets were assigned to elements. It was Lotfi
Zadeh who contributed most to the field of fuzzy logic, being the developer of fuzzy
sets [Zadeh 1965]. From then, until the 1980s fuzzy systems was an active field, pro-
ducing names such as Mamdani, Sugeno, Takagi and Bezdek. Then, fuzzy systems
also experienced a dark age in the 1980s, but was revived by Japanese researchers
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in the late 1980s. Today it is a very active field with many successful applications,
especially in control systems. In 1991, Pawlak introduced rough set theory to Com-
puter Science, where the fundamental concept is the finding of a lower and upper
approximation to input space. All elements within the lower approximation have
full membership, while the boundary elements (those elements between the upper
and lower approximation) belong to the set to a certain degree.

Interestingly enough, it was an unacknowledged South African poet, Eugene N
Marais (1871-1936), who produced some of the first and most significant contri-
butions to swarm intelligence in his studies of the social behavior of both apes
and ants. Two books on his findings were published more than 30 years after his
death, namely The Soul of the White Ant [Marais 1970] and The Soul of the Ape
[Marais 1969]. The algorithmic modeling of swarms only gained momentum in the
early 1990s with the work of Marco Dorigo on the modeling of ant colonies. In 1996
Eberhart and Kennedy developed the particle swarm optimization algorithm as a
model of bird flocks. Swarm intelligence is in its infancy, and is a promising field
resulting in interesting applications.

1.3 Assignments

1. Comment on the eligibility of Turing’s test for computer intelligence, and his
belief that computers with 10° bits of storage would pass a 5-minute version
of his test with 70% probability.

2. Comment on the eligibility of the definition of Artificial Intelligence as given
by the 1996 IEEE Neural Networks Council.

3. Based on the definition of CI given in this chapter, show that each of the
paradigms (NN, EC, SI and FS) does satisfy the definition.
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Part 11

ARTIFICIAL NEURAL
NETWORKS

Artificial neural networks (NN) were inspired from brain modeling studies. Chap-
ter 1 illustrated the relationship between biological and artificial neural networks.
But why invest so much effort in modeling biological neural networks? Implemen-
tations in a number of application fields have presented ample rewards in terms of
efficiency and ability to solve complex problems. Some of the classes of applications
to which artificial NNs have been applied include:

o classification, where the aim is to predict the class of an input vector;

e pattern matching, where the aim is to produce a pattern best associated with
a given input vector;

e pattern completion, where the aim is to complete the missing parts of a given
input vector;

e optimization, where the aim is to find the optimal values of parameters in an
optimization problem;

e control, where, given an input vector, an appropriate action is suggested;

e function approzimation/times series modeling, where the aim is to learn the
functional relationships between input and desired output vectors;

e data mining, with the aim of discovering hidden patterns from data — also
referred to as knowledge discovery.

15



16

A neural network is basically a realization of a nonlinear mapping from R/ to R¥
FNN: ]RI b d RK

where I and K are respectively the dimension of the input and target (desired
output) space. The function Fyy is usually a complex function of a set of nonlinear
functions, one for each neuron in the network.

Neurons form the basic building blocks of NNs. Chapter 2 discusses the single
neuron, also referred to as the perceptron, in detail. Chapter 3 discusses NNs under
the supervised learning regime, while Chapter 4 covers unsupervised learning NNs.
A hybrid supervised and unsupervised learning paradigm is discussed in Chapter 5.
Reinforcement learning is covered in Chapter 6. Part II is concluded by Chapter 7
which discusses NN performance issues.



Chapter 2

The Artificial Neuron

An artificial neuron (AN), or neuron, implements a nonlinear mapping from R’ to
[0,1] or [-1, 1], depending on the activation function used. That is,

fan : R —0,1]

or

fAN : RI — [-‘1, 1]

where I is the number of input signals to the AN. Figure 2.1 presents an illustration
of an AN with notational conventions that will be used throughout this text. An
AN receives a vector of I input signals,

—

X = (z1,22,- -+, 27)

either from the environment or from other ANs. To each input signal z; is associated
a weight w; to strengthen or deplete the input signal. The AN computes the net
input signal, and uses an activation function f4n to compute the output signal y
given the net input. The strength of the output signal is further influenced by a
threshold value 6, also referred to as the bias.

Figure 2.1: An artificial neuron

17
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2.1 Calculating the Net Input Signal

The net input signal to an AN is usually computed as the weighted sum of all input
signals,

1
net = Z Tiw; (2.1)
i=1

Artificial neurons that compute the net input signal as the weighted sum of input
signals are referred to as summation units (SU). An alternative to compute the net
input signal is to use product units (PU), where

I
net = H z (2.2)
i=1

Product units allow higher-order combinations of inputs, having the advantage of
increased information capacity.

2.2 Activation Functions

The function f4n receives the net input signal and bias, and determines the output
(or firing strength) of the neuron. This function is referred to as the activation
function. Different types of activation functions can be used. In general, activa-
tion functions are monotonically increasing mappings, where (excluding the linear
function)

fan(=00) =0 or fan(-o0)=-1
and

fan(o0) =1

Frequently used activation functions are enumerated below:

1. Linear function (see Figure 2.2(a) for 6 = 0):
fan(net — 0) = B(net — 0) (2.3)

The linear function produces a linearly modulated output, where 3 is a con-
stant.

2. Step function (see Figure 2.2(b) for § > 0):

B ifnet >0

fan(net - 0) = { Bo ifnet <8 24)
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Figure 2.2: Activation functions
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The step function produces one of two scalar output values, depending on
the value of the threshold 8. Usually, a binary output is produced for which
B1 =1 and B2 = 0; a bipolar output is also sometimes used where 8; = 1 and

By = ~1.

. Ramp function (see Figure 2.2(c) for § > 0):

B8 ifnet—60>p
fan(net —60) =4 net—6 ifjnet—6| <p (2.5)
-B ifnet —0< -5

The ramp function is a combination of the linear and step functions.

. Sigmoid function (see Figure 2.2(d) for 6 = 0):

1

1 + e—Anet-0) (2'6)

fan(net — 0) =
The sigmoid function is a continuous version of the ramp function, with
fan(net) € (0,1). The parameter A controls the steepness of the function.
Usually, A = 1.

. Hyperbolic tangent (see Figure 2.2(e) for 6 = 0):

eA(net——O) _ e—A(net—G)

fan(net - 6) = eAnet—0) 1 g—Alnet—0) (2.7)
or also defined as 9
fan(netd) = o o erd) ~ 1 (2.8)
The output of the hyperbolic tangent is in the range (—1,1).
. Gaussian function (see Figure 2.2(f) for 6 = 0):
fan(net — 8) = e~(net=0)*/a> (2.9)

where net — 6 is the mean and o2 the variance of the Gaussian distribution.

2.3 Artificial Neuron Geometry

Single neurons can be used to realize linearly separable functions without any error.
Linear separability means that the neuron can separate the space of n-dimensional
input vectors yielding an above-threshold response from those having a below-
threshold response by an n-dimensional hyperplane. The hyperplane forms the
boundary between the input vectors associated with the two output values. Fig-
ure 2.3 illustrates the decision boundary for a neuron with the step activation func-
tion. The hyperplane separates the input vectors for which 3, zjw; — 6 > 0 from
the input vectors for which ), z;w; — 6 < 0.
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Figure 2.3: Artificial neuron boundary illustration

Thus, given the input signals and 6, the weight values w;, can easily be calculated.

To be able to learn functions that are not linearly separable, a layered NN of several
neurons is required.

2.4 Artificial Neuron Learning

The question that now remains to be answered is, how do we get the values of the
weights w; and the threshold 87 For simple neurons implementing, for example,
Boolean functions, it is easy to calculate these values. But suppose that we have no
prior knowledge about the function - except for data — how do we get the w; and
@ values? Through learning. The AN learns the best values for the w; and 6 from
the given data. Learning consists of adjusting weight and threshold values until a
certain criterion (or several criteria) is (are) satisfied.

There are three main types of learning:

e Supervised learning, where the neuron (or NN) is provided with a data
set consisting of input vectors and a target (desired output) associated with
each input vector. This data set is referred to as the training set. The aim
of supervised training is then to adjust the weight values such that the error
between the real output, y = f(net — ), of the neuron and the target output,
t, is minimized.
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e Unsupervised learning, where the aim is to discover patterns or features
in the input data with no assistance from an external source. Unsupervised
learning basically performs a clustering of the training patterns.

¢ Reinforcement learning, where the aim is to reward the neuron (or parts of
a NN) for good performance, and to penalize the neuron for bad performance.

Several learning rules have been developed for the different learning types. Be-
fore continuing with these learning rules, we simplify our AN model by introducing
augmented vectors.

2.4.1 Augmented Vectors

An artificial neuron is characterized by its weight vector W, threshold 6 and activa-
tion function. During learning, both the weights and the threshold are adapted. To
simplify learning equations, we augment the input vector to include an additional
input unit, z74,, referred to as the bias unit. The value of zy; is always -1, and
the weight w1 serves as the value of the threshold. The net input signal to the
AN (assuming SUs) is then calculated as

I

net = inwi +Zr1wr+1
=1
I+1
= >z (2.10)
i=1
where 6 = Ty 1wy = —wr4-

In the case of the step function, an input vector yields an output of 1 when
E{:ll z;w; > 0, and 0 when Ef__ﬁl Tiw; < 0.

The rest of this chapter considers training of single neurons.

2.4.2 Gradient Descent Learning Rule

While gradient descent (GD) is not the first training rule for ANs, it is possibly the
approach that is used most to train neurons (and NNs for that matter). GD requires
the definition of an error (or objective) function to measure the neuron’s error in
approximating the target. The sum of squared errors

P
E= (tp—f)? (2.11)

p=1
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is usually used, where ¢, and f, are respectively the target and actual output for
pattern p, and P is the total number of input-target vector pairs (patterns) in the
training set.

The aim of GD is to find the weight values that minimize £. This is achieved by
calculating the gradient of £ in weight space, and to move the weight vector along
the negative gradient (as illustrated for a single weight in Figure 2.4).

Error

» Weight

Figure 2.4: GD illustrated
Given a single training pattern, weights are updated using

wi(t) = wi(t — 1) + Aw(t) (2.12)
with

Aui(t) = (- ) (213)

where

gwgz = -2(tp — fp)a—g{—t;xi,p (2.14)

and 7 is the learning rate (size of the steps taken in the negative direction of the
gradient). The calculation of the partial derivative of f with respect to net, (the net
input for pattern p) presents a problem for all discontinuous activation functions,
such as the step and ramp functions; z;, is the i-th input signal corresponding to
pattern p. The Widrow-Hoff learning rule presents a solution for the step and ramp
functions, while the generalized delta learning rule assumes continuous functions
which are at least once differentiable.
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2.4.3 Widrow-Hoff Learning Rule

For the Widrow-Hoff learning rule [Widrow 1987], assume that f = net,. Then
2L = 1, giving

onet, —
o€
é;; ==2(tp — fp)Tip (2.15)
Weights are then updated using
wi(t) = 'wi(t - 1) + 27](tp - fp)xi,p (216)

The Widrow-Hoff learning rule, also referred to as the least-means-square (LMS)
algorithm, was one of the first algorithms used to train layered neural networks with
multiple adaptive linear neurons. This network was commonly referred to as the
Madaline [Widrow 1987, Widrow and Lehr 1990].

2.4.4 Generalized Delta Learning Rule

The generalized delta learning rule is a generalization of the Widrow-Hoff learning
rule which assumes differentiable activation functions. Assume that the sigmoid
function (from equation (2.6)) is used. Then,

of
ety fo(1 = fp) (2.17)
giving 5
£
dw; —2(tp = fo) o1 = fo)Zip (2.18)

2.4.5 Error-Correction Learning Rule

For the error-correction learning rule it is assumed that binary-valued activation
functions are used, for example, the step function. Weights are only adjusted when
the neuron responds in error. That is, only when (¢, — fp) =1 or (¢, — fp) = -1,
are weights adjusted using equation (2.16).

2.5 Conclusion

At this point we can conclude the discussion on single neurons. While this is not
a complete treatment of all aspects of single ANs, it introduced those concepts
required for the rest of the chapters. In the next chapter we explain learning rules
for networks of neurons, expanding on the different types of learning rules available.
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Assignments

. Explain why the threshold @ is necessary. What is the effect of 6, and what

will the consequences be of not having a threshold?

. Explain what the effects of weight changes are on the separating hyperplane.

. Which of the following Boolean functions can be realized with a single neuron

which implements a SU? Justify your answer.
(a) T1z9T3
(b) 1% + T122
(¢) 21+ 32

where z1z2 denotes 7 AND =x9; z1 + x2 denotes z; OR x9; T denotes

. Is it possible to use a single PU to learn problems which are not linearly

separable?

. Why is the error per pattern squared?
. Can the function |t, — 0p| be used instead of (t, — 0p)2?

. Is the following statement true or false: A single neuron can be used to ap-

prozimate the function f(z) = 2%? Justify your answer.

. What are the advantages of using the hyperbolic tangent activation function

instead of the sigmoid activation function?
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Chapter 3

Supervised Learning Neural
Networks

Single neurons have limitations in the type of functions they can learn. A single
neuron (implementing a SU) can be used to realize linearly separable functions only.
As soon as functions that are not linearly separable need to be learned, a layered
network of neurons is required. Training these layered networks is more complex than
training a single neuron, and training can be supervised, unsupervised or through
reinforcement. This chapter deals with supervised training.

Supervised learning requires a training set which consists of input vectors and a
target vector associated with each input vector. The NN learner uses the target
vector to determine how well it has learned, and to guide adjustments to weight
values to reduce its overall error. This chapter considers different NN types that
learn under supervision. These network types include standard multilayer NNs,
functional link NNs, simple recurrent NNs, time-delay NNs and product unit NNs.
We first describe these different architectures in Section 3.1. Different learning rules
for supervised training are then discussed in Section 3.2. The chapter ends with a
discussion on ensemble NNs in Section 3.4.

3.1 Neural Network Types

Various multilayer NN types have been developed. Feedforward NNs such as the
standard multilayer NN, functional link NN and product unit NN receive external
signals and simply propagate these signals through all the layers to obtain the result
(output) of the NN. There are no feedback connections to previous layers. Recurrent
NNs, on the other hand, have such feedback connections to model the temporal
characteristics of the problem being learned. Time-delay NNs, on the other hand,

27
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memorize a window of previously observed patterns.

3.1.1 Feedforward Neural Networks

Figure 3.1 illustrates a standard feedforward neural network (FFNN), consisting of
three layers: an output layer, a hidden layer and an output layer. While this figure
illustrates only one hidden layer, a FFNN can have more than one hidden layer.
However, it has been proved that FFNNs with monotonically increasing differen-
tiable functions can approximate any continuous function with one hidden layer,
provided that the hidden layer has enough hidden neurons [Hornik 1989]. A FFNN
can also have direct (linear) connections between the input layer and the output

layer.

o

-1
Bias unit Bias unit

Figure 3.1: Feedforward neural network

The output of a FFNN for any given input pattern p is calculated with a single
forward pass through the network. For each output unit og, we have (assuming no
direct connections between the input and output layers),

Okp = fok(netok,p)
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J+1

= fo;c (Z 'wkjfyj (netyj.p))
Jj=1
J+1 I+1

= for O wiify; O vjizip)
J=1 i=1

where f,, and f,; are respectively the activation function for output unit o and
hidden unit y;; wg; is the weight between output unit o; and hidden unit y;; 2
is the value of input unit z; for input pattern p; the (I + 1)-th input unit and the
(J + 1)-th hidden unit are bias units representing the threshold values of neurons in
the next layer.

Note that each activation function can be a different function. It is not necessary
that all activation functions be the same. Also, each input unit can implement an
activation function. It is usually assumed that inputs units have linear activation
functions.

3.1.2 Functional Link Neural Networks

In functional link neural networks (FLNN) input units do implement activation
functions. A FLNN is simply a FFNN with the input layer expanded into a layer of
functional higher-order units [Ghosh and Shin 1992, Hussain et al. 1997]. The input
layer, with dimension I, is therefore expanded to functional units hq, he,--- hr,
where L is the total number of functional units, and each functional unit h; is a
function of the input parameter vector (zy,-- -, 2r), i.e. hi(z1,---,zr) (see Figure 3.2).
The weight matrix U between the input layer and the layer of functional units is
defined as

(3.1)

w = 1 if functional unit A; is dependent of z;
b 0 otherwise

For FLNNSs, vj; is the weight between hidden unit y; and functional link A;.

Calculation of the activation of each output unit o occurs in the same manner as
for FFNNs, except that the additional layer of functional units is taken into account:

J+1 L

0kp = for (Y wij fy; O vjihi(2,))) (3.2)

j=1 =1

The use of higher-order combinations of input units may result in faster train-
ing times and improved accuracy (see, for example, [Ghosh and Shin 1992,
Hussain et al. 1997]).
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Figure 3.2: Functional link neural network

3.1.3 Product Unit Neural Networks

Product unit neural networks (PUNN) have neurons which compute the weighted
product of input signals, instead of a weighted sum [Durbin and Rumelhart 1989,
Janson and Frenzel 1993, Leerink et al. 1995]. For product units, the net input is
computed as given in equation (2.2).

Different PUNNs have been suggested. In one type each input unit is connected to
SUs, and to a dedicated group of PUs. Another PUNN type has alternating layers of
product and summation units. Due to the mathematical complexity of having PUs
in more than one hidden layer, this section only illustrates the case for which just
the hidden layer has PUs, and no SUs. The output layer has only SUs, and linear
activation functions are assumed for all neurons in the network. Then, for each
hidden unit y;, the net input to that hidden unit is (note that no bias is included)

I
— Uji
’n’etijp - H zi,P

i=1

I
— H ellj,' ln(z,-,,,)
=1
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= eiviiIn(zip) (3.3)
where z; ; is the activation value of input unit z;, and vj; is the weight between input
z; and hidden unit y;.

An alternative to the above formulation of the net input signal for PUs is to include
a “distortion” factor within the product, such as

I+1
Vjs
nety, , = H Zy (3.4)
1=1
where 2741, = —1 for all patterns; v; 41 represents the distortion factor. The

purpose of the distortion factor is to dynamically shape the activation function
during training to more closely fit the shape of the true function represented by the
training data.

If zip < 0, then z;, can be written as the complex number z;, = 12|2; | (2 = v/~1)
which, substituted in (3.3), yields

nety, = ei Vi In|zipl 0305 vji Ina2 35
Let ¢ =0+ = a + b be a complex number representing 2. Then,

Inc = Inre = Inr + 10 + 27k (3.6)

where r = Va2 + b2 = 1.

Considering only the main argument, arg(c), & = 0 which implies that 27k: = 0.
Furthermore, § = 5 for + = (0,1). Therefore, 10 = +Z, which simplifies equation
(3.9) to Inc =%, and consequently,

Ine? = (3.7)
Substitution of (3.7) in (3.5) gives
netyj’p — ezi Ujs3 In Izisplezi Vji T
I 1
= exili lnlZ*P'[cos(g: vjw) + zsin(z vjim)] (3.8)
i=1 i=1

Leaving out the imaginary part ([Durbin and Rumelhart 1989] show that the added
complexity of including the imaginary part does not help with increasing perfor-
mance),

I
nety, , = e2i viiIn|zip| cos(m Z vji) (3.9)

i=1
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Now, let
I
pip = O vjiln|ziyl (3.10)
i=1
I
$ip = Y vl (3.11)
i=1
with
- 0 if Zip > 0
L= { 1 ifzp<0 (3.12)
and z;, # 0.
Then,
nety, , = e’i? cos(nd;p) (3.13)

The output value for each output unit is then calculated as

J+1

Okp = for (Y wi; fy; (€7 cos(mg; ) (3.14)

=1

Note that a bias is now included for each output unit.

3.1.4 Simple Recurrent Neural Networks

Simple recurrent neural networks (SRNN) have feedback connections which add the
ability to also learn the temporal characteristics of the data set. Several different
types of SRNNs have been developed, of which the Elman and Jordan SRNNs are
simple extensions of FFNNs.

The Elman SRNN, as illustrated in Figure 3.3, makes a copy of the hidden layer,
which is referred to as the contert layer. The purpose of the context layer is to
store the previous state of the hidden layer, i.e. the state of the hidden layer at the
previous pattern presentation. The context layer serves as an extension of the input
layer, feeding signals representing previous network states, to the hidden layer. The
input vector is therefore

Z= (21, 2141, 2142, " " 214147) (3.15)

actual inputs cont;trum'ts
Context units zr49,- -+, 2141+ are fully interconnected with all hidden units. The
connections from each hidden unit y; (for j = 1,---,J) to its corresponding context

unit 27414, have a weight of 1. Hence, the activation value y; is simply copied to
Zr414j- It is, however, possible to have weights not equal to 1, in which case the
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| Context layer

Figure 3.3: Elman simple recurrent neural network

influence of previous states is weighted. Determining such weights adds additional
complexity to the training step.

FEach output unit’s activation is then calculated as

J+1 I+14J
okp = for (Y weifu; (Y vjizip)) (3.16)
j=1 i=1
where (2119, 214140p) = (Y1p(t — 1), -+, yup(t — 1)).

Jordan SRNNs, on the other hand, make a copy of the output layer instead of the
hidden layer. The copy of the output layer, referred to as the state layer, extends
the input layer to

Z=(21," ", 2141, 2142, "+ ZI+14K) (3.17)

~ ~~
actual inputs state units

The previous state of the output layer then also serves as input to the network. For
each output unit we have

J+1 I+1+K

Okp = fo:c(Z W fy; ( Z VjiZip)) (3.18)
j=1 =1
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State layer

Figure 3.4: Jordan simple recurrent neural network
where (2142p,**, 21414K,p) = (01p(t — 1),---, 0K p(t — 1)).

3.1.5 Time-Delay Neural Networks

A time-delay neural network (TDNN), also referred to as backpropagation-through-
time, is a temporal network with its input patterns successively delayed in time. A
single neuron with T time delays for each input unit is illustrated in Figure 3.5. This
type of neuron is then used as a building block to construct a complete feedforward
TDNN.

Initially, only z; (), with ¢ = 0, has a value and 2; p(t — t)iszeroforalli=1,---,1
with time steps ¢ = 1,---,T; T is the total number of time steps, or number
of delayed patterns. Immediately after the first pattern is presented, and before
presentation of the second pattern,

Zip(t — 1) = zip(t)

After presentation of t patterns and before the presentation of pattern t +1, for
allt=1,---,¢,
Zip(t —t) = zip(t —t +1)
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Figure 3.5: A single time-delay neuron

This causes a total of T patterns to influence the updates of weight values, thus
allowing the temporal characteristics to drive the shaping of the learned function.
The connections between z; ,(t — t ) and 2 ,(t — ' 4 1) has a value of 1.

The output of a TDNN is calculated as

J+1

T
Okp = fok(z Wk; fy, Z Z V540 %ip(t) + 214105,141))

j=1 i=1 t=0

~
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3.2 Supervised Learning Rules

Up to this point we have seen how NNs can be used to calculate an output value
given an input pattern. This section explains approaches to train the NN such that
the output of the network is an accurate approximation of the target values. First,
the learning problem is explained, and then solutions are presented.

3.2.1 The Learning Problem

Consider a finite set of input-target pairs D = {d, = (Z,,%p)|p = 1,-- -, P} sampled
from a stationary density (D), with z;5,txp € Rfori=1,---,Tand k= 1,---, K;
2z p is the value of input unit z; and ¢, is the target value of output unit oy for
pattern p. According to the signal-plus-noise model,

b =uZ) +é (3.19)

where p(2) is the unknown function. The input values z; , are sampled with probabil-
ity density w(Z), and the Ek,p are independent, identically distributed noise sampled
with density ¢(f ), having zero mean. The objective of learning is then to approxi-
mate the unknown function u(Z) using the information contained in the finite data
set D. For NN learning this is achieved by dividing the set D randomly into a
training set Dy, validation set Dy and a test set Dg. The approximation to u(%) is
found from the training set Dy, memorization is determined from Dy (more about
this later), and the generalization accuracy is estimated from the test set D (more
about this later).

Since prior knowledge about (D) is usually not known, a nonparametric regression
approach is used by the NN learner to search through its hypothesis space H for a
function Fnn (Dr; W) which gives a good estimation of the unknown function pu(2),
where Fyy(Dr; W) € H. For multilayer NNs, the hypothesis space consists of all
functions realizable from the given network architecture as described by the weight
vector W.

During learning, the function Fyy : RY — RX is found which minimizes the

empirical error
Pr

Er(DriW) = 5= 3 (Fun (i W) - =) (3.20)
p=1

where Pr is the total number of training patterns. The hope is that a small empirical
(training) error will also give a small true error, or generalization error, defined as

Ec(uW) = / (Fnn(Z, W) — )2dQ(Z, 1) (3.21)
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For the purpose of NN learning, the empirical error in equation (3.20) is referred
to as the objective function to be optimized by the optimization method. Sev-
eral optimization algorithms for training NNs have been developed [Battiti 1992,
Becker and Le Cun 1988, Duch and Korczak 1998]. These algorithms are grouped
into two classes:

e Local optimization, where the algorithm may get stuck in a local optimum
without finding a global optimum. Gradient descent and scaled conjugate
gradient are examples of local optimizers.

e Global optimization, where the algorithm searches for the global optimum
by employing mechanisms to search larger parts of the search space. Global
optimizers include LeapFrog, simulated annealing, evolutionary computing and
swarm optimization.

Local and global optimization techniques can be combined to form hybrid training
algorithms.

Learning consists of adjusting weights until an acceptable empirical error has been
reached. Two types of supervised learning algorithms exist, based on when weights
are updated:

e Stochastic/online learning, where weights are adjusted after each pattern
presentation. In this case the next input pattern is selected randomly from
the training set, to prevent any bias that may occur due to the order in which
patterns occur in the training set.

¢ Batch/off-line learning, where weight changes are accumulated and used to
adjust weights only after all training patterns have been presented.

3.2.2 Gradient Descent Optimization

Gradient descent (GD) optimization has led to one of the most popular learning
algorithms, namely backpropagation, developed by Werbos [Werbos 1974]. Learning
iterations (one learning iteration is referred to as an epoch) consists of two phases:

1. Feedforward pass, which simply calculates the output value(s) of the NN
(as discussed in Section 3.1).

2. Backward propagation, which propagates an error signal back from the
output layer toward the input layer. Weights are adjusted as functions of the
backpropagated error signal.
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Feedforward Neural Networks

Assume that the sum squared error (SSE) is used as the objective function. Then,
for each pattern, p,

1 5k (trp — 0kp)°
E == k=1 P P 3.22
where K is the number of output units, and #x , and o , are respectively the target
and actual output values of the k-th output unit.

The rest of the derivations refer to an individual pattern. The pattern subscript,
p, is therefore omitted for notational convenience. Also assume sigmoid activation
functions in the hidden and output layers with augmented vectors. Then,

1

1+ e melox (3.23)

o = fo,(net,,) =
and
1

1+e " (324

Y = fyj ("ety,-) =

Weights are updated, in the case of stochastic learning, according to the following
equations:

wg;(t) += Awkj(t) + aAwyj(t — 1) (3.25)
vi(t) + = Avji(t) + alv(t — 1) (3.26)
where a is the momentum (discussed later).

In the rest of this section the equations for calculating Awg;(t) and Avj;(t) are
derived. The reference to time, t, is omitted for notational convenience.

From (3.23), ) o
% _ o _(q_ =f 3.27
Brety, ~ Bmety, (1 %)% = fo, (3.27)
d
- onet d pay
% = Y5) = Y 3.28
Puns = Bung (]z:; wk;b;) = ¥j (3:28)

where f",k is the derivative of the corresponding activation function. From (3.27),
(3.28),

dox _ 9oy, 6'nretok
6wk,- anetok Bwkj
= (1 - ok)ory;

= fo.Yj (3:29)
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From (3.22),

Define the output error that needs to be back-propagated as 6,, =

from (3.30) and (3.27),

oF
Onet,,

OF Bok

Ooy, Onet,,

= —(tk —o)(1 — op)or = —(tx — 0k) fi,

0o, =

39

(3.30)

OFE
m . Then,

(3.31)

Then, the changes in the hidden-to-output weights are computed from (3.30), (3.29)

and (3.31),
OF
Awe: = -
wk] 77( 311)/” )
c’)E aOk
aok 6wkJ
= néok Yj
Continuing with the input-to-hidden weights,
ayJ afyj '
Onet,, - Onet,, =0 -y = fyf
and
I+1

Onety,
.7 —_
vy avj Z; i) = 5

From (3.33) and (3.34),

dy; _  Oy; Onmety

O0vj; Onety, Ovy;

I

(1 = yj)yszi = fy,2

and

J+1
Onet,, 3]
Ok — WiYi) = Wkj

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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From (3.31) and (3.36),

oF 1
Ej N 3?];( X_:(tk—o’c

_ Z oF 30}: Bnet.,k
doy, Onet,, dy;
= Zaokwk, (3.37)

Define the hidden layer error, which needs to be back-propagated, from (3.37) and
(3.33) as,

s OF
Yi Onet,,

OE 9dy;
6yJ Onet,,

= Za,,kwkjf;,,. (3.38)

k=1

Finally, the changes to input-to-hidden weights are calculated from (3.37), (3.35)
and (3.38) as

oE
a'vj,)
6E‘ By;
ay] 8”31
= —nby;zi (3.39)

Avj; = n(—

If direct weights from the input to the output layer are included, the following
additional weight updates are needed:

OFE 9E
6uk
6E 30k

3ok 3uk,
= —1]60,‘ 24 (340)

Aug; = (-

where ug; is a weight from the ¢-th input unit to the k-th output unit.
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In the case of batch learning, weights are updated as given in equations (3.25) and
(3.26), but with

Pr

Awgi(t) = ) Awgjp(t) (3.41)
=1
PPT

Avji(t) = Y Avjip(t) (3.42)
p=1

where Awy;,(t) and Avj;,(t) are weight changes for individual patterns p, and Pr
is the total number of patterns in the training set.

Stochastic learning is summarized with the following pseudocode algorithm:

1. Initialize weights, 7, @ and the number of epochs £ =0
2. Let Er =0
3. For each training pattern p

(a) do the feedforward phase to calculate y;, (V j = 1,---,J) and ok

(b) compute output error signals d0,,, and hidden layer error signals Oy;
then adjust weights wy; and vj; (backpropagation of errors)

(¢) Er+ = [E = Yohe: (tkp — 0kp)]
LE=€+1

. Test stopping criteria: if no stopping criterion is satisfied, go to step 2.

ot

Stopping criteria usually includes:

e Stop when a maximum number of epochs has been exceeded.

e Stop when the mean squared error (MSE) on the training set,
P K
 pmt Lkt ey - Okp)?
PK

is small enough (other error measures such as the root mean squared error can
also be used).

Ep (3.43)

e Stop when overfitting is observed, i.e. when training data is being memorized.
An indication of overfitting is when & > &y + o¢,, where Ev is the average
validation error over the previous epochs, and og, is the standard deviation
in validation error.
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It is straightforward to apply the GD optimization to the training of FLNNs, SRNNs
and TDNNs, so derivations of the weight update equations are left to the reader.
GD learning for PUNNSs is given in the next section.

Product Unit Neural Networks

This section derives learning equations for PUs used in the hidden layer only, as-
suming GD optimization and linear activation functions. Since only the equations
for the input-to-hidden weights change, only the derivations of these weight update
equations are given. The change Av;; in weight is

oF
Ovj;
OE mnety,
Onety, , Bvji
Onety,

= ayj'pa'u—j‘ (344)

Avy; =

where 4y, , is the error signal, computed in the same way as for SUs, and
net 0 T
Yie _ (H Z?J'i)
- ) i.p
Ovji Ovji pole

14} .
= % (e?7P cos(mhjp))

'ji
= e??[In|zp| cos(ng;p) — Timsin(ng;p)] (3.45)

A major advantage of product units is an increased information capacity compared
to summation units [Durbin and Rumelhart 1989, Leerink et al. 1995). Durbin
and Rumelhart showed that the information capacity of a single PU (as mea-
sured by its capacity for learning random Boolean patterns) is approximately
3N, compared to 2N for a single SU (N is the number of inputs to the unit)
[Durbin and Rumelhart 1989]. The larger capacity means that functions approx-
imated using PUs will require less processing elements than required if SUs were
used. This point can be illustrated further by considering the minimum number of
processing units required for learning the simple polynomial functions in Table 3.1.
The minimal number of SUs were determined using a sensitivity analysis variance
analysis pruning algorithm [Engelbrecht et al. 1999, Engelbrecht 2001}, while the
minimal number of PUs is simply the number of different powers in the expression
(provided a polynomial expression).

While PUNNSs provide an advantage in having smaller network architectures, a major
drawback of PUs is an increased number of local minima, deep ravines and valleys.
The search space for PUs is usually extremely convoluted. Gradient descent, which
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Function SUs PUs
f(z) =22 2 1
f(z) = 2% 3 1
f(z)=22+2° 3 2
f(z1,29) = 2327 —0.528 8 3

Table 3.1: SUs and PUs needed for simple functions

works best when the search space is relatively smooth, therefore frequently gets
trapped in local minima or becomes paralyzed (which occurs when the gradient
of the error with respect to the current weight is close to zero). Leerink et al.
illustrated that the 6-bit parity problem could not be trained using GD and PUs
[Leerink et al. 1995]. Two reasons were identified to explain why GD failed: (1)
weight initialization and (2) the presence of local minima. The initial weights of
a network are usually computed as small random numbers. Leerink et al. argued
that this is the worst possible choice of initial weights, and suggested that larger
initial weights be used instead. But, large weights lead to large weight updates due
to the exponential term in the weight update equation (see equation (3.45)), which
consequently cause the network to overshoot the minimum. Experience has shown
that GD only manages to train PUNNs when the weights are initialized in close
proximity of the optimal weight values — the optimal weight values are, however,
usually not available.

As an example to illustrate the complexity of the search space for PUs, consider
the approximation of the function f(z) = 23, with z € [~1,1]. Only one PU is
needed, resulting in a 1-1-1 NN architecture (that is, one input, one hidden and
one output unit). In this case the optimal weight values are v = 3 (the input-to-
hidden weight) and w = 1 (the hidden-to-output weight). Figures 3.6(a)-(b) present
the search space for v € [~1,4] and w € [-1,1.5]. The error is computed as the
mean squared error over 500 randomly generated patterns. Figure 3.6(b) clearly
illustrates 3 minima, with the global minimum at v = 3,w = 1. These minima are
better illustrated in Figure 3.6(c) where w is kept constant at its optimum value of 1.
Initial small random weights will cause the network to be trapped in one of the local
minima (having very large MSE). Large initial weights may also be a bad choice.
Assume an initial weight v > 4. The derivative of the error with respect to v is
extremely large due to the steep gradient of the error surface. Consequently, a large
weight update will be made which may cause jumping over the global minimum. The
neural network either becomes trapped in a local minimum, or oscillates between
the extreme points of the error surface.

A global stochastic optimization algorithm is needed to allow searching of
larger parts of the search space.  The optimization algorithm should also
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not rely heavily on the calculation of gradient information. Simulated an-
nealing [Leerink et al. 1995], genetic algorithms [Engelbrecht and Ismail 1999,
Janson and Frenzel 1993], the gbest version of particle swarm optimization
[Engelbrecht and Ismail 1999, Van den Bergh and Engelbrecht 2001] and LeapFrog
[Engelbrecht and Ismail 1999] have been used successfully to train PUNNs.

3.2.3 Scaled Conjugate Gradient

Conjugate gradient optimization trades off the simplicity of GD and the fast
quadratic convergence of Newton’s method. Several conjugate gradient learning
algorithms have been developed (look at the survey in [Battiti 1992]), most of which
are based on the assumption that the error function of all weights in the region of
the solution can be accurately approximated by

- 1 - - -
Ep(Dr; W) = §WTHW L

where H is the Hessian matrix. Since the dimension of the Hessian matrix is the
total number of weights in the network, the calculation of conjugate directions on
the error surface becomes computationally infeasible. Computationally feasible con-
jugate gradient algorithms compute conjugate gradient directions without explicitly
computing the Hessian matrix, and perform weight updates along these directions.
Scaled conjugate gradient is one such algorithm [Mgller 1993].

SCG also automatically determines the step size. It is a batch learning algorithm,
that operates on a single weight vector which reflects all the weights and biases in
the network. The standard SCG algorithm is summarized below:

1. Initialize the weight vector ; and the scalars ¢ > 0,A\; > 0 and X = 0, where
the subscript denotes the epoch number. Let §; = 7 = —€ (@), k = 1 and
success = true.

2. If success = true then calculate the second-order information:
o

o 0 3.46
k Al .
5 = E (wy, +Uk:]/:) — & (W) (3.47)
b = 5 (3.48)

where p7 is the transpose of vector py, and ||pk|| is the Euclidean norm.
3. Scale s:

Sk += (M — Xe)Pk (3.49)
&k += (M — )|kl (3.50)
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4. If 6 <0 then make the Hessian matrix positive definite:

- . Ok

i = S+ Ok -2—=)p 3.51
_ O

: X -2 (3.52)
S —= Me|lpll? (3.53)
Moo= M (3.54)

5. Calculate the step size:

pe = Prf (3.55)
o = EBE (3.56)
Ok

6. Calculate the comparison parameter:

26k [E (k) — E (W + axpr)]
- 2
Hi

Ag (3.57)

7. If A > 0 then a successful reduction in error can be made. Adjust the weights:

Wry1 = Wi+ akPr (3.58)
k1 = —& (Wgtr) (3.59)
A = 0, success = true (3.60)

(a) If k mod N = 0, where N is the total number of weights, then restart the
algorithm, with P41 = 7141 and go to step 2, else create a new conjugate

direction:
B = [Fk+1l1® = 1 (3.61)
Kk
Pk+1 = Tkl + BePr (3.62)

(b) If Ay > 0.75 then reduce the scale parameter with Ay = 3.
else a reduction in error is not possible; let Ay = A\ and success = false
8. If Ax < 0.25 then increase the scale parameter to A\ = 4.

9. If the steepest descent direction 7 # O then set k = k + 1 (i.e. go to the
next epoch) and go to step 2, else terminate and return w4, as the desired

minimum.
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The algorithm restarts each N consecutive epochs for which no reduction in error
could be achieved, at which point the algorithm finds a new direction to search. The
function to calculate the derivative &£ () = % computes the derivative of £ with
respect to each weight for each of the patterns. The derivatives over all the patterns

are then summed, i.e.

9 I~ ag

— = — 3.63
6wi =1 Bwi,p ( )

where w; is a single weight.

3.2.4 LeapFrog Optimization

LeapFrog is an optimization approach based on the physical problem of the motion
of a particle of unit mass in an n-dimensional conservative force field [Snyman 1982,
Snyman 1983]. The potential energy of the particle in the force field is represented
by the function to be minimized - in the case of NNs, the potential energy is the
MSE. The objective is to conserve the total energy of the particle within the force
field, where the total energy consists of the particle’s potential and kinetic energy.
The optimization method simulates the motion of the particle, and by monitoring
the kinetic energy, an interfering strategy is adapted to appropriately reduce the
potential energy. The reader is referred to [Snyman 1982, Snyman 1983} for more
information on this approach. The algorithm is summarized below:

1. Compute an initial weight vector wy, with random components. Let Af =
0.5,6 =1,m = 3,6; = 0.001 and € = 1075, Initialize i =0, =2,s =0,p=1
and k = —1.

2. Compute the initial acceleration @y = —VE(wp) and velocity ¥ = %"oAt,
where £(wy) is the MSE for weight vector .

3. Set k = k + 1 and compute ||Ad|| = ||Tk]|At.
4. If ||Awg|| < 6 go to step 5, otherwise set Uy = 00/ (At||Tk||) and go to step 6.
5. Set p = p+ 41 and At = pAt.

6. If s < m, go to step 7, otherwise set At = At/2 and Wy = (W + Wg_1)/2,
Uk = (U + Uk—1)/4, s =0 and go to 7.

7. Set Wry, = Wy, + UL AL.
8. Compute @1 = —VE(Wgy1) and Tk = Tk + dp1 At

9. If d’{ﬂﬁk > 0, then s = 0 and go to 10, otherwise s = s+ 1,p = 1 and go to
10.
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10. If ||@g+1]] < € then stop, otherwise go to 11.

11. If ||Ug41]] > ||Uk|| then ¢ = 0 and go to 3, otherwise wWi2 = (W1 + W)/2,
t=1+1 and go to 12.

12. Perform a restart: If ¢ < j, then ¥4 = (Uk41 + 0x)/4 and k = k + 1, go to 8,
otherwise #;4; = 0,5 =1,k =k + 1 and go to 8.

3.2.5 Particle Swarm Optimization

Particle swarm optimization (PSO) is a global optimization approach, modeled
on the social behavior of flocks of birds and schools of fish [Eberhart et al. 1996,
Kennedy and Eberhart 1995]. PSO is a population-based search procedure where
the individuals, referred to as particles, are grouped into a swarm. Each particle
in the swarm represents a candidate solution to the optimization problem. In a
PSO system, each particle is “lown” through the multidimensional search space,
adjusting its position in search space according to its own experience and that of
neighboring particles. A particle therefore makes use of the best position encoun-
tered by itself and the best position of its neighbors to position itself toward the
global minimum. The effect is that particles “fly” toward an optimum, while still
searching a wide area around the best solution. The performance of each particle
(i.e. the “closeness” of a particle to the global minimum) is measured according to
a predefined fitness function which is related to the problem being solved.

For the purposes of this study, a particle represents the weight vector of a NN,
including all biases. The dimension of the search space is therefore the total number
of weights and biases. The fitness function is the mean squared error (MSE) over
the training set, or the test set (as measure of generalization).

The PSO algorithm is summarized below to illustrate its simplicity. The interested
reader is referred to [Corne et al. 1999, Eberhart et al. 1996, Van den Bergh 2002]
for more information on the swarm approach to optimization. PSO will also be
revisited in Part III of this book.

1. Initialize a swarm of P D-dimensional particles, where D is the number of
weights and biases.

2. Evaluate the fitness f,, where f, is the MSE of the associated network over a
given data set. given data set.

3. If f, < BEST, then BEST, = f, and BESTz, = z,, where BEST,, is the
current best fitness achieved by particle p, z, is the current coordinates of
particle p in D-dimensional weight space, and BESTz, is the coordinates
corresponding to particle p’s best fitness so far.
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4. If f, < BESTgpgst then GBEST = p, where GBEST is the particle having
the overall best fitness over all particles in the swarm.

5. Change the velocity V, of each particle p:

Vo =wVp +eari(BESTz, —zp) +
coro( BESTZGBEST — %p)

where ¢; and ¢y are acceleration constants, and r1,79 ~ U(0,1); w is the inertia
weight.

