

Page iii

Artificial Intelligence
Strategies, Applications, and Models Through Search Second Edition

CHRISTOPHER THORNTON
BENEDICT du BOULAY

AMACOM
New York · Atlanta · Boston · Chicago · Kansas City · San Francisco · Washington, D.C.

Brussels · Mexico City · Tokyo · Toronto

Page iv

© 1998 Intellect

ISBN: 0-8144-0470-7

All rights reserved. No part of this book may be reproduced in any form or by any means, electronic,
mechanical photocopying, recording, or otherwise without the prior written permission of the publisher.

Printed in the United States of America.

AMACOM
AMERICAN MANAGEMENT ASSOCIATION
1601 Broadway
New York, New York 10019
Visit the American Management Association and
AMACOM on-line at:
http://www.amanet.org

http://www.amanet.org/

Page v

Foreword

This book started out as a set of notes for a POP-11 based course at the University of Sussex on an
introduction to Artificial Intelligence. Chris Thornton designed this course around the fundamental idea
of search and devised the basic structure of the book. The course expanded to take in Prolog and was
then taught by Benedict du Boulay. He added Prolog variants to the POP-11 code. The course is now
taught by Steve Easterbrook who made several helpful comments on a draft of the book, as did Mike
Sharples. We thank Aaron Sloman and David Hogg for use of their method of writing a simple natural
language interface to a blocksworld, and Allan Ramsay and Rosalind Barrett for permission to adapt
their "weather rules" in the chapter on expert systems. We also thank various Sussex students who
pointed out errors and omissions, particularly Sarah Cole, who carefully proof-read parts of an earlier
draft. The programs were developed and the book written using the POPLOG programming
environment.

Benedict du Boulay would like to dedicate his contribution to this book to his friend Hugh Noble with
whom he started to write a text book not unlike this one but never finished it.

Page vii

Contents

1 Search-Related Techniques in AI 1

Why search 1

Objectives 2

Problem solving systems 3

State space search and problem reduction 4

Blind search and heuristic search 5

Graphs and trees 7

Organisation of the book 8

Searching for a solution path in a state space 8

Problem reduction 10

A very brief comparison of POP-11 and Prolog 13

Further reading 14

2 Simple State Space Search 15

Path-finding 15

Setting up the database 16

Setting up the path-finding function 19

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_2.html#JUMPDEST_Page_2
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_4.html#JUMPDEST_Page_4
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_5.html#JUMPDEST_Page_5
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_14.html#JUMPDEST_Page_14
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_15.html#JUMPDEST_Page_15
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_15.html#JUMPDEST_Page_15
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_16.html#JUMPDEST_Page_16
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_19.html#JUMPDEST_Page_19

The generality of search 24

Search spaces and search trees 24

Constructing an explicit representation of the search-tree 27

Search graphs 29

Node terminology 32

Backwards v. forwards searching 32

OR-tree search in Prolog 33

Reading 40

Exercises 40

Page viii

3 State Space Search 43

Introduction 43

The water jugs problem 43

Constructing successor nodes 44

The problem space 48

Searching for a solution path 50

Problem space exploration strategies 52

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_24.html#JUMPDEST_Page_24
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_24.html#JUMPDEST_Page_24
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_27.html#JUMPDEST_Page_27
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_29.html#JUMPDEST_Page_29
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_48.html#JUMPDEST_Page_48
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_50.html#JUMPDEST_Page_50
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_52.html#JUMPDEST_Page_52

Breadth-first search 53

Agendas 54

Implementing depth-first search using an agenda 58

Iterative deepening 59

Water jugs in Prolog 60

Agendas in Prolog 62

Iterative deepening in Prolog 67

Reading 68

Exercises 68

Notes 69

4 Heuristic State Space Search 71

Introduction 71

The 8-puzzle 71

Constructing 8-puzzle successors 72

Heuristic search 77

Hill-climbing search 81

Heuristic breadth-first search 83

Ordered search and the A* Algorithm 86

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_53.html#JUMPDEST_Page_53
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_54.html#JUMPDEST_Page_54
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_59.html#JUMPDEST_Page_59
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_67.html#JUMPDEST_Page_67
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_68.html#JUMPDEST_Page_68
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_68.html#JUMPDEST_Page_68
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_69.html#JUMPDEST_Page_69
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_72.html#JUMPDEST_Page_72
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_81.html#JUMPDEST_Page_81
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_83.html#JUMPDEST_Page_83
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_86.html#JUMPDEST_Page_86

Heuristic Search in Prolog 92

Reading 103

Exercises 103

Notes 105

5 Heuristic Search of Game Trees 107

Computing successors in the game of nim 109

Minimax evaluation 110

Worked example 116

Alpha-beta cutoffs 117

Implementing a nim-playing program 121

Page ix

Minimaxing in Prolog 125

Reading 130

Exercises 131

Notes 131

6 Problem Reduction (AND/OR-tree search) 133

Introduction 133

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_107.html#JUMPDEST_Page_107
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_110.html#JUMPDEST_Page_110
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_117.html#JUMPDEST_Page_117
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_121.html#JUMPDEST_Page_121
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_130.html#JUMPDEST_Page_130
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_131.html#JUMPDEST_Page_131
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_131.html#JUMPDEST_Page_131
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_133.html#JUMPDEST_Page_133
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_133.html#JUMPDEST_Page_133

Problem-reduction and the Tower of Hanoi 133

Implementing arbitrary AND/OR-trees 136

Implementing the AND/OR-tree search function 138

Implementing planning as AND/OR-tree search 139

Implementing reasoning as AND/OR-tree search 141

Loops in the search space 145

Solution tree 150

The AND/OR search tree 153

State space search and problem reduction 155

Forward AND/OR-tree search 159

Terminology 161

Production systems 162

AND/OR Search in Prolog 162

Reading 168

Exercises 168

Notes 169

7 Planning (microworld search) 171

Introduction 171

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_133.html#JUMPDEST_Page_133
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_136.html#JUMPDEST_Page_136
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_138.html#JUMPDEST_Page_138
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_139.html#JUMPDEST_Page_139
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_145.html#JUMPDEST_Page_145
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_153.html#JUMPDEST_Page_153
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_168.html#JUMPDEST_Page_168
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_168.html#JUMPDEST_Page_168
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_169.html#JUMPDEST_Page_169
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_171.html#JUMPDEST_Page_171

Operators 173

Strategies for microworld search 174

Implementing the new search function 177

Difference tables 183

Goal interactions 183

Operators containing variables 187

Simple plan finding in Prolog 194

Reading 199

Exercises 199

Page x

8 Parsing (search as analysis) 201

Introduction 201

Solution trees as analyses 201

Parsing 204

Data-driven (bottom-up) parsing 210

Building trees bottom-up 212

Advantages of bottom-up search 216

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_173.html#JUMPDEST_Page_173
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_174.html#JUMPDEST_Page_174
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_183.html#JUMPDEST_Page_183
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_183.html#JUMPDEST_Page_183
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_187.html#JUMPDEST_Page_187
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_194.html#JUMPDEST_Page_194
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_210.html#JUMPDEST_Page_210
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_212.html#JUMPDEST_Page_212
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216

Backwards and forwards parsing in Prolog 216

The Prolog grammar rule formalism 219

Bottom-up parsing in Prolog 221

Why is parsing useful 225

Building a top-level interpreter 231

Meaning in Prolog 234

Reading 240

Exercises 240

9 Expert Systems (probabilistic search) 243

Introduction 243

Probabilistic rules 244

Basic probability theory 245

Fuzzy set theory 246

MYCIN-like search 247

Implementing certainty-factors 251

Forwards or backwards 256

Probabilistic search in Prolog 258

Reading 265

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_231.html#JUMPDEST_Page_231
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_234.html#JUMPDEST_Page_234
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_240.html#JUMPDEST_Page_240
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_240.html#JUMPDEST_Page_240
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_243.html#JUMPDEST_Page_243
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_243.html#JUMPDEST_Page_243
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_244.html#JUMPDEST_Page_244
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_245.html#JUMPDEST_Page_245
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_246.html#JUMPDEST_Page_246
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_247.html#JUMPDEST_Page_247
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_256.html#JUMPDEST_Page_256
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_265.html#JUMPDEST_Page_265

Exercises 265

10 Concept learning (description search) 267

Introduction 267

Generalisation hierarchies 269

Deriving extensions 271

Quantifying generality 275

Concept learning 278

Implementing the generalisation mechanism 278

The focussing algorithm 282

Focussing in Prolog 283

Page xi

Generalisation as search 288

Reading 290

Exercises 290

11 Prolog (search as computation) 293

Introduction 293

Search rules as predicates 293

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_265.html#JUMPDEST_Page_265
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_267.html#JUMPDEST_Page_267
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_267.html#JUMPDEST_Page_267
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_269.html#JUMPDEST_Page_269
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_271.html#JUMPDEST_Page_271
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_275.html#JUMPDEST_Page_275
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_278.html#JUMPDEST_Page_278
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_278.html#JUMPDEST_Page_278
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_282.html#JUMPDEST_Page_282
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_283.html#JUMPDEST_Page_283
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293

The use of variables in search rules 295

Data structures 297

Unification 299

Implementing the unification matcher 301

Machinery to deliver output 306

The search function 306

Programming in Toyplog 310

A sample interaction with Toyplog 315

Reading 318

Exercises 318

Notes 319

References 321

Appendix A: Introduction to POP-11 325

Starting POP-11 325

POP -11 as a calculator 325

Variables 327

Functions 328

Defining functions 329

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_295.html#JUMPDEST_Page_295
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_297.html#JUMPDEST_Page_297
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_299.html#JUMPDEST_Page_299
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_301.html#JUMPDEST_Page_301
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_310.html#JUMPDEST_Page_310
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_315.html#JUMPDEST_Page_315
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_319.html#JUMPDEST_Page_319
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_321.html#JUMPDEST_Page_321
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_325.html#JUMPDEST_Page_325
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_325.html#JUMPDEST_Page_325
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_325.html#JUMPDEST_Page_325
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_327.html#JUMPDEST_Page_327
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_328.html#JUMPDEST_Page_328
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_329.html#JUMPDEST_Page_329

Local variables 331

Boolean expressions 333

Conditionals 335

Words and lists 337

Hats 339

For loops 340

Applist 342

Syssort 343

Matching 344

Restriction procedures 345

The matcher arrow 348

Page xii

The database 349

Readline 351

Functions calling functions 352

Recursion 353

Tracing 354

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_331.html#JUMPDEST_Page_331
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_333.html#JUMPDEST_Page_333
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_335.html#JUMPDEST_Page_335
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_337.html#JUMPDEST_Page_337
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_339.html#JUMPDEST_Page_339
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_340.html#JUMPDEST_Page_340
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_342.html#JUMPDEST_Page_342
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_343.html#JUMPDEST_Page_343
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_344.html#JUMPDEST_Page_344
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_345.html#JUMPDEST_Page_345
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_348.html#JUMPDEST_Page_348
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_349.html#JUMPDEST_Page_349
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_351.html#JUMPDEST_Page_351
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_352.html#JUMPDEST_Page_352
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_353.html#JUMPDEST_Page_353
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_354.html#JUMPDEST_Page_354

Show tree 356

Exiting from a function 357

Partial application 358

Concluding comment 358

Index 359

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_356.html#JUMPDEST_Page_356
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_357.html#JUMPDEST_Page_357
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_358.html#JUMPDEST_Page_358
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_358.html#JUMPDEST_Page_358
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_359.html#JUMPDEST_Page_359

Page xiii

Table of Figures

1-1. State-space search building the solution, a path 6

1-2. State-space search building the search tree, an OR tree 9

1-3. Problem reduction search 11

1-4. Problem reduction search building the solution, an AND tree 12

1-5. Comparison of POP-11 and Prolog 13

2-1. Map of Brighton 16

2-2. Computing successors 18

2-3. A true/false search function 20

2-4. Searching for a solution path 22

2-5. A search tree 26

2-6. A map of toytown 27

2-7. Computing the search tree 28

2-8. The search tree for Z from A 29

2-9. The search graph for Z from A 30

2-10. Searching with no location visited more than once 31

2 -1 1 .A tree 33

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_6.html#JUMPDEST_Page_6
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_11.html#JUMPDEST_Page_11
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_12.html#JUMPDEST_Page_12
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_16.html#JUMPDEST_Page_16
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_18.html#JUMPDEST_Page_18
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_20.html#JUMPDEST_Page_20
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_22.html#JUMPDEST_Page_22
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_26.html#JUMPDEST_Page_26
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_27.html#JUMPDEST_Page_27
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_28.html#JUMPDEST_Page_28
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_29.html#JUMPDEST_Page_29
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_30.html#JUMPDEST_Page_30
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_31.html#JUMPDEST_Page_31
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_33.html#JUMPDEST_Page_33

2-12. The map of Brighton in Prolog 34

2-13. Computing a search path in Prolog 35

2-14. Computing successors in Prolog 37

2-15. Computing the search tree in Prolog 38

3-1. Partial successor function for the jugs problem 45

3-2. Successor function for the jugs problem 46

3-3. Computing a search tree with depth limited depth-first search 47

3-4. Search tree for the jugs problem 49

3-5. Search tree for the jugs problem without duplicated nodes 51

3-6. Depth-first search 52

3-7. Breadth-first search 54

3-8. Agenda-based search 56

3-9. Iterative deepening search 60

3-10. Successor function for the jugs problem in Prolog 61

3-11. Agenda-based search in Prolog 64

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_34.html#JUMPDEST_Page_34
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_35.html#JUMPDEST_Page_35
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_37.html#JUMPDEST_Page_37
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_38.html#JUMPDEST_Page_38
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_45.html#JUMPDEST_Page_45
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_47.html#JUMPDEST_Page_47
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_49.html#JUMPDEST_Page_49
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_51.html#JUMPDEST_Page_51
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_54.html#JUMPDEST_Page_54
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_56.html#JUMPDEST_Page_56
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_64.html#JUMPDEST_Page_64

Page xiv

3-12. Agenda mechanism in Prolog 65

3-13. Iterative deepening in Prolog 67

4-1. 8-puzzle state representation 73

4-2. Successor function for the 8-puzzle 74

4-3. Example of 8-puzzle starting state 75

4-4. First four layers of an 8-puzzle search tree 76

4-5. Estimating closeness to goal in the 8-puzzle 79

4-6. Backtracking hill-climbing search 80

4-7. Two-dimensional view of hill-climbing 81

4-8. Breadth, depth, hill-climbing and best-first agenda search 84

4-9. Beam-width search 85

4-10. Comparing paths through a node 88

4-11. Agenda mechanism extended to include A* 89

4-12. Dealing with duplicate paths 91

4-13. Comparison of search methods 93

4-14. Moving tiles in the 8-puzzle in Prolog 95

4-15. Computing distance to goal in the 8-puzzle in Prolog 96

4-16. Evaluation functions for the 8-puzzle in Prolog 97

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_65.html#JUMPDEST_Page_65
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_67.html#JUMPDEST_Page_67
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_73.html#JUMPDEST_Page_73
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_74.html#JUMPDEST_Page_74
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_75.html#JUMPDEST_Page_75
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_76.html#JUMPDEST_Page_76
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_79.html#JUMPDEST_Page_79
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_80.html#JUMPDEST_Page_80
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_81.html#JUMPDEST_Page_81
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_84.html#JUMPDEST_Page_84
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_95.html#JUMPDEST_Page_95
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_96.html#JUMPDEST_Page_96
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_97.html#JUMPDEST_Page_97

4-17. Modified agenda mechanisms for A* and best-first in Prolog 98

4-18. Dealing with duplicate paths in Prolog 100

4-19. Insertion sort in Prolog 101

4-20. Comparison of agenda-based search methods in Prolog 102

5-1. Successors function for nim 108

5-2. Search tree for nim 110

5-3. Computing the minimax value of a node 112

5-4. Generating a minimax search tree 115

5-5. Example of a minimax search tree 116

5-6. Alpha-beta pruning 118

5-7. Computing the alpha-beta minimax value for a node 119

5-8. Generating the alpha-beta minimax search tree 122

5-9. An example of an alpha-beta minimax tree 123

5-10. Program to pla5-10. Program to play nim 124

5-11. Successor function for nim in Prolog 126

5-12. Computing the minimax value in Prolog 127

5-13. Computing the alpha-beta minimax value in Prolog 129

6-1. Tower of Hanoi program 135

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_100.html#JUMPDEST_Page_100
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_101.html#JUMPDEST_Page_101
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_108.html#JUMPDEST_Page_108
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_110.html#JUMPDEST_Page_110
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_112.html#JUMPDEST_Page_112
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_115.html#JUMPDEST_Page_115
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_118.html#JUMPDEST_Page_118
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_119.html#JUMPDEST_Page_119
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_122.html#JUMPDEST_Page_122
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_123.html#JUMPDEST_Page_123
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_124.html#JUMPDEST_Page_124
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_126.html#JUMPDEST_Page_126
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_127.html#JUMPDEST_Page_127
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_129.html#JUMPDEST_Page_129
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_135.html#JUMPDEST_Page_135

6-2. Backwards search of an AND/OR tree 138

6-3. Avoiding loops in AND/OR search by setting a depth limit 148

6-4. Constructing a solution AND tree 151

6-5. An example AND solution tree 152

Page xv

6-6. Constructing the AND/OR search tree 154

6-7. An example AND/OR search tree 155

6-8. Successor function for rules in state space search 156

6-9. Search tree with two solutions using rulebase2 158

6-10. Search tree with no solution 159

6-11. Forwards search 160

6-12. Backwards search in Prolog 163

6-13. Solution tree for decorating the cake, in Prolog 164

6-14. Limited depth AND/OR tree search 165

6-15. Solution AND tree with depth limit of 4 166

6-16. Iterative deepening AND/OR tree search in Prolog 167

7-1. A simple blocksworld 172

220

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_138.html#JUMPDEST_Page_138
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_148.html#JUMPDEST_Page_148
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_151.html#JUMPDEST_Page_151
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_152.html#JUMPDEST_Page_152
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_154.html#JUMPDEST_Page_154
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_156.html#JUMPDEST_Page_156
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_158.html#JUMPDEST_Page_158
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_160.html#JUMPDEST_Page_160
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_163.html#JUMPDEST_Page_163
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_164.html#JUMPDEST_Page_164
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_165.html#JUMPDEST_Page_165
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_167.html#JUMPDEST_Page_167
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_172.html#JUMPDEST_Page_172
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_220.html#JUMPDEST_Page_220

7-2. A STRIPS-like operator 174

7-3. An AND/OR tree of operators 175

7-4. Firework operators 176

7-5. Planning as backwards search with operators 178

7-6. Chatty print 179

7-7. Constructing a plan involving goal interactions 186

7-8. Blocksworld operators 188

7-9. Instantiating operators 189

7-10. Firework operators in Prolog 192

7-11. Simple planning in Prolog 193

7-12. State manipulating procedures for the planner 195

7-13. Blocksworld operators in Prolog 196

7-14. A planner that partially deals with goal interactions 198

8-1. Deconstructing a university 204

8-2. Parsing as backwards search 206

8-3. A parse tree 208

8-4. Bottom-up parsing 210

8-5. Building parse trees bottom-up 213

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_174.html#JUMPDEST_Page_174
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_176.html#JUMPDEST_Page_176
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_178.html#JUMPDEST_Page_178
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_179.html#JUMPDEST_Page_179
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_186.html#JUMPDEST_Page_186
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_188.html#JUMPDEST_Page_188
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_189.html#JUMPDEST_Page_189
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_192.html#JUMPDEST_Page_192
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_193.html#JUMPDEST_Page_193
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_195.html#JUMPDEST_Page_195
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_196.html#JUMPDEST_Page_196
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_198.html#JUMPDEST_Page_198
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_206.html#JUMPDEST_Page_206
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_208.html#JUMPDEST_Page_208
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_210.html#JUMPDEST_Page_210
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_213.html#JUMPDEST_Page_213

8-6. Top-down parsing in Prolog 217

8-7. Second parse-tree

8-8. Bottom-up recognising in Prolog 222

8-10. Bottom-up production of a parse tree in Prolog 223

8-10. Building a parse tree by forwards search in Prolog 224

8-11. Extracting the meaning from a parse tree 227

8-12. Blocksworld grammar 228

8-13. Parsing with a particular grammar 229

8-14. Distinguishing different kinds of sentence 231

8-15. Dealing with two kinds of questions 232

Page xvi

8-16. Handling interaction with the user 233

8-17. Extracting the meaning from a parse-tree in Prolog 235

8-18. The blocksworld grammar in Prolog 236

8-19. Blocksworld conversation in Prolog 237

8-20. Dealing with different question types in Prolog 239

9-1. Building solution trees with input from the user 249

9-2. A solution tree 251

9-3. Computing the certainty value of a solution tree 252

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_217.html#JUMPDEST_Page_217
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_222.html#JUMPDEST_Page_222
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_224.html#JUMPDEST_Page_224
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_227.html#JUMPDEST_Page_227
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_228.html#JUMPDEST_Page_228
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_229.html#JUMPDEST_Page_229
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_231.html#JUMPDEST_Page_231
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_232.html#JUMPDEST_Page_232
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_233.html#JUMPDEST_Page_233
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_236.html#JUMPDEST_Page_236
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_237.html#JUMPDEST_Page_237
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_239.html#JUMPDEST_Page_239
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_249.html#JUMPDEST_Page_249
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_252.html#JUMPDEST_Page_252

9-4. Computing the the certainty value from the whole search tree 255

9-5. The weather rules in Prolog 257

9-6. Finding a solution tree in Prolog 259

9-7. Computing the certainty value of a solution tree in Prolog 260

9-8. Computing the certainty value of the search space 262

9-9. Computing certainty values in Prolog 263

10-1. Generating a generalisation hierarchy 270

10-2. Generalisation hierarchy 271

10-3. Computing the extension of description 272

10-4. Generating descriptions by backwards search 274

10-5. Computing an ordered description table 276

10-6. Determining whether a description covers a list of examples 279

10-7. Learning a concept description from examples 281

10-8. Isa hierarchy in Prolog 284

10-9. Generalising and specialising in Prolog 286

10-10. Learning mechanism in Prolog 287

10-11. User interaction with the learning program in Prolog 289

11-1. Accessing Prolog terms 301

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_255.html#JUMPDEST_Page_255
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_257.html#JUMPDEST_Page_257
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_259.html#JUMPDEST_Page_259
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_260.html#JUMPDEST_Page_260
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_262.html#JUMPDEST_Page_262
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_263.html#JUMPDEST_Page_263
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_271.html#JUMPDEST_Page_271
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_274.html#JUMPDEST_Page_274
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_276.html#JUMPDEST_Page_276
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_279.html#JUMPDEST_Page_279
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_281.html#JUMPDEST_Page_281
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_284.html#JUMPDEST_Page_284
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_286.html#JUMPDEST_Page_286
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_287.html#JUMPDEST_Page_287
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_289.html#JUMPDEST_Page_289
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_301.html#JUMPDEST_Page_301

11-2. Procedures associated with Prolog variables 303

11-3. The unification matcher 304

11-4. Checking the instantiations at the top level 305

11-5. Placing Prolog variables inside a list structure 307

11-6. Extracting uninstantiated (though possibly sharing) variables 308

11-7. Backwards search for Prolog 309

11-8. The top level of the Prolog system 311

A-1. Function to double a number 330

A-2. function to double then square a number 331

A-3. Function to choose the larger of two numbers 335

A-4. Function to select the larger of two numbers 336

A-5. Function to compare two numbers 343

A-6. Function to check whether its argument is foo or ding 346

A-7. Function to return silly or false, depending on the input 347

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_303.html#JUMPDEST_Page_303
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_304.html#JUMPDEST_Page_304
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_305.html#JUMPDEST_Page_305
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_307.html#JUMPDEST_Page_307
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_309.html#JUMPDEST_Page_309
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_311.html#JUMPDEST_Page_311
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_330.html#JUMPDEST_Page_330
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_331.html#JUMPDEST_Page_331
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_335.html#JUMPDEST_Page_335
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_336.html#JUMPDEST_Page_336
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_343.html#JUMPDEST_Page_343
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_346.html#JUMPDEST_Page_346
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_347.html#JUMPDEST_Page_347

Page xvii

A-8. Functions to find an address, given a name 352

A-9. Function to compute the factorial of its input 354

A-10. A simple tree, displayed by showtree 356

A-11. Function with premature exit from a loop 357

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_352.html#JUMPDEST_Page_352
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_354.html#JUMPDEST_Page_354
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_356.html#JUMPDEST_Page_356
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_357.html#JUMPDEST_Page_357

Page 1

1
Search-Related Techniques in AI

Why Search

Almost all artificial intelligence (AI) programs can be said to be doing some form of problem-solving whether it be
interpreting a visual scene, parsing a sentence or planning a sequence of robot actions. Search is one of the central issues
in problem-solving systems. It becomes so whenever the system, through lack of knowledge, is faced with a choice from
a number of alternatives, where each choice leads to the need to make further choices, and so on until the problem is
solved. Playing chess is a classic example of this situation. Other examples include the attempt to diagnose a
malfunction in some complex piece of machinery or determining how best to cut material to make an item of clothing
with the minimum of waste. Thus interpreting a visual scene and parsing a sentence can be regarded as searches for a
plausible interpretation of possibly ambiguous visual or aural data, and making a plan can be regarded as a search in a
space of plans to find one that is internally coherent and achieves the given goals.

Where the number of possibilities is small the program may be able to carry out an exhaustive analysis of them all and
then choose the best. In general, however, exhaustive methods will not be possible and a decision will have to be made
at each choice-point to examine only a limited number of the more promising alternatives. In chess, for example, there
are just too many possibilities for a program (or a person) to imagine every possible move, each of the possible
corresponding replies, further moves in response and so on to the anticipated conclusion on the game. But deciding what
counts as ''promising" is sometimes very hard. A good chess player is good precisely because, among other skills, he or
she has an eye for plausible ways to proceed and can concentrate on these. Although it is easy to design problem-solving
programs that are good at keeping track of choices made and choices yet to be explored, it is hard to provide a program
with the common sense that can cut through such a welter of possibilities to concentrate its main analysis on the small
number of critical choices.

Page 2

Some problems that at first sight require a solution based on blind search, the Rubik's cube for example, turn out on
further study to be partially soluble by special purpose methods that are essentially deterministic in character. The degree
of search needed in the solution of other problems, such as the travelling salesman problem (i.e. the determination of the
shortest circular route linking a given set of cities so that each city is visited once only), can also be enormously reduced
by special methods and by relaxing some constraint in the problem, for example that an "acceptable" solution be found
rather than the "best" solution.

There is a tension in AI between the investigation of general purpose methods that can be applied across domains and
the discovery and exploitation of the special knowledge, heuristics, tricks and shortcuts that can be applied in particular
domains to improve performance. This book is largely concerned with general purpose methods. It should be noted,
however, that these general purpose methods often provide the framework to which the available domain specific
knowledge may be attached.

In many ways the the problem-solvers referred to here are easily outstripped in performance by knowledgeable humans.
But this is the state of play at present. What AI has done is to emphasise that even such impoverished tasks as finding
one's way using a map or planning how to construct some simple object hide a wealth of issues that belie our apparently
effortless human ability to succeed at such tasks.

Objectives

This introductory chapter provides a brief overview of some of the terminology and concepts which are addressed in
more detail in the first part of the book, such as state-space search.

The book itself is intended to demonstrate how the common thread of search binds various topics in AI together. It
covers a subset of important AI techniques which can all be understood as variants or generalisations of a basic set of
search algorithms. The approach is a practical one in that it includes program code to illustrate the ideas. Code is offered
both in POP-11 and in Prolog. Each language has its merits and it is hoped that the dual perspective that the two sets of
code examples provide will be helpful. Because POP-11 is not so well known as a language, Appendix A offers some
insight into the basic syntax and mechanisms of the language. The "flavour" of the programs derives mainly from the
POP-11 and the Prolog code should be read as a kind of annotation to the POP-11. A book devoted to Prolog solely
might well have offered Prolog code structured in a different way. In particular, the Prolog code and comments on that
code offer a rather procedural view of the language.

We hope that this book will be useful for students with some background in programming who are taking an
introductory course in AI. The book was initially written for a first year course in Sussex that leads to a BA in Artificial
Intelligence.

Page 3

Each chapter covers one technique and divides up (roughly) into three sections: a section which introduces the technique
(and its usual applications) and suggests how it can be understood as a variant/generalisation of search; a section which
develops a POP-11 implementation; and a section which develops a Prolog implementation of the technique. We include
brief notes on alternative treatments of the material, further reading and some exercises.

Problem-Solving Systems

Many problem-solving systems have the following features.

(a) A knowledge base containing information about the current state of the problem in hand.

(b) A set of operators for transforming the knowledge base in some way.

(c) A control strategy or means of deciding which operator to use at any particular point during the solution of the
problem, and a way of deciding when the problem is solved or unsolvable.

Consider a robot chef which should plan and then cook a meal. The knowledge base might initially contain the goal to
produce dinner. The final state of the knowledge base would be a fully worked out plan for that meal which indicated
every ingredient that would be needed and all the necessary cooking and preparation actions. The operators would split
the goal to produce some complicated meal into its constituent parts. So the main goal of planning a meal might be split
by one operator into the simpler goals of planning a starter and planning a main course and planning a dessert. An
alternative operator at this point might ignore the starter, another might ignore the dessert yet another might sub-divide
the meal in another way entirely, for example in terms of desirable constituents for a balanced diet. The control strategy
would decide between the various operators available at each point, possibly abandoning one putative plan if it lead to an
impossible situation, such as the need for an unobtainable ingredient. The control strategy would also ensure that bits of
a plan were all coordinated properly.

Consider a program to solve the 8-puzzle (a favourite in Al books!). This is a puzzle where there are 8 numbered tiles
that can slide either sideways or vertically in a 3 by 3 square framework containing 9 spaces. Only one tile can be moved
at a time into the single unoccupied space in the framework. In most versions of the puzzle the tiles are set in some
disorganised order at the start and the problem is to rearrange them into order by sliding one tile at a time (and not taking
them out of the framework).

Page 4

In a program to solve the 8-puzzle the knowledge base would contain a representation of the tiles in the frame and the
operators would be the moves available at the particular point in play. Here a solution would be a completed sequence of
tile moves that brought the puzzle to the required state. The control strategy would make sure that in general it was the
tiles which were out of place that were moved (though of course it might be necessary to temporarily move tiles that
were already in the right place), because it would be these misplaced tiles that would necessarily have to be moved as
part of any solution.

The amount of search involved in a problem can be reduced if there is a method of estimating how effective an operator
will be in moving the initial problem state towards a solution, e.g. a method for choosing "promising" moves in chess or
choosing which tile to slide in the 8-puzzle. A great deal of attention has been given to methods of making such
estimates and to the repercussions of such estimates on control strategy.

Occasionally the amount of search can be reduced very dramatically by representing the problem in a new way, that is
by looking at it from a different viewpoint (see, e.g. Amarel, 1981). Planning programs, for example, can usually reduce
search by first considering only the most important factors of a problem before going on to consider the details once the
main issues have been sorted out. In general the representation of the problem by the program is determined by the
programmer and even these "hierarchical" planners have their notion of importance built in. Getting a program to decide
for itself what counts as important or determine the best way to view a problem is extremely difficult. Getting a program
to automatically re-orientate its view of a problem in the way suggested is, alas, beyond the state of the art.

State Space Search and Problem Reduction

Many search problems fall into one or other of two classes depending on the action of the operators involved. In some
problems each operator takes the problem state or situation and transforms it into a single new problem state. For
example, in the 8-puzzle each move transforms the arrangement of the tiles to give a new arrangement. Here the problem
is to find that sequence of operators (moves) which in total transforms the initial state of the frame of tiles to a
concluding state. This is called State Space Search.

By contrast Problem Reduction involves the use of operators which break down a complex problem possibly into several
simpler, possibly independent, sub-problems each of which must be solved separately. The meal-planning system
alluded to earlier is an example of this kind of system. Each sub-problem may itself be broken down into sub-sub-
problems and so on, until "micro-problems" are met which can either be solved immediately without further
decomposition or which are seen to be definitely insoluble.

Page 5

In both State Space approaches and Problem Reduction there may be a variety of operators which in principle can apply
at any particular point. Thus in the 8-puzzle (a State Space example) there is always a choice of at least two tiles that
could be moved at each stage; in undertaking a mathematical integration (a typical Problem Reduction example) there
typically will be a number of methods available, each of which will sub-divide the larger integration problem into
smaller ones in a different way.

State space search involves searching what may be thought of as an OR Graph. Here a "graph" should be thought of as a
network of nodes linked by arcs, like a road network linking cities. Each node in the graph represents a state of the
problem and each arc from a node represents an operator which could be applied to that state. It is called an OR Graph
(as opposed to an AND/OR Graph, see below) because the branching paths from each node represent alternatives (hence
"or"). The problem for the system is to find a path (possibly the shortest path) linking the node representing the starting
state with the node representing the final (or goal) state.

By contrast, problem reduction involves the search of an AND/OR graph where each node now represents only a part of
the problem to be solved and each arc links a problem to a sub-problem. Arcs from a node are bunched into groups. Each
group of arcs from a node represents a particular way of decomposing the problem by one of the alternative operators
which can be applied to that node. As each group is an alternative it can be regarded as the "or" part of the graph. Within
each group, the various arcs link to nodes representing the sub-problems that need to be solved using that particular
operator. Thus within a group the arcs are in an "and" relation to each other, because all the sub-problems must be
solved. The problem for the system in this case is to find the interconnected paths that link the node which represents the
starting state with all the nodes that represent the ultimate decomposition of the the problem into its simplest sub-
problems.

Blind Search and Heuristic Search

The totality of all possible nodes in a problem is known as its search space. It is important to distinguish the complete
search space for a problem (i.e. all possible nodes and arcs) from that part of the space that any particular system
explores in its attempt to find a solution (i.e. those nodes and arcs actually considered). Usually only a portion of this
space is or can be explored. Chess for example has been estimated to have around 10120 nodes, and even draughts has
around 1040. The reader may care to compute how long such spaces might take to explore even working at the rate of a
million nodes per second.

Some control strategies for exploring the search space work forward from an initial state towards a solution. Such
methods are also sometimes called data-directed. An alternative strategy is to work backward from a goal or final state
towards either soluble sub-problems or the initial state, respectively. Such a control strategy is

Page 6

<><><><><><><><><><><><>

A procedural description in POP-11

To search for the path, given a partial path, that ends with a goal state:

1. If the partial path already ends with a goal state, exit with the partial path as the solution.

2. Otherwise, take in turn each extended path, which extends the partial path by one state, and recursively search to see if
this extended path can be made to reach the goal; if so exit immediately with the resultant path as the solution.

3. If no solution can be found exit with <false> as the solution.

define search(partial_path) -> solution;
 if is_goal (last(partial_path)) then partial_path -> solution
 else for extended_path in successors(partial_path) do
 search(extended_path) -> solution;
 if is_path(solution) then return endif
 endfor;
 false -> solution
 endif
enddefine;

<><><><><><><><><><><><>

A declarative description in Prolog

1. The search succeeds with the solution equal to the given partial path, if the last state in the partial path is the goal.

2. Otherwise, the search succeeds with a solution, if the given partial path can be extended by a state to an extended path
and the search given this extended path succeeds.

search(Partial_path, Solution) :-
 last(Partial_path, Last_state),
 is_goal(Last_state), !,
 Solution = Partial_path.

search(Partial_path, Solution) :-
 successor(Partial_path, Extended_path),
 search(Extended_path, Solution).

Figure 1-1
State-space search building the solution, a path

sometimes called goal directed. Problem reduction systems often work backward in this way. Sometimes a mixture of
both forward and backward strategies is employed, in the hope that working forward and backward will successfully
meet in the middle.

Page 7

Where the search space is small, systematic (but blind) methods can be used to explore the whole search space. These
include depth-first search where, for each new node encountered, one of the arcs from it is explored. Only if a dead end
is reached does the system return to the most recent choice-point and try a different arc. This method is easy to
implement but can be dangerous in that the system may spend a long (or infinite!) time fruitlessly exploring a hopeless
path. A variation on this method, called bounded depth first search, sets a limit on the depth to which exploration is
allowed.

Breadth-first search is another systematic but blind method. Here all the arcs from a node are explored before moving on
to explore any arcs from the new nodes encountered. The advantage of this method is that it is guaranteed to find a
solution consisting of the shortest path (if one exists) but can be computationally expensive on memory especially if
each node is bushy, i.e. has many arcs coming out of it. These systematic but blind methods can be applied to either state-
space representations or problem reduction.