6. Fly each particle p to z, + V}.

7. Loop to step 2 until convergence.

In step 5, the coordinates BESTxz, and BESTzgprsT are used to pull the particles
toward a minimum, and the acceleration constant controls how far particles fly from
one another. Convergence tests are the same as for standard training algorithms,
such as GD.

In a similar way, genetic algorithms, evolutionary computing and cultural algorithms
can be used to train NNs.

3.3 Functioning of Hidden Units

Section 2.3 illustrated the geometry and functioning of a single perceptron. This
section illustrates the tasks of the hidden units in supervised NNs. For this pur-
pose we consider a standard FFNN consisting of one hidden layer employing SUs.
To simplify visual illustrations, we consider the case of two-dimensional input for
classification and one-dimensional input for function approximation.

For classification problems, the task of hidden units is to form the decision bound-
aries to separate different classes. Figure 3.7 illustrates the boundaries for a three-
class problem. Solid lines represent boundaries. For this artificial problem ten
boundaries exist. Since each hidden unit implements one boundary, ten hidden
units are required to perform the classification as illustrated in the figure. Less hid-
den units can be used, but at the cost of an increase in classification error. Also note
that in the top left corner there are misclassifications of class X, being part of the
space for class ». This problem can be solved by using three additional hidden units
to form these boundaries. How do we know how many hidden units are necessary
without any prior knowledge about the input space? This very important issue is
dealt with in Chapter 7, where the relationship between the number of hidden units
and performance is investigated.
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Figure 3.7: Feedforward neural network classification boundary illustration

In the case of function approximation, assuming a one-dimensional function as de-
picted in Figure 3.8, five hidden units with sigmoid activation functions are required
to learn the function. A sigmoid function is then fitted for each inflection point of
the target function. The number of hidden units is therefore the number of turning
points plus one. In the case of linear activation functions, the hidden units perform
the same task. However, more linear activation functions may be required to learn
the function to the same accuracy as obtained using sigmoid functions.

3.4 Ensemble Neural Networks

Training of NNs starts on randomly selected initial weights. This means that each
time a network is retrained on the same data set, different results can be expected,
since learning starts at different points in the search space; different NNs may dis-
agree, and make different errors. This problem in NN training prompted the de-
velopment of ensemble networks, where the aim is to optimize results through the
combination of a number of individual networks, trained on the same task.

In its most basic form, an ensemble network — as illustrated in Figure 3.9 - consists
of a number of NNs all trained on the same data set, using the same architecture
and learning algorithm. At convergence of the individual NN members, the results
of the different NNs need to be combined to form one, final result. The final result
of an ensemble can be calculated in several ways, of which the following are simple
and efficient approaches:
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Figure 3.8: Hidden unit functioning for function approximation

o Select the NN within the ensemble that provides the best generalization per-
formance;

e Take the average over the outputs of all the members of the ensemble;

e Form a linear combination of the outputs of each of the NNs within the en-
semble. In this case a weight, C,, is assigned to each network as an indication
of the credibility of that network. The final output of the ensemble is therefore
a weighted sum of the outputs of the individual networks.

The combination of inputs as discussed above is sensible only when there is disagree-
ment among the ensemble members, or if members make their errors on different
parts of the search space.

Several adaptations of the basic ensemble model are of course possible. For example,
instead of having each NN train on the same data set, different data sets can be
used. One such approach is bagging, which is a bootstrap ensemble method that
creates individuals for its ensemble by training each member network on a random
redistribution of the original training set [Breiman 1996]. If the original training set
contained Pr patterns, then a data set of Pr patterns is randomly sampled from the
original training set for each of the ensemble members. This means that patterns
may be duplicated in the member training sets. Also, not all of the patterns in the
original training set will necessarily occur in the member training sets.
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Output
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Figure 3.9: Ensemble neural network

Alternatively, the architectures of the different NNs may differ. Even different NN
types can be used. It is also not necessary that each of the members be trained
using the same optimization algorithm.

The above approaches to ensemble networks train individual NNs in parallel, inde-
pendent of one another. Much more can be gained under a cooperative ensemble
strategy, where individual NNs (referred to as agents) exchange their experience and
knowledge during the training process. Research in such cooperative agents is now
very active, and the reader is recommended to read more about these.

One kind of cooperative strategy for ensembles is referred to as boosting
[Drucker 1999, Freund and Schapire 1999]. With boosting, members of the ensem-
ble are not trained in parallel. They are trained sequentially, where already trained
members filter patterns into easy and hard patterns. New, untrained members of the
ensemble then focus more on the hard patterns as identified by previously trained
networks.

3.5 Conclusion

This overview of multilayer NNs and supervised learning rules is by no means com-
plete. It merely serves to present a flavor of what is available. The interested reader
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is directed to the extensive amount of literature available is journals, conference
proceedings, books and the Internet. Chapter 7 revisits supervised learning with an
extensive discussion of performance aspects.

3.6 Assignments

1.

10.

Give an expression for oy, for a FFNN with direct connections between the
input and output layer.

Why is the term (—1)%.7+1 possible in equation (3.4)7

Explain what is meant by the terms overfitting and underfitting. Why is
Eyv > Ey + oy a valid indication of overfitting?

Investigate the following aspects:

(a) Are direct connections between the input and output layers advanta-
geous? Give experimental results to illustrate.

(b) Compare a FFNN and an Elman RNN trained using GD. Use the fol-
lowing function as benchmark: z; = 1+ 0.3z;-9 — 1.422 |, with 21,20 ~
U(—1,1), sampled from a uniform distribution in the range (—1,1).

{c) Compare stochastic learning and batch learning using GD for the function
0 = z; where 2z, = 0.32;_¢ —0.62;_4 +0.52;_1 +0.3zt2_6 - 0.2zt2_4 +(, and
2z ~ U(-=1,1) for t = 1,---,10, and {; ~ N(0,0.05) is zero-mean noise
sampled from a normal distribution.

(d) Compare GD and SCG on any classification problem from the UCI repos-
itory at http://www.ics.uci.edu/ ~mlearn/MLRepository.html

(e) Design and perform an experiment to illustrate if PSO yields better per-
formance than GD.

. Assume gradient descent is used as optimization algorithm, and derive the

learning equations for the Elman SRNN, the Jordan SRNN, TDNN and FLNN.

. Explain how a SRNN learns the temporal characteristics of data.

. How can a FLNN be used to improve accuracy and training speed?

Explain why bias for only the output units of a PUNN, as discussed in this
chapter, is sufficient.

Discuss the effect of having an augmented input as part of the product calcu-
lation of the net input signal.

Explain why the minimal number of hidden units for a PU is simply the number
of powers in the function to be approximated, assuming that the function is a
polynomial.
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11.
12.

13.

14.

CHAPTER 3. SUPERVISED LEARNING NEURAL NETWORKS

Design a batch version of the PSO NN training algorithm.

What is the main requirement for activation and error functions if gradient
descent is used to train supervised neural networks?

What is the main advantage of using recurrent neural networks instead of
feedforward neural networks?

What is the main advantage in using PUs instead of SUs?



Chapter 4

Unsupervised Learning Neural
Networks

An important feature of NNs is their ability to learn from their environment. Chap-
ter 3 covered NN types that learned under the guidance of a supervisor, or teacher.
The supervisor presents to the NN learner an input pattern and a desired response.
Supervised learning NNs then try to learn the functional mapping between the input
and desired response vectors. In contrast to supervised learning, the objective of
unsupervised learning is to discover patterns or features in the input data with no
help from a teacher, basically performing a clustering of input space. This chapter
deals with the unsupervised learning paradigm.

Section 4.1 presents a short background on unsupervised learning. Hebbian learning
is presented in Section 4.2, while Section 4.3 covers principal component learning,
Section 4.4 covers the learning vector quantizer version I, and Section 4.5 discusses
self-organizing feature maps.

4.1 Background

Aristotle observed that human memory has the ability to connect items (e.g. objects,
feelings and ideas) that are similar, contradictory, that occur in close proximity, or
in succession [Kohonen 1987]. The patterns that we associate may be of the same,
or different types. For example, a photo of the sea may bring associated thoughts of
happiness, or smelling a specific fragrance may be associated with a certain feeling,
memory or visual image. Also, the ability to reproduce the pitch corresponding to
a note, irrespective of the form of the note, is an example of the pattern association
behavior of the human brain.
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Artificial neural networks have been developed to model the pattern association abil-
ity of the human brain. These networks are referred to as associative memory NNs.
Associative memory NNs are usually two-layer NNs, where the objective is to adjust
the weights such that the network can store a set of pattern associations — without
any external help from a teacher. The development of these associative memory
NNs is mainly inspired from studies of the visual and auditory cortex of mammalian
organisms, such as the bat. These artificial NNs are based on the fact that parts of
the brain are organized such that different sensory inputs are represented by topo-
logically ordered computational maps. The networks form a topographic map of the
input patterns, where the coordinates of the neurons correspond to intrinsic features
of the input patterns.

An additional feature modeled with associative memory NNs is to preserve old in-
formation as new information becomes available. In contrast, supervised learning
NNs have to retrain on all the information when new data becomes available; if
not, supervised networks tend to focus on the new information, forgetting what the
network has learned already.

Unsupervised learning NNs are functions which map an input pattern to an associ-

ated target pattern, i.e.
Fnn R 5 RE (4.1)

as illustrated in Figure 4.1. The single weight matrix determines the mapping from
the input vector 2’ to the output vector o.

4.2 Hebbian Learning Rule

The Hebbian learning rule, named after the neuropsychologist Hebb, is the oldest
and simplest learning rule. With Hebbian learning, weight values are adjusted based
on the correlation of neuron activation values. The motivation of this approach
is from Hebb’s hypothesis that the ability of a neuron to fire is based on that
neuron’s ability to cause other neurons connected to it to fire. In such cases the
weight between the two correlated neurons is strengthened (or increased). Using the
notation from Figure 4.1, the change in weight at time step ¢ is given as

Augi(t) = nokpzip (4.2)
Weights are then updated using
ui(t) = uki(t — 1) + Aui(t) (4.3)
where 7 is the learning rate.

From equation (4.2), the adjustment of weight values is larger for those input-output
pairs for which the input value has a greater effect on the output values.
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Figure 4.1: Unsupervised neural network

A summary of the Hebbian learning rule is given below:

1. Initialize all weights such that ug; =0, Ve=1,.--, T and Vk=1,.-- K.
2. For each input pattern z, compute the corresponding output vector .
3. Adjust the weights using equation (4.3).

4. Stop when the changes in weights are sufficiently small, or the maximum num-
ber of epochs has been reached; otherwise go to step 2.

A problem with Hebbian learning is that repeated presentation of input patterns
leads to an exponential growth in weight values, driving the weights into saturation.
To prevent saturation, a limit is posed on the increase in weight values. One type
of limit is to introduce a nonlinear forgetting factor:

Augi(t) = nogpzip — ok puki(t — 1) (4.4)
where « is a positive constant, or equivalently,

Augi(t) = ok p[Bzip — ug(t — 1)] (4.5)
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with 8 = n/a. Equation (4.5) implies that inputs for which z; , < ux;(t — 1)/8 have
their corresponding weights uy; decreased by a value proportional to the output
value of,. When z;p > u;(t — 1)/8, weight uy; is increased proportional to ok p.

Sejnowski proposed another way to formulate Hebb’s postulate, using the covariance
correlation of the neuron activation values [Sejnowski 1977}:

Au;(t) = nl(zip — Z:i)(0k,p — k)] (4.6)
with
P
%= ) zp/P (4.7)
p=1
P
G = 3 0kp/P (48)
p=1

Another variant of the Hebbian learning rule uses the correlation in the changes in
activation values over consecutive time steps. For this learning rule, referred to as
differential Hebbian learning,

Augi(t) = nAzi(t)Aok(t — 1) (4.9)
where
Az(t) = zip(t) — zp(t ~ 1) (4.10)
and
Dokt — 1) = 0 p(t — 1) — o p(t — 2) (4.11)

4.3 Principal Component Learning Rule

Principal component analysis (PCA) is a statistical technique used to transform
a data space into a smaller space of the most relevant features. The aim is to
project the original I-dimensional space onto an I -dimensional linear subspace,
where I' < I, such that the variance in the data is maximally explained within
the smaller I'-dimensional space. Features (or inputs) that have little variance are
thereby removed. The principal components of a data set are found by calculat-
ing the covariance (or correlation) matrix of the data patterns, and by getting the
minimal set of orthogonal vectors (the eigenvectors) that span the space of the co-
variance matrix. Given the set of orthogonal vectors, any vector in the space can be
constructed with a linear combination of the eigenvectors.

Oja developed the first principal components learning rule, with the aim of ex-
tracting the principal components from the input data [Oja 1982). Oja’s principal
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components learning is an extension of the Hebbian learning rule, referred to as nor-
malized Hebbian learning, to include a feedback term to constrain weights. In doing
80, principal components could be extracted from the data. The weight change is
given as

Augi(t) = upi(t) — uri(t — 1)
= N0k plzip — Ok puki(t — 1)]
= N0k pZip — N0} puki(t — 1)
| A —

Hebbian  forgetting factor

The first term corresponds to standard Hebbian learning (refer to equation (4.2)),
while the second term is a forgetting factor to prevent weight values from becoming
unbounded.

The value of the learning rate, n, above is important to ensure convergence to a
stable state. If n is too large, the algorithm will not converge due to numerical
unstability. If n is too small, convergence is extremely slow. Usually, the learning
rate is time dependent, starting with a large value which decays gradually as training
progresses. To ensure numerical stability of the algorithm, the learning rate n(t)
for output unit oy must satisfy the inequality:

1
1.2

0 <m(t) <

where ) is the largest eigenvalue of the covariance matrix, C,, of the inputs to the
unit [Oja and Karhuner 1985]. A good initial value is given as n(0) = 1/[227 Z],
where Z is the input matrix.

Cichocki and Unbehauen provided an adaptive learning rate which utilizes a forget-
ting factor, v, as follows [Cichocki and Unbehauen 1993]:

1
with
0) = —
nk(0) = 0%(0)

Usually, 0.9 <~y < 1.

The above can be adapted to allow the same learning rate for all the weights in the
following way:

1
() = —F———==m3
me-n T ()11
with
1
m(0) = —
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Sanger developed another principal components learning algorithm, similar to that
of Oja, referred to as generalized Hebbian learning [Sanger 1989]. The only difference
is the inclusion of more feedback information and a decaying learning rate 7(t):

k
Augi(t) = n(t)[2i pok.p —0kp Y wji(t — 1)050] (4.12)
N e’ s
Hebbian

For more information on principal component learning, the reader is referred to the
summary in [Haykin 1994].

4.4 Learning Vector Quantizer-I

One of the most frequently used unsupervised clustering algorithms is the learn-
ing vector quantizer (LVQ) developed by Kohonen [Kohonen 1995]. While several
versions of LVQ exist, this section considers the unsupervised version, LVQ-I.

Ripley defined clustering algorithms as those algorithms where the purpose is to
divide a set on n observations into m groups such that members of the same group are
more alike than members of different groups [Ripley 1996]. The aim of a clustering
algorithm is therefore to construct clusters of similar input vectors (patterns), where
similarity is usually measured in terms of Euclidean distance. LVQ-I performs such
clustering.

The training process of LVQ-I to construct clusters is based on competition. Refer-
ring to Figure 4.1, each output unit o represents a single cluster. The competition
is among the cluster output units. During training, the cluster unit whose weight
vector is the “closest” to the current input pattern is declared as the winner. The
corresponding weight vector and that of neighbor units are then adjusted to better
resemble the input pattern. The “closeness” of an input pattern to a weight vector
is usually measured using the Euclidean distance. The weight update is given as

s = 00 0

where 7(t) is a decaying learning rate, and kg ,(t) is the set of neighbors of the
winning cluster unit o for pattern p. It is, of course, not strictly necessary that
LVQ-I makes use of a neighborhood function, thereby updating only the weights of
the winning output unit.

An illustration of clustering, as done by LVQ-I, is given in Figure 4.2. The input
space, defined by two input units z; and z9, is represented in Figure 4.2(a), while
Figure 4.2(b) illustrates the LVQ-I network architecture required to form the clus-
ters. Note that although only three classes exist, four output units are necessary —
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Figure 4.2: Learning vector quantizer to illustrate clustering

one for each cluster. Less output units will lead to errors since patterns of different
classes will be grouped in the same cluster, while too many clusters may cause over-
fitting. For the problem illustrated in Figure 4.2(a), an additional cluster unit may
cause a separate cluster to learn the single X in cluster 4.

The Kohonen LVQ-I algorithm is summarized below:

1. Network initialization
Two main approaches to initializing the weights, as follows:

(a) Either initialize weights to small random values sampled from a uniform
distribution, or

(b) Take the first input patterns as initial weight vectors. For the example
in Figure 4.2(b), U] = 21,1, Y12 = 22,1, Ul = 21,2, U22 = 222, etc.

Also initialize the learning rate and the neighborhood radius.
2. The unsupervised learning

(a) For each pattern p:

i. Compute the Euclidean distance di, between input vector Z, and
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each weight vector 4y = (uk1,uko, -, uky) as

1
> (zip — uki)?
i=1

ii. Find the output unit o, for which the distance dj , is the smallest.
ili. Update all the weights for the neighborhood ki, using equation
(4.13).

(b) Update the learning rate.

dip(Zp, k) = (4.14)

(c) Reduce the neighborhood radius at specified learning iterations.
(d) If stopping conditions are satisfied, stop training; otherwise go to step 2.

Stopping conditions may be

¢ a maximum number of epochs is reached,
e stop when weight adjustments are sufficiently small,

e a small enough quantization error has been reached, where the quantization
error is defined as

Pr
Er =Y 2 — all3 (4.15)
p=1

One problem that may occur in LVQ networks is that one cluster unit may dominate
as the winning cluster unit. The danger of such a scenario is that most patterns
will be in one cluster. To prevent one output unit from dominating, a “conscience”
factor is incorporated in a function to determine the winning output unit. The
conscience factor penalizes an output for winning too many times. The activation
value of output units is calculated using

Okp = { (1) izzziziz{dk,p(fp»ﬁk) — be(t)} (4.16)
where 1
b (t) = ’7(7 - gk(t)) (4.17)
and
gk(t) = gi(t — 1) + B(ok,p — gk(t — 1)) (4.18)

In the above, dg , is the Euclidean distance as defined in equation (4.14), I is the
total number of input units, and gx(0) = 0. Thus, bg(0) = }, which initially gives
each output unit an equal chance to be the winner; b;(t) is the conscience factor
defined for each output unit. The more an output unit wins, the larger the value of
gr(t) becomes, and bi(t) becomes larger negative. Consequently, a factor |bg(t)| is
added to the distance di . Usually, 8 = 0.0001 and v = 10.
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4.5 Self-Organizing Feature Maps

Kohonen developed the self-organizing feature map (SOM), as motivated by the
self-organization characteristics of the human cerebral cortex. Studies of the cere-
bral cortex showed that the motor cortex, somatosensory cortex, visual cortex and
auditory cortex are represented by topologically ordered maps. These topological
maps form to represent the structures sensed in the sensory input signals.

The self-organizing feature map is a multidimensional scaling method to project an
I-dimensional input space to a discrete output space, effectively performing a com-
pression of input space onto a set of codebook vectors. The output space is usually
a two-dimensional grid. The SOM uses the grid to approximate the probability
density function of the input space, while still maintaining the topological structure
of input space. That is, if two vectors are close to one another in input space, so is
the case for the map representation. The operation of the SOM can be illustrated
as follows: consider input space to be a cloud. The map can then be viewed as an
elastic net that spans the cloud.

The SOM closely resembles the learning vector quantizer discussed in the previous
section. The difference between the two unsupervised algorithms is that neurons are
organized on a rectangular grid for SOM, and neighbors are updated to also perform
an ordering of the neurons. In the process, SOMs effectively cluster the input vectors
through a competitive learning process, while maintaining the topological structure
of the input space.

Section 4.5.1 explains the standard stochastic SOM training rule, while a batch
version is discussed in Section 4.5.2. A growing approach to SOM is given in Sec-
tion 4.5.3. Different approaches to speed up the training of SOMs are overviewed
in Section 4.5.4. Section 4.5.5 explains the formation of clusters for visualization
purposes. Section 4.5.6 discusses in brief different ways how the SOM can be used
after training.

4.5.1 Stochastic Training Rule

SOM training is based on a competitive learning strategy. Assume I-dimensional
input vectors Z,, where the subscript p denotes a single training pattern. The first
step of the training process is to define a map structure, usually a two-dimensional
grid (refer to Figure 4.3). The map is usually square, but can be of any rectangular
shape. The number of elements (neurons) in the map is less than the number of
training patterns. Ideally, the number of neurons should be less than or equal to the
number of independent training patterns.

With each neuron on the map is associated an I-dimensional weight vector which
forms the centroid of one cluster. Larger cluster groupings are formed by grouping
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Figure 4.3: Self-organizing map

together “similar” neighboring neurons.

Initialization of the codebook vectors can occur in various ways:

e Assign random values to each weight w; = (wkj1, Wkje, - -, WkJr), With K the
number of rows and J the number of columns of the map. The initial values are
bounded by the range of the corresponding input parameter. While random
initialization of weight vectors is simple to implement, this form of initialization
introduces large variance components into the map which increases training
time.

e Assign to the codebook vectors randomly selected input patterns. That is,
Wkj = Zp

with p ~ U(1, P).
This approach may lead to premature convergence, unless weights are per-
turbed with small random values.

o Find the principal components of the input space, and initialize the codebook
vectors to reflect these principal components.
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e A different technique of weight initialization is due to Su et al., where the
objective is to define a large enough hyper cube to cover all the training pat-
terns [Su et al. 1999]. The algorithm starts by finding the four extreme points
of the map by determining the four extreme training patterns. Firstly, two
patterns are found with the largest inter-pattern Euclidean distance. A third
pattern is located at the furthest point from these two patterns, and the fourth
pattern with largest Euclidean distance from these three patterns. These four
patterns form the corners of the map. Weight values of the remaining neurons
are found through interpolation of the four selected patterns, in the following
way:

— Weights of boundary neurons are initialized as

Wy = @%{%iuj—1y+wu
vgj = w(j — 1) + WK1
Ty = w;?:?ll(kf - 1) +un
Wy = Q%—E—?U}i(k‘ 1) + @y

forallj=2,---,J—land k=2,---,K — 1.

— The remaining codebook vectors are initialized as

L Wy — Wk
ki =T

forallj=2,---,J—landk=2,---,K — 1.

(4 = 1) + Wy

The standard training algorithm for SOMs is stochastic, where codebook vectors
are updated after each pattern is presented to the network. For each neuron, the
associated codebook vector is updated as

’lﬁw(t + 1) = ﬁkj(t) -+ hmn’k]‘(t)[zp — ’LD'kj(t)] (4.19)

where mn is the row and column index of the winning neuron. The winning neuron
is found by computing the Euclidean distance from each codebook vector to the
input vector, and selecting the neuron closest to the input vector. That is,

i = Zpllo = min1di; — 51}

The function hpy, ;(t) in equation (4.19) is referred to as the neighborhood function.
Thus, only those neurons within the neighborhood of the winning neuron mn have
their codebook vectors updated. For convergence, it is necessary that Ay, x;(t) — 0
when ¢ — oo.
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The neighborhood function is usually a function of the distance between the coor-
dinates of the neurons as represented on the map, i.e.

Ronnkj(t) = B(|lcmn — ckjl[3, 1)

with the coordinates cmn,ckj € R2. With increasing value of ||cg — ¢j||? (that
is, neuron kj is further away from the winning neuron mn), hpmpx; = 0. The
neighborhood can be defined as a square or hexagon. However, the smooth Gaussian
kernel is mostly used:
_ llemn —e; 113

hinnkj(t) = n(t)e 20%(t) (4.20)
where 7)(t) is the learning rate factor and o(t) is the width of the kernel. Both 7(t)
and o(t) are monotonically decreasing functions.

The learning process is iterative, continuing until a “good” enough map has been
found. The quantization error is usually used as an indication of map accuracy,
defined as the sum of Euclidean distances of all patterns to the codebook vector of
the winning neuron, i.e.

P
Er =Y 1% — Wma(t)lI3
p=1

Training stops when £ is sufficiently small.

4.5.2 Batch Map

The stochastic SOM training algorithm is slow due to the updates of weights after
each pattern presentation: all the weights are updated. Batch versions of the SOM
training rule have been developed which update weight values only after all patterns
have been presented. The first batch SOM training algorithm was developed by
Kohonen, and is summarized as follows [Kohonen 1997):

1. Initialize the codebook vectors by assigning to them the first KJ training
patterns, where KJ is the total number of neurons in the map.

2. For each neuron, kj, collect a list of copies of all patterns Z, whose nearest
codebook vector belongs to the topological neighborhood of that neuron.

3. Each codebook vector is then assigned the mean over the corresponding list of
patterns.

4. If convergence is reached, then terminate training; otherwise return to step 2.

Based on the batch learning approach above, Kaski et al. developed a faster version.
as summarized below [Kaski et al. 2000]:
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1. Initialize the codebook vectors wy;, using any initialization approach.

2. For each neuron, kj, compute the mean over all patterns for which that neuron
is the winner. Denote the average by Adwy;.

3. Adapt the weight values for each codebook vector, using

u_],k o Enm Nnmhnm,ijU_;nm
=
an Nnmhnm,kj

where nm iterates over all neurons, Ny, is the number of patterns for which

neuron nm is the winner, and hym ; is the neighborhood function which indi-
cates if neuron nm is in the neighborhood of neuron kj, and to what degree.

4. Test convergence. If the algorithm did not converge, go to step 2.

4.5.3 Growing SOM

One of the design problems when using a SOM is deciding on the size of the map.
Too many neurons may cause overfitting of the training patterns, with small clusters
containing a few patterns. Alternatively, the final SOM may have succeeded in
forming good clusters of similar patterns, but with many neurons with a zero, or
close to zero frequency. The frequency of a neuron refers to the number of patterns
for which that neuron is the winner, referred to as the best matching neuron (BMN).
Too many neurons also cause a substantial increase in computational complexity.
Too few neurons, on the other hand, will result in clusters with a high variance
among the cluster members.

An approach to find near optimal SOM architectures is to start training with a small
architecture, and to grow the map when more neurons are needed. One such SOM
growing algorithm is given below, assuming a square map structure. Note that the
map-growing process coexists with the training process.

1. Initialize the codebook vectors for a small, undersized SOM.
2. Grow the map:
(a) Train the SOM for £ pattern presentations, using any SOM training
method.

(b) Find the neuron kj with the largest quantization error.

(c) Find the furthest immediate neighbor mn in the row-dimension of the
map, and the furthest neuron op in the column-dimension.

(d) Insert a column between neurons kj and op and a row between neurons
kj and mn (this step preserves the square structure of the map).
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(e) For each neuron ab in the new column, initialize the corresponding code-
book vectors W, using

Wap = a(Wap—1 + Wapt1)
and for each neuron in the new row,
Wap = a(Wa-1, + Wa+1,p)

where a € (0,1)
(f) Stop growing when any one of the following criteria is satisfied:
e the maximum map size has been reached;
e the largest neuron quantization error is less than a user specified
threshold, A;
e the map has converged to the specified quantization error.

3. Refine the map:
Refine the weights of the final SOM architecture with additional training steps
until convergence has been reached.

A few aspects of the growing algorithm above need some explanation. These are the
constants A,~ and the maximum map size. A good choice for « is 0.5. The idea of
the interpolation step is to assign a weight vector to the new neuron ab such that it
removes patterns from the largest quantization error neuron £j in order to reduce
the quantization error of neuron kj. A value less than 0.5 will position neuron ab
closer to kj, with the chance that more patterns will be removed from neuron k&j.
A value larger than 0.5 will have the opposite effect.

The quantization error threshold, A, is important to ensure that a sufficient map size
is constructed. A small value for A may result in too large a map architecture, while
too large a A may result in longer training times to reach a large enough architecture.

An upper bound on the size of the map is easy to determine: it is simply the
number of training patterns, Pr. This is, however, undesirable. The maximum map
size is rather expressed as BPr, with 8 € (0,1). The optimal value of 5 is problem
dependent, and care should be taken to ensure that 8 is not too small if a growing
SOM is not used. If this is the case, the final map may not converge to the required
quantization error, since the map size will be too small.

4.5.4 Improving Convergence Speed

Training of SOMs is slow, due to the large number of weight updates involved (all
the weights are updated for standard SOM training). Several mechanisms have been
developed to reduce the number of training calculations, thereby improving speed
of convergence. BatchMap is one such mechanism. Other approaches include the
following:
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Optimizing the neighborhood

If the Gaussian neighborhood function as given in equation (4.20) is used, all neu-
rons will be in the neighborhood of the BMN, but to different degrees, due to the
asymptotic characteristics of the function. Thus, all codebook vectors are updated,
even if they are far from the BMN. This is strictly not necessary, since neurons far
away from the BMN are dissimilar to the presented pattern, and will have negligible
weight changes. Many calculations can therefore be saved by clipping the Gaussian
neighborhood at a certain threshold - without degrading the performance of the
SOM.

Additionally, the width of the neighborhood function can change dynamically during
training. The initial width is large, with a gradual decrease in the variance of the
Gaussian, which controls the neighborhood. For example,

a(t) = o(0)e ™ (4.21)
where 71 is a positive constant, and o(0) is the initial, large variance.

If the growing SOM (refer to Section 4.5.3) is used, the width of the Gaussian
neighborhood function should increase with each increase in map size.

Learning Rate

A time-decaying learning rate may be used, where training starts with a large learn-
ing rate which gradually decreases. That is,

n(t) = n(0)e™"/™ (4.22)

where 7 is a positive constant and 7(0) is the initial, large learning rate (refer to
chapter 7 to read about the consequences of large and small learning rates).

Shortcut Winner Search

The shortcut winner search decreases the computational complexity by using a more
efficient search for the BMN. The search is based on the premise that the BMN of
a pattern is in the vicinity of the BMN for the previous epoch. The search for a
BMN is therefore constrained to the current BMN and its neighborhood. In short,
the search for a BMN for each pattern is summarized as

1. Retrieve the previous BMN.

2. Calculate the distance of the pattern to the codebook vector of the previous
BMN.
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3. Calculate the distance of the pattern to all direct neighbors of the previous
BMN.

4. If the previous BMN is still the best, then terminate the search; otherwise,
let the new BMN be the neuron (within the neighborhood) closest to that
pattern.

Shortcut winner search does not perform a search for the BMN over the entire
map, but just within the neighborhood of the previous BMN, thereby substantially
reducing computational complexity.

4.5.5 Clustering and Visualization

The effect of the SOM training process is to cluster together similar patterns, while
preserving the topology of input space. After training, all that is given is the set of
trained weights with no explicit cluster boundaries. An additional step is required
to find these cluster boundaries.

One way to determine and visualize these cluster boundaries is to calculate the
unified distance matrix (U-matrix), which contains a geometrical approximation
of the codebook vector distribution in the map. The U-matrix expresses for each
neuron, the distance to the neighboring codebook vectors. Large values within the
U-matrix indicate the position of cluster boundaries. Using a gray-scale scheme,
Figure 4.4(a) visualizes the U-matrix for the iris classification problem.

For the same problem, Figure 4.4(b) visualizes the clusters on the actual map.
Boundaries are usually found by using Ward clustering of the codebook vectors.
Ward clustering follows a bottom-up approach where each neuron initially forms its
own cluster. At consecutive iterations, two clusters which are closest to one another
are merged, until the optimal, or specified number of clusters has been constructed.
The end result of Ward clustering is a set of clusters with a small variance over its
members, and a large variance between separate clusters.

The Ward distance measure is used to decide which clusters should be merged. The
distance measure is defined as

NyNg
dps =

. 12
= Wy — W,
e LA

where r and s are cluster indices, n, and n, are the number of patterns within the
clusters, and w, and W, are the centroid vectors of these clusters (i.e. the average
of all the codebook vectors within the cluster). The two clusters are merged if their
distance, dr,, is the smallest. For the newly formed cluster, g,

. 1
Wy =
ny + ng

(n, W, + nsws)
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and
Ng = Ny + N

Note that, in order to preserve topological structure, two clusters can only be merged
if they are adjacent. Furthermore, only clusters that have a nonzero number of
patterns associated with them are merged.

4.5.6 Using SOM

The SOM has been applied to a variety of real-world problems, including image
analysis, speech recognition, music pattern analysis, signal processing, robotics,
telecommunications, electronic-circuit design, knowledge discovery and time series
analysis. The main advantage of SOMs comes from the easy visualization and in-
terpretation of clusters formed by the map.

In addition to visualizing the complete map as illustrated in Figure 4.4(b), the
relative component values in the codebook vectors can be visualized as illustrated in
the same figure. Here a component refers to an input attribute. That is, a component
plane can be constructed for each input parameter (component) to visualize the
distribution of the corresponding weight (using some color scale representation). The
map and component planes can be used for exploratory data analysis. For example,
a marked region on the visualized map can be projected onto the component planes
to find the values of the input parameters for that region.

A trained SOM can also be used as a classifier. However, since no target information
is available during training, the clusters formed by the map should be manually
inspected and labeled. A data vector is then presented to the map, and the winning
neuron determined. The corresponding cluster label is then used as the class.

Used in recall mode, the SOM can be used to interpolate missing values within a
pattern. Given such a pattern, the BMN is determined, ignoring the inputs with
missing values. A value is then found by either replacing the missing value with the
corresponding weight of the BMN, or through interpolation among a neighborhood of
neurons (e.g. take the average of the weight values of all neurons in the neighborhood
of the BMN).

4.6 Conclusion

This chapter gave a short introduction to unsupervised learning algorithms, with
emphasis on LVQ-I and SOMs. These algorithms are very useful in performing clus-
tering, with applications in analysis of mammograms and landsat images, customer
profiling, stock prediction, and many more. The next chapter presents learning
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algorithms which combines supervised and unsupervised learning.

4.7 Assignments

1.

10.

Implement and test a LVQ-I network to distinguish between different alpha-
betical characters of different fonts.

. Explain why it is necessary to retrain a supervised NN on all the training data,

including any new data that becomes available at a later stage. Why is this
not an issue with unsupervised NNs?

. Discuss an approach to optimize the LVQ-I network architecture.

. How can PSO be used for unsupervised learning?

What is the main difference between the LVQ-I and SOM as an approach to
cluster multi-dimensional data?

For a SOM, if the training set contains Pr patterns, what is the upper bound
on the number of neurons necessary to fit the data? Justify your answer.

Explain the purpose of the neighborhood function of SOMs.

. Assuming a Gaussian neighborhood function for SOMs, what can be done to

reduce the number of weight updates in a sensible way?

. Explain how a SOM can be used to distinguish among different hand gestures.

Discuss a number of ways in which the SOM can be adapted to reduce its
computational complexity.
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Figure 4.4: Visualization of SOM clusters for iris classification
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Chapter 5

Radial Basis Function Networks

Several neural networks have been developed for both the supervised and the un-
supervised learning paradigms. While these NNs were seen to perform very well in
their respective application fields, improvements have been developed by combin-
ing supervised and unsupervised learning. This chapter discusses two such learning
algorithms, namely the learning vector quantizer-II in Section 5.1 and radial basis
function NNs in Section 5.2.

5.1 Learning Vector Quantizer-I1

The learning vector quantizer (LVQ-II), developed by Kohonen, uses information
from a supervisor to implement a reward and punish scheme. The LVQ-II assumes
that the classifications of all input patterns are known. If the winning cluster unit
correctly classifies the pattern, the weights to that unit are rewarded by moving the
weights to better match the input pattern. On the other hand, if the winning unit
misclassified the input pattern, the weights are penalized by moving them away from
the input vector.

For the LVQ-II, the weight updates for the winning output unit o are given as

t)[z, - Uki(t - 1)] if op = g
Aups = ul P 1 Ok.p P 51
i { 1))z — uilt = D] if oy # thy (6.1)

Similarly to the LVQ-I, a conscience factor can be incorporated to penalize frequent
winners.
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5.2 Radial Basis Function Neural Networks

A radial basis function (RBF) neural network is a combination of Kohonen’s LVQ-I
and gradient descent. The architecture consists of three layers: an input layer, a
hidden layer of J basis functions, and an output layer of K linear output units. The
activation values of the hidden units are calculated as the closeness of the input
vector 2 to an I-dimensional parameter vector fi; associated with hidden unit y;.
The activation is given as

_lizp—aji?
yip=e i (5.2)
using a Gaussian basis function, or
WEp—Ajll o
yp=[+e 7 ] (53)

using a logistic function, where the norm is the Euclidean norm; o; and fi; are
respectively the standard deviation and mean of the basis function. The final output
is calculated as

J
Okp = z Wk;5Y5.p (5.4)
=1

Figure 5.1 illustrates the architecture of an RBF network. The fi; vector is the
weight vector to the j-th hidden unit (basis function), and o;‘-’ is the bias to the j-th
hidden unit.

In the case of classification problems, an RBF network finds the centroids of data
clusters, and uses these centroids as the centers of the Gaussian density function.
Clusters are formed by fitting these bell-shaped basis functions over the input space.
Classifications are then determined from a linear combination of the Gaussian den-
sity functions. In the case of function approximation, the target function is approx-
imated by superimposing the basis functions.

Training of an RBF network is achieved in two steps: (1) unsupervised learning
of the weights pj; between the input and hidden layers using LVQ-I, and then,
(2) supervised training of the wy; weights between the hidden and output layers
using GD. A pseudo-code algorithm for the code is given below (more sophisticated
algorithms can be found in the literature):

1. (a) Initialize all uj;; weights to the average value of all inputs in the training
set.

(b) Initialize all variances o;‘-’ to the variance of all input values over the
training set.

(c) Initialize all wy; weights to small random values.
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Figure 5.1: Radial basis function neural network

2. Learn the centroids f; using LVQ-I:
After each LVQ-I epoch, set the variance for all winning y;s as the average of
the Euclidean distances of the y;s’ mean weight vector [i; to the input patterns
for which y; was selected as the winner.

3. Learn the hidden-to-output weights wy; using the adjustments

K
Awii(t) =Y (tkp — Okp)jp (5.5)

k=1

4. Training stops when the GD phase converges.

The activation values of the hidden and output units can be used to compute a
degree Py, to which a pattern p belongs to each class k:

O D
Prp = 5 o— (5.6)
Zj:l Yip

RBF networks present several advantages, including (1) network output units pro-
vide a degree of membership to classes, (2) they do not experience local minima
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problems as does standard FFNN training using GD, (3) the unsupervised training
is insensitive to the order of pattern presentation. RBF networks are, however, slow
in training, and may need more hidden units for function approximation problems
than FFNNs.

5.3 Conclusion

Many extensions to both LVQ-II and RBF networks have been developed. These
extensions all have as their aim improvement of performance. Interested readers are
referred to the numerous research articles available on these extensions.

5.4 Assignments
1. Compare the performance of an RBF NN and a FFNN on a classification
problem from the UCI machine learning repository.
2. Compare the performance of the Gaussian and logistic basis functions.

3. Suggest an alternative to compute the hidden-to-output weights instead of
using GD.

4. Suggest an alternative to compute the input-to-hidden weights instead of using
LVQ-L

5. Investigate alternative methods to initialize an RBF NN.



Chapter 6

Reinforcement Learning

The last learning paradigm to be covered is reinforcement learning, with its origins
in the psychology of animal learning. The basic idea is that of awarding the learner
for correct actions, and punishing wrong actions. Reinforcement learning occurs in
areas wider than just neural networks, but the focus of this chapter is its application
to NN learning. The LVQ-II can be perceived as a form of reinforcement learning,
since weights of the winning output unit are only positively updated if that output
unit provided the correct response for the corresponding input pattern. If not,
weights are penalized through adjustment away from that input pattern.

Section 6.2 presents another reinforcement learning rule, but first an overview of
learning through awards is given in Section 6.1.

6.1 Learning through Awards

Formally defined, reinforcement learning is the learning of a mapping from situations
to actions with the main objective to maximize the scalar reward, or reinforcement
signal. Informally, reinforcement learning is defined as learning by trial-and-error
from performance feedback from the environment or an external evaluator. The
learner has absolutely no prior knowledge of what action to take, and has to discover
(or explore) which actions yield the highest reward.

A typical reinforcement learning problem is illustrated in Figure 6.1. The learner
receives sensory inputs from its environment, as a description of the current state of
the perceived environment. An action is executed, upon which the learner receives
the reinforcement signal or reward. This reward can be a positive or negative signal,
depending on the correctness of the action. A negative reward has the effect of
punishing the learner for a bad action.
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Action
Learner
Sensory Reward
Input
Environment

Figure 6.1: Reinforcement learning problem

6.2 Reinforcement Learning Rule

Neural network reinforcement learning usually requires a two-layer architecture, and
a training set consisting of input vectors representing, for example, sensory inputs.
A target action is also provided for each input pattern. Additionally, an external
evaluator is required to decide whether the learner has scored a success or not. The
weights are updated using

Awgj = n(rp — Ok)ex; (6.1)
where 7 is the learning rate, rp, is an indication of success/failure for pattern p as
provided by the external evaluator; 6 is the reinforcement threshold value, and eg;
is the eligibility of weight wy;:

s = g n(es)] 62)

where
g; = Prob(okp = tr p|Wi, Zp) (6.3)

Thus, this NN reinforcement learning rule computes a GD in probability space.

6.3 Conclusion

Reinforcement learning is slow learning process, but works well in situations where
all the training data is not available at once. In such environments, the NN learns
to adapt to new situations easily as they arise.
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Assignments

. Discuss how reinforcement learning can be used to guide a robot out of a room

filled with obstacles.

. Why is the SSE not a good measure to compare the performance of NNs on

different data set sizes?

. One approach to incremental learning is to select from the candidate training

set the most informative pattern as the one with the largest error. Justify and
criticize this approach. Assume that a new pattern is selected at each epoch.

. Explain the role of the steepness coefficient in m}—m in the performance of

supervised NNs.

. Explain how architecture can be used to avoid overfitting.
. Explain how active learning can be used to avoid overfitting.

. Consider the sigmoid activation function. Discuss how scaling of the training

data affects the performance of NNs.
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Chapter 7

Performance Issues (Supervised
Learning)

“For it is pointless to do with more what can be done with less.”
-William of Ockham (1285-1349)

Performance is possibly the driving force of all organisms. If no attention is given
to improve performance, the quality of life will not improve. Similarly, performance
is the most important aspect that has to be considered when an artificial neural
network is being designed. The performance of an artificial NN is not just measured
as the accuracy achieved by the network, but aspects such as computational com-
plexity and convergence characteristics are just as important. These measures and
other measures that quantify performance are discussed in Section 7.1, with specific
reference to supervised networks.