Problems differ in the form that their goal states take. Sometimes the goal state is known explicitly, such as in the 8-
puzzle when all the tiles are to be in correct numerical order. In these cases it may be possible to make a comparison
between the current state and the goal state as part of the process of monitoring progress. In other problems, the goal
state is not known at the start, but there is a procedure which will decide whether or not a given state conforms with the
criterion of being a goal state. An example here might be successfully solving an equation.

Problems also differ in whether the value of the goal state is the real goal of the problem or whether it is the path to that
goal which is more important. For instance, route-finding emphasises the path where equation-solving emphasises the
goal itself.

Most systems are limited by either time or space constraints to explore only a portion of the search space, choosing only
certain of the alternatives available. Such systems depend on knowledge of the problem domain to decide what might be
promising lines of development. They will have some measure of the relative merits either of the different nodes or of
the available operators to guide them. Search which is so guided is called heuristic search. The methods used in such
search are called heuristics. These terms often carry the connotation of inexactness and fallibility and are contrasted with
algorithms which are bound to work. Again both state-space search and problem-reduction search can be conducted
using heuristics.

Graphs and Trees

Some of the above discussion may give the impression that the search tree of nodes and arcs is a pre-existing artifact
which the program explores. Occasionally this is true, but in most cases the problem-solving program explores the space
by "growing" a tree as it goes. Thus it is often reasonable to picture a problem-solving program as if it were a driver,
without a map but with a notepad, driving around searching for a

Page 8

particular village in a maze of country roads. As the search proceeds the traveller keeps a record of which roads and
villages have already been encountered but can have no foreknowledge of what lies ahead.

By choosing one node in the graph as a starting point (whether working forward or backward) and by applying the
available operators, the program grows a tree rather than a graph. That is, each node explored points back to one node
only, the one from which it was produced. The production of a tree rather than a graph makes it straightforward to
extract a solution path, traced from the node representing the solution back to the starting node. Depending on the
particular problem and on the way the program is implemented this tree may contain the same node at different points or
may not. Re-encountering a node on a particular solution path during search indicates that the program has found a loop
in the search space. For example, if this happens while solving the 8-puzzle, it means that the program has found a set of
moves which takes it to exactly the same position as has been met before.

Organisation of the Book

The main division in the book is between the early chapters concerned with variations of state space search and the later
chapters which are variations on problem reduction. We start with a simple form of state space search where each state
has no internal structure. The example is modelled on route-finding from a map. In this case, our knowledge base of the
current state of the problem is just the name of the location from which we are currently searching. The transforming
operators are just the successor locations that can be reached in one step. The idea of a state is developed in the next
chapter to include problems where the state itself has component parts. We explain the techniques via the jugs problem
and also introduce the idea of using an agenda to implement exhaustive breadth and depth first search.

Next we explore heuristic search, using the 8-puzzle as an example and show how the same agenda based search
mechanism can be adapted to hill climbing and best first search. This chapter also deals with heuristic search in the
context of two person games (in our case, a variant of Nim) and explains mini-maxing and alpha-beta pruning.

Searching for a Solution Path in a State Space

Throughout the early chapters we introduce variations on a small number of programs. These programs assume that a
goal state can be recognised and that it is possible to generate the successors for a given state. The first program deals
with sequences of states (i.e. paths) and constructs a path as a solution. The algorithm and code for the first program is
given in Figure 1-1.

Page 9

<><><><><><><><><><><><>

To search constructing the whole search tree, given a partial path:

1. If the partial path already ends with a goal state, there are no further subtrees to collect.

2. Otherwise, for every possible extended path build and collect a new subtree by recursively calling search_tree with the
extended path.

3. Exit with a tree built from the last of the given partial path together with either the subtrees built in step 2 or the empty
list of subtrees from step 1.

define search_tree(partial_path) -> tree;
 if is_goal(last (partial_path))
 then [] -> subtrees
 else [^(for extended_path in successors(partial_path) do
 search_tree(extended_path)
 endfor)] -> subtrees;
 endif;
 [^(last(partial_path)) ^^subtrees] -> tree
enddefine;

<><><><><><><><><><><><>

1. Search tree succeeds with a tree built solely from the last state of the given partial path, if that last state is the goal.

2. Otherwise, search tree succeeds with tree built from the last state of the given partial path together with subtrees, if
these subtrees are collected through the success of collect subtrees, itself given a list of extended paths.

search_tree(Partial_path, Tree) :-
 last(Partial_path, Last_state),
 is_goal(Last_state), !,
 Tree = [Last_state | []].

search_tree(Partial_path, Tree) :-
 last(Partial_path, Last_state),
 successors(Partial_path, Extended_paths),
 collect_subtrees(Extended_paths, Subtrees),
 Tree = [Lat_state | Subtrees]).

collect_subtrees([],[]).

collect_subtrees([Extended_path | Extended_paths], [Subtree | Subtrees]) :-
 search_tree(Extended_path, Subtree),
 collect_subtrees(Extended_paths, Subtrees).

Figure 1-2
State-space search building the search tree, an OR tree

Page 10

Note that this particular function and predicate are not intended to be directly runnable, as we are not offering definitions
of the subsidiary functions at this early stage of the book, so the code is really a kind of schema that will be fleshed out
later. Also we have glossed over various details, e.g. local variables, how to terminate the search properly and avoid
loops—all of which are covered in detail in the body of the book. The algorithm and programs are given here to set the
scene for what is to come.

The second general purpose state-space program schema constructs a search tree (an OR tree), see Figure 1-2. In Prolog
we use a subsidiary predicate (i.e. collect_subtrees/2) to do the work which the POP-11 built-in looping
mechanism handles.

Search is applied to game-playing programs and even minimaxing and alpha-beta pruning are shown to be a variant on
the same theme.

Problem Reduction

The second half of the book concentrates on problem reduction and again offers variants on a basic program theme. The
main theme, started in Chapter 6, concerns reasoning with a set of rules each of which associates a goal with its related
subgoals. We show how the search tree in this case is an and/or tree and distinguish forwards from backwards search of
this tree.

Chapter 7 develops the idea of problem reduction in the context of planning via a specialised set of rules called
operators, each of which can transform the current state of a world description in some way. The planning system forms
the chosen operators into a sequence to make the plan. As the operators have to be chosen to fit together sensibly, this
process involves search.

Parsing sentences according to a grammar (viewed as a set of rules) is shown to be yet another variant on the same
theme, except that here there is an extra constraint that the words in the sentence may be "used up" once only. Parsing is
used to distinguish top down from bottom up search and to examine their relative merits. Using one of these parsers, we
provide a very simple blocksworld interrogation program.

The topic of reasoning is further developed in the special case where the reasoning rules themselves are associated with
a degree of uncertainty, as is often the situation in expert systems. The same search programs as already developed are
extended to deal with certainty factors. To conclude the main section of the book, the topic of learning is explained in
terms of search in a description space and the basic set of search programs are again adjusted. The concluding chapter
offers an implementation of Prolog in POP-11 to show how the built-in search capabilities of Prolog can be
implemented. Some of the search programs developed in earlier parts of the book are themselves then run using this
implementation of Prolog.

The algorithm studied in these later chapters is one which searches to satisfy a list of goals, given a set of rules which
associate each goal with one or more lists of

Page 11

<><><><><><><><><><><><>

To search through a list of goals to see if they can all be satisfied, returning true if they can, false otherwise:

1. If the list of goals is empty, exit with <true>.

2. Otherwise, take the first goal from the list, leaving other goals for step 4.

3. Take each rule in turn that relates to this first goal and collect its list of subgoals, and recursively search the list of
subgoals. If this is successful, goto step 4, otherwise find the next applicable rule. If none of the rules work, exit with
<false>.

4. Search the ''other goals" from step 2. If this is successful, exit with <true>, otherise exit with <false>.

define search (goals) -> result;
 if null(goals) then true -> result
 else goals --> [?first_goal ??other_goals];
 foreach [^first_goal ??subgoals] in rules do
 search(subgoals) and search(other_goals) -> result;
 if result = true then return endif
 endforeach;
 false -> result
 endif
enddefine;

<><><><><><><><><><><><>

1. Search succeeds if the given list of goals is empty.

2. Otherwise, search succeeds if there is a rule that associates the first of the given goals with subgoals and search
succeeds for these subgoals as well as search succeeding with the other remaining given goals for step 4.

search([]).

search([First_goal | Other goals]) :-
 rule ([First_goal | Subgoals]),
 search (Subgoals),
 search (Other_goals).

Figure 1-3
Problem reduction search

Page 12

<><><><><><><><><><><><>

To search through a list of goals and construct the solution tree:

1. If the list of goals is empty, exit with the empty tree.

2. Otherwise, take the first goal from the list, leaving other goals for step 4.

3. Take each rule in turn that relates to this first goal and collect its list of subgoals, and recursively search the list of
subgoals. If this is successful, keep the resultant subtrees and this first goal, otherwise find the next applicable rule. If
none of the rules work, exit with <false>.

4. Recursively search the other goals from step 2. If this is successful, collect its other trees and exit with them together
with the first goal and subtrees from step 3, otherwise exit with <false>.

define search_tree(goals) -> solution_tree;
 if null(goals) then [] -> solution_tree
 else goals --> [?first_goal ??other_goals];
 foreach [^first_goal ??subgoals] in rules do
 search_tree(subgoals) -> subtrees;
 if is_tree(subtrees)
 then search_tree(other_goals) -> other_trees;
 if is_tree(other_trees)
 then [[^first_goal ^^subtrees] ^^other_trees]
 -> solution_tree; return
 endif
 endif
 endforeach;
 false -> result
 endif
enddefine;

<><><><><><><><><><><><>

1. Search_tree succeeds with an empty tree if the given list of goals is empty.

2. Otherwise, search_tree succeeds with a tree built from the first goal and its subtrees together with the other trees, if a
rule can be found for the first goal and search succeeds in building the subtrees associated with subgoals of that rule, and
search also succeeds in building the other trees for the other remaining given goals.

search_tree ([], []).

search_tree([First_goal | Other_goals], [[First_goal | Subtrees] | Other_trees]
 :-
 rule([First_goal | Subgoals]),
 search_tree (Subgoals, Subtrees),
 search_tree (Other_goals, Other_trees).

Figure 1-4
Problem reduction search building the solution, an AND tree

Page 13

subgoals. Figure 1-3 gives the algorithm and the general form of the programs.

The related algorithm is one which constructs the solution AND tree (not a path, as in state-space search) as a product of
its search. Figure 1-4 gives the general form of the programs. Both sentence parsers and expert systems can be built out
of variations of the programs in Figure 1-4.

A very brief comparison of POP-11 and Prolog

Most of the definitions in POP-11 in the book are of functions, i.e. self-contained, named segments of code which return
a result given a number of arguments. In Figure 1-5 function foo takes arguments arg1 to argN and computes the
result result. Many of the definitions are recursive, so the the body of the function is made up of a conditional
statement that deals with the base case and the recursive case. The corresponding definition in Prolog is a procedure
foo/N that is used like a function. That is, the procedure succeeds given instantiated arguments Arg1 to ArgN and as a
result binds Result to some value. Typically the clauses of the procedure deal with the base and the recursive cases.
We indicate the modes of the Prolog clause arguments by "+" (for instantiated) and "-" (to be instantiated).

Where the function in POP-11 contains a loop, the corresponding procedure in Prolog typically involves a call to second
procedure which implements the loop as a recursion.

<><><><><><><><><><><><>

POP-11 function Prolog procedure

define foo(arg1...argN) -> result; foo(+Argl...+ArgN, -Result)
:- <body of base case>

<conditional deals with base case(s) and recursive case(s)> foo(+Argl...+ArgN, -Result)
:- <body of recursive case>

enddefine;

Figure 1-5
Comparison of POP-11 and Prolog

Page 14

Further Reading

For those who wish to explore the issue of search more deeply the best single reference is probably Pearl (1984). Less
technical, but comprehensive overviews can be found in Nilsson (1980) and in Barr and Feigenbaum (1981). Text-books
on AI that have sections on search include Winston (1984), Rich (1983), Rich and Knight (1991) and Charniak and
McDermott (1985). Bratko (1990) is both an excellent introduction to Prolog as well as providing a good section on
search containing Prolog code. Those interested in a comparison of human and artificial problem-solving (including
search behaviour) are referred to Gilhooly (1989). Finally, for a very readable and up-to-date overview of current results
in search, the reader is referred to Korf (1988).

There are lots of books on Prolog including, for example, Bratko (1990), Clocksin and Mellish (1987), Sterling and
Shapiro (1986), O'Keefe (1990), Scott and Nicolson (1991).

Books on POP-11 are thinner on the ground but include Sharples et al. (1988), Barrett, Ramsay and Sloman (1985),
Laventhol (1987), Burton and Shadbolt (1987) as well as Gazdar and Mellish (1989a). This latter also exists in a Prolog
version, and Sharples et al. is about to come out as a Prolog version, so these both give further possibilities of
comparison of POP-11 and Prolog code.

Page 15

2
Simple State Space Search

Path-Finding

We will begin our review of search-related techniques by looking at the simplest form of search of all,
namely state space search, where each state has no internal structure and is represented simply by a
token. This process is subsumed in the general class of OR-tree search and is dealt with more generally
in the next chapter. We will use the example of finding a path using a map. It is easy to describe and
corresponds fairly closely to the non-technical meaning of the word "search". It is just the process of
looking around systematically for a given location or object. In a sense, path-finding search is just
ordinary, common-or-garden search, but cast in a computational framework.

Imagine that you are stranded in some unfamiliar town -- Brighton, say -- and you need to get to a
specific place, e.g. the Palace Pier. One way to proceed is to start systematically exploring the
immediate vicinity looking for a pier. (To make this seem a little more realistic, assume that it is a
Sunday morning, there is no-one about, and you have no road map so you can get no overall strategic,
birds-eye view of the town.)

If you keep going long enough (and the pier has not yet been demolished) then eventually you will find
it. If you are being systematic you will explore every possibility and you will not look in any particular
place more than once. There are a finite number of places in Brighton so eventually you must come
across the one you are looking for. This is a logical necessity. Of course, if you get lost and start being
unsystematic you may go on forever.

Once you have found the place you are looking for, you will have discovered a route (i.e. a path) which
connects the place you started from to the place for which you were looking. Anyone following this path
will always arrive at the desired location, though there is no guarantee that the route is a direct one. Of
course, if you had known the path to begin with you could have gone directly to it without doing any
searching around.

Page 16

This is where the computational process of path-finding search comes in. By programming a computer
to carry out this process of "looking around" it can discover the path which connects the starting location
to the desired location without us doing any searching ourselves. Once we have the path, we can go
directly to the desired location. The trick here is to let the computer do the walking.

But how can we program a computer to produce this sort of behaviour? The basic idea is to write a
program which will imitate the process that someone goes through when they are physically searching
for a location. This involves two main tasks: firstly, we have to write a bit of code which will simulate
the process of "looking around"; secondly we have to write some code which will enable the first bit of
code to know where it is able to look starting from any given location. Since the second task is the easier
of the two this is the one we will tackle first.

Setting up the Database

It is important to realise that the search programs described in this chapter will not be able to view the
map of Brighton in Figure 2-1 as a whole, i.e. as a map. They will have a "ground level" rather than an
overall view and be able to follow the connections indicated in the representation of the map but not
"see" the general way to go.

To build a program which will find paths in Brighton we need to write some code which will show
where you can go starting from any given location in Brighton. But this raises a question; namely, where
can you go starting from any given location in Brighton? The basic locations and interconnecting roads
will be taken to be as depicted in Figure 2-1. Thus, we will assume that there are only nine named
locations

Figure 2-1
Map of Brighton

Page 17

and that you can get from one to another if and only if there is a line (i.e. a road) connecting them in
Figure 2-1. This means, for instance, that (by assumption) you cannot get from the Palace Pier to the
Parallels without going via an intermediate location such as the Old Steine.

How can we express this road map as POP-11 code? The easiest way is to set up a database which is just
a big list of connecting roads. A given connecting road can be represented as a list of two elements,
these being the two connected locations. Thus the connecting road between the palace pier and the
clocktower could be represented as:

 [palace_pier clocktower]

Note that we have joined the words "palace" and "pier" together using the underscore character so as to
show that we are talking about a single place rather than two places called "palace" and "pier''. We can
construct the desired database by writing list expressions for all the connecting roads and enclosing them
all in a big list which we then assign to the variable "database". Each pair of linked locations is
mentioned

twice (once in each order) to represent explicitly that one can traverse each link in either direction, i.e.
that there are no one-way streets in this map.

 vars brighton;

 [[seven_dials preston_circus]
 [seven_dials station]
 [seven_dials west_pier]
 [preston_circus seven_dials]
 [preston_circus the_level]
 [preston_circus the_parallels]
 [the_level preston_circus]
 [the_level the_parallels]
 [the_level old_steine]
 [old_steine the_level]
 [old_steine the_parallels]
 [old_steine palace_pier]
 [palace_pier old_steine]
 [palace_pier west_pier]
 [palace_pier clocktower]
 [west_pier palace_pier]
 [west_pier clocktower]
 [west_pier seven_dials]
 [station seven_dials]
 [station clocktower]
 [the_parallels preston_circus]

Page 18

 [the_parallels the_level]
 [the_parallels old_steine]
 [the_parallels clocktower]
 [clocktower station]
 [clocktower the_parallels]
 [clocktower palace_pier]
 [clocktower west_pier]] -> brighton;

This database looks large and complicated but it makes the job of writing some POP-11 code which can
work out where you can look (i.e. go) starting from any given location very easy. We just need to write a
function which takes as input a given location (e.g. clocktower) and returns a list of all the places
that you can get to in one hop (e.g. [station the_parallels palace_pier west_pier]).

This function will be called the successors1 function for reasons that will be explained below.
Given the availability of the database, it can be implemented very easily using a foreach loop. In the
definition, the command finds all the entries in the database which match a pattern consisting of the
given location followed by a match-variable (e.g. [^location ?successor]). Any word
appearing as second element in one of these lists must represent a place you can get to in one hop.
Therefore a list of all the second elements is the required result. The definition of the function is given in
Figure 2-2.

search can be tested as follows:

 brighton -> database;

 successors1("old_steine") ==>
 ** [the_level the_parallels palace_pier]

<><><><><><><><><><><><>

/* successors1 takes a location and returns a list
of the places directly linked to it. */

 define successors1(location) -> result;
 vars successor;
 [^(foreach [^location ?successor] do successor endforeach)]
 -> result
 enddefine;

Figure 2-2
Computing successors

Page 19

 successors1 ("station") ==>
 ** [seven_dials clocktower]

Note that below we will refer to the list of elements returned by the successors1 function for a given
input L as the successors of L. In most cases, following normal practice, the successors function
will just be called the successor function.

Setting up the Path-Finding Function

Now that we have set up a database and a function which lets us find out where we can get to from any
given location we can concentrate on writing the code which will actually try out different paths.
Imagine we are at some location S and we want to get to some desired location (which will be called the
goal below). We can easily find out where we can get to in one hop from S (by calling the successor
function) so a reasonable strategy would be to first check whether we are already at the goal location
and, if not, test to see whether we can get to the goal starting from any one of the successors of S.

So, we want a function which will

- take as input a current location S
- test whether S is the goal
- if not, test to see whether the goal can be reached from any successor of S.

Notice that the task involved in the last step of this function is basically just the same task that we were
trying to solve to begin with, i.e. find a way of getting from some arbitrary location to some other
arbitrary location. This means that we can write the function recursively. In the case where it finds that
the current location is not the goal, the function can use itself to see whether there is a path to the goal
from any of the successors of the current location. A definition of this function is shown in Figure 2-3.
The search function calls is_goal which tests whether the current location matches the goal.[1] If it
does, the function returns <true>. If it does not, the function uses a for loop to work through all the
successors of the current location. If it finds that there is a path from any of these locations to the goal it
immediately returns <true>. If all possibilities are exhausted it returns <false>.

Thus if we make the following call on search, having ensured that search makes use of
successors1:

[1] For the examples here, is_goal merely matches the location against a pre-specified goal location. In
principle it could be defined as a recogniser of a goal without being given any specific goal e.g. returning true if
the location starts with "f", say, or contains exactly five letters. In this latter case the second argument would be
a dummy (as would the second argument of search).

Page 20

<><><><><><><><><><><><>

/* search takes the current location and the goal location and returns
true if a path can be found to link them and false otherwise. */

 define search (current_location, goal) -> boolean;
 vars successor;
 if is_goal(current_location, goal) then
 true -> boolean
 else
 for successor in successors(current_location) do
 if search(successor, goal) then
 true -> boolean; return
 endif
 endfor;
 false -> boolean
 endif;
 enddefine;

 define is_goal(location, goal) -> boolean;
 location matches goal -> boolean
 enddefine;

<><><><><><><><><><><><>

Figure 2-3
A true/false search function

 successors1 -> successors;

 search ("clocktower", "seven_dials") ==>
 ** <true>

it returns the value <true>.

We can find out how it arrived at this result by tracing the search and successors functions:

 trace search successors;

 search ("clocktower", "seven_dials") ==>

 >search clocktower seven_dials
 !>successors clocktower
 !<successors [station the_parallels palace_pier west_pier]
 !>search station seven_dials
 !!>successors station
 !!<successors [seven_dials clocktower]

Page 21

 !!>search seven_dials seven_dials
 !!<search <true>
 !<search <true>
 <search <true>

 ** <true>

In the initial call of the function, the first input is clocktower. This is not equal to the goal
seven_dials. Thus, the function starts working through the successors of clocktower. The first
successor is station so the recursive call on search has this item as the main input. The recursive
call tests whether station is equal to seven_dials and finding that it is not, starts working through
the successors of this item. The first successor is seven_dials which obviously is equal to the goal.
Thus the third recursive call returns <true> immediately. This causes both of the enclosing calls to return
<true>.

Unfortunately, it turns out that for some problems the search function we have implemented will not
always work in the way we expect. Frequently, it will go into a never-ending loop. We can see an
example of a loop if we test the function on a different pair of inputs:

 untrace successors;

 search ("old_steine", "station") ==>

 >search old_steine station
 !>search the_level station
 !!>search preston_circus station
 !!!>search seven_dials station
 !!!!>search preston_circus station
 !!!!!>search seven_dials station
 !!!!!!>preston_circus station
 !!!!!!!>search seven_dials station
 !!!!!!!!>search preston_circus station
 !!!!!!!!!>search seven_dials station
 !!!!!!!!!!>search preston_circus station
 !!!!!!!!!!!>search seven_dials station

... ad infinitum

The trace output makes the nature of the problem fairly obvious. The computer is doing exactly what the
definition of search tells it to do. To find a path from old_steine to station it found out all the
places it could get to in one hop from old_steine. One of these was the_level. It tested if this
was the goal location; it

Page 22

was not, so it then tested to see whether a path could be found from the_level to the goal (see the
second line of the trace output).

It then went through exactly the same process but this time it found that from the_level it could get
to preston_circus. And from preston_circus it found it could get to seven_dials; and
from seven_dials it found it could get to preston_circus, and from preston_circus it
found it could get to seven_dials and so on, ad infinitum.

The problem is that our program is not keeping track of where it has already been. It therefore quite
happily "visits" the same locations over and over again, if the search space makes this possible as in this
case. Where the search space itself precludes loops the program works fine. To stop this happening we
need to make sure that any given call of the search function knows which locations have already been
visited; i.e. we need to make the program systematic in its searching strategy.

One way to achieve this is to change the search function so that it can be given a list of the locations
which have already been visited as an extra input. But if we do this it is a bit silly providing the input
which specifies the current location. This is always going to appear as the final element of the list of
locations already visited. So, we can get away with using just one main input; namely, the list of
locations already visited. We will, of course, need to change the function so that it digs out the name of

<><><><><><><><><><><><>

/* search_path takes a path so far and a goal and returns a solution path that links them or false if no path
can be found. */

 define search_path(path_so_far, goal) -> solution_path;
 vars current_location, successor;
 last(path_so_far) -> current_location;
 if is_goal(current_location, goal) then
 path_so_far -> solution_path
 else
 for successor in successors(current_location) do
 unless member(successor, path_so_far) then
 search_path ([^Ùpath_so_far ^successor], goal)
 -> solution_path;
 if islist(solution_path) then return endif
 endunless
 endfor;
 false -> solution_path;
 endif;
 enddefine;

Figure 2-4
Searching for a solution path

Page 23

the current location by accessing the last element of this list.

The definition of the new version of the function, search_path is shown in Figure 2-4. Its first input
is the list of already-visited locations but since, in some sense, this list forms a path which the function
is trying to "extend" towards the goal, we have named the corresponding variable path_so_far.
Notice how the location that is currently being visited is effectively glued onto the end of the list by the
expression

 [^^path_so_far ^successor]

which forms the first input in the recursive call. This function has as its result either a list representing a
path or "false" if no such list can be found.

To test this function we have to remember to give it as its first argument a dummy path which just has
the starting location in it. This is because the function works on the basis that the first argument will be a
path_so_far. Thus:

 trace search_path;

 search_path([old_steine], "station") ==>

 >search_path [old_steine] station
 !>search_path [old_steine the_level] station
 !!>search_path [old_steine the_level preston_circus] station
 !!!>search_path [old_steine the_level preston_circus seven_dials]
 station
 !!!!>search_path [old_steine the_level preston_circus seven_dials
 station] station
 !!!!<search_path [old_steine the_level preston_circus seven_dials
 station]
 !!!<search_path [old_steine the_level preston_circus seven_dials
 station]
 !!<search_path [old_steine the_level preston_circus seven_dials
 station]
 !<search_path [old_steine the_level preston_circus seven_dials
 station]
 <search_path [old_steine the_level preston_circus seven_dials
 station]

 ** [old_steine the_level preston_circus seven_dials station]

The function works but if we test it on some other inputs, we find that it is capable of producing tortuous
paths. (Tracing of the search_path function is turned off since the call in question produces a huge
amount of trace output.)

Page 24

 untrace search_path;

 search_path([west_pier], "station") ==>
 ** [west_pier palace_pier old_steine the_level preston_circus
 seven_dials station]

If you look at the map you will see that this is not exactly the most direct path from west_pier to
station.

The generality of Search

It appears that the POP-11 program we have written fulfils its purpose quite adequately. We could use it
to find out what the best path is from one location in Brighton to another without doing any walking. If
we wanted to make the program more realistic we would only have to alter the database so as to
introduce more locations and connecting roads.

The program works by directly simulating the actions of a person systematically looking around a
physical environment. This would seem to be a process which is really only of relevance in the case
where we are trying to find a path from one location to another. However, as we shall see, it turns out
that the process has a range of applications.

The following chapters will attempt to show some of the dimensions of this generality. In order to make
life easier, the rest of the current chapter will introduce a slightly more abstract view of the path-finding
process we have described. Although, in the current context, it is quite satisfactory to talk about "visiting
locations" and getting from one place to another "in one hop", this approach is not so helpful when
considering more advanced applications.

Search Spaces and Search Trees

Figure 2-1 represented as a graph the totality of possible places and their links in our map of Brighton.
As such the graph represents a bird's-eye view of the search space for our programs.

Search is hard just because the program does not have this bird's-eye view. Thus any particular program
will search the locations in some order and may (in principle) only search through some of the locations.
As a program searches it effectively (and sometimes actually) constructs a tree whose root is the starting
location and whose branches represent locations covered so far. This tree is called a search tree.

Our check that any particular path does not contain two copies of the same location prevents the search
program being caught in cycles in the search space. However it is still possible for it to undertake some
part of the search more than once.

Page 25

Without a global check (rather than simply a check along the current path) on revisiting the same
location twice such a tree may contain duplicated subtrees. Such duplicated parts of the search tree
represent the possibility that the same location can be reached by more than one path and, having got
there, the same subsequent possibilities obtain.

We can remove duplications in the search tree by leaving a single copy of each duplicated tree and
adding extra links to it, thus turning the search tree into a search graph. But even so the search graph
represents that part of the overall search space that has been searched by the program. Thus the search
space is really a property of the situation or problem and the search tree or search graph is a property of
the search mechanism applied to the situation. Of course, if the search mechanism is systematic and
exhaustive (and there is no solution) it will eventually explore the whole space and at that point the
search tree or graph will include every location and connection from the search space.

Imagine that we select some arbitrary location in the hypothetical version of Brighton (old_steine
say) and construct a list of all its successors. Then, for each successor we set up a new list of all its
successors. Then, for each successor in each one of these successor lists we set up a list of all its
successors, and so on. If we recursively substitute location names with lists featuring the name itself
followed by the successors then we will end up with a structure of lists-inside-lists (i.e. nested lists), the
first part of which looks like this:

 [old_steine
 [the_level
 [preston_circus]
 [the_parallels]]
 [the_parallels
 [preston_circus]
 [the_level]
 [clocktower]]
 [palace_pier
 [west_pier]]]

These lists form a tree structure, although as printed above, the tree is upside-down and leaning to the
left. The word old_steine forms the root of the tree; this splits into three main branches
corresponding to the_level, the_parallels and palace_pier; then the first of these
branches itself splits into two sub-branches corresponding to preston_circus and
the_parallels etc.

The tree forms an explicit representation of the structure of choices in this particular search problem; i.e.
the information which is implicitly represented in the combination of the database and the successors
function. It effectively maps out the transitions which the search function goes through as it searches for
a solution path and therefore forms a search tree for the problem.

Page 26

Figure 2-5
A search tree

Technically, this is an OR-tree since branches always indicate choices between alternatives in the
search. For instance, the branch:

 [the_level
 [preston_circus]
 [the_parallels]]

represents the fact that from the_level you can go either to preston_circus or to
the_parallels. Later on we will meet a different type of search in which tree branches are
conjunctive rather than disjunctive. At that point, calling the type of search we are dealing with here an
"OR-tree" will make more sense.

As is noted in appendix A, the POP-11 library function showtree is capable of constructing
representations of tree-structured lists which make the branching structure easier to see. As we have
seen, showtree actually draws trees upside-down. Thus if we call it giving it an abbreviated version of
the list structure shown above, the function would construct a representation as in Figure 2-5.

Page 27

Constructing an Explicit Representation of the Search-Tree

If we want, we can write a POP-11 function which will construct the explicit tree-representation of the
search tree from a database of connections such as we defined above. The structure of this function is
quite similar to the structure of the search function. The reason for this is straightforward. The task of
constructing the search tree is virtually identical to the task of searching it. Both tasks involve working
out what the choices are at every given location (node).

To keep things manageable we will set up a new database describing a simpler set of connections. These
are depicted in Figure 2-6. Note that, unlike the previous case, all connections are one-way streets (i.e. a
directed graph) and their direction is indicated by the arrow symbols. The database corresponding to
these connections is constructed as follows:

 vars toytown;

 [[A B][A C][C F][B E][B D][D X][E X][X Z][Z Y]] -> toytown;

The function which constructs the explicit representation of the search tree might be defined as in Figure
2-7. It returns a representation of the search tree for the problem of finding a path from the current
location to the goal location working in basically the same way as the search function.

First of all it checks if the current location is the location being sought. If it is, or if the current location
represents a dead-end with no successors, it simply returns a tree made from the current location.
Otherwise, it constructs a list which begins with the name of the current location and contains, for each
successor of the current location, a representation of the search subtree for finding a path from that
successor to the goal. It obtains these subtrees via recursive calls in the familiar fashion.

To watch the behaviour of this function we need to trace it and then call it with an appropriate set of
inputs:

Figure 2-6
A map of toytown

Page 28

<><><><><><><><><><><><>

/* search tree takes a path so far and a goal and returns the
corresponding search tree. */

 define search_tree(path_so_far, goal) -> tree;
 vars successor, subtree, current_location;
 last(path_so_far) -> current_location;
 [^current_location] -> tree;
 unless is_goal (current_location, goal) then
 for successor in successors(current_location) do
 unless member(successor, path_so_far)
 then search_tree([^^path_so_far ^successor], goal)
 -> subtree;
 [^^tree ^subtree] -> tree
 endunless
 endfor
 endunless
 enddefine;

Figure 2-7
Computing the search tree

 trace search_tree;

 toytown -> database;

 search_tree([A], "Z") ==>

 > search_tree [A] Z
 !> search_tree [A B] Z
 !!> search_tree [A B E] Z
 !!!> search_tree [A B E X] Z
 !!!!> search_tree [A B E X Z] Z
 !!!!< search_tree [Z]
 !!!< search_tree [X [Z]]
 !!< search_tree [E [X [Z]]]
 !!> search_tree [A B D] Z
 !!!> search_tree [A B D X] Z
 !!!!> search_tree [A B D X Z] Z
 !!!!< search_tree [Z]
 !!!< search_tree [X [Z]]
 !!< search_tree [D [X [Z]]]
 !< search_tree [B [E [X [Z]]] [D [X [Z]]]]

Page 29

 !> search_tree [A C] Z
 !!> search_tree [A C F] Z
 !!< search_tree [F]
 !< search_tree [C [F]]
 < search_tree [A [B [E [X [Z]]] [D [X [Z]]]] [C [F]]]

 ** [A [B [E [X [Z]]] [D [X [Z]]]] [C [F]]]

If we want we can use showtree to construct a graphical representation of the tree constructed by this
function. The output produced is shown in Figure 2-8.

Search Graphs

Note that in some cases, the search tree has duplicate identical subtrees (see the subtrees starting at the
nodes labelled ''X" in Figure 2-8). This is because given locations (i.e. the nodes labelled X in this case)
can be reached in different ways (from E and from D). These duplicate subtrees occur because the test
embedded in search_tree checks only that a given path does not contain the same location twice
and makes no global check to ensure that the same location is never visited explored twice in any part of
the search.

Figure 2-8
The search tree for Z from A

Page 30

We could construct a representation of the search tree which has only one node for any given location.
This is called a search graph. The search graph representation of a search tree is derived by merging
nodes which have the same label. The search graph corresponding to the search-tree depicted in Figure 2-
8 is shown in Figure 2-9. This graph has been drawn by hand and cannot be produced by showtree.

A version search_tree which omits duplicates would check to see whether a particular location had
ever been visited before. To implement this we require a variable, global with respect to the search,
which accumulates a list of all locations visited. A version of the search program which does this is
given in Figure 2-10. This program makes use of a simplified version of the previous definition of
search_tree named simple_search_tree, which works with locations rather than paths and
does all its checking for duplicates against the variable visited There is no need to store paths and
check for cycles in them since the global check covers this.

Note that the tree returned by search_tree_no_dups contains no duplicates and that both its
arguments are simply the names of locations:

 search_tree_no_dups ("A", "Z") ==>
 ** [A [B [E [X [Z]]] [D] [C [F]]]

By offering an impossible goal we can force the program to search the whole search space (e.g. also
beyond Z):

Figure 2-9
The search graph for Z from A

Page 31

<><><><><><><><><><><><>

/* search_tree_no_dups takes a location and a goal and returns the corresponding search tree without
duplicates. */

 define search_tree_no_dups(current_location, goal) -> tree;
 vars visited;
 [] -> visited;
 simple_search_tree(current_location, goal) -> tree
 enddefine;

 define simple_search_tree(current_location, goal) -> tree;
 vars successor, subtree;
 [^current_location ^^visited] - visited; /* SIDE EFFECT */
 [^current_location] -> tree;
 unless is_goal(current_location, goal) then
 for successor in successors(current_location) do
 unless member(successor, visited) then
 simple_search_tree (successor, goal) -> subtree;
 [^^tree ^subtree] -> tree
 endunless
 endfor
 endunless
 enddefine;

Figure 2-10
Searching with no location visited more than once

 search_tree_no_dups ("A", "T") ==>
 ** [A [B [E [X [Z [Y]]]] [D]] [C [F]]]

We can try this program out on the brighton database as before to see that it does not loop:

 search_tree_no_dups ("old_steine", "station") ==>
 ** [old_steine
 [the_level
 [preston_circus
 [seven_dials
 [station]
 [west_pier [palace_pier [clocktower [the_parallels]]]]]]]]

The shape of the tree not containing duplications is dependent very much on the order in which
potentially duplicated nodes are encountered during the search process. As the search is conducted depth
first and left to right, it is the right-most subtree

Page 32

rooted at "X" which is omitted in this case.

Node Terminology

Trees and graphs are built from nodes linked together by arcs. Nodes can have a variety of relationships
with each other. The conventional labels used for these relationships exploit the analogy with family
trees. Thus, in Figure 2-11, C and D would be said to be B's children or successors. This is why we
called the function which would return C and D, given B as input, the successor function. B, C and D are
also said to be the descendants of A.

Similarly, F would be said to be G's parent while E and F are said to be ancestors or predecessors of G.
C, D, G and H would all be said to be leaf, tip, or terminal nodes while all other nodes are internal
nodes. Internal nodes always form the root of a embedded tree structure. This is said to be the subtree of
the node.

Backwards v. Forwards Searching

Construing the structure of choices inherent in the databases defined above in terms of a search space
made up from internal nodes and leaf nodes enables us to gain a more abstract perspective on the basic
path-finding process. It allows us to see that a given search problem consists of just three components: a
successor function, a description of the starting location (called the start node below) and a description
of the goal location (called the goal node below).

The successor function provides a virtual representation of the search tree. The representation is virtual
because it -- or any part of it -- can always be constructed but, otherwise, does not actually exist. The
start node gives us the root of the tree and the goal node tells us which node the search is looking for. A
solution can then be found simply by calling the search function defined earlier, giving it a path
containing the start node as first input and the goal node as second input.

Used in this way the search function tries to extend a path from the start node to the goal node. Of
course, if we wanted, we could use the function in reverse. That is to say, we could give it a path
containing the goal node as first input and the start node as second input. In this case it would try to
extend a path from the goal node to the start node. The result would be a perfectly good solution path,
but it would be back-to-front. To get an ordinary solution we would need to reverse it.

In later chapters we will see that in some cases, depending on the way the successor function behaves, it
is easier to find a back-to-front path and then reverse it, than it is to construct a path in the correct
sequence. For the present we will just note that the strategy of searching forwards from the start node to
the goal node is referred to as forwards search; while the complimentary strategy is referred to as
backwards search.

Page 33

Figure 2-11
A tree

OR-Tree Search in Prolog

This section provides Prolog versions of some of the POP-11 programs already introduced. The central
search ideas have already been covered so the Prolog code just offers an alternative runnable
representation of what has already been explained.

The basic map of Brighton can be stored as a collection of facts, as follows. This corresponds to the
assignment to the database in POP-11. For consistency we have chosen the name successor for this
procedure, though it could as well be anything one likes, see Figure 2-12. In POP-11 we will define a
number of different successor functions successors1, successors2 and so on, and we defined a
number of global variables to hold the maps such as brighton and toytown. In Prolog we can
simplify matters and just use a single predicate name successor since we can rely on the value of the
first argument to select the appropriate clauses.

As we have already demonstrated the need to work with paths rather than locations in order to avoid
loops, we will start with a definition of search_path/3. Finding a path can be construed in much the
same terms as in POP-11. The procedure search_path/3 has three arguments, the given path so far,
the given goal being sought and the resultant (possibly extended) path. This procedure, in Figure 2-13,
corresponds to the POP-11 procedure search_path, in Figure 2-4, which checked for loops.

There are two cases to consider. One is where the path so far already has the goal as its final location. In
this case the search is over and the resultant path is the one given. We could have avoided the explicit
call to "=" in the first clause but included it to make the code more similar to the POP-11 version. The
other case is

Page 34

<><><><><><><><><><><><>

/* successor(+Here, -Next)
Successor embodies the relation between a location and its successor. */

 successor(seven_dials, preston_circus).
 successor(seven_dials, station).
 successor(seven_dials, west_pier).
 successor(preston_circus, seven_dials).
 successor(preston_circus, the_level).
 successor(preston_circus, the_parallels).
 successor(the_level, preston_circus).
 successor(the_level, the_parallels).
 successor(the_level, old_steine).
 successor(old_steine, the_level).
 successor(old_steine, the_parallels).
 successor(old_steine, palace_pier).
 successor(palace_pier, clocktower).
 successor(palace_pier, old_steine).
 successor(palace_pier, west_pier).
 successor(west_pier, palace_pier).
 successor(west_pier, clocktower).
 successor(west_pier, seven_dials).
 successor(station, seven_dials).
 successor(station, clocktower).
 successor(the_parallels, preston_circus).
 successor(the_parallels, the_level).
 successor (the_parallels, old_steine).
 successor(the_parallels, clocktower).
 successor(clocktower, station).

 successor(clocktower, the_parallels).
 successor(clocktower, palace_pier).
 successor(clocktower, west_pier).

Figure 2-12
The map of Brighton in Prolog

where it does not, so a Successor is added to the given path so far and a recursive search is conducted
for the goal from this Successor. We can avoid the foreach and for loops of the Pop-11 version
of successors and search_path by exploiting the built-in backtracking in Prolog to automatically
work through possible successors if desired. Note that the function in POP-11 of two arguments and one
result is transformed into a procedure in Prolog of three arguments, where the third argument plays the
same role of the result and the first two arguments play the role of input. The cut in the first clause of
search_path/3 is to ensure that once the goal is found along a particular path, no attempt is made to
search beyond the goal on that

Page 35

path. The program would be more efficient by avoiding the call to append/3 and building the paths in
the reverse order. We have chosen explicitness over efficiency here.

<><><><><><><><><><><><>

/* search_path(+Path_so_far, +Goal, -Solution_path)
Given a Path_so_far and a Goal, search_path succeeds
with a Solution_path that extends the Path_so_far to the Goal. */

 search_path(Path_so_far, Goal, Solution_path) :-
 last(Path_so_far, Current_location),
 is_goal(Current_location, Goal), !,
 Path_so_far = Solution_path.

 search_path(Path_so_far, Goal, Solution_path) :-
 last(Path_so_far, Current_location),
 successor(Current_location, Successor),
 not (member(Successor, Path_so_far)),
 append(Path_so_far, [Successor], New_path),
 search_path(New_path, Goal, Solution_path).

/* is_goal(+Location, +Goal)
is_goal succeeds if the Location is equal to the Goal. */

 is_goal(Goal, Goal).

/* last(+List, -Element)
last succeeds if Element is the final element of List. */

 last([X], X) :- !.
 last([_ | L], X) :- last(L, X).

/* append(+List1, +list2, -List3)
append succeeds if List1 and list2 together form List3. */

 append([], L, L).
 append([X | L1], L2, [X | L3]) :-append(L1, L2, L3).

/* member(+Element, +list)
member succeeds if Element is a member of List. */

 member(X, [X | _]).
 member(X, [_ | L]) :- member(X, L).

Figure 2-13
Computing a search path in Prolog

Page 36

Running search_path/3 gives the same answer as search_path did in POP-11:

 ?- search_path([old_steine], station, S).
 S = [old_steine, the_level, preston_circus, seven_dials,
 station] ?

One of the benefits of Prolog is that we can ask for further solutions by typing ";" in response to the "?",
as follows:

 S = [old_steine, the_level, preston_circus, seven_dials,
 west_pier, palace_pier, clocktower, station] ? ;
 S = [old_steine, the_level, preston_circus, seven_dials,
 west_pier, clocktower, station] ? ;
 S = [old_steine, the_level, preston_circus, the_parallels,
 clocktower, station] ?
 yes

However, the program, like its POP-11 equivalent, does have one piece of slightly non-intuitive
behaviour because of the way it is defined:

 ?- search_path ([station],station,S).
 S = [station] ? ;
 no
 ?- search_path([bombay], bombay,S).
 S = [bombay];
 no

In this example, it can find the trivial path from Bombay to Bombay even though this city is not
mentioned in the database. Note also that search_path/3 is designed to be called with its first two
arguments already instantiated.

Constructing search trees (possibly containing duplicate sub-trees) is also straightforward. First we
encode in Figure 2-14 the simplified "toytown" map given in Figure 2-6 in the same way as earlier using
the successor/2 clauses. Predicate successors/2 in Figure 2-14 uses the built-in procedure
bagof/3 to collect up in the variable Successors all the successors following on from the current
location, just as for POP-11 function of the same name. We need to collect up all the successors so that
we can assemble together all the subtrees of any particular node. There are two clauses for
successors/2 because we want an empty list of successors if there are no successors but bagof/3
fails if it finds no instances. The cut in the first clause is to ensure that we get only a single solution from
successors/2.

We can try out successor/2 and successors/2 as follows, assuming that the "toytown" version
of successor is loaded:

Page 37

<><><><><><><><><><><><>

/* successor(+Location, -Successor)
The toytown map. */

 successor(a, b).
 successor(a, c).
 successor(c, f).
 successor(b, e).
 successor(b, d).
 successor(d, x).
 successor(e, x).
 successor(x, z).
 successor(z, y).

/* successors(+Location, -Successors)
successors succeeds when Successors is a list of the successors
of Location, or is an empty list when there are none. */

 successors (Location, Successors) :-
 bagof(Successor, successor(Location, Successor), Successors), !.

 successors(_, []).

Figure 2-14
Computing successors in Prolog

 ?- successor(x, Next).
 Next = z ? ;
 no
 ?- successor(b, Next).
 Next = e ? ;
 Next = d ? ;
 no
 ?- successors(b, Next).
 Next = [e, d] ?
 yes
 ?- successors(bombay, Next).
 Next = [] ?
 yes

Procedure search_tree/3 in Figure 2-15 corresponds to the earlier POP-11 function
search_tree in Figure 2-7. It takes three arguments. The first is the path so far (initially containing
the starting node), the second is the goal being sought and the third argument holds the tree being built.

Page 38

<><><><><><><><><><><><>

/* search_tree(+Path_so_far, +Goal, -Tree)
Given a Path_so_far and a Goal, search_tree succeeds if Tree is the search
tree starting from the path so far which either reaches the goal or reaches
a dead ends. */

 search_tree(Path_so_far, Goal, Tree) :-
 last(Path_so_far, Current_location),
 is_goal(Current_location, Goal), !,
 [Current_location] = Tree.

 search_tree(Path_so_far, Goal, Tree) :-
 last(Path_so_far, Current_location),
 successors(Current_location, Successors),
 sub_trees(Path_so_far, Successors, Goal, Subtrees),
 [Current_location | Subtrees] = Tree.

/* sub_trees(+Path_so_far, +Successors, +Goal, -Subtrees)
sub_trees takes a Path_so_far, a list of immediate Successors
and a Goal, and succeeds with a list of Subtrees corresponding to
the list of Successors. */

 subtrees(_, [], _, []).

 sub_trees(Path_so_far, [Succ | Succs], Goal, Subtrees) :-
 member(Succ, Path_so_far),
 sub_trees(Path_so_far, Succs, Goal, Subtrees).

 sub_trees(Path_so_far, [Succ | Succs], Goal, [Subtree | Subtrees]) :-
 append(Path_so_far, [Succ], New_path_so_far),
 search_tree(New_path_so_far, Goal, Subtree),
 sub_trees(Path_so_far, Succs, Goal, Subtrees).

Figure 2-15
Computing the search tree in Prolog

Similar output to the POP-11 version can be produced as follows:

 ?- search_tree([a], z, Tree).
 Tree = [a, [b, [e, [x, [z]]], [d, [x, [z]]]], [c, [f]]]

In POPLOG Prolog showtree/1 will work as in POP-11 to produce identical diagrams as shown
earlier.

The procedure search_tree/3 has two cases to deal with. If the Path_so_far reaches the goal,
the resultant tree is just that goal (in list brackets). Otherwise, the

Page 39

list of successors is constructed and a tree is built which consists of the current location followed by the
subtrees corresponding to each of these successors.

Procedure sub_trees/4 works its way through the list of successors until it is empty, calling
search_tree/3 on each one with an appropriately augmented path so far. It has three clauses. The
first is the stopping case when the list of successors is empty. The second clause deals with the case
where the first of the successors is already on the Path_so_far by ignoring it and just dealing with
the remaining successors.

The third clause does the real work. As in the POP-11 version, the new location is added onto the right-
hand end of the path so far, though a more succinct Prolog program would build this path the other way
round since lists are more easily accessed at the front.

In the POP-11 version of search_tree there is both a recursive call to search_tree as well as an
embedded for loop. The recursion delves deeper "down" the tree and the loop works its way "along"
through all the successors of a given node. The Prolog version achieves the same ends using much the
same division of labour. Procedure sub_trees/4 corresponds to the POP-11 for loop containing the
embedded recursive call to search_tree.

By examining the trace of either the POP-11 search_tree or the Prolog version one can see the
depth first, left to right order in which the search tree is built. This topic will be returned to later:

 ?- spy search_tree.
 ?- search_tree([a], z, Tree).
 ** (1) Call : search_tree([a], z, _1)?
 ** (2) Call : search_tree([a, b], z, _2)?
 ** (3) Call : search_tree([a, b, e], z, _3)?
 ** (4) Call : search_tree([a, b, e, x], z, _4)?
 ** (5) Call : search_tree([a, b, e, x, z], z, _5)?
 ** (5) Exit : search_tree([a, b, e, x, z], z, [z])?
 ** (4) Exit : search_tree([a, b, e, x], z, [x, [z]])?
 ** (3) Exit : search_tree([a, b, e], z, [e, [x, [z]]])?
 ** (6) Call : search_tree([a, b, d], z, _6)?
 ** (7) Call : search_tree([a, b, d, x], z, _7)?
 ** (8) Call : search_tree([a, b, d, x, z], z, _8)?
 ** (8) Exit : search_tree([a, b, d, x, z], z, [z])?
 ** (7) Exit : search_tree([a, b, d, x], z, [x, [z]])?
 ** (6) Exit : search_tree([a, b, d], z, [d, x, [z]]])?
 ** (2) Exit : search_tree([a, b], z, [b, [e, [x, [z]]],
 [d, [x, [z]]]])?
 ** (9) Call : search_tree([a, c], z, _9)?
 ** (10) Call : search_tree([a, c, f], z, _10)?
 ** (10) Exit : search tree([a, c, f], z, [f])?

Page 40

 ** (9) Exit : search_tree([a, c], z, [c, [f]])?
 ** (1) Exit : search_tree([a], z, [a, [b, [e, [x, [z]]],
 [d, [x, [z]]]], [c, [f]]])?
 Tree = [a, [b, [e, [x, [z]]], [d, [x, [z]]]], [c, [f]]] ?
 yes

Reading

In this chapter we have looked at simple state space search, otherwise known as ORtree search, and seen
the way in which it can be used to solve simple routing problems. Each state in the search space is
merely a token without internal structure and the test for a goal is that it simply corresponds to a
particular token. We have also considered the way in which we can adapt a search function so as to
make it construct a representation of the search tree for a given search problem. Most Al texts which
deal with search do not restrict the discussion to the area we have covered in this chapter, i.e. state space
search where the states have no internal structure. These books are therefore probably best consulted
once the material to be presented in the Chapter 3 has been covered. However, Winston (1984, pp. 87-
90) covers some of the concepts introduced above and goes over the terminology for search space nodes.
Charniak and McDermott (1985, p. 257) may also be of interest. The most substantial reference of real
relevance is Sharples et al. (1988, Sections 1 to 2.2 inclusive).

Exercises

1. Construct a database of lists representing links between locations in some physical environment with
which you are familiar. Use either language version of search_tree together with showtree to
construct a representation of the search tree for the problem of getting between two locations.

Don't forget to type, in POPLOG POP-11

 lib showtree;

or in Prolog

 library (showtree).

before trying to use showtree.

2. Write a Prolog version of search_tree_no_dups which omits all duplicates. One method would
be to include an extra argument which stores a list of all nodes visited

Page 41

throughout the search.

3. Examine the behaviours of search_path/2 and search_tree/3 when in each case the cut is
removed from clause 1.

Page 42

Page 43

3
State Space Search

Introduction

In the previous chapter, we saw that we can write a program consisting of a search function and a
successor function which will search a representation of a physical environment to find a path from a
start node to a goal node. This sort of program obviously has uses for any task which involves route
planning (e.g. programming mobile robots). But in fact the program we have constructed has many other
possibilities.

Any problem which can be construed in terms of a start node, a goal node recogniser and a successor
function (i.e. any problem which can be construed as a search problem through states) can, in principle,
be solved using the search function we defined in the previous chapter. In the present chapter we will
look at an example of such a problem in which the successor function represents connections between
abstract states in a problem rather than physical locations in a town. States will now contain internal
structure rather than simply being tokens, such as the names of locations. In this scenario the successors
of any given node are effectively the states which can be achieved in one move rather than the locations
which can be reached in one hop; and the search space is said to be a state space or problem space.
Choices at each node are still ''OR" choices, so the search trees that get built are still "OR Trees" as in
the previous chapter and solutions are still paths from the root node of the OR Tree to the goal node.

The Water Jugs Problem

Imagine that you have two jugs called X and Y. Initially, both are empty. You are allowed to fill either
jug X or jug Y from a tap but if you do, you have to fill it completely. You are also allowed to fill jug X
from jug Y, or jug Y from jug X, and to empty either jug on the ground. Jug X can hold 4 pints and jug
Y can hold 3 pints.

Page 44

The problem is simply this: given the allowed actions, can you manage to reach a state where you have
exactly 2 pints in jug X.

This problem is known as the water jugs problem and it has no easy solution. If we just fill X from the
tap we end up with 4 pints in X, not 2. If we fill Y from the tap and empty it into X, we end up with 3
pints in X. The only way to find a solution to this problem is to consider systematically the effects
achieved by performing sequences of actions. But how can we go about this?

Systematically considering all possible sequences of actions is just like systematically considering all
possible sequences of locations (i.e. all possible routes). So the water jugs problem can be construed as a
sort of search problem. Of course, if we are going to construe the water jugs problem as a search
problem, nodes in the search space will have to represent states of the two jugs rather than locations in a
physical environment. The start node, will have to be a representation of the initial state (e.g. 0 pints in
both jugs); the goal node will have to be a representation of the goal state (e.g. 2 pints in X, any amount
in Y), and the successor function will have to return that set of new states which can be reached from
any given state by performing exactly one allowed action. So the main difference between this example
and the one used in the previous chapter is that each state now contains some components (e.g. the
contents of the two jugs) rather than just being an atomic value (e.g. clock_tower).

Constructing Successor Nodes

We can represent states in the water jugs problem as two-element lists in which the first element is an
integer representing the number of pints in the jug called X, and the second element is an integer
representing the number of pints in Y. Thus, the state in which X has 3 pints in it and Y has 2 would be
represented by the list expression:

 [3 2]

We could implement the successor function using the approach that we took with the path-finding
problem, i.e. we could construct a database showing the connections between states and then use a
foreach loop to dig out the states we can achieve in one move. The beginning of the database might
look something like this:

 [[[0 0] [4 0]]
 [[0 0] [0 3]]
 ...
 ...

] -> database;

Page 45

These first two elements represent the fact that from the state [0 0] you can either fill X to achieve [4
0] or fill Y to achieve [0 3]. Note that the complete database will be large. There are 5 × 4 possible
states and there are normally 6 possible actions. So the database will have roughly 5 × 4 × 6 = 120
entries. It will not be exactly 120 because, for some states, two different actions can lead to an identical
new state. Nevertheless this multiplicity leads us to wonder whether there might be an easier way to
implement the successor function.

Note that our state representations are structures with two separate components. The successors of any
given state can be derived (i.e. computed) by looking at the components of any state representation and
making some substitutions. For example, imagine that we wish to work out what the successors of the
state [4 2] are. We know that one possible action is to empty X into Y; thus one successor is just the
state which is reached by carrying out this action. But what is this state?

We can construct it quite easily. Y can hold 3 pints. So if we empty X into Y (which already has 2 pints
in it), exactly 1 pint will flow from X to Y. X will have 3 pints left in it and Y will have 3 pints in it. It is
quite easy to turn this bit of computation into POP-11 code. In fact we can write POP-11 rules to take
care of every allowable action. If we put them all together, we get a function which produces the
successors of any given state. This program obviously implements the desired successor function. But it
does not do so in the same way that our previous program did—by scanning a database. It produces the
successors by operating on the components of structured state descriptions.

A simple version of the successor function might be defined as in Figure 3-1. This version of the
function only takes account of the single action whereby one jug is emptied on the ground. Either X can
be emptied or Y can be emptied; so the successors of any state include one state in which X has 0 pints
(regardless of what it had before) and one state in which Y has 0 pints. The number of pints in the other
jug remains the same in either case.

<><><><><><><><><><><><>

/* successors2 takes a state and returns a list of successor states. */

 define successors2(state) -> result;
 vars X Y;
 state --> [?X ?Y];
 [[^X 0] [0 ∧Y]] -> result;
 enddefine;

Figure 3-1
Partial successor function for the jugs problem

Page 46

The function digs out the components of the input state description using the matcher arrow. This,
effectively, puts the number of pints in the jug X in to the variable called "X", and the number of pints in
the jug Y in to the variable called "Y". It then constructs a list of lists (i.e. a list of states), one of which
substitutes the original X with 0 and the other of which substitutes the original Y with 0. These are just
the successor states of the original state resulting from the action of emptying either X or Y on the
ground.

To implement the complete successor function for this problem we need to take account of the other
possible actions. Note that in the case of actions involving the emptying of one jug into another, the
generation of a successor state entails doing a little bit of arithmetic. For example, to work out how
much water flows from X to Y when we empty X into Y, we have to work out how much space Y has in
it (by subtracting 3 from Y) and how much water is transferred by subtracting this from the current value
of "X". The complete function might be defined as in Figure 3-2. Note the use of comments.

<><><><><><><><><><><><>

/* successors3 takes a state and returns a list of successor states. */

 define successors3(state) -> result;
 vars X Y result;
 state --> [?X ?Y];
 [^(
 /* FILL X COMPLETELY FROM Y WITH SOME LEFT OVER */
 if Y /= 0 and X /= 4 and X+Y > 4 then [4 ^(X+Y-4)] endif;
 /* EMPTY Y COMPLETELY INTO X */
 if Y /= 0 and X /= 4 and X+Y =< 4 then [^(X+Y) 0] endif;
 /* FILL Y COMPLETELY FROM X WITH SOME LEFT OVER */
 if Y /= 3 and X /= 0 and X+Y > 3 then [^(X+Y-3) 3] endif;
 /* EMPTY X COMPLETELY INTO Y */
 if Y /= 3 and X /= 0 and X+Y =< 3 then [0 ^(X+Y)] endif;
 /* EMPTY OUT X */
 if X /= 0 then [0 ^Y] endif;
 /* EMPTY OUT Y */
 if Y /= 0 then [^X 0] endif;
 /* FILL X UP FROM THE TAP */
 if X /= 4 then [4 ^Y] endif;
 /* FILL Y UP FROM THE TAP */
 if Y /= 3 then [^X 3] endif;
)] -> result;
 enddefine;

Figure 3-2
Successor function for the jugs problem

Page 47

This function has eight parts to it corresponding to the eight actions which can be carried out. Each part
constructs a state representation for the successor state. Thus:

 successors3([0 0]) ==>
 ** [[4 0] [0 3]]

 successors3([4 0]) ==>
 ** [[1 3] [0 0] [4 3]]

 successors3([1 3]) ==>
 ** [[4 0] [0 3] [1 0] [4 3]]

We can easily confirm that this behaviour corresponds to the rules of the puzzle by working out what the
real successors of any state are and checking that the successor function returns exactly this set. This
task is left as an exercise for the reader.

<><><><><><><><><><><><>

/* limited_search_tree takes a path so far, a goal and a depth and returns
the corresponding search tree within given depth limit. */

 define limited_search_tree(path_so_far, goal, depth) -> tree;
 vars successor, subtree, current_location;
 last(path_so_far) -> current_location;
 [^current_location] -> tree;
 unless is_goal(current_location, goal) or depth =< 0 then
 for successor in successors(current_location) do
 unless member(successor, path_so_far)
 then limited_search_tree([Ù^path_so_far ^successor], goal,
 depth-1) -> subtree;
 [^^tree ^subtree] -> tree
 endunless
 endfor
 endunless
 enddefine;

Figure 3-3
Computing a search tree with depth limited depth-first search

Page 48

The problem space

Now that we have implemented the successor function for the water jugs problem we can solve the
problem by application of the search function defined in the previous chapter. We can also construct
an explicit representation of the search tree for this problem by applying the search_tree function.
In the current case, a goal node corresponds to any state in which Y has 2 pints regardless of what X has
in it. Thus a state is a goal state provided that it matches the pattern [= 2].

In our definition of is_goal we used a "matches" expression rather than a straight equality test to find
out whether the current node constituted a goal node. This means, that provided the goal description
provided as input is a match pattern such as [= 2] or [3 3], the function will work in exactly the way
we want:

 successors3 -> successors;

 search_tree([0 0]], [= 2]) ==>

 ** [[0 0]
 [[4 0]
 [[1 3]
 [[0 3] [[3 0] [[3 3] [[4 2]] [[4 3]]]] [[4 3]]]
 [[1 0]
 [[0 1]
 [[4 1]
 [[2 3]
 [[0 3] [[3 0] [[3 3] [[4 2]] [[4 3]]]] [[4 3]]]
 [[2 0] [[O 2]]]
 [[4 3] [[0 3] [[3 0] [[3 3] [[4 2]]]]]]
 [[4 3] [[0 3] [[3 O] [[3 3] [[4 2]]]]]]]
 [[0 3] [[3 0] [[3 3] ([4 2]] [[4 3]]]] [[4 3]]]]]
 [[4 3] [[0 3] [[3 0] [[3 3] [[4 2]]]]]]]
 [[4 3] [[0 3] [[3 0] [[3 3] [[4 2]]]]]]]
 [[0 3]
 [[3 0]
 [[4 0]
 [[1 3]
 [[1 0] [[0 1] [[4 1] [[2 3] [[2 0] [[0 2]]] [14 3]]] [[4 3]]]]]
 [[4 3]]]
 [[4 3]]]
 [[3 3]
 [[4 2]]
 [[4 3]
 [[4 0] [[1 3] [[1 0] [[0 1] [[4 1] [[2 3] [[2 0] [[0 2]]]]]]]]]]]
 [[4 3]
 [[4 0] [[1 3] [[1 0] [[0 1] [[4 1] [[2 3] [[2 0] [[0 2]]]]]]]]]]]]

Page 49

This result has the usual upside-down and sloping-to-the-left tree structure. Unfortunately, if we try to
use showtree to construct a better representation we will not get the effect that we want, and the tree
is very large. The scheme we are using represents a state as a list of two elements. But showtree
normally interprets a list of two elements as a representation of a "tree" consisting of a root (the first
element of the list) and one branch (the second element of the list). To get around this problem we
redefine how showtree recognises and prints root nodes (see Notes at the end of this chapter). For
convenience we have changed the search_tree function from the previous chapter so that it takes a
third input (an integer) denoting the depth to which the search tree should be constructed. In each
recursive call of limited_search_tree, this integer is decremented. Thus any call of
limited_search_tree which finds that its depth input is less than 0 can assume that it should
not generate any more recursive calls, i.e. it should cause the tree-growing process to "bottom-out".
Putting these modifications together leads to the definition shown in Figure 3-3. With this new
definition, we can safely use showtree to display the structure of the search tree (containing duplicate
nodes); see Figure 3-4.

Figure 3-4
Search tree for the jugs problem

Page 50

Another way to simplify the tree without using a depth bound, as in Figure 3-5, is to use the
search_tree_no_dups function from the previous chapter. This explores the search space but
never computes the successors of the same node twice,

Note that the actual shape of the tree generated depends very much on the order in which nodes are
encountered, since no node is visited twice. The search method is depth-first and node [3 3] is
encountered in the left hand path. This means that [3 3] will not occur in any other part of the tree and
therefore can never be part of any other solution in this case. Of course, a successor function that
generated nodes in a different order or a different search method might well include this node in some
other solution path.

Searching for a Solution Path

We have already noted that a solution to the water jugs problem is just a sequence of actions which
transform the starting state (assumed to be [0 0]) into the goal state. We can search for such a sequence
in exactly the same way as we searched for a sequence of locations which connected a starting location
to a goal location. In other words, we can find a solution (or "solution path") for the water jugs problem
by running the search_path function we constructed in the previous chapter.

Thus, searching for the new goal [3 3] gives:

 trace search_path;

 search_path([[0 0]], [3 3]) ==>
 > search_path [[0 0]] [3 3]
 !> search_path [[0 0] [4 0]] [3 3]
 !!> search_path [[0 0] [4 0] [1 3]] [3 3]
 !!!> search_path [[0 0] [4 0] [1 3] [0 3]] [3 3]
 !!!!> search_path [[0 0] [4 0] [1 3] [0 3] [3 0]] [3 3]
 !!!!!> search_path [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]] [3 3]
 !!!!!< search_path [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]
 !!!!< search_path [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]
 !!!< search_path [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]
 !!< search_path [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]
 !< search_path [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]
 < search_path [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]

 ** [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]

The list returned by our call on search_path is a sequence of states. Each state can be reached by
applying one action to the previous state. The first state in the sequence is the starting state and the last
state is a goal state. Thus the sequence constitutes a solution to the water jugs problem.

Page 51

Figure 3-5
Search tree for the jugs problem without duplicated nodes

We might translate the solution, involving six states and hence five actions, into English as follows. To
reach the state [3 3] starting from [0 0] using only allowed actions, do the following: fill X, empty
X into Y, empty X, fill X from Y and finally fill Y. Note that this solution is not very sensible—the
initial actions of filling X and moving its contents into Y are completely redundant. However, it is a
solution.

A great many problems can be solved using the search_path function. The classic examples are the
8-puzzle, the Tower of Hanoi problem, and the Missionaries and Cannibals problem. But any problem
whose instantaneous state can be represented precisely, and whose solution involves finding a sequence
of moves connecting a starting state to a goal state can, in principle be solved through search. Of course,
there are many search problems for which finding a solution using ordinary

Page 52

search will take an astronomical amount of time in practice, e.g. chess.

In some problems the goal state is explicitly known at the start and the search process looks for it
specifically. In other problems the goal state may not be known at the start but can be recognised if
found. For example, the 8-Queens problem. Here the problem is to place eight queens on a chessboard
so that no two share the same row, column or diagonal. At the start of the problem one does not know
how the queens will be arranged but it is possible to define is_goal so that given any configuration it
returns <true> if, and only if, the queens do not threaten each other.

Problem Space Exploration Strategies

The search function we have been using so far searches the space of possible states in a systematic
fashion. But it is not just systematic, it is systematic in a specific way. We can bring this out by
considering the order in which it explores states in the problem space for the water jugs problem. Note
that the process of obtaining the successors of a node is referred to as expanding the node; and the
process of testing whether a given node is, or lies on a path to, a goal node is referred to as exploring the
node.

Figure 3-6 shows the first few branches in the search space for the water jugs problem. Each node has a
number beside it and, collectively, these numbers indicate the order in which our search function
expands nodes. The point to note is that the function expands the children of [4 0] before it expands
the second child of the starting state, namely [0 3]. In general we can say that our search function
always explores nodes at level N+1 before exploring further nodes at level N. That is to say, it always
explores successor nodes as soon as it generates them. The diagram shows

Figure 3-6
Depth-first search

Page 53

depth-first search with backtracking. That is when the search reaches as far down the tree as it can (e.g.
because a node is a dead end) it backs up to the most recent node where there was a choice and
continues the search downwards from there (hence the node labelled 5 after the node labelled 4). This
particular type of search behaviour is called depth-first search. It is very easy to implement using a
recursive function because, at any point in the search process, the recursion stack provides a complete
record of the current state of the search. But why is this so important?

When a function calls itself (i.e. makes a recursive call) in POP-11, mechanisms which are built in to the
language serve to keep a record of the current state of the calling function. This means that when the
called function finishes, the original function can continue executing. In the case where we have a whole
set of function calls (one function which has called another, which has called another, which has called
another...) then the built-in language mechanisms keep track of the states of all these functions.

In the case of our search function, this information (which is called the recursion stack) plays a very
important role: it provides an implicit representation of the search space which is being explored. In
effect, it makes sure that the search function does not start searching some portion of the tree which it
has already looked at.

What this means is that when we write a recursive search function in a language such as POP-11, we are
effectively making a feature of the language do an important subtask in the search process; namely, the
task of keeping track of exactly where in the space the search has got to at any one moment. The fact
that we are able to do this means that we can write depth-first search programs—which implement a
very complex form of processing—using just a few lines of code. This issue comes out more clearly in
Prolog, where the built-in mechanisms provide exactly what is needed for depth-first search.

Depth-first search that simply plunges down the tree may fruitlessly explore a very deep (or infinite) part
of the tree and never find a solution, though this can be circumvented by imposing a depth bound.
However depth-first search is efficient in storage space terms. If we use the recursion stack to keep track
of where we are, then we do not need to store the explored nodes explicitly. Even if we do store
explored nodes explicitly we only need to keep track of those nodes between the start and where the
search has currently reached (and perhaps their immediate siblings) so the amount of storage consumed
is roughly proportional to the depth explored.

Breadth-First Search

Depth-first search always explores nodes at level N+1 before exploring any (more) at level N. But what
happens if we implement a different strategy which does just the opposite of this, i.e. always explores
nodes at level N before exploring any (more) nodes at level N+1? In fact this strategy is a perfectly good
way of systematically searching a given problem space. It is called breadth-first search in view of the
fact that

Page 54

it works down the tree expanding nodes in a breadth-first fashion. The sequence in which nodes would
be expanded by a breadth-first search process applied to the water jugs problem is shown in Figure 3-7.
By contrast with depth-first search the amount of storage consumed by breadth-first search is large since
it needs to store all the nodes explored so far. Its advantage is that it will always find the shortest
possible solution (if one exists) since it explores downwards from the start node one complete layer at a
time.

But how could we implement the breadth-first strategy? Given the comments that have just been made
with respect to recursion, we might expect that implementing breadth-first search will not be quite so
easy. This is in fact the case; however, the task is well within our reach. A convenient way to implement
breadth-first search involves making use of a data structure called an agenda.

Agendas

An agenda is a list of the jobs which a search function is going to do next. These ''jobs" are just nodes
(states) which are going to be expanded as the search continues. By arranging things such that the
function always adds new jobs into the agenda in a specific way we can obtain the breadth-first
searching behaviour that we want.

Let us imagine that we provide a search function with an agenda which initially contains just the starting
state. The function can then execute a search by repeatedly executing a sequence of three steps.

- Take the first job off the front of the agenda;

Figure 3-7
Breadth-first search

Page 55

- if it is a goal node, exit;
- otherwise, obtain its successors and add them onto the end of the agenda

By taking jobs off the front of the agenda and adding successors onto the end of the agenda, we ensure
that the sequence in which this function expands nodes is breadth-first rather than depth-first. The nodes
at level N+1 will always be added to the end of the agenda behind any nodes at level N. Thus they will
never be expanded before any nodes at the current level.

If we want to make sure that the agenda_search function does not construct (explore) paths which
have loops in them (i.e. go through one node more than once) then we need to arrange for the agenda to
contain not just "nodes to be expanded", but "paths to be extended". This way, the function
new_paths could always check to see whether a particular successor of the current node has already
been considered, i.e. is already in the path that needs to be extended. We have stored paths explicitly as
lists of states. A more efficient method would have been to store paths implicitly as pointers between
states. The function simply needs to test whether the node is already a member of the path and if so, to
ignore it. Because the agenda is storing paths, we can also cease searching if the current path being
considered exceeds a given length (i.e. depth in the search tree). This will be useful, especially in depth-
first search to conserve search effort. Functions with the desired features are defined in Figure 3-8. The
function also keeps a record, in visited, of every path that has been expanded. This is not used at this
stage, but will be used in later versions of the program.

So far we have been representing a path as a list of states starting at the first state and terminating at the
final state. This is intuitively clear but rather inefficient as our programs have to traverse each path along
its length to get to the "current_location". From now on we will internally represent paths in the opposite
order, thus making access faster, but print paths out by using the built in function rev.