The design of NNs for optimal performance requires careful consideration of sev-
eral factors that influence network performance. In the early stages of NN research
and applications, the design of NNs was basically done by following the intuitive
feelings of an expert user, or by following rules of thumb. The vast number of
theoretical analysis of NNs made it possible to better understand the working of
NNs - to unravel the “black box”. These insights helped to design NNs with im-
proved performance. Factors that influence the performance of NNs are discussed
in Section 7.3.

Although the focus of this chapter is on supervised learning, several ideas can be
extrapolated to unsupervised learning NNs.
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7.1 Performance Measures

This section presents NN performance measures under three headings: accuracy,
complezity and convergence.

7.1.1 Accuracy

Generalization is a very important aspect of neural network learning. Since it is a
measure of how well the network interpolates to points not used during training, the
ultimate objective of NN learning is to produce a learner with low generalization
error. That is, to minimize the true risk function

Ec({W) = / (Fnn(Z, W) = 1)2dQ(Z, 1) (7.1)

where, from Section 3.2.1, (Z,%) is the stationary density according to which pat-
terns are sampled, W describes the network weights, and Z and £ are respectively the
input and target vectors. The function Fy n is an approximation of the true under-
lying function. Since §2 is generally not known, Fy y is found through minimization
of the empirical error function

Pr
Er(DriW) = = 3 (Fun (G W) - §)° (7.2)
p=1

over a finite data set Dp ~ Q. When Pr — oo, then & — £g. The aim of
NN learning is therefore to learn the examples presented in the training set well,
while still providing good generalization to examples not included in the training
set. It is, however, possible that a NN exhibits a very low training error, but bad
generalization due to overfitting (memorization) of the training patterns.

The most common measure of accuracy is the mean squared error (MSE), in which
case the training error &r is expressed as

P K
_ 2up=1 k=1 (tkp — 0kp)?

PR (7.3)

Er

where Pr is the total number of training patterns in the training set Dr, and K
is the number of output units. The generalization error £ is approximated in the
same way, but with the first summation over the Pg patterns in the generalization,
or test set, Dg. Instead of the MSE, the sum squared error (SSE),

P K
SSE =" (tkp — 0kp)’ (7.4)

p=1k=1
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can also be used, where P is the total number of patterns in the data set considered.
However, the SSE is not a good measure when the performance on different data set
sizes are compared.

An additional error measure is required for classification problems, since the MSE
alone is not a good descriptor of accuracy. In the case of classification problems, the
percentage correctly classified (or incorrectly classified) patterns is used as a measure
of accuracy. The reason why the MSE is not a good measure, is that the network
may have a good accuracy in terms of the number of correct classifications, while
having a relatively large MSE. If just the MSE is used to indicate when training
should stop, it can happen that the network is trained too long in order to reach the
low MSE. Hence, wasting time and increasing the chances of overfitting the training
data (with reference to the number of correct classifications). But when is a pattern
classified as correct? When the output class of the NN is the same as the target
class — which is not a problem to determine when the ramp or step function is used
as the activation function in the output layer. In the case of continuous activation
functions, a pattern p is usually considered as being correctly classified if for each
output unit ok, ((ogp > 0.5+ 8 and ty, =1) or (0kp < 0.5 -6 and typ, = 0)),
where 6 € [0,0.5] - of course, assuming that the target classes are binary encoded.

An additional measure of accuracy is to calculate the correlation between the output
and target values for all patterns. This measure, referred to as the correlation
coefficient, is calculated as

Yoz —7) Y (v —7)

00y
n e . L n - n R
Ei:1 TiYi — 5 2ui=1 %1 Zi:1 Yi

VI 22 = M, 202 /S, v - LT v)?

where z; and y; are observations, T and ¥ are respectively the averages over all
observations z; and y;, and o, and oy are the standard deviations of the z; and y;
observations respectively, and can be used to quantify the linear relationship between
variables z and y. As measure of learning accuracy, where z = o4, and y = #; p, the
correlation coefficient quantifies the linear relationship between the approximated
(learned) function and the true function. A correlation value close to 1 indicates a
good approximation to the true function. Therefore, the correlation coefficient

P P P
szl Ok plhp — % Zp:l Ok,p Zp:] tkp

T =
P 1 P P 1 P
\/2p:1 O%p - ﬁ(Zp:I Ok,P)2\/Ep:1 tz:,p - ﬁ(zpzl tk,p)Q

is calculated as measure of how well the NN approximates the true function.

(7.5)

(7.6)

Another very important aspect of NN accuracy is overfitting. Overfitting of a train-
ing set means that the NN memorizes the training patterns, and consequently loses
the ability to generalize. That is, NNs that overfit cannot predict correct output
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for data patterns not seen during training. Overfitting occurs when the NN archi-
tecture is too large, i.e. the NN has too many weights (in statistical terms: too
many free parameters) — a direct consequence of having too many hidden units and
irrelevant input units. If the NN is trained for too long, the excess free parameters
start to memorize all the training patterns, and even noise contained in the training
set. Remedies for overfitting include optimizing the network architecture and using
enough training patterns (discussed in Section 7.3).

Estimations of generalization error during training can be used to detect the point
of overfitting. The simplest approach to find the point of overfitting was developed
through studies of training and generalization profiles. Figure 7.1 presents a general
illustration of training and generalization errors as a function of training epochs.
From the start of training, both the training and generalization errors decrease
- usually exponentially. In the case of oversized NNs, there is a point at which
the training error continues to decrease, while the generalization error starts to
increase. This is the point of overfitting. Training should stop as soon an increase
in generalization error is observed.

Error

Figure 7.1: Illustration of overfitting

In order to detect the point of overfitting, the original data set is divided into three
disjoint sets, i.e. the training set Dr, the generalization set Dg and the validation
set Dy. The validation set is then used to estimate the generalization error. Since
both the training error and the validation error usually fluctuate, determining the
point of overfitting is not straightforward. A moving average of the validation error
has to be used. Overfitting is then detected when

Ev > Ev + g, (7.7
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where £y is the MSE on the validation set, £y is the average MSE on the validation
set since training started, and og, is the standard deviation in validation error.

Rabel suggested the generalization factor as an alternative indication of overfitting
[Robel 1994]. Robel defines the generalization factor p = %, where £y and &r
are the MSE on the validation set Dy and current training subset Dr respectively.
The generalization factor indicates the error made in training on Dr only, instead
of training on the entire input space. Overfitting is detected when p(§) > ¢,(£),
where ¢,(£) = min{,(§ — 1),p + 0p,1.0}; £ is the current epoch, p is the average
generalization factor over a fixed number of preceding epochs, and o, is the standard
deviation. This test ensures that p < 1.0. Keep in mind that p does not give an
indication of the accuracy of learning, but only the ratio between the training and
validation error. For function approximation problems (as is the case with Robel’s
work) where the MSE is used as a measure of accuracy, a generalization factor
p < 1 means that the validation error is smaller than the training error — which is
desirable. As p becomes large (greater than 1), the difference between the training
error and validation error increases, which indicates an increase in validation error
with a decrease in training error — an indication of overfitting. For classification
problems where the percentage of correctly classified patterns is used as a measure
of accuracy, p should be larger than 1.

It is important to note that the training error or the generalization error alone is not
sufficient to quantify the accuracy of a NN. Both these errors should be considered.

Additional Reading Material on Accuracy

The trade-off between training error and generalization has prompted much re-
search in the generalization performance of NNs. Average generalization perfor-
mance has been studied theoretically to better understand the behavior of NNs
trained on a finite data set. Research shows a dependence of generalization error on
the training set, the network architecture and weight values. Schwartz, Samalam,
Solla and Denker show the importance of training set size for good generaliza-
tion in the context of ensemble networks [Schwartz et al. 1990]. Other research
uses the VC-dimension (Vapnik-Chervonenkis dimension) [Abu-Mostafa 1989,
Abu-Mostafa 1993, Cohn and Tesauro 1991, Opper 1994] to derive boundaries on
the generalization error as a function of network and training set size. Best known
are the limits derived by Baum and Hausler [Baum and Haussler 1989] and Hausler,
Kearns, Opper and Schapire [Haussler et al. 1992]. While these limits are derived
for, and therefore limited to, discrete input values, Hole derives generalization limits
for real valued inputs [Hole 1996].

Limits on generalization have also been developed by studying the relationship
between training error and generalization error. Based on Akaike’s Final Predic-
tion Error (FPE) and Information Criterion (AIC) [Akaike 1974], Moody derived
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the Generalized Prediction Error (GPE) which gives a limit on the generaliza-
tion error as a function of the training error, training set size, the number of
effective parameters, and the effective noise variance [Moody 1992, Moody 1994).
Murata, Yoshizawa and Amari derived a similar Network Information Criterion
[Murata et al. 1991, Murata et al. 1994a, Murata et al. 1994b]. Using a differ-
ent approach, i.e. Vapnik’s Bernoulli theorem, Depenau and Mogller derived a
bound as a function of training error, the VC-dimension and training set size
[Depenau and Mgller 1994].

These research results give, sometimes overly pessimistic, limits that help to clarify
the behavior of generalization and its relationship with architecture, training set size
and training error. Another important issue in the study of generalization is that
of overfitting. Overfitting means that the NN learns too much detail, effectively
memorizing training patterns. This normally happens when the network complexity
does not match the size of the training set, i.e. the number of adjustable weights
(free parameters) is larger than the number of independent patterns. If this is the
case, the weights learn individual patterns, and even capture noise. This overfitting
phenomenon is the consequence of training on a finite data set, minimizing the
empirical error function given in equation (7.2), which differs from the true risk
function given in equation (7.1).

Amari et al. developed a statistical theory of overtraining in the asymptotic case
of large training set sizes [Amari et al. 1995, Amari et al. 1996]). They analytically
determine the ratio in which patterns should be divided into training and test sets
to obtain optimal generalization performance and to avoid overfitting. Overfitting
effects under large, medium and small training set sizes have been investigated ana-
lytically by Amari et al. [Amari et al. 1995] and Miiller et al. [Miiller et al. 1995].

7.1.2 Complexity

The computational complexity of a NN is directly influenced by:

1. The network architecture:
The larger the architecture, the more feedforward calculations are needed to
predict outputs after training, and the more learning calculations are needed
per pattern presentation.

2. The training set size:
The larger the training set size, the more patterns are presented for training.
Therefore, the total number of learning calculations per epoch is increased.

3. Complexity of the optimization method:
As will be discussed in Section 7.3, sophisticated optimization algorithms have
been developed to improve the accuracy and convergence characteristics of
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NNs. The sophistication comes, however, at the cost of increased computa-
tional complexity to determine the weight updates.

Training time is usually quantified in terms of the number of epochs to reach specific
training or generalization errors. When different learning algorithms are compared,
the number of epochs is usually not an accurate estimate of training time or compu-
tational complexity. Instead, the total number of pattern presentations, or weight
updates are used. A more accurate estimate of computational complexity is to count
the total number of calculations made during training.

7.1.3 Convergence

The convergence characteristics of a NN can be described by the ability of the
network to converge to specified error levels (usually considering the generalization
error). The ability of a network to converge to a specific error is expressed as the
number of times, out of a fixed number of simulations, that the network succeeded
in reaching that error. While this is an empirical approach, rigorous theoretical
analysis has been done for some network types.

7.2 Analysis of Performance

Any study of the performance of NNs (or any other algorithm for that matter)
and any conclusions based on just one simulation are incomplete and inconclusive.
Conclusions on the performance of NNs must be based on the results obtained from
several simulations. For each simulation the NN starts with new random initial
weights and uses a different training, validation and generalization sets, independent
of previous sets. Performance results are then expressed as averages over all the
simulations, together with variances, or confidence intervals.

Let o denote the performance measure under consideration. Results are then re-
ported as ¢ £ 0,. The average p is an indication of the average performance over
all simulations, while o, gives an indication of the variance in performance. The
0, parameter is very important in decision making. For example, if two algorithms
A and B are compared where the MSE for A is 0.001 £ 0.0001, and that of B is
0.000940.0006, then algorithm A will be preferred even though B has a smaller MSE.
Algorithm A has a smaller variance, having MSE values in the range [0.0009,0.0011],
while B has MSE values in a larger range of [0.0003, 0.0015].

While the above approach to present results is sufficient, results are usually reported
with associated confidence intervals. If a confidence level of o = 0.01 is used, for
example, then 99% of the observations will be within the calculated confidence in-
terval. Before explaining how to compute the confidence intervals, it is important to
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note that at least 30 independent simulations are needed. This allows the normality
assumption as stated by the Central Limit Theorem: the probability distribution
governing the variable g approaches a Normal distribution as the number of ob-
servations (simulations) tends to infinity. Using this result, the confidence interval
associated with confidence level « is estimated as

0xton-10, (7.8)

where t, 1 is a constant obtained from the t-distribution with n — 1 degrees of
freedom (n is the number of simulations) and

Z?:l(g‘i - 5)2 (79)

%e = n(n — 1)

7.3 Performance Factors

This section discusses various aspects that have an influence on the performance
of supervised NNs. These aspects include data manipulation, learning parameters,
architecture selection, and optimization methods.

7.3.1 Data Preparation

One of the most important steps in using a NN to solve real-world problems is to
collect and transform data into a form acceptable to the NN. The first step is to
decide on what the inputs and the outputs are. Obviously irrelevant inputs should
be excluded. Section 7.3.5 discusses ways in which the NN can decide itself which
inputs are irrelevant. The second step is to process the data in order to remove
outliers, handle missing data, transform non-numeric data to numeric data and to
scale the data into the active range of the activation functions used. Each of these
aspects are discussed below:

Missing Values

It is common that real-world data sets have missing values for input parameters.
NNs need a value for each of the input parameters. Therefor, something has to be
done with missing values. The following options exist:

o Remove the entire pattern if it has a missing value. While pattern removal
solves the missing value problem, other problems are introduced: (1) the avail-
able information for training is reduced which can be a problem if data is
already limited, and (2) important information may be lost.
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o Replace each missing value with the average value for that input parameter
in the case of continuous values, or with the most frequently occurring value
in the case of nominal or discrete values. This replacing of missing values
introduces no bias.

e For each input parameter that has a missing value, add an additional input
unit to indicate patterns for which parameters are missing. It can then be
determined after training whether the missing values had a significant influence
on the performance of the network.

While missing values present a problem to supervised neural networks, SOMs do not
suffer under these problems. Missing values do not need to be replaced. The BMN
for a pattern with missing values is, for example, calculated by ignoring the missing
value and the corresponding weight value of the codebook vector in the calculation
of the Euclidean distance between the pattern and codebook vector.

Coding of Input Values

All input values to a NN must be numeric. Nominal values therefore need to be
transformed to numerical values. A nominal input parameter that has n different
values is coded as n different binary input parameters, where the input parameter
that corresponds to a nominal value has the value 1, and the rest of these parameters
have the value 0. An alternative is to use just one input parameter and to map each
nominal value into an equivalent numerical value. This is, however, not a good idea,
since the NN will interpret the input parameter as having continuous values, thereby
losing the discrete characteristic of the original data.

Outliers

Outliers have severe effects on accuracy, especially when gradient descent is used with
the SSE as objective function. An outlier is a data pattern that deviates substantially
from the data distribution. Because of the large deviation from the norm, outliers
result in large errors, and consequently large weight updates. Figure 7.3 shows that
larger differences between target and output values cause an exponential increase
in the error if the SSE is used as objective function. The fitted function is then
pulled toward the outliers in an attempt to reduce the training error. As result, the
generalization deteriorates. Figure 7.2 illustrates this effect.

The outlier problem can be addressed in the following ways:
e Remove outliers before training starts, using statistical techniques. While

such actions will eliminate the outlier problem, it is believed that important
information about the data might also be removed at the same time.
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Figure 7.2: Effect of outliers

e Use a robust objective function that is not influenced by outliers. An ex-
ample objective function is the Huber function as illustrated in Figure 7.4
[Huber 1981). Patterns for which the error is larger than |a| have a constant
value, and have a zero influence when weights are updated (the derivative of
a constant is zero).

e Slade and Gedeon [Slade and Gedeon 1993] and Gedeon, Wong and Harris
[Gedeon et al. 1995] proposed Bimodal Distribution Removal, where the aim is
to remove outliers from training sets during training. Frequency distributions
of pattern errors are analyzed during training to identify and remove outliers.
If the original training set contains no outliers, the method simply reduces to
standard learning.

Scaling and Normalization

Data needs to be scaled to the active range and domain of the activation functions
used. While it is not necessary to scale input values, performance can be improved
if inputs are scaled to the active domain of the activation functions. For example,
consider the sigmoid activation function. Simple mathematical calculations show
that the active domain of the sigmoid function is [—/3, V3], corresponding to the
parts of the function for which changes in input values have relatively large changes
in output. Values near the asymptotic ends of the sigmoid function have a very small
influence on weight updates. Changes in these values result in very small changes in
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Figure 7.3: SSE objective function

output. Furthermore, the derivatives near the asymptotes are approximately zero,
causing weight updates to be approximately zero. Therefor achieving no learning in
these areas.

When bounded activation functions are used, the target values have to be scaled
to the range of the activation function, for example (0,1) for the sigmoid function
and (—1,1) for the hyperbolic tangent. If ¢y mez and ty min are the maximum and
minimum values of the unscaled target t,, then,

ty = ty — tu,min

tu,maz - tu,min

(ts,maac - ts,min) + ts,min (7'10)

where t5 ;45 and t5 min are the new maximum and minimum values of the scaled
values, linearly maps the range [ty min,tumaz] t0 the range [t min, tsmaz)-

In the case of classification problems, target values are usually elements of the set
{0.1,0.9} for the sigmoid function. The value 0.1 is used instead of 0, and 0.9 instead
of 1. Since the output of the sigmoid function can only approach 0 and 1, a NN can
never converge to the best set of weights if the target values are 0 or 1. In this case
the goal of the NN is always out of reach, and the network continues to push weight
values toward extreme values until training is stopped.

Scaling of target values into a smaller range does have the disadvantage of increased
training time. Engelbrecht et al. showed that if target values are linearly scaled
using

te = c1ty + C2 (7.11)
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Figure 7.4: Huber objective function

where t; and ¢, are respectively the scaled and original unscaled target values, the
NN must be trained longer until

MSE; = (c,)’MSE, (7.12)

to reach a desired accuracy, MSE,, on the original unscaled data set
[Engelbrecht et al. 1995a].

The hyperbolic tangent will therefore result in faster training times than the sigmoid
function, assuming the same initial conditions and training data.

The scaling process above is usually referred to as amplitude scaling, or min-max
scaling. Min-max scaling preserves the relationships among the original data. Two
other frequently used scaling methods are mean centering and variance scaling. To
explain these two scaling methods, assume that Z € R/*P is a matrix containing all
input vectors such that input vectors are arranged as columns in Z, and T € RK*FP
is the matrix of associated target vectors, arranged in column format. For the mean
centering process, compute

P
Zi = ) Zip/P
p=1

P
Ty = Y Tip/P
p=1

foralli=1,---,] and k = 1,---,K; Z; is the average value for input z; over all
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the patterns, and T is the average target value for the k-th output unit over all
patterns. Then,

ZM = Zip-Zs

TM = Tip—Tk

forallz=1,---,I, k=1,---,Kandp=1,---,P; Z% is the scaled value of the
input to unit z; for pattern p, and T,f"’}’, is the corresponding scaled target value.

Variance scaling, on the other hand, computes for each row in each matrix the
standard deviations (I deviations for matrix Z and K deviations for matrix T') over
all P elements in the row. Let o, denote the standard deviation of row i of matrix
Z, and oy, is the standard deviation of row k of matrix T'. Then,

v Zigp

Zi,ﬁ -

0

7 Tk,p
Tep =

Tty

foralli=1,---,I,k=1,---,Kandp=1,---,P.

Mean centering and variance scaling can both be used on the same data set. Mean
centering is, however, more appropriate when the data contains no biases, while
variance scaling is appropriate when training data are measured with different units.

Both mean centering and variance scaling can be used in situations where the min-
imum and maximum values are unknown. Z-score normalization is another data
transformation scheme which can be used in situations where the range of values
is unknown. It is essentially a combination of mean centering and variance scaling,
and is very useful when there are outliers in the data. For z-score normalization,

-
Z%V = _.___”; ¢ (7.13)
Z;
Trep— Tk
TV = 222 7.14
k,p oty ( )
(7.15)

For some NN types, for example the LVQ, input data is preferred to be normalized to
vectors of unit length. The values z;;, of each input parameter z; are then normalized
using

’ Zim

Zip = (7.16)

Y12y

The normalization above loses information on the absolute magnitude of the input
parameters, since it requires the length of all input vectors (patterns) to be the
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same. Input patterns with parameter values of different magnitudes are normalized
to the same vector, e.g. vectors (—1,1,2,3) and (-3,3,6,9). Z-axis normalization
is an alternative approach which preserves the absolute magnitude information of
input patterns. Before the normalization step, input values are scaled to the range
[—1,1]. Input values are then normalized using

%, = 2'7; (7.17)
and adding an additional input unit z; to the NN, referred to as the synthetic
parameter, with value

n=1/1- = (7.18)

where L is the Euclidean length of the input vector.

Noise Injection

For problems with a limited number of training patterns, controlled injection of
noise helps to generate new training patterns. Provided that noise is sampled
from a Normal distribution with a small variance and zero mean, it can be as-
sumed that the resulting changes in the network output will have insignificant con-
sequences [Holmstrém and Koistinen 1992]. Also, the addition of noise results in a
convolutional smoothing of the target function, resulting in reduced training time
and increased accuracy [Reed et al. 1995]. Engelbrecht used noise injection around
decision boundaries to generate new training patterns for improved performance
[Engelbrecht 2000].

Training Set Manipulation

Several researchers have developed techniques to control the order in which patterns
are presented for learning. These techniques resulted in the improvement of training
time and accuracy. A short summary of such training set manipulation techniques
is given below.

Ohnishi, Okamoto and Sugie suggested a method called Selective Presentation where
the original training set is divided into two training sets. One set contains typical
patterns, and the other set contains confusing patterns [Ohnishi et al. 1990]. With
“typical pattern” the authors mean a pattern far from decision boundaries, while
“confusing pattern” refers to a pattern close to a boundary. The two training sets
are created once before training. Generation of these training sets assumes prior
knowledge about the problem, i.e. where in input space decision boundaries are.
In many practical applications such prior knowledge is not available, thus limiting
the applicability of this approach. The Selective Presentation strategy alternately
presents the learner with typical and then confusing patterns.
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Kohara developed Selective Presentation Learning specifically for forecasting appli-
cations [Kohara 1995]. Before training starts, the algorithm generates two training
sets. The one set contains all patterns representing large next-day changes, while
patterns representing small next-day changes are contained in the second set. Large-
change patterns are then simply presented more often than small-change patterns
(similar to Selective Presentation).

Cloete and Ludik have done extensive research on training strategies. Firstly,
they proposed Increased Complexity Training where a NN first learns easy prob-
lems, and then the complexity of the problem to be learned is gradually in-
creased [Cloete and Ludik 1993, Ludik and Cloete 1993]. The original training set
is split into subsets of increasing complexity before training commences. A draw-
back of this method is that the complexity measure of training data is prob-
lem dependent, thus making the strategy unsuitable for some tasks. Secondly,
Cloete and Ludik developed incremental training strategies, i.e. Incremental Subset
Training [Cloete and Ludik 1994a] and Incremental Increased Complexity Training
[Ludik and Cloete 1994]. In Incremental Subset Training, training starts on a ran-
dom initial subset. During training, random subsets from the original training set
are added to the actual training subset. Incremental Increased Complexity Train-
ing is a variation of Increased Complexity Training, where the complexity ranked
order is maintained, but training is not done on each complete complexity sub-
set. Instead, each complexity subset is further divided into smaller random sub-
sets. Training starts on an initial subset of a complexity subset, and is incremen-
tally increased during training. Finally, Delta Training Strategies were proposed
[Cloete and Ludik 1994b]. With Delta Subset Training examples are ordered ac-
cording to inter-example distance, e.g. Hamming or Euclidean distance. Different
strategies of example presentations were investigated: smallest difference examples
first, largest difference examples first, and alternating difference.

When vast quantities of data are available, training on all these data can be pro-
hibitively slow, and may require reduction of the training set. The problem is which
of the data should be selected for training. An easy strategy is to simply sample a
smaller data set at each epoch using a uniform random number generator. Alter-
natively, a fast clustering algorithm can be used to group similar pattern together,
and to sample a number of patterns from each cluster.

7.3.2 Weight Initialization

Gradient-based optimization methods, for example gradient descent, is very sensitive
to the initial weight vectors. If the initial position is close to a local minimum,
convergence will be fast. However, if the initial weight vector is on a flat area in the
error surface, convergence is slow. Furthermore, large initial weight values have been
shown to prematurely saturate units due to extreme output values with associated
zero derivatives [Hush et al. 1991]. In the case of optimization algorithms such as
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PSO and GAs, initialization should be uniformly over the entire search space to
ensure that all parts of the search space are covered.

A sensible weight initialization strategy is to choose small random weights centered
around 0. This will cause net input signals to be close to zero. Activation functions
then output midrange values regardless of the values of input units. Hence, there is
no bias toward any solution. Wessels and Barnard showed that random weights in
the range [ﬁ, ﬁ] is a good choice, where fanin is the number of connections

leading to a unit [Wessels and Barnard 1992].

Why don’t we just initialize all the weights to zero in the case of gradient-based
optimization? This strategy will work only if the NN has just one hidden unit. For
more than one hidden unit, all the units produce the same output, and thus make
the same contribution to the approximation error. All the weights are therefore
adjusted with the same value. Weights will remain the same irrespective of training
time — hence, no learning takes place. Initial weight values of zero for PSO will also
fail, since no velocity changes are made; therefore no weight changes. GAs, on the
other hand, will work with initial zero weights if mutation is implemented.

7.3.3 Learning Rate and Momentum

The convergence speed of NNs is directly proportional to the learning rate 7. Con-
sidering stochastic GD, the momentum term added to the weight updates also has
as its objective improving convergence time.

Learning Rate

The learning rate controls the size of each step toward the minimum of the objective
function. If the learning rate is too small, the weight adjustments are correspond-
ingly small. More learning iterations are then required to reach a local minimum.
However, the search path will closely approximate the gradient path. Figure 7.5(a)
illustrates the effect of small 7. On the other hand, large n will have large weight
updates. Convergence will initially be fast, but the algorithm will eventually os-
cillate without reaching the minimum. It is also possible that too large a learning
rate will cause “jumping” over a good local minimum proceeding toward a bad local
minimum. Figure 7.5(b) illustrates the oscillating behavior, while Figure 7.5(c) illus-
trates how large learning rates may cause the network to overshoot a good minimum
and get trapped in a bad local minimum. Small learning rates also have the dis-
advantage of being trapped in a bad local minimum as illustrated in Figure 7.5(d).
The search path goes down the first local minimum, with no mechanism to move out
of it toward the next, better minimum. Of course, all depends on the initial starting
position. If the second initial point is used, the NN will converge to the better local
minimum.
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Figure 7.5: Effect of learning rate
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But how do we choose the value of the learning rate? One approach is to find
the optimal value of the learning rate through cross-validation, which is a lengthy
process. An alternative is to select a small value (e.g. 0.1) and to increase the
value if convergence is too slow, or to decrease it if the error does not decrease fast
enough. Plaut et al. proposed that the learning rate should be inversely proportional
to the fanin of a neuron {Plaut et al. 1986]. This approach has been theoretically
justified through an analysis of the eigenvalue distribution of the Hessian matrix of
the objective function [Le Cun et al. 1991].

Several heuristics have been developed to dynamically adjust the learning rate during
training. One of the simplest approaches is to assume that each weight has a different
learning rate 7);. The following rule is then applied to each weight before that weight
is updated: if the direction in which the error decreases at this weight change is the
same as the direction in which it has been decreasing recently, then 7;; is increased;
if not, nx; is decreased [Jacobs 1988]. The direction in which the error decreases is
determined by the sign of the partial derivative of the objective function with respect
to the weight. Usually, the average change over a number of pattern presentations
is considered and not just the previous adjustment.

An alternative is to use an annealing schedule to gradually reduce a large learning
rate to a smaller value (refer to equation 4.22). This allows for large initial steps,
and ensures small steps in the region of the minimum.

Of course more complex adaptive learning rate techniques have been devel-
oped, with elaborate theoretical analysis. The interested reader is referred
to [Darken and Moody, Magoulas et al. 1997, Salomon and Van Hemmen 1996,
Vogl et al. 1988].

Momentum

Stochastic learning, where weights are adjusted after each pattern presentation, has
the disadvantage of fluctuating changes in the sign of the error derivatives. The net-
work spends a lot of time going back and forth, unlearning what the previous steps
have learned. Batch learning is a solution to this problem, since weight changes
are accumulated and applied only after all patterns in the training set have been
presented. Another solution is to keep with stochastic learning, and to add a mo-
mentum term. The idea of the momentum term is to average the weight changes.
thereby ensuring that the search path is in the average downhill direction. The mo-
mentum term is then simply the previous weight change weighted by a scalar value
a. If a = 0, then the weight changes are not influenced by past weight changes.
The larger the value of a the longer the change in steepest descent direction has to
persevere to affect the direction in which weights are adjusted. A static value of 0.9
is usually used.
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The optimal value of a can also be determined through cross-validation. Strategies
have also been developed that use adaptive momentum rates, where each weight has
a different momentum rate. Fahlman developed the schedule

o€

O] (7.19)
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ag;(t) =

This variation to the standard back-propagation algorithm is referred to as quickprop
[Fahlman 1989]. Becker and Le Cun calculated the momentum rate as a function of
the second-order error derivatives [Becker and Le Cun 1988]:
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For more information on other approaches to adapt the momentum rate refer to
[Orr and Leen 1993, Yu and Chen 1997].

7.3.4 Optimization Method

The optimization method used to determine weight adjustments has a large
influence on the performance of NNs. While GD is a very popular opti-
mization method, GD is plagued by slow convergence and susceptibility to lo-
cal minima (as introduced and discussed in Section 3.2.2). Improvements of
GD have been made to address these problems, for example, the addition of
the momentum term. Also, second-order derivatives of the objective func-
tion have been used to compute weight updates. In doing so, more informa-
tion about the structure of the error surface is used to direct weight changes.
The reader is referred to [Battiti 1992, Becker and Le Cun 1988, Mgller 1993].
Other approaches to improve NN training are to use global optimization algo-
rithms instead of local optimization algorithms, for example simulated anneal-
ing [Rosen and Goodwin 1997], genetic algorithms [Engelbrecht and Ismail 1999,
Janson and Frenzel 1993, Kuscu and Thornton 1994], particle swarm optimization
algorithms [Corne et al. 1999, Eberhart et al. 1996, Engelbrecht and Ismail 1999,
Van den Bergh 1999, Van den Bergh and Engelbrecht 2000], and LeapFrog opti-
mization [Snyman 1982, Snyman 1983, Engelbrecht and Ismail 1999].

7.3.5 Architecture Selection

Referring to one of Ockham’s statements, if several networks fit the training set
equally well, then the simplest network (i.e. the network which has the small-
est number of weights) will on average give the best generalization performance
[Thodberg 1991]. This hypothesis has been investigated and confirmed by Sietsma
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and Dow [Sietsma and Dow 1991]. A network with too many free parameters may
actually memorize training patterns and may also accurately fit the noise embedded
in the training data, leading to bad generalization. Overfitting can thus be pre-
vented by reducing the size of the network through elimination of individual weights
or units. The objective is therefore to balance the complexity of the network with
goodness of fit of the true function. This process is referred to as architecture se-
lection. Several approaches have been developed to select the optimal architecture,
i.e. regularization, network construction (growing) and pruning. These approaches
will be overviewed in more detail below.

Learning is not just perceived as finding the optimal weight values, but also find-
ing the optimal architecture. However, it is not always obvious what is the best
architecture. Finding the ultimate best architecture requires a search of all possi-
ble architectures. For large networks an exhaustive search is prohibitive, since the
search space consists of 2 architectures, where w is the total number of weights
[Moody and Utans 1995]. Instead, heuristics are used to reduce the search space. A
simple method is to train a few networks of different architecture and to choose the
one which results in the lowest generalization error as estimated from the generalized
prediction error (GPE) [Moody 1992, Moody 1994] or the Network Information Cri-
terion (NIC) [Murata et al. 1991, Murata et al. 1994a, Murata et al. 1994b]. This
approach is still expensive and requires many architectures to be investigated to
reduce the possibility that the optimal model is not found. The NN architecture
can alternatively be optimized by trial and error. An architecture is selected, and its
performance is evaluated. If the performance is unacceptable, a different architec-
ture is selected. This process continues until an architecture is found which produces
an acceptable generalization error.

Other approaches to architecture selection are divided into three categories:

¢ Regularization: Neural network regularization involves the addition of a
penalty term to the objective function to be minimized. In this case the
objective function changes to

E=Er+ ¢ (7.21)

where &7 is the usual measure of data misfit, and ¢ is a penalty term, penal-
izing network complexity (network size). The constant A controls the influence
of the penalty term. With the changed objective function, the NN now tries to
find a locally optimal trade-off between data-misfit and network complexity.
Neural network regularization has been studied rigorously by Girosi, Jones and
Poggio [Girosi et al. 1995], and Williams [Williams 1995).

Several penalty terms have been developed to reduce network size auto-
matically during training. Weight decay, where ¢ = %Ew?, is in-
tended to drive small weights to zero [Bos 1996, Hanson and Pratt 1989,
Kamimura and Nakanishi 1994, Krogh and Hertz 1992]. It is a simple method
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to implement, but suffers from penalizing large weights at the same rate
as small weights. To solve this problem, Hanson and Pratt propose the
hyperbolic and exponential penalty functions which penalize small weights
more than large weights [Hanson and Pratt 1989]. Nowlan and Hinton de-
veloped a more complicated soft weight sharing, where the distribution
of weight values is modeled as a mixture of multiple Gaussian distribu-
tions [Nowlan and Hinton 1992]. A narrow Gaussian is responsible for small
weights, while a broad Gaussian is responsible for large weights. Using this
scheme, there is less pressure on large weights to be reduced.

Weigend, Rumelhart and Huberman propose weight elimination where the
2 /02

penalty function £¢ = > %, effectively counts the number of weights
1 0

[Weigend et al. 1991]. Minimization of this objective function will then mini-
mize the number of weights. The constant wg is very important to the success
of this approach. If wq is too small, the network ends up with a few large
weights, while a large value results in many small weights. The optimal value
for wy can be determined through cross-validation, which is not cost-effective.

Chauvin introduces a penalty term which measures the “energy spent” by
the hidden units, where the energy is expressed as a function of the squared
activation of the hidden units [Chauvin 1989, Chauvin 1990]. The aim is then
to minimize the energy spent by hidden units, and in so doing, to eliminate
unnecessary units.

Kamimura and Nakanishi show that, in an information theoretical context,
weight decay actually minimizes entropy [Kamimura and Nakanishi 1994]. En-
tropy can also be minimized directly by including an entropy penalty term in
the objective function [Kamimura 1993]. Minimization of entropy means that
the information about input patterns is minimized, thus improving generaliza-
tion. For this approach entropy is defined with respect to hidden unit activity.
Schittenkopf, Deco and Brauer also propose an entropy penalty term and show
how it reduces complexity and avoids overfitting [Schittenkopf et al. 1997].

Yasui develops penalty terms to make minimal and joint use of hidden units by
multiple outputs [Yasui 1997]. Two penalty terms are added to the objective
function to control the evolution of hidden-to-output weights. One penalty
causes weights leading into an output unit to prevent another from growing,
while the other causes weights leaving a hidden unit to support another to
grow.

While regularization models are generally easy to implement, the value of the
constant A in equation (7.21) may present problems. If X\ is too small, the
penalty term will have no effect. If A is too large, all weights might be driven
to zero. Regularization therefore requires a delicate balance between the nor-
mal error term and the penalty term. Another disadvantage of penalty terms
is that they tend to create additional local minima [Hanson and Pratt 1989],
increasing the possibility of converging to a bad local minimum. Penalty terms
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also increase training time due to the added calculations at each weight up-
date. In a bid to reduce this complexity, Finnoff, Hergert and Zimmermann
show that the performance of penalty terms is greatly enhanced if they are
introduced only after overfitting is observed [Finnoff et al. 1993].

e Network construction (growing): Network construction algorithms start
training with a small network and incrementally add hidden units during
training when the network is trapped in a local minimum [Fritzke 1995,
Hirose et al. 1991, Hiining 1993, Kwok and Yeung 1995]. A small network
forms an approximate model of a subset of the training set. Each new hidden
unit is trained to reduce the current network error - yielding a better approx-
imation. Crucial to the success of construction algorithms is effective criteria
to trigger when to add a new unit, when to stop the growing process, where
and how to connect the new unit to the existing architecture, and how to avoid
restarting training. If these issues are treated on an ad hoc basis, overfitting
may occur and training time may be increased.

e Network pruning: Neural network pruning algorithms start with an over-
sized network and remove unnecessary network parameters, either during
training or after convergence to a local minimum. Network parameters that
are considered for removal are individual weights, hidden units and input units.
The decision to prune a network parameter is based on some measure of pa-
rameter relevance or significance. A relevance is computed for each parameter
and a pruning heuristic is used to decide when a parameter is considered as
being irrelevant or not. A large initial architecture allows the network to con-
verge reasonably quickly, with less sensitivity to local minima and the initial
network size. Larger networks have more functional flexibility, and are guar-
anteed to learn the input-output mapping with the desired degree of accuracy.
Due to the larger functional flexibility, pruning weights and units from a larger
network may give rise to a better fit of the underlying function, hence better
generalization [Moody 1994].

A more elaborate discussion of pruning techniques is given next, with the main ob-
jective of presenting a flavor of the techniques available to prune NN architectures.
For more detailed discussions, the reader is referred to the given references. The
first results in the quest to find a solution to the architecture optimization prob-
lem were the derivation of theoretical limits on the number of hidden units to solve
a particular problem [Baum 1988, Cosnard et al. 1992, Kamruzzaman et al. 1992,
Sakurai 1992, Sartori and Antsaklis 1991]. However, these results are based on un-
realistic assumptions about the network and the problem to be solved. Also, they
usually apply to classification problems only. While these limits do improve our
understanding of the relationship between architecture and training set character-
istics, they do not predict the correct number of hidden units for a general class of
problems.
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Recent research concentrated on the development of more efficient pruning tech-
niques to solve the architecture selection problem. Several different approaches to
pruning have been developed. This chapter groups these approaches in the follow-
ing general classes: intuitive methods, evolutionary methods, information matrix
methods, hypothesis testing methods and sensitivity analysis methods.

e Intuitive pruning techniques: Simple intuitive methods based on
weight values and unit activation values have been proposed by Hagi-
wara [Hagiwara 1993]. The goodness factor Gi of unit ¢ in layer |, G =
22 [(w!;0})?, where the first sum is over all patterns, and o is the out-
put of the unit, assumes that an important unit is one which excites fre-
quently and has large weights to other units. The consuming energy, E! =
> op 2 whio f,H L, additionally assumes that unit i excites the units in the
next layer Both methods suffer from the flaw that when an unit’s output is
more frequently 0 than 1, that unit might be considered as being unimpor-
tant, while this is not necessarily the case. Magnitude-based pruning assumes
that small weights are irrelevant [Hagiwara 1993, Lim and Ho 1994]. How-
ever, small weights may be of importance, especially compared to very large
weights which cause saturation in hidden and output units. Also, large weights
(in terms of their absolute value) may cancel each other out.

e Evolutionary pruning techniques: The use of genetic algorithms
(GA) to prune NNs provides a biologically plausible approach to
pruning [Kuscu and Thornton 1994, Reed 1993, Whitley and Bogart 1990,
White and Ligomenides 1993]. Using GA terminology, the population consists
of several pruned versions of the original network, each needed to be trained.
Differently pruned networks are created by the application of mutation, re-
production and cross-over operators. These pruned networks “compete” for
survival, being awarded for using fewer parameters and for improving gener-
alization. GA NN pruning is thus a time-consuming process.

e Information matrix pruning techniques: Several researchers have used
approximations to the Fisher information matrix to determine the optimal
number of hidden units and weights. Based on the assumption that outputs
are linearly activated, and that least squares estimators satisfy asymptotic
normality, Cottrell et al. compute the relevance of a weight as a function of
the information matrix, approximated by [Cottrell et al. 1994]

2 8Fnn OFNN T
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(7.22)

Weights with a low relevance are removed.

Hayashi [Hayashi 1993], Tamura et al. [Tamura et al. 1993], Xue et al.
[Xue et al. 1990] and Fletcher et al. [Fletcher et al. 1998] use Singular Value
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Decomposition (SVD) to analyze the hidden unit activation covariance matrix
to determine the optimal number of hidden units. Based on the assumption
that outputs are linearly activated, the rank of the covariance matrix is the
optimal number of hidden units (also see [Fujita 1992]). SVD of this infor-
mation matrix results in an eigenvalue and eigenvector decomposition where
low eigenvalues correspond to irrelevant hidden units. The rank is the number
of non-zero eigenvalues. Fletcher, Katkovnik, Steffens and Engelbrecht use
the SVD of the conditional Fisher information matrix, as given in equation
(7.22), together with likelihood-ratio tests to determine irrelevant hidden units
[Fletcher et al. 1998]. In this case the conditional Fisher information matrix
is restricted to weights between the hidden and output layer only, whereas
previous techniques are based on all network weights. Each iteration of the
pruning algorithm identifies exactly which hidden units to prune.

Principal Component Analysis (PCA) pruning techniques have been devel-
oped that use the SVD of the Fisher information matrix to find the prin-
cipal components (relevant parameters) [Levin et al. 1994, Kamimura 1993,
Schittenkopf et al. 1997, Takahashi 1993]. These principal components are
linear transformations of the original parameters, computed from the eigenvec-
tors obtained from a SVD of the information matrix. The result of PCA is the
orthogonal vectors on which variance in the data is maximally projected. Non-
principal components/parameters (parameters that do not account for data
variance) are pruned. Pruning using PCA is thus achieved through projec-
tion of the original w-dimensional space onto a w -dimensional linear subspace
(w' < w) spanned by the eigenvectors of the data’s correlation or covariance
matrix corresponding to the largest eigenvalues.

Hypothesis testing techniques: Formal statistical hypothesis tests can be
used to test the statistical significance of a subset of weights, or a subset of
hidden units. Steppe, Bauer and Rogers [Steppe et al. 1996] and Fletcher,
Katkovnik, Steffens and Engelbrecht [Fletcher et al. 1998] use the likelihood-
ratio test statistic to test the null hypothesis that a subset of weights is zero.
Weights associated with a hidden unit are tested to see if they are statistically
different from zero. If these weights are not statistically different from zero,
the corresponding hidden unit is pruned.