Because the processing which we achieve with this function does not exploit recursive sub-procedure
calls, tracing does not tell us much about the way it works. However, by including a command which
has the effect of printing out the number of paths on the agenda and the current path that is being
extended (if chatty then ... endif) we can see what is going on. If we test this function on
the water jugs problem we get the following behaviour, choosing "10" as the depth bound:

 true -> chatty;

 successors3 -> successors;

 extend_agenda1 -> extend_agenda;

 agenda_search([0 0], [2 =], "breadth", 10) ==>

Page 56

<><><><><><><><><><><><>

/* agenda_search takes an initial state, a goal, a word denoting a
search method and a depth limit. It returns a path from the initial
state to the goal using the specified search method. If no path can
be found it returns false. */

 define agenda_search(initial_state, goal, search_type, depth) -> path;
 vars agenda paths visited;
 [[^initial_state]] -> agenda;
 [] -> visited;
 until agenda = [] do
 agenda --> [?path ??paths];
 if chatty then pr(length(agenda)); sp(1); pr(rev(path)); nl(1)
 endif;
 if is_goal(hd(path), goal)
 then rev(path) -> path; return
 elseif length(path) > depth then paths -> agenda
 else [^path ^^visited] -> visited;
 extend_agenda(paths, path, search_type) -> agenda;
 endif;
 enduntil;
 false -> path;

 enddefine;

/* new_paths takes a path and uses the successor function to return a
list of all extended paths which exclude duplicated nodes. */

 define new_paths(path) -> extended_paths;
 vars state;
 [^(for state in successors(hd(path)) do
 unless member(state, path)
 then [^state ^^path]
 endunless
 endfor
)] -> extended_paths
 enddefine;

/* extend_agenda1 takes an agenda of paths, a path and a search method
and returns a new agenda that incorporates the new extended paths. */

 define extend_agenda1 (agenda, path, search_type) -> new_agenda;
 vars extended_paths;
 new_paths(path) -> extended_paths;
 if search_type = "breadth"
 then [^^agenda ^^extended_paths] -> new_agenda
 elseif search_type = "depth"
 then [^^extended_paths ^^agenda] -> new_agenda
 endif
 enddefine;

Figure 3-8
Agenda-based search

Page 57

 1 [[0 0]]
 2 [[0 0] [4 0]]
 3 [[0 0] [0 3]]
 4 [[0 0] [4 0] [1 3]]
 6 [[0 0] [4 0] [4 3]]
 6 [[0 0] [0 3] [3 0]]
 7 [[0 0] [0 3] [4 3]]
 7 [[0 0] [4 0] [1 3] [0 3]]
 8 [[0 0] [4 0] [1 3] [1 0]]
 8 [[0 0] [4 0] [1 3] [4 3]]
 8 [[0 0] [4 0] [4 3] [0 3]]
 8 [[0 0] [0 3] [3 0] [4 0]]
 9 [[0 0] [0 3] [3 0] [3 3]]
 10 [[0 0] [0 3] [4 3] [4 0]]

 10 [[0 0] [4 0] [1 3] [0 3] [3 0]]
 10 [[0 0] [4 0] [1 3] [0 3] [4 3]]/* SEE TEXT */
 9 [[0 0] [4 0] [1 3] [1 0] [0 1]]
 10 [[0 0] [4 0] [1 3] [4 3] [0 3]]
 10 [[0 0] [4 0] [4 3] [0 3] [3 0]]
 10 [[0 0] [0 3] [3 0] [4 0] [1 3]]
 11 [[0 0] [0 3] [3 0] [4 0] [4 3]]
 10 [[0 0] [0 3] [3 0] [3 3] [4 2]]
 12 [[0 0] [0 3] [3 0] [3 3] [4 3]]
 12 [[0 0] [0 3] [4 3] [4 0] [1 3]]
 12 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]
 13 [[0 0] [4 0] [1 3 [1 0] [0 1] [4 1]]
 14 [[0 0] [4 0] [1 3] [1 0] [0 1] [0 3]]
 15 [[0 0] [4 0] [1 3] [4 3] [0 3] [3 0]]
 15 [[0 0] [4 0] [4 3] [0 3] [3 0] [3 3]]
 15 [[0 0] [0 3] [3 0] [4 0] [1 3] [1 0]]
 15 [[0 0] [0 3] [3 0] [4 0] [1 3] [4 3]]
 14 [[0 0] [0 3] [3 0] [3 3] [4 2] [0 2]]
 14 [[0 0] [0 3] [3 0] [3 3] [4 2] [4 0]]
 15 [[0 0] [0 3] [3 0] [3 3] [4 2] [4 3]]
 15 [[0 0] [0 3] [3 0] [3 3] [4 3] [4 0]]
 15 [[0 0] [0 3] [4 3] [4 0] [1 3] [1 0]]
 15 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 2]]
 16 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 3]
 15 [[0 0] [4 0] [1 3] [1 0] [0 1] [4 1] [2 3]]

 ** [[0 0] [4 0] [1 3] [1 0] [0 1] [4 1] [2 3]]

Notice how the paths being considered gradually increase in length. Since the

Page 58

function works breadth-first it is guaranteed to find a solution path which is at least as short as any other
solution path, i.e. it is guaranteed to find a solution path which is as short as possible. The path marked
with a comment is not expanded past the node [4 3] because to do so would necessarily produce a
node that has been visited before on that path, i.e. either [4 0] or [0 3], hence the reduction in
agenda length from 10 to 9. The size of the agenda generally increases fairly speedily, so that at the
point where paths containing seven states are considered, there are already fifteen paths on the agenda.
By counting the number of lines of "trace" output, namely 38, we can determine how many nodes were
expanded prior to finding the solution.

Implementing Depth-First Search Using an Agenda

One of the advantages of the agenda-based search function is that it can very easily be modified so as to
implement the more familiar depth-first search strategy. We simply arrange that instead of adding new
nodes to the end of the agenda, the function extend_agenda1 always adds them to the beginning.
This means that the successors of some node at some level N+1 of the tree will always be added to the
front of the agenda and get expanded before any (more) nodes at level N. This ensures that the strategy
is depth-first. The definition of extend_agenda1 already includes this possibility, so all that needs to
be done is to call agenda_search with "depth" as its third argument, namely the value of
search_type and again "10" as the depth bound:

 agenda_search([0 0], [2 =], "depth", 10) ==>

 1 [[0 0]]
 2 [[0 0] [4 0]]
 3 [[0 0] [4 0] [1 3]]
 5 [[0 0] [4 0] [1 3] [0 3]]
 6 [[0 0] [4 0] [1 3] [0 3] [3 0]]
 6 [[0 0] [4] [1 3] [0 3] [3 0] [3 3]]
 7 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 2]]
 8 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 2] [0 2]]
 8 [[0 0] [4 0] [1 3] [0 3] [3 o] [3 3] [4 2] [0 2] [2 0]]

 ** [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 2] [0 2] [2 0]]

Notice how each path being considered is simply an extension of the previous path with one more node
added and that the solution is non-optimal and that the size of the agenda increases much more slowly
than in the breadth-first case. In this case the number of nodes expanded is eight If we reduce the depth
bound so as to preclude the nine state solution above, we can force depth-first search to find (eventually)
the shorter solution (found first by breadth-first search):

Page 59

 agenda_search([0 0], [2 =], "depth", 7) ==>

 1 [[0 0]]
 2 [[0 0] [4 0]]
 3 [[0 0] [4 0] [1 3]]
 5 [[0 0] [4 0] [1 3] [0 3]]
 6 [[0 0] [4 0] [1 3] [0 3] [3 0]]
 6 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3]]
 7 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 2]]
 8 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 2] [0 2]] /* BOUNDED */
 7 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 2] [4 3]]
 6 [[0 0] [4 0] [1 3] [0 3] [3 0] [3 3] [4 3]]
 5 [[0 0] [4 0] [1 3] [0 3] [4 3]]
 4 [[0 0] [4 0] [1 3] [1 0]]
 4 [[0 0] [4 0] [1 3] [1 0] [0 1]]
 5 [[0 0] [4 0] [1 3] [1 0] [0 1] [4 1]]
 6 [[0 0] [4 0] [1 3] [1 0] [0 1] [4 1] [2 3]]

 ** [[0 0] [4 0] [1 3] [10] [0 1] [4 1] [2 3]]

 agenda_search([0 0], [2 =], "depth", 2) ==>

 1 [[0 0]]
 2 [[0 0] [4 0]]
 3 [[0 0] [4 0] [1 3]]
 2 [[0 0] [4 0] [4 3]]
 1 [[0 0] [0 3]]
 2 [[0 0] [0 3] [3 0]]
 1 [[0 0] [0 3] [4 3]]

 ** <false>

Iterative Deepening

The trade-off between depth- and breadth-first search is in terms of the maximum storage space needed
by the agenda against the shortness of the first solution found. In addition either case may have to
expand a large number of nodes before finding a solution. Given that the water jugs problem has
relatively small search space, the differences between the methods do not show up very strongly, though
a more complex problem is tackled in the next chapter. A compromise between the two methods is a
technique called iterative deepening. Here the idea is to use depth-first search (with its relatively
efficient maximum storage requirements) but place ever increasing depth bounds on it, starting with one
and increasing as far as necessary. This constraint will cause the method to find the shortest solution (if
one exists) at the cost of re-exploring the whole tree from the start at ever increasing depths. Of course
this

Page 60

is inefficient but as most of the nodes of the tree are generally in the final layer, the inefficiency is not as
bad as it sounds. Although many nodes may be expanded (and re-expanded) the maximum agenda size
is essentially a function of the length of the solution. Figure 3-9 shows the code which makes use of
agenda_search inside a loop.

We have arranged that iterative_deepening_search now has an overall maximum depth
below which it will not search. Within that limit it successively searches depth-first initially with a
temporary depth limit of one, then of two and so on until either the solution is found or the overall
maximum depth limit is reached.

We can see how this behaves as follows:

 false -> chatty;

 iterative_deepening_search([0 0], [2 =], 20) ==>
 ** [[0 0] [4 0] [1 3] [1 0] [0 1] [4 1] [2 3]]

Notice that, although it is working depth-first, it finds the same short solution as breadth-first given
earlier. With "chatty" switched on one can observe the number of nodes expanded (96) and the
maximum size of the agenda (7).

Water Jugs in Prolog

The simple state space search considered in the previous chapter is just a special case of general state
space search. The main difference is that in the example used of path finding search we did not "look
inside" the representation of a location, e.g. seven_dials, and treated it as an atomic entity. In state
space search the same

<><><><><><><><><><><><>

/* iterative deepening takes an initial state, a goal and a maximum depth
and repeatedly calls agenda_search in depth-first mode with an ever
increasing depth bound. It returns the solution path or false. */

 define iterative_deepening_search(initial_state, goal, maxdepth) -> path;
 vars depth;
 for depth from 1 to maxdepth do
 agenda_search (initial_state, goal, "depth", depth) -> path;
 if path then return endif;
 endfor
 enddefine;

Figure 3-9
Iterative deepening search

Page 61

general OR trees are grown but the states themselves have inner structure, e.g. [3 0] for the water jugs
problem. It is not surprising then that the Prolog programs from previous chapter need very little
adaptation.

In Prolog the successors relation for the water jug problem could be stored as roughly 120 entries as
follows. This is open to the same criticism as was made for POP-11 that it would be an inelegant way to
represent this information:

 successor([0,0, [4,0]).
 successor([0,0], [3,0]).

....and so on.

By doing much the same analysis of cases as earlier we can define a procedure successor/2, see
Figure 3-10, which defines the relation between a state and its successor. The first argument of
successor/2 is the current state and the second argument is the next state. One disadvantage of this
compact "procedural" representation of successors is that one cannot use it to compute the previous state
from a given state (nor can one in the POP-11 procedure). Representing the 120 POP-11 database sub-
lists or the 120 Prolog successor/2 predicates would have allowed this.

The successor/2 procedure includes the same checks as the POP-11 version so that it does not
produce duplicate states when forced to backtrack. successors/2 was defined in the previous
chapter:

 ?- successor([4,0],S).
 S = [1, 3] ? ;

<><><><><><><><><><><><>

/* successor(+This_state, -Next_state)
successor succeeds with This_state of the water jugs problem if
Next_state is a succeeding state. */

 successor([X,Y],[4,Z]) :- not(Y=0), not(X=4), X+Y > 4, Z is X+Y-4.
 successor([X,Y],[Z,0]) :- not(Y=0), not(X=4), X+Y =< 4, Z is X+Y.
 successor([X,Y],[Z,3]) :- not(X=0), not(Y=3), X+Y > 3, Z is X+Y-3.
 successor([X,Y],[0,Z]) :- not(X=0), not(Y=3), X+Y =< 3, Z is X+Y.
 successor([X,Y],[0,Y]) :- not(X=0).
 successor([X,Y],[X,0]) :- not(Y=0).
 successor([X,Y],[4,Y]) :- not(X=4).
 successor([X,Y],[X,3]) :- not(Y=3).

Figure 3-10
Successor function for the jugs problem in Prolog

Page 62

 S = [0, 0] ?;
 S = [4, 3] ?;
 no

 ?- successors ([4,0], Successors).
 Successors = [[1, 3], [0, 0], [4, 3]] ?

Finding a sequence of states (i.e. a path) from an initial state to a goal state can make use of procedure
search_path/3 from the previous chapter. This procedure searches depth-first just like the POP-11
procedure search_path. This procedure also represented paths in the inefficient manner of start to
finish. As before, one can force Prolog to produce all the solutions via backtracking. Note that we have
used the anonymous variable "_" to do the same work as the "=" in the POP-11 version, so the following
represents a search to get 2 pints in X and an undefined amount in Y:

 ?- search_path([[0,0]], [2,_], R).

 R = [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3], [4, 2],
 [0, 2], [2, 0]] ?;
 R= [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1], [4, 1], [2, 3]] ?;
 R= [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1], [4, 1], [4, 3],
 [0, 3], [3, 0], [3, 3], [4, 2], [0, 2], [2, 0]] ? ;
 R= [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1], [0, 3], [3, 0],
 [3, 3], [4, 2], [0, 2], (2, 0]] ?;
 R= [[0, 0], [4, 0], [1, 3], [4, 3], [0, 3], [3, 0], [3, 3],
 [4, 2], [0, 2], [2, 0]] ? ;
 R= [[0, 0], [4, 0], [4, 3], [0, 3], [3, 0], [3, 3], [4, 2],
 [0, 2], [2, 0]] ?
 yes

There are further solutions but they have not been printed here. Recall that search_path/3 checks
for loops in each path but does not implement a stringent check about expanding any node more than
once.

Agendas in Prolog

Both depth and breadth-first search can be produced in Prolog by differentially extending an explicit
agenda of paths to be explored just as in POP-11. As in the POP-11 program earlier, we will take this
opportunity to change the representation of paths so that they are stored from finish to start in order to
make access to the "current location" faster. The main procedure, see Figure 3-11 is named agenda
search/5 and corresponds to the POP-11 agenda version of agenda_search

Page 63

given earlier in Figure 3-8, except that it make no reference to a list of visited nodes (which will be
introduced in the next chapter).

The agenda searching mechanism makes use of a subsidiary procedure extend_agenda/4, see
Figure 3-12, which computes new paths and adds them either onto the front (depth-first search) or back
(breadth-first search) of the given agenda to form a new agenda. The agenda is just a list of paths, and
each path is just a sequence of states. Thus the initial value of the agenda is a single path containing a
single state, the initial state.

Procedure agenda_search/5 does the actual search and has three cases to deal with. Each clause
includes a call to chatty_print/1 for possible tracing purposes. This behaves like the "chatty"
mechanism in the POP-11 version except that the size of the agenda is not printed out at each stage. The
first clause copes with the case where the path at the start of the agenda already contains the goal state.
The second clause checks whether the path to be extended is already longer than the depth bound, in
which case it is ignored. The third clause of agenda_search/5 does the work. It calls
new_paths/3 to compute the new paths from the given path and then calls extend_agenda/4 to
extend the agenda with these new paths according to the search type, breadth or depth. Finally it calls
itself recursively with the new agenda.

extend_agenda has two clauses, one for depth-first search, the other for bread first search. The
difference between them is the order of the arguments to append/3 which produces the new agends.
Procedure new_paths/3 takes a path and a list of successors and forms a list of new paths, each new
path made up of the original path plus one of the successors.

In the example below the variable S is bound to the solution path. The initial agenda is a list containing a
single path containing a single state, hence [[[0,0]]] and the inital value of the visited nodes is
[]:

 ?- assert(chatty).
 ?- agenda_search([[[0,0]]], [2,_], breadth, 10, S).

 [[0, 0]]
 [[0, 0], [4, 0]]
 [[0, 0], [0, 3]]
 [[0, 0], [4, 0], [1, 3]]
 [[0, 0], [4, 0], [4, 3]]
 [[0, 0], [0, 3], [3, 0]]
 [[0, 0], [0, 3], [4, 3]]
 [[0, 0], [4, 0], [1, 3], [0, 3]]
 [[0, 0], [4, 0], [1, 3], [1, 0]]
 [[0, 0], [4, 0], [1, 3], [4, 3]]
 [[0, 0], [4, 0], [4, 3], [0, 3]]
 [[0, 0], [0, 3], [3, 0], [4, 0]]
 [[0, 0], [0, 3], [3, 0], [3, 3]]

Page 64

<><><><><><><><><><><><>

/* agenda_search(+Agenda, +Goal, +Search_type, +Depth, -Solution)
agenda_search takes an Agenda of paths, a Goal, a Search_type,
either depth or breadth, and a maximum Depth, and succeeds
when path is a Solution path. */

 agenda_search([Path | _], Goal, _, _, Solution) :-
 Path = [Current_location |_],
 is_goal(Current_location, Goal), !,
 rev(Path, [], Solution),
 chatty_print (Path).

 agenda_search([Path | Paths], Goal, Search_type, Depth, Solution) :-
 length(Path, Length),
 Length > Depth, !,
 chatty_print (Path),
 agenda_search(Paths, Goal, Search_type, Depth, Solution).

 agenda_search([Path | Paths], Goal, Search_type, Depth, Solution) :-
 chatty_print (Path),
 Path = [Current_location | _],
 successors(Current_location, Successors),
 new_paths (Path, Successors, New_paths),
 extend_agenda(Paths, New_paths, Search_type, New_agenda),
 agenda_search (New_agenda, Goal, Search_type, Depth, Solution).

/* chatty_print(+Path)
chatty_print prints a path for tracing purposes. */

 chatty_print (Path) :-
 chatty, !,
 rev(Path, [], Reversed_path),
 write (Reversed_path), nl.

 chatty_print (_).

/* rev(+List, +Sofar, -Reversed_list)
rev is true when Reversed_list is the reverse of List */

 rev([], Sofar, Sofar).

 rev([H | T], Sofar, Reversed_list) :-
 rev(T, [H | Sofar], Reversed_list).

Figure 3-11
Agenda-based search in Prolog

Page 65

<><><><><><><><><><><><>

/* extend_agenda(+Agenda, +New_paths, +Search_type, -New_agenda)
extend_agenda takes an Agenda of paths, and New paths, a search type
and succeeds with a new agenda containing the new paths
in a position according to the search type. */

 extend_agenda(Agenda, New_paths, depth, New_agenda) :-
 append(New_paths, Agenda, New_agenda).

 extend_agenda(Agenda, New_paths, breadth, New_agenda) :-
 append(Agenda, New_paths, New_agenda).

/* new_paths(+Path, +Successors, -New_paths)
new_paths succeeds with New_paths made from an existing Path and a
list of Successors, omitting any new path that contains the same
state twice. */

 new_paths(_, [], []).

 new_paths(Path, [Succ | Succs], New_paths) :-
 member(Succ, Path), !,
 new_paths(Path, Succs, New_paths).

 new_paths(Path, [Succ | Succs], [[Succ | Path] | New_paths]):-
 new_paths(Path, Succs, New_paths).

Figure 3-12
Agenda mechanism in Prolog

 [[0, 0], [0, 3], [4, 3], [4, 0]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [4, 3]]
 [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1]]
 [[0, 0], [4, 0], [1, 3], [4, 3], [0, 3]]
 [[0, 0], [4, 0], [4, 3], [0, 3], [3, 0]]
 [[0, 0], [0, 3], [3, 0], [4, 0], [1, 3]]
 [[0, 0], [0, 3], [3, 0], [4, 0], [4, 3]]
 [[0, 0], [0, 3], [3, 0], [3, 3], [4, 2]]
 [[0, 0], [0, 3], [3, 0], [3, 3], [4, 3]]
 [[0, 0], [0, 3], [4, 3], [4, 0], [1, 3]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3]]
 [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1], [4, 1]]
 [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1], [0, 3]]
 [[0, 0], [4, 0], [1, 3], [4, 3], [0, 3], [3, 0]]
 [[0, 0], [4, 0], [4, 3], [0, 3], [3, 0], [3, 3]]

Page 66

 [[0, 0], [0, 3], [3, 0], [4, 0], [1, 3], [1, 0]]
 [[0, 0], [0, 3], [3, 0], [4, 0], [1, 3], [4, 3]]
 [[0, 0], [0, 3], [3, 0], [3, 3], [4, 2], [0, 2]]
 [[0, 0], [0, 3], [3, 0], [3, 3], [4, 2], [4, 0]]
 [0, 0], [0, 3], [3, 0], [3, 3], [4, 2], [4, 3]]
 [[0, 0], [0, 3], [3, 0], [3, 3], [4, 3], [4, 0]]
 [[0, 0], [0, 3], [4, 3], [4, 0], [1, 3], [1, 0]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3], [4, 2]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3], [4, 3]]
 [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1] ,[4, 1], [2, 3]]

 s = [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1], [4, 1], [2, 3]] ?
 yes

As expected for breadth-first search, paths are searched in increasing order of length, so the first solution
found is as short as it can be. Because agenda_search/5 contains a cut in clause 1, our program will
not generate any further solutions.

Running agenda_search/5 in depth-first mode with a depth bound of ''10" is just as simple:

 ?- agenda_search([[[0,0]]], [2,_], depth, 10, S).

 [[0, 0]]
 [[0, 0], [4, 0]]
 [[0, 0], [4, 0], [1, 3]]
 [[0, 0], [4, 0], [1, 3], [0, 3]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3], [4, 2]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3], [4, 2], [0, 2]]
 [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3], [4, 2], [0, 2],
 [2, 0]]

 s = [[0, 0], [4, 0], [1, 3], [0, 3], [3, 0], [3, 3], [4, 2],
 [0, 2], [2, 0]] ? ;
 yes

The solution above is the first one found. Notice that it is not the same as the solution found by breadth-
first search. This is because of the different way in which the search space is explored. However no
more solutions will be presented if we type ";" because of the cut in the first clause of
agenda_search/5, see Figure 3-11. This cut prevents any further solutions and makes the Prolog
program behave in much the same way as the POP-11 version.

Page 67

Of course, if we impose a smaller depth bound then even depth-first search will find the shorter solution:

 ?- retractall(chatty).
 yes
 ?- agenda_search([[[0,0]]], [2,_], depth, 7, S).

 s = [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1], [4, 1], [2, 3]] ?
 yes

Iterative Deepening in Prolog

The same arguments about the number of nodes explored, the maximum size of the agenda and the
length of the solution found apply to the Prolog versions as to the POP-11 versions of the above
programs. We can compromise between a small maximum agenda size and finding a shortest solution
via a Prolog version of iterative deepening, see Figure 3-13.

The first clause of iterative_deepening_search/5 ensures that search does not go deeper than
Maxdepth. The second clause calls the depth-first version of agenda_search/5 (constructing an
initial path as its first argument). The third clause increments the depth bound and recursively calls
itself:

<><><><><><><><><><><><>

/* iterative_deepening_search(+Initial state, +Goal, +Depth, +Maxdepth, -S)
iterative deepening search succeeds with a solution S, given an
Initial_state, a Goal, a Depth and an overall Maxdepth. */

 iterative_deepening_search (_, _, Depth, Maxdepth, _) :-
 Depth > Maxdepth,
 !, fail.

 iterative_deepening_search(Initial_state, Goal, Depth, Maxdepth, S) :-
 agenda_search([[Initial_state]], Goal, depth, Depth, S), !.

 iterative_deepening_search(Initial_state, Goal, Depth, Maxdepth, S) :-
 New_depth is Depth + 1,
 iterative_deepening_Search(Initial_state, Goal, New_depth, Maxdepth, S).

Figure 3-13
Iterative deepening in Prolog

Page 68

 ?- iterative_deepening_search([0, 0], [2, _], 1, 20, Solution).
 Solution = [[0, 0], [4, 0], [1, 3], [1, 0], [0, 1], [4, 1],
 [2, 3]] ?;
 no
 ?- iterative_deepening_search([0, 0], [9, 9], 1, 20, Solution).
 no

The second goal above attempts to find an impossible solution while the first goal finds the same
solution as the POP-11 version shown earlier.

Reading

There is a considerable amount of material in the AI literature which discusses the ideas covered in this
chapter. The AI Handbook (volume 1) discusses problem spaces and the two main search strategies
(Barr and Feigenbaum 1981, pp. 32-57). Winston also deals extensively with all aspects of state-space
search (Winston, 1984, pp. 87100); see also Rich (1983, Chapters 2 and 3). Bundy et al. (1980, chapter
1) provide a discussion using sample algorithms in LOGO. The topic of iterative deepening is covered
by Korf (1988).

Charniak and McDermott's discussion of search issues (1985, Chapter 5) is comprehensive and makes
quite extensive use of LISP code. They provide some background material concerning the development
of chess playing programs which is well worth looking at (see Box 5.2). Nilsson's text (Nilsson, 1980)
covers search strategies from a fairly formal perspective using pseudo-code rather than LISP. Nilsson
pays quite a lot of attention to the topic of graph search.

For a discussion which considers the implementation of search procedures in POP-11, see Burton and
Shadbolt (1987, Chapter 7). Sterling and Shapiro (1986) deal with state-space search in Prolog,
including the jugs problem, as do O'Keefe (1990) and Bratko (1990).

Exercises

1. Bundy et al. (1980) provide the following description of the Missionaries and Cannibals problem.

Three missionaries and three cannibals seek to cross a river from the left bank to the right bank. A boat is
available, which will hold two people and which can be navigated by any combination of missionaries and
cannibals involving one or two people. If the missionaries on either bank of the river are outnumbered at any
time by cannibals, the cannibals will eat them. When the boat is moored at a bank it is counted as part of the
bank for these purposes. (p. 7)

Page 69

Devise a way of representing states in this scenario and implement an appropriate successor function.
Construct a solution to the problem by using one of the "search" functions provided above.

2. Remove the ! from the first clause of agenda_search/5 in Figure 3-11 and observe the alternative
breadth and depth-first solutions produced on typing ";".

3. Augment the definition of chatty_print/1 so that it prints out the size of the agenda, as in the
POP-11 version.

4. Generalise the successor function for the two jugs problem to cope with jugs of arbitrary capacity and
examine the behaviour of depth, breadth and iterative deeping in either Prolog or POP-11. Compare the
numbers of nodes expanded, the maximum sizes of the agenda and the solution lengths.

5. Write a three jugs version of the problem-solver.

Notes

The following adjustment is needed to make showtree display water jug states.

/* root is called by showtree. It returns the string to be printed
as the name of root of the tree it is given. */

 define root(tree) -> root_name;
 vars x y subtrees;
 tree --> [[?x ?y] ??subtrees];
 x >< ' ' >< y -> root_name
 enddefine;

Page 71

4
Heuristic State Space Search

Introduction

The two basic search strategies discussed in the previous chapter (depth-first and breadth-first) are said to be
exhaustive. This means that they explore the search space systematically but with no inkling of where a goal
node is likely to be found. Recall that the programs have a "worm's-eye" rather than a "bird's-eye" view of the
space. They just work through the space, methodically checking out every single possibility. For simple
problems (small search spaces) such as the water jugs problem this strategy is perfectly adequate. However, if
the search space is particularly big, then exploring it exhaustively may take too much time. As it turns out, most
interesting problems have huge search spaces.

The 8-Puzzle

A problem which demonstrates just how easy it is for a search space to get unmanageably large is the 8-puzzle.
Most people will be familiar with this game. It consists of a little 3 by 3 plastic tray with eight tiles on it (hence
the name). The tiles are numbered and can be slid horizontally or vertically. The objective is to slide the tiles
around so as to get the numbers into some given sequence. We can informally represent a particular
configuration of tiles as a 2-dimensional array of numbers, e.g.

 1 3 4
 6 8 7
 5 2

Each number represents the tile with that digit printed on it and the position of the number in the diagram
indicates the position of that tile. So the tile labelled 3 is in the middle of the top row.

Page 72

Starting from this configuration we can slide tile 5 leftwards into the hole to get:

 1 3 4
 6 8 7
 5 2

Or we can slide tile 6 down into the hole to get:

 1 3 4
 8 7
 6 5 2

The original state therefore has exactly two successors. If, in the original state, the hole had been in the centre
position there would have been four possible actions (four successors) whereas if it had been at a non-corner
position there would have been three.

Constructing 8-Puzzle Successors

We can represent states in the 8-puzzle problem as a list of numbers, e.g.

 [1 3 4
 6 8 7
 5 2 hole]

If we write out this list expression on one line it looks like this:

 [1 3 4 6 8 7 5 2 hole]

In this representation a given position on the tray corresponds to a particular position in the list. Thus the top,
right hand position corresponds to the first position in the list; the top, middle position corresponds to the second
position in the list, and so on.

A given tile is just represented as the number which appears on its surface. In the representation shown, the
number 4 appears in the third position in the list. This represents tile number 4 being in the top, right position on
the tray. The word "hole" which appears in the ninth position in the list shows that, in the state represented, the
hole is in the bottom, right position. Note that from a given state of the 8-puzzle we can always construct the
corresponding representation just by reading off the sequence of numbers working left-to-right and top-to-
bottom; cf. Figure 4-1.

Given this representational scheme, we can implement the successor function in much the same way as we
implemented it for the water jugs problem. We construct a function which takes an input state representation and
constructs representations for

Page 73

Figure 4-1
8-puzzle state representation

all the successors. Unfortunately, by choosing such a simple representation we have given ourselves some
implementation problems. States resulting from the movement of a tile upwards or downwards into a hole can be
very easily constructed. A downwards movement of a tile corresponds to a number moving exactly three
positions to the right in the representation and swapping places with the "hole", e.g. moving tile 3 downwards in
the state:

 [1 2 3 4 5 hole 6 7 8]

produces

 [1 2 hole 4 5 3 6 7 8]

An upwards movement of a tile corresponds to a number being switched with the word "hole" appearing three
positions to the left.

A leftwards movement of a tile corresponds to a number being switched with the word "hole" appearing one
position to the left and a rightwards movement corresponds to a number being switched with the word "hole"
appearing one position to the right. So it seems as if we might implement leftwards and rightwards just by
switching the word "hole" with neighbouring tiles. Unfortunately, this will not work in general. Consider the
state:

 [1 2 hole 4 5 3 6 7 8]

If we switch the word "hole" with the number "4" which appears immediately to its right, with the idea of
implementing a leftwards tile-movement, we effectively implement an illegal move; namely, a move in which a
tile is moved off the left-hand edge of the board, around the back and into the hole appearing on the right hand
edge! We could solve this problem by changing the representation. But a simpler approach

Page 74

<><><><><><><><><><><><>

/* up takes a state and returns the state corresponding to moving a
tile up or false if it cannot be moved. */

 define up(node) -> new;
 vars a b c d x;
 if node matches [??a hole ?b ?c ?x ??d]
 then [^^a ^x ^b ^c hole ^^d] -> new
 else false -> new;
 endif;
 enddefine;

/* down takes a state and returns the state corresponding to moving a
tile down or false if it cannot be moved. */

 define down(node) -> new;
 vars a b c d x;
 if node matches [??a ?x ?b ?c hole ??d]
 then [^^a hole ^b ^c ^x ^^d] -> new
 else false -> new
 endif;
 enddefine;

/* exchange takes a state and returns a new state with the rows and
columns exchanged. */

 define exchange(node) -> new_node;
 vars a b c d e f g h i;
 node --> [?a ?b ?c ?d ?e ?f ?g ?h ?i];
 [^a ^d ^g ^b ^e ^h ^c ^f ^i] -> new_node
 enddefine;

/* successors4 takes a state and returns a list of the successor states. */

 define successors4(node) -> result;
 vars move turned;
 [^(
 down(node) -> move; if move then move endif;
 up(node) -> move; if move then move endif;
 exchange(node) -> turned;
 down(turned) -> move; if move then exchange(move) endif;
 up(turned) -> move; if move then exchange(move) endif;
)] -> result
 enddefine;

Figure 4-2
Successor function for the 8-puzzle

Page 75

involves realising that if we exchange the rows and columns of the representation, moving a tile leftwards is just
like moving it up and moving a tile rightwards is just like moving a tile down. The function exchange
exchanges rows and columns:

 exchange([1 2 hole 4 5 3 6 7 8]) ==>
 ** [1 4 6 2 5 7 hole 3 8]

The result is organised by columns rather than rows, e.g. 1,4,6 is the first column. Note that exchanging twice
leaves the state as it is:

 exchange(exchange([1 2 hole 4 5 3 6 7 8])) ==>
 ** [1 2 hole 4 5 3 6 7 8]

The successors4 function simply accumulates possible new states by trying a down move, an up move and
the same again with the exchanged board (but we have to call exchange again to put the state back to
normal afterwards).

We can test the successors4 function by calling it on a example starting state corresponding to the
configuration depicted in Figure 4-3. Thus:

 successors4([2 3 4 1 5 6 hole 7 8]) ==>
 ** [[2 3 4 hole 5 6 1 7 8] /* MOVED 1 DOWN */
 [2 3 4 1 5 6 7 hole 8]] /* MOVED 7 LEFT */

We can apply our limited_search_tree function (with the depth bound) to a given state representation so
as to see what the first few branches of the search tree for this problem look like. We have modified the
showtree function so that it prints states sensibly (see Notes at the end of this chapter). Figure 4-4 shows the
first few layers.

In this search space nodes always have between one and three successors. On average, the number of new
successors is just under two. This "average number of

Figure 4-3
Example of 8-puzzle starting state

Page 76

Figure 4-4
First four layers of an 8-puzzle search tree

successors" is referred to as the branching factor for the search space in question. By computing the branching
factor of the search space for a given problem we can estimate how many nodes it has in total, and therefore how
long it will take, in general, to solve the problem using exhaustive search (i.e. search which, in the worst case,
looks at every node in the space).

The relationship between the branching factor and the total number of nodes is quite straightforward. If the
branching factor is N, every node in a given layer of the search space has N successors. Thus, the number of
nodes in each new layer of the search space is just the number of the nodes in the previous layer multiplied by
the branching factor. So to work out the total number of nodes in a layer we simply need to raise the branching
factor to a power equal to the depth of that layer in the search space. The total number of nodes will be the sum
of subtotals of the nodes in all the layers.

Page 77

In the current case, the branching factor ranges between 1 and 3. Thus, if a solution to the 8-puzzle normally
involves more than 30 moves, the problem space contains more than 30 layers and the total number of nodes
might be about 230 = 1073741824, because this is the number of nodes in the 30th layer. In fact this an over-
estimate because it takes no account of duplicated nodes. Perhaps a better estimate of the total number of
different nodes in the search space for the 8-puzzle is to compute 9!/2 (i.e. the number of reachable permutations
of the tiles in the frame). This number comes out to the more manageable 181440.

Nevertheless solving even a very simple problem like the 8-puzzle using exhaustive search is not particularly
practical. Most interesting problems (e.g. chess) are much more complex than the 8-puzzle.[1] This means that,
in general, they will have much bigger search spaces and therefore be effectively unsolvable using exhaustive
search. Does this mean that search is not really such an effective way of solving problems? Not necessarily.
There is a way of improving the performance of the search function. This involves the use of heuristics.

Heuristic Search

To improve on exhaustive search we need to provide the searching mechanism with some way of moving more
directly towards a goal node, i.e. we need to give the search function some clue as to where a goal node might
be. Technically, this sort of ''clue" is called a heuristic for the search problem in question.

A simple heuristic for the 8-puzzle can be constructed quite easily. The goal is to get the tiles into certain
positions. Therefore we can estimate how close to the goal any given state is (i.e. how much work will be needed
to transform it into the goal state) simply by working out how far tiles are from their desired positions both up or
down and let or right. This distance measure is known as the "Manhattan" distance. Of course, this heuristic does
not measure the consequential difficulty of shifting other tiles out of the way since it treats the distance of each
tile from its goal position as an independent sub-problem. The heuristic tends to under-estimate the work to be
done. More importantly, it never over-estimates since there is no quicker route than the direct one.

There are three rows and three columns in the puzzle, so a tile can be at most two moves away from the correct
column and two moves away from the correct row. So in the following state the "1" tile and the "6" tile are both
one row and 2 columns away from their ideal positions of first and sixth in the list:

 [6 2 3 4 5 1 7 8 hole]

The desired position of tile number 3 is position 3; the desired position for tile

[1] It has been estimated that the search space for chess contains on the order of 10120 nodes.

Page 78

number 7 is position 7, and so on. Functions rowdist and columndist compute the row and column
distance of a tile from its ideal position, assuming that the tile "hole" has value "9" and should be ninth. That is
they each return a value of zero, one or two depending on how many rows or columns the tile is away from
where it should be. The built in functions abs, mod and div compute the absolute value of a number, the
remainder after division and the quotient ignoring the remainder.

The function distance_to_goal works out the total out-of-position value by iterating over the sequence of
possible positions (i.e. 1 to 9) keeping a running total of the out-of-position manhattan values for each tile; cf.
the definition of "distance_to_goal" in Figure 4-5. The total excludes the cost of moving the hole as that is
already computed in the movements of the tiles.