Belue and Bauer propose a method that injects a noisy input parameter into
the NN model, and then use statistical tests to decide if the significances of the
original NN parameters are higher than that of the injected noisy parameter
[Belue and Bauer 1995]. Parameters with lower significances than the noisy
parameter are pruned.

Similarly, Prechelt [Prechelt 1995] and Finnoff et al. [Finnoff et al. 1993] test
the assumption that a weight becomes zero during the training process. This
approach is based on the observation that the distribution of weight values
is roughly normal. Weights located in the left tail of this distribution are
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removed.

e Sensitivity analysis pruning techniques: Two main approaches to sensi-
tivity analysis exist, namely with regard to the objective function and with
regard to the NN output function. Both sensitivity analysis with regard to
the objective function and sensitivity analysis with regard to the NN out-
put function resulted in the development of a number of pruning techniques.
Possibly the most popular of these are OBD [Le Cun 1990] and its variants,
OBS [Hassibi and Stork 1993, Hassibi et al. 1994] and Optimal Cell Damage
(OCD) [Cibas et al. 1996]. A parameter saliency measure is computed for
each parameter, indicating the influence small perturbations to the parameter
have on the approximation error. Parameters with a low saliency are re-
moved. These methods are time-consuming due to the calculation of the Hes-
sian matrix. Buntine and Weigend [Buntine and Weigend 1994] and Bishop
[Bishop 1992] derived methods to simplify the calculation of the Hessian ma-
trix in a bid to reduce the complexity of these pruning techniques. In OBD,
OBS and OCD, sensitivity analysis is performed with regard to the training
error. Pedersen, Hanson and Larsen [Pedersen et al. 1996] and Burrascano
[Burrascano 1993] develop pruning techniques based on sensitivity analysis
with regard to the generalization error. Other objective function sensitivity
analysis pruning techniques have been developed by Mozer and Smolensky
[Mozer and Smolensky 1989] and Moody and Utans [Moody and Utans 1995].

NN output sensitivity analysis pruning techniques have been developed that
are less complex than objective function sensitivity analysis, and that do not
rely on simplifying assumptions. Zurada, Malinowski and Cloete introduced
output sensitivity analysis pruning of input units [Zurada et al. 1994], further
investigated by Engelbrecht, Cloete and Zurada [Engelbrecht et al. 1995b].
Engelbrecht and Cloete extended this approach to also prune irrel-
evant hidden units [Engelbrecht and Cloete 1996, Engelbrecht et al. 1999,
Engelbrecht 2001].

A similar approach to NN output sensitivity analysis was followed by Dorizzi
et al. [Dorizzi et al. 1996] and Czernichow [Czernichow 1996] to prune param-
eters of a Radial Basis Function (RBF) NN.

The aim of all architecture selection algorithms is to find the smallest architecture
that accurately fits the underlying function. In addition to improving generalization
performance and avoiding overfitting (as discussed earlier), smaller networks have
the following advantages. Once an optimized architecture has been found, the cost of
forward calculations is significantly reduced, since the cost of computation grows al-
most linearly with the number of weights. From the generalization limits overviewed
in section 7.3.7, the number of training patterns required to achieve a certain gen-
eralization performance is a function of the network architecture. Smaller networks
therefore require less training patterns. Also, the knowledge embedded in smaller
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networks is more easily described by a set of simpler rules. Viktor, Engelbrecht
and Cloete show that the number of rules extracted from smaller networks is less
for pruned networks than that extracted from larger networks [Viktor et al. 1995].
They also show that rules extracted from smaller networks contain only relevant
clauses, and that the combinatorics of the rule extraction algorithm is significantly
reduced. Furthermore, for smaller networks the function of each hidden unit is more
easily visualized. The complexity of decision boundary detection algorithms is also
reduced.

With reference to the bias/variance decomposition of the MSE function
[Geman et al. 1992], smaller network architectures reduce the variance component
of the MSE. NNs are generally plagued by high variance due to the limited training
set sizes. This variance is reduced by introducing bias through minimization of the
network architecture. Smaller networks are biased because the hypothesis space is
reduced, thus limiting the available functions that can fit the data. The effects of
architecture selection on the bias/variance trade-off have been studied by Gedeon,
Wong and Harris [Gedeon et al. 1995].

7.3.6 Adaptive Activation Functions

The performance of NNs can be improved by allowing activation functions to
change dynamically according to the characteristics of the training data. One of
the first techniques to use adaptive activations functions was developed by Zurada
[Zurada 1992], where the slope of the sigmoid activation function is learned together
with the weights. A slope parameter X is kept for each hidden and output unit. The
lambda-learning algorithm of Zurada was extended by Engelbrecht et al. where the
sigmoid function is given as [Engelbrecht et al. 1995a]

F(net,\,y) = ﬁ%xm (7.23)
where A is the slope of the function and v the maximum range. Engelbrecht et
al. developed learning equations to also learn the maximum ranges of the sigmoid
functions, thereby performing automatic scaling. By using gamma-learning, it is not
necessary to scale target values to the range (0,1). The effect of changing the slope
and range of the sigmoid function is illustrated in Figure 7.6.

A general algorithm is given below to illustrate the differences between standard GD
learning (referred to as delta learning) and the lambda and gamma learning varia-
tions. (Note that although the momentum terms are omitted below, a momentum
term is usually used for the weight, lambda and gamma updates.)

Begin: Given P pairs of training patterns consisting of inputs and targets
{(Z1,11), (Z2,82), - -, (Zp, Tp) } where Z; is (I x 1), tx is (K x 1) and i =1,.... P:
yis (Jx1)and dis (K x 1).
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Figure 7.6: Adaptive sigmoid

Step 1: Choose the values of the learning rates 71,72 and 53 according to the
learning rule:

Delta learning rule m >0 10=0n=0
Lambda learning rule m >0 179>0 =0
Gamma, learning rule m>0,17=0173>0

Lambda-gamma learning rule 73 >0, 70 >0, n3 >0

Choose an acceptable training error Ep,q,. Weights W (K x J) and V (J x I)
are initialized to small random values. Initialize the number of cycles ¢ and
the training pairs counter p to ¢ = 1, p = 1. Let E = 0 and initialize the
steepness and range coefficients

)\y :fyyjrl Vj:]_,...,J and )\Ok:"‘/ok:] szl,...,K

i

Step 2: Start training. Input is presented and the layers’ outputs are computed
using f(v, A, net) as in equation (7.23):

F=Z, t=1t, and y;=fly, A\, 052 Vi=1,...,J
where ¥}, a column vector, is the j-th row of V' and
0k = f(Yops Aoy, W) Yh=1,...,K

where 1y, a column vector, is the k-th row of W.
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Step 3: The error value is computed:

1
E=E+§(tk—ok)2 Vk=1,...,.K

Step 4: The error signal vectors 5:, (K x 1) and 3;, (J x 1) of both the output
and hidden layers are computed

A
5ok = __&(tk "Ok)ok(’Yo,, —Ok) Vk = 17 7K

Ok
Ay, K
by, = Zyilm; —vi) D Oowi; Yi=1,....J
’ij k=1
Step 5: Output layer weights and gains are adjusted:

net 1
Wkj = Wij + Mo Yi  Aop = Ao, + 200, \ % Yor = Yo +Ma(tk — Ok)TOk
0k

(N
forallk=1,...,Kandj=1,...,J.

Step 6: Hidden layer weights and gains are adjusted:
1
Vi = Ui+ Moy zi Ay, = Ay + "?X—‘sw nety,
Yi

K
1
’ij = 7‘5/]‘ + Ws*-f(7yj7 ij ) netyj) z ‘Sokwkj
’ij k=1
forallj=1,...,Jandi=1,...,1.
Step 7: If p < P then let p=p+ 1 and go to Step 2; otherwise go to Step 8.

Step 8: One training cycle is completed. If £ < E,,,, then terminate the training
session. Output the cycle counter q and error E; otherwise let £ = 0, p =
1, ¢ = ¢ + 1 and initiate a new training cycle by going to Step 2.

7.3.7 Active Learning

Ockham’s razor states that unnecessarily complex models should not be preferred to
simpler ones — a very intuitive principle [MacKay 1992, Thodberg 1991]. A neural
network (NN) model is described by the network weights. Model selection in NNs
consists of finding a set of weights that best performs the learning task. In this
sense, the data, and not just the architecture should be viewed as part of the NN
model, since the data is instrumental in finding the “best” weights. Model selection
is then viewed as the process of designing an optimal NN architecture as well as the
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implementation of techniques to make optimal use of the available training data.
Following from the principle of Ockham’s razor is a preference then for both simple
NN architectures and optimized training data. Usually, model selection techniques
address only the question of which architecture best fits the task.

Standard error back-propagating NNs are passive learners. These networks passively
receive information about the problem domain, randomly sampled to form a fixed
size training set. Random sampling is believed to reproduce the density of the true
distribution. However, more gain can be achieved if the learner is allowed to use
current attained knowledge about the problem to guide the acquisition of training
examples. As passive learner, a NN has no such control over what examples are
presented for learning. The NN has to rely on the teacher (considering supervised
learning) to present informative examples.

The generalization abilities and convergence time of NNs are greatly influenced
by the training set size and distribution: Literature has shown that to gener-
alize well, the training set must contain enough information to learn the task.
Here lies one of the problems in model selection: the selection of concise train-
ing sets. Without prior knowledge about the learning task, it is very difficult to
obtain a representative training set. Theoretical analysis provide a way to compute
worst-case bounds on the number of training examples needed to ensure a specified
level of generalization. A widely used theorem concerns the Vapnik-Chervonenkis
(VC) dimension [Abu-Mostafa 1989, Abu-Mostafa 1993, Baum and Haussler 1989,
Cohn and Tesauro 1991, Hole 1996, Opper 1994]. This theorem states that the gen-
eralization error £; of a learner with VC-dimension dy¢ trained on Pr random
examples will, with high confidence, be no worse than a limit of order dy¢/Pr. For
NN learners, the total number of weights in a one hidden layer network is used as an
estimate of the VC-dimension. This means that the appropriate number of examples
to ensure an £ generalization is approximately the number of weights divided by
Ea.

The VC-dimension provides overly pessimistic bounds on the number of train-
ing examples, often leading to an overestimation of the required training set
size [Cohn and Tesauro 1991, Gu and Takahashi 1997, Opper 1994, Rébel 1994,
Zhang 1994]. Experimental results have shown that acceptable generalization per-
formances can be obtained with training set sizes much less than that specified
by the VC-dimension [Cohn and Tesauro 1991, Rébel 1994]. Cohn and Tesauro
show that for experiments conducted, the generalization error decreases expo-
nentially with the number of examples, rather than the 1/Pr result of the VC
bound [Cohn and Tesauro 1991]. Experimental results by Lange and Méinner
show that more training examples do not necessarily improve generalization
[Lange and Méanner 1994]. In their paper, Lange and Ménner introduce the notion
of a critical training set size. Through experimentation they found that examples
beyond this critical size do not improve generalization, illustrating that an excess
patterns have no real gain. This critical training set size is problem dependent.
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While enough information is crucial to effective learning, too large training set
sizes may be of disadvantage to generalization performance and training time
[Lange and Zeugmann 1996, Zhang 1994]. Redundant training examples may be
from uninteresting parts of input space, and do not serve to refine learned weights
— it only introduces unnecessary computations, thus increasing training time. Fur-
thermore, redundant examples might not be equally distributed, thereby biasing the
learner.

The ideal, then, is to implement structures to make optimal use of available training
data. That is, to select for training only informative examples, or to present exam-
ples in a way to maximize the decrease in training and generalization error. To this
extent, active learning algorithms have been developed.

Cohn, Atlas and Ladner define active learning (also referred to in the literature as
example selection, sequential learning, query-based learning) as any form of learning
in which the learning algorithm has some control over what part of the input space it
receives information from [Cohn et al. 1994]. An active learning strategy allows the
learner to dynamically select training examples, during training, from a candidate
training set as received from the teacher (supervisor). The learner capitalizes on
current attained knowledge to select examples from the candidate training set that
are most likely to solve the problem, or that will lead to a maximum decrease in
error. Rather than passively accepting training examples from the teacher, the
network is allowed to use its current knowledge about the problem to have some
deterministic control over which training examples to accept, and to guide the search
for informative patterns. By adding this functionality to a NN, the network changes
from a passive learner to an active learner.

Figure 7.7 illustrates the difference between active learning and passive learning.

With careful dynamic selection of training examples, shorter training times and
better generalization may be obtained. Provided that the added complexity of the
example selection method does not exceed the reduction in training computations
(due to a reduction in the number of training patterns), training time will be reduced
[Hunt and Deller 1995, Sung and Niyogi 1996, Zhang 1994]. Generalization can po-
tentially be improved, provided that selected examples contain enough information
to learn the task. Cohn [Cohn 1994] and Cohn, Atlas and Ladner [Cohn et al. 1994]
show through average case analysis that the expected generalization performance of
active learning is significantly better than passive learning. Seung, Opper and Som-
polinsky [Seung et al. 1992], Sung and Niyogi [Sung and Niyogi 1996] and Zhang
[Zhang 1994] report similar improvements. Results presented by Seung, Opper and
Sompolinsky indicate that generalization error decreases more rapidly for active
learning than for passive learning [Seung et al. 1992].

Two main approaches to active learning can be identified, i.e. incremental learning
and selective learning. Incremental learning starts training on an initial subset of
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Figure 7.7: Passive vs active learning

a candidate training set. During training, at specified selection intervals (e.g. after
a specified number of epochs, or when the error on the current training subset no
longer decreases), further subsets are selected from the candidate examples using
some criteria or heuristics, and added to the training set. The training set consists
of the union of all previously selected subsets, while examples in selected subsets
are removed from the candidate set. Thus, as training progresses, the size of the
candidate set decreases while the size of the actual training set grows. Note that
this chapter uses the term incremental learning to dencte data selection, and should
not be confused with the NN architecture selection growing approach. The term
NN growing is used in this chapter to denote the process of finding an optimal
architecture starting with too few hidden units and adding units during training.

In contrast to incremental learning, selective learning selects at each selection inter-
val a new training subset from the original candidate set. Selected patterns are not
removed from the candidate set. At each selection interval, all candidate patterns
have a chance to be selected. The subset is selected and used for training until some
convergence criteria on the subset is met (e.g. a specified error limit on the subset
is reached, the error decrease per iteration is too small, the maximum number of
epochs allowed on the subset is exceeded). A new training subset is then selected for
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the next training period. This process repeats until the NN is trained to satisfaction.

The main difference between these two approaches to active learning is that no
examples are discarded by incremental learning. In the limit, all examples in the
candidate set will be used for training. With selective learning, training starts
on all candidate examples, and uninformative examples are discarded as training
progresses.

Selective Learning

Not much research has been done in selective learning. Hunt and Deller devel-
oped Selective Updating, where training starts on an initial candidate training set
[Hunt and Deller 1995]. Patterns that exhibit a high influence on weights, i.e. pat-
terns that cause the largest changes in weight values, are selected from the candidate
set and added to the training set. Patterns that have a high influence on weights
are selected at each epoch by calculating the effect that patterns have on weight
estimates. These calculations are based on matrix perturbation theory, where an
input pattern is viewed as a perturbation of previous patterns. If the perturbation
is expected to cause large changes to weights, the corresponding pattern is included
in the training set. The learning algorithm does use current knowledge to select the
next training subset, and training subsets may differ from epoch to epoch. Selective
Updating has the drawback of assuming uncorrelated input units, which is often not
the case for practical applications.

Another approach to selective learning is simply to discard those patterns that have
been classified correctly [Barnard 1991]. The effect of such an approach is that
the training set will include those patterns that lie close to decision boundaries.
If the candidate set contains outlier patterns, these patterns will, however, also
be selected. This error selection approach therefore requires a robust estimator
(objective function) to be used in the case of outliers.

Engelbrecht et al. developed a selective learning approach for classification prob-
lems where sensitivity analysis is used to locate patterns close to decision boundaries
[Engelbrecht and Cloete 1998a, Engelbrecht and Cloete 1998b, Engelbrecht 2001b).
Only those patterns that are close to a decision boundary are selected for training.
The algorithm resulted in substantial reductions in the number of learning calcula-
tions due to reductions in the training set size, while either maintaining performance
as obtained from learning from all the training data, or improving performance.
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Incremental learning

Research on incremental learning is more abundant than for selective learning.
Most current incremental learning techniques have their roots in information the-
ory, adapting Fedorov’s optimal experiment design for NN learning [Cohn 1994,
Fukumizu 1996, MacKay 1992, Plutowski and White 1993, Sung and Niyogi 1996].
The different information theoretic incremental learning algorithms are very similar,
and differ only in whether they consider only bias, only variance, or both bias and
variance terms in their selection criteria.

Cohn developed neural network Optimal Experiment Design (OED), where the
objective is to select at each iteration a new pattern from a candidate set which
minimizes the expectation of the mean squared error (MSE) [Cohn 1994]. This is
achieved by minimizing output variance as estimated from the Fisher information
matrix [Cohn 1994, Cohn et al. 1996]. The model assumes an unbiased estimator
and considers only the minimization of variance. OED is computationally very ex-
pensive because it requires the calculation of the inverse of the information matrix.

MacKay proposed similar Information-Based Objective Functions for active learn-
ing, where the aim is to maximize the expected information gain by maximizing
the change in Shannon entropy when new patterns are added to the actual train-
ing set, or by maximizing cross-entropy gain [MacKay 1992]. Similar to OED, the
maximization of information gain is achieved by selecting patterns that minimize the
expected MSE. Information-Based Objective Functions also ignore bias, by minimiz-
ing only variance. The required inversion of the Hessian matrix makes this approach
computationally expensive.

Plutowski and White proposed selecting patterns that minimize the Integrated
Squared Bias (ISB) [Plutowski and White 1993]. At each iteration, a new pattern
is selected from a candidate set that maximizes the change, AISB, in the ISB. In
effect, the patterns with error gradient most highly correlated with the error gradi-
ent of the entire set of patterns is selected. A noise-free environment is assumed and
variance is ignored. Drawbacks of this method are the need to calculate the inverse
of a Hessian matrix, and the assumption that the target function is known.

Sung and Niyogi proposed an information theoretic approach to active learning that
considers both bias and variance [Sung and Niyogi 1996]. The learning goal is to
minimize the expected misfit between the target function and the approximated
function. The patterns that minimizes the expected squared difference between the
target and approximated function are selected to be included in the actual training
set. In effect, the net amount of information gained with each new pattern is then
maximized. No assumption is made about the target function. This technique is
computationally expensive, since it requires computations over two expectations, i.e.
the a-posteriori distribution over function space, and the a-posteriori distribution
over the space of targets one would expect given a candidate sample location.
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One drawback of the incremental learning algorithms summarized above is that they
rely on the inversion of an information matrix. Fukumizu showed that, in relation
to pattern selection to minimize the expected MSE, the Fisher information matrix
may be singular [Fukumizu 1996]. If the information matrix is singular, the inverse
of that matrix may not exist. Fukumizu continues to show that the information
matrix is singular if and only if the corresponding NN contains redundant units.
Thus, the information matrix can be made non-singular by removing redundant
hidden units. Fukumizu developed an algorithm that incorporates an architecture
reduction algorithm with a pattern selection algorithm. This algorithm is complex
due to the inversion of the information matrix at each selection interval, but ensures
a non-singular information matrix.

Approximations to the information theoretical incremental learning algorithms can
be used. Zhang shows that information gain is maximized when a pattern is selected
whose addition leads to the greatest decrease in MSE [Zhang 1994]. Zhang developed
Selective Incremental Learning where training starts on an initial subset which is
increased during training by adding additional subsets, where each subset contains
those patterns with largest errors. Selective Incremental Learning has a very low
computational overhead, but is negatively influenced by outlier patterns since these
patterns have large errors.

Dynamic Pattern Selection, developed by Robel [Rdbel 1994], is very similar to
Zhang’s Selective Incremental Learning. Robel defines a generalization factor on the
current training subset, expressed as £g/Er where £g and 7 are the MSE of the test
set and the training set respectively. As soon as the generalization factor exceeds
a certain threshold, patterns with highest errors are selected from the candidate
set and added to the actual training set. Testing against the generalization factor
prevents overfitting of the training subset. A low overhead is involved.

Very different from the methods described previously are incremental learning algo-
rithms for classification problems, where decision boundaries are utilized to guide
the search for optimal training subsets. Cohn, Atlas and Ladner developed Se-
lective Sampling, where patterns are sampled only within a region of uncertainty
(Cohn et al. 1994]. Cohn et al. proposed an SG-network (most specific/most gen-
eral network) as an approach to compute the region of uncertainty. Two separate
networks are trained: one to learn a “most specific” concept s consistent with the
given training data, and the other to learn a “most general” concept, g. The region
of uncertainty is then all patterns p such that s(p) # g(p). In other words, the
region of uncertainty encapsulates all those patterns for which s and g present a
different classification. A new training pattern is selected from this region of un-
certainty and added to the training set. After training on the new training set, the
region of uncertainty is recalculated, and another pattern is sampled according to
some distribution defined over the uncertainty region - a very expensive approach.
To reduce complexity, the algorithm is changed to select patterns in batches, rather
than individually. An initial pattern subset is drawn, the network is trained on this
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subset, and a new region of uncertainty is calculated. Then, a new distribution is
defined over the region of uncertainty that is zero outside this region. A next sub-
set is drawn according to the new distribution and added to the training set. The
process repeats until convergence is reached.

Query-Based Learning, developed by Hwang, Choi, Oh and Marks differs from Se-
lective Sampling in that Query-Based Learning generates new training data in the
region of uncertainty [Hwang et al. 1991]. The aim is to increase the steepness of the
boundary between two distinct classes by narrowing the regions of ambiguity. This
is accomplished by inverting the NN output function to compute decision bound-
aries. New data in the vicinity of boundaries are then generated and added to the
training set.

Seung, Opper and Sompolinsky proposed Query by Committee [Seung et al. 1992].
The optimal training set is built by selecting one pattern at a time from a candidate
set based on the principle of maximal disagreement among a committee of learners.
Patterns classified correctly by half of the committee, but incorrectly by the other
half, are included in the actual training set. Query by Committee is time-consuming
due to the simultaneous training of several networks, but will be most effective for
ensemble networks.

Engelbrecht et al. developed an incremental learning algorithm where sensitivity
analysis is used to locate the most informative patterns. The most informative pat-
terns are viewed as those patterns in the midrange of the sigmoid activation function
[Engelbrecht and Cloete 1999]. Since these patterns have the largest derivatives of
the output with respect to inputs, the algorithm incrementally selects from a can-
didate set of patterns those patterns that have the largest derivatives. Substantial
reductions in computational complexity are achieved using this algorithm, with im-
proved accuracy.

The incremental learning algorithms reviewed in this section all make use of the NN
learner’s current knowledge about the learning task to select those patterns that
are most informative. These algorithms start with an initial training set, which
is increased during training by adding a single informative pattern, or a subset of
informative patterns.

In general, active learning is summarized by the following algorithm:

1. Initialize the NN architecture. Construct an initial training subset Dg, from
the candidate set D¢. Initialize the current training set Dy + Dg,.

2. Repeat

(a) Repeat
Train the NN on training subset Dy
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until convergence on the current training subset D7 is reached to pro-
duce the function Fyn(Dr; W).

(b) Apply the active learning operator to generate a new subset Dyg, at subset
selection interval 7, using either

Ds, + A" (D¢, Fnn(Dr;W)), Dr ¢ Ds,
for selective learning, or

Ds, « A*(Dc,Dr,Fnn(Dr;W))
Dy < DrUDs,, D¢+« D¢ — Dg,

for incremental learning

until convergence is reached.

In the algorithm above A denotes the active learning operator, which is defined as
follows for each of the active learning classes:

1) A= (D¢, FNnN(Dr;W)) = Dg, where Ds C D¢. The operator A~ receives as
input the candidate set D¢, performs some calculations on each pattern p € D¢,
and produces the subset Dg with the characteristics Ds C D¢, that is [Dg| < |D¢]|.
The aim of this operator is therefore to produce a subset Ds from D¢ which is
smaller than, or equal to, D¢c. Then, let Dy + Dg, where Dr is the actual training
set.

2) AY (D¢, Dr,Fnn(Dr;W)) = Dg, where Do, D1 and Dg are sets such that
Dy C D¢, Ds C D¢. The operator AT performs calculations on each pat-
tern p € D¢ to determine if that element should be added to the current train-
ing set. Selected patterns are added to subset Dg. Thus, Ds = {p|lp €
D¢, and p satisfies the selection criteria}. Then, Dr < Dt U Dg (the new
subset is added to the current training subset), and D¢ + D¢ — Ds.

Active learning operator A~ corresponds with selective learning where the training
set is “pruned”, while A" corresponds with incremental learning where the actual
training subset “grows”. Inclusion of the NN function Fyy as a parameter of each
operator indicates the dependence on the NN’s current knowledge.

7.4 Conclusion

Using a NN does not involve pasting together a few neurons, giving the NN some
data, and out comes the result! NNs should be designed carefully to achieve optimal
performance, in terms of accuracy, convergence speed and computational complexity.
This chapter discussed several ways to improve NN performance. However, please
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note that this is not a complete treatment of ways to improve network performance.
The reader is referred to the large source of information available in journals, books
and conference proceedings.

7.5 Assignments

10.

. Discuss measures that quantify the performance of unsupervised neural net-

works.

Discuss factors that influence the performance of unsupervised neural net-
works. Explain how the performance can be improved.

Why is the SSE not a good measure to compare the performance of NNs on
different data set sizes?

Why is the MSE not a good measure of performance for classification prob-
lems?

One approach to incremental learning is to select from the candidate training
set the most informative pattern as the one with the largest error. Justify and
criticize this approach. Assume that a new pattern is selected at each epoch.

Explain the role of the steepness coefficient in W in the performance of
supervised NNs.

Explain how architecture selection can be used to avoid overfitting.
Explain how active learning can be used to avoid overfitting.

Consider the sigmoid activation function. Discuss how scaling of the training
data affects the performance of NNs.

Explain how the Huber function makes a NN more robust to outliers.
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Part II1

EVOLUTIONARY
COMPUTING

The world we live in is constantly changing. In order to survive in a dynamically
changing environment, individuals must have the ability to adapt. Evolution is
this process of adaption with the aim of improving the survival capabilities through
processes such as natural selection, survival of the fittest, reproduction, mutation,
competition and symbiosis.

This part covers evolutionary computing (EC) - a field of CI which models the
processes of natural evolution. Several evolutionary algorithms (EA) have been
developed. This text covers genetic algorithms in Chapter 9, genetic programming
in Chapter 10, evolutionary programming in Chapter 11, evolutionary strategies in
Chapter 12, differential evolution in Chapter 13, cultural evolution in Chapter 14,
and co-evolution in Chapter 15. An introduction to basic EC concepts is given in
Chapter 8.
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Chapter 8

Introduction to Evolutionary
Computing

Evolution is an optimization process, where the aim is to improve the ability of
individuals to survive. Evolutionary computing (EC) is the emulation of the process
of natural selection in a search procedure. In nature, organisms have certain charac-
teristics that influence their ability to survive and reproduce. These characteristics
are represented by long strings of information contained in the chromosomes of the
organism. After sexual reproduction the chromosomes of the offspring consist of a
combination of the chromosomal information from each parent. Hopefully, the end
result will be offspring chromosomes that contain the best characteristics of each
parent. The process of natural selection ensures that the more “fit” individuals
have the opportunity to mate most of the time, leading to the expectation that the
offspring have a similar, or better fitness.

Occasionally, chromosomes are subjected to mutations which cause changes to the
characteristics of the corresponding individuals. These changes can have a negative
influence on the individual’s ability to survive or reproduce. On the other hand,
mutation may actually improve the fitness of an individual, thereby improving its
chances of survival and of taking part in producing offspring. Without mutation,
the population tends to converge to a homogeneous state where individuals vary
only slightly from each other.

Evolution via natural selection of a randomly chosen population of individuals can
be thought of as a search through the space of possible chromosome values. In that
sense, an evolutionary algorithm (EA) is a stochastic search for an optimal solution
to a given problem. The evolutionary search process is influenced by the following
main components of EA:

¢ an encoding of solutions to the problem as a chromosome;

123
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e a function to evaluate the fitness, or survival strength of individuals;

e initialization of the initial population;

selection operators; and

e reproduction operators.
Each of these aspects is introduced and discussed briefly in the sections that follow.
More detailed discussions follow in the chapters on the different EC paradigms. A

comparison between classical optimization and EC is given in Section 8.7. A general
EA is given in Section 8.6.

EAs have been applied to a wide range of problem areas, including

+ planning, for example, routing optimization and scheduling;

e design, for example, the design of filters, neural network architectures and
structural optimization;

e control, for example, controllers for gas turbine engines, and visual guidance
systems for robots;

e classification and clustering;
e function approximation and time series modeling;
e regression;
e composing music; and
e data mining.
EAs have shown advantages over existing algorithmic solutions in the above appli-

cation areas. It is interesting to note that EAs are being increasingly applied to
areas in which computers have not been used before.

8.1 Representation of Solutions — The Chromosome

An evolutionary algorithm utilizes a population of individuals, where each individual
represents a candidate solution to the problem. The characteristics of an individual
are represented by a chromosome, or genome. The characteristics represented by
a chromosome can be divided into classes of evolutionary information: genotypes
and phenotypes. A genotype describes the genetic composition of an individual as
inherited from its parents. Genotypes provide a mechanism to store experiential
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evidence as gathered by parents. A phenotype is the expressed behavioral traits of
an individual in a specific environment. A complex relationship can exist between
the genotype and phenotype. Two such relationships are [Mayr 1963]:

e pleiotropy, where random modification of genes cause unexpected variations
in the phenotypic traits; and

e polygeny, where several genes interact to produce a specific phenotypic trait.
To change this behavioral characteristic, all the associated genes need to
change.

Each chromosome represents a point in search space. A chromosome consists of a
number of genes, where the gene is the functional unit of inheritance. Each gene
represents one characteristic of the individual, with the value of each gene referred
to as an allele. In terms of optimization, a gene represents one parameter of the
optimization problem.

A very important step in the design of an EA is to find an appropriate chromosome
representation. The efficiency and complexity of a search algorithm greatly depend
on the representation scheme, where classical optimization techniques usually use
vectors of real numbers, different EAs use different representation schemes. For
example, genetic algorithms (GA) mostly use a binary string representation, where
the binary values may represent Boolean values, integers or even discretized real
numbers, genetic programming (GP) makes use of a tree representation to repre-
sent programs and evolutionary programmming (EP) uses real-valued variables. The
different representation schemes are described in more detail in the chapters that
follow.

8.2 Fitness Function

The fitness function is possibly the most important component of an EA. The pur-
pose of the fitness function is to map a chromosome representation into a scalar
value:

Fpa:Cl SR (8.1)

where Fg 4 is the fitness function, and c represents the I-dimensional chromosome.

Since each chromosome represents a potential solution, the evaluation of the fitness
function quantifies the quality of that chromosome, i.e. how close the solution is to
the optimal solution. Selection, cross-over, mutation and elitism operators usually
make use of the fitness evaluation of chromosomes. For example, selection operators
use the fitness evaluations to decide which are the best parents to reproduce. Also,
the probability of an individual to be mutated can be a function of its fitness: highly
fit individuals should preferably not be mutated.
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It is therefore extremely important that the fitness function accurately models the
optimization problem. The fitness function should include all criteria to be opti-
mized. In addition to optimization criteria, the fitness function can also reflect the
constraints of the problem through penalization of those individuals that violate
constraints. It is not required that the constraints are encapsulated within the fit-
ness function; constraints can also be incorporated in the initialization, reproduction
and mutation operators.

8.3 [Initial Population

Before the evolutionary process can start, an initial population has to be generated.
The standard way of generating the initial population is to choose gene values ran-
domly from the allowed set of values. The goal of random selection is to ensure
that the initial population is a uniform representation of the entire search space.
If prior knowledge about the search space and problem is available, heuristics can
be used to bias the initial population toward potentially good solutions. However,
this approach to population initialization leads to opportunistic EAs. Not all of
the elements of the search space have a chance to be selected, which may result in
premature convergence of the population to a local optimum.

The size of the initial population has consequences for performance in terms of
accuracy and the time to converge. A small population represents a small part of
the search space. While the time complexity per generation is low, the EA may
need more generations to converge than for a large population. On the other hand,
a large population covers a larger area of the search space, and may require less
generations to converge. However, the time complexity per generation is increased.
In the case of a small population, the EA can be forced to explore a larger search
space by increasing the rate of mutation.

8.4 Selection Operators

Each generation of an EA produces a new generation of individuals, representing
a set of new potential solutions to the optimization problem. The new generation
is formed through application of three operators: cross-over, mutation and elitism.
The aim of the selection operator is to emphasize better solutions in a population.

In the case of cross-over, “superior” individuals should have more opportunities to
reproduce. In doing so, the offspring contains combinations of the genetic material
of the best individuals. The next generation is therefore strongly influenced by the
genes of the fitter individuals. In the case of mutation, fitness values can be used
to select only those individuals with the lowest fitness values to be mutated. The
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idea is that the most fit individuals should not be distorted through application
of mutation — thereby ensuring that the good characteristics of the fit individuals
persevere. Elitism is an operator that copies a set of the best individuals to the
next generation, hence ensuring that the maximum fitness value does not decrease
from one generation to the next. Selection operators are used to select these elitist
individuals.

Several selection techniques exist, divided into two classes:

e Explicit fitness remapping, where the fitness values of each individual is
mapped into a new range, e.g. normalization to the range [0,1]. The mapped
value is then used for selection.

e Implicit fitness remapping, where the actual fitness values of individuals
are used for selection.

Goldberg and Deb [Goldberg and Deb 1991] presented a comparison of these selec-
tion schemes. Based on this comparison, Beasley et al. concluded that selection
schemes from both classes perform equally well with suitable adjustment of param-
eters [Beasley et al. 1993]. Therefor, no method is absolutely superior to the other.

A summary of the most frequently used selection operators are given in the subsec-
tions below.

8.4.1 Random Selection

Individuals are selected randomly with no reference to fitness at all. All the indi-
viduals, good or bad, have an equal chance of being selected.

8.4.2 Proportional Selection

The chance of individuals being selected is proportional to the fitness values. A
probability distribution proportional to fitness is created, and individuals are se-
lected through sampling of the distribution,

j':EA(C‘?”L)

Prob(C_"n) = e
271:7:1 fEA(Cn)

(8.2)

where Prob(én) is the probability that individual C,, will be selected, and Fg A(én)
is the fitness of individual C,. That is, the probability of an individual being se-
lected, e.g. to produce offspring, is directly proportional to the fitness value of that
individual. This may cause an individual to dominate the production of offspring,
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thereby limiting diversity in the new population. This can of course be prevented
by limiting the number of offspring that a single individual may produce.

In roulette wheel sampling the fitness values are normalized, usually by dividing each
fitness value by the maximum fitness value. The probability distribution can then
be thought of as a roulette wheel, where each slice has a width corresponding to the
selection probability of an individual. Selection can be visualized as the spinning of
the wheel and testing which slice ends up at the top.

Roulette wheel selection is illustrated by the following pseudocode algorithm:

1. n = 1, where n denotes the chromosome index

2. sum = Prob(C,) using equation (8.2)

w

choose a uniform random number, £ ~ U(0,1)

b

while sum < £

(a) n++
(b) sum+ = Prob(C,,)

5. return C,, as the selected individual.

It is possible that the population can be dominated by a few individuals with high
fitness, having a narrow range of fitness values. Similar fitness values are then
assigned to a large set of individuals in the population — leading to a loss in the
emphasis toward better individuals. Scaling, or normalization, is then required
(explicit fitness remapping) to accentuate small differences in fitness values. In
doing so, the objective emphasis toward more fit individuals is maintained. One
approach is the normalization to [0, 1] by dividing all fitness values by the maximum
fitness.

8.4.3 Tournament Selection

In tournament selection a group of & individuals is randomly selected. These k
individuals then take part in a tournament, i.e. the individual with the best fitness
is selected. For cross-over, two tournaments are held: one to select each of the
two parents. It is therefore possible that (1) a parent can be selected to reproduce
more than once, and (2) that one individual can combine with itself to reproduce
offspring. The question then arises if this should be allowed or not. The answer is
left to the reader.

The advantage of tournament selection is that the worse individuals of the population
will not be selected, and will therefore not contribute to the genetic construction of
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the next generation, and the best individual will not dominate in the reproduction
process.

8.4.4 Rank-Based Selection

Rank-based selection uses the rank ordering of the fitness values to determine the
probability of selection and not the fitness values itself. This means that the selection
probability is independent of the actual fitness value. Ranking therefore has the
advantage that a highly fit individual will not dominate in the selection process as
a function of the magnitude of its fitness.

One example of rank-based selection is non-deterministic linear sampling, where
individuals are sorted in decreasing fitness value. The first individual is the most fit
one. The selection operator is defined as

1. let n = random(random(N))

2. return én as the selected individual

Nonlinear ranking techniques have also been developed, for example, where

- 1—e7(C)
Prob(C,) = — (8.3)
or —
Prob(Cp) = a(1 — a)V1-7(Cn) (8.4)

where 7(C,,) is the position (rank) of individual Cp, p is a normalization constant,
and « is a constant that expresses the probability of selecting the next individual.

These nonlinear selection operators bias toward the best individuals, at the cost of
possible premature convergence.

8.4.5 Elitism

Elitism involves the selection of a set of individuals from the current generation
to survive to the next generation. The number of individuals to survive to the
next generation, without being mutated, is referred to as the generation gap. If the
generation gap is zero, the new generation will consist entirely of new individuals.
For positive generation gaps, say k, & individuals survive to the next generation.
These can be

o the & best individuals, which will ensure that the maximum fitness value does
not decrease, or

¢ kindividuals, selected using any of the previously discussed selection operators.



130 CHAPTER 8. INTRODUCTION TO EVOLUTIONARY COMPUTING

8.5 Reproduction Operators

The purpose of reproduction operators is to produce new offspring from selected
individuals, either through cross-over or mutation. Cross-over is the process of
creating a new individual through the combination of the genetic material of two
parents. Mutation is the process of randomly changing the values of genes in a
chromosome. The aim of mutation is to introduce new genetic material into an
existing individual, thereby enlarging the search-space. Mutation usually occurs at
a low probability. A large mutation probability distorts the genetic structure of a
chromosome — the disadvantage being a loss of good genetic material in the case of
highly fit individuals.

Reproduction operators are usually applied to produce the individuals for the next
generation. Reproduction can, however, be applied with replacement. That is,
newly generated individuals replace parents if the fitness of the offspring is better
than the parents; if not, the offspring do not survive to the next generation.

Since cross-over and mutation operators are representation dependent, the different
implementations of these operators are covered in the chapters that follow.

8.6 General Evolutionary Algorithm

The following pseudocode represents a general evolutionary algorithm. While this
algorithm includes all operator types, different EC paradigms use different operators
(as discussed in the following chapters).

1. Let g = 0 be the generation counter.
2. Initialize a population Cy of N individuals, i.e. Cg = {C_"g,nln =1,---.N}.
3. While no convergence

(a) Evaluate the fitness Fg A(C"g,n) of each individual in population C,
(b) perform cross-over:
i. select two individuals ég,nl and C‘Q,M
ii. produce offspring from C-"g,n1 and Cy ,,
(c) perform mutation
i. select one individual Cy ,
ii. mutate C—"g,n
(d) select the new generation Cgt1

(e) evolve the next generation: let g =g + 1
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Convergence is reached when, for example,

e the maximum number of generations is exceeded
e an acceptable best fit individual has evolved

e the average and/or maximum fitness value do not change significantly over the
past g generations.

8.7 Evolutionary Computing vs Classical Optimization

The no-free-lunch (NFL) theorem [Wolpert and Macready 1996] states that there
cannot exist any algorithm for solving all problems that is on average superior to
any other algorithm. This theorem motivates research in new optimization algo-
rithms, especially EC. While classical optimization algorithms have been shown to
be very successful (and more efficient than EAs) in linear, quadratic, strongly con-
vex, unimodal and other specialized problems, EAs have been shown to be more
efficient for discontinuous, nondifferentiable, multimodal and noisy problems.

EC and classical optimization (CO) differ mainly in the search process and informa-
tion about the search space used to guide the search process:

e The search process: CO uses deterministic rules to move from one point in
the search space to the next point. EC, on the other hand, uses probabilistic
transition rules. Also, EC uses a parallel search through search space, while
CO uses a sequential search. The EC search starts from a diverse set of initial
points, which allows parallel search of a large area of the search space. CO
starts from one point, successively adjusting this point to move toward the
optimum.

e Search surface information: CO uses derivative information, usually first-
order or second-order, of the search space to guide the path to the optimum.
EC, on the other hand, uses no derivative information. Only the fitness values
of individuals are used to guide the search.

8.8 Conclusion

While this chapter presented a short introduction to the different aspects of EC,
the next chapters elaborate on each EC paradigm. Design aspects of each EC
paradigm, including representation and operators, are discussed in detail in these
chapters. Performance issues are also discussed per EC paradigm.
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8.9

CHAPTER 8. INTRODUCTION TO EVOLUTIONARY COMPUTING

Assignments

Discuss the importance of the fitness function in EC.
Discuss the difference between genetic and phenotypic evolution.

In the case of a small population size, how can we ensure that a large part of
the search space is covered?

. How can premature convergence be prevented?
. In what situations will a high mutation rate be of advantage?

. Is the following statement valid? “A genetic algorithm is assumed to have

converged to a local or global solution when the ratio P, = F/ fmaz 18 close
to 1, where fia; and f are the mazimum and average fitness of the evolving
population respectively.”

How can an EA be used to train a NN?7 In answering this question, focus on

(a) the representation scheme, and

(b) fitness function.

. Show how an EA can be used to solve systems of equations, by illustrating

how

(a) solutions are represented
(b) the fitness is calculate

(c) we have a problem with using EAs for solving systems of equations.

Explain the importance of the fitness function in EC.



Chapter 9

Genetic Algorithms

Genetic Algorithms (GA) model genetic evolution. The characteristics of individuals
are therefore expressed using genotypes. First introduced by John Holland in 1975
[Holland 1975], the GA was the first EC paradigm developed and applied. The orig-
inal GAs developed by Holland had distinct features: (1) a bit string representation,
(2) proportional selection and (3) cross-over as the primary method to produce new
individuals, were used. Several changes to the original Holland GA have been de-
veloped, which use different representation schemes, selection, cross-over, mutation
and elitism operators.