Once we have a function which computes an estimate of distance-to-goal we can define a function which
forms (and returns) an estimate of closeness_to_goal by subtracting the distance-to-goal value from a
maximum distance value (here arbitrarily assumed to be 100). This closeness_to_goal function provides
an inverse estimate of the amount of work needed to transform the current node into the goal node. Note that it is
only an estimate, and it is only intended to be proportional to the number of moves required. Due to the structure
of the problem, it is difficult to tell for sure how many steps it will take to transform any given state into the goal
state. This function just assumes that the closeness-to-goal decreases linearly with the degree to which tiles are
out of position. We can show the function works by seeing what values it returns for different states, e.g.

 closeness_to_goal([1 3 2 4 5 6 7 8 hole]) ==>
 ** 98
 closeness_to_goal([7 8 3 2 1 hole 4 5 6]) ==>
 ** 89

Given this closeness_to_goal function we can provide our search program with a mechanism for deciding
where the goal is likely to be. This mechanism takes the form of a function called closer_to_goal which
takes, as input, two states (e.g. two successors) and decides whether or not the first one is closer to the goal than
the second one. The boolean value returned shows whether or not the goal node is likely to be found down a
given branch of the search space. The definition of the function is shown in the lower part of Figure 4-5.

In order to make the ordinary, depth-first search function exploit this function we need to change it so that
instead of expanding the successors of a node in the order that they are returned by the successor function, it
always expands the best (i.e cosest-to-goal) node first. If we arrange things such that it always does this then we
can be sure that it will explore that particular path in the search space which is most likely (given our heuristic)
to lead to a goal node. In other words, we can be sure that it will always look in the most sensible places first.

Page 79

<><><><><><><><><><><><>

/* columndist takes tile value and a position and computes how many
columns away it is from its home column. */

 define columndist(tile,pos) -> dist;
 abs(((tile - 1) mod 3) - ((pos - 1) mod 3)) -> dist
 enddefine;

/* rowdist takes tile value and a position and computes how many rows
away it is from its home row. */

 define rowdist(tile,pos) -> dist;
 abs(((tile - 1) div 3) - ((pos - 1) div 3)) -> dist
 enddefine;

/* distance_to_goal takes a state and computes the minimum number of
moves to get all the tiles in their goal positions. */

 define distance_to_goal(node) -> num;
 vars tile;
 0 -> num;
 for pos from 1 to 9 do
 node(pos) -> tile;
 unless tile = "hole"
 then num + columndist(tile,pos) + rowdist(tile,pos) -> num;
 endunless;
 endfor;
 enddefine;

/* closeness_to_goal takes a state and computes numerically how close
it is to the goal state, with 100 the arbitrary maximum possible value. */

 define closeness_to_goal(node) -> value;
 100 - distance_to_goal(node) -> value
 enddefine;

/* closer_to_goal takes two states and returns true if the first is
nearer to the goal than the second. */

 define closer_to_goal(node1, node2) -> boolean;
 closeness_to_goal(nodel) > closeness_to_goal(node2) -> boolean
 enddefine;

Figure 4-5
Estimating closeness to goal in the 8-puzzle

Page 80

To make sure that our search function expands nodes in the correct sequence (i.e. closest-to-goal nodes first) we
need to insert into the search function a call on the built-in sorting function syssort. As is explained in
Appendix B, this function takes a list and a function which compares two items and returns <true> if the first
item should come before the second item in the sorted list. Our function closer_to_goal is, of course,
exactly such a function.

Note that we have made the function (see Figure 4-6) check that the closeness-to-goal of the successor node
being considered is greater than the closeness-to-goal of the current node. Expanding a node which has a lower
closeness-to-goal than the current node would correspond to moving away from the goal.

We can test the new function on a simple problem as follows:

 trace heuristic_search;

 successors4 -> successors;

<><><><><><><><><><><><>

/* heuristic_search uses the recursion stack to give backtracking hill
climbing search. It takes a path so far and a goal and returns a
solution path. */

 define heuristic_search(path_so_far, goal) -> path;
 vars current_node, path, successor;
 hd(path_so_far) -> current_node;
 if is_goal(current_node, goal) then
 rev(path_so_far) -> path
 else
 for successor in syssort(successors(current_node),
 closer_to_goal) do
 unless member(successor, path_so_far) or
 closer_to_goal(current_node, successor)
 then heuristic_search([^successor ^^path_so_far], goal)
 -> path;
 if islist(path) then return endif
 endunless
 endfor;
 false -> path;
 endif;
 enddefine;

Figure 4-6
Backtracking hill-climbing search

Page 81

 heuristic_search([[1 2 hole 4 5 3 7 8 6]], [1 2 3 4 5 6 7 8 hole])
 ==>

 >heuristic_search [[1 2 hole 4 5 3 7 8 6]] [1 2 3 4 5 6 7 8 hole]
 !>heuristic_search [[1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]]
 [1 2 3 4 5 6 7 8 hole]
 !!>heuristic_search [[1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]
 [1 2 3 4 5 6 7 8 hole]] [1 2 3 4 5 6 7 8 hole
 !!<heuristic_search [[1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]
 [1 2 3 4 5 6 7 8 hole]]
 !<heuristic_search [[1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]
 [1 2 3 4 5 6 7 8 hole]]
 <heuristic_search [[1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]
 [1 2 3 4 5 6 7 8 hole]]

 ** [[1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]
 [1 2 3 4 5 6 7 8 hole]]

Hill-Climbing Search

The search strategy implemented by this new function is a variant on hill-climbing that backtracks. The logic for
this terminology is quite straightforward. If we imagine that we arrange all the nodes in the search space along
the horizontal dimension of a graph, and then plot the closeness-to-goal values for each state in the vertical
dimension, we produce a kind of landscape, cf. Figure 4-7. The objective of the search is to try to get closer and
closer, and ultimately to reach, the goal node. In

Figure 4-7
Two-dimensional view of hill-climbing

Page 82

terms of the landscape shown this corresponds to trying to get higher and higher, and ultimately to reach the
highest hilltop. This spatial analogy is quite helpful. It lets us see that our heuristic search function is going to
face at least two difficulties.

Firstly, it may be the case that there is a foothill, i.e. a region of the landscape which is higher than any of the
points which immediately surround it but lower than some other hill which is in the distance. Given the way in
which we have defined our search function, the search will get stuck if ever it comes across one of these
foothills. It will effectively "refuse" to move downhill, i.e. to expand any node which is further away from the
goal (i.e. lower) than the current one. One way out of this might be to change the function so that it does not
mind going downhill. However, if we do this, the function will obviously not hill-climb so effectively.

Another problem occurs when there is a plateau in the landscape, i.e. a region in which points are exactly the
same height as all their immediate neighbours. If our search mechanism meets a plateau it may either get stuck
completely or wander about at random. It all depends whether we arrange things such that the function does not
mind expanding a node which is at the same level (i.e. is equally close to the goal) as the current node. As we
have defined the function, a successor node is expanded unless the value of
closer_to_goal(current_node, successor) is <false>. This means that the function will refuse
to expand a successor which is no "higher" than the current node.

True hill-climbing search does not offer the possibility of backtracking, but merely selects the best child of any
node and forgets the others and so can never return to an earlier node and re-continue. This means that it is easy
to implement, consumes very little storage space (as it does not store alternative nodes) but may well get stuck
as described above.

In the previous chapter we showed how depth-first search could be produced using an agenda mechanism. This
procedure can be adjusted to give irrevocable (i.e. in the sense that certain choices are never considered) hill
climbing search by arranging that new states are sorted (using syssort) and only the best one (so long as it is
better than its parent) is made the sole member of the agenda, as in Figure 4-8. The agenda_search
procedure itself does not need adjustment, only the extend_agenda mechanism. This version,
extend_agenda2, uses a function better_path_h described in the next section.

We can examine successful hill-climbing behaviour with a simple example. As chatty is set to true, we get a
trace of the path currently being considered and the agenda size (which necessarily stays at one):

 true -> chatty;

 extend_agenda2 -> extend_agenda;

 agenda_search([hole 1 2 4 5 3 7 8 6],[1 2 3 4 5 6 7 8 hole],
 "hill_climbing", 10) =>

Page 83

 1 [[hole 1 2 4 5 3 7 8 6]]
 1 [[hole 1 2 4 5 3 7 8 6] [1 hole 2 4 5 3 7 8 6]]
 1 [[hole 1 2 4 5 3 7 8 6] [1 hole 2 4 5 3 7 8 6]
 [1 2 hole 4 5 3 7 8 6]]
 1 [[hole 12 4 5 3 7 8 6] [1 hole 2 4 5 3 7 8 6]
 [1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]]
 1 [[hole 1 2 4 5 3 7 8 6] [1 hole 2 4 5 3 7 8 6]
 [1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]
 [1 2 3 4 5 6 7 8 hole]]

 ** [[hole 1 2 4 5 3 7 8 6] [1 hole 2 4 5 3 7 8 6]
 [1 2 hole 4 5 3 7 8 6] [1 2 3 4 5 hole 7 8 6]
 [1 2 3 4 5 6 7 8 hole]]

Heuristic Breadth-First Search

Heuristic functions such as our closeness_to_goal function are particularly easy to use in the depth-first
search scenario. This is because depth-first search always pursues paths in the search space to their very end
making "decisions" about which way to go at each branch in the search tree. Breadth-first search expands all
paths in parallel and normally takes no decisions about which particular path to pursue first. Thus, it is not quite
so easy to arrange for the exploitation of a heuristic function. However, there are at least two possibilities.

One approach involves changing the breadth-first search function so that at any one state it always extends the
most promising path, i.e. the path whose final node has the highest value of the closeness_to_goal
function, no matter which layer of the search tree it is on. This variant is referred to as best-first search on the
grounds that it always expands the "best" path first. To implement this strategy we need a function which is able
to decide which of two paths is the most likely to lead to a goal node. This can be achieved by computing the
closeness-to-goal of the final node on the path. The definition of the required function, (better_path_h), is
shown in the upper part of Figure 4-8. Our agenda-using, breadth-first search function can now be made to
implement best-first search simply by arranging for it to apply the syssort function to the complete agenda
(i.e. old and new paths together). The modified function extend_agenda2 is shown in the lower part of
Figure 4-8. As before the definition of agenda_search remains unchanged.

Another approach is to change the breadth-first function so that at each level or layer in the search, it sorts its list
of partial paths according to the closeness_to_goal function and then selects the N paths which seem
most likely to lead to the goal - ignoring the remaining paths. This sort of breadth-first search always expands
the N most promising paths at any one stage. It is said to execute beam-search. The value of N is said to be the
beam-width of the search. Like hil-

Page 84

<><><><><><><><><><><><>

/* better_path_h takes two paths and returns true if the final state of
the first path is closer to or as close to the goal than the final state
of the second path. */

 define better_path_h(path1, path2);
 closeness_to_goal (hd(path1)) >= closeness_to_goal (hd(path2))
 enddefine;

/* extend_agenda2 takes an agenda of paths, a path and a search method
and returns a new agenda that incorporates the new extended paths. */

 define extend_agenda2(agenda, path, search_type) -> new_agenda;
 vars extended_paths;
 new_paths(path) -> extended_paths;
 if search_type = "breadth"
 then [^agenda ^^extended_ paths] -> new_agenda
 elseif search_type = "depth"
 then [^^extended_paths ^^agenda] -> new_agenda
 elseif search_type = "hill_climbing"
 then syssort (extended_paths, better_path_h) -> extended_paths;
 if extended_paths = [] or
 better_path_h(path, hd(extended_paths))
 then [] -> new_agenda
 else [^(hd(extended_paths))] -> new_agenda
 endif
 elseif search_type = "best_first"
 then syssort ([^^agenda ^^extended_paths], better_path_h)
 -> new_agenda
 endif
 enddefine;

Figure 4-8
Breadth, depth, hill-climbing and best-first agenda search

climbing search, beam-search is an irrevocable strategy in that certain choices are completely ignored. This
means that it does not systematically explore the whole search space.

If we want to obtain a beam-search strategy then we would need to modify the extend_agenda function
radically so as to generate all the successors of a given layer in the tree and then truncate the resulting set down
to the desired beam-width. These changes would make extend_agenda "inelegant", so we provide a self-
contained special purpose variant of agenda_search in Figure 4-9. Here, if the new agenda has more paths
than the beam-width it will be truncated down to that width, by the match process, to give a beam-width of two
(chosen arbitrarily). This function also

Page 85

makes use of a depth bound. If any path in a layer is longer than the depth bound the search is terminated (since
all paths in a layer are the same length). But as beam-search throws away some of the paths on each layer it can
mean that it will never find a solution in some cases.

Running the beam_search function, with chatty set to <true> so that the agenda is output on each major
cycle and a beam-width of "2", on the 8-puzzle problem shows the way in which the number of partial paths on
the agenda which it outputs is always restricted to two. Remember that the internal representation of paths on the
agenda is from finish to start:

 true -> chatty;

 extend_agenda2 -> extend_agenda;

<><><><><><><><><><><><>

/* beam_search takes an initial state, a goal, a maximum depth and a
beam-width and returns a solution path or false. With chatty on
it displays its agenda (not the current path) at each outer cycle. */

 define beam_search(initial, goal, depth, beam_width) -> path;
 vars agenda layer state new_paths i;
 [[^initial]] -> agenda;
 until agenda = [] do
 if chatty then agenda ==> endif;
 agenda -> layer;
 [] -> agenda;
 until layer = [] do
 layer --> [?path ??layer];
 if is_goal(hd(path), goal) then rev(path) -> path; return
 elseif length(path) > depth then false -> path; return
 else
 extend_agenda (agenda, path, "best_first") -> agenda;
 endif;
 enduntil;
 if length(agenda) > beam_width
 then [^(for i from 1 to beam_width do agenda(i) endfor)]
 -> agenda
 endif;
 enduntil;
 false -> path;
 enddefine;

Figure 4-9
Beam-width search

Page 86

 beam_search([hole 1 2 4 5 3 7 8 6], [1 2 3 4 5 6 7 8 hole], 10, 2)
 ==>

 ** [[[hole 1 2 4 5 3 7 8 6]]]
 ** [[[1 hole 2 4 5 3 7 8 6] [hole 1 2 4 5 3 7 8 6]]
 [[4 1 2 hole 5 3 7 8 6] [hole 1 2 4 5 3 7 8 6]]]
 ** [[[1 2 hole 4 5 3 7 8 6]
 [1 hole 2 4 5 3 7 8 6]
 [hole 1 2 4 5 3 7 8 6]]
 [[1 5 2 4 hole 3 7 8 6]
 [1 hole 2 4 5 3 7 8 6]
 [hole 1 2 4 5 3 7 8 6]]]
 ** [[[1 2 3 4 5 hole 7 8 6]
 [1 2 hole 4 5 3 7 8 6]
 [1 hole 2 4 5 3 7 8 6]
 [hole 1 2 4 5 3 7 8 6]]
 [[1 5 2 4 8 3 7 hole 6]
 [1 5 2 4 hole 3 7 8 6]
 [1 hole 2 4 5 3 7 8 6]
 [hole 1 2 4 5 3 7 8 6]]]
 ** [[[1 2 3 4 5 6 7 8 hole]
 [1 2 3 4 5 hole 7 8 6]
 [1 2 hole 4 5 3 7 8 6]
 [1 hole 2 4 5 3 7 8 6]
 [hole 1 2 4 5 3 7 8 6]]
 [[1 2 3 4 hole 5 7 8 6]
 [1 2 3 4 5 hole 7 8 6]
 [1 2 hole 4 5 3 7 8 6]
 [1 hole 2 4 5 3 7 8 6]
 [hole 1 2 4 5 3 7 8 6]]]

 ** [[hole 1 2 4 5 3 7 8 6]
 [1 hole 2 4 5 3 7 8 6]
 [1 2 hole 4 5 3 7 8 6]
 [1 2 3 4 5 hole 7 8 6]
 [1 2 3 4 5 6 7 8 hole]]

Ordered Search and the A* Algorithm

In some search problems it is important to find the best or shortest solution rather than just any solution, no
matter how much effort is expended. Of course, as a bonus, we would like to expand as few nodes as possible in
undertaking this search Best-first

Page 87

search will not always achieve the shortest solution since it always extends that path whose final node seems to
be nearest to the goal node. This is normally fine but it takes no account of the length of the path. Thus it is
possible that a very long path with a particularly promising final node might be preferred to a much shorter path
with only a marginally less desirable final node. Ideally we want a heuristic search method that combines both
an estimate of the cost of getting from a particular node to the goal together with the cost of getting from the
start to that node. So far our better_path_h function considered only the first of these two costs.

An ideal estimate of the value of a node is thus made up of two parts:

value of node = known cost of path from start to node +
estimate of cost to reach goal

or in more traditional notation

f = g + h

Note that ''g" can be measured exactly, whereas "h" is an estimate. If we could estimate "h" exactly, there would
be no search problem as we could always select the correct node to expand.

For problems like the 8-puzzle we can measure the cost of getting from the start to a particular node simply by
counting the number of moves in the path between the start and that node (i.e. "uniform cost", all moves cost one
unit). Other classes of problem may want to associate different costs with different kinds of moves (e.g. road
distance in the route finding problem). Search based solely on the value of "g" is called uniform cost or cheapest
first. In this case searching a map would always choose the node nearest to the start next node as the next to
expand. That is, the search would work its way out gradually getting further and further from the start node.

In the extreme case, if we disregard "g" altogether and base our search purely on "h", we get best-first search. In
the other extreme case, if we disregard "h" and use only "g" (assuming a cost of one unit for each move), we get
breadth-first search. This is because, on this latter basis, shorter paths will always be preferred to longer. It is
worth noting that if we disregard "h" and use "-g" rather than "g", again assuming unit costs, we get depth first
search (since nodes at depth N+1 will have lower a value, i.e. -(N+1), than nodes at level N, i.e. -N). Figure 4-10
shows the code of a function to compute "g" + "h" for the 8-puzzle. Note that we have used the
distance_to_goal rather than the inverse closeness_to_goal and that "g" is simply given as the
length of the path so far. Our distance_to_goal is quite crude as it measures each tile's distance to its goal
position without regard for the interactions between tiles. A more refined (but still never over-estimating)
version of distance_to_goal would produce a smaller search tree, since it would enable the search to
consider fewer alternatives.

Page 88

<><><><><><><><><><><><>

/* better_path_g_h takes two paths and returns true if the first is estimated
to cost less than the second if each were extended to reach the goal. */

 define better_path_g_h (path1, path2) -> boolean;
 (length(path1) - 1 + distance_to_goal(hd(path1))) =<
 (length(path2) - 1 + distance_to_goal(hd (path2))) -> boolean
 enddefine;

Figure 4-10
Comparing paths through a node

The A* search algorithm is one based on a combination of "g" and "h" with the special constraint that "h" should
never over-estimate the remaining cost to the goal (nor should it give negative values). If this constraint is
satisfied, the method will produce the overall minimum cost path.

Best-first ("h" only), cheapest first ("g" only) and A* ("g" + "h") can all be considered as variants on the theme
of ordered state space search. We can adapt our existing agenda-based method of searching to cover these cases
by making use of the record of paths that have already been expanded. The program should check for loops as
before by not allowing any path to contain the same node twice over. But it should also check, when expanding
a path, to see if the next node has ever been encountered before. If it has, the program should compare the value
associated with the previous encounter with the value associated with the new encounter of the node. If the new
one is better (perhaps because it is on a shorter path from the start) then it is to be preferred over the already
expanded node and the node should be again placed on the agenda.

The usual names in the literature for agenda, the ordered agenda, and visited, the list of expanded nodes
are open and closed, respectively. The algorithm is given below. It assumes that a node representation includes
the path back to the start node, as used earlier.

As open is ordered in terms of the "f" values of nodes, it is safe to terminate the algorithm when a goal node is
encountered as all the other paths in open will have worse "f" values than the goal node. Recall that "f" values
will always be either exactly accurate or an underestimate, so if all other paths have worse "f" values than the
goal, there is no way that they will be capable of being expanded to reach the goal more cheaply by some
alternative route.

1. Initialise the list open with the start node and set its value to zero. Initialise closed as the empty list.

2. If open is empty, fail.

Page 89

<><><><><><><><><><><><>

/* This is extend agenda as before, but able to deal with A* search. */

define extenda_genda3 (agenda, path, search_type) -> new_agenda;
 vars extended_paths;
 new_paths(path) -> extended_paths;
 if search_type = "breadth"
 then [^^agenda ^^extended_paths] -> new_agenda
 elseif search_type = "depth"
 then [^^extended_paths ^^agenda] -> new_agenda
 elseif search_type = "hill_climbing"
 then syssort(extended_paths, better_path_h) -> extended_paths;
 if extended_paths = [] or
 better_path_h(path, hd(extended_paths))
 then [] -> new_agenda
 else [^ (hd(extended_paths))] -> new_agenda
 endif
 elseif search type = "best_first"
 then syssort ([^^agenda ^^extended_paths], better_path_h)
 -> new_agenda
 elseif search_type = "a_star"
 then prune(extended_paths) -> extended_paths; /* side-effects! */
 syssort([^^agenda ^^extended_paths], better_path_g_h)
 -> new_agenda
 endif
enddefine;

Figure 4-11
Agenda mechanism extended to include A*

3. Take the first node from the list open, if it is a goal node exit with success.

4. Place the chosen node in the list closed. Expand the chosen node (ignoring any children that already occur
in the direct path back to the start) and for each of the selected children:

(i) compute the "f" value by adding any extra "g" component to the value of the chosen node and
computing the new "h" component.

(ii) if the child is neither in closed or open, add it to open. If the child is already in open, keep in open
whichever version has the better "f" value. If the child is already in closed, compare the "f" value of the
new child with it. If the new value is worse, ignore the new child. If the new value is better, remove the
old child from closed and place the new child in open.

Page 90

The POP-11 code to adapt extend_agenda3 for this algorithm is given in Figure 4-11.

The new version of extend-agenda requires two subsidiary functions, given in Figure 4-12. prune takes
the list of children, i.e. expanded_paths and checks them against the open and closed lists as described in
the algorithm above, step 4 (ii). Note that this function can have two side-effects on variables which are not local
to it. It may change either the variable, visited, local to agenda_search, or the variable paths, local to
extend-agenda3.

Function path_member is used to check whether or not a path, ending with a particular node, already exists on
either open or closed.

Let us try A* search on an example:

 extend_agenda3 -> extend_agenda;

 false -> chatty;

 agenda_search([2 hole 5 1 7 3 4 8 6], [1 2 3 4 5 6 7 8 hole],
 "a_star", 30) ==>

 ** [[2 hole 5 1 7 3 4 8 6]
 [2 5 hole 1 7 3 4 8 6]
 [2 5 3 1 7 hole 4 8 6]
 [2 5 3 1 7 6 4 8 hole]
 [2 5 3 1 7 6 4 hole 8]
 [2 5 3 1 hole 6 4 7 8]
 [2 hole 3 1 5 6 4 7 8]
 [hole 2 3 1 5 6 4 7 8]
 [1 2 3 hole 5 6 4 7 8]
 [1 2 3 4 5 6 hole 7 8]
 [1 2 3 4 5 6 7 hole 8]
 [1 2 3 4 5 6 7 8 hole]]

We can compare the efficiency of the different search methods offered by counting the number of nodes that
each expands as it searches for the goal. This can be achieved by augmenting the function successors so that
it keeps a global count of the number of times it is called (or less accurately by taking the length of visited)
This measure is not the same as the maximum agenda size which is a measure of the space efficiency of the
algorithm.

In general A* will do well in terms of the number of nodes expanded whereas all the other methods occasionally
do much worse. Note that breadth-first and A* always give the same (minimum) length of solution path. Depth-
first, best first, beam-search and hill-climbing each sometimes do very well but sometimes do badly either in
solution path length or in number of nodes explored. In particular, hill-climbing and beam-search occasionally
fail altogether because they discard possibilities that in fact lead to the solution. The relative weightings of the
"g" and "h"

Page 91

<><><><><><><><><><><><>

/* prune takes a list of extended paths and checks each one to see
whether it has been encountered before. prune has side-effects
on the variables agenda in extend-agenda3 and visited in agenda_search. */

 define prune (extended_paths) -> pruned_paths;
 vars new_path expanded_path unexpanded_path;
 [] -> pruned_paths;
 for new_path in extended_paths do
 path_member (new_path, visited) -> expanded_path;
 path_member (new_path, agenda) -> unexpanded_path;
 if not(expanded_path) and not(unexpanded_path)
 then [^^pruned_paths ^new_path] -> pruned_paths;
 elseif expanded_path and
 better_path_g_h (new_path, expanded_path)
 then delete(expanded_path, visited) -> visited; /* ! */
 [^^pruned_paths ^new_path] -> pruned_paths;
 elseif unexpanded_path and
 better_path_g_h (new_path, unexpanded_path)
 then delete(unexpanded_path, agenda) -> agenda; /* ! */
 [^^pruned_paths ^new_path] -> pruned_paths;
 endif
 endfor
 enddefine;

/* path_member takes a path and a list of paths. It returns in
existing_path the first path it finds that has the same final
node value as the given path. If no such path can be found it
returns false. */

 define path_member(path, path_list) -> existing_path;
 for existing_path in path_list do
 if hd(path) matches hd(existing_path)
 then return
 endif
 endfor;
 false -> existing_path
 enddefine;

Figure 4-12
Dealing with duplicate paths

component in our heuristic function means that sometimes there is not much difference in efficiency (on this
puzzle) between A*, best-first for short solutions. However, in the final block A* does much better than all other
methods. Breadth-first search almost always expands a great many nodes and depth-first can produce absurdly

Page 92

long solutions.

The following table, Figure 4-13, was generated for a variety of starting states using the range of search methods
described. In each case the "moves" is the length of the solution minus one, i.e. the number of tile movements in
that solution. Different depth bounds are set for some blocks of searches. Where beam-search is applied, the
beam-width is "10". The maximum agenda width for beam-search is greater than 10 in the table, as the tables
shows the maximum agenda size before pruning down to 10 entries only. There is an arbitrary preset limit of
2500 on the maximum number of nodes that will be expanded by any search in order to work within reasonable
time and memory constraints. The column headed "agenda" gives the maximum length that the agenda reaches
during the search.

In the first block, where a single move solution is possible, depth-first search does not find it, though because of
the imposed depth bound it does find a longer solution and explores a huge number of states so to do. Without
the depth bound the search would have run out of memory. Something similar happens in the second block. In
the third block, depth-first search is reasonably successful, by chance, but in the fifth block the system ran out of
memory before depth-first could find any solution at all. In two blocks, beam-search and hill-climbing search
failed to find a solution, having discarded paths that might lead to a solution. Note that the number of moves and
the number of nodes explored is generally dependent on the imposed depth bound. In the fifth and sixth blocks,
A* starts to show its superiority quite dramatically both in terms of the length of the solution path as well as the
total number of nodes explored. Best-first does generally well but not as well as A*. Hill-climbing is alright
sometimes, e.g. in the third and fourth blocks, but fails in the fifth and sixth blocks. Iterative deepening does just
about as well as breadth-first throughout, at the cost of expanding more nodes but with much smaller agenda
sizes.

We have applied heuristics only to help choose which path to expand next, and which paths to discard in hill-
climbing and beam search. We always fully expand a node and compute all its successors. If the actual cost of
expanding a node were high, it might be worthwhile to apply heuristics to choose the extent to which a node
should be expanded. It would also be possible to use heuristics to prune the agenda of unpromising paths for
search methods other than beam-search.

Heuristic Search in Prolog

All the necessary search concepts have been introduced in the earlier sections, so here we will confine ourselves
to showing (i) how the agenda mechanism in Prolog, introduced in the previous chapter, can be adapted for
heuristic search, and (ii) a method of representing the 8-puzzle.

We will represent the 8-puzzle board as a list as we did in POP-11 and compute successors of a state by the
same kind of exchange manipulation that allows us to deal

Page 93

 initial_configuration search_type moves nodes depth_bound agenda

 [1 2 3 4 5 6 7 hole 8] a_star 1 1 15 3
 [1 2 3 4 5 6 7 hole 8] best_first 1 1 15 3
 [1 2 3 4 5 6 7 hole 8] hill_climbing 1 1 15 1
 [1 2 3 4 5 6 7 hole 8] beam 1 1 15 3
 [1 2 3 4 5 6 7 hole 8] breadth 1 3 15 5
 [1 2 3 4 5 6 7 hole 8] i_ deepening 1 1 15 3
 [1 2 3 4 5 6 7 hole 8] depth 15 556 15 16

 [4 1 2 hole 5 3 7 8 6] a_star 5 5 15 5
 [4 1 2 hole 5 3 7 8 6] best_first 5 5 15 5
 [4 1 2 hole 5 3 7 8 6] hill_climbing 5 5 15 1
 [4 1 2 hole 5 3 7 8 6] beam 5 33 15 28
 [4 1 2 hole 5 3 7 8 6] breadth 5 39 15 28
 [4 1 2 hole 5 3 7 8 6] i_deepening 5 42 15 7
 [4 1 2 hole 5 3 7 8 6] depth 13 1095 15 15

 [1 hole 6 4 3 8 7 2 5] a_star 9 13 15 13
 [1 hole 6 4 3 8 7 2 5] best_first 9 9 15 11
 [1 hole 6 4 3 8 7 2 5] hill_climbing 9 9 15 1
 [1 hole 6 4 3 8 7 2 5] beam 9 93 15 30
 [1 hole 6 4 3 8 7 2 5] breadth 9 342 15 270
 [1 hole 6 4 3 8 7 2 5] i_deepening 9 460 15 11
 [1 hole 6 4 3 8 7 2 5] depth 9 759 15 16

 [8 1 3 hole 2 5 4 7 6] a_star 9 13 15 13
 [8 1 3 hole 2 5 4 7 6] best_first 9 9 15 11
 [8 1 3 hole 2 5 4 7 6] hill_climbing 9 9 15 1
 [8 1 3 hole 2 5 4 7 6] beam 9 93 15 30
 [8 1 3 hole 2 5 4 7 6] breadth 9 350 15 262
 [8 1 3 hole 2 5 4 7 6] i_deepening 9 461 15 10
 [8 1 3 hole 2 5 4 7 6] depth 13 166 15 15

 [2 hole 5 1 7 3 4 8 6] a_star 11 31 30 26
 [2 hole 5 1 7 3 4 8 6] best_first 25 603 30 426
 [2 hole 5 1 7 3 4 8 6] hill_climbing -1 4 30 1
 [2 hole 5 1 7 3 4 8 6] beam -1 181 30 60
 [2 hole 5 1 7 3 4 8 6] breadth 11 1566 30 1049
 [2 hole 5 1 7 3 4 8 6] i_deepening 11 2060 30 12
 [2 hole 5 1 7 3 4 8 6] depth -1 2500 30 28

 [7 1 2 8 5 3 4 6 hole] a_star 14 59 30 49
 [7 1 2 8 5 3 4 6 hole] best_first 28 93 30 72
 [7 1 2 8 5 3 4 6 hole] hill-climbing -1 2 30 1
 [7 1 2 8 5 3 4 6 hole] beam -1 171 30 60
 [7 1 2 8 5 3 4 6 hole] breadth -1 2500 30 1619
 [7 1 2 8 5 3 4 6 hole] i_deepening -1 2500 30 12
 [7 1 2 8 5 3 4 6 hole] depth -1 2500 30 27

 NOTE: -1 moves means that no solution was found
 2500 in the nodes column is a preset limit

Figure 4-13
Comparison of search methods

Page 94

essentially with only two fundamental tile movements. The difference here is that we can carry out the exchange
transformation via Prolog unification (another case of using a built-in mechanism to save programming effort),
see Figure 4-14. The following example shows how a tile movement is computed via gradual decomposition of
the board, first into columns and then into down and up movements within those columns:

 ?- spy.

 ?- successor([1, 2, 3, 4, 5, 6, 7, 8, hole], Next).

 ** (1) Call : successor([1, 2, 3, 4, 5, 6, 7, 8, hole], _1)?
 ** (2) Call : slide([[1, 4, 7], [2, 5, 8], [3, 6, hole]],
 [[_2, _3, _4], [_5, _6, _7], [_8, _9, _10]])?
 ** (3) Call : move_tile((l, 4, 7], [_2, _3, _4])?
 ** (4) Call : down([l, 4, 7], [_2, _3, _4])?
 ** (4) Fail : down([l, 4, 7], [_2, _3, _4])?
 ** (5) Call : up([1, 4, 7], [_2, _3, _4])?
 ** (5) Fail : up([l, 4, 7], [_2, _3, _4])?
 ** (3) Fail : move_tile([1, 4, 7], [_2, _3, _4])?
 ** (6) Call : move_tile([2, 5, 8], [_5, _6, _7])?
 ** (7) Call : down([2, 5, 8], [_5, _6, _7])?
 ** (7) Fail : down([2, 5, 8], [_5,_6, _7])?
 ** (8) Call : up([2, 5, 8], [_5, _6, _7])?
 ** (8) Fail : up([2, 5, 8], [_5, _6, _7])?
 ** (6) Fail : move_tile([2, 5, 8], [_5, _6, _7])?
 ** (9) Call : move_tile([3, 6, hole], [_8, _9, _10])?
 ** (10) Call : down([3, 6, hole], [_8, _9, _10])?
 ** (10) Exit : down([3, 6, hole], [3, hole, 6])?
 ** (9) Exit : move_tile([3, 6, hole], [3, hole, 6])?
 ** (2) Exit : slide([[1, 4, 7], [2, 5, 8], [3, 6, hole]],
 [[1, 4, 7], [2, 5, 8], [3, hole, 6]])?
 ** (1) Exit : successor([1, 2, 3, 4, 5, 6, 7, 8, hole],
 [1, 2, 3, 4, 5, hole, 7, 8, 6])?

 Next = [1, 2, 3, 4, 5, hole, 7, 8, 6] ?

Computing whether one state is closer to the goal than another is almost a straight translation from POP-11. The
only real differences are that POP-11 allowed us to index into a state directly, where here we define procedure
position/3 and we have also had to define abs/2, which is not built-in in our Prolog. Otherwise the
decomposition of the tasks is exactly as in POP-11. Note that we have achieved the same result as the for loop
in the POP-11 function distance_to_goal by defining a

Page 95

<><><><><><><><><><><><>

/* successor(+Current_state, -Next_state)
Given a Current_state, successor succeeds with the Next_state first by
columns and then by rows. */

 successor([A,B,C,D,E,F,G,H,I],[A1,Bl,C1,D1,El,F1,G1,H1,I1])
 slide([[A,D,G], [B,E,H],[C,F,I]],[[Al,Dl,Gl], [Bl,El,HI], [CI,Fl,Il]]).

 successor([A,B,C,D,E,F,G,H,I], [Al,Bl,C1,D1,El,F1,G1,H,I1]) :-
 slide([[A,B,C], [D,E,F], [G,H,I]], [[Al,B1,C1], [D1,El,Fl], G1,Hl,I1]]).

/* deal with each column or row. X, Y and Z are bound to either whole rows
or whole columns. */

 slide([X,Y,Z], [X1,Y,Z]) :- move_tile(X,X1).
 slide([X,Y,Z], [X,Y1,Z]) :- move_tile(Y,Y1).
 slide([X,Y,Z], [X,Y,Z1]) :- move_tile(Z,Z1).

/* deal with a column or row, downs and rights before ups and lefts.
C1 and C2 are bound to either a whole row or a whole column. */

 move_tile(Cl,C2) :- down(Cl,C2).
 move_tile(C1,C2) :- up(C1,C2).

/* move tile down or to the right. X and Y are bound to individual tiles. */

 down([X,Y,hole], [X,hole,Y]) .
 down([X,hole,Y], [hole,X,Y]) .

/* move tile up or to the left. X and Y are bound to individual tiles. */

 up([hole,X,Y], [X,hole,Y]) .
 up([X,hole,Y], [X,Y,hole]).

Figure 4-14
Moving tiles in the 8-puzzle in Prolog

subsidiary recursive procedure count_tiles/3. These definitions assume, as in the POP-11 versions, that the
goal state is [1,2,3,4,5,6,7,8,hole] and even if a different goal state is offered to
agenda_search/5, see Figure 4-15, the heuristics as defined will nevertheless use this implicit goal state.

Previous chapters gave Prolog definitions for successors/2, last/2, new_paths/3,
chatty_print/1 and for is_goal/2. These definitions can just be carried over. We need to augment the
previous definitions of agenda_search/5 and extend_agenda/4, see Figure 4-17 to allow for best-first,
hill-climbing and A* search. This will require keeping a record of all nodes visited

Page 96

<><><><><><><><><><><><>

/* position(+Tile, +State, -Position)
position, given a Tile and a State, succeeds with the tile's position
in that state. */

 position(Tile, [Tile | _], 1) :- !.

 position(Tile, [_ | Rest], N) :-
 position(Tile, Rest, M),
 N is M + 1.