This chapter presents an introduction to genetic algorithms. Section 9.1 starts the
chapter with a short overview of pure random search, illustrating similarities with
GAs. Pseudocode for a general GA is given in Section 9.2. Chapter 8 introduced
the different EA operators, and elaborated on those operators common to all EC
paradigms. In this Section the operators specific to GAs are discussed in more de-
tail. Section 9.3 discusses GA chromosome representation schemes, while cross-over
operators are discussed in Section 9.4 and mutation in section 9.5. Section 9.6 dis-
cusses, in short, an island approach to GAs. An application to routing optimization
in telecommunications networks is presented in Section 9.7.

9.1 Random Search

Random search is possibly the simplest search procedure. Starting from an initial
search point, or set of initial points, the search process simply consists of random
perturbations to the point(s) in search space - until an acceptable solution is reached,
or a maximum number of iterations is exceeded. While random search is extremely
simple to implement, it can be inefficient. Training time may be very long before
an acceptable solution is obtained.
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A pseudo-code algorithm for random search is given below:

1. Select a set of N initial search points Cg = {ég,nln =1,---,N}, where C-"g,n
is a vector of I variables and g = 0. Each element Cg,; is sampled from a
uniform distribution U(-maz, maz), where maz is a limit placed on variable
values.

2. Evaluate the accuracy (“fitness”) F (C."g,n) of each vector (:"g,n.
3. Find the best point ég,best = minnzl'...,N{.’F((}. n)}
4. If C_"g’best < C-"best, where é’best is the overall best solution, then Cpeys = C_’.g,best-

5 If (:'best is an acceptable solution, or the maximum number of iterations has
been exceeded, then stop and return Cj., as the solution.

6. Perturb each Cy, with AC,,, where AC;n, ~ N(0,0%), with o2 a small
variance.

7. Let g = g+ 1 and go to step 2.

The random search above bear similarities with GAs. If random selection is used
for cross-over and mutation, a GA becomes a pure random search.

9.2 General Genetic Algorithm

This section summarizes a general GA in the following pseudocode. Subsequent
sections discuss the different operator choices in more detail.

1. Let ¢ =0.
2. Initjalize the initial generation C,.
3. While not converged

(a) Evaluate the fitness of each individual ég,n € C,.

(b) g=g+1.

(c) Select parents from Cy_;.

(d) Recombine selected parents through cross-over to form offspring O,.

(e) Mutate offspring in O,.

(f) Select the new generation Cy from the previous generation Cy_; and the
offspring O,.
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9.3 Chromosome Representation

The classical representation scheme for GAs is binary vectors of fixed length. In the
case of an I-dimensional search space, each individual consists of I variables with
each variable encoded as a bit string. If variables have binary values, the length of
each chromosome is I bits. In the case of nominal-valued variables, each nominal
value can be encoded as a D-dimensional bit vector, where 2P is the total number
of discrete nominal values for that variable. Each D-bit string represents a different
nominal value. In the case of continuous-valued variables, each variable should be
mapped to a D-dimensional bit vector, i.e.

é:R— {0,1}7 (9.1)

The range of the continuous space needs to be restricted to a finite range [a, 8].
Using standard binary decoding, each continuous variable C,, ; of chromosome C, is
encoded using a fixed length bit string. For example, if 2z € [2nin, Zmaz]| Deeds to be
converted to a 30-bit representation, the following conversion formula can be used:
Z = Zmi
(230 _ 1) min

Zmax — Zmin

Hamming distance

5 ---&--- binary coding
=m0 Gray coding
4
3 2
/ \

1/ \

2 RN K \\ A
L7 AN / N 7 N
7z ~ ’ N

1 - S R, ST L * o ‘e
0

Numerical value

Figure 9.1: Hamming distance for binary and Gray coding

While binary coding is frequently used, it has the disadvantage of introducing Ham-
ming cliffs as illustrated in Figure 9.1. A Hamming cliff is formed when two nu-
merically adjacent values have bit representations that are far apart. For example,
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Binary | Gray
0 | 000 000
1001 001
2 | 010 011
3011 010
4100 110
51 101 111
6 (110 101
71111 100

Table 9.1: Binary and Gray coding

consider the decimal numbers 7 and 8. The corresponding binary representations
are (using a 4-bit representation) 7 = 0111 and 8 = 1000, with a Hamming distance
of 4 (the Hamming distance is the number of corresponding bits that differ). This
presents a problem when a small change in variables should result in a small change
in fitness. If, for example, 7 represents the optimal solution, and the current best
solution has a fitness of 8, many bits need to be changed to cause a small change in
fitness value.

An alternative bit representation is to use Gray coding, where the Hamming distance
between the representation of successive numerical values is one (as illustrated in
Figure 9.1). Table 9.1 compares binary and Gray coding for a 3-bit representation.

Binary numbers can easily be converted to Gray coding using the conversion

g = b
9k br—1bk + br_1bx

where by is bit k of the binary number by b - - - b, with b; the most significant bit;
br denotes not by, + means logical OR, and multiplication implies logical AND.

GAs have also been developed that use integer or real-valued representations
[Davis 1991, Janikow and Michalewicz 1991, Sevenster and Engelbrecht 1996] and
order-based representations where the order of variables in a chromosome plays
an important role [Whitley et al. 1989, Syswerda 1991]. Also, it is not neces-
sary that chromosomes are of fixed length (especially in data mining applications)
[Goldberg 1989, Holland et al. 1986).
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9.4 Cross-over

The aim of cross-over is to produce offspring from two parents, selected using a
selection operator as discussed in Section 8.4. However, it is not necessary that
each group of parents produces offspring. In fact, cross-over takes place at a certain
probability, referred to as the cross-over rate p. € [0,1]. A simple pseudocode
algorithm to illustrate cross-over between individuals C—“n1 and C_"n2 is:

1. Compute a random number & ~ U(0,1).

2. If (¢ > p.) then no cross-over takes place and the parents are simply returned,
otherwise go to step 3.

3. @=Cp, and f = Ch,.
4. Compute the mask, m (see below).
5. Fori¢=1,---,1, if (m; = 1) then swap the genetic material:

(a) a; = Chp,y
(b) Bi = Cryy

6. Return the offspring «; and g;.

In the procedure above, 7 is a mask which specifies which bits of the parents should
be swapped to generate offspring. Several cross-over operators have been developed
to compute the mask:

e Uniform cross-over: For uniform cross-over the mask of length I is cre-
ated at random for each pair of individuals selected for reproduction. A bit
with value of 1 indicates that the corresponding allele have to be swapped
between the two parents. Figure 9.2(a) illustrates uniform cross-over, while
the pseudocode for generating the mask is given below:

I.mj=0foralli=1,--- 1.
2. Foreachi=1,---,I:
(a) Calculate a random value & ~ U(0,1).
(b) If (£ < pg), then m; = 1.
3. Return the mask vector .
In the above p, is the cross-over probability at each position in the chromo-

some. If, for example, p, = 0.5, each bit has an equal chance to take part in
CrOss-over.
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e Omne-point cross-over: A single bit position is randomly selected and the
bit substrings after that point are swapped between the two chromosomes.
One-point cross-over is illustrated in Figure 9.2(b), while the mask vector is
calculated as

1. Calculate a random value £ ~ U(1,I —1).
2. m;y=0foralle=1,.---,1.
3. Foreachi:=¢&+1,---  Tlet m; =1.
4. Return the mask vector m.
e Two-point cross-over: In this case two bit positions are randomly selected,

and the bit substrings between these points are swapped as illustrated in Fig-
ure 9.2(c). The mask vector is calculated as

Compute two random variable &;,& ~ U(1, ).
m;=0foralli=1,.---,1.
For each i = &;,---,& let m; = 1.

Ll L

Return the mask vector .

In the case of continuous-valued genes, and arithmetic cross-over can be used. Con-
sider the two parents Cy,, and C,,,. Then, two offspring, Oy, and O,,, are generated
using

Om’,‘ = 7‘10"1‘,' + (1.0 - Tl)Cng,i

On,,i = (1.0 — 12)Ch, i + 12Ch,

with 1,7 € U(0, 1).

9.5 Mutation

The aim of mutation is to introduce new genetic material into an existing individual;
that is, to add diversity to the genetic characteristics of the population. Mutation
is used in support of cross-over to make sure that the full range of allele values is
accessible in the search. Mutation also occurs at a certain probability p,,, referred
to as the mutation rate. Usually, a small value for p,, € [0,1] is used to ensure that
good solutions are not distorted too much. However, research has shown that an
initial large mutation rate that decreases exponentially as a function of the number
of generations improves convergence speed and accuracy. (An annealing schedule
similar to that of equation (4.22) for the learning rate can be used.) The initial
large p,, ensures that a large search space is covered, while the p,, becomes rapidly
smaller when individuals start to converge to the optimum.

Considering binary representations, the following mutation schemes have been de-
veloped:



9.5. MUTATION 139

Parent 1 Parent 1
Parent 2 Parent 2
T T R B e W G 5 | E U o 0. Bk 1 B0 0 |
Mask Mask
[1]o] 1]of of 1] of of of 1] [ol o]l of ol of of s+ 1] 11 ]
Offspring 1 Offspring 1
Offspring 2 Offspring 2

B BmEs eS| T T T T —

(a) Uniform Cross-over (b) One-point Cross-over
Parent 1
Parent 2
| e e T R T [ S ) P
Mask

Lol of 1] 1] 1] 1] of o ofo ]

|

(¢) Two-point Cross-over

Figure 9.2: Cross-over operators
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e Random mutate, where bit positions are chosen randomly and the corre-
sponding bit values negated (as illustrated in Figure 9.3(a)). A pseudocode
algorithm, for random mutation is the following:

1. Foreachi=1,.--,1I:
(a) Compute a random value & ~ U(0,1).
(b) If ¢ < pm then Gy ; = 5,1,.-, where C is the complement of C.

e Inorder mutate, where two bit positions are randomly selected and only bits
between these positions are mutated (as illustrated in Figure 9.3(b)). The
algorithm for inorder mutation is:

1. Select two random values &;,& ~ U(1,---,1).
2. For each i = &,---,&s:

(a) Compute a random value ¢ ~ U(0,1).
(b) Ifé S Dm then Cn,i = 61:,1'-

Before Mutation Before Mutation
mutation points T T T 1 mutation points T T
After Mutation After Mutation
(a) Random Mutate (b) Inorder Mutate

Figure 9.3: Mutation operators

In the case of nominal-valued variables, the above mutation operators can be adapted
such that the D bits that represent a certain nominal value are replaced by the D
bits representing a randomly chosen nominal value. For real-valued representations,
mutation occurs by adding a random value to allele, usually sampled from a Gaussian
distribution with zero mean and small variance o2:

1. For each real-valued gene Cy, ;:
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(a) Compute a random value £; ~ U(0,1).
(b) Compute a step size 7; ~ N(0,02).
(c) If & < pm then Chnit =i

Usually, the variance o? is a function of the fitness of the individual. Individuals
with a good fitness value will be mutated less, while a bad fitness value will lead to
large mutations.

9.6 Island Genetic Algorithms

While GAs with single populations are a form of parallelization, more benefits can be
obtained by evolving a number of subpopulations in parallel, which is a cooperative
model [Grosso 1985]. In this GA model we have islands, where each island represents
one population. Selection, cross-over and mutation occur in each subpopulation
independently from the other subpopulations. In addition, individuals are allowed
to migrate to another island, or subpopulation, as illustrated in Figure 9.4. In this
way genetic material is shared among the subpopulations.

Island 2

Island 3

------ > Migration

~mmma Visitation

Figure 9.4: An island GA system
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Island GA models introduce interesting questions, one of which is how to initialize
the subpopulations. Of course a pure random approach can be used, which will
cause different populations to share the same parts of the search space. A better
approach would be to initialize subpopulations to cover different parts of the search
space, thereby covering a larger search space and facilitating a kind of niching by
individuals islands. Also, in multicriteria optimization, each subpopulation can be
allocated the task to optimize one criterion. A meta-level step is then required to
combine the solutions from each island.

Another question is, when can individuals migrate, and from where, to where? The
simplest approach is to let migration occur at random. Individuals are selected ran-
domly, and the destination subpopulation is also selected randomly. Alternatively,
tournament selection can be used to select migrated individuals, as well as the des-
tination. Intuitively, the best individuals of a poor island may want to migrate to
a better island. However, individuals from a poor island may introduce bad genetic
material into a good island. Acceptance of an immigrant can then be based on a
probability as a function of the immigrant’s fitness value compared to that of the in-
tended destination island, or acceptance if the immigrant has the ability to increase
the diversity in genetic material, that is, if the individual is maximally different. It
is also possible that a highly fit individual from a prosperous island visits islands,
taking part in reproduction.

Culling of weak individuals in subpopulations can also be modeled. Immigrants
can be allowed, for example, if that immigrant can replace an individual of the
destination island with a lower fitness than the immigrant. In doing so, the weaker
individual is killed and removed from the population.

It should be noted at this point that the EA employed for islands does not necessarily
need to be a GA. It can be any of the other EAs.

A different kind of “island” GA model is the Cooperative Coevolutionary GA of
Potter [Potter 1997). In this case, instead of distributing entire individuals over
several subpopulations, each subpopulation is given one gene (one parameter of the
optimization problem) to optimize. This is a coevolutionary process, discussed in
more detail in chapter 15.

9.7 Routing Optimization Application

This section studies a real-world application of GAs. The problem is the optimization
of routes in a telecommunications network [Sevenster and Engelbrecht 1996]. Given
a network of M switches, an origin switch and a destination switch, the objective is
to find the best route to connect a call between the origin and destination switches.
The design of the GA is done in the following steps:
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1. Chromosome representation: A chromosome consists of a maximum of M
switches. Chromosomes can be of variable length, since telecommunication
routes can differ in length. Each gene represents one switch. Integer values
representing switch numbers are used as gene values - no binary encoding
is used. The first gene represents the origin switch and the last gene the
destination switch. Example chromosomes are

(1 3 6 10)

(1525 10=@0 5 2 10)

Duplicate switches are ignored. The first chromosome represents a route from
switch 1 to switch 3 to switch 6 to switch 10.

2. Initialization of population: Individuals are generated randomly, with the
restriction that the first gene represents the origin switch and the last gene
represents the destination switch. For each gene, the value of that gene is
selected as a uniform random value in the range [1, M].

3. Fitness function: The multi-criteria objective function
P’j — aF]Switch + blijlock + CFjUtil + dFjCost

is used where |

Switch _ |3

BT

represents the minimization of route length, where r; denotes the route and
|r;| is the total number of switches in the route,

|71
FPlock — 1 — H (1 = Byy + azy)
TYET;

with
o = 1 if zy does not exist
71 0 if zy does exist

has as its objective selection of routes with minimum congestion, where B,
denotes the blocking probability on the link between switches z and y,

Ut _ .
F7 = min {1 = Usy} + oy
maximizes utilization, where Uy quantifies the level of utilization of the link
between z and y, and
7l
Cost __
F{ot=3 " Cuy+oay

TYET;
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ensures that minimum cost routes are selected, where Cyy represents the fi-
nancial cost of carrying a call on the link between z and y. The constants
a,b,c and d control the influence of each criterion.

More eflicient techniques have been developed to work with multi-objective
functions. The reader is referred to [Horn 1993] for a treatment of such tech-
niques, and http://www.tik.ee.ethz.ch/~zitzler/Bibliographies/pareto.html for
a list of papers on multiobjective optimization.

4. Use any selection operator.
5. Use any cross-over operator.

6. Mutation: Mutation consists of replacing selected genes with a uniformly
random selected switch in the range [1, M].

This example is an illustration of a GA that uses a numeric representation, and
variable length chromosomes with constraints placed on the structure of the initial
individuals.

9.8 Conclusion

One of the questions that remains to be addressed is how to select the operators
to use, as well as the corresponding operator probabilities. Since the optimal com-
bination of operators and probabilities of applying these operators are problem-
dependent, extensive simulations have to be conducted to find the optimal operator
combinations. That is, of course, a time-consuming process. It is also possible to
have a meta-evolution process to evolve the best values for these operators.

For several applications, such as solving systems of equations, it is necessary to
locate all minima. Special GAs have been developed to locate multiple minima.
These algorithms are referred to as niching GAs. For more information on niching,
the reader is referred to (Mahfoud 1995, Horn 1997).

9.9 Assignments

1. Develop a GA to train a FFNN.
2. When is a high mutation rate of an advantage?

3. Is the following strategy sensible? Explain your answer. Start evolution with
a large mutation rate, and decrease the mutation rate with an increase in
generation number.
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. How can GAs be used to optimize the architecture of NNs?
. Discuss how a GA can be used to cluster data.

. Investigate a cross-over scheme where more than two parents take part in

producing offspring. In this scheme components of offspring consist of that of
randomly selected components of a number of selected parents.

. Design a mutation operator for solving systems of equations.

. How can a GA be used for constrained optimization?
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Chapter 10

Genetic Programming

Genetic programming (GP) is viewed as a specialization of genetic algorithms. Sim-
ilar to GAs, GP concentrates on the evolution of genotypes. The main difference
is in the representation scheme used. Where GAs use string representations, GP
represents individuals as executable programs (represented as trees). The aim of
GP is therefore to evolve computer programs. For each generation, each evolved
program (individual) is executed to measure its performance within the problem
domain. The results or performance of the evolved computer program is then used
to quantify the fitness of that program.

The operators applied to a GP are similar to that of GAs. The general GA given
in Section 9.2 also applies to GP. The next sections concentrate on the differences
between the two approaches, which are mainly in the representation scheme (see
Section 10.1), fitness evaluation (see Section 10.3), cross-over operators (see Sec-
tion 10.4) and mutation operators (see Section 10.5).

10.1 Chromosome Representation

GP evolves executable computer programs. Each individual, or chromosome, repre-
sents one computer program, represented using a tree structure. For this purpose
a grammar needs to be defined that accurately reflects the problem to be solved.
Within this grammar a terminal set and function set need to be defined. The ter-
minal set specifies all the variables and constants, while the function set contains
all the functions that can be applied to the elements of the terminal set. These
functions may include mathematical, arithmetic and/or Boolean functions. Deci-
sion structures such as if-then-else can also be included with the function set. Using
tree terminology, elements of the terminal set form the leaf nodes of the evolved
tree, and elements of the function set form the non-leaf nodes.

147
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As an example, consider evolving the following program:

y := x * 1n(a) + sin(z) / exp(-x) - 3.4;

The terminal set is specified as {a, z, z,3.4} with a,z,z € R. The minimal function
set is given as {—, +,*, /, sin,ezp,in}. The optimum solution is illustrated in Fig-
ure 10.1. Terminal elements are placed within circles, while function elements are
in the square boxes.

Figure 10.1: Genetic program representation

Each individual in a GP population represents a program, which is an element of
the program space formed by all possible programs that can result from the given
grammar. The aim of the GP is then to search for a program within the program
space that give the best approximation to the objective (the true) program.

Trees within a population can be of a fixed size or variable size. With a fixed size
representation all trees have the same depth and all subtrees are expanded to the
maximum depth. Variable size tree representations are, however, the most frequently
used representation. In this case the only restriction placed on trees is a maximum
depth. It is also possible to employ schemes where the maximum depth increases
with increasing generation number.
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10.2 Initial Population

The initial population is generated randomly within the restrictions of a maximum
depth and semantics as expressed by the given grammar. For each individual, a root
is randomly selected from the set of function elements. The branching factor (the
number of children) of the root, and each other non-terminal node, are determined
by the arity of the selected function. For each non-root node, the initialization
algorithm randomly selects an element either from the terminal set or the function
set. As soon as an element from the terminal set is selected, the corresponding node
becomes a leaf node and is no longer considered for expansion.

10.3 Fitness Function

The fitness function used for GP is problem-dependent. Fitness evaluation involves
testing each problem on the target domain. This usually requires each individual to
be tested on a sample of cases, and the average performance over that sample is used
as fitness measure. As an example, return to the program in Figure 10.1. Assume no
prior knowledge about the structure of the program, other than the given terminal
and function sets. In addition, a data set is available, consisting of a number of data
patterns, where each data pattern consists of three input values (one for each of the
variables a,z and z) and a target value (i.e. the value of y). The evaluation of each
individual entails (1) calculating the output of that individual given the values of
a,z and z, and (2) calculating the error made. At the end, the MSE over the given
data set is a valid quantification of the fitness of that individual.

In the case where decision trees are evolved, and each individual represents a single
decision tree, the fitness of individuals is calculated as the classification accuracy
of the corresponding decision tree. If the objective is to evolve a game strategy in
terms of a computer program, the fitness of an individual can be the number of
times that individual won the game out of a total number of games played.

In addition to being used as a measure of the performance of individuals, the fitness
function can also be used to penalize individuals with undesirable structural prop-
erties. For example, instead of having a predetermined depth limit, the depth of a
tree can be penalized by adding an appropriate penalty term to the fitness function.
Similarly, bushy trees (which result when nodes have a large branching factor) can
be penalized by adding a penalty term to the fitness function.
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Figure 10.2: Genetic programming cross-over
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10.4 Cross-over Operators

Any of the previously discussed selection operators (refer to Section 8.4) can be used
to select two parents to produce offspring. Two approaches can be used to generate
offspring, each one differing in the number of offspring generated:

¢ Generating one offspring: A random node is selected within each of the
parents. Cross-over then proceeds by replacing the corresponding subtree in
the one parent by that of the other parent. Figure 10.2(a) illustrates this
operator for the example of Section 10.1.

¢ Generating two offspring: Again, a random node is selected in each of the
two parents. In this case the corresponding subtrees are swapped to create the
two offspring as illustrated in Figure 10.2(b).

10.5 Mutation Operators

Several mutation operators have been developed for GP. The most frequently used
operators are discussed below with reference to Figure 10.3. Figure 10.3(a) illustrates
the original individual before mutation.

e Function node mutation: A non-terminal node, or function node, is ran-
domly selected and replaced with a node of the same arity, randomly selected
from the function set. Figure 10.3(b) illustrates that function node + is re-
placed with function node —.

e Terminal node mutation: A leaf node, or terminal node, is randomly se-
lected and replaced with a new terminal node, also selected randomly from the
terminal set. Figure 10.3(c) illustrates that terminal node a has been replaced
with terminal node 2.

e Swap mutation: A function node is randomly selected and the arguments of
that node are swapped as illustrated in Figure 10.3(d).

e Grow mutation: With grow mutation a node is randomly selected and re-
placed by a randomly generated subtree. The new subtree is restricted by a
predetermined depth. Figure 10.3(e) illustrates that the node 3.4 is replaced
with a subtree.

¢ Gaussian mutation: A terminal node which represents a constant is ran-
domly selected and mutated by adding a Gaussian random value to that con-
stant. Figure 10.3(f) illustrates Gaussian mutation.
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e Trunc mutation: A function node is randomly selected and replaced by a
random terminal node. This mutation operator performs a pruning of the tree.
Figure 10.3(g) illustrates that the + function node is replaced by the terminal
node a.

Individuals to be mutated are selected according to a mutation probability pp,.
In addition to a mutation probability, nodes within the selected tree are mutated
according to a probability p,. The larger the probability p,, the more the genetic
build-up of that individual is changed. On the other hand, the larger the mutation
probability p,,, the more individuals will be mutated.

All of the mutation operators can be implemented, or just a subset thereof. If more
than one mutation operator is implemented, then either one operator is selected
randomly, or more than one operator is selected and applied in sequence.

10.6 Building-Block Approach to Genetic Program-
ming

The GP process discussed thus far generates an initial population of individu-
als where each individual represents a tree consisting of several nodes and lev-
els. An alternative approach has been developed in [Engelbrecht et al. 2002,
Rouwhorst and Engelbrecht 2000] - specifically for evolving decision trees — referred
to as a building-block approach to GP (BGP). In this approach, initial individuals
consist of only a root and the immediate children of that node. Evolution starts
on these “small” initial trees. When the simplicity of the population’s individuals
can no longer account for the complexity of the problem to be solved, and no im-
provement in the fitness of any of the individuals within the population is observed,
individuals are expanded. Expansion occurs by adding a randomly generated build-
ing block (i.e. a new node) to individuals. In other words, grow mutation is applied.
This expansion occurs at a specified expansion probability p., and therefore not all
of the individuals are expanded. Described more formally, the building-block ap-
proach starts with models with a few degrees of freedom — most likely too few to
solve the problem to the desired degree of accuracy. During the evolution process,
more degrees of freedom are added when no further improvements are observed. In
between the triggering of expansion, cross-over and mutation occur as for normal
GP.

This approach to GP helps to reduce the computational complexity of the evolution
process, and helps to produce smaller individuals.
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10.7 Assignments

1.

Explain how a GP can be used to evolve a program to control a robot, where
the objective of a robot is to move out of a room (through the door) filled with
obstacles.

First explain what a decision tree is, and then show how GP can be used to
evolve decision trees.

Is it possible to use GP for adaptive story telling?

. Given a pre-condition and a post-condition of a function, is it possible to evolve

the function using GP?

. Explain why BGP is computationally less expensive than GP.



Chapter 11

Evolutionary Programming

Evolutionary programming (EP) differs substantially from GAs and GP in that
EP emphasizes the development of behavioral models and not genetic models: EP is
derived from the simulation of adaptive behavior in evolution. That is, EP considers
phenotypic evolution. The evolutionary process consists of finding a set of optimal
behaviors from a space of observable behaviors. For this purpose, the fitness function
measures the “behavioral error” of an individual with respect to the environment of
that individual.

EP further differs from GAs and GP in that no crossover is implemented. Only
mutation is used to produce the new population. A general EP algorithm is given
in Section 11.1, while Section 11.2 discusses the general mutation process in EP.
Section 11.3 illustrates EP on two example applications. Representation issues, the
design of fitness functions and specific mutation operators are also discussed in this
section.

11.1 General Evolutionary Programming Algorithm

The following pseudocode presents a general EP algorithm:

1. Let the current generation be g = 0.
2. Initialize the population Cy = {Cymln=1,--- N}
3. While no convergence

(a) Evaluate the fitness of each individual C_"g,n as Fg p(ég,n).
(b) Mutate each individual Cy,, to produce offspring Ogun-
(c) Select the new population Cyyy 5 from Cy and O,.
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(d) Let g=g+ 1.

Note the absence of crossover in the algorithm above. Reproduction is done through
mutation only.

11.2 Mutation and Selection

Mutation is applied to each of the individuals at a certain probability, p,,. The
mutation operator used depends on the application, as is illustrated later in this
chapter. Offspring generated through mutation compete with the parent individuals
to survive to the next generation. After mutation, the new population is selected,
in one of the following ways:

e All the individuals, i.e. parents and offspring, have the same chance to
be selected. Any of the selection operators of Section 8.4, e.g. tournament
selection, can be used to create the new population.

e An elitist mechanism is used to transfer a group of the best parents to the next
generation. The remainder of the population is selected from the remainder
of the parents and offspring.

e First cull the worst parents and offspring. Then select the new population
from the remainder “good” individuals. This will ensure that weak individuals
do not survive to the next generation.

e Of course, a combination of an elitist and culling strategy is also possible.

11.3 Evolutionary Programming Examples

This section illustrates EP using two examples, i.e. evolving a finite-state machine
and function optimization. Each of the examples discusses mutation operators and
representation schemes specific to that application.

11.3.1 Finite-State Machines

EP was originally developed to evolve finite-state machines (FSM). The aim of this
application type is to evolve a program to predict the next symbol (of a finite
alphabet) based on a sequence of previously observed symbols.

A finite-state machine is essentially a computer program which represents a sequence
of actions that must be executed, where each action depends on the current state of
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the machine and an input. Formally, a FSM is defined as
FSM = (5,1,0,p,¢) (11.1)

where S is a finite set of machine states, Z is a finite set of input symbols, O is a
finite set of output symbols (the alphabet of the FSM), p: § x T — & is the next
state function, and ¢ : § x Z — O is the next output function. An example of a
3-state FSM is given in Figure 11.1 (taken from [Fogel et al. 1966]). The response
of the FSM to a given string of symbols is given in table 11.1, presuming an initial

state C.

/o

0/y
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0/

1/

(1A C
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Figure 11.1: Finite-state machine

Present state | C B
Input symbol | 0 1
Nezt state B C
Output symbol | B « ~ B B =«

Qe w

A
0
B

> = Q
e

Table 11.1: Response of finite-state machine

Representation

Each state can be represented by a 6-bit string. The first bit represents the activation
of the corresponding state (0 indicates not active, and 1 indicates active). The second
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bit represents the input symbol, the next two bits represent the next state, and the
last two bits represent the output symbol. Each individual therefore consists of 18
bits. The initial population is randomly generated, with the restriction that the
output symbol and next state bits represent only valid values.

Fitness Evaluation

The fitness of each individual is measured as the individual’s ability to correctly
predict the next output symbol. A sequence of symbols is used for this purpose. The
first symbol from the sequence is presented to each individual, and the predicted
symbol compared to the next symbol in the sequence. The second symbol is then
presented as input, and the process iterates over the entire sequence. The individual
with the most correct predictions is considered the most fit individual.

Mutation

The following mutation operations can be applied:

The initial state can be changed.

e A state can be deleted.
e A state can be added.

A state transition can be changed.

An output symbol for a given state and input symbol can be changed.

These operators are applied probabilistically, in one of the following ways:

e Select a uniform random number between 1 and 5. The corresponding muta-
tion operator is then applied with probability py,.

e Generate a Poisson number, { with mean A. Select { mutation operators
uniformly from the set of operators, and apply them in sequence.

11.3.2 Function Optimization

The next example application of EP is in function optimization. Consider, for
example, finding the minimum of the function sin(2rz)e™* in the range [0, 2].
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Representation

The function has one parameter. Each individual is therefore represented by a
vector consisting of one floating-point element (not binary encoded). The initial
population is generated randomly, with each individual’s parameter Cp, selected
such that Cy,, ~ U(0,2).

Fitness Evaluation

In the case of minimization, the fittest individual is the one with the smallest value
for the function being optimized; that is, the individual with the smallest value for
the function sin(2rz)e™*. For maximization, it is the largest value. Alternatively, if
each individual represents a vector of values for which a minimum has to be found,
for example, a weight vector of a NN, then the MSE over a data set can be used as
fitness measure.

Mutation

Mutation consists of adding a Gaussian random value to each element of an indi-
vidual. For this example, each individual C,, is mutated using

Ong = Cng + ACny (11.2)

2

ny €X18t:

where ACp,; ~ N(0,02,). The following choices for the variance o

e Use a static, small value for o2,.

e Let 02, be large, initially, and decrease the variance with increase in the num-
ber of generations. This approach allows an exploration of a large part of
the search space early in evolution, while ensuring small variations when an
optimum is approached. Small variations near the optimum are necessary to
prevent individuals from jumping over the optimum point.

o 02, = Frp(Cnz), that is, the variance is equal to the error of the parent. The
larger the error is, the more the variation in the offspring, with a consequent
large move of the offspring from the weak parent. On the other hand, the
smaller the parent’s error, the less the offspring should be moved away from
the parent. This is a simple approach to implementing a self-adaptive mutation
step size.

e An alternative self-adaptive mutation step size is having a time-varying step
size. To illustrate this, it is best to move to a general case where an individual
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C, consists of I genes (parameters). Let ACyp; be the mutation step size for
the i-th gene of individual C,,. Then, the lognormal self-adaptation of ACy; is

ACn; = AC,el™ NOD+TNi(0,1)
Op; = Cm'-f-ACm'Ni(O,l)

where N;(0,1) indicates that a new random number is generated for each gene.
Good values for tau and tau' are [Bick 1996

1
2V1
' 1
Vv2I
A problem with such self-adapting schemes is that ACyp; can become too small

too quickly. To prevent this from happening, a dynamic lower limit to AC,;
can be used as developed in [Liang et al. 2001].

11.4 Assignments

1.

Select a continuous function and compare the performance of a GA and EP in
finding the minimum/maximum of that function.

Can an EP be used to learn the regular expression of a sequence of characters?

Explain how a FSM and EP can be used to evolve the behavior of a robot in
walking out of a room full of obstacles.

. Develop an EP to train feedforward neural networks.

. The representation scheme used for FSM above can be reduced to use less bits.

Suggest a way in which this can be accomplished.

. Suggest ways in which premature convergence can be prevented for EP.
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Evolutionary Strategies

Rechenberg reasoned that, since biological processes have been optimized by evo-
lution, and evolution is a biological process itself, then it must be the case that
evolution optimizes itself [Rechenberg 1994]. Evolution strategies (ES), piloted
by Rechenberg in the 1960s [Rechenberg 1973] and further explored by Schwefel
[Schwefel 1975], are then based on the concept of the evolution of evolution. While
ESs consider both genotypic and phenotypic evolution, the emphasis is toward the
phenotypic behavior of individuals. Each individual is represented by its genetic
building blocks and a set of strategy parameters that models the behavior of that
individual in its environment. Evolution then consists of evolving both the genetic
characteristics and the strategy parameters, where the evolution of the genetic char-
acteristics is controlled by the strategy parameters. An additional difference between
ESs and other EC paradigms is that changes due to mutation are only accepted in
the case of success. In other words, mutated individuals are only accepted if the
mutation resulted in improving the fitness of the individual. Also interesting in ESs
is that offspring can also be produced from more than two parents.

A general ES algorithm is given in Section 12.1. Representation schemes are dis-
cussed in Section 12.2, cross-over is discussed in Section 12.3, mutation in Sec-
tion 12.4 and selection in Section 12.5.

12.1 Evolutionary Strategy Algorithm

The following is an illustration of a general ES. This algorithm deviates from previous
notation to conform to the ES conventions.

1. Let the generation be g = 0.

2. Imitialize the population Cy = {C7g,n|n =1,--,u}, where p is the total number
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of parent individuals.
3. Evaluate the fitness of each individual.
4. While no convergence

(a) For L =1,---, )\, where X is the number of offspring:

i. choose p > 2 parents at random

ii. perform cross-over on the genetic building blocks and the strategy
parameters

ili. mutate the genetic material and the strategy parameters of the off-
spring
iv. evaluate the fitness of the offspring.

(b) Select the u best individuals from the offspring, or from the parents and
the offspring, to form the next generation.

(c) Let g=g+ 1.

Each of the operators is explained in the sections that follow.

12.2 Chromosome Representation

The chromosome representation of each individual consists of two information types,
i.e. genotypic and phenotypic. An individual is represented by the tuple (for ease
of notation, the generation subscript is omitted)

Cn = (Gn, Sn) (12.1)

where Gy, represents the genetic material and S, represents the strategy parame-
ters (or behavioral characteristics). Strategy parameters include mainly information
about mutation, and have as their aim allowing the implementation of self-adaptive
mutation step sizes. Strategy parameters that have been used in ESs include stan-
dard deviations of mutation step sizes and rotation angles:

e A standard deviation, associated with each individual, in which case an
individual is represented as

Cn = (Gn,00) €R! xR, (12.2)

with G,, € R (the individual has I genetic variables) and o,, € R, (a positive
scalar value).
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s A standard deviation for each genetic variable of an individual, and rota-
tion angles are associated with each individual, represented as

Cp = (G, Gnywn) € RE x RL x REUTD/2 (12.3)

where &, is a vector of I(I — 1)/2 rotational angles with wpt € (0,27]. With
the assignment of a standard deviation on; to each genetic variable Gy;, the
preferred directions of search can only be established along the axes of the co-
ordinate system. However, it is generally the case that the best search direction
is not aligned on these axes. Therefor, optimal convergence is only achieved
by chance when suitable mutations are correlated. Correlated mutations are
promoted by using the rotational angles, thus preventing the search trajectory
to fluctuate along the gradient of the objective function [Schwefel 1981].

The rotational angles are used to represent the covariances among the I genetic
variables in the genetic vector G. Because the covariance matrix is symmetric,
a vector can be used to represent the rotational angles instead of a matrix. The
rotational angles are used to calculate an orthogonal rotation matrix, T(&y,),
as

I-1 1
T(@.) =[] TI Rii@n) (12.4)
i=1 j=i+1
which is the product of I(I — 1)/2 rotation matrices. Each rotation matrix

R;;(&y) is a unit matrix with r;; = cos(wp) and rj; = —rj; = — sin(wpk), with
k=1 (i=1,j=2,k=2&(i=1,7=3), -

The standard deviation and the orthogonal rotation matrix are used to determine
the mutation step size (refer to Section 12.4).

The initial population is constructed randomly, with random initialization of the
genetic material and the structural parameters.

12.3 Crossover Operators

Crossover is applied to both the genetic variables and the strategic parameters.
Crossover is implemented differently from other EC paradigms. Two main ap-
proaches to cross-over exist for ES:

o Local cross-over, where one offspring is generated from two parents using
randomly selected components of the parents.

¢ Global cross-over, where the entire population of individuals takes part in
producing one offspring. Components are randomly selected from randomly
selected individuals and used to generate the offspring.
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In both cases, the recombination of genetic and strategic parameters is done in one
of two ways:

e Discrete recombination, where the actual allele of parents is used to con-
struct the offspring.

e Intermediate recombination, where the allele for the offspring is the mid-
point between the allele of the parents (remember that floating-point repre-
sentations are used).

12.4 Mutation operators

As with EP, Gaussian noise with zero mean is used to determine the magnitude
of mutation. Both the genetic material, as encapsulated in é,,, and the strategic
parameters S, are mutated. The mutation scheme depends on the type of strategic
parameters used. Two schemes are discussed below, depending on whether correla-
tion information is used or not:

e For the representation C,, = (@n, 0y ) with no inclusion of correlation informa-
tion, the mutation process is implemented in two stages:

1. Mutate the standard deviation o4, for the current generation g and each
individual C,. Different methods exist to mutate deviations, of which
the 1/5 success rule of Rechenberg was the first heuristic to be used
[Rechenberg 1973]. This rule states that the ratio of successful mutations
should be 1/5. Therefor, if the ration of successful mutations is larger
than 1/5, the mutation deviation should increase; otherwise, the deviation
should decrease. Thus,

ciogn if 84 <
Ogttn = CiOgn if 54>
Ogn ifsg=

===

where s, is the frequency of successful mutations over ¢ iterations; ¢y and
¢; are constants. A successful mutation is one that results in an offspring
with better fitness than the parent.
Schwefel proposed the following mutation strategy for the standard devi-
ations [Schwefel 1974]:

Og4in = ag,neTg’ (12.5)
where 7 = /T, and &, ~ N(0,1).
Another different strategy was proposed by Fogel [Fogel 1992]:

Og4+in = Ug,n(l + 7€;)
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2. Mutate the genetic material ég,n for each individual:
where £ € RL with each & ~ N(0,1).

e For the representation C, = (@n,an,wn), where both the standard deviation
and correlation information are used, mutation is a three-stage process:

1. Mutate the rotational angles wg ,x for each individual Cl,:
Wytlnk = (wg,nk + ¢§w,k) mod 21 (12'7)

where ¢ > 0 and &, 4 ~ N(0,1) for k =1,...,I(1 - 1)/2.

2. Let &y, € R} represent the standard deviations of all genes, i.e. Gy, =

(Ognis - »0gnr). Let S(o) = diag(ogmi,---,0gn1) be a diagonal ma-
trix representation of these deviations. Then, each standard deviation is
mutated as

Og+1,ni = ag,nie(T€T+n50'i) (128)

where 7,7 € R, and &,; ~ N(0,1).

3. Mutate the genes, using

Ggr1n =Gygn + T(wg+1,n)S(Ug+1,n)f (12.9)

where T'(wy,n,) is the orthogonal rotation matrix calculated from equation
(12.4) and £ a normal random vector with & ~ N(0,1) fori=1,---,1I.

Schwefel found (¢, 7,1) = (57/180, (27)~1/2, (47)~1/%) to be a good heuristic
[Schwefel 1995].

Mutated individuals are only accepted if the fitness of the mutated individual is
better than the original individual. That is,

_ Gg,n + Ug+1,n5 if fES(Gg,n + Ug+1,nf) > fES(Gg,n)
CGosin = { Gyn otherwise (12.10)

in the case of using only standard deviation as strategic parameters; and

Ggn + T(wg+1,n)s(0y+l,n)§ iffES(Gg,n + T(wg+1,n)S(Ug+l,n)€)
Gg-H,n = > fES(Gg,n)
Ggn otherwise
(12.11)
if correlation information is also used.
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12.5 Selection Operators

For each generation A offspring are generated from p parents and mutated. After
cross-over and mutation the individuals for the next generation are selected. Two
strategies have been developed:

e (1 + A)ES: In this case the ES generates )\ offspring from u parents, with
1 < p < XA < oo. The next generation consists of the u best individuals
selected from u parents and A offspring. The (i + A)ES strategy implements
elitism to ensure that the fittest parents survive to the next generation.

e (u,A\)ES: In this case, the next generation consists of the u best individuals
selected from the X offspring. The (u, A)ES requires that 1 < u < A < oo.

Using the notation above, the first ES was the (1+1)-ES developed by Rechenberg
[Rechenberg 1973]. This ES consisted of only one parent from which one offspring is
generated. For the (14+1)-ES, the 1/5 success rule was used to adapt the mutation

deviations, and
Gg+1,n = Gg,n +§

with & ~ N(0,04). The first Multimembered ES was the (u+1)-ES developed
by Schwefel. For the (u+1)-ES, one offspring is generated from a population of u
parents by selecting two parents and performing one-point cross-over. The mutation
deviation is updated as for the (14+1)-ES. Following on from these strategies are the
(2 + X)-ESs. where fit parents have the chance to survive for many generations. The
(1, A)-ESs were developed to exclude elitism.

12.6 Conclusion

While this chapter presented an overview of pure ES, Part IV presents the particle
swarm optimization algorithm from swarm intelligence, which shares some of the

aspects of ES.
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Differential Evolution

Differential evolution (DE) is a population-based search strategy very similar to
standard evolutionary algorithms. The main difference is in the reproduction step
used by DE, which presents the advantage that DE can operate on flat surfaces.
DE has been applied successfully to the design of digital filters, mechanical design
optimization and evolving game strategies.

This chapter gives a short overview of DE, with specific focus on the reproduction
step, which consists of a new arithmetic mutation operator and a selection operator.
The reproduction method is discussed in Section 13.1. A pseudocode algorithm is
given in Section 13.2 to summarize DE.

13.1 Reproduction

Differential evolution does not make use of a mutation operator that depends on some
probability distribution function, but introduces a new arithmetic operator which
depends on the differences between randomly selected pairs of individuals. For each
parent, Cg n, Of generation g, an offspring, Og,n, is created in the following way:
Randomly select three individuals from the current population, namely C-"g,n1 .Co o
and C_"g,na, with 71 # n2 # ng # n and ny,ne,n3 ~ U(L,---, N). Select a random
number ¢ ~ U(1,---,I), where I is the number of genes (parameters) of a single
chromosome. Then, for all parameters j = 1,---, I, if U(0,1) < p,, or j =1, let

Og;nj = Cgnaj + ’Y(Cg,mj - Cg,nzj)

otherwise, let

el M -
O.‘]an - Cgv".]

In the above, p, is the probability of reproduction (with p, € [0,1]), v is a scaling
factor with v € (0,00); Oyn; and Cyr; indicate respectively the j-th parameter of
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the offspring and the parent.

Thus, each offspring consists of a linear combination of three randomly chosen indi-
viduals when U(0, 1) < p,; otherwise the offspring inherits directly from the parent.
Even when p, = 0, at least one of the parameters of the offspring will differ from
the parent.

The mutation process above requires that the propulation consists of more than
three individuals.

After completion of the mutation process, the next step is to select the new gen-
eration. For each parent of the current population, the parent is replaced with its
offspring if the fitness of the offspring is better, otherwise the parent is carried over
to the next generation.

13.2 General Differential Evolution Algorithm

A pseudocode algorithm is given below to summarize standard differential evolution:

1. Let g = 0, and initialize p, and 4.
2. Initialize a population Cy of N individuals.
3. For each individual, Cy 5, (n = 1,---, N):

(a) select ny,n2,ng ~U(1,---,N), withn; £ns #nz #n
(b) select i ~U(1,---,1)

(c) forj=1,---,1
if (U(0,1) <p,orj=i)

Og,nj = Consj +¥(Cynij — Cg,nz]’)

else
Og,nj = Cy,nj

4. Select the new population Cy1; of N individuals:

(‘j — Qg,n if fDE(ég,n) < }-DE(C:y,n)
grln Cyn otherwise

5. Test for convergence. If the algorithm did not converge, go to step 3.

The DE algorithm uses the same convergence tests as for other EAs.
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13.3 Conclusion

This chapter presented a short overview of differential evolution. Much more can
be done on DE. For example, the effects of different schemes to select parents (e.g.
tournament selection) and the new population can be investigated. These are left
to the reader’s imagination.

13.4 Assignments

1. Investigate the effect if v in the equations above are randomly selected to be
in the range [0, 1].

2. Instead of using random selection for the parents, investigate the effect of using
tournament selection.
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Chapter 14

Cultural Evolution

Standard evolutionary algorithms have been successful in solving diverse and com-
plex problems in search and optimization. The search process used by standard EAs
is unbiased, using little or no domain knowledge to guide the search process. How-
ever, the performance of EAs can be improved considerably if domain knowledge
is used to bias the search process. Domain knowledge then serves as a mechanism
to reduce the search space by pruning undesirable parts of the solution space, and
by promoting desirable parts. Cultural evolution (CE), based upon the principles
of human social evolution, was developed as an approach to bias the search process
with prior knowledge about the domain.

Evolutionary computing models biological evolution, which is based on the princi-
ple of genetic inheritance. In natural systems, genetic evolution is a slow process.
Cultural evolution, on the other hand, enables societies to adapt to their changing
environments at rates that exceed that of biological evolution. As an example, con-
sider how fast a new hair style, music genre or clothing style catch on in a society
or among different societies. The importance of culture in the efficacy of individuals
within their society is also nicely illustrated by the difficulties an outsider experiences
fitting into a different cultural society.

Culture can be defined as a system of symbolically encoded conceptual phenom-
ena that are socially and historically transmitted within and between social groups
[Durham 1994]. In terms of evolutionary computing, culture is modeled as the source
of data that influences the behavior of all individuals within that population. This
differs from EP and ES where the behavioral characteristics of individuals - for the
current generation only — are modeled using phenotypes. Within cultural algorithms
(CA), the culture stores the general behavioral traits of the population. Cultural
information is then accessible to all the individuals of a population, and over many
generations.

Cultural evolution algorithms model two search spaces, namely the population space
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and the belief space. It is the latter that distinguishes CAs from standard EAs. The
belief space models the cultural information about the population. Both the popu-
lation and the beliefs evolve, with both spaces influencing one another. Section 14.1
discusses the belief space in more detail, while Section 14.2 discusses a specific type
of CA. An example application is illustrated in Section 14.3.

14.1 Belief Space

Cultural evolution algorithms maintain two search spaces: the population space and
the belief space. The population space is searched using any of the standard EAs,
for example, a GA or an EP. The population space is therefore searched via geno-
typic and/or phenotypic evolution. The belief space, on the other hand, models the
cultural behaviors of the entire population.

The belief space is also referred to as the meme pool, where a meme is a unit of
information transmitted by behavioral means. The belief space serves as a global
knowledge repository of behavioral traits. The meme within the belief space are
generalizations of the experience of individuals within the population space. These
experiential generalizations are accumulated and shaped over several generations,
and not just one generation. These generalizations express the beliefs as to what
the optimal behavior of individuals constitutes.

The belief space can effectively be used to perform a pruning of the population space.
Each individual represents a point in the population search space: The knowledge
within the belief space is used to move individuals away from undesirable areas in
the population space toward more promising areas.

Some form of communication protocol is implemented to transfer information be-
tween the two search spaces. The communication protocol specifies operations that
control the influence individuals have on the structure of the belief space, as well
as the influence that the belief space has on the evolution process on the popu-
lation level. This allows individuals to dictate their culture, causing culture to
evolve also. On the other hand, the cultural information is used to direct the
evolution on population level toward promising areas in the search space. It has
been shown that the use of a belief space reduces computational effort substantially
[Spector and Luke 1996, Rychtyckyj and Reynolds 1999, Reynolds 1999].

Various CAs have been developed, which differ in the data structures used to
model the belief space, and the EA used on the population level. Typical sym-
bolic representation schemes for cultural knowledge include semantic networks
[Rychtyckyj and Reynolds 1999, logic, version spaces using lattices [Reynolds 1991}
and memory indices [Teller 1994, Spector and Luke 1996]. Section 14.2 discusses a
specific class of CAs, referred to as cultural algorithms.
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14.2 General Cultural Algorithms

Cultural algorithms, as developed by Reynolds [Reynolds 1994], are a class of com-
putational models of cultural evolution that supports dual inheritance: evolution
occurs in two levels, namely the population level and the cultural level (belief space).

A pseudocode algorithm is given below, and illustrated in Figure 14.1:

1. Let generation be g = 0.
2. Initialize

(a) population Cy
(b) belief space By
3. While not converged
(a) Evaluate the the fitness of each individual C,,, € Cj.
(b) Adjust(By,accept(Cy)).
(c) Variate(Cy,influence(By)).
d g=g+ 1
(e) Select the new population C,.

Adjust beliefs

Influence population

’>:‘)
Selection u Fitness evaluation

Variate population

Figure 14.1: Cultural algorithm framework

At each iteration (each generation), individuals are first evaluated using the fitness
function specified for the EA on the population level. An acceptance function is then
used to determine which individuals from the current population have an influence
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on the current beliefs. The experience of the accepted individuals is then used to
adjust the beliefs (to simulate evolution of culture). The adjusted beliefs are then
used to influence the evolution of the population. The variation operators (crossover
and mutation) use the beliefs to control the changes in individuals. This is usually
achieved through self-adapting control parameters, as functions of the beliefs.

The type of acceptance and influence function depends on the application domain.
The next section considers one application of CAs to illustrate these concepts, and
gives references to other application types.

14.3 Cultural Algorithm Application

Cultural algorithms have been applied to solve different problems, with one of the
first applications modeling the evolution of agriculture in the Valley of Oaxaca
(Mexico) [Reynolds 1979]. Other applications of cultural algorithms include concept
learning [Sverdlik et al. 1992], real-valued function optimization [Michalewicz 1994],
optimizing semantic networks [Rychtyckyj and Reynolds 1999], software testing
[Ostrowski and Reynolds 1999], and assessing the quality of genetic programs
[Cowan and Reynolds 1999].

This section overviews one application, i.e. using a CA for real-valued function opti-
mization. Consider finding the minimum of the (fitness) function f(z1,z2,--,zr),
with z; € [—a1,a2] and a;, oy € [0,00]. Assume that an EP is used on the popula-
tion level: the resulting CA is referred to as a CAEP. The population space consists
of N individuals, ég,l, RN C-"g,N, each of I dimensions, for a specific generation g.

The belief space will contain the best individual since evolution, as well as the inter-
val believed to house the minimum point. These will respectively be referred to as
the situational knowledge component, S,, and the normative knowledge component,
A7y (for a specific generation g). While S, contains only one component (the best
individual), the normative knowledge component consists of I elements, one for each
parameter z;. For each element, Ny ;, a minimum value N """ and a maximum value
N 7% are kept to indicate the range wherein it is beheved the best value for that
parameter is located. The initial normative knowledge component reflects the initial
range constraints placed on the parameters. That is,

N;{:jn = —Qa1
NG = @
foralli=1,---,1.

The influence function is used in conjunction with the mutation operator to generate
10 offspring. In this application, the influence function determines the mutation step
size. That is, the variance of the Gaussian distribution function used to determine
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the step size, is a function of the range constraints. Individuals within the range
constraints as given by the normative knowledge component have a small mutation
variance. Individuals further away from the range constraints have a larger mutation
variance, hence larger adjustments. Only the top y% of individuals are accepted to
influence the belief space. Let C; denote the set of parents and offspring. Then,
after the new generation has been selected,

. ’

S.‘H‘l = n—rln-l-FQN{sg’ Cg,n}
bty b

min - __ : min

g+li = iﬁ{n}.ﬂz N{N g, ?Cg,ni}
] b

mer — __ mazx

g+l = i:Ilr{f}.’;N{Ng,i »Comi}

under the constraint that
N;;zn S Nﬁaz

The above illustrates the steps of one generation.

14.4 Conclusion

Cultural evolution is still a young EC paradigm, and still needs much research to
mine the potential in improving standard EAs.

14.5 Assignments

1. Discuss how CE can be used to train a NN.
2. What are the similarities and differences between CE and ES?

3. Discuss the validity of the following statement: The belief space used for CE
can be likened to a blackboard system.
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Chapter 15

Coevolution

Coevolution is the complementary evolution of closely associated species. The co-
evolution between two species is nicely illustrated using Holland’s example of the
competitive interaction between a plant and insects [Holland 1990]. Consider a cer-
tain species of plant living in an environment containing insects that eat the plant.
The survival “game” consists of two parts: (1) to survive, the plant needs to evolve
mechanisms to defend itself from the insects, and (2) the insects need the plant as
food source to survive. Both the plant and the insects evolve in complexity to obtain
characteristics that will enable them to survive. For example, the plant may evolve a
tough exterior, but then the insect evolves stronger jaws. Next the plant may evolve
a poison to kill the insects. Next generations of the insect evolve an enzyme to digest
the poison. The effect of this coevolutionary process is that, with each generation,
both the plant and the insects become better at their defensive and offensive roles.
In the next generation, each species change in response to the actions of the other
species during the previous generation.

The biological example described above is an example of predator-prey coevolution,
where there is an inverse fitness interaction between the two species. A win for the
one species means a failure for the other. To survive, the “losing” species adapt
to counter the “winning” species in order to become the new winner. During this
process the complexity of both the predator and the prey increases.

An alternative coevolutionary process is symbiosis, in which case the different species
cooperate instead of competing. In this case a success in one species improves the
survival strength of the other species. Symbiotic coevolution is thus achieved through
a positive fitness feedback among the species that take part in this cooperating
process.

In standard EAs, evolution is usually viewed as if the population attempts to adapt in
a fixed physical environment. In contrast, coevolutionary (CoE) algorithms (CoEA)
realize that in natural evolution the physical environment is influenced by other
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independently-acting biological populations. Evolution is therefore not just locally
within each population, but also in response to environmental changes as caused by
other populations. Another difference between standard EAs and CoEAs is that EAs
define the meaning of optimality through an absolute fitness function. This fitness
function then drives the evolutionary process. On the other hand, CoEAs do not
define optimality using a fitness function, but attempt to evolve an optimal species
where optimality is defined as defeating opponents (in the case of predator-prey
CoE).

Coevolution has been applied mostly to two-agent games, where the objective is to
evolve a game strategy to beat an opponent. Similar principles have been used to
evolve attack and defense strategies in military simulations. CoE has also been used
successfully in classification, by evolving NNs and decision trees. Other applica-
tions include robot control, path planning, structural optimization and investment
portfolio management. Being a very young field in evolution, other applications are
expected to follow.

The coevolutionary process is discussed in more detail in Section 15.1. Section 15.2
discusses the measuring of relative fitness in the context of competitive coevolution.
Symbiotic coevolution is discussed in Section 15.3 with reference to a cooperative
coevolutionary genetic algorithm.

15.1 Coevolutionary Algorithm

Coevolution works to produce optimal competing (or cooperating) species through
a pure bootstrapping process. Solutions to problems are found without knowledge
from human experts, or any a priori information of how to solve the problem. The
quality of each individual (trial solution) in the evolving population is evaluated
by its peers in another population (or more populations) that operates in the same
environment. No objective is specified through a fitness function.

The process of competitive coevolution can be described in the following way, con-
sidering two coevolutionary genetic algorithms. The initial individuals of both pop-
ulations are initially extremely unfit. The fitness of each individual within its pop-
ulation is measured using an absolute fitness function. The first population tries to
adapt to the initial environment as created by the second population. Simultane-
ously, the second population attempts to adapt to the environment created by the
first population. The performance of each individual in the first population is then
tested against the fitness of a sample of individuals from the second population. A
relative fitness is thus calculated, which expresses the fitness of the individual with
reference to that of individuals in the second population. The relative fitness of
each individual in the second population is also computed. Reproduction within
each population proceeds using these relative fitness values.



15.2. COMPETITIVE FITNESS 179

15.2 Competitive Fitness

Standard EAs use a user-defined fitness function that reflects optimality. The fitness
of each individual is evaluated independently from any other population using this
fitness function. In CoE, the driving force of the evolutionary process is through
a relative fitness function that only expresses the performance of individuals in
one population in comparison with individuals in another population. The only
quantification of optimality is which population’s individuals perform better. No
fitness function that describes the optimal point is used.

The relative fitness of an individual can be calculated in different ways, as discussed
in Section 15.2.1, using different types of sampling techniques from the competing
population as discussed in Section 15.2.2.

15.2.1 Relative Fitness Evaluation

The following approaches can be followed to measure the relative fitness of each
individual in a population. Assume that the two populations A and B coevolve, and
the aim is to calculate the relative fitness of each individual C4 , of population A.

e Simple fitness: A sample of individuals is taken from population B, and the
number of individuals Cp,, for which C4,, is the winner, is counted. The
relative fitness of C4, is simply the sum of successes for Cy -

¢ Fitness sharing: A sharing function is defined to take into consideration
similarity among the individuals of population A. The simple fitness of an
individual is divided by the sum of its similarities with all the other individuals
in that population. Similarity can be defined as the number of individuals that
also beats the individuals from the population B sample. The consequence of
the fitness sharing function is that unusual individuals are rewarded.

¢ Competitive fitness sharing: In this case the fitness of individual C4, is

defined as
Can) = 5_‘, ~ (15.1)
m=1 7
where Cpg 1, --,Cp,m form the population B sample, and N, is the total

number of individuals in population A that defeat individual Cp . The com-
petitive fitness sharing method rewards those population A individuals that
beat population B individuals which few other population A individuals could
beat. It is therefore not necessarily the case that the best population A indi-
vidual beats the most population B individuals.
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15.2.2 Fitness Sampling

The relative fitness of individuals is evaluated against a sample of individuals from
the competing population. The following sampling schemes have been developed:

e All versus all sampling, wherein each individual is tested against all the
individuals of the other population.

¢ Random sampling, where the fitness of each individual is tested against
a randomly selected group (consisting of one or more) of individuals from
the other population. The random sampling approach is computationally less
complex than all versus all sampling.

¢ Tournament sampling, which uses relative fitness measures to select the
best opponent individual.

e All versus best sampling, where all the individuals are tested against the
fittest individual of the other population.

e Shared sampling, where the sample is selected as those opponent individuals
with maximum competitive shared fitness.

15.2.3 Hall of Fame

Elitism is a mechanism used in standard EAs to ensure that the best parents of a
current generation survive to the next generation. To be able to survive for more
generations, an individual has to be highly fit in almost every population. For
coevolution, Rosin and Belew [Rosin and Belew 1996] introduced the hall of fame
to extend elitism, to contain the best individual of each generation. By retaining
the best individuals since evolution started, the opponent population has a much
more difficult task to adapt to these best individuals.

15.3 Cooperative Coevolutionary Genetic Algorithm

The section above discussed a competitive strategy to coevolution where the ob-
jective of individuals in the one population is to beat the individuals in the other
competing populations. This section discusses a cooperative approach to GAs, where
information from different subpopulations are combined to form the solution to the
problem. Each subpopulation therefore contributes to the solution.

The cooperative coevolutionary genetic algorithm (CCGA), developed by Potter
[Potter 1997], is used to illustrate symbiotic interaction among subpopulations. The
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island GA approach discussed in Section 9.6 (another kind of cooperation) dis-
tributes complete individuals over a set of subpopulations. Subpopulations evolve
in parallel on complete individuals. Each subpopulation provides a complete solu-
tion to the problem. Construction of the solution per subpopulation is based on
the evolutionary process of the subpopulations and an exchange of information by
migrating individuals. This illustrates a different kind of symbiotic cooperation.

CCGA, on the other hand, distributes subcompeonents (genes) of individuals over a
set of subpopulations. These subpopulations are disjointed, each having the task of
evolving a single (or limited set of) gene(s). A subpopulation therefore optimizes
one parameter (or a limited number of parameters) of the optimization problem.
Thus, no single subpopulation has the necessary information to solve the problem
itself. Rather, information of all the subpopulations must be combined to construct
a solution.

Within the CCGA, a solution is constructed by adding together the best individual
from each subpopulation. The main problem is how to determine the best indi-
vidual of a subpopulation, since individuals do not represent complete solutions.
A simple solution to this problem is to keep all other components (genes) within
a complete chromosome fixed and to change just the gene that corresponds to the
current subpopulation for which the best individual is sought. For each individual in
the subpopulation, the value of the corresponding gene in the complete chromosome
is replaced with that of the individual. Values of the other genes of the complete
chromosome are usually kept fixed at the previously determined best values.

The constructed complete chromosome is then a candidate solution to the optimiza-
tion problem.

It has been shown that such a cooperative approach substantially improves the
accuracy of solutions, and the convergence speed compared to non-cooperative, non-
coevolutionary GAs.

15.4 Conclusion

The particle swarm and ant colony approaches discussed in the next Part are other
excellent examples of cooperative behavior, which occurs through social exchange of
information.

A complex coevolutionary system can be developed with both cooperating and com-
peting populations.
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15.5 Assignments

1. Design a CoEA for playing tic-tac-toe.

2. Explain the importance of the relative fitness function in the success of a
CoEA.

3. Discuss the validity of the following statement: CCGA will not be successful
if the genes of a chromosome are highly correlated.

4. Compare the different fitness sampling strategies with reference to computa-
tional complexity.

5. What will be the effect if fitness sampling is done only with reference to the
hall of fame?

6. Why is shared sampling a good approach to calculate relative fitness?



Part IV

SWARM INTELLIGENCE

Suppose you and a group of friends are on a treasure finding mission. Each one in the
group has a metal detector and can communicate the signal and current position to
the n nearest neighbors. Each person therefore knows whether one of his neighbors
is nearer to the treasure than him. If this is the case, you can move closer to that
neighbor. In doing so, your chances are improved to find the treasure. Also, the
treasure may be found more quickly than if you were on your own.

This is an extremely simple illustration of swarm behavior, where individuals within
a swarm interact to solve a global objective in a more efficient manner than one
single individual could.

A swarm can be defined as a structured collection of interacting organisms (or
agents). Within the computational study of swarm intelligence, individual organ-
isms have included ants, bees, wasps, termites, fish (in schools) and birds (in flocks).
Within these swarms, individuals are relatively simple in structure, but their collect-
ive behavior can become quite complex. For example, in a colony of ants, individuals
specialize in one of a set of simple tasks. Collectively, the actions and behaviors of
the ants ensure the building of optimal nest structures, protecting the queen and
larva, cleaning nests, finding the best food sources, optimizing attack strategies, etc.

The global behavior of a swarm of social organisms therefore emerges in a nonlinear
manner from the behavior of the individuals in that swarm: Thus, there exists a tight
coupling between individual behavior and the behavior of the entire swarm. The
collective behavior of individuals shapes and dictate the behavior of the swarm. On
the other hand, the behavior of the swarm determines the conditions under which
an individual performs actions. These actions may change the environment, and
thus the behaviors of that individual and its peers may also change. The conditions
as determined by the swarm’s behavior include spatial or temporal patterns.

The behavior of a swarm is not determined just by the behavior of individuals, inde-
pendently from other individuals. Instead, the interaction among individuals plays
a vital role in shaping the swarm’s behavior. Interaction among individuals aids in
refining experiential knowledge about the environment, and enhances the progress
of the swarm toward optimality. The interaction, or cooperation, among individuals
is determined genetically or through social interaction. Anatomical differences may.,
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for example, dictate the tasks performed by individuals. As an example, in a specific
ant species minor ants feed the brood and clean the nest, whereas major ants cut
large prey and defend the nest. Minor ants are smaller than, and morphologically
different from major ants. Social interaction can be direct or indirect. Examples
of direct interaction is through visual, audio or chemical contact. Indirect social
interaction occurs when one individual changes the environment and the other indi-
viduals respond to the new environment. This type of interaction is referred to as

stigmergy.

The social network structure of a swarm therefore forms an integral part of the
existence of that swarm. It provides the communication channels through which
experiential knowledge is exchanged among individuals. An amazing consequence
of the social network structures of swarms is their ability to self-organize to form
optimal nest structures, labor distribution, food gathering, etc.

Computational modeling of swarms has resulted in numerous successful applications,
for example, function optimization, finding optimal routes, scheduling, structural
optimization, and image and data analysis. Different applications originated from
the study of different swarms. From these, most notable is the work on ant colonies
and bird flocks. This Part gives an overview of these two swarm types. Chapter 16
discusses the particle swarm optimization approach, developed from simulations of
the social behavior of bird flocks. Chapter 17 overviews ant colony optimization,
which models mainly the pheromone trail-following behavior of ants.



Chapter 16

Particle Swarm Optimization

The particle swarm optimization (PSQO) algorithm is a population-based search al-
gorithm based on the simulation of the social behavior of birds within a flock. The
initial intent of the particle swarm concept was to graphically simulate the graceful
and unpredictable choreography of a bird flock [Kennedy and Eberhart 1995], the
aim of discovering patterns that govern the ability of birds to fly synchronously,
and to suddenly change direction with a regrouping in an optimal formation. From
this initial objective, the concept evolved into a simple and efficient optimization
algorithm.

In PSO, individuals, referred to as particles, are “flown” through hyperdimensional
search space. Changes to the position of particles within the search space are based
on the social-psychological tendency of individuals to emulate the success of other
individuals. The changes to a particle within the swarm are therefore influenced by
the experience, or knowledge, of its neighbors. The search behavior of a particle
is thus affected by that of other particles within the swarm (PSO is therefore a
kind of symbiotic cooperative algorithm). The consequence of modeling this social
behavior is that the search process is such that particles stochastically return toward
previously successful regions in the search space.

The operation of the PSO is based on the neighborhood principle as social network
structure. Section 16.1 discusses the social interaction among neighbors. The PSO
algorithm is discussed in detail in Section 16.2, while PSO system parameters are
discussed in Section 16.3. Modifications to standard PSO are given in Section 16.4,
and a cooperative approach to PSO is discussed in Section 16.5. Section 16.6 relates
PSO to EC and Section 16.7 overviews some applications of PSO.
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16.1 Social Network Structure: The Neighborhood
Principle

The feature that drives PSO is social interaction. Individuals (particles) within the
swarm learn from each other, and based on the knowledge obtained, move to become
more similar to their “better” neighbors. The social structure for PSO is determined
through the formation of neighborhoods. Individuals within a neighborhood com-
municate with one another.

Different neighborhood types have been defined and studied, where these neighbor-
hoods are determined considering the labels of particles and not topological infor-
mation such as Euclidean distances [Kennedy 1999]:

e The star topology: Each particle can communicate with every other individ-
ual, forming a fully connected social network as illustrated in Figure 16.1(a).
In this case each particle is attracted toward the best particle (best problem
solution) found by any member of the entire swarm. Each particle therefore
imitates the overall best particle. The star neighborhood structure was used
in the first version of the PSO algorithm, referred to as gbest.

e The ring topology: In this case each particle communicates with its n im-
mediate neighbors. In the case of n = 2, a particle communicates with its
immediately adjacent neighbors as illustrated in Figure 16.1(b). Each parti-
cle attempts to move closer to the best individual in its neighborhood. This
version of the PSO algorithm is referred to as lbest. The lbest version can be
adapted such that particles move toward their neighborhood best as well as
the swarm best.

The circle neighborhood structure has the advantage that a larger area of
the search space is traversed, and convergence is slower [Eberhart et al. 1996,
Kennedy 1999, Kennedy and Eberhart 1999].

e The wheels topology: Only one particle is connected to all others, which
effectively isolates individuals from one another (illustrated in Figure 16.1(c)).
Only this focal particle adjusts its position toward the best particle. If the
adjustment to the focal particle results in an improvement in that individual’s
performance, the improvement is communicated to the other particles.

The neighborhood is determined based on the numerical index assigned to an indi-
vidual and not on geometric measures such as position, or Euclidean distance.

The specifics of how the social exchange of information is modeled are given in the
next section.



16.2. PARTICLE SWARM OPTIMIZATION ALGORITHM 187

16.2 Particle Swarm Optimization Algorithm

A swarm consists of a set of particles, where each particle represents a potential
solution. Particles are then flown through the hyperspace, where the position of
each particle is changed according to its own experience and that of its neighbors.
Let Z;(t) denote the position of particle P; in hyperspace, at time step ¢. The position
of P; is then changed by adding a velocity ¥;(¢) to the current position, i.e.

Zi(t) = &(t — 1) + T(t) (16.1)

The velocity vector drives the optimization process and reflects the socially ex-
changed information. Three different algorithms are given below, differing in the
extend of the social information exchange. These algorithms summarize the initial
PSO algorithms. Modifications to these are presented in Section 16.4.

16.2.1 Individual Best

For this version, each individual compares its current position to its own best posi-
tion, pbest, only. No information from other particles is used.

1. Initialize the swarm, P(t), of particles such that the position Z;(t) of each
particle P; € P(t) is random within the hyperspace, with ¢t = 0.
2. Evaluate the performance F of each particle, using its current position Z;(t).

3. Compare the performance of each individual to its best performance thus far:
if F(Z;(t)) < pbest; then

(a) pbest; = f(fl(t))

(b) Zpbest; = Fi(t)
4. Change the velocity vector for each particle using:
0i(t) = Uit — 1) + p(Tppest; — Ti(t))
where p is a positive random number.
5. Move each particle to a new position:

(a) Zi(t) = Zi(t — 1) + ¥i(t)
(b) t=t+1

6. Go to step 2, and repeat until convergence.
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In the algorithm above, the further away the particle is from its previously found
best solution, the larger the change in velocity to return the individual toward its
best solution. The upper limit of the random value p is a system parameter specified
by the user. The larger the upper limit of p, the more the trajectory of the particles
oscillates. Smaller values of p ensure smooth trajectories.

16.2.2 Global Best

The global best version, gbest, of PSO reflects the star neighborhood structure. The
social knowledge used to drive the movement of particles includes the position of
the best particle from the entire swarm. In addition, each particle uses its history
of experiences in terms of its own best solution thus far. In this case the algorithm
changes to:

1. Initialize the swarm, P(t), of particles such that the position Z;(t) of each
particle P; € P(t) is random within the hyperspace, with ¢ = 0.
2. Evaluate the performance F of each particle, using its current position Z;(t).

3. Compare the performance of each individual to its best performance thus far:
if F(Z;(t)) < pbest; then

(a) pbest; = F(&i(t))
(b) fpbesti = 5i(t)

4. Compare the performance of each particle to the global best particle:
if F(Z;(t)) < gbest then

(a) gbest = F(Zi(t))
(b) jgbest = fi(t)
5. Change the velocity vector for each:

ﬁ(t) = 'I_).l(t - 1) +p1(5pbest.- - -'Ei(t)) +p2(-'i"gbest - fi(t))

where p; and p; are random variables. The second term above is referred to
as the cognitive component, while the last term is the social component.

6. Move each particle to a new position:

(a) Zi(t) = it — 1) + vi(t)
(b) t=t+1

7. Go to step 2, and repeat until convergence.
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The further away a particle is from the global best position and its own best solution
thus far, the larger the change in velocity to move the particle back toward the best
solutions. The random variables p; and p, are defined as p; = ric; and py = racy,
with 71,79 ~ U(0,1), and ¢; and cy are positive acceleration constants. Kennedy
has studied the effect of the random variables p; and py on the particle trajectories,
and asserted that ¢; +cy < 4 [Kennedy 1998]. If ¢; + ¢z > 4, velocities and positions
explode toward infinity.

16.2.3 Local Best

The local best version of PSO, lbest, reflects the circle neighborhood structure. Par-
ticles are influenced by the best position within their neighborhood, as well as their
own past experience. Only steps 4 and 5 change by replacing gbest with lbest.

While [lbest is slower in convergence than gbest, lbest results in much better solu-
tions [Eberhart et al. 1996, Shi and Eberhart 1999] and searches a larger part of
the search space.

16.2.4 Fitness Calculation

Step 2 of the algorithms above measures the performance of each particle. Here a
function is used which measures the closeness of the corresponding solution to the
optimum. In EC terminology, this refers to the fitness function. For example, if the
objective is to find the minimum of the function f(x1,z2) = sinz; sinzy/Z173, the
“fitness” function is the function f{zi, zs).

16.2.5 Convergence

The algorithms above continue until convergence has been reached. Usually, a PSO
algorithm is executed for a fixed number of iterations, or fitness function evaluations.
Alternatively, a PSO algorithm can be terminated if the velocity changes are close
to zero for all the particles, in which case there will be no further changes in particle
positions.

16.3 PSO System Parameters

Standard PSO is influenced by six system parameters, namely the dimension of the
problem, number of individuals, upper limit of p, and upper limit on the maximum
velocity, neighborhood size and inertia weight. PSO has shown to perform better on
higher-dimensional problems [Angeline 1998, Van den Bergh 1999]. The influence
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of the upper limit has been discussed previously. Other system parameters are
discussed below:

e Maximum velocity, V,,,;: An upper limit is placed on the velocity in all
dimensions. This upper limit prevents particles from moving too rapidly from
one region in search space to another. If v;;(t) > Vinaz then v;(t) = Vings, or
if v;;(t) < —Vinaz then v;;(t) = —Vinqz, where v;5(t) is the velocity of particle
P; at time step t in dimension j. Note that V4, does not place a limit on the
position of a particle, only on the steps made in the hyperdimensional search
space.

Vinaz i usually initialized as a function of the range of the problem. For exam-
ple, if the range of all z;; is [~ 50, 50], then V547 is proportional to 50. Clerc and
Kennedy have shown that Ve, is not necessary if [Clerc and Kennedy 2002]

Ui(t) = &(Ti(t — 1) + p1(Tpbest — Ti(t)) + p2(Tgbest — Ti(t))) (16.2)
where

2

with p = p; + p2 > 4.0; k is referred to as the constriction coefficient.

n:l—%+—""’2_4”‘ (16.3)

e Neighborhood size: The gbest version is simply lbest with the entire swarm
as the neighborhood. The gbest is more susceptible to local minima, since all
individuals are pulled toward that solution. The smaller the neighborhood
radius, and the more neighborhoods can be used, the less susceptible PSO is
to local minima. A larger part of search space is traversed, and no one solution
has an influence on all particles. The more neighborhoods there are, however,
the slower the convergence.

e Inertia weight: Improved performance can be achieved through application
of an inertia weight applied to the previous velocity:

ﬁt(t) = Mi(t - 1) +m (fpbest - j"‘z(t)) + p?(fgbest - fi(t)) (16'4)

where ¢ is the inertia weight. The inertia weight controls the influence of
previous velocities on the new velocity. Large inertia weights cause larger
exploration of the search space, while smaller inertia weights focus the search
on a smaller region. Typically, PSO is started with a large inertia weight,
which is decreased over time.

A final point on convergence of PSO is now in order: the two most important pa-
rameters that drive the behavior of the PSO process are the inertia weight ¢ and
the acceleration constants ¢; and c;. Studies have shown that PSO does not con-
verge for all combinations of values for these parameters [Clerc and Kennedy 2002,
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Van den Bergh 2002]. To ensure convergence, the following relation must hold if
velocity clamping is not used [Van den Bergh 2002):

¢ > ';‘(Cl +e2) —1 (16.5)

with ¢ < 1. PSO exhibits cyclic or divergent behavior if equation (16.5) is not
satisfied.

16.4 Modifications to PSO

Original developments in PSO resulted in the three PSO versions discussed in Sec-
tion 16.2, namely pbest, lbest and gbest. Recent research resulted in some mod-
ifications to the original PSO algorithms, mainly to improve convergence and to
increase diversity. Some of these modifications are discussed in this section, while
others have been discussed in the previous section.

16.4.1 Binary PSO

Most PSO implementations are for continuous search spaces. However, Kennedy
and Eberhart introduced a binary PSO where the positions of particles in search
space can only take on values from the set {0,1} [Kennedy and Eberhart 1997]. For
the binary PSO, particle positions are updated using

) 0 ifr(t) > fluig(t)
zij(t +1) = { 1 ifri(t) < f(vij'(t))
where 1
Fos®) = ———wm

and z;;(t) is the value of the j-th parameter of particle P; at time step ¢, v;;(t) is
the corresponding velocity and r;(t) ~ U(0,1).

The velocity update equation is the standard update equation. It is important to
note that the velocities should be clamped to the range [—4, 4] to prevent saturation
of the sigmoid function [Eberhart and Kennedy 2001].

16.4.2 Using Selection

Angeline showed that PSO can be improved for certain classes of problems by
adding a selection process similar to that which occurs in evolutionary computing
[Angeline 1999]. The following selection scheme was implemented:
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1. For each particle in the swarm, score the performance of that particle with
respect to a randomly selected group of &k particles.

2. Rank the particles according to these performance scores.

3. Select the top half of the particles and copy their current positions onto that
of the bottom half of the swarm, without changing the personal best values of
the bottom half of the swarm.

The selection process above is executed before the velocity updates are calculated.

The approach above improves the local search capabilities of PSO, and reduces
diversity — which is contradictory to the objective of natural selection.

16.4.3 Breeding PSO

Further modifications to PSO have been made by adding a reproduction step to the
standard PSQ, referred to as breeding [Lgvbjerg et al. 2001]. The breeding PSO is

summarized below:

1. Calculate the particle velocities and new positions.
2. To each particle, assign a breeding probability ps.

3. Select two particles as parents and produce two offspring using the arithmetic
cross-over operator as explained below. Assume particles P, and P, are se-
lected to produce offspring, they are replaced with the offspring as follows:

Bo(t+1) = riZa(t)+(1—r)E)

Tp(t+1) = mZp(t) + (1 —r1)Za(t)
6a(t) + 6b(t) -~

.0 + @ el
ﬁa(t) + gb(t)

p(t+1) = m“ﬁb(ﬂ”

Talt +1)

Il

where 1 ~ U(0,1).

4. Set the personal best position of each particle involved in the breeding process
to its current position.

It is important to note that the parent selection process does not depend on the fit-
ness of particles, thereby preventing the best particles from dominating the breeding
process, and preventing premature convergence.
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16.4.4 Neighborhood Topologies

The lbest PSO algorithm is based on the principle of forming neighborhoods of par-
ticles, where particles within a neighborhood move toward their own best positions
and the best solution of the entire neighborhood. The lbest algorithm as proposed
by Eberhart and Kennedy makes use of the indices of particles to determine neigh-
borhoods. Suganthan proposed a different approach where spatial neighborhoods
are formed, based on the spatial distance between particles [Suganthan 1999]. A
particle Py is said to be in the neighborhood of particle P, if

F,—F
H(l b”<§

inaz

where dq, is the largest distance between any two particles, and

3t + 0.6tmaq

tma:c

with ¢ the current iteration number and t,,,; the maximum number of iterations.

The spatial neighborhood strategy has the effect of having smaller neighborhoods
initially, with the size of neighborhoods increasing with increasing number of it-
erations, approaching gbest PSO as ¢ — t;,4,. The advantage of this is obvious:
the initial smaller neighborhoods increase diversity, with larger parts of the search
space being covered in the initial phases of the optimization process; also, premature
convergence is less likely to occur.

Kennedy proposed stereotyping strategies where different neighborhood topologies
are formed [Kennedy 1999]. These topologies were discussed briefly in Section 16.1.

16.5 Cooperative PSO

The PSO algorithms discussed thus far solve optimization problems by us-
ing J-dimensional particles, where J is the number of parameters to be opti-
mized, i.e. the number of components of the final solution. A swarm there-
fore has the task of finding optimal values for all J parameters. A coop-
erative approach has been developed in [Van den Bergh and Engelbrecht 2000,
Van den Bergh and Engelbrecht 2001, Van den Bergh 2002] similar to the CCGA
approach of Potter (refer to Section 9.6). For the cooperative PSO (CPSO), the J
parameters to be optimized can be split into J swarms, where each swarm optimizes
only one parameter of the problem. The optimization process within each of the J
swarms occur using any of the PSO algorithms discussed previously.

The difficulty with the CPSO algorithm is how to evaluate the fitness of these one-
dimensional particles within each swarm. The fitness of each particle of swarm S;
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cannot be computed in isolation from the other swarms, since a particle in a specific
swarm represents just one component of the complete J-dimensional solution. A
solution to this problem is to construct a context vector from the other J-1 swarms
by taking the global best particle from each of these J — 1 swarms. The fitness
of particles in swarm S; is then calculated by replacing the j-th component in the
context vector with that of the particle being evaluated. This approach to the
evaluation of fitness promotes cooperation among the different swarms, since each
swarm contributes to the context vector.

It is important to note that the CPSO algorithm is mostly applicable to problems
where the parameters to be optimized are independent of one another.

16.6 Particle Swarm Optimization versus Evolutionary
Computing and Cultural Evolution

PSO has its roots in several disciplines, including artificial life, evolutionary com-
puting and swarm theory. This section illustrates the similarities and differences
between PSO and EC. Both paradigms are optimization algorithms which use adap-
tation of a population of individuals, based on natural properties. In both PSO and
EC the search space is traversed using probabilistic transition rules.

There are several important differences between PSO and EC. PSO has memory,
while EC has no memory. Particles keep track of their best solutions, as well as
that of their neighborhood. This history of best solutions plays an important role
in adjusting the positions of particles. Additionally, the previous velocities are used
to adjust positions. While both approaches are based on adaptation, changes are
driven through learning from peers in the case of PSO, and not through genetic
recombination and mutations. PSO uses no fitness function to drive the search
process. Instead, the search process is guided by social interaction among peers.

PSO can more closely be related to CE. In this case the population space is searched
using an EP, where mutation is a function of previous mutations and distances from
the best solutions. The cultural beliefs are defined by the best solutions per individ-
ual and neighborhood. In the case of more than one neighborhood, the population
can be viewed as consisting of subproblems, each representing one neighborhood.

16.7 Applications

PSO has been used mostly to find the minima and maxima of nonlinear func-
tions [Shi and Eberhart 1999]. PSO has also been used successfully to train NNs
[Eberhart et al. 1996, Kennedy and Eberhart 1999, Engelbrecht and Ismail 1999,
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Van den Bergh 1999, Van den Bergh and Engelbrecht 2001]. In this case, each par-
ticle presents a weight vector, representing one NN. The performance of a particle
is then simply the MSE over the training and test sets. A PSO has also been
used successfuily for human tremor analysis in order to predict Parkinson’s disease
[Shi and Eberhart 1999].

This section illustrates the application of PSO to find the minimum of the function
f(z1,22) = 22 4 22, for which the minimum is at z; = 0,z9 = 0. Particles are flown
in two-dimensional space. Consider the initial swarm of particles as represented by
the dots in Figure 16.2. The optimum point is indicated by a cross. Figure 16.2(a)
illustrates the gbest version of PSO. Particle a is the current global best solution.
Initially the pbest of each individual is its current point. Therefor, only particle
a influences the movement of all the particles. The arrows indicate the direction
and magnitude of the change in positions. All the particles are adjusted toward
particle a. The lbest version, as illustrated in Figure 16.2(b), shows how particles
are influenced by their immediate neighbors. To keep the graph readable, only some
of the movements are illustrated. In neighborhood 1, both particles a and b move
toward particle ¢, which is the best solution within that neighborhood. Considering
neighborhood 2, particle d moves toward f, so does e. For the next iteration, e will
be the best solution for neighborhood 2. Now d and f move toward e as illustrated
in Figure 16.2(c) (only part of the solution space is illustrated). The blocks represent
the previous positions. Note that e remains the best solution for neighborhood 2.
Also evident is the movement toward the minimum, although slower as for gbest.

16.8 Conclusion

PSO has already shown to be efficient and robust, even considering the simplicity of
the algorithm. Much research is still needed to tap the benefits of this optimization
process.

16.9 Assignments

1. Does PSO adhere to all the characteristics of swarms of social organisms?
2. Is PSO a special kind of EP?

3. Is PSO a special kind of CA?

4. What are the main differences between SI and EC?

Discuss how PSO can be used to train a NN.

w

6. Discuss how PSO can be used to cluster data.
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7. Why is it better to base the calculation of neighborhoods on the index assigned
to particles and not on geometrical information such as Euclidean distance?

8. Explain how a PSO can be used to approximate functions using a n-th order
polynomial.

9. Show how a PSO can be used to solve systems of equations.
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(c) Wheel Neighborhood Structure

Figure 16.1: Neighborhood structures for particle swarm optimization
[Kennedy 1999]
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(a) Global Best Illustrated

h.3

1

(b) Local Best Nlustrated ~ Initial Swarm (c) Local Best - Second Swarm

Figure 16.2: gbest and lbest illustrated



Chapter 17

Ant Colony Optimization

The previous chapter discussed particle swarm optimization, which is modeled on the
choreography of relatively small swarms where all individuals have the same behavior
and characteristics. This chapter considers swarms that consist of large numbers of
individuals, where individuals typically have different morphological structures and
tasks — but all contributing to a common goal. Such swarms model distributed
systems where components of the system are capable of distributed operation.