/* abs(+Number, -Absolute_value)
Absolute_value is the absolute value of number. */

 abs(D, D) :- D >= 0, !.

 abs(D, NewD) :- NewD is -D.

/* columndist(+Tile, +State, -Distance)
columndist computes the minimum number of moves to get a Tile to its
home column in the given state. */

 columndist(Tile, State, Dist) :-
 position(Tile, State, Pos),
 D is ((Tile - 1) mod 3) - ((Pos - 1) mod 3),
 abs(D, Dist).

/* rowdist(+Tile, +State, -Distance)
rowdist computes the minimum number of moves to get a Tile to its
home row in the given state. */

 rowdist(Tile, State, Dist) :-
 position(Tile, State, Pos),
 D is ((Tile - 1) div 3) - ((Pos - 1) div 3),
 abs(D, Dist).

/* distance_to_goal(+State, -Distance)
distance_to_goal computes the minimum manhattan cost of getting all the
tiles in the given state to their correct positions. */

 distance_to_goal (State, N) :-
 count_tiles(State, State, N).

Figure 4-15
Computing distance to goal in the 8-puzzle in Prolog

Page 97

<><><><><><><><><><><><>

/* count_tiles(+State, +State, -Distance)
count_tiles computes the total minimum number of moves to get all
the tiles back to their correct locations in the given state. */

 count_tiles([], _, 0).

 count_tiles([hole | Rest], State, N) :-
 count_tiles(Rest, State, N).

 count tiles([Tile | Rest], State, N)
 rowdist(Tile, State, D1),
 columndist(Tile, State, D2),
 count_tiles(Rest, State, M),
 N is D1 + D2 + M.

/* closeness_to_goal(+State, -Value)
closeness_to_goal computes the inverse value, 100 max, of
getting the tiles in the given state to their goal positions. */

 closeness_to_goal(State, Value) :-
 distance_to_goal(State, N), !, Value is 100 - N.

/* closer_to_goal(+State1, +State2)
closer_to_goal succeeds if state1 is nearer the goal than state2. */

 closer_to_goal(State1, State2) :-
 distance_to_goal (State1, M), distance_to_goal (State2, N), !,
 M =< N.

/* better_path_h(+Path1, +Path2)
better_path_h succeeds if Path1 is nearer the goal than Path2. */

 better_path_h(Path1, Path2) :-
 Path1 = [State1 | _], Path2 = [State2 | _], |,
 closer_to_goal(State1, State2).

/* better_path_g_h(+Path1, +Path2)
better_path_g_h compares Path1 and Path2 taking into account
both their lengths plus the closeness to the goal of their most
recent states. It succeeds if Path1 is closer or as close as
Path2. */

 better_path_g_h (Path1, Path2) :-
 length(Path1, G1), Path1 " [State1 | _],
 distance_to_goal (State1, H1),
 length(Path2, G2), Path2 = [State2 | _],
 distance_to_goal (State2, H2),
 F1 is G1 - 1 + H1,
 F2 is G2 - 1 + H2, !,
 F1 =< F2.

Figure 4-16
Evaluation functions for the 8-puzzle in Prolog

Page 98

(the ''closed" list) via extra arguments to agenda_search/5 and extend_agenda/4.

Procedure extend_agenda/7 now has five clauses, one for each search type. It also has two extra arguments
to hold the gradually accumulating "global" list of nodes visited so far. Clause three deals with hill-climbing and
succeeds only if a

<><><><><><><><><><><><>

/* agenda_ search(+Agenda, +Goal, +Search_type, +Visited, +Depth, -Path)
agenda_search takes an Agenda of paths, a Goal, a Search type, a list of nodes
already Visited and a maximum Depth, and succeeds with a Solution path. */

agenda_search([Path | _], Goal, _, _, _, Solution) :-
 Path = [Current_location | _],
 is_goal(Current_location, Goal), !,
 chatty_print (Path),
 rev(Path, [], Solution).

agenda_search([Path | Paths], Goal, Search_type, Visited, Depth, Solution) :-
 length(Path, Length), Length > Depth, !,
 chatty_print (Path),
 agenda_search(Paths, Goal, Search_type, Visited, Depth, Solution).

agenda_search([Path | Paths], Goal, Search_type, Visited, Depth, Solution) :-
 chatty_print (Path),
 Path = [Current_location | _],
 sucscessors(Current_location, Successors),
 new_paths(Path, Successors, Extended_paths),
 extend_agenda(Paths, Path, Extended_paths, Search_type, [Path | Visited],
 New_visited, New_aganda),
 agenda_search (New_agenda, Goal, Search_type, New_visited, Depth, Solution).

/* extend_agenda(+Paths, +Path, +Extended_paths, +Search_type, +Visited, -New_visited, -New_agenda)
extend_agenda takes an Agenda, a Path, a list of Extended paths, a Search type
and a list of nodes already Visited and succeeds with a New agenda containing
the new paths and with a possibly augmented list of Visited nodes. */

extend_agenda(Agenda, _, Extended_paths, depth, _, _, New_agenda) :-
 append(Extended_paths, Agenda, New_agenda).

extend_agenda(Agenda, _, Extended_paths, breadth, _, _, New_agenda) :-
 append (Agenda, Extended_paths, New_agenda) .

extend_agenda (Agenda, Path, Extended_paths, hill_climbing, _, _, New_agenda) :-
 sort(Extended_paths, [Beat_new_path | _], better_path_h),
 better_path_h (Best_new_path, Path),
 append([Best_new_path], Agenda, New_agenda).

extend_agenda(Agenda, _, Extended_paths, best_first, _, _, New_agenda) :-
 append(Agenda, Extended_paths, Unsorted_agenda),
 sort (Unsorted_agenda, New_agenda, better_path_h).

extend_agenda (Agenda, , Extended_paths, a_star, Visited, New_visited, New_agenda) :-
 prune(Extended_paths, New_extended_paths, Visited, New_visited, Agenda, New_paths),
 append(New_paths, New_extended_paths, Unsorted_agenda),
 sort (Unsorted_agenda, New_agenda, better_path_g_h).

Figure 4-17
Modified agenda mechanisms for A* and best-first in Prolog

Page 99

child path better than the current path can be added to the agenda. Clause four deals with best-first search and
sorts the new agenda, considering the existing agenda plus any new paths, using the criterion of
better_path_h/2. This simply examines the final state of the two paths being compared to see which is
nearer the goal state. The final clause of extend_agenda/7 deals with the A* case and sorts the new agenda
using the better_path_g_h/2 criterion. This computes the length of the path so far plus an estimate of the
distance yet remaining (i.e. f = g + h).

In the POP-11 version function prune worked by "side-effecting" the variables visited and agenda. This
was included to ensure that the path with the best "f" value was always chosen. We also need to define a
procedure prune/6 which checks each of the extended paths to see if it is already on either the open or the
closed list, see Figure 4-18. This procedure makes use of a subsidiary procedure path_member/4 which
combines the work of the POP-11 function path_member together with the built-in POP-11 function
delete.

Procedure prune/6 recurses on its first argument, the putative list of new paths to be added to the agenda. The
second clause deals with the case where the final state of new path being considered has not been met before, in
which case the new path is retained to be added to the new agenda. The third clause deals with the case where
the final state of the new path being considered has already been visited. If the new path is better value, the old
one on the visited list is deleted and the new path retained to be added to the new agenda. Clause four deals with
the case where the new path being considered is already on the agenda (i.e. there is a path with an identical final
state on the agenda). In this case the two are compared and if the new path is better value it is preferred over the
existing agenda entry. The final clause of prune/6 is the catchall and simply omits the new path being
considered from the agenda.

One extra difficulty is that we cannot rely on an equivalent of the built-in POP-11 function syssort so in
Figure 4-19 we provide a procedure sort/3 which conducts an insertion sort making use of whichever path
comparison method it is supplied as argument. The second clause of insert/4 carries out the comparison by
forming its fourth argument value (a predicate name) into a goal with =.. and calling it.

The behaviour of the Prolog procedure agenda_search/7 is the same as that of the POP-11 function
agenda_search. Here is the same single example of the the program working in A* mode. The first
argument is the initial agenda, the second is the goal state, the third is the search type required, the fourth the
initial list of visited nodes and the fifth will hold the solution path:

 ?- retractall(chatty).
 yes
 ?- agenda_search([[[2, hole, 5, 1, 7, 3, 4, 8, 6]]],
 [1, 2, 3, 4, 5, 6, 7, 8, hole], a_star, [], 30, S).

Page 100

<><><><><><><><><><><><>

/* prune(+Extended_paths, -New_extended_paths, +Visited, -New_visited, +Paths,
-New_paths)

prune takes a list of extended paths, a list of already visited nodes
and an agenda (Paths), and succeeds with new versions of all of these
according to the ordered state space search algorithm. */

 prune ([], [], Visited, Visited, Paths, Paths).

 prune([New_path | Extended_paths], [New_path | New_extended_paths], Visited,
 New_visited, Paths, New_paths)
 :-
 not(path_member(New_path, _, Visited, _)),
 not(path_member(New_path, _, Paths, _)),
 prune(Extended_paths, New_extended_paths, Visited, New_visited, Paths,
 New_paths).

 prune ([New_path | Extended_paths], [New_path | New_extended_paths],
 Visited, New_new_visited, Paths, New_paths)
 :-
 path_member(New_path, Expanded_path, Visited, New_visited), !,
 better_path_g_h(New_path, Expanded_path),
 prune(Extended_paths, New_extended_paths, New_visited, New_new_visited,
 Paths, New_paths).

 prune ([New_path | Extended_paths], [New_path | New_extended_paths],
 Visited, New_visited, Paths, New_new_paths)
 :-
 path_member(New_path, Unexpanded_path, Paths, New_paths), !,
 better_path_g_h (New_path, Unexpanded_path),
 prune(Extended_paths, New_extended_paths, Visited, New_visited,
 New_paths, New_new_paths).

 prune([New_path | extended_paths], New_extended_paths, Visited, New_visited,
 Paths, New_paths)
 :-
 prune(Extended_paths, New_extended_paths, Visited, New_visited, Paths,
 New_paths).

/* path_member(+Path, -Found_path, +Path_list, -New_Path_list)
path_member takes a path and a list of paths and succeeds with a Found_path
which ends with the same node as the given Path and a New_Path_list
which omits the Found_Path. */

 path_member(Path, Found, [Found | Path_list], Path_list) :-
 Path = [Node | _],
 Found = [Node | _].

 path_member(Path, Found, [Other | Path_list], [Other | New_path_list]) :-
 path_member(Path, Found, Path_list, New_path_list).

Figure 4-18
Dealing with duplicate paths in Prolog

Page 101

<><><><><><><><><><><><>

/* sort(+Unsorted_list, -Sorted_list, +Comparison_method)
sort sorts its first argument to give its second argument
using the comparison method in its third argument. */

 sort([], [], Pred).

 sort([Item | Items], Sorted, Pred) :-
 sort(Items, New_Items, Pred),
 insert(Item, New_Items, Sorted, Pred).

/* insert(+Item, +List, -Extended_list, +Comparison_method)
insert Item in List to give Extended_list as per the
Comparison_method. */

 insert (Item, [], [Item], _).

 insert(Item, [First | Rest], [Item, First | Rest], Pred) :-
 Check =.. [Pred, Item, First],
 call (Check).

 insert(Item, [First | Rest], [First | New_Rest], Pred) :-
 insert(Item, Rest, New_Rest, Pred).

Figure 4-19
Insertion sort in Prolog

 S = [[2, hole, 5, 1, 7, 3, 4, 8, 6],
 [2, 5, hole, 1, 7, 3, 4, 8, 6],
 [2, 5, 3, 1, 7, hole, 4, 8, 6],
 [2, 5, 3, 1, 7, 6, 4, 8, hole],
 [2, 5, 3, 1, 7, 6, 4, hole, 8],
 [2, 5, 3, 1, hole, 6, 4, 7, 8],
 [2, hole, 3, 1, 5, 6, 4, 7, 8],
 [hole, 2, 3, 1, 5, 6, 4, 7, 8],
 [1, 2, 3, hole, 5, 6, 4, 7, 8],
 [1, 2, 3, 4, 5, 6, hole, 7, 8],
 [1, 2, 3, 4, 5, 6, 7, hole, 8],
 [1, 2, 3, 4, 5, 6, 7, 8, hole]] ?
 yes

To test out the Prolog programs given above, we generate part of the table given in Figure 4-13. This new table,
see Figure 4-20, gives the same values for path lengths and numbers of nodes expanded for the Prolog versions
of the code.

Page 102

<><><><><><><><><><><><>

 initial state search_type moves nodes

 [1, 2, 3, 4, 5, 6, 7, hole, 8] a_star 1 1
 [1, 2, 3, 4, 5, 6, 7, hole, 8] best_first 1 1
 [1, 2, 3, 4, 5, 6, 7, hole, 8] hill_climbing 1 1
 [1, 2, 3, 4, 5, 6, 7, hole, 8] breadth 1 3
 [1, 2, 3, 4, 5, 6, 7, hole, 8] i_deepening 1 1
 [1, 2, 3, 4, 5, 6, 7, hole, 8] depth 15 556

 [4, 1, 2, hole, 5, 3, 7, 8, 6] a_star 5 5
 [4, 1, 2, hole, 5, 3, 7, 8, 6] best_first 5 5
 [4, 1, 2, hole, 5, 3, 7, 8, 6] hill_climbing 5 5
 [4, 1, 2, hole, 5, 3, 7, 8, 6] breadth 5 39
 [4, 1, 2, hole, 5, 3, 7, 8, 6] i_deepening 5 42
 [4, 1, 2, hole, 5, 3, 7, 8, 6] depth 13 1095

 [1, hole, 6, 4, 3, 8, 7, 2, 5] a_star 9 13
 [1, hole, 6, 4, 3, 8, 7, 2, 5] best_first 9 9
 [1, hole, 6, 4, 3, 8, 7, 2, 5] hill_climbing 9 9
 [1, hole, 6, 4, 3, 8, 7, 2, 5] breadth 9 342
 [1, hole, 6, 4, 3, 8, 7, 2, 5] i_deepening 9 460
 [1, hole, 6, 4, 3, 8, 7, 2, 5] depth 9 759

 [8, 1, 3, hole, 2, 5, 4, 7, 6] a_star 9 13
 [8, 1, 3, hole, 2, 5, 4, 7, 6] best_first 9 9
 [8, 1, 3, hole, 2, 5, 4, 7, 6] hill_climbing 9 9
 [8, 1, 3, hole, 2, 5, 4, 7, 6] breadth 9 350
 [8, 1, 3, hole, 2, 5, 4, 7, 6] i_deepening 9 461
 [8, 1, 3, hole, 2, 5, 4, 7, 6] depth 13 166

Figure 4-20
Comparison of agenda-based search methods in Prolog

Various changes could be made to the programs to make them more efficient One would be a reduction in the
use of append/3 on the agenda. Another would be to avoid re-sorting the complete agenda in best-first and A*
search. At any stage we can assume that the agenda is already sorted, so all we need to do is merge the sorted
new extended paths with the sorted agenda to give a sorted new agenda for the next cycle.

Page 103

Reading

Almost all AI textbooks deal extensively with heuristic search and problem solving, for example the AI
Handbook, Vol 1, Section II-C (Barr and Feigenbaum, 1981), provides an excellent introduction to all aspects of
search. Aleksander and Burnett (1987, Chapters 3 and 4) provide a treatment of search issues which is notable
for its excellent use of colour graphics. Stillings et al. (1987) look at search from the perspective of cognitive
science. Burton and Shadbolt's discussion covers the central points and provides sample algorithms in POP-11
(Burton and Shadbolt, 1987). A* is described by Hart, Nilsson and Raphael (1968) and for further details see the
article in the AI Handbook Vol. 1 (C3b) devoted to this algorithm.

Both Bratko (1990) and O'Keefe (1990) deal extensively with the material in this chapter (including the 8-
puzzle). O'Keefe, in particular, shows how Prolog code can be defined for efficiency and how to choose
appropriate data-structures. Both O'Keefe and Bratko point out the problems of the using append/3, especially
in breadth-first search where the agenda gets very large.

Exercises

1. Write either a Prolog or a POP-11 program to produce a table of solution path lengths and number of nodes
explored for breadth, depth etc. as shown in Figure 413. Examine the behaviour of the various search methods
for other start states and for other problems, e.g. the jugs problem. See the effect of altering the depth bound and
the beam-width on the table.

2. Adapt either the POP-11 or the Prolog code for the 8-puzzle to the 15-puzzle, possibly representing states as
[1 2 3 4 5 6 7 8 9 10 11 12 13 14 hole].

3. Extend the Prolog to cope with beam-search.

4. Adapt the Prolog definitions so that any goal state can be supplied and distance_to_goal etc. work
appropriately.

5. Write alternative versions of better_path_g_h to degrade the search performance with the search type
set to "A* search" into breadth, depth, cheapest first.

6. Adapt the map of Brighton to include distances and search it to find minimum length routes.

7. Adapt the POP-11 function heuristic_search or extend_agenda so that when hill-climbing it
allows children to be expanded that may have the same value of closeness to the goal and not just a better value.

Page 104

8. Experiment with different versions of better_path_g_h to improve the performance of A* search over
that given. Possibilities include varying the proportion of the g and h components in f, and also using a more
informed h component.

9. Adapt the code given to cope with the 15-puzzle (i.e. a 4x4 matrix).

10. Remove as many of the calls to append/3 as possible in the Prolog code for agenda based search, e.g. by
using difference lists as described in either Bratko (1990) or O'Keefe (1990). Establish how much faster this
makes the programs run. Also try to ensure that the minimum amount of sorting is carried out and that where
two sorted lists are to be merged, they are merged rather than appended and resorted.

Page 105

Notes

The following adjustments are needed to make showtree display trees containing 8-puzzle states.

 define width(tree, name) -> w;
 5 -> w
 enddefine;

 define height(tree, name) -> h;
 5 -> h
 enddefine;

 define draw_node(node,val);
 vars r1 r2 c1 c2 name i;
 val --> [?r1 ?r2 ?c1 ?c2];
 hd(node_draw_data() (node)) -> name;
 box(c1, r1, c2-2, r2);
 c1 + 1 -> c1;
 r1 + 1 -> r1;
 for i from 1 by 3 to 7 do
 vedjumpto(r1, c1);
 vedinsertstring (substring(i,3,name));
 r1 + 1 -> r1;
 endfor
 enddefine;

 define root(tree) -> root_name;
 vars tile state subtrees;
 tree --> [?state ??subtrees];
 '' -> root_name;
 for tile in state do
 if tile = "hole"
 then root_name >< ' ' -> root_name
 else root_name >< tile -> root_name
 endif
 endfor
 enddefine;

Page 107

5
Heuristic Search of Game Trees

In some situations heuristic functions can be used relatively independently of a search process. For
example, programs which take the role of a player in a two-person game (e.g. chess) just need to decide
at any given stage which of the possible moves is the best one If we have a heuristic function which says
how close a given state is to a goal state then the best move can be identified as the one which has the
highest value of the heuristic function. Unfortunately, the efficacy of this approach is greatly
undermined by the foothills problem, i.e. the inability of the heuristic function to take account of states
that lie "beyond" the immediate successors of the current state. This is known as the horizon effect.

One way we might try to improve the effectiveness of the heuristic is as follows. Instead of applying the
heuristic function directly to the successors of the current node, we apply it to the successor of the
successor (or the successor of the successor of the successor...). Then we "back-up" the values found to
derive effective values for the successor, i.e. choose the child that produces the best great-great-
grandchild! The value eventually computed (via back-up) for the child is called a dynamic value because
it depends on the values of the grand-children, great grand children and so on. At the end of this chain
we compute a static value using our heuristic function. Note, therefore, that the dynamic value of a child
is computed from (and therefore after) the values of grandchildren and so on.

The idea behind this is that as we explore further and further ahead the situations we find there will
usually be simplified and it will be easier to see which are winning positions and which are losing ones.
In other words the heuristic function that we can apply will tend to be more accurate as the states get
nearer to the goal

If the problem is one in which we can always make any move we want then it makes sense to back-up
the best value at any given layer of the search tree. The reasoning here is quite straightforward. If we can
move to any successor-node we will always move to the best one, i.e. the one with the highest value of
the heuristic function. Therefore, at the current node we can be sure of achieving the score belonging to
the highest scoring successor node. This implies that we should back-up the maximum score to get the
effective score for the current node

Page 108

Unfortunately, in a two-person game the situation is slightly different. We cannot always make any
move we want. In fact every other move "belongs" to the opponent. If the opponent is rational and good
at the game then the move made will probably be exactly the one we do not want, i.e. the one which
moves the game to a state which has the lowest value of our heuristic function. In other words the
opponent will be attempting to reach a different goal state and prevent you reaching your goal.

Typically each player chooses a move which increases his or her chances of winning and decreases the
opponent's chances. If the heuristic function which measures the value of a state gives increasingly large
positive values for states to your advantage, then you will tend to choose moves which increase its value
while your

<><><><><><><><><><><><>

/* distance_to_goal takes a node and computes how far it is from
either the goal of having 2 or 3 sticks to deal with. */

 define distance_to_goal(node) -> distance;
 vars sticks;
 node --> [?sticks];
 if sticks = 2 or sticks = 3 then 0 -> distance /* PROGRAM WINS */
 elseif sticks = 1 then 9 -> distance /* PROGRAM LOSES */
 else (sticks - 2) -> distance
 endif
 enddefine;

/* static_value computes the heuristic worth of a node, scoring
9 for The best and 0 for the worst, i.e. from MAX's viewpoint. */

 define static_value(node) -> proximity;
 (9 - distance_to_goal(node)) -> proximity;
 enddefine;

/* successors5 takes a node in nim and produces a list of successor nodes. */

 define successors5(node) -> children;
 vars sticks;
 node -> [?sticks];
 if sticks = 1 then [] -> children
 elseif sticks = 2 then [[1]] -> children
 else [[^(sticks - 2)] [^(sticks - 1)]] -> children
 endif
 enddefine;

Figure 5-1
Successors function for nim

Page 109

opponent will attempt to choose moves with will decrease its value.

This means that from any node which corresponds to a move made by the opponent we can be virtually
certain of achieving the score belonging to the lowest-scoring successor node. Therefore if we are
backing-up values to get an effective value for a current node, it is prudent to always back-up the lowest
score in any layer of the search space which corresponds to the opponent's go. This process of switching
between backing-up maximum scores and backing-up minimum scores is called minimaxing.

Computing Successors in the Game of Nim

A concrete example may help to make this a little clearer. Unfortunately, most two-person games have
rather complex successor functions. However, there is a two-person game with an exceedingly simple
implementation. This is the game of nim. A simplified version of nim is made up of two players and a
single pile of sticks. More complex versions have more piles of sticks. Each player takes turns to remove
one or two sticks from the pile. The player who is forced to take the last stick is the loser. One drawback
of this simple example is that the use of the minimaxing technique looks a bit heavy-handed given the
simplicity of the game and the paucity of possible moves at each point. Another point to note is that
there is in fact a deterministic algorithm for choosing one's best move without search which we are
ignoring here.

Now the only significant feature in the game of nim is the number of sticks in the current pile. Therefore
we can represent a state in this game using a list containing a single integer value. We could just use an
integer itself, but we have enclosed it in a list to make the representation similar to those for the jugs
problem and the 8-puzzle. The successors of a node (i.e. a state) correspond to the states arising when
one player removes either one or two sticks from the pile. Thus a function can compute the successors of
a node just by subtracting one and two from the number of sticks in the corresponding state.

A goal node in nim is any state which will force another player to take the last stick. Thus a goal node
can be specified as any state which features either two sticks or three sticks. Figure 5-1 gives a very
simple closeness-to-goal static value heuristic which returns a value corresponding to the difference
between the number of sticks in the current state and the number of sticks in a goal state. Actually this is
a virtually useless heuristic. It does not discriminate properly between states which are close to one
player winning and states which are close to the other player winning. Note that the implementation is
customised so as to return single digit values in the examples which we will work through below.

The successor function shown simply constructs a list of sublists each containing an integer derived by
subtracting one and two from the integer provided as input.

Page 110

Given the defined functions we can construct a representation of the search space for a 9-stick nim game
using showtree (see Note 1 at the end of this chapter) to display the output of our depth-bounded
limited_search_tree function as depicted in Figure 5-2.

Minimax Evaluation

Nim is a two-person game so a program which is going to take the part of a player in this game needs to
be able to decide which move to make at any given stage. As was noted above, one way a program
might make such a decision would be to apply the static_value function to all the successors of the
current node and then make the move which corresponds to the node which has the highest value. In this
usage the heuristic function is referred to as a static evaluation function and the values it computes are
called static values.

To improve on this strategy a program can back-up static values for nodes which appear at a deeper
level in the search space. But, as we noted above, in a two-person game it makes no sense to just back-
up maximum values. A program should only do this in layers of the search space which correspond to its
go. The program must back-up minimum values in any layer which corresponds to the opponent's go

Figure 5-2
Search tree for nim

Page 111

The minimax procedure, which is just the process of backing up maximum and minimum values
alternately, is referred to as a dynamic evaluation function and the values it computes are called dynamic
values. The depth of the layer of the search tree in which the procedures derives static values is referred
to as its lookahead.

To simplify the discussion we will refer to the program which is going to play the game as ''MAX" and
to the opponent (i.e. typically the human) as "MIN". These names reflect the fact that the program is
trying to reach states which have a maximum value of the heuristic function, while the opponent is
trying to reach states which have a minimum value.

The implementation of the minimax procedure consists of two functions. The first one is called
MAXs_go, see the upper portion of Figure 5-3. This just takes a number representing a given depth in
the search space and returns a boolean value indicating whether or not a node at this layer corresponds to
a move to be dealt with by MAX (i.e. the program). Note that the function works on the assumption that
a node at layer 0 corresponds to the state left by a move just made by MIN. Therefore the next level
must contain nodes which correspond to MAX's possible moves at that stage. The function tests whether
the input is an even number by seeing what the remainder is when it is divided by 2. If the remainder is
0, then the original number must be even.

The main function is called minimax_search. The function takes three inputs which are put in the
variables node, depth and lookahead The node input is just a description of a node; the depth input
is an integer representing the depth of the search space in which the node appears. Lookahead holds the
maximum lookahead depth. The function returns the dynamic value of the node it is given. The function
first compares the current depth of search with the maximum lookahead depth. If the depth is greater
than or equal to the lookahead value then the function returns the static value of the node by calling the
static_value function. Because the static_value function is defined in term's of the value to
MAX, it is necessary to ensure that lookahead has an even value (i.e. refers to one of MAX's layers). If
the depth is not greater than the lookahead value the function iterates over the successors of the input
node, calling minimax_search on each one to find its value.

If the function is dealing with successor nodes which belong to a layer of the search space corresponding
to MIN's moves it must make sure to choose the next node with the minimum value. If the function is
dealing with successor nodes which belong to a layer corresponding to MAX's moves, the function
chooses the successor node with the maximum value. The function uses the built-in functions max and
min to gather the maximum or minimum values, using either -1000 or +1000 as arbitrary small and
large starting points (in case there are no successors at all):

 trace minimax_search;

 successors5 -> successors;

Page 112

<><><><><><><><><><><><>

/* MAXs_go returns true if depth is an even number. */

 define MAXs_go(depth) -> boolean;
 (depth rem 2) = 0 -> boolean
 enddefine;

/* minimax_search takes a node, a depth in the game tree and a
lookahead value and returns its value. If it is MAXs_go, the best
successor node is the one with the highest value, otherwise it's
the one with the lowest value. */

 define minimax_search(node, depth, lookahead) -> value;
 vars successor next_value;
 if depth >= lookahead
 then static_value(node) -> value;
 else if MAXs_go(depth)
 then -1000 -> value
 else 1000 -> value
 endif;
 for successor in successors(node) do
 minimax_search (successor, depth + 1, lookahead)
 -> next_value;
 if MAXs_go (depth)
 then max(next_value, value) -> value
 else min(next_value, value) -> value
 endif
 endfor
 endif
 enddefine;

Figure 5-3
Computing the minimax value of a node

 minimax_search([9], 0, 4) ==>

 > minimax_search [9] 0 4
 !> minimax_search [7] 1 4
 !!> minimax_search [5] 2 4
 !!!> minimax_search [3] 3 4
 !!!!> minimax_search [1] 4 4
 !!!!< minimax_search 0
 !!!!> minimax_search [2] 4 4
 !!!!< minimax_search 9
 !!!< minimax_search 0

Page 113

 !!!> minimax_search [4] 3 4
 !!!!> minimax_search [2] 4 4
 !!!!< minimax_search 9
 !!!!> minimax_search [3] 4 4
 !!!!< minimax_search 9
 !!!< minimax_search 9
 !!< minimax_search 9
 !!> minimax_search [6] 2 4
 !!!> minimax_search [4] 3 4
 !!!!> minimax_search [2] 4 4
 !!!!< minimax_search 9
 !!!!> minimax_search [3] 4 4
 !!!!< minimax_search 9
 !!!< minimax_search 9
 !!!> minimax_search [5] 3 4
 !!!!> minimax_search [3] 4 4
 !!!!< minimax_search 9
 !!!!> minimax_search [4] 4 4
 !!!!< minimax_search 7
 !!!< minimax_search 7
 !!< minimax_search 9
 !< minimax_search 9
 !> minimax_search [8] 1 4
 !!> minimax_search [6] 2 4
 !!!> minimax_search [4] 3 4
 !!!!> minimax_search [2] 4 4
 !!!!< minimax_search 9
 !!!!> minimax_search [3] 4 4
 !!!!< minimax_search 9
 !!!< minimax_search 9
 !!!> minimax_search [5] 3 4
 !!!!> minimax_search [3] 4 4
 !!!!< minimax_search 9
 !!!!> minimax_search [4] 4 4
 !!!!< minimax_search 7
 !!!< minimax_search 7

 !!< minimax_search 9
 !!> minimax_search [7] 2 4
 !!!> minimax_search [5] 3 4
 !!!!> minimax_search [3] 4 4
 !!!!< minimax_search 9
 !!!!> minimax_search [4] 4 4
 !!!!< minimax_search 7

Page 114

 !!!< minimax_search 7
 !!!> minimax_search [6] 3 4
 !!!!> minimax_search [4] 4 4
 !!!!< minimax_search 7
 !!!!> minimax_search [5] 4 4
 !!!!< minimax_search 6
 !!!< minimax_search 6
 !!< minimax_search 7
 !< minimax_search 7
 < minimax_search 9
 ** 9

The output means that the backed-up value of the 9-stick pile at level zero is "9", as is the value of the 7-
stick pile at level 1 (because this is the value backed up in preference to the value "7" from the 8-stick
pile).

We can adapt limited_search_tree into a new function minimax_search_tree which
constructs the tree of possible moves together with the static and dynamic values which are computed
for them, see Figure 5-4. This function searches the tree much like minimax_search but at each
level it returns a tree for the node being considered (whose root is the node and value) rather than merely
its value as did minimax_search.

Function minimax_search_tree builds a list of subtrees at each level. In order to extract the values
in root nodes of each of these subtrees (to decide which value gets backed up) it extracts the appropriate
component of the subtree, i.e. subtree (1) (2); in other words, the second element of the first
sublist:

 minimax_search_tree([9],0,4) ==>
 ** [[9 9]
 [[7 9]
 [[5 9] [[3 0] [[1 0]] [[2 9]]] [[4 9] [[2 9]] [[3 9]]]]
 [[6 9] [[4 9] [[2 9]] [[3 9]]] [[5 7] [[3 9]] [[4 7]]]]]
 [[8 7]
 [[6 9] [[4 9] [[2 9]] [[3 9]]] [[5 7] [[3 9]] [[4 7]]]]
 [[7 7] [[5 7] [[3 9]] [[4 7]]] [[6 6] [[4 7]] [[5 6]]]]]]

 vars subtree;
 minimax_search_tree([5] ,2,4) -> subtree;
 subtree ==>
 ** [[5 9] [[3 0] [[1 0]] [[2 9]]] [[4 9] [[2 9]] [[3 9]]]]
 subtree(1) (2) ==>
 ** 9

The tree itself is shown in Figure 5-5 (see Note 2 at the end of this chapter).

Page 115

<><><><><><><><><><><><>

/* minimax_search_tree takes a node, a depth value and a lookahead
and returns the tree searched using minimaxing. Leaf nodes
in the tree contain the number of sticks together with a static
value. Other nodes contain the number of sticks together with
the dynamic value. */

 define minimax_search_tree(node, depth, lookahead) -> tree;
 vars successor value next_value subtree;
 if depth >= lookahead
 then [[^^node ^(static_value(node))]] -> tree
 else if MAXs_go(depth)
 then -1000 -> value
 else 1000 -> value
 endif;
 [] -> tree;
 for successor in successors(node) do
 minimax_search_tree(successor, depth + 1, lookahead)
 -> subtree;
 subtree (1) (2) -> next_value;
 if MAXs_go (depth)
 then max(next_value, value) -> value
 else min(next_value, value) -> value
 endif;
 [^^tree ^subtree] -> tree;
 endfor;
 [[^^node ^value] ^^tree] -> tree
 endif
 enddefine;

Figure 5-4
Generating a minimax search tree

Page 116

Figure 5-5
Example of a minimax search tree

Worked Example

We can clarify the way in which the minimax procedure works by looking at a representation of the
evaluation process for the 9-stick nim state shown in Figure 5-5. In this representation, nodes have labels
consisting of two integers separated by a colon. The integer on the left represents the state, i.e. the
number of sticks in the pile The integer on the right represents the evaluation. Note that these
evaluations are computed from the bottom of the diagram towards the top.

Imagine that MAX wants to evaluate what to do, being faced with nine sticks. Think of MAX as the
program and MIN as yourself, so it is the program faced with nine sticks.

To compute a dynamic evaluation of this node MAX considers all the nodes in the search space to a
depth of four layers (we have just assumed an arbitrary lookahead value of 4). We treat the root of the
tree as layer 0. Fourth layer nodes correspond to nodes where it is again MAX's turn to move and so are
evaluated using the heuristic function according to their value to MAX. Note that the nodes with three
sticks and two sticks have high values (i.e. 9) because MAX can force a win from there. Note also that at
the fourth layer the node with one stick has a very low value (i.e. 0) because MAX would lose by taking
this (last) stick! MIN, of course, wants to prevent MAX winning and so the third layer nodes have
evaluations which minimise the value. That is why MIN prefers the value 7 to 9 when it considers the
five stick node on the third layer. In fact, the value 9 has been backed right up to the seven stick node
which MAX should choose. This indicates that if MAX does take

Page 117

two sticks (i.e. moves to the seven stick node from the nine stick node), it can force a win, no matter
what MIN (i.e. you) do. MAX is trying to get to the position of having to choose between either two
sticks or three sticks because in either case it can make MIN take the last stick. If it can make MIN deal
with four sticks, whatever MIN does, it will leave either two sticks or three sticks for MAX. By a similar
chain of argument, if it can make MIN deal with 7 sticks, it can force a win. This is the basis of a
nonsearch solution to this particular simple game.

Alpha-Beta Cutoffs

In games more complicated than nim, the size of the minimax search tree may be quite large, especially
if there is a high branching factor or deep lookahead, so methods of reducing the amount of needless
search will be valuable. If we use the minimax_search function to compute dynamic evaluations of
nodes, there is an easy way of cutting down on the total number of nodes which need to be looked at.
The basic idea is quite simple. Let us imagine that we are trying to find the maximum evaluation for the
successors of a node. As soon as we have an evaluation for one successor, this value becomes a lower
bound for the evaluation of the current node. If, during the evaluation of some other successor, it
becomes apparent that its value will fall below this lower bound, then the evaluation can be terminated
immediately. Moreover, if it turns out that a successor has an evaluation which exceeds the lower bound,
then the lower bound is effectively increased to the appropriate value.

The complementary case occurs where we are trying to find the minimum evaluation for a set of
successor nodes. As soon as we have an evaluation of one node, this becomes an upper bound on the
ultimate evaluation of the current node. If during the evaluation of some other successor it becomes
apparent that the evaluation will fall above this upper bound, the evaluation can be terminated
immediately. Technically, the lower bound on the evaluation of a node is called an alpha threshold and
the upper bound is called a beta threshold. The termination of an evaluation process in the case where
the evaluation is already known to fall below the alpha threshold is called a alpha cutoff; and the
termination of an evaluation in the case where the evaluation is already known to fall above the beta
threshold is called a beta cutoff.

The two canonical cases are given in Figure 5-6. In both cases the nodes show values only and are given
labels so that they can be referred to. As canonical cases they are not especially related to our nim
example. Consider the upper diagram. In evaluating node "a", the program has explored the tree below
"b" to be able to back up the value 9 to "b". It then starts exploring the tree at "c". To do this it first
explores the tree at ''f" and this backs up the value 13. The tree at "g" however gets the value 7, from
below. It does not matter what value "h" has or any node to the right of it on that level. If "h" gets a
value larger than 7, then "g"'s 7 will go up the tree to "c" (because it is a minimising layer). If it gets a
value smaller then 7, then this smaller value will go up the tree to "c". But at the next level up, in either
case, "b"'s existing

Page 118

value 9 will be preferred because this is a maximising level. Thus once we have the given relationship
between "b" and "g" we can ignore (i.e. prune) all further siblings of "g" to the right.

A similar line of reasoning applies in the lower diagram, though here the value of "g" is greater than that
of "b" (and maximising and minimising are interchanged).

The process of "ignoring" successor nodes during the derivation of dynamic values is referred to as
alpha-beta pruning but its efficacy depends entirely on the order in which nodes happen to be
encountered in the search tree. It has been shown that in the best case, the application of alpha-beta
pruning can reduce the number of nodes which need to be evaluated from N to √N (Bratko, 1990). In the
case we have

Figure 5-6
Alpha-beta pruning

Page 119

<><><><><><><><><><><><>

/* alphabeta_search augments minimax_search by including lower
and upper bounds as arguments. The tree is pruned whenever
the lower bound is equal or greater to the upper bound. It
returns the value of the node it is given. */

define alphabeta_search(node, depth, lookahead, lower, upper)
 -> value;

 vars successor;
 if depth >= lookahead
 then static_value(node) -> value;
 else if MAXs_go(depth)
 then lower -> value
 else upper -> value
 endif;
 for successor in successors(node) do
 alphabeta_search(successor, depth + 1, lookahead, lower,
 upper) -> value;
 if MAXs_go (depth)
 then max(value, lower) -> lower;
 lower -> value;
 else min(value, upper) -> upper;
 upper -> value;
 endif;
 if lower >= upper
 then if chatty then [pruning] ==> endif;
 quitloop
 endif
 endfor;
 endif
enddefine;

Figure 5-7
Computing the alpha-beta minimax value for a node

looked at, the implementation of alpha-beta pruning has barely any effect at all; it permits a grand total
of twelve nodes to be ignored. However, in more realistic applications, the advantages of pruning would
be much more apparent.

The modifications required to make the minimax_search function implement alpha-beta pruning are
quite straightforward; see Figure 5-7. Instead of three inputs, the new version of the function
alphabeta_search will take five inputs. The extra two inputs will simply be the current values of
the alpha and beta thresholds. The alpha threshold input provides a lower bound for the value of
successor nodes and the beta threshold input provides an upper bound. Thus, all the function has to do
when maximising is raise the current alpha threshold whenever it turns out that a

Page 120

successor node evaluation exceeds its current value (and lower the beta threshold when minimising), and
to terminate via quitloop, if ever it turns out that its alpha threshold exceeds or is equal to its beta
threshold.

We can test the implementation using the inputs we used before but adding suitable initial values for the
alpha and beta thresholds. The alpha threshold is initialised to a large negative value. The beta threshold
is set to a large positive value. The trace output produced is shown below:

 trace alphabeta_search;

 true -> chatty;

 alphabeta_search([9],0,4,-1000,1000) ==>

 > alphabeta_search [9] 0 4 -1000 1000
 !> alphabeta_search [7] 1 4 -1000 1000
 !!> alphabeta_search [5] 2 4 -1000 1000
 !!!> alphabeta_search [3] 3 4 -1000 1000
 !!!!> alphabeta_search [1] 4 4 -1000 1000
 !!!!< alphabeta_search 0
 !!!!> alphabeta_search [2] 4 4 -1000 0
 !!!!< alphabeta_search 9
 !!!< alphabeta_search 0
 !!!> alphabeta_search [4] 3 4 0 1000
 !!!!> alphabeta_search [2] 4 4 0 1000
 !!!!< alphabeta_search 9
 !!!!> alphabeta_search [3] 4 4 0 9
 !!!!< alphabeta_search 9
 !!!< alphabeta_search 9
 !!< alphabeta_search 9
 !!> alphabeta_search [6] 2 4 -1000 9
 !!!> alphabeta_search [4] 3 4 -1000 9
 !!!!> alphabeta_search [2] 4 4 -1000 9
 !!!!< alphabeta_search 9
 !!!!> alphabeta_search [3] 4 4 -1000 9
 !!!!< alphabeta_search 9
 !!!< alphabeta_search 9

 ** [pruning]
 !!< alphabeta_search 9
 !< alphabeta_search 9
 !> alphabeta_search [8] 1 4 9 1000
 !!> alphabeta_search [6] 2 4 9 1000
 !!!> alphabeta_search [4] 3 4 9 1000

Page 121

 !!!!> alphabeta_search [2] 4 4 9 1000
 !!!!< alphabeta_search 9
 ** [pruning]
 !!!< alphabeta_search 9
 !!!> alphabeta_search [5] 3 4 9 1000
 !!!!> alphabeta_search [3] 4 4 9 1000
 !!!!< alphabeta_search 9
 ** [pruning]
 !!!< alphabeta_search 9
 !!< alphabeta_search 9
 ** [pruning]
 !< alphabeta_search 9
 < alphabeta_search 9
 ** 9

As expected the value of the node is "9". We can adapt alphabeta_search into
alphabeta_search_tree to produce a search tree just as we did for minimax_search, see
Figure 5-8.

Figure 5-5 showed the tree produced by minimax_search_tree and Figure 5-9 which shows the
same tree after pruning by by alphabeta_search_tree. Certain of the intermediate nodes values
are different because they are constrained by the thresholds compared to those of the unpruned tree.

We have used positive values for nodes throughout and alternatively maximised and minimised. There is
an alternative representation, called negmax, which alternatively uses positive and negative values and
then maximises only. This leads to slightly more compact code.

Implementing a Nim-Playing Program

Given the functions which have now been defined, the implementation of a nim-playing program is
perfectly straightforward. The program can consist of a function containing a single repeat loop. The
initial number of sticks is first read in via read-line. Inside the main loop the successors of the state
are obtained and each one is evaluated using the dynamic evaluation function. The function then
announces its move by simply printing out the successor with the highest score. At the end of the loop a
new value is read in and checked.

The minimax and alpha-beta functions are designed to compute the dynamic value of a node at layer 0.
MAX has to choose the best node at layer 1, so the search program is called with 1 as the value of depth
in order to compute the best successor.

The definition is shown in Figure 5-10. The behaviour produced when this function is called is as
follows:

Page 122

<><><><><><><><><><><><>

/* alphabeta_search tree takes a node, a depth and a lookahead value
and returns the search tree with subtrees pruned from it. */

define alphabeta_search_tree(node, depth, lookahead, lower, upper)
 -> tree;
 vars successor value subtree;
 if depth >= lookahead
 then [[^^node ^(static_value(node))]] -> tree
 else if MAXs_go(depth)
 then lower -> value
 else upper -> value
 endif;
 [] -> tree;
 for successor in successors(node) do
 alphabeta_search_tree(successor, depth + 1, lookahead,
 lower, upper) -> subtree;
 subtree (1) (2) -> value;
 if MAXs_go(depth)
 then max(value, lower) -> lower;
 lower -> value;
 else min(value, upper) -> upper;
 upper -> value;
 endif;
 [^^tree ^subtree] -> tree;
 if lower >= upper
 then if chatty then [pruning] ==> endif;
 quitloop
 endif;
 endfor;
 [[^^node ^value] ^^tree] -> tree
 endif
enddefine;

Figure 5-8
Generating the alpha-beta minimax search tree

Page 123

Figure 5-9
An example of an alpha-beta minimax tree

Page 124

<><><><><><><><><><><><>

/* nim returns either [you win] or [I win] or a close variant */

define nim -> result;
 vars node value successor best_move best_value;
 [nim program] ==>
 [how many sticks do I get?] ==>
 readline() -> node;
 if node = [] or not(isinteger(hd(node))) or hd(node) < 2
 then [illegal start, I win] -> result; return
 endif;
 repeat
 -2000 -> best_value;
 for successor in successors(node) do
 alphabeta_search(successor, 1, 4, -1000, 1000) -> value;
 if value > best_value
 then value -> best_value;
 successor -> best_move
 endif;
 endfor;
 [the number of sticks left after my move is Ù(best_move(1))]
 ==>
 [please type in the number of sticks left after your move]
 ==>
 readline() -> node;
 if node = [1] then [you win] -> result; return endif;
 if node = [0] then [I win] -> result; return endif;
 unless member(node, successors(best_move))
 then [illegal move, I win] -> result; return
 endunless
 endrepeat;
enddefine;

Figure 5-10
rogram to play nim

 false -> chatty;

 untrace alphabeta_search;

 nim() ==>

 ** [nim program]
 ** [how many sticks do I get ?]
 ? 9
 ** [the number of sticks left after my move is 7]

Page 125

 ** [please type in the number of sticks left after your move]
 ? 6
 ** [the number of sticks left after my move is 4]
 ** [please type in the number of sticks left after your move]
 ? 3
 ** [the number of sticks left after my move is 1]
 ** [please type in the number of sticks left after your move]
 ? 0
 ** [I win]

Recall that the static_value function was organised to return fairly sensible values where the
number of sticks is "9" or less. You can beat this program by starting with a large number of sticks (and
playing sensibly).

Minimaxing in Prolog

Re-implementing the POP-11 functions and procedures in Prolog is straightforward and the procedures
carry out identical tasks in largely similar ways. The successor/2 procedure, static_value/2,
distance_to_goal/2 and maxs_go/1 follow the POP-11 directly, see Figure 5-11.

The for loop in the POP-11 code is implemented via the calls to find_best/4 and find_best1/5.
These cycle through the successors of the given node and for each one compute the minimax value,
selecting the best value overall as its result. At even levels the program finds the maximum via
compare/4; at odd levels the minimum is found, see Figure 5-12.

Procedure minimax_search/4 has two cases to consider. In clause 1, if the depth is greater than the
lookahead value, the static value of the node is computed and returned. This means that the value of
lookahead should be an even number (or the definition of static_value/2 changed to take account
of the value of depth. Clause 2 computes the successors and finds the one with the best minimax value.
Procedure find_best/4 has one clause to deal with even numbered layers and one for odd numbered
layers. In the one case it sets a lower bound and in the other an upper bound and calls find_best1/5
to work its way through the successors.

Procedure find_best1/5 recursively works through the successors and calls compare1/4 to
update the best value so far if necessary. This procedure takes account of the depth at which the
comparison is being made to see whether it should be maximising or minimising the 'best" value.

Let us try out the Prolog version of minimaxing on the same example nine stick example as before:

 ?-minimax_search([9], 0, 4, Value).
 Value = 9

Page 126

<><><><><><><><><><><><>

/* distance_to_goal(+Node, -Distance)
distance to goal computes the distance of Node to the goal. */

 distance_to_goal([1], 9) :- !.
 distance_to_goal([2], 0) :- !.
 distance_to_goal([3], 0) :- !.

 distance_to_goal([Sticks] ,Dist) :-
 Dist is Sticks - 2.

/* static_value(+Node, -Proximity)
static value computes the proximity to the goal with 9 the highest,
i.e. from MAX's point of view. */

 static_value(Sticks, Proximity) :-
 distance_to_goal (Sticks, Distance),
 Proximity is 9 - Distance.

/* successor(+Node, -Successor)
successor computes the Successor of Node. */

 successor([2],[1]) :- !.

 successor([Sticks],[Next]) :-
 not(Sticks = 1),
 Next is Sticks - 2.

 successor([Sticks], [Next]) :-
 not(Sticks = 1),
 Next is Sticks - 1.

/* maxs_go(+Depth)
maxs_go succeeds if the depth is an even number. */

 maxs_go (Depth) :-
 0 is Depth mod 2.

Figure 5-11
Successor function for nim in Prolog

Page 127

<><><><><><><><><><><><>

/* minimax_search(+Node, +Depth, +Lookahead, -Value)
minimax_search succeeds with the Value of a Node given its Depth and
a Lookahead value. */

 minimax_search(Node, Depth, Lookahead, Value) :-
 Depth >= Lookahead, !,
 static_value(Node, Value).

 minimax_search(Node, Depth, Lookahead, Value) :-
 successors(Node, Successors),
 find_best(Successors, Depth, Lookahead, Value).

/* find_best(+Successors, +Depth, +Lookahead, -Value)
find_best works through the list of successors and returns in
value the best value produced by minimaxing on each one in turn. */

 find_best(Successors, Depth, Lookahead, Value) :-
 maxs_go(Depth), !,
 find best1(Successors, Depth, Lookahead, -1000, Value).

 find_best(Successors, Depth, Lookahead, Value) :-
 find_best1(Successors, Depth, Lookahead, 1000, Value).

/* find_best1(+Successors, +Depth, +Lookahead, +So_far, +Value)
find_best1 succeeds with the maximum Value from minimaxing on each of the
successors. So_far holds the best value gained at any particular
point in the cycle. */

 find best1([], _, _, So_far, So_far).

 find best1([Successor I Successors], Depth, Lookahead, So_far, Value) :-
 New_depth is Depth + 1,
 minimax_search(Successor, New_depth, Lookahead, This_value),
 compare1(Depth, This_value, So_far, Better),
 find_best1(Successors, Depth, Lookahead, Better, Value).

/* compare1(+Depth, +This_value, +Best_so_far, -Better_one)
According to the depth better_one will hold the better of the
current value being considered and the best one found so far.
compare1 maximises at MAX's depth and minimises otherwise. */

 compare1(Depth, This_value, So_far, This_value) :-
 maxs_go (Depth),
 This_value > So_far, !.

 compare1(Depth, This_value, So_far, This_value) :-
 not (maxs_go (Depth)),
 This_value < So_far, !.

 compare1(_, This_value, So_far, So_far).

Figure 5-12
Computing the minimax value in Prolog

Page 128

 yes
 ?- minimax_search([5], 3, 4, Value).
 Value = 7
 yes
 ?- minimax_search([2], 4, 4, Value).
 Value = 9
 yes

If we offer an odd value for lookahead, the wrong values emerge since the static value is computed with
respect to MAX's go:

 ?- minimax_search([9], 0, 3, Value).
 Value = 7
 yes

Procedure minimax_search/4 can be modified to do alpha-beta pruning as follows, see Figure 5-13.
find_best2/6 and compare2/6 are augmented versions of similarly named procedures in
minimax_search. The main differences are that extra arguments are used throughout to keep track of
lower and upper bounds dynamically. find_best2/6 contains a clause (clause 3) which prunes away
any further successors by reducing the list of successors (its first argument) to the empty list.

By running alphabeta_search/6 with "spy" on, one can compare its output with the POP-11
version given earlier. It makes use of chatty_print/1 defined in the previous chapter:

 ?- spy alphabeta_search.
 ?- assert(chatty).

 ?- alphabeta_search([9],0,4,-1000,1000,V).

 ** (1) Call : alphabeta_search([9], 0, 4, -1000, 1000, _1)
 ** (2) Call : alphabeta_search([7], 1, 4, -1000, 1000, _2)
 ** (3) Call : alphabeta_search([5], 2, 4, -1000, 1000, _3)
 ** (4) Call : alphabeta_search([3], 3, 4, -1000, 1000, _4)
 ** (5) Call : alphabeta_search([1], 4 ,4, -1000, 1000, _5)
 ** (5) Exit : alphabeta_search([1], 4, 4, -1000, 1000, 0)
 ** (6) Call : alphabeta_search([2], 4, 4, -1000, 0, _6)
 ** (6) Exit : alphabeta_search([2], 4, 4, -1000, 0, 9)
 ** (4) Exit : alphabeta_search([3], 3, 4, -1000, 1000, 0)
 ** (7) Call : alphabeta_search([4], 3, 4, 0, 1000, _7)
 ** (8) Call : alphabeta_search([2], 4, 4, 0, 1000, _8)
 ** (8) Exit : alphabeta_search([2], 4, 4, 0, 1000, 9)
 ** (9) Call : alphabeta_search([3], 4, 4, 0, 9, _9)

Page 129

<><><><><><><><><><><><>

/* alphabeta(Node,Depth,Alpha Value,Beta Value,Lookahead,Resultant Value) */

 alphabeta_search(Node, Depth, Lookahead, Lower, Upper, Value) :-
 Depth >= Lookahead, !,
 static_value(Node, Value).

 alphabeta_search(Node, Depth, Lookahead, Lower, Upper, Value) :-
 successors(Node, Successors),
 find_best2(Successors, Depth, Lookahead, Lower, Upper, Value).

/* find_best2(+Successors, +Depth, +Lookahead, +Lower, +Upper, -Value)
find_best2 cycles through Successors checking the values of Lower and
Upper. If Lower exceeds Upper, pruning takes place. */

 find_best2([], Depth, _, Lower, _, Lower) :-
 maxs_go(Depth).

 find_best2([], Depth, _, _, Upper, Upper) :-
 not(maxs_go(Depth)).

 find_best2(_, Depth, _, Lower, Upper, Value) :-
 Lower >= Upper, !,
 chatty_print([pruning]),
 find_best2([], Depth, _, Lower, Upper, Value).

 find_best2([Succ | Succs], Depth, Lookahead, Lower, Upper, Value) :-
 New_Depth is Depth + 1,
 alphabeta_search(Succ, New_Depth, Lookahead, Lower, Upper, This_value),
 compare2(Depth, This_value, Lower, New_lower, Upper, New_upper),
 find_best2(Succs, Depth, Lookahead, New_lower, New_upper, Value).

/* compare2(+Depth, +This_value, +Lower, -New_lower, +Upper, -New_upper)
compare uses the depth to compare This_value with either the existing
lower or existing upper bound. One bound is modified if appropriate. */

 compare2(Depth, This_value, Lower, This_value, Upper, Upper) :-
 maxs_go(Depth),
 This_value > Lower, !.

 compare2(Depth, This_value, Lower, Lower, Upper, This_value) :-
 not (maxs_go(Depth)),
 This_value < Upper, !.

 compare2(_, _, Lower, Lower, Upper, Upper).

Figure 5-13
Computing the alpha-beta minimax value in Prolog

 ** (9) Exit : alphabeta_search([3], 4, 4, 0, 9, 9)
 ** (7) Exit : alphabeta_search([4], 3, 4, 0, 1000, 9)
 ** (3) Exit : alphabeta_search([5], 2, 4, -1000, 1000, 9)

Page 130

 ** (10) Call : alphabeta_search((6], 2, 4, -1000, 9, _10)
 ** (11) Call : alphabeta_search([4], 3, 4, -1000, 9, _11)
 ** (12) Call : alphabeta_search([2], 4, 4, -1000, 9, _12)
 ** (12) Exit : alphabeta_search([2], 4, 4, -1000, 9, 9)
 ** (13) Call : alphabeta_search([3], 4, 4, -1000, 9, _13)
 ** (13) Exit : alphabeta_search((3], 4, 4, -1000, 9, 9)
 ** (11) Exit : alphabeta_search([4], 3, 4, -1000, 9, 9)
 [pruning]
 ** (10) Exit : alphabeta_search([6], 2, 4, -1000, 9, 9)
 ** (2) Exit : alphabeta_search([7], 1, 4, -1000, 1000, 9)
 ** (14) Call : alphabeta_search([8], 1, 4, 9, 1000, _14)
 ** (15) Call : alphabeta_search([6], 2, 4, 9, 1000, _15)
 ** (16) Call : alphabeta_search([4], 3, 4, 9, 1000, _16)
 ** (17) Call : alphabeta_search([2], 4, 4, 9, 1000, _17)

 ** (17) Exit : alphabeta_search([2], 4, 4, 9, 1000, 9)
 [pruning]
 ** (16) Exit : alphabeta_search([4], 3, 4, 9, 1000, 9)
 ** (18) Call : alphabeta_search([5], 3, 4, 9, 1000, _18)
 ** (19) Call : alphabeta_search([3], 4, 4, 9, 1000, _19)
 ** (19) Exit : alphabeta_search([3], 4, 4, 9, 1000, 9)
 [pruning]
 ** (18) Exit : alphabeta_search([5], 3, 4, 9, 1000, 9)
 ** (15) Exit : alphabeta_search([6], 2, 4, 9, 1000, 9)
 [pruning]
 ** (14) Exit : alphabeta_search([8], 1, 4, 9, 1000, 9)
 ** (1) Exit : alphabeta_search([9], 0, 4, -1000, 1000, 9)
 V= 9?
 yes

Reading

The AI Handbook, Vol 1, Section II-C (Barr and Feigenbaum, 1981), provides pseudo-code algorithms
for an implementation of alpha-beta pruning using the negmax formalism. Winston also provides good
pseudo-code descriptions of the minimax and alpha-beta pruning strategies (Winston, 1984, Chapter 4)
as does Nilsson (1980, Chapters 2 and 3). Rich (1983, Chapter 3) looks at these strategies from a slightly
more elementary perspective. See also Chapter 5 of Charniak and McDermott (1985).

Bratko (1990) offers another view of minimaxing and alpha-beta pruning in Prolog and also discusses
some of the limitations of these techniques. Sterling and Shapiro (1986) also deals with this issue in
Prolog. A very detailed theoretical analysis of these techniques can be found in Pearl (1984).

Page 131

Exercises

1. Write the Prolog equivalent of the POP-11 function nim

2. Write Prolog programs to generate minimax search trees and alpha-beta search trees as given for POP-
11.

3. Adjust the nim static value function so that it deals sensibly with large numbers of sticks and takes
account of the depth at which it is called.

4. Extend the nim program to deal with more than one pile of sticks.

5. Implement a POP-11 successor function and a heuristic for the game of ''noughts and crosses" ("tic-
tac-toe"). Use the "nim" function defined above as a template for developing a function which will play
a game of noughts and crosses with the user. You will need to think about how the user and the program
will describe moves to each other and how these descriptions can be converted into the representation
scheme used internally.

Notes

1. Displaying a nim state.

 define root(tree) -> root_name;
 vars x subtrees;
 tree --> [[?x] ??subtrees];
 x >< '' -> root_name
 enddefine;

2. Displaying a nim state including its value.

 define root (tree) -> root_name;
 vars sticks value subtrees;
 tree --> [[?sticks ?value] ??subtrees];
 sticks >< ':' >< value -> root_name
 enddefine;

Page 133

6
Problem Reduction (AND/OR-Tree Search)

Introduction

In the previous chapters we have dealt exclusively with different kinds of state-space search. In that
representation, there was a starting state, a goal state and intermediate states linked implicitly via a
successor function. The general shape of all states was the same. They were distinguished by the values
of their internal components.

In this chapter we look at problem reduction. The basic idea here is that a problem is represented as one
or more goals to be solved and a step in the problem solving process is either the immediate solution of
one of these goals or its division into a set of (one hopes) simpler subgoals.

The technique in question, construed in abstract terms, is basically just an exploitation of the idea that
for any given goal there are a set of subgoals, such that satisfying the subgoals satisfies the goal. The
process of decomposing a goal into its subgoals is referred to as goal-reduction. We will start by taking
a very simple case where there is only one way of decomposing a goal into subgoals and therefore there
is no search. To illustrate what this means we will look at the Tower of Hanoi problem.

Problem-Reduction and the Tower of Hanoi

One of the most well-known uses of problem reduction is its application to the Tower of Hanoi problem.
The problem is described as follows:

"Given three graduated discs (large, medium and small) and three pegs (A, B, and C), where the three discs are
arranged on peg A so that the largest is on the bottom and the smallest is on the top: Move the discs to peg C so
that they end

Page 134

up in the same order (largest on the bottom, smallest on the top). Only one disc may be moved at a time, and a
larger disc may not be put on top of a smaller one." (Stillings et al., p. 173)

In fact, we can have Tower of Hanoi problems featuring N discs rather than just three (the original
version of the problem was said to involve the transfer of 64 discs). Whatever the value of N, the
specification of the problem remains the same: transfer the N, size-ordered discs from peg A to peg C
without ever putting a larger disc on a smaller disc. Viewed in these terms, the problem can be solved by
decomposing it into the following three subtasks.

1. move the N-1 top discs on A (the "N-l tower") to B
2. move the exposed, bottom disc from A to C
3. move the N-1 tower from B to C

Steps 1 and 3 have the same form as the original goal. Thus they too can be decomposed into three
subgoals. Of course in decomposing step 1, we will need to substitute C for B and B for C to make
things work out; in decomposing step 3 we must substitute B for A and A for B, and so on.

When we decompose step 1 into three subgoals the value of N in the first step of the subgoals will be 1
less than its value in the goal. Thus, the value of N decreases by 1 for each decomposition. This means
that if we continue decomposing goals long enough we will eventually find that the "N-1 tower" has
only one disc. The goal of transferring a single disk can be performed (i.e. satisfied) directly, by
performing a single action. Since all goals will eventually decompose into subgoals which can be
satisfied by single actions, a complete solution for the whole problem can be found by generating a list
of all the single actions needed to satisfy the final subgoals. We can demonstrate this by writing a POP-
11 function which does the required decomposition and generates the corresponding sequence of
necessary actions; see Figure 6-1. Note that this function embodies a particular goal decomposition
which is applied rigidly at every level. There is no search and no backtracking.

The function assumes that the current state of the discs is represented as a list of three sublists. Each
sublist represents the state of one peg and the label of the peg (A, B or C) appears as the final element of
the sublist. The initial elements of the sublist are just the sizes of the rings which are on that peg. Thus,
the initial state is represented as:

 [[small medium large A] [B] [C]]

Note the way in which the hanoi function detects whether the goal it has been called on is one which
can be performed by a single action. The match expression discovers whether the first peg has only one
disc on it. If it has then the task of moving the discs on peg A to peg C can be performed using a single
action. Thus the function prints

Page 135

<><><><><><><><><><><><>

/* hanoi takes a description of a Tower of Hanoi state
and returns the final description. */

 define hanoi(goal) -> result;
 vars disc bottom_disc A B C A_name tower;
 if goal matches [[?disc ?A_name] ?B ?C]
 then [move ^disc from ^A_name to ^C] ==>
 [[^A_name] ^B [^disc ^^C]] -> result
 else goal --> [[??tower ?bottom_disc ?A_name] ?B ?C];
 hanoi([[^^tower ^A_name] ^C ^B]) --> [?A ?C ?B];
 hanoi([[^bottom disc ^A name] ^B ^C]) --> [?A ?B ?C];
 hanoi([^B ^A ^C]) --> [?B ?A ?C];
 [^A ^B ^C] -> result;
 endif
 enddefine;

Figure 6-1
Tower of Hanoi program

out a description of the action required and returns an appropriately modified state description. If peg A
has more than 1 disc on it, then the problem is decomposed into three subgoals and these are achieved
via recursive calls on "hanoi". The behaviour of the function is as follows:

 trace hanoi;
 hanoi ([[small medium large A] [B] [C]]) ==>

 > hanoi [[small medium large A] [B] [C]]
 !> hanoi [[small medium A] [C] [B]]
 !!> hanoi [[small A] [B] [C]]
 ** [move small from A to [C]]
 !!< hanoi [[A] [B] [small C]]
 !!> hanoi [[medium A] [small C] [B]]
 ** [move medium from A to [B]]
 !!< hanoi [[A] [small C] [medium B]]
 !!> hanoi [[small C] [A] [medium B]]
 ** [move small from C to [medium B]]
 !!< hanoi [[C] [A] [small medium B]]
 !< hanoi [[A] [C] [small medium B]]
 !> hanoi [[large A] [small medium B] [C]]
 ** [move large from A to [C]]
 !< hanoi [[A] [small medium B] [large C]]

Page 136

 !> hanoi [[small medium B] [A] [large C]]
 !!> hanoi [[small B] [large C] [A]]
 ** [move small from B to [A]]
 !!< hanoi [[B] [large C] [small A]]
 !!> hanoi [[medium B] [small A] [large C]]
 ** [move medium from B to [large C]]
 !!< hanoi [[B] [small A] [medium large C]]
 !!> hanoi [[small A] [B] [medium large C]]
 ** [move small from A to [medium large C]]
 !!< hanoi [[A] [B] [small medium large C]]
 !< hanoi [[B] [A] [small medium large C]]
 < hanoi [[A] [B] [small medium large C]]
 ** [[A] [B] [small medium large C]]

The complete solution for the problem can be shown more clearly as follows:

 untrace hanoi;
 hanoi ([[small medium large A] [B] [C]]) ==>

 ** [move small from A to [C]]
 ** [move medium from A to [B]]
 ** [move small from C to [medium B]]
 ** [move large from A to [C]]
 ** [move small from B to [A]]
 ** [move medium from B to [large C]]
 ** [move small from A to [medium large C]]

 ** [[A] [B] [small medium large C]]

Implementing Arbitrary AND/OR-Trees

The hanoi function shows how goal-reduction can be pre-defined as part of a function. But in this case
the way that any goal is decomposed is fixed and there is only one way of doing the decomposition. So
to bring out the true generality of the idea, we need to show how it can work inside a search process
where there may be more than one method available to decompose each goal and the system has to
search through these to find the one that works (best). To do this we need to rework the implementation
of the search function so as to allow for the use of subgoals.

The existing implementation of search is organised around a successor function. This just takes a
predecessor node as input and returns the corresponding successors. A goal always corresponds to some
successor node (or, at least, we hope it does) and a successor node can always be achieved provided that
its predecessor can

Page 137

be achieved. This shows that a predecessor is just a kind of single subgoal.

It will be recalled from Chapter 2 that the simplest way of implementing an ordinary successor function
involves setting up a database of lists, with each list specifying a unique predecessor/successor link. The
successor function is then defined in terms of a foreach loop which iterates over the database picking
out any items which feature the predecessor in question. In the envisaged scenario, goals can have N
subgoals rather than just one and this means, in effect, that successor nodes can have N predecessors. So
if we want to use the simple, database approach for the implementation of the successor function, we
will have to arrange things such that lists in the database can link a successor node with N predecessors.
One approach might be to use lists of the form:

[<predecessor1> <predecessor2> ... <predecessorN> <SUCCESSOR>]

However, since, in the current context the emphasis is on goal-reduction, it makes more sense to use lists
of the form:

[<SUCCESSOR> <predecessor1> <predecessor2> ... <predecessorN>]

In this format, the goal appears as the first element and the subgoals come after. This arrangement is
more convenient since it enables the list to be more easily read as a goal-reduction "rule" (see below).

A search space which contains nodes corresponding to goals and their subgoals forms an AND/OR-tree.
For any node corresponding to a goal, the successors are just those rules which have the effect of
satisfying the goal. Any one rule will do; thus, where there are several rules for the same goal or
<SUCCESSOR>, they constitute alternatives and the node is an OR-node. For any node corresponding
to a rule, the successors are the predecessors of the rule. To apply the rule, all the predecessors (or
subgoals) must be dealt with; thus, the node is an AND-node.

The point to note is that the conventions we have just introduced for creating a database of
successor/predecessor links allow us to construct explicit AND/OR-trees. If foo is the name of an OR-
node then the database will contain a set of lists of the form:

[foo <predecessor1>....]
[foo <predecessor2>....]

[foo <predecessorN>....]

If foo is an AND-node then the database will contain a list of the form:

[foo <predecessor1> <predecessor2> ... <predecessorN>]

Page 138

Thus, OR-branches in the search space are indicated by including multiple entries with the same first
element. AND-branches are indicated by including entries which have more than two elements. A
complete AND/OR-tree is constructed just by implementing a certain configuration of AND- and OR-
nodes. So as to make life slightly more convenient we will, from here on, refer to successor/predecessor
associations of the type described above as search rules. Search rules which have no subgoals will be
called facts. Finally, a list containing search rules will be called a rulebase.

Implementing the AND/OR-Tree Search Function

Given the conventions introduced for setting up the AND/OR-tree forming a given search space, we can
implement a backward search function as shown in Figure 6-2. Note that, for the sake of simplicity, we
have embedded the foreach loop which would form the basis for the successor function inside the
search function. This assumes that the rules are held in a variable called rulebase. We call this
backwards search because we are working backward from complex to easier goals.

The function backwards_search1 undertakes a depth first search in that it deals with the goals in
order, starting with the first goal, calls itself recursively on the first of subgoals and then on the first of
the subsubgoals and so on. If the first

<><><><><><><><><><><><>

/* backwards_search1 takes a list of goals as input and returns true
if they can all be solved, and false otherwise. */

 define backwards_search1 (goals) -> boolean;
 vars goal subgoals other_goals;
 if goals = [] then true -> boolean
 else goals --> [?goal ??other_goals];
 foreach [^goal ??subgoals] in rulebase do
 backwards_search1(subgoals) -> boolean;
 if boolean
 then backwards_search1 (other_goals) -> boolean;
 if boolean then return endif
 endif
 endforeach;
 false -> boolean;
 endif;
 enddefine;

Figure 6-2
Backwards search of an AND/OR tree

Page 139

recursive call to backwards-search1 should fail, then the foreach loop will cycle round to a
further (if any exists) successor rule (without yet making the second call to backwards_search1). If
the first call succeeds but the second fails, again further rules are tried if they exist. If both calls succeed,
the function terminates with true. It thus uses depth first search and exits as soon as the first solution is
found. The function will systematically explore the whole space if no solution can be found (if there are
no loops) before returning <false>. We have used recursion to deal with the other_goals. It
would have been just as easy to have used a loop instead which looped through each of the goals input to
the search function and merely called itself recursively in dealing with each of their subgoals.

Implementing Planning as AND/OR-Tree Search

To implement a simple form of planning behaviour using our generic, AND/OR-tree search function, we
first need to set up the appropriate AND/OR search space (i.e. rulebase). Below is a set rules which
define an implicit AND/OR tree for a "book" problem. This is a variant on the "cake" problem of Burton
and Shadbolt, 1987). These rules are in the form [<SUCCESSOR> <predecessor(s)>]:

 [/* FACTS */
 [[have paper]]
 [[have cash]]
 [[in house]]
 [[have phone]]
 /* RULES */
 [[have book] [have cash] [in store]]
 [[have book] [have creditcard] [have phone]]
 [[have book] [have paper] [have pen] [have time]]
 [[have creditcard] [have bankaccount]]
] -> rulebase1;

We have placed facts earlier in the rulebase than rules. This is to ensure that in searching, the system
checks facts first before continuing the search via the rules. All the entries are lists of elements; in each
case the first element corresponds to a goal and the remaining elements form the corresponding subgoals
or "preconditions". Calling the new search function on the input corresponding to a goal of the planning
task considered produces the following behaviour:

Page 140

 trace backwards_search1;
 rulebase1 -> rulebase;

 backwards_search1 ([have book]]) ==>

 > backwards_search1 [[have book]]
 !> backwards_search1 [[have cash] [in store]]
 !!> backwards_search1 []
 !!< backwards_search1 <true>
 !!> backwards_search1 [[in store]]
 !!< backwards_search1 <false>
 !< backwards_search1 <false>
 !> backwards_search1 [[have creditcard] [have phone]]
 !!> backwards_search1 [[have bankaccount]]
 !!< backwards_search1 <false>
 !< backwards_search1 <false>
 !> backwards_search1 [[have paper] [have pen] [have time]]
 !!> backwards_search1 []
 !!< backwards_search1 <true>
 !!> backwards_search1 [[have pen] [have time]]
 !!< backwards_search1 <false>
 !< backwards_search1 <false>
 < backwards_search1 <false>
 ** <false>

We can vary the behaviour simply by changing the rulebase. Thus by adding a fact as follows:

 [/* FACTS */
 [[have paper]]
 [[have cash]]
 [[in house]]
 [[have phone]]
 [[have creditcard]] /* NEW FACT ADDED */
 /* RULES */
 [[have book] [have cash] [in store]]
 [[have book] [have creditcard] [have phone]]
 [[have book] [have paper] [have pen] [have time]]
 [[have creditcard] [have bankaccount]]
] -> rulebase2;

ensures that the behaviour produced is as shown below. Note that the new rules and facts are added onto
the front of the rulebase so that these new rules are tried earlier by the foreach than the original
entries:

Page 141

 rulebase2 -> rulebase;

 backwards_search1 ([[have book]]) ==>

 > backwards_search1 [[have book]]
 !> backwards_search1 [[have cash] [in store]]
 !!> backwards_search1 []
 !!< backwards_search1 <true>
 !!> backwards_search1 [[in store]]
 !!< backwards_search1 <false>
 !< backwards_search1 <false> /* BACKTRACKING */
 !> backwards_search1 [[have creditcard] [have phone]]
 !!> backwards_search1 []
 !!< backwards_search1 <true>
 !!> backwards_search1 [[have phone]]
 !!!> backwards_search1 []
 !!!< backwards_search1 <true>
 !!!> backwards_search1 []
 !!!< backwards_search1 <true>
 !!< backwards_search1 <true>
 !< backwards_search1 <true>
 !> backwards_search1 []
 !< backwards_search1 <true>
 < backwards_search1 <true>
 ** <true>

Where the choice of a rule eventually leads to a <false>, the foreach ensures that the program
backtracks to consider remaining applicable rules at that choice point.