It is roughly estimated that the earth is populated by 10® living organisms, of which
only 2% are social insects [Dorigo 1999]. That is, only 2% of all insects live in
swarms where social interaction is the most important aspect to ensure survival.
These insects include all ant and termite species, and some bees and wasps species.
Of these social insects, 50% are ants. Ant colonies consist of from 30 to millions of
individuals. This chapter concentrates on ants, and how modeling the behavior of
ants can be used to solve real-world problems.

Section 17.1 discusses, briefly, the different tasks performed in a typical ant colony.
The food collection behavior of ants is discussed in detail in Section 17.2, and illus-
trates its application to optimization in Section 17.3. Section 17.4 shows how ant
colonies can be used for data clustering. The chapter concludes with a summary
of applications in Section 17.5, including routing in telecommunications networks,
data clustering, and robotics.

17.1 The “Invisible Manager” (Stigmergy)

Operation within an ant colony involves several different tasks, performed by differ-
ent ant groups. The main tasks within a colony include:

e reproduction - the task of the queen

199
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e defense — done by soldier ants
e food collection - the task of specialized worker ants
e brood care - the task of specialized worker ants

e nest brooming (including cemetery maintenance) — the task of specialized
worker ants

e nest building and maintenance — the task of specialized worker ants.

It seems as if the distribution and execution of these tasks occur magically, without
a globally centered command center — which is, in fact, the case: distribution and
execution of tasks are based on anatomical differences and stigmergy. Anatomical
differences, such as size and larger jaw structures, for example, distinguish between
army ants and food collectors.

The distributed behavior within a colony is referred to as stigmergy. Natural stig-
mergy is characterized by [Dorigo 1999] as:

1. The lack of central coordination.

2. Communication and coordination among individuals in a colony are based on
local modifications of the environment.

3. Positive feedback, which is a reinforcement of actions (e.g. the trail-following
behavior to collect food).

Algorithmic modeling of ant colonies is based on the concept of artificial stigmergy,
defined by Dorigo and Di Caro as the “indirect communication mediated by numeric
modifications of environmental states which are only locally accessible by the commu-
nicating agents” [Dorigo and Di Caro 1999]. The essence of modeling ant colonies,
or rather aspects of the operation of ant colonies, is to find a mathematical model
which accurately describes the stigmergetic characteristics of the corresponding ant
individuals. The next section concentrates on one task, namely food collection, and
shows how the pheromone dropping and following of ants can be modeled.

17.2 The Pheromone

One of the first questions investigated with regard to ant behavior was that of food
collection. Ants have the ability to always find the shortest path between their nest
and the food source. Several experiments have been conducted to study this behav-
ior. These experiments are visualized in Figure 17.1. Dots in this figure indicate
ants. The experiments consisted of building paths of different lengths between a nest
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and a food source, and monitoring the number of ants following each path. Initially,
paths are chosen randomly. It was then observed that, with time, more and more
ants follow the shorter path.

Nest Nest

Food

Figure 17.1: Pheromone trail following of ants

This behavior can be explained by the dropping of pheromones by each ant. During
their search for food, and on return from the food source to the nest, each ant drops
a pheromone deposit on the path. To select a path to follow, ants follow that path
with the largest pheromone concentration. The shortest path will have stronger
pheromone deposits, since ants return on that path from the food source quicker
(dropping more pheromone on their way back to the nest), than the longer path.
Also, pheromone deposits evaporate with time. The strength of the pheromone
deposits on the longer path will decrease more quickly than for the shorter path.

17.3 Ant Colonies and Optimization

The modeling of pheromone trail following behavior is illustrated next, by solving
the traveling salesman problem (TSP). At each city, the task of the ant is to choose
the next city on the route, based on some probabilistic rule as a function of the
pheromone deposits. Initially, the choice is random, achieved by initializing the
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pheromone amounts on each route to a positive, small random value.

A simple transition rule for choosing the next city to visit, is

i () e
Z—lﬁ—rc if 1 € C;
‘I)ij,k(t) = ey, Tielt J ok (17.1)
0 ifj € Cix
where 7;(t) is the pheromone intensity on edge (3, j) between cities 7 and j, the k-th
ant is denoted by k, o is a constant, and Cj 4 is the set of cities ant k still have to
visit from city 1.

The transition rule above can be improved by including local information on the
desirability of choosing city j when currently in city ¢, i.e.

735 (8)%nf)
zceci‘k Tic(t)afl?c

where o and f are adjustable parameters that control the weight of pheromone
intensity and local information, and

(17.2)

;5 k(t) =

1
Th‘j=z

with d;; the Euclidean distance between cities ¢ and j (using their coordinates on a
two-dimensional map),

dij = \/(z,- —z5)2 + (yi — y;)?

Note that the values of ®;;; may be different for different ants at the same city,
since ants may travel different routes to the same city. At the end of each route,
T, constructed by ant k, the pheromone intensity 7;; on the edges of that route is
updated, using
7ij(t + 1) = (1 — p)7i5(¢) + ATij(2) (17.3)

where

m

ATii(t) = Z AT k(t)

k=1

is the sum of pheromone deposits A7;;x(t) of each ant, defined as

[ Q/Lk(t) if (4,7) € T(t)
ATiji(t) = { o (i,5) ¢ Ti(t)

The parameter Q has a value of the same order of the length of the optimal route,
L (%) is the length of the route traveled by ant k, and m is the total number of ants.

The constant p € {0,1] in equation (17.3) is referred to as the forgetting factor,
which models the evaporation over time of pheromone deposits.
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The modeling of the behavior of ants usually introduces several parameters for which
optimal values must be obtained. The most important of these parameters include
the forgetting factor to model pheromone evaporation, and the number of ants used.
Too many ants increase computational complexity, and result in fast convergence
to suboptimal trails. On the other hand, too few ants limit the synergetic effects
of cooperation. In addition to these parameters, equation (17.2) introduced the
parameters o and 8. A good balance between these parameters should be achieved:
if 8 = 0, only pheromone information is used, which may lead to suboptimal paths;
if = 0, no pheromone information is used, and the approach corresponds to a
stochastic greedy search.

To summarize this section on ant colony optimization (ACO) for the TSP, a pseudo-
code algorithm is given below (adapted from [Dorigo and Di Caro 1999]).

1. Initialize the pheromone deposits on each edge (¢,7) between cities ¢ and j to
small positive random values, i.e. 7;;(0) ~ U(0, maz).

2. Place all ants k£ € 1,---, m on the originating city.
3. Let T be the shortest trip, and L™ the length of that trip.
4. For t =1 to tpe, do the following:

(a) For each ant, build the trip Ty(t) by choosing the next city n — 1 times
(n is the number of cities), with probability ®;; x(t).

(b) Compute the length of the route, Li(t), of each ant.

(c) If an improved route is found, update 7 and L*.

(d) Update the pheromone deposits on each edge using equation (17.3).

5. Output the shortest route 7.

While this section discussed ACO with reference to the TSP, the next section
overviews some of the applications of modeling ant behavior.

17.4 Ant Colonies and Clustering

In the previous sections, the foraging behavior of ants was shown to be useful for
solving discrete optimization problems. This section explains how the clustering and
sorting behavior of ants can be used to design new data clustering algorithms.

Several ant species cluster their corpses into “cemeteries” in an effort to clean up
their nests. Experimental work illustrated that ants cluster corpses, which are ini-
tially randomly distributed in space, into clusters within a few hours. While this
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behavior is still not that well understood, it seems that some feedback mecha-
nism determines the probability that a worker ant will pick up or drop a corpse.
Such behavior is easily modeled to produce an algorithmic clustering approach
[Bonabeau et al. 1999].

The general idea is that a number of artificial ants (or agents) walk around in search
space and pick up items, or drop an item based upon some probability measure. For
sake of simplicity, assume that the environment has only one type of object, with
instances of that object randomly distributed over the search space. The probability
pp for a randomly selected unladen agent to pick up an object is expressed as

where f is the fraction of objects that the agent perceives in its neighborhood; k;
is a constant. When there are not many objects in the agent’s neighborhood, that
is f << k1, then p, approaches 1; hence, objects have a high probability of being
picked up. On the other hand, if the agent observes many objects (f >> ki), pp
approaches 0, and the probability that the agent will pick an object is small.

Each loaded agent has a probability p, of dropping the carried object, given by

e
Pd—(k2+f)

where k5 is a constant. If the agent observes a large number of objects in its neigh-
borhood (f >> k3), then p, approaches 1, and the probability of dropping the object
is high. If f << ko, then py approaches 0.

The fraction of objects, f, is calculated by making use of a short-term memory for
each agent. Each agent keeps track of the last T time units, and f is simply the
number of objects observed during these T time units, divided by the largest number
of objects that can be observed during the T time units.

The above approach was initially developed for robotic implementation. The prob-
lem now is how to use this principle to develop an algorithmic approach to data
clustering. The first part of the solution is to define a dissimilarity d(Z;, 2;) be-
tween data vectors Z; and 2 using any norm, for example the euclidean norm. The
next step is to determine how these dissimilarity measures should be used to group
together similar data vectors, such that the clustering has the following properties:

e Intra-cluster distances should be small; that is, the distances between data
vectors within a cluster should be small to form a compact, condensed cluster.

e Inter-cluster distances should be large; that is, the different clusters should be
well separated.
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The ant colony clustering follows an approach similar to that of SOMs, where the
larger space of vector attributes is mapped onto a smaller two-dimensional grid
space. The clustering performed on the two-dimensional grid should preserve the
neighborhood relationships present in the higher-dimensional attribute space. The
clustering should not introduce neighbors that do not exist in the attribute space.

Agents move randomly around on the grid, while observing the surrounding area
of s? sites. The surrounding area is simply a square neighborhood, Nx(r), of the
s X s sites surrounding the current position r of the agent. Assume that, at time
step t, an agent on site r of the grid finds data vector z;. The “local” density f(Z;)
of that data vector within the agent’s neighborhood is then given as

1 d( _‘i :Z' ) H
f(Z) = F o geNall —ma ] >0
0 otherwise
In the above, f(Zi) is a measure of average similarity of Z; with the other data
vectors in the neighborhood. The constant « controls the scale of dissimilarity, by
determining when two data vectors should be grouped together.

The probabilities of picking up and dropping a data vector are expressed as
o k1 2
Z; = ——————

{ 2/(z) if f(&) < ke
1 if f(%) > ske

I

pa(Zi)

A summary of the ant colony clustering algorithm is given below
[Lumer and Faieta 1994]:

1. Initialization:

(a) place each data vector Z; randomly on the grid
(b) place agents at randomly selected sites

(c) set values for k1, ks, a, s and the maximum number of time steps #,qz.°
2. For t = 1 to ty44, for each agent:

(a) If the agent is unladen, and the site is occupied by an item Zz;,
i. Compute f(Zz;) and pp(Z;).
ii. IfU(0,1) < pp(%), pick up data vector z;.
(b) Otherwise, if the agent carries data vector Z; and the site is empty:
i. Compute f(Z;) and py(Z;)-
ii. IfU(0,1) < py(Z;), drop data vector Z;.
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(c) Move to a randomly selected neighboring site not occupied by another
agent.

Some remarks about the algorithm above are necessary:

e the grid should have more sites than the number of ants; and

e there should be more sites than data vectors.

The algorithm also has the tendency to create more clusters than are necessary,
basically overfitting the data. This problem can be addressed in the following ways:

o Having the ants move at different speeds. Fast-moving agents will form coarser
clusters by being less selective in their estimation of the average similarity of
a data vector to its neighbors. Slower agents are more accurate in refining the
cluster boundaries. Having agents that move at different speeds prevents the
clustering process from converging too fast.

Different moving speeds are easily modeled using

otherwise

1 d(Zi,Z;) .
f&) = { 7 LeNe [t~ g gny] 1 >0
0

where v ~ U(1, vmaz), and Vp,qz is the maximum moving speed.

e Using short-term memory for each agent, which allows each agent to remember
the last m data vectors dropped by the agent, and the locations of these drops.
If the agent picks up another data vector similar to the last m data vectors,
the agent will move in that direction. This approach ensures that similar data
vectors are grouped into the same cluster.

17.5 Applications of Ant Colony Optimization

The study of the behavior of ants has resulted in developing algorithms applied to
a variety of problems. Algorithms that model the foraging behavior of ants (e.g.
food collection) resulted in new combinatorial optimization approaches (with appli-
cations to network routing, job scheduling, etc); the ability of ants to dynamically
distribute labor resulted in adaptive task allocation strategies; cemetery organiza-
tion and brood sorting resulted in graph coloring and sorting algorithms; and the
cooperative transport characteristics resulted in robotic implementations. This sec-
tion reviews some of these applications with reference to the relevant literature.
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e ACO has been used to solve the quadratic assignment problem (QAP)
[Maniezzo et al. 1994]. The QAP concerns the optimal assignment of n ac-
tivities to n locations. Formally, the QAP is defined as a permutation 7 of
assignments which minimizes

n
c(m) = Y dij fa(irn(s)

i,y=1

where d;; is the distance between locations ¢ and j, and fpx characterizes the
flow (e.g. data transfer) between activities h and k.

e ACO has also been used successfully for the job-scheduling problem (JSP)
[Colorni et al. 1994]. For the JSP, operations of a set of jobs must be scheduled
to be executed on M machines in such a way that the maximum completion
times of all operations is minimized, and only one job at a time is processed
by a machine.

e The graph coloring problem (GCP) is a well-known optimization problem also
solved by ACO [Costa and Hertz 1997]. This problem involves coloring the
nodes of a graph, using ¢ colors, such that no adjacent nodes have the same
color.

e Another NP-hard problem solved by ACO is the shortest common superse-
quence problem (SCSP) [Michel and Middendorf 1998]. The aim of the SCSP
is to find a string of minimum length that is a supersequence of each string in
a set of strings.

e ACO has also been used for routing optimization in telephone net-
works [Schoonderwoerd et al. 1996] and data communications networks
[Di Caro and Dorigo 1998].

e Robotics is a very popular field for the application of models of ants behav-
ior, especially swarm-based robotics. Some of these applications include (see
[Dorigo 1999] for lists of references)

|

adaptive task allocation to groups of agents or robots;

robots for distributed clustering of objects and sorting objects;

|

self-assembling (or metamorphic) robots; and

|

cooperative transport by a swarm of robots.

These are just a few applications. For more information on these, and other appli-
cations of ACO, the reader is referred to [Dorigo 1999].
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17.6 Conclusion

The study of ant colonies is a very young field in CI and Artificial Life, with much
more interesting applications still to be explored. While the standard ACO works
only for discrete optimization problems, ACO can be applied to continuous problems
by discretizing the search space into discrete regions [Bilchev and Parmee 1995],
thereby enlarging the application area of ACO.

17.7 Assignments

1.

Consider the following situation: ant A; follows the shortest of two paths to
the food source, while ant A, follows the longer path. After A, reached the
food source, which path back to the nest has a higher probability of being
selected by As? Justify your answer.

. Discuss the importance of the forgetting factor in the pheromone trail deposit-

ing equation (17.3).

Discuss the effects of the a and 3 parameters in the transition rule of equation
(17.2).

Show how the ACO approach to solving the TSP satisfies all the constraints
of the TSP.

. Comment on the following strategy: Let the amount of pheromone deposited

be a function of the best route. That is, the ant with the best route, deposits
more pheromone. How can equation (17.3) be updated to reflect this?

. Comment on the similarities and differences between the ant colony approach

to clustering and SOMs.

. For the ant clustering algorithm, explain why

(a) the 2D-grid should have more sites than number of ants;

(b) there should be more sites than data vectors.

Devise a dynamic forgetting factor for pheremone evaporation.



Part V

FUZZY SYSTEMS

Two-valued, or Boolean logic is a well-defined and used theory. Boolean logic is es-
pecially important for implementation in computing systems, where information, or
knowledge about a problem, is binary encoded. Boolean logic also played an impor-
tant role in the development of the first Al reasoning systems, especially the inference
engine of expert systems [Giarratano 1998]. For such knowledge representation and
reasoning systems, propositional and first-order predicate calculus are extensively
used as representation language [Luger and Stubblefield 1997, Nilsson 1998]. Asso-
ciated with Boolean logic is the traditional two-valued set theory, where an element
either belongs to a class or not. That is, class membership is precise. Coupled
with Boolean knowledge, two-valued set theory enabled the development of exact
reasoning systems.

While some successes have been achieved using two-valued logic and sets, it is not
possible to solve all problems by mapping the domain into two-valued variables.
Most real-world problems are characterized by the ability of a representation lan-
guage (or logic) to process incomplete, imprecise, vague or uncertain information.
While two-valued logic and set theory fail in such environments, fuzzy logic and fuzzy
sets give the formal tools to reason about such uncertain information. With fuzzy
logic, domains are characterized by linguistic terms, rather than by numbers. For
example, in the phrases “it is partly cloudy”, or “Stephan is very tall”, both partly
and very are linguistic terms describing the magnitude of the fuzzy (or linguistic)
variables cloudy and tall. The human brain has the ability to understand these
terms, and infer from them that it will most probably not rain, and that Stephan
might just be a good basket ball player (note, again, the fuzzy terms!). However,
how do we use two-valued logic to represent these phrases?

Together with fuzzy logic, fuzzy set theory provides the tools to develop software
products that model human reasoning (also referred to as approximate reasoning).
In fuzzy sets, an element belongs to a set to a degree, indicating the certainty (or
uncertainty) of membership.

The development of logic has a long and rich history, in which major philosophers
played a role. The foundations of two-valued logic stemmed from the efforts of
Aristotle (and other philosophers of that time), resulting in the so-called Laws of
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Thought [Karner 1967]. The first version of these laws was proposed around 400
bc, namely the Law of the Ezcluded Middle. This law states that every proposition
must have only one of two outcomes: either true or false. Even in that time, imme-
diate objections were given with examples of propositions that could be true, and
simultaneously not true.

It was another great philosopher, Plato, who laid the foundations of what is today
referred to as fuzzy logic. It was, however, only in the 1900s that Lukasiewicz
proposed the first alternative to the Aristotelian two-valued logic [Lejewski 1967).
Three-valued logic has a third value which is assigned a numeric value between true
and false. Lukasiewicz later extended this to four-valued and five-valued logic. It was
only recently, in 1965, that Lotfi Zadeh produced the foundations of infinite-valued
logic with his mathematics of fuzzy set theory [Zadeh 1965].

Following the work of Zadeh, much research has been done in the theory of fuzzy
systems, with applications in control, information systems, pattern recognition
and decision support. Some successful real-world applications include automatic
control of dam gates for hydroelectric-powerplants, camera aiming, compensation
against vibrations in camcorders, cruise-control for automobiles, controlling air-
conditioning systems, archiving systems for documents, optimized planning of bus
time-tables, and many more. While fuzzy sets and logic have been used to solve
real-world problems, they were also combined with other CI paradigms to form
hybrid systems, for example, fuzzy neural networks and fuzzy genetic algorithms
[Zhang and Kandel 1998).

A different set theoretic approach which also uses the concept of membership func-
tions, namely rough sets (introduced by Pawlak in 1982 [Pawlak 1982]), is some-
times confused with fuzzy sets. While both fuzzy sets and rough sets make use
of membership functions, rough sets differ in the sense that a lower and upper
approximation to the rough set is determined. The lower approximation consists
of all elements which belong with full certainty to the corresponding set, while
the upper approximation consists of elements that may possibly belong to the
set. Rough sets are frequently used in machine learning as classifier, where rough
sets are used to find the smallest number of features to discern between classes
[Mollestad 1997]. Rough sets are also used for extracting knowledge from incom-
plete data [Mollestad 1997, Polkowski and Skowron 1998]. Hybrid approaches that
employ both fuzzy and rough sets have also been developed [Thiele 1998].

The remainder of this Part is organized as follows: Chapter 18 introduces fuzzy
logic and fuzzy set theory, while Chapter 19 discusses how fuzzy logic can be used
in approximate reasoning systems. Chapter 20 presents a short overview of fuzzy
controllers, one of the largest application areas of fuzzy sets and logic. The Part is
concluded with an introduction to rough set theory in Chapter 21.



Chapter 18

Fuzzy Systems

Consider the problem of designing a set of all tall people, and assigning all the
people you know to this set. Consider classical set theory where an element is either
a member of the set or not. Suppose all tall people are described as those with height
greater than 1.75m. Then, clearly a person of height 1.78m will be an element of
the set tall, and someone with height 1.5m will not belong to the set of tall people.
But, the same will apply to someone of height 1.73m, which implies that someone
who falls only 2cm short is not considered as being tall. Also, using two-valued set
theory, there is no distinction among members of the set of tall people. For example,
someone of height 1.78m and one of height 2.1m belongs equally to the set! Thus,
no semantics are included in the description of membership.

The alternative, fuzzy set theory, has no problem with this situation. In this case
all the people you know will be members of the set tall, but to different degrees. For
example, a person of height 2.1m may be a member of the set to degree 0.95, while
someone of length 1.7m may belong to the set with degree 0.4.

Fuzzy logic is an extension of Boolean logic to handle the concept of partial truth,
which enables the modeling of the uncertainties of natural language. The vagueness
in natural language is further emphasized by linguistic terms used to describe objects
or situations. For example, the phrase when it is very cloudy, it will most probably
rain, has the linguistic terms very and most probably — which are understood by
the human brain. Fuzzy logic and fuzzy sets give the tools to also write software
which enables computing systems to understand such vague terms, and to reason
with these terms.

This chapter formally introduces fuzzy sets and fuzzy logic. Section 18.1 defines
fuzzy sets, while membership functions are discussed in Section 18.2. Operators
that can be applied to fuzzy sets are covered in Section 18.3. Characteristics of
fuzzy sets are summarized in Section 18.4. The concepts of linguistic variables and
hedges are discussed in Section 18.5. The chapter is concluded with a discussion of

211



212 CHAPTER 18. FUZZY SYSTEMS

the differences between fuzziness and probability in Section 18.6.

18.1 Fuzzy Sets

Different to classical sets, elements of a fuzzy set have membership degrees to that
set. The degree of membership to a fuzzy set indicates the certainty (or uncertainty)
we have that the element belongs to that set. Formally defined, suppose X is the
domain, or universe of discourse, and z € X is a specific element of the domain X.
Then, the fuzzy set A is characterized by a membership mapping function

pa:X > 00,1] (18.1)

Therefore, for all z € X, ua(z) indicates the certainty to which element = belongs
to fuzzy set A. For two-valued sets, pa(z) is either 0 or 1.

Fuzzy sets can be defined for discrete (finite) or continuous (infinite) domains. The
notation used to denote fuzzy sets differ based on the type of domain over which
that set is defined. In the case of a discrete domain X, the fuzzy set can either
be expressed in the form of an n-dimensional vector or using the sum notation. If
X ={z1,z2,--,zn}, then, using vector notation,

A = {(pa(zi)/zi)lz; € X,i=1,---,n}

Using sum notation,

A= pa(z))/z1+ pal@2) /T2 + - + pal@n)/2a = Y palz:)/zi

i=1

where the sum should not be confused with algebraic summation. The use of sum
notation above simply serves as an indication that A is a set of ordered pairs. A
continuous fuzzy set, A, is denoted as

A= /X w(z)/z

Again, the integral notation should not be algebraically interpreted.

18.2 Membership Functions

The membership function is the essence of fuzzy sets. A membership function, also
referred to as the characteristic function of the fuzzy set, defines the fuzzy set. The
function is used to associate a degree of membership of each of the elements of the
domain to the corresponding fuzzy set. Two-valued sets are also characterized by
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Figure 18.1: Illustration of membership function for two-valued sets

a membership function. For example, consider the domain X of all floating point
numbers in the range [0, 100]. Define the set A C X of all floating point numbers
in the range [10,50]. Then, the membership function for the set A is represented in
Figure 18.1. All z € [10,50] have pa(z) = 1, while all other floating point numbers
have pa(z) = 0.

Membership functions for fuzzy sets can be of any shape or type as determined by
experts in the domain over which the sets are defined. While designers of fuzzy sets
have much freedom in selecting appropriate membership functions, these functions
must satisfy the following constraints:

o A membership function must be bounded from below by 0 and from above by
1.

o The range of a membership function must therefore be the range [0, 1].

e For each z € X, p4(z) must be unique. That is, the same element cannot
map to different degrees of membership for the same fuzzy set.

Returning to the tall fuzzy set, a possible membership function can be defined as
(also illustrated in Figure 18.2)

0 if height(z) < 1.5m
tall(z) = ¢ (height(z) — 1.5m)/0.3m if 1.5m < height(z) < 2.0m
1 if height(z) > 2.0m

While the tall membership function above used a discrete step function, more com-
plex discrete and continuous functions can be used, for example, triangular functions
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Figure 18.2: Illustration of tall membership function

(refer to Figure 18.3(a)), trapezoidal functions (refer to Figure 18.3(b)), logistic func-
tions (refer to Figure 18.3(c)) and Gaussian functions (refer to Figure 18.3(d)). It
is the task of the human expert of the domain to define the function which captures
the characteristics of the fuzzy set.

18.3 Fuzzy Operators

As for Boolean logic, relations and operators are defined for fuzzy logic which enables
reasoning about vague information. Each of these relations and operators are defined
below. For this purpose let X be the domain, or universe, and A and B are sets
defined over the domain X.

Equality of fuzzy sets: For two-valued sets, sets are equal if the two sets have
the same elements. For fuzzy sets, however, equality cannot be concluded if
the two sets have the same elements. The degree of membership of elements
to the sets must also be equal. That is, the membership functions of the two
sets must be the same.

Therefor, two fuzzy sets A and B are equal if and only if the sets have the
same domain, and p4(z) = pp(z) for all z € X. That is, A = B.

Containment of fuzzy sets: For two-valued sets, A C B if all the elements of
A are also elements of B. For fuzzy logic, this definition is not complete, and
the degrees of membership of elements to the sets have to be considered.

Fuzzy set A is a subset of fuzzy set B if and only if pa(x) < pp(z) for all
z € X. That is, A C B.
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Figure 18.3: Example membership functions for fuzzy sets
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Complement of a fuzzy set (NOT): The complement of a two-valued set is
simply the set containing the entire domain without the elements of that set.
For fuzzy sets, the complement of the set A consists of all the elements of set
A, but the membership degrees differ. Let A denote the complement of set A.
Then, for all z € X, uz(x) =1 — pa(z).

Intersection of fuzzy sets (AND): The intersection of two-valued sets is the
set of elements occurring in both sets. For fuzzy sets, the intersection is the
set of all elements in the fuzzy set, but with degrees of membership to the new
set determined by one of two operators. Let A and B be two fuzzy sets, then
either

o panp(z) = min{pa(z), up(z)}, vz € X, or
e pang(z) = pa(z) * pp(z), Vz € X

The difference between the two operations should be noted. Taking the prod-
uct of membership degrees is a much stronger operator than taking the min-
imum, resulting in lower membership degrees for the intersection. It should
also be noted that the ultimate result of a series of intersections approaches
0.0, even if the degrees of memberships to the original sets are high.

Union of fuzzy sets (OR): The union of two-valued sets contains the elements
of all of the sets. The same is true for fuzzy set, but with membership degrees
determined by one of the following operators:

® pauB(z) = max{pa(z), up(z)}, ¥z € X, or
® paus(z) = pa(z) + pp(z) — pa(z) * pp(z), Vz € X

Again, careful consideration must be given to the differences between the two
approaches above. In the limit, a series of unions will have a result that
approximates 1.0, even though membership degrees are low for the original
sets!

Operations on two-valued sets are easily visualized using Venn-diagrams. For fuzzy
sets the effects of operations can be illustrated by graphing the resulting membership
function, as illustrated in Figure 18.4. For the illustration in Figure 18.4, assume
the fuzzy sets A defined as floating point numbers between [50,80] and B defined
as numbers about 40 (refer to Figure 18.4(a) for definitions of the membership func-
tions). The complement of set A is illustrated in Figure 18.4(b), the intersection of
the two sets are given in Figure 18.4(c) (assuming the min operator), and the union
in Figure 18.4(d) (assuming the maz operator).
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Figure 18.4: Illustration of fuzzy operators
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18.4 Fuzzy Set Characteristics

As discussed previously, fuzzy sets are described by membership functions. In this
section, characteristics of membership functions are overviewed. These characteris-
tics include normality, height, support, core, cut, unimodality and cardinality.

Normality: A fuzzy set A is normal if that set has an element that belongs to set
A with degree 1. That is,

JzeAepy(z) =1

then A is normal, otherwise, A is subnormal. Normality can alternatively be
defined as
sup A(z) =1
x

Height: The height of a fuzzy set is defined as the supremum of the membership

function, i.e.
height(A) = sup A(z)
T

Support: The support of fuzzy set A is the set of all elements in the universe of
discourse, X, that belongs to A with non-zero membership. That is,

support(A) = {z € X|pa(z) > 0}

Core: The core of fuzzy set A is the set of all elements in the domain that belongs
to A with membership degree 1. That is,

core(A) = {z € X|pa(z) =1}

a-cut: The set of elements of A with membership degree greater than « is referred
to as the a-cut of A:

Ao = {z € X|pa(z) 2 a}
Unimodality: A fuzzy set is unimodal if its membership function is a unimodal
function, i.e. the function has just one maximum.

Cardinality: The cardinality of two-valued sets is simply the number of elements
within the sets. This is not the same for fuzzy sets. The cardinality of fuzzy
set A, for a finite domain, X, is defined as

card(A) = ) _ pa(z)
TeX
and for an infinite domain,
card(A) =/ pa(z)dz
zeX
For example, if X = {a,b,¢,d}, and A = 0.3/a +0.9/b + 0.1/c + 0.7/d, then
card(A) =03+0.9+0.1+0.7=2.0.
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Normalization: A fuzzy set is normalized by dividing the membership function
by the height of the fuzzy set. That is,

' pa(z)
normalized(A) = ————

(4) height(z)
The properties of fuzzy sets are very similar to that of two-valued sets, however, there
are some differences. Fuzzy sets follow, similar to two-valued sets, the commutative,
associative, distributive, transitive and idempotency properties. One of the major
differences is in the properties of the cardinality of fuzzy sets, as listed below:

o card(A) + card(B) = card(AN B) + card(A U B)
o card(A) + card(A) = card(X)

where A and B are fuzzy sets, and X is the universe of discourse.

18.5 Linguistics Variables and Hedges

Lotfi Zadeh introduced the concept of linguistic variable (or fuzzy variable) in 1973,
which allows computation with words in stead of numbers [Zadeh 1975]. Linguistic
variables are variables with values that are words or sentences from natural lan-
guage. For example, referring again to the set of tall people, tall is a linguistic
variable. Sensory inputs are linguistic variables, or nouns in a natural language, for
example, temperature, pressure, displacement, etc. Linguistic variables (and hedges,
explained below) allow the translation of natural language into logical, or numerical
statements, which provide the tools for approximate reasoning (refer to chapter 19).

Linguistic variables can be divided into different categories:

e Quantification variables, e.g. all, most, many, none, etc.
o Usuality variables, e.g. sometimes, frequently, always, seldom, etc.

e Likelihood variables, e.g. possible, likely, certain, etc.

In natural language, nouns are frequently combined with adjectives for quantifica-
tions of these nouns. For example, in the phrase very tall, the noun tall is quantified
by the adjective very, indicating a person who is “taller” than tall. In fuzzy systems
theory, these adjectives are referred to as hedges. A hedge serves as a modifier of
fuzzy values. In other words, the hedge very changes the membership of elements
of the set tall to different membership values in the set very_tall. Hedges are im-
plemented through subjective definitions of mathematical functions, to transform
membership values in a systematic manner.
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To illustrate the implementation of hedges, consider again the set of tall people,
and assume the membership function uiu characterizes the degree of membership
of elements to the set tall. Our task is to create a new set, very_tall of people
that are very tall. In this case, the hedge very can be implemented as the square
function. That is, fyery tati(z) = pitann(z)?. Hence, if Peter belongs to the set tall
with certainty 0.9, then he also belongs to the set very_tall with certainty 0.81. This
makes sense according to our natural understanding of the phrase very tall: Degree
of membership to the set very_tall should be less than membership to the set tall.
Alternatively, consider the set sort of_tall to represent all people that are sort of
tall, i.e. people that are shorter than tall. In this case, the hedge sort of can be
implemented as the square root function, psors_of taui(Z) = \/ttau(r). So, if Peter
belongs to the set tall with degree 0.81, he belongs to the set sort_of_tall with degree
0.9.

Different kinds of hedges can be defined, as listed below:

e Concentration hedges (e.g. very), where the membership values get rela-
tively smaller. That is, the membership values get more concentrated around
points with higher membership degrees. Concentration hedges can be defined,
in general terms, as

By (2) = pa(z)?, forp>1
where A’ is the concentration of set A.

e Dilation hedges (e.g. somewhat, sort of, generally), where membership val-
ues increases. Dilation hedges are defined, in general, as

py (@) = pal@)'/? forp>1

e Contrast intensification hedges (e.g. extremely), where memberships lower
than 1/ are diminished, but memberships larger than 1/2 are elevated. This
hedge is defined as,

( ) — 2P—I“A($)p if /‘A(x) <05
HaWTI =0 1= 2071(1 = pa(z))? if palz) > 05
which intensifies contrast.

e Vague hedges (e.g. seldom), are opposite to contrast intensification hedges,
having membership values altered using

,(I)_{ Vua(@)/2 if pa(z) <05
HA =V 1= VU= pa@)2 if palz) > 05

Vague hedges introduce more “fuzziness” into the set.

e Probabilistic hedges, which express probabilities, e.g. likely, not very likely,
probably, etc.
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18.6 Fuzziness and Probability

There is often confusion between the concepts of fuzziness and probability. It is
important that the similarities and differences between these two terms are under-
stood. Both terms refer to degrees of certainty of events occurring. But that is
where the similarities stop. Degrees of certainty as given by statistical probability
are only meaningful before the associated event occurs. After that event, the prob-
ability no longer applies, since the outcome of the event is known. For example,
before flipping a fair coin, there is a 50% probability that heads will be on top, and
a 50% probability that it will be tails. After the event of flipping the coin, there
is no uncertainty as to whether heads or tails are on top, and for that event the
degree of certainty no longer applies. In contrast, membership of fuzzy sets is still
relevant after an event occurred. For example, consider the fuzzy set of tall people,
with Peter belonging to that set with degree 0.9. Suppose the event to execute is
to determine if Peter is good at basketball. Given some membership function, the
outcome of the event is a degree of membership to the set of good basketball players.
After the event occurred, Peter still belongs to the set of tall people with degree 0.9.

Furthermore, probability assumes independence among events, while fuzziness is
not based on this assumption. Also, probability assumes a closed world model
where everything is known, and where probability is based on frequency measures of
occurring events. That is, probabilities are estimated based on a repetition of a finite
number of experiments carried out in a stationary environment. The probability of
an event A is thus estimated as

p(A) = lim na

n—o00 M

where n 4 is the number of experiments for which event A occurred, and n is the total
number of experiments. Fuzziness does not assume everything to be known, and is
based on descriptive measures of the domain (in terms of membership functions),
instead of subjective frequency measures. Fuzzy logic can be used to derive new
facts or knowledge from the fuzzy memberships of know facts.

Therefor, fuzziness is not probability, and probability is not fuzziness. Probability
and fuzzy sets can, however, be used in a symbiotic way to express the probability
of a fuzzy event.

18.7 Conclusion

This chapter gave an overview of fuzzy sets and fuzzy logic. The next chapter deals
with fuzzy inferencing, and shows how these mathematical tools can be used in
environments with uncertain information, to reason with such information, and to
infer actions based on vague descriptions.
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18.8 Assignments

1.

Perform intersection and union for the fuzzy sets in Figure 18.4 using the
product and addition operators.

. Give the height, support, core and normalization of the fuzzy sets in Fig-

ure 18.4.

. Consider the two fuzzy sets:

long pencils = {pencill/0.1, pencil2/0.2, pencil3/0.4, pencil4/0.6,
pencil5/0.8, pencil6/1.0}
medium pencils = {pencill/1.0, pencil2/0.6, pencil3/0.4, pencil4/0.3,
pencil5/0.1}

(a) Determine the union of the two sets.
(b) Determine the intersection of the two sets.

(c) Define a hedge for the set very long pencils, and give the resulting set.

. What is the difference between the membership function of an ordinary set

and a fuzzy set?

. Consider the membership functions of two fuzzy sets, A and B, as given in

Figure 18.5.
(a) Draw the membership function for the fuzzy set C = AN B, using the
max-operator.
(b) Compute puc(5).
(c¢) Is C normal? Justify your answer.

Consider the fuzzy sets A and B such that core(A) N core(B) = 0. Is fuzzy
set C = AN B normal? Justify your answer.



18.8. ASSIGNMENTS 223

)

1.0 +

0.75 T

0.25

0 2 3 4 5 6 71 8

Figure 18.5: Membership functions for assignments
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Chapter 19

Fuzzy Inferencing Systems

The previous chapter discussed theoretical aspects of fuzzy sets and fuzzy logic. The
fuzzy set operators allow rudimentary reasoning about facts. For example, consider
the three fuzzy sets tall, good.athlete and good_basketball_player. Now assume

tant(Peter) = 0.9 and Hgood_athlete (Peter) =0.8

priait(Carl) = 0.9 and .ugood-athlete(caﬂ) =05

If we know that a good basketball player is tall and is a good athlete, then which
one of Peter or Carl will be the better basketball player? Through application of
the intersection operator, we get

ﬂgood_basketball_player(Peter) = min{0.9, 0-8} =028

Ngood_basketball_player(carl) = min{0.9, 0-'5} =0.5

Using the standard set operators, it is possible to determine that Peter will be better
at the sport than Carl.

The example above is a very simplistic situation. For most real-world problems,
the sought outcome is a function of a number of complex events, or scenarios. For
example, actions made by a controller are determined by a set of if-then rules. The
if-then rules describe situations that can occur, with a corresponding action that
the controller should execute. It is, however, possible that more than one situation,
as described by if-then rules, are simultaneously active, with different actions. The
problem is to determine the best action to take. A mechanism is therefore needed to
infer an action from a set of activated situations. For fuzzy controllers, situations are
expressed in terms of membership functions, and fuzzy inferencing upon the given
information results in an appropriate action.
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Non-Fuzzy Non-Fuzzy
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Fuzzification Defuzzification
Process Process

Figure 19.1: Fuzzy rule-based reasoning system

For fuzzy systems in general, the dynamic behavior of that system is characterized by
a set of linguistic fuzzy rules. These rules are based on the knowledge and experience
of a human expert within that domain. Fuzzy rules are of the general form

if antecedent(s) then consequent(s)

The antecedents of a rule form a combination of fuzzy sets through application of the
logic operators (i.e. complement, intersection, union). The consequent part of a rule
is usually a single fuzzy set, with a corresponding membership function. Multiple
fuzzy sets can also occur withing the consequent, in which case they are combined
using the logic operators.

Together, the fuzzy sets and fuzzy rules form the knowledge base of a fuzzy rule-
based reasoning system. In addition to the knowledge base, a fuzzy reasoning system
consists of three other components, each performing a specific task in the reasoning
process, i.e. fuzzification, inferencing and defuzzification. The different components
of a fuzzy rule based system are illustrated in Figure 19.1.

The remainder of this chapter is organized as follows: fuzzification is discussed in
Section 19.1, fuzzy inferencing in Section 19.2. and defuzzification in Section 19.3.
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19.1 Fuzzification

The antecedents of the fuzzy rules form the fuzzy “input space,” while the conse-
quents form the fuzzy “output space”. The input space is defined by the combination
of input fuzzy sets, while the output space is defined by the combination of output
sets. The fuzzification process is concerned with finding a fuzzy representation of
non-fuzzy input values. This is achieved through application of the membership
functions associated with each fuzzy set in the rule input space. That is, input
values from the universe of discourse are assigned membership values to fuzzy sets.

For illustration purposes, assume the fuzzy sets A and B, and assume the corre-
sponding membership functions have been defined already. Let X denote the uni-
verse of discourse for both fuzzy sets. The fuzzification process receives the elements
a,b € X, and produces the membership degrees p4(a), pa(b), up(a) and pp(b).

19.2 Inferencing

The task of the inferencing process is to map the fuzzified inputs (as received from
the fuzzification process) to the rule base, and to produce a fuzzified output for each
rule. That is, for the consequents in the rule output space, a degree of membership
to the output sets are determined based on the degrees of membership in the input
sets and the relationships between the input sets. The relationships between input
sets are defined by the logic operators which combines the sets in the antecedent.
The output fuzzy sets in the consequent are then combined to form one overall
membership function for the output of the rule.

Assume input fuzzy sets A and B with universe of discourse X7 and the output
fuzzy set C with X5 as universe of discourse. Consider the rule

if Aisa and B is b then C is ¢

From the fuzzification process, the inference engine knows p4(a) and pp(b). The
first step of the inferencing process is then to calculate the firing strength of each
rule in the rule base. This is achieved through combination of the antecedent sets
using the operators discussed in Section 18.3. For the example above, assuming the
min-operator, the firing strength is

min{p(a), np(b)}
For each rule k, the firing strength «y is thus computed.

The next step is to accumulate all activated outcomes. During this step, one sin-
gle fuzzy value is determined for each ¢; € C. Usually, the final fuzzy value, 3,
associated with each outcome ¢; is computed using the maz-operator, i.e.

fi = max{ay }
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where oy, is the firing strength of rule k£ which has outcome ¢;.

The end result of the inferencing process is a series of fuzzified output values. Rules
that are not activated have a zero firing strength.

Rules can be weighted & priori with a factor (in the range [0,1]), representing the
degree of confidence in that rule. These rule confidence degrees are determined by
the human expert during the design process.

19.3 Defuzzification

The firing strengths of rules represent the degree of membership to the sets in the
consequent of the corresponding rule. Given a set of activated rules and their cor-
responding firing strengths, the task of the defuzzification process is to convert the
output of the fuzzy rules into a scalar, or non-fuzzy value.

For the sake of the argument, suppose the following hedges are defined for linguistic
variable C (refer to Figure 19.2(a) for the definition of the membership functions):
large decrease (LD), slight increase (SI), no change (NC), slight increase (SI), and
large increase (LI). Assume three rules with the following C membership values:
prr =0.8,usr = 0.6 and puyc = 0.3.

Several inference methods exist to find an approximate scalar value to represent the
action to be taken:

e The max-min method: The rule with the largest firing strength is selected,
and it is determined which consequent membership function is activated. The
centroid of the area under that function is calculated and the horizontal coordi-
nate of that centroid is taken as the output of the controller. For our example,
the largest firing strength is 0.8, which corresponds to the large_increase mem-
bership function. Figure 19.2(b) illustrates the calculation of the output.

e The averaging method: For this approach, the average rule firing strength
is calculated, and each membership function is clipped at the average. The
centroid of the composite area is calculated and its horizontal coordinate is
used as output of the controller. All rules therefore play a role in determining
the action of the controller. Refer to Figure 19.2(c) for an illustration of the
averaging method.

e The root-sum-square method: Each membership function is scaled such
that the peak of the function is equal to the maximum firing strength that
corresponds to that function. The centroid of the composite area under the
scaled functions are computed and its horizontal coordinate is taken as output
(refer to Figure 19.2(d)).
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e The clipped center of gravity method: For this approach, each member-
ship function is clipped at the corresponding rule firing strengths. The centroid
of the composite area is calculated and the horizontal coordinate is used as the
output of the controller. This approach to centroid calculation is illustrated
in Figure 19.2(e).

The calculation of the centroid of the trapezoidal areas depends on whether the
domain of the functions is discrete or continuous. For a discrete domain of a finite
number of values, n, the output of the defuzzification process is calculated as (3
has its algebraic meaning)

Z?:l Tipc (ml)
?:1 ne(zi)

In the case of a continuous domain (] has its algebraic meaning),

output =

output — Jzex PH@)4T
fzex pu(z)dr

where X is the universe of discourse.

19.4 Conclusion

This chapter presented an overview of fuzzy rule based reasoning systems. In the
next chapter a specific example of such systems is discussed, namely fuzzy con-
trollers.

19.5 Assignments

1. Consider the following rule base:

if  is Small then y is Big
if z is Medium then y is Small
if ¢ is Big then y is Medium

Given the membership functions illustrated in Figure 19.3, answer the follow-
ing questions:

(a) Using the clipped center of gravity method, draw the composite function
for which the centroid needs to be calculated.

(b) Compute the defuzzified output on the discrete domain
Y ={0,1,2,3,4,5,6,7,8}

2. Repeat the assignment above for the root-sum-square method.
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(b) Max-Min Method

(e) Clipped Center of Gravity Method

(d) Root-Sum-Square Method

Figure 19.2: Defuzzification methods for centroid calculation
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Chapter 20

Fuzzy Controllers

The design of fuzzy controllers is one of the largest application areas of fuzzy set the-
ory. Where fuzzy logic is frequently described as computing with words rather than
numbers, fuzzy control is described as conirol with sentences rather than equations.
Thus, instead of describing the control strategy in terms of differential equations,
control is expressed as a set of linguistic rules. These linguistic rules are easier
understood than systems of mathematical equations.

The first application of fuzzy control comes from the work of Mamdani and
Assilian in 1975, with their design of a fuzzy controller for a steam engine
[Mamdani et al. 1975]. The objective of the controller was to maintain a constant
speed by controlling the pressure on pistons, by adjusting the heat supplied to a
boiler. Since then, a vast number of fuzzy controllers have been developed for con-
sumer products and industrial processes. For example, fuzzy controllers have been
developed for washing machines, video cameras, air conditioners, etc., while indus-
trial applications include robot control, underground trains, hydro-electrical power
plants, cement kilns, etc.

This chapter gives a short overview of fuzzy controllers. Section 20.1 discusses the
components of such controllers, while Section 20.2 overviews some types of fuzzy
controllers.

20.1 Components of Fuzzy Controllers

A fuzzy controller can be regarded as a nonlinear static function that maps controller
inputs onto controller outputs. A controller is used to control some system, or
plant. The system has a desired response that must be maintained under whatever
inputs are received. The inputs to the system can, however, change the state of the
system, which causes a change in response. The task of the controller is then to
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take corrective action by providing a set of inputs that ensures the desired response.
As illustrated in Figure 20.1, a fuzzy controller consists of four main components,
which are integral to the operation of the controller:

e Fuzzy rule base: The rule base, or knowledge base, contains the fuzzy rules
that represent the knowledge and experience of a human expert of the system.
These rules express a nonlinear control strategy for the system.

While rules are usually obtained from human experts, and are static,
strategies have been developed that adapt, or refine rules through learn-
ing using neural networks or evolutionary computing [Favilla et al. 1993,
Wang and Mendel 1992].

e Condition interface (fuzzifier): The fuzzifier receives the actual outputs
of the system, and transforms these non-fuzzy values into membership degrees
to the corresponding fuzzy sets. In addition to the system outputs, the fuzzi-
fication of input values to the system also occurs via the condition interface.

e Action interface (defuzzifier): The action interface defuzzifies the outcome
of the inference engine to produce a non-fuzzy value to represent the actual
control function to be applied to the system.

e Inference engine: The inference engine performs inferencing upon fuzzified
inputs to produce a fuzzy output (refer to Section 19.2).

As stated earlier, a fuzzy controller is basically a nonlinear control function. The
nonlinearity in fuzzy controllers is caused by

e the fuzzification process, if nonlinear membership functions are used;
e the rule base, since rules express a nonlinear control strategy;

e the inference engine, if, for example, the min-operator is used for intersection
and the maz-operator is used for union; and

o the defuzzification process.

20.2 Fuzzy Controller Types

While there exists a number of different types of fuzzy controllers, they all have the
same components and involve the same design steps. The differences between types
of fuzzy controllers are mainly in the implementation of the inference engine and
the defuzzifier.
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The design of a fuzzy controller involves the following aspects: A universe of dis-
course needs to be defined, and the fuzzy sets and membership functions for both
the input and output spaces have to be designed. With the help of a human expert,
the linguistic rules that describe the dynamic behavior need to be defined. The de-
signer has to decide on how the fuzzifier, inference engine and defuzzifier have to be
implemented, after considering all the different options (refer to chapter 19). Other
issues that need to be considered include the preprocessing of the raw measurements
as obtained from measuring equipment. Preprocessing involves the removal of noise,
discretization of continuous values, scaling and transforming values into a linguistic
form.

In the next sections, three controller types are discussed, namely table-based, Mam-
dani and Takagi-Sugeno.

20.2.1 Table-Based Controller

Table-based controllers are used for discrete universes, where it is feasible to calculate
all combinations of inputs. The relation between all input combinations and their
corresponding outputs are then arranged in a table. In cases where there are only
two inputs and one output, the controller operates on a two-dimensional look-up
table. The two dimensions correspond to the inputs, while the entries in the table
correspond to the outputs. Finding a corresponding output involves a simple and
fast look-up in the table. Table-based controllers become inefficient for situations
with a large number of input and output values. .

20.2.2 Mamdani Fuzzy Controller

Mamdani and Assilian produced the first fuzzy controller [Mamdani et al. 1975].
Mamdani-type controllers follow the following simple steps:

1. Identify and name input linguistic variables and define their numerical ranges.

2. Identify and name output linguistic variables and define their numerical ranges.

w

Define a set of fuzzy membership functions for each of the input variables, as
well as the output variables.

. Construct the rule base that represents the control strategy.
. Perform fuzzification of input values.

Perform inferencing to determine firing strengths of activated rules.

P =S BTN

. Defuzzify, using centroid of gravity, to determine the corresponding action to
be executed.
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20.2.3 Takagi-Sugeno Controller

For the table-based and Mamdani controllers, the output sets are singletons (i.e.
a single set), or combinations of singletons where the combinations are achieved
through application of the fuzzy set operators. Output sets can, however, also be
linear combinations of the inputs. Takagi and Sugeno suggested an approach to
allow for such complex output sets, referred to as Takagi-Sugeno fuzzy controllers
[Jantzen 1998, Takagi and Sugeno 1985]. In general, the rule structure for Takagi-
Sugeno fuzzy controllers is

if f1(Ay is a1, Az is ag, -+, Ay is ay) then C = fa(ay, a2, -, an)

where f; is a logical function, and fs is some mathematical function of the inputs;
C is the consequent, or output variable being inferred, a; is an antecedent, or input
variable, and A; is a fuzzy set represented by the membership function p4,. The
complete rule base is defined by K rules.

The firing strength of each rule is computed using the min-operator, i.e.

ap = min (a;
k Vi]aieAk{uAL( z)}

where A; is the set of antecedents of rule k. Alternatively, the product can be used
to calculate rule firing strengths:

a=[] nrala)

Vi‘ai EAk

The output of the controller is then determined as

K
Dk @k falar, -, an)
C =
Zf:l 877

The main advantage of Takagi-Sugeno controllers is that it breaks the closed-loop
approach of the Mamdani controllers. For the Mamdani controllers the system is
statically described by rules. For the Takagi-Sugeno controllers, the fact that the
consequent of rules is a mathematical function, provides for a more dynamic control.

20.3 Conclusion

This chapter gave a short summary of fuzzy controllers and three types of controllers,
namely table-based, Mamdani and Takagi-Sugeno. While only a few aspects of
fuzzy systems have been covered in this and the previous chapters, the theory of
fuzzy systems is much larger than what was covered in this part of the book. The
interested reader is encouraged to read more about the subject, especially on the
vast number of applications.
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20.4 Assignments
1. Design a Mamdani fuzzy controller to control a set of ten lifts for a building
of forty storey to maximize utilization and minimize delays.

2. Design a Mamdani fuzzy controller for an automatic gearbox for motor vehi-
cles.

3. Consider the following rule base:

if z is Small then y is Big
if  is Medium then y is Small
if x is Big then y is Medium

Given the membership functions illustrated in Figure 19.3, answer the fol-
lowing questions: using a Mamdani-type fuzzy controller, what are the firing
strengths of each rule?

4. Consider the following Takagi-Sugeno rules:

ifris Ayandyis By thenz; =z +y+1
ifz is As and y is B; then 20 =2z +y + 1
if z is A, and y is By then 23 = 2z + 3y
if z is A and y is By then 24 =2z + 5

Compute the value of z for £ = 1,y = 4 and the antecedent fuzzy sets
4, ={1/0.1,2/0.6,3/1.0}
Ay = {1/0.9,2/0.4,3/0.0}
B; ={4/1.0,5/1.0,6/0.3}
By = {4/0.1,5/0.9,6/1.0}



Chapter 21

Rough Sets

Fuzzy set theory is the first to have a theoretical treatment of the problem of vague-
ness and uncertainty, and have had many successful implementations. Fuzzy set
theory is, however, not the only theoretical logic that addresses these concepts.
Pawlak developed a new theoretical framework to reason with vague concepts and
uncertainty [Pawlak 1982]. While rough set theory is somewhat related to fuzzy set
theory, there are major differences.

Rough set theory is based on the assumption that some information, or knowledge,
about the elements of the universe of discourse is initially available. This is contrary
to fuzzy set theory where no such prior information is assumed. The information
available about elements is used to find similar elements and indiscernible elements.
Rough set theory is then based on the concepts of upper and lower approximations
of sets. The lower approximation contains those elements that belong to the set
with full certainty, while the upper approximation encapsulates elements for which
membership is uncertain. The boundary region of a set, which is the difference
between the upper and lower approximations, thus contains all examples which
cannot be classified based on the available information.

Rough sets have been shown to be fruitful in a variety of application areas, including
decision support, machine learning, information retrieval and data mining. What
makes rough sets so desirable for real-world applications is their robustness to noisy
environments, and situations where data is incomplete. It is a supervised approach,
which clarifies the set-theoretic characteristics of classes over combinatorial patterns
of the attributes. In doing so, rough sets also perform automatic feature selection
by finding the smallest set of input parameters necessary to discern between classes.

The idea of discernibility is defined in Section 21.1, based on the formal definition
of a decision system. Section 21.2 shows how rough sets treat vagueness by forming
a boundary region, while Section 21.3 discusses the treatment of uncertainty in the
implementation of the rough membership function.
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21.1 Concept of Discernibility

The discussion on rough sets will be with reference to a decision system. Firstly, an
information system is formally defined as an ordered pair A = (U, A), where U is
the universe of discourse and A is a non-empty set of attributes. The universe of
discourse is a set of objects (or patterns, examples), while the attributes define the
characteristics of a single object. Each attribute a € A is a function a : U — V,
where V}, is the range of values for attribute a.

A decision system is an information system for which the attributes are grouped into
disjoint sets of condition attributes and decision attributes. The condition attributes
represent the input parameters, and the decision attributes represent the class.

The basic idea upon which rough sets rests is the discernibility between objects. If
two objects are indiscernible over a set of attributes, it means that the objects have
the same values for these attributes. Formally, the indiscernibility relation is defined
as:
IND(B) = {(z,y) € U%a(z) = a(y) Ya € B}

where B C A. With U/IND(B) is denoted the set of equivalence classes in the
relation IND(B). That is, U/IN D(B) contains one class for each set of objects that
satisfy IND(B) over all attributes in B. Objects are therefore grouped together,
where the objects in different groups cannot be discerned between.

A discernibility matrix is a two-dimensional matrix where the equivalence classes
form the indices, and each element is the set of attributes which can be used to
discern between the corresponding classes. Formally, for a set of attributes B C A
in A = (U, A), the discernibility matrix Mp(B) is defined as
Mp(B) = {mp(i, ) }nxn

for 1 <i,5 <n, and n = |U/IND(B)|, with

mp(i,j) = {a € Bla(E:) # a(E;)}
for ¢, = 1,---,n; a(E;) indicates that attribute a belongs to equivalence class E;.

Using the discernibility matrix, discernibility functions can be defined to compute
the minimal number of attributes necessary to discern equivalence classes from one
another. The discernibility function f(B), with B C A, is defined as

f(B) = Aijeqi-n} VY Mp(E;, Ej)
where
ﬁz'--D(z7.7) = {6'(1 € mD("sJ)}

and @ is the Boolean variable associated with a, and n = |U/IND(B)|; Vmp(E;, E;)
is the disjunction over the set of Boolean variables, and A denotes conjunction.
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The discernibility function f(B) finds the minimal set of attributes required to
discern any equivalence class from all others. Alternatively, the relative discernibility
function f(F, B) finds the minimal set of attributes required to discern a given class,
E, from the other classes, using the set of attributes, B. That is,

f(E,B) = /\je{l-un} vVmp(E, EJ)

It is now possible to find all dispensible, or redundant, attributes. An attribute
a € B C A is dispensible if IND(B) = IND(B — {a}). Using the definition of
dispensibility, a reduct of B C A is the set of attributes B C B such that all
a € B — B’ are dispensible, and IND(B) = IND(B'). The reduct of B is denoted
by RED(B), while RED(E, B) denotes the relative reduct of B for equivalence class
E. A relative reduct contains sufficient information to discern objects in one class
from all other classes.

21.2 Vagueness in Rough Sets

Vagueness in rough set theory, where vagueness is with reference to concepts (e.g. a
tall person), is based on the definition of a boundary region. The boundary region is
defined in terms of an upper and lower approximation of the set under consideration.

Consider the set X C U, and the subset of attributes B C A. The lower approxi-
mation of X with regard to B is defined as

BX =U{Ee€U/IND(B)|E C X}
and the upper approximation of X,
BX =U{E € U/IND(B)IEN X # 0}

The lower approximation is the set of objects which can be classified with full cer-
tainty as members of X, while the upper approximation is the set of objects that
may possibly be classified as belonging to X.

The region,
BNp(X)=BX - BX

is defined as the B-boundary of X. If BNg(X) = (), then X is crisp with reference
to B. If BNg(X) # @, then X is rough with reference to B.

Rough sets can thus be seen as a mathematical model of vague concepts. Vagueness

can then be defined as BX|
X)==—
ap(X) BX|

with ap(X) € [0,1]. If ag(X) =1, the set X is crisp, otherwise X is rough.
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21.3 Uncertainty in Rough Sets

A vague concept has a non-empty boundary region, where the elements of that region
cannot be classified with certainty as members of the concept. All elements in the
boundary region of a rough set therefore have an associated degree of membership,
calculated using the rough membership function for a class E,

|[EN X|

X
pg(E,X) =

with 4% (E, X) € [0,1), E € U/IND(B) and X C U.

Using the rough membership function, the following definitions are valid:

BX = {z€Ulpg(z)=1}
BX = {z€U|ux(z)>0}
BNp(X) = {zecU|o<up(z) <1}

The above shows that vagueness can, in fact, be defined in terms of uncertainty.

Some properties of the rough membership function are summarized below:
o ux(zr)=1iffz € BX
o pX(z)=0ifr € U - BX
e 0 < puf(z) <1iff r € BNg(X)

e Complement: pg—x (z)=1-pX(z) forany € U

Union: pXVY (z) > max{uf (z),u}(z)} for any z € U

Intersection: ux"Y (z) < min{u} (z),puY(z)} for any z € U

21.4 Conclusion

This chapter gave a short overview of rough set theory, mainly to illustrate a different
set theoretic approach to vagueness and uncertainty, and to show the equivalences
and differences with fuzzy set theory. There is a vast source of literature on rough
sets, and the reader is encouraged to read more on this very young field in Computer
Science.
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21.5 Assignments

1. Compare fuzzy sets and rough sets to show their similarities and differences.
2. Discuss the validity of the following two statements:

(a) two-valued sets form a subset of rough sets
(b) two-valued sets form a subset of fuzzy sets

(c) fuzzy sets are special kinds of rough sets.

3. Discuss how rough sets can be used as classifiers.
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Chapter 22

CONCLUSION

This book presented a short overview of four paradigms within computational intel-
ligence (CI). These paradigms include artificial neural networks {(NN), evolutionary
computing (EC), swarm intelligence (SI) and fuzzy systems (FS). The intention was
to provide the reader with an overview of the popular CI tools and with some of the
current active research directions. The intention was by no means to provide a com-
plete treatment of these paradigms. The interested reader should supplement the
material presented with the vast source of information available in journals, confer-
ence proceedings, books and on the Internet. The hope is that the book did not just
provide new knowledge to the first reader in CI, but also that the material provided
some insight to current CI practitioners and researchers — even just by raising new
ideas.

While the book left the treatment of CI at studying each paradigm individually,
these paradigms can be combined successfully to form efficient hybrid models to solve
complex problems. One such example is the use of particle swarm optimization to
train NNs. Many other hybrid models exist, with much available literature on this.
Agent-based CI tools are also of much interest, where agents of different CI models
work together in a cooperative environment to solve problems. For such agent-based
approaches the main problem is in developing a strategy of cooperation and exchange
of information. Here ideas from swarm intelligence may be very heipful.

Both hybrid CI systems and agent technologies are such large research fields, that
this book cannot devote any time on these to be fair. However, excellent books on
the topics do exist, and the reader is referred to these.

As a final thought, or rather instruction to the reader, let the ideas flow ...
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Appendix A

Acronyms

ACO Ant Colony Optimization

Al Artificial Intelligence

AN Artificial Neuron

BGP Building-Block Genetic Program

BMN Best Matching Neuron

BN Biological Neuron

CA Cultural Algorithm

CAEP  Cultural Algorithm with Evolutionary Program
CCGA  Cooperative Coevolutionary Genetic Algorithm

CE Cultural Evolution

CI Computational Intelligence
CcO Classical Optimization
CoE Coevolution

CoEA  Coevolution Algorithm
CPSO  Cooperative Particle Swarm Optimization

DE Differential Evolution

EA Evolutionary Algorithm

EC Evolutionary Computing

EP Evolutionary Program

ES Evolutionary Strategy
FFNN  Feedforward Neural Network
FL Fuzzy Logic

FLNN  Functional Link Neural Network
FS Fuzzy Systems

FSM Finite State Machine

GA Genetic Algorithm

GCP Graph Coloring Problem
GCPSO Guaranteed Convergence Particle Swarm Optimization
GD Gradient Descent
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GP
ISB
JSP
LVQ
MPSO
MSE
NFL
NN
OBD
OBS
OCD
OED
PSO
PU
PUNN
QAP
RBF
RPSO
SCG
SCSP
SI
SOM
SRNN
SSE
SU
SUNN
TDNN
TSP

APPENDIX A.

Genetic Program

Integrated Squared Bias
Job-Scheduling Problem

Learning Vector Quantizer
Multi-start Particle Swarm Optimization
Mean Squared Error

No Free Lunch Theorem

Neural Network

Optimal Brain Damage

Optimal Brain Surgeon

Optimal Cell Damage

Optimal Experiment Design

Particle Swarm Optimization
Product Unit

Product Unit Neural Network
Quadratic Assignment Problem
Radial Basis Function

Restart Particle Swarm Optimization
Scaled Conjugate Gradient

Super Common Subsequence Problem
Swarm Intelligence

Self-Organizing Map

Simple Recurrent Neural Network
Sum Squared Error

Summation Unit

Summation Unit Neural Network
Time-Delay Neural Network
Traveling Salesman Problem

ACRONYMS



Appendix B

Symbols

This appendix lists symbols used within this book. A separate list of symbols is
given for the different chapters of the book. For each chapter, only new symbols are
defined, or those symbols which are overloaded with new meaning.

B.1 Part IT — Artificial Neural Networks

B.1.1 Chapters 2-3

« momentum

dy p-th pattern, consisting of input and target vector
D data set

D¢ generalization set

Dy training set

Dy validation set

Oy p error signal for hidden unit y; for pattern p

Doy ,p error signal for output unit of for pattern p

& objective/error function

£ derivative of the objective/error function

e generalization error

Er training error

Ev validation error

7 learning rate

n(t) time-varying learning rate

fy; activation function of hidden unit y;

f;J derivative of activation function of hidden unit y;
fo activation function of output unit og

f;k derivative of activation function of output unit o
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Ip neural network output for pattern p

i input unit index

I total number of input units (bias unit excluded)

J hidden unit index

J total number of hidden units (bias unit excluded)

k output unit index

K total number of output units

l functional link units index

L total number of functional link units

N(0,0%) Gaussian distribution with 0 mean, and variance o2
nety; p net input signal to hidden unit y; for pattern p

neto, p net input signal to output unit oy for pattern p

Ok k-th output unit

Okp output of the k-th output unit for pattern p

P pattern index

P total number of patterns

Pg number of patterns in generalization set

Pr number of patterns in training set

Py number of patterns in validation set

t time step

T total number of delayed time steps for TDNN

tp target for pattern p

tkp target for k-th output unit for pattern p

U(a,b) uniform random number between a and b

Uk; direct weight between output unit o, and input unit z;
Auyg; direct weight change between output unit o; and input unit z;
uy; weight between functional link unit h; and input unit z;
vji weight between hidden unit y; and input unit z;

Avj; weight change between hidden unit y; and input unit 2;
v weight between hidden unit y; and functional link unit h;
Wi weight between output unit o and hidden unit y;

Awy; weight change between output unit ox and hidden unit y;
¢ epoch counter

Yj j-th hidden unit

Yip activation of hidden unit y;

z; i-th input unit

Zip value of input unit for pattern p

Zip(t) value of input unit for pattern p, delayed for time step ¢

B.1.2 Chapter 4

Ckj map coordinates of neuron kj
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Cmn map coordinates of the BMN

C, input covariance matrix

di p(2p,ur) Buclidean distance between input vector 2, and weight vector iy
Er quantization error on training set

dys Ward distance between clusters r and s

N (t) time-varying learning rate for output unit o

hmn.kj neighborhood function for neuron mn

j SOM column index

J total number of columns in SOM

k SOM row index

K total number of rows in SOM

kj index of a SOM neuron

Kk p(t) set of neighbors of winning cluster o, for pattern p
Ak k-th eigenvalue

mn index of the BMN

Tpy Mg number of patterns within clusters r and s respectively
Npn, number of patterns for which neuron mn is the BMN
o(t) vector of output values at time step ¢

o(t) time-varying width of Gaussian function

Uy vector of weights leading to output unit o

Wi weight vector of SOM neuron kj

Ay weight vector changes for SOM neuron kj

Wi weight value from input z; for neuron kj

Wy, Wy centroid vector of clusters r and s respectively

Zp p-th input vector

Z input matrix

B.1.3 Chapter 5

i mean vector of Gaussian kernel for hidden unit y;
Prp degree to which pattern p belongs to class k for RBF NN
0]2- variance of Gaussian kernel function for hidden unit y;

B.1.4 Chapter 6

ek;j eligibility of weight wy;
Tp external evaluator’s indication of NN’s success for pattern p
O reinforcement threshold value
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B.1.5 Chapter 7

A~ selective learning operator

At incremental learning operator

D¢ candidate training set

Ds training subset

Ev average validation error

Fnn~n(Dr; W) neural network output function

Oy standard deviation in validation error
r correlation coefficient

p Robel’s generalization factor

B.2 Part IIT — Evolutionary Computing

B, belief space at generation g
9 population at generation g
C, n n-th individual in a population at generation g
AC_';,,,, change in n-th individual in a population at generation g
Cyni i-th gene of n-th individual for generation g
Cyni complement of Cy n;, if binary variable
C, n-th individual in a population
FEA fitness function for an evolutionary algorithm
g generation counter
1 gene index
I number of genes in an individual
m mask vector
n index for individuals in a population
N number of individuals in a population
ATg normative knowledge component at generation g
Ng,i normative knowledge component for i-th gene at generation g
49,,, n-th offspring at generation g
On n-th offspring
Pe probability of cross-over
Pm probability of mutation
Dn probability of mutation per node in tree for GP
Dr reproduction probability
Pr probability of cross-over per bit for uniform cross-over

Sy situational knowledge component at generation g
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B.3 Part IV — Swarm Intelligence

B.3.1 Chapter 17

c1,C2 acceleration constants

dmaz largest distance between any two particles (swarm diameter)
F fitness function

v particle index

K constriction coefficient

P denotes i-th particle

¢ inertia weight

o(t) time-varying inertia weight

71,72 uniform random numbers

ri(t) time varying uniform random number associated with i-th particle
01, P2 constants in velocity update equations

t current iteration

tmaz maximum number of iterations

T (t) velocity of i-th particle at time step ¢

Ti; (1) velocity of j-th parameter for i-th particle at time step ¢
Vimaz maximum particle velocity

Z;(¢) position of i-th particle at time step ¢

Z;5(t) position of j-th parameter for i-th particle at time step ¢

B.3.2 Chapter 18

a weight of pheromone intensity

I5) weight of local information

Cix set of nodes to be visited by ant k£ from node ¢
d;j Euclidean distance between nodes ¢ and j
d(%;,7;)  dissimilarity between two objects

735 local information between nodes ¢ and j

f fraction of objects in a given neighborhood
f(Z fraction of z; objects in a given neighborhood
1,7 node indices

k ant index

(2,7) link between nodes i and j

Li(?) length of route traveled by ant k

Nsxr(r) neighborhood area around position r

Pp probability of picking up an object

Pp(Z;) probability of picking up object Z;

Pd probability of dropping an object
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pa(Z;) probability of dropping object Z;

;5 (1) time-varying probability of ant k to follow link (3, j)
P forgetting factor/rate of pheromone evaporation

s neighborhood size

735(t) total pheromone intensity on edge (i, )

ATi(t) change in pheromone intensity for edge (, j)
ATij (t) pheromone deposit on edge (i, ) by ant k

T optimal route

Tk (t) route constructed by ant k at time ¢
v travel velocity of an ant

Umagz maximum travel velocity of an ant

B.4 Part V — Fuzzy Systems

B.4.1 Chapters 19-21

BA membership function for fuzzy set A

pa(z) membership of z to fuzzy set A

n number of elements in a discrete fuzzy set
p(A) probability of event A

X domain of a fuzzy set (universe of discourse
Sy defining a discrete-domain fuzzy set

Ix defining a continuous-domain fuzzy set

B.4.2 Chapter 22

ap(X) vagueness of concept B in X

A set of attributes

A information system

a(E;) indicates that a belongs to equivalence class E;
B rough set

BX upper approximation of X

BX lower approximation of X

BNp(X)  B-boundary of X

E; an equivalence class

f(B) discernibility function

f(E,B) relative discernibility function
IND(B) indiscernibility relation
pa(E,X) membership function for class E
Mp(B) discernibility matrix
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RED(B) reduct of B

RED(E, B) relative reduct of B

U universe of discourse

U/IND(B) equivalence classes in relation IND(B)
Va range of values of attribute a
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Index

activation function, 6, 18
adaptive, 108
Gaussian function, 20
hyperbolic tangent function, 20
linear function, 18
ramp function, 20
sigmoid function, 20
step function, 18
active learning, 110
definition, 112
expected misfit, 115
incremental learning, 112, 115
pseudocode algorithm, 117
selective learning, 113, 114
adaptive activation function, 108
allele, 125
allelle, 8
analysis of performance, 89
confidence interval, 89
ant colony optimization, 10, 199
applications, 206
clustering, 203
traveling salesman, 201
approximate reasoning, 11
architecture selection, 101
construction, 104
objective, 107
pruning, 104
regularization, 102
using sensitivity analysis, 107
artificial intelligence, 3, 12
definition, 4
artificial neural network, 6, 15
definition, 16
artificial neuron, 6, 17
activation function, 18

281

augmented vectors, 22
bias unit, 22
definition, 17
error-correction, 24
generalized delta, 24
geometry, 20, 49
gradient descent, 22
learning, 21
net input signal, 18
weights, 6
Widrow-Hoff, 24
associative memory, 56
augmented vectors, 22

backpropagation, 37, 38
backward propagation, 37
feedforward pass, 37
backpropagation-through-time, 34
backward propagation, 37
bagging, 51
batch learning, 37, 41, 66
batch map, 66
belief space, 172, 174
normative knowledge component,
174
situational knowledge component,
174
best matching neuron, 67
bias unit, 22
binary PSO, 191
biological neural systems, 6
boosting, 52
breeding PSO, 192
building-block genetic programming,
152

central limit theorem, 90
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chromosome, 8, 124
chromosome representation, 125
evolutionary strategy, 162
finite-state machine, 157
function optimization, 159
genetic algorithm, 135
genetic programming, 147
routing optimization, 143
classical optimization, 131
clustering, 60
ant colony optimization, 203
inter-cluster distance, 204
intra-cluster distance, 204
Ward clustering, 70
coevolution, 177
competitive fitness, 179
cooperative coevolutionary algo-
rithm, 180
fitness sampling, 180
hall of fame, 180
relative fitness function, 179
competitive fitness, 179
computational intelligence, 4
confidence interval, 89
conscience factor, 62
constriction coefficient, 190
context layer, 32
cooperative coevolutionary genetic al-
gorithm, 180
cooperative PSO, 193
cooperative systems
coevolution, 177
cooperative coevolutionary algo-
rithm, 180
particle swarm optimization, 193
correlation coefficient, 85
cross-over, 130, 137
arithmetic, 138, 192
evolutionary strategy, 163
genetic algorithm, 137
genetic programming, 151
global, 163
local, 163
one-point, 138

INDEX

pseudocode, 137
two-point, 138
uniform, 137

cross-over rate, 137

crossover, 8

cultural algorithm
acceptance function, 173
adjust function, 174
belief space, 174
function optimization, 174
influence function, 174
pseudocode, 173
variation function, 174

cultural evolution, 171
belief space, 172

culture, 171

data preparation, 90
input coding, 91
missing values, 90
noise injection, 96
normalization, 95
outliers, 91
scaling, 92
training set manipulation, 96
decision boundaries, 49
decision system, 240
defuzzification, 228
averaging, 228
clipped center of gravity, 229
min-max, 228
root-sum-square, 228
differential evolution, 167
pseudocode, 168
reproduction, 167
differential Hebbian learning, 58
direct weights, 40
discernibility, 240
discernibility function, 240
discernibility matrix, 240
discrete recombination, 164
dispensibility, 241
dissimilarity, 204
dynamic learning rate, 59. 69
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dynamic pattern selection, 116

elitism, 8, 127, 129

Elman recurrent neural network, 32
context layer, 32
output, 33

empirical error, 36, 84

ensemble neural network, 50

bagging, 51
boosting, 52
epoch, 37
error

empirical, 84
mean squared, 41, 84
quantization, 62, 66
sum squared, 22, 38, 84
true, 84
error function, 22
empirical, 36
true, 36
error-correction, 24
Euclidean distance, 61
evolution of evolution, 161
evolutionary algorithm
applications, 124
components, 123
definition, 123
pseudocode, 130
evolutionary computing, 8, 121
evolutionary programming, 155
function optimization, 158
mutation, 159
pseudocode, 155
selection, 156
evolutionary strategy, 161
chromosome representation, 162
cross-over, 163
mutation, 164
pseudocode, 161
selection, 166

feedforward neural network, 28, 38
output, 28
feedforward pass, 37
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finite-state machine, 156
chromosome representation, 157
fitness function, 158
mutation, 158

fitness function, 8, 125
finite-state machine, 158
function optimization, 159
genetic programming, 149
particle swarm optimization, 189
relative, 179
routing optimization, 143

fitness remapping
explicit, 127
implicit, 127

fitness sampling, 180

forgetting factor, 57
pheromone update, 202
unsupervised learning, 57

function optimization
belief space, 174
chromosome representation, 159
cultural algorithm, 174
evolutionary programming, 158
fitness function, 159
mutation, 159
particle swarm optimization, 195

function set, 147

functional link neural network, 29
functional unit, 29
output, 29

functional unit, 29

fuzzification, 227

fuzziness, 11, 221

fuzzy controller, 233
components, 234
Mamdani, 236
table-based, 236
Takagi-Sugeno, 237

fuzzy inferencing, 225, 227

fuzzy operators, 214
complement, 216
containment, 214
equality, 214
intersection, 216
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union, 216

fuzzy sets, 212
characteristics, 218
continuous, 212
discrete, 212

fuzzy systems, 11, 209, 211

fuzzy variable, 219

Gaussian activation function, 20
Gaussian kernel, 66, 76
gbest, 188
gene, 8, 125
generalization, 36, 84, 87
generalization factor, 87, 116
generalized delta, 24
generalized Hebbian learning, 60
generation gap, 129
genetic algorithm, 133
chromosome representation, 135
cooperative coevolutionary, 180
cross-over, 137
island model, 141
mutation, 138
pseudocode, 134
routing optimization, 142
genetic programming, 147
building-block approach, 152
chromosome representation, 147
cross-over, 151
fitness function, 149
mutation, 151
genome, 124
genotype, 124
geometry, artificial neuron, 20
global cross-over, 163
global optimization, 37
gradient descent, 22, 37
artificial neuron, 22
feedforward neural network, 38
lambda-gamma learning, 108
product unit neural network, 42
graph coloring problem, 207
Gray coding, 136
growing SOM, 67

INDEX

hall of fame, 180

Hamming cliffs, 135

Hebbian learning, 56
differential Hebbian learning, 58
generalized, 60
normalized Hebbian learning, 59
Sejnowski, 58

hedges, 219
concentration, 220
contrast intensification, 220
dilation, 220
probabilistic, 220
vague, 220

hidden units, 49

history, 11
artificial neural networks, 12
evolutionary computing, 12
fuzzy systems, 12
swarm intelligence, 13

Huber’s function, 92

hyperbolic tangent activation func-

tion, 20

incremental learning, 112, 115, 118
dynamic pattern selection, 116
information-based functions, 115
integrated squared bias, 115
optimal experiment design, 115
query by committee, 117
query-based learning, 117
selective incremental learning, 116
selective sampling, 116

indiscernibility relation, 240

individual, 124

inertia weight, 190

infinite-valued logic, 210

information-based functions, 115

initialization
gradient descent, 97
LVQ-1, 61
population, 126
radial basis function network, 76
self-organizing feature map, 64

integrated squared bias, 115



INDEX

intelligence, 3

inter-cluster distance, 204
intermediate recombination, 164
intra-cluster distance, 204
island genetic algorithm, 141

job-scheduling problem, 207

Jordan recurrent neural network, 33
output, 33
state layer, 33

lambda-gamma learning, 108
law of the excluded middle, 210
laws of thought, 210
Ibest, 189
LeapFrog, 47
learning
accuracy, 84
artificial neuron, 21
batch, 37, 41
generalization, 84, 87
overfitting, 41, 85, 88
reinforcement, 79
stochastic, 37, 38
stopping criteria, 41
supervised, 21, 27
unsupervised, 22, 55
learning rate, 23, 59, 69, 98
dynamic, 59, 69
learning reinforcement, 22
learning rule
error-correction, 24
generalized delta, 24
generalized Hebbian learning, 60
gradient descent, 22, 37
Hebbian learning, 56
lambda-gamma, 108
LeapFrog, 47
LVQ-I1, 60
normalized Hebbian learning, 59
particle swarm optimization, 48
principal components, 58
reinforcement, 80
scaled conjugate gradient, 45
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self-organizing feature map, 63
Widrow-Hoff, 24
learning vector quantizer, 60, 75
initialization, 61
LVQ-1, 60
LVQ-11, 75
linear activation function, 18
linear separability, 20
linguistic fuzzy rules, 226
linguistic variable, 219
local cross-over, 163
local optimization, 37

maximum velocity, 190
mean squared error, 41, 84
membership function
fuzzy sets, 212
rough sets, 242
membership functions, 212
meme, 172
meme pool, 172
missing values, 90
model selection, 110
momentum, 100
mutation, 8, 130, 138
evolutionary programming, 159
evolutionary strategy, 164
function node mutation, 151
Gaussian, 140, 151
genetic algorithm, 138
genetic programming, 151
grow mutation, 151
inorder, 140
lognormal self-adaptation, 160
random, 140
swap mutation, 151
terminal node mutation, 151
trunc mutation, 152
mutation rate, 138

neighborhood function
Gaussian, 66, 69
self-organizing feature map, 65
net input signal, 18
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product unit, 18, 30
summation unit, 18
no-free-lunch theorem, 131
noise injection, 96
non-deterministic linear sampling, 129
normalization, 95
fitness values, 128
fuzzy sets, 219
Z-axis, 96
z-score, 95

objective function, 22
Ockham, 83, 101, 110
off-line learning, 37
online learning, 37
optimal experiment design, 115
optimization
ant colony optimization, 199
classical, 131
cultural evolution, 171
evolutionary programming, 155
evolutionary strategy, 161
genetic algorithm, 133
global, 37
gradient descent, 37
LeapFrog, 47
local, 37
particle swarm optimization, 48,
185
random search, 133
scaled conjugate gradient, 45
outliers, 91
Huber’s function, 92
overfitting, 41, 85, 88
early stopping, 86
generalization factor, 87, 116

partial truth, 211
particle, 187
particle swarm optimization, 10, 48,
185
binary, 191
breeding, 192
constriction coefficient, 190

INDEX

cooperative, 193
fitness function, 189
function optimization, 195
gbest, 188
inertia weight, 190
Ibest, 189
maximum velocity, 190
neighborhood topologies, 193
pbest, 187
selection, 191
stopping criteria, 189
particles, 185
passive learning, 111
pbest, 187
performance factors, 90
active learning, 110
adaptive activation function, 108
architecture selection, 101
data preparation, 90
learning rate, 98
momentum, 100
optimization method, 101
weight initialization, 97
performance issues, 83
accuracy, 84
analysis, 89
computational complexity, 88
confidence interval, 89
convergence, 89
correlation coefficient, 85
generalization, 87
generalization factor, 87
overfitting, 85
phenotype, 8, 125
phenotypic evolution, 155
pheremone, 200
pleiotropy, 125
polygeny, 125
population, 8, 124, 126
predator-prey, 177
principal component analysis, 58
principal component learning, 58
generalized Hebbian learning, 60
normalized Hebbian learning, 59



INDEX

Oja, 59
probability, 221
definition, 221
product unit, 18, 30
distortion factor, 31
net input signal, 32
product unit neural network, 30, 42
gradient descent, 42

output, 32
proportional selection, 127
pruning

consuming energy, 105
evolutionary computing, 105
goodness factor, 105

hypothesis testing, 106
information matrix, 105

intuitive, 105

principal component analysis, 106
sensitivity analysis, 107

singular value decomposition, 106

quadratic assignment problem, 207
quantization error, 62, 66
query by committee, 117
query-based learning, 117

radial basis function network, 76
initialization, 76
output, 76
ramp activation function, 20
random search, 133
random selection, 127
rank-based selection, 129
recurrent neural network, 32
Elman, 32
Jordan, 33
reinforcement learning, 22, 79
reinforcement signal, 79
relative discernibility function, 241
relative fitness function, 179
competitive fitness sharing, 179
fitness sharing, 179
simple fitness, 179
reproduction operators, 130
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arithmetic, 167
cross-over, 130
differential evolution, 167
mutation, 130
particle swarm optimization, 192
rough sets, 210, 239
lower approximation, 239, 241
membership function, 242
uncertainty, 242
upper approximation, 239, 241
vagueness, 241
roulette wheel selection, 128
routing optimization, 142
ant colony optimization, 207
chromosome representation, 143
fitness function, 143

scaled conjugate gradient, 45
scaling, 92
amplitude scaling, 94
disadvantage, 93
linear, 93
mean centering, 94
variance, 95
Sejnowski, 58
selection
particle swarm optimization, 191
selection operators, 126
elitism, 127, 129
evolutionary strategy, 166
non-deterministic linear sampling,
129
proportional selection, 127
random selection, 127
rank-bases selection, 129
roulette wheel, 128
tournament selection, 128
selection PSO, 191
selective incremental learning, 116
selective learning, 113, 114, 118
selective sampling, 116
self-organizing feature map, 63
batch map, 66
best matching neuron, 67
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clustering, 70
growing SOM, 67
initialization, 64
learning rate, 69
missing values, 91
neighborhood function, 65
shortcut winner search, 69
stochastic, 63
visualization, 70
shortcut winner search, 69
sigmoid activation function, 20
social structure, 184, 186
ring topology, 186
star topology, 186
wheels topology, 186
soft computing, 5
state layer, 33
step activation function, 18
stigmergy, 184, 199
stochastic learning, 37, 38, 63
stopping criteria
evolutionary algorithm, 131
LVQ-1, 62
particle swarm optimization, 189
supervised learning, 41
sum squared error, 22, 38, 84
summation unit, 18
supervised learning, 21, 27
gradient descent, 37
LeapFrog, 47
learning problem, 36
particle swarm optimization, 48
performance issues, 83
-scaled conjugate gradient, 45
weight initialization, 97
supervised network
ensemble neural network, 50
feedforward neural network, 28
functional link neural network, 29
product unit neural network, 30
recurrent neural networks, 32
time-delay neural network, 34
swarm, 183, 187
swarm intelligence, 10, 183

INDEX

symbiosis, 177
synapse, 6

terminal set, 147

three-valued logic, 210

time-delay neural network, 34
output, 35

tournament selection, 128

training set manipulation, 96

traveling salesman, 201

true error, 36, 84

Turing, 3, 12

Turing test, 4

uncertainty, 242
nonstatistical, 11
statistical, 11

unsupervised learning, 22, 55
definition, 56
differential Hebbian learning, 58
generalized Hebbian learning, 60
Hebbian learning, 56
LVQ-1, 60
normalized Hebbian learning, 59
principal components, 58
Sejnowski, 58
self-organizing feature map, 63

vagueness, 241

VC-dimension, 87, 111

velocity
ant colony optimization, 206
LeapFrog, 47
particle swarm optimization, 187
with inertia weight, 190

Ward clustering, 70
Widrow-Hoff, 24

z-score normalization, 95