One of the shortcomings of the above approach to "planning" is that our program only returns true or
false and not a plan; another issue is that the rules as we have set them out cannot express changes in the
world as a result of achieving some goal. These issues are dealt with properly in the next chapter.

Implementing Reasoning as AND/OR-Tree Search

The AND/OR-tree search function is not only applicable in the case where we wish to solve a simplified
planning problem. It can also be applied in many other cases. Any problem whose solution we can think
of in terms of goal-reduction can be solved by the application of AND/OR-tree search. To obtain a
specific implementation we only need to set up the appropriate rulebase.

For example, AND/OR-tree search can be used to solve simple reasoning problems. In this application
goals correspond roughly to "conclusions" and subgoals correspond roughly to bits of "evidence".
Search rules state that certain collections of evidence (subgoals) allow the drawing (achievement) of a
given conclusion (goal).

Page 142

They therefore constitute simple inference rules. An example may help to make this clear. Let us set up
a rulebase as follows:

 [/* FACTS */
 [[weak battery]]
 [[damp weather]]
 [[old car]]
 /* RULES */
 [[low current][damp weather][weak battery]]
 [old starter][old car]]
 [[car wont start][low current][old starter]]
 [[write off][car wont start][not AA member]]
 [[not AA member] [irresponsible]]
] -> rulebase3;

The general context for this rulebase involves car problems. The first rule states, in effect, that a weak
battery and damp weather are, together, evidence supporting the conclusion that the current is low. The
[[car wont start][low current][old starter]] rule states that low current and an old
starter are evidence supporting the conclusion that the car wont start, and so on. If we run the
backwards_search1 function on the goal list [[car wont start]] the behaviour produced
corresponds to a simple reasoning process in which the appropriate bits of evidence are sought out and
then combined together so as to justify the original conclusion (or "hypothesis"). Thus:

 rulebase3 -> rulebase;

 backwards_search1 ([[car wont start]]) ==>

 > backwards_search1 [[car wont start]]
 !> backwards_search1 [[low current] [old starter]]
 !!> backwards_search1 [[damp weather] [weak battery]]
 !!!> backwards_search1 []
 !!!< backwards_search1 <true>
 !!!> backwards_search1 [[weak battery]]
 !!!!> backwards_search1 []
 !!!!< backwards_search1 <true>
 !!!!> backwards_search1 []
 !!!!< backwards_search1 <true>
 !!!< backwards_search1 <true>
 !!< backwards_search1 <true>
 !!> backwards_search1 [[old starter]]
 !!!> backwards_search1 [[old car]]
 !!!!> backwards_search1 []

Page 143

 !!!!< backwards_search1 <true>
 !!!!> backwards_search1 []
 !!!!< backwards_search1 <true>
 !!!< backwards_search1 <true>
 !!!> backwards_search1 []
 !!!< backwards_search1 <true>
 !!< backwards_search1 <true>
 !< backwards_search1 <true>
 !> backwards_search1 []
 !< backwards_search1 <true>
 < backwards_search1 <true>
 ** <true>

Given the fact that we are construing goals as conclusions and subgoals as bits of evidence it might
make sense to rename the search function ''show". If we did this the tracing would look like this:

 show([[car wont start]]) ==>

 > show [[car wont start]]
 !> show [[low current] [old starter]]
 !!> show [[damp weather] [weak battery]]
 !!!> show []
 !!!< show <true>
 !!!> show [[weak battery]]
 !!!!> show []
 !!!!< show <true>
 !!!!> show []
 !!!!< show <true>
 !!!< show <true>
 !!< show <true>
 !!> show [[old starter]]
 !!!> show [[old car]]
 !!!!> show []
 !!!!< show <true>
 !!!!> show []
 !!!!< show <true>
 !!!< show <true>
 !!!> show []
 !!!< show <true>
 !!< show <true>
 !< show <true>
 !> show []

Page 144

 !< show <true>
 < show <true>
 ** <true>

In a relatively liberal reading this trace output says that to show that the car won't start it needs to be
shown that the current is low and the starter is old. To show that the current is low it needs to be shown
that the weather is damp and the battery is weak. Both of these things can be shown trivially because, in
the current rulebase they are just facts. Finally, to show that the starter is old it needs to be shown that
the car is old. Again this is just a fact. Thus it can be shown that the car won't start Q.E.D.:

 show([[write off]]) ==>

 > show [[write off]]
 !> show [[car wont start] [not AA member]]
 !!> show [[low current] [old starter]]
 !!!> show [[damp weather] [weak battery]]
 !!!!> show []
 !!!!< show <true>
 !!!!> show [[weak battery]]
 !!!!!> show []
 !!!!!< show <true>
 !!!!!> show []
 !!!!!< show <true>
 !!!!< show <true>
 !!!< show <true>
 !!!> show [[old starter]]
 !!!!> show [[old car]]
 !!!!!> show []
 !!!!!< show <true>
 !!!!!> show []
 !!!!!< show <true>
 !!!!< show <true>
 !!!!> show []
 !!!!< show <true>
 !!!< show <true>
 !!< show <true>
 !!> show [[not AA member]]
 !!!> show [[irresponsible]]
 !!!< show <false>
 !!< show <false>
 !< show <false>

Page 145

 < show <false>
 ** <false>

If we try to "show" that the car is a write-off the trace output is as shown above. Because it cannot be
shown that the owner is irresponsible it cannot be shown that the owner is not a member of the AA. This
means that it cannot be shown that the car is a write-off.

Loops in the Search Space

Loops can occur in problem reduction searches if the rules either directly or indirectly involve recursive
definitions without an appropriate fact to stop the recursion, as in the definitions of [happy],
[loved] and [desirable] below:

 [/* FACTS */
 [[rich]]
 [[good job]]
 /* RULES */
 [[happy] [rich] [successful][loved]]
 [[successful] [respected] [rich]]
 [[loved] [desirable]]
 [[desirable] [successful][happy]]
 [[respected] [good job]]
] -> rulebase4;

 rulebase4 -> rulebase;

 backwards_search1([[successful]]) ==>

 > backwards_search1 [[successful]]
 !!> backwards_search1 [[respected] [rich]]
 !!>backwards_search1 [[good job]]
 !!> backwards_search1 []
 !!!< backwards_search1 <true>
 !!!> backwards_search1 []
 !!!< backwards_search1 <true>
 !!< backwards_search1 <true>
 !!> backwards_search1 [[rich]]
 !!!> backwards_search1 []
 !!!< backwards_search1 <true>
 !!!> backwards_search1 []
 !!!< backwards_search1 <true>

Page 146

 !!< backwards_search1 <true>
 !< backwards_search1 <true>
 !> backwards_search1 []
 !< backwards_search1 <true>
 < backwards_search1 <true>
 ** <true>

 backwards_search1 ([[happy]]) ==>

 > backwards_search1 [[happy]]
 !> backwards_search1 [[rich] [successful] [loved]]
 !!> backwards_search1 []
 !!< backwards_search1 <true>
 !!> backwards_search1 [[successful] [loved]]
 !!!> backwards_search1 [[respected] [rich]]
 !!!!> backwards_search1 [[good job]]
 !!!!!> backwards_search1 []
 !!!!!< backwards_search1 <true>
 !!!!!> backwards_search1 []
 !!!!!< backwards_search1 <true>
 !!!!< backwards_search1 <true>
 !!!!> backwards_search1 [[rich]]
 !!!!!> backwards_search1 []
 !!!!!< backwards_search1 <true>
 !!!!!> backwards_search1 []
 !!!!!< backwards_search1 <true>
 !!!!< backwards_search1 <true>
 !!!< backwards_search1 <true>
 !!!> backwards_search1 [[loved]]
 !!!!> backwards_search1 [[desirable]] /* RULE LEADS TO LOOP */
 !!!!!> backwards_search1 [[successful] [happy]]
 !!!!!!> backwards_search1 [[respected] [rich]]
 !!!!!!!> backwards_search1 [[good job]]
 !!!!!!!!> backwards_search1 []
 !!!!!!!!< backwards_search1 <true>
 !!!!!!!!> backwards_search1 []
 !!!!!!!!< backwards_search1 <true>
 !!!!!!!< backwards_search1 <true>
 !!!!!!!> backwards_search1 [[rich]]
 !!!!!!!!> backwards_search1 []
 !!!!!!!!< backwards_search1 <true>
 !!!!!!!!> backwards_search1 []
 !!!!!!!!< backwards_search1 <true>

Page 147

 !!!!!!!< backwards_search1 <true>
 !!!!!!< backwards_search1 <true>
 !!!!!!> backwards_search1 [[happy]] /* STARTS TO LOOP HERE */
 !!!!!!!> backwards_search1 [[rich] [successful] [loved]]
 !!!!!!!!> backwards_search1 []
 !!!!!!!!< backwards_search1 <true>
 !!!!!!!!> backwards_search1 [[successful] [loved]]
 !!!!!!!!!> backwards_search1 [[respected] [rich]]
 !!!!!!!!!!> backwards_search1 [[good job]]

 /* INTERRUPTED */

The problem is that in trying to show [happy] the program tries to show [loved] and in trying to
show [loved] it needs to show [desirable] and thence to show [happy]. We will solve this
presently, but first deal with a different issue.

The program proves [successful] twice over in the above trace. This latter is not because of a loop
but is an inefficiency. This could be avoided as follows. Once something has been proved the system
could record that fact so that it does not have to be proved again and it could just be looked up as a new
fact. This can be achieved by adding any successfully proved goals to the database as part of
backwards_search1. We have provided a new procedure prove which has database as a local
variable. This ensures that any changes that the new backwards_search make to the database are
not permanent, see Figure 6-3.

There are several ways of dealing with loops. The simplest, which we have adopted, is to set a limit on
the depth of the search and backtrack if the limit is reached (as in depth-limited state space search). A
second method would be to keep a record of the direct ancestors of each goal and ensure that search for
a particular goal fails if that goal is already an ancestor.

Trying backward_search with these improvements now gives the following output. The database
does not contain the rule [[happy] [poor] [free] [loving]]:

 trace add backwards_search;

 prove([[successful]], rulebase4, 5) ==>

 > backwards_search [[successful]] 5
 !> backwards_search [[respected] [rich]] 4
 !!> backwards_search [[good job]] 3
 !!!> backwards_search [] 2
 !!!< backwards_search <true>
 !!!> backwards_search [] 3
 !!!< backwards_search <true>

Page 148

<><><><><><><><><><><><>

/* backwards_search takes a list of goals as input and returns
true if they can all be solved, and otherwise returns false. It
checks for loops by ensuring that the search remains within a
depth limit. */

 define backwards_search(goals, depth) -> boolean;
 vars goal goal_list subgoals other_goals;
 if goals = [] then true -> boolean
 elseif depth <= 0 then false -> boolean
 else goals --> [?goal ??other_goals];
 foreach [^goal ??subgoals] do
 backwards_search (subgoals, depth-1) -> boolean;
 if boolean
 then unless present([^goal]) then add([^goal]) endunless;
 backwards_search(other_goals, depth) -> boolean;
 if boolean then return endif
 endif
 endforeach;
 false -> boolean
 endif
 enddefine;

/* prove takes a list of goals and rulebase and returns true if
all the goals can be solved, and false otherwise. It passes on
a depth limit to backwards_search to avoid loops. */

 define prove(goals, rulebase, depth) -> boolean;
 vars database;
 rulebase -> database;
 backwards_search(goals,depth) -> boolean
 enddefine;

Figure 6-3
Avoiding loops in AND/OR search by setting a depth limit

 !!< backwards_search <true>
 !!> add [[respected]]
 !!< add
 !!> backwards_search [[rich]] 4
 !!!> backwards_search [] 3
 !!!< backwards_search <true>
 !!!> backwards_search [] 4
 !!!< backwards_search <true>
 !!< backwards_search <true>

Page 149

 !< backwards_search <true>
 !> add [[successful]]
 !< add
 !> backwards_search [] 5
 !< backwards_search <true>
 < backwards_search <true>
 ** <true>

 prove([[happy]], rulebase4, 4) ==>

 > backwards_search [[happy]] 4
 !> backwards_search [[rich] [successful] [loved]] 3
 !!> backwards_search [] 2
 !!< backwards_search <true>
 !!> backwards_search [[successful] [loved]] 3
 !!!> backwards_search [[respected] [rich]] 2
 !!!!> backwards_search [[good job]] 1
 !!!!!> backwards_search [] 0
 !!!!!< backwards_search <true>
 !!!!!> backwards_search [] 1
 !!!!!< backwards_search <true>
 !!!!< backwards_search <true>
 !!!!> add [[respected]]
 !!!!< add
 !!!!> backwards_search [[rich]] 2
 !!!!!> backwards_search [] 1
 !!!!!< backwards_search <true>
 !!!!!> backwards_search [] 2
 !!!!!< backwards_search <true>
 !!!!< backwards_search <true>
 !!!< backwards_search <true>
 !!!> add [[successful]]
 !!!< add
 !!!> backwards_search [[loved]] 3
 !!!!> backwards_search [[desirable]] 2
 !!!!!> backwards_search [[successful] [happy]] 1

 !!!!!!> backwards_search [] 0
 !!!!!!< backwards_search <true>
 !!!!!!> backwards_search [[happy]] 1
 !!!!!!!> backwards_search [[rich] [successful] [loved]] 0
 !!!!!!!< backwards_search <false>
 !!!!!!< backwards_search <false>
 !!!!!!> backwards_search [[respected] [rich]] 0

Page 150

 !!!!!!< backwards_search <false>
 !!!!!< backwards_search <false>
 !!!!< backwards_search <false>
 !!!< backwards_search <false>
 !!< backwards_search <false>
 !< backwards_search <false>
 < backwards_search <false>
 ** <false>

In the first case above [[successful]] could be proved (with no loop problems) within a preset
depth limit of 5. In the second case [[happy]] could not be proved and the (arbitrary) depth limit of
four prevented the search looping.

It is slightly unrealistic having to decide ahead of time how deep to set the depth limit, but we could get
round this using iterative deepening as we did in state-space search (see later in this chapter).

Solution Tree

In the earlier chapters, where the search tree for a search problem was an OR-tree, a solution for the
problem consisted of a path connecting the root node with a goal node. This path was just a sequence of
nodes.

In the case where the search tree for a search problem is an AND/OR-tree, a solution has a quite
different form. It is an AND-tree rather than a path. In both cases the search tree contains alternatives,
i.e. the OR branches, whereas a particular solution necessarily contains no OR branches, thus giving a
path in one case and an AND-tree in the other.

The reason for this is quite straightforward. A given solution involves achieving a sequence of goals.
But achieving any one goal may involve achieving N subgoals. To write out a solution we must
therefore specify the subgoals which need to be achieved in order to achieve any given goal. If we do
this for a given solution we end up with a tree structure. The root of the AND-tree is the original goal.
Its children are the subgoals of the initial goal (i.e. the subgoals which when satisfied, enabled the initial
goal to be satisfied). The children of a child node are just its subgoals, and so on. AND-trees of this form
are called solution trees.

In the case where we are construing search rules as inference rules, the solution-tree produced by a
search function is called a proof tree. The idea here is that the original goal corresponds to a "theorem"
and the process of searching for a solution corresponds to an attempt to prove the theorem given the
formal system of rules making up the rulebase.[l]

[1] In this context, facts correspond to the axioms of the formal system.

Page 151

<><><><><><><><><><><><>

/* backwards_search_tree takes a list of goals as input and returns
the solution AND tree for them if it exists, and otherwise returns
false. */

define backwards_search_tree(goals, depth) -> tree;
 vars goal first_tree other_trees goal subgoals other_goals;
 if goals = [] then [] -> tree
 elseif depth <= 0 then false -> tree
 else goals --> [?goal ??other_goals];
 foreach [^goal ??subgoals] do
 backwards_search_tree(subgoals, depth-1) -> first_tree;
 if islist(first_tree)
 then unless present ([^goal]) then add([^goal]) endunless;
 backwards_search_tree(other_goals, depth)
 -> other_trees;
 if islist(other_trees)
 then [[^goal ^^first_tree] ^^other_trees] -> tree;
 return
 endif
 endif
 endforeach;
 false -> tree;
 endif
enddefine;

/* proof_tree takes a single goal as input and returns its proof tree
or false if there is none. */

 define proof_tree(goal, rulebase, depth) -> tree;
 vars database;
 rulebase -> database;
 backwards_search_tree ([^goal], depth) -> tree;
 if islist(tree) then hd(tree) -> tree endif
 enddefine;

Figure 6-4
Constructing a solution AND tree

We can easily construct a version of the new search function which returns a representation of the
solution AND-tree for a given problem, or <false> if a solution cannot be found. The function is
shown in Figure 6-4. Note that if it is provided with an empty list of goals as input, it simply returns an
empty list (i.e. an empty tree). Otherwise it constructs a solution tree for the goals presented by building
a list which has as its first element a sublist consisting of the first goal followed by its solutiontree
(obtained via a recursive call) followed by solution-trees for all the other goals.

Page 152

Figure 6-5
An example AND solution tree

We can demonstrate the behaviour of this function by getting it to construct a solution tree for the goal
list [write off]. As we saw above, given the earlier rulebase about cars, this goal cannot be
achieved. However, if we add a new fact [[irresponsible]] as follows:

 untrace add;

 [[[irresponsible]]
 [[weak battery]]
 [[damp weather]]
 [[old car]]
 [[low current] [damp weather] [weak battery]]
 [[low current] [headlights on] [cold weather]]
 [[old starter] [old car]]
 [[car wont start] [low current] [old starter]]
 [[write off] [car wont start] [not AA member]]
 [[not AA member] [irresponsible]]
] -> rulebase5;

Page 153

 proof_tree([write off], rulebase5, 10) ==>
 ** [[write off]
 [[car wont start]
 [[low current] [[damp weather]] [[weak battery]]]
 [[old starter] [[old car]]]]
 [[not AA member] [[irresponsible]]]]

We can, of course, use the showtree command to obtain a representation of this tree, see Figure 6-5.
However, due to the fact that the search function assumes that its input will be a list of goals, it always
returns a list of solution trees. This means that the solution tree for a single goal actually forms the first
element of the result of the search function. Thus, to get the representation we want we need to specify
the first element of the result in the showtree command; see the definition of proof_tree (also see
Note 1 at end of chapter).

Note that showtree does not distinguish between different kinds of tree. In earlier chapters we have
chosen to view the output of showtree as an OR-tree, here we choose to view it as an AND-tree.

The AND/OR Search Tree

It is possible to adapt backwards_search_tree so that it outputs the whole AND/OR-tree rather
than simply the first solution AND-tree that it finds, see Figure 6-6. We have replaced one of the
recursive calls by a for loop and arranged that the tree contains the nodes [AND] and [OR]. The tips
of the tree are either [KNOWN] or [UNKNOWN] depending on whether or not the subgoal in question is
a fact or cannot be further decomposed. The function makes the same check for loops as before. Where a
node has only a single successor, be it an ''and" or an "or" successor, the redundant extra [AND] or
[OR] node is omitted:

Page 154

<><><><><><><><><><><><>

/* AO_search_tree takes a list of goals as input and returns
the search AND/OR tree as output. */

 define AO_search_tree(goals, depth) -> and_tree;
 vars goal sub_tree subgoals and_tree or_tree item;
 if goals = [] then [[KNOWN]] -> and_tree
 elseif depth <= 0 then [[DEPTH LIMITED]] -> and_tree
 else [[AND]] -> and_tree;
 for goal in goals do
 if present([^goal =])
 then [[OR]] -> or_tree;
 foreach [^goal ??subgoals] do
 AO_search_tree (subgoals, depth-1) -> sub_tree;
 [^^or_tree ^sub_tree] -> or_tree
 endforeach;
 if or_tree matches [[OR] ?item]
 then item -> or_tree
 endif;
 else [[UNKNOWN]] -> or_tree
 endif;
 [^^and_tree [^goal ^or_tree]] -> and_tree
 endfor;
 if and_tree matches [[AND] ?item] then item -> and_tree
endif
 endif
 enddefine;

Figure 6-6
Constructing the AND/OR search tree

 rulebase5 -> database;

 AO_search_tree([[write off]], 10) ==>
 ** [[write off]
 [[AND]
 [[car wont start]
 [[AND]
 [[low current]
 [[OR]
 [[AND] [[damp weather] [[KNOWN]]]
 [[weak battery] [[KNOWN]]]]
 [[AND]
 [[headlights on] [[UNKNOWN]]]
 [[cold weather] [[UNKNOWN]]]]]
 [[old starter] [[old car] [[KNOWN]]]]]]
 [[not AA member] [[irresponsible] [[KNOWN]]]]]]

Page 155

The output from showtree is shown in Figure 6-7. Notice that the node [low current] could, in
principle, be proven via two rules.

State Space Search and Problem Reduction

Although we have emphasised the distinction between state space search and problem reduction the
choice of method depends on the way that one represents the problem rather than being an inherent
property of the problem itself. It is possible to recast the problems explored in this chapter as state space
problems. We may think of a state as made up of a list of goals. The initial state is the initial list of goals
and the final goal state is a list just containing the null state, [[]]. Intermediate states are

Figure 6-7
An example AND/OR search tree

Page 156

generated via the rules as already represented in rulebase2. For example one successor state to
[[have book]] is [[have cash] [in store]]. The successor state to [have paper]]is
[[]], whereas [[have pen]] has no successor state.

By redefining successors6 to model a state space interpretation we can (partially) solve the above
problems using state space methods. In earlier chapters states in state space search always had the same
number of components. Here we have a situation where a state may have an arbitrary number of
components. This does not matter except that it makes checking for loops a little trickier. We cannot just
see if a new state is exactly equal to a previously visited state. A loop exists in this formulation if a new
state contains all the goals that some previous state contained (plus possibly some others as well). Figure
6-8 shows a state space version of successors which does not check for loops:

<><><><><><><><><><><><>

/* successors6 takes a state consisting of a list of goals as input and
returns a list of new states consisting of lists of subgoals
derivable from the original goals with any duplications removed. */

 define successors6(state) -> states;
 vars goal subgoals remainder;
 [] -> states;
 for goal in state do
 delete(goal, state) -> remainder;
 foreach [^goal ??subgoals] in rulebase do
 [^^states ^(remove_dups([^^subgoals ^^remainder]))]
 -> states
 endforeach
 endfor
 enddefine;

/* remove_dups takes a list as input and returns a list with any
duplicated elements removed. */

 define remove_dups(list) -> newlist;
 if list = [] then [] -> newlist
 elseif member(hd(list), tl(list)) then remove_dups(tl(list))
 -> newlist
 else hd(list) :: remove_dups(tl(list)) -> newlist
 endif
 enddefine;

Figure 6-8
Successor function for rules in state space search

Page 157

 rulebase2 -> rulebase;

 successors6 ([[have creditcard]]) ==>
 ** [[] [[have bankaccount]]]

 successors6([[have paper] [have cash] [have phone]]) ==>
 ** [[[have cash] [have phone]]
 [[have paper] [have phone]]
 [[have paper] [have cash]]]

 successors6([[have phone]]) ==>
 ** [[]]

 successors6([[pink icing]]) ==>
 ** []

 successors6([[have book]]) ==>
 ** [[[have cash] [in store]]
 [[have creditcard] [have phone]]
 [[have paper] [have pen] [have time]]]

In the first case, there is a single rule for [have creditcard] but it is also a fact in the rulebase, so
there are two possible states generated, one consist of the terminating state and the other consists of the
rule's subgoal. In the second case, each of the inputs is a fact, so we get three new states, each of which
omits one of these facts. In the third case the single component of the the state is a fact, so we get the
final empty goal state as output. In the last case, nothing is known about the input so we get no
successors as output. The above definition of successors can result in successor states that contain
duplicated goals. In the final case [have book] has three rules associated with it, so we get three new
states.

We can show the search space OR-tree via the function limited_search_tree given as Figure 3-3
in Chapter 3. This function, takes a path containing an initial state, a goal state and a maximum tree
depth and returns the corresponding search tree. Note that although this function checks for loops along
each path of states, the check will not work properly in this case because of the more complex nature of
these states consisting of sets of goals:

Page 158

 successors6 -> successors;

 limited_search_tree([[[have book]]], [[]], 10) ==>
 ** [[[have book]]
 [[[have cash] [in store]] [[[in store]]]]
 [[[have creditcard] [have phone]]
 [[[have phone]] [[]]]
 [[[have bankaccount] [have phone] [[[have bankaccount]]]]
 [[[have creditcard]] [[]] [[[have bankaccount]]]]]
 [[[have paper] [have pen] [have time]]
 [[[have pen] [have time]]]]]

The tree can be displayed via showtree as usual, see Figure 6-9. We have had to make some
adjustments in order to draw the nodes as shown (see Note 2 at end of this chapter).

In this tree, two paths only lead to success, i.e. to the empty nodes. These two paths are equivalent and
differ only in the order in which the goals are dealt with. [have phone] on the far right which is not
a fact.

We demonstrate the way that successors are generated by adding a couple of impossible goals into a
new initial state, see Figure 6-10. In this figure all paths lead to dead-ends with states still containing
goals to be proved - there are no solutions in this search tree.

Figure 6-9
Search tree with two solutions using rulebase2

Page 159

Figure 6-10
Search tree with no solution

Forward AND/OR-Tree Search

We have seen that a backward AND/OR-tree search provided with a rulebase containing inference rules
can "show" certain conclusions by determining whether the bits of evidence which support them (i.e.
their subgoals) can also be shown. But what about forward search? In a reasoning context, we might
expect that this process would start out from a set of facts and try to see what conclusions can be
derived. But any conclusion constitutes a bit of evidence which might enable the drawing of a further
conclusion. So the question arises, at what point should this sort of forward AND/OR-tree search stop?
One approach is to say that the process should come to a halt at the point where no further conclusions
can be derived, i.e. the search is exhaustive. The definition of a function which implements this
approach is shown in Figure 6-11.

We can test the behaviour of this function by seeing what conclusions it draws given the input
[[damp_weather] [weak_battery]]:

Page 160

<><><><><><><><><><><><>

/* forwards_search takes a list of facts as input and returns a
list of all the facts that can be derived, including the originals. */

 define forwards_search(facts) -> result;
 vars conclusion, conclusions;
 [] -> conclusions;
 foreach [?conclusion ^^facts] do
 [^^conclusions ^conclusion] -> conclusions
 endforeach;
 if conclusions = [] then
 facts -> result
 else
 forwards_search(conclusions) -> result
 endif
 enddefine;

Figure 6-11
Forwards search

 trace forwards_search;

 rulebase5 -> database;

 forwards_search ([[damp weather] [weak battery]]) ==>

 >forwards_search [[damp weather] [weak_battery]]
 !>forwards_search [[low_current]]
 !<forwards_search [[low_current]]
 <forwards_search [[low_current]]

 ** [[low current]]

Unfortunately, although this forward function appears to work, it is clear that it will not work in general.
There are a number of problems. First of all, consider what would have happened if we had called the
function giving it [[weak_battery] [damp_weather]] instead of [[damp_weather]
[weak_battery]]. In this case, because of the mis-match between the ordering of the facts in the
two lists, the foreach loop would not have picked up the search rule:

 [[low current] [damp weather] [weak battery]]

and therefore the conclusion [low current] would not have been derived. We might be able to get
around this problem by making sure that facts are always

Page 161

arranged into some type of deterministic sequence (e.g. by sorting them). However, there are further
problems which we cannot solve so easily. For example, given the two rules:

 [[low current] [damp weather] [weak battery]]
 [[car wont start] [low current] [old starter]]

we would like to be able to conclude [car wont start] given the facts [[damp weather]
[weak battery] [old starter]]. But the function as configured would not do this. It does not
add in new conclusions to its list of facts while it is scanning the database (using foreach). Thus, it
would never construct the list of facts [[low current] [old starter]]; thus it would never
pick out the rule [[car wont start] [low current] [old starter]] and derive the
conclusion [car wont start].

In general, the difficulty with forward AND/OR-tree search is the fact that there is no sensible way of
deciding which subset of the subgoals which have already been satisfied (or provided) should be used in
the attempt to pick-out search rules from the rulebase. Our function just assumes that all the given
subgoals should be used in the order they are presented. In some cases this assumption may work out. In
others, search rules which could profitably be applied will be missed.

Terminology

We have tried to use a consistent terminology in talking about AND/OR-tree search. However, it is
important to realise that the process we have been discussing is extremely general and has found
applications in a wide variety of tasks (some of which we will look at in ensuing chapters). It also
provides an effective metaphor for fundamental processes in logical inference. What this means is that
the process we have been calling AND/OR-tree search goes under a variety of different names.
Moreover, the things that we have been calling search rules, facts etc. are also liable to be referred to in
different ways.

In the case where search rules are effectively inference rules, the search process implemented by a
backward function is often called top-down reasoning and the process implemented by the forward
function is often called bottom-up reasoning. These terms reflect the fact that if we think of search as the
process of constructing a solution-tree, then the forward variant constructs the tree from the bottom up
(i.e. tip-nodes first), while the backward variant constructs the tree from the top down.

Page 162

Production Systems

Another terminological issue revolves around the order in which we express goal/subgoal relationships,
i.e. search rules. We have adopted the convention that search rules are written as follows:

[<GOAL> <subgoal1> <subgoal2> ... <subgoalN>]

However, it would be quite permissible to write rules some other way, e.g. to put the subgoals before the
goal. Of course, if we do this we must ensure that the search function makes the right assumption about
which bits of the structure are the subgoals and which bit is the goal.

Quite often, where search rules are written back-to-front (i.e. subgoals first) they are called productions:

[<subgoal1> <subgoal2> ... <subgoalN> <GOAL>]

In some cases productions may express the fact that the satisfying of a given set of subgoals effectively
achieves a set of goals. In this case some kind of separator will normally be inserted to show where the
subgoals end and the goals begin, e.g.

[<subgoal1> <subgoal2> ... <subgoalN> => <goal-1> <goal-2> ...]

Collections of productions are usually called production systems and these have played quite an
important role in AI. Production systems tend to range between two different extremes. They may
correspond almost perfectly to a set of inference rules (i.e. a rulebase) and in this case the so-called
production system interpreter implements either a forwards- or backwards-chaining search in the
implicit AND/OR-tree. But there are other forms of production system where the productions feature
goals which correspond to "actions". These have the form:

[<condition-1> <condition-2> ... <condition-N> <action>]

These rules are said to "fire" whenever it is observed that all the conditions specified on the left-hand
side hold simultaneously. The action will typically involve adding or deleting some data to a database.
This sort of production system is not quite so easily construed as a form of search function.

AND/OR Search In Prolog

AND/OR-tree search is the basis for the implementation of Prolog. Prolog programs consist of
collections of structures which correspond roughly to what we have called

Page 163

<><><><><><><><><><><><>

/* rule(+[<SUCCESSOR>,<predecessor(s)>]) */

 rule([[have,smarties]]). /* FACTS */
 rule([[have,eggs]]).
 rule([[have,flour]]).
 rule([[have,money]]).
 rule([[have,car]]).
 rule([[in,kitchen]]).

 rule([[decorate,cake], [have,cake], [have,icing]]). /* RULES */
 rule([[decorate,cake], [have,cake], [have,smarties]]).
 rule([[have,money], [in,bank]]).
 rule([[have,cake], [have,money], [in, store]]).
 rule([[have,cake], [in,kitchen], [have,phone]]) .
 rule([[in,store], [have,car]]).
 rule([[in,bank], [have,car]]).

/* backwards_search(+List_of_goals_to_be_satisfied)
backwards_search succeeds if the list of goals can be proved. */

 backwards_search ([]).

 backwards_search ([Goal | Goals]) :-
 rule([Goal | Subgoals]),
 backwards_search (Subgoals),
 backwards_search (Goals).

/* backwards_search_tree(+List_of_goals_to_be_satisfied, -Resultant_AND-tree)
backwards_search_tree takes a list of goals and returns the proof tree
without checking for loops */

 backwards_search_tree([], []).

 backwards_search_tree ([Goal | Goals], [[Goal | Tree] | Trees]) :-
 rule ([Goal | Subgoals]),
 backwards_search_tree(Subgoals, Tree),
 backwards_search_tree(Goals, Trees).

Figure 6-12
Backwards search in Prolog

search rules. Running a Prolog program is achieved by executing the underlying search function on a
given set of goals. But Prolog is more powerful than the search function we have implemented mainly
due to the fact that it allows the programmer to include variables in rules.

Page 164

Given the above, it is not surprising that implementing backwards_search and
backwards_search_tree in Prolog is straightforward as they rely on the built-in mechanisms of
Prolog in a very direct way, see Figure 6-12. backwards_search/1 has two cases to consider. In
the first the list of goals to be satisfied is empty so it succeeds immediately. In the second it divides the
list goals into the first and the remainder and finds a rule to use on the first goal. This rule will normally
involve further subgoals, so backwards_search/1 calls itself to deal with these subgoals and then
calls itself again to deal with remainder of the original goals. backwards_search_tree/2 has
much the same division of labour except that it constructs the solution tree in its second argument.

Running the Prolog program on the ''decorate cake" example, a variant on the POP-11 example on p.
136 of Burton and Shadbolt (1987), gives the AND-tree in Figure 6-13 (using the Prolog library
showtree together with an appropriate definition of root, see note 1 at end of this chapter).

This Prolog program will loop with certain rulesets for just the same reasons as the POP-11 function
given at the start of this chapter. One simple method of dealing with loops is to limit the depth of the
search tree by an extra argument to backwards_search/1 and backwards_search_tree/2.
This argument holds the inverse of the depth of the search tree which is not allowed to reduce below
zero.

Figure 6-13
Solution tree for decorating the cake, in Prolog

Page 165

Figure 6-14 gives the definition of backwards_search/2. Again there are two clauses, but the
second clause now checks the value of the depth. In the first recursive call to
backwards_search_tree/3 which searches the subgoals for the current goal, the value of depth is
incremented. In the second recursive call the value of depth is not incremented, since these goals are
siblings of the current goal.

The following interaction compares backwards_search_tree/2 with
backwards_search_tree/3 using the rules given in Figure 6-14. We set the third argument of
backwards_search_tree/3 to 5 as the maximum depth:

 ?- backwards_search_tree ([[stop1]], Tree).
 Tree = [[[stop1]]]
 ?
 yes
 ?- backwards_search tree([[go]], Tree).

 ;;; PROLOG ERROR - MEMORY LIMIT (pop_prolog_lim) EXCEEDED

<><><><><><><><><><><><>

/* backwards_search_tree(+List_of_goals_to_be_satisfied, +Depth, -Tree)
backwards_search succeeds with Tree if the list of goals can
be proved without exceeding the Depth-limit */

 backwards_ search_tree([], _, []).

 backwards_search_tree ([Goal | Goals], Depth, [[Goal | Tree] | Trees])
 :-
 Depth > 0,
 rule([Goal | Subgoals]),
 New_depth is Depth - 1,
 backwards_search_tree(Subgoals, New_depth, Tree),
 backwards_search_tree(Goals, Depth, Trees).

 /* SOME RULES FOR TESTING LOOP CHECKING */

 rule([[stop1]]).
 rule([[stop2]]).
 rule([[go], [next]]). /* MUTUALLY RECURSIVE */
 rule([[next],[stop1],[go]]). /* RULES */
 rule([[next], [stop1], [stop2]]).

Figure 6-14
Limited depth AND/OR tree search

Page 166

 ?- backwards_search_tree([[stop1]], 5, Tree).
 Tree = [[[stop1]]]
 ?
 yes
 ?- backwards_search_tree([[go]], 5, Tree).
 Tree = [[[go], [[next], [[stop1]], [[go], [[next], [[stop1]],
 [[stop2]]]]]]] ?;
 Tree = [[[go], [[next], [[stop1]], [[stop2]]]]] ?;
 no

Trying to prove [[go]] without a depth check leads to an "infinite" loop whereas with a depth check,
the query succeeds. Note that it does not find the shallowest tree first. Figure 6-15 shows the tree
graphically.

It is possible to avoid the problem of having to choose the depth-limit ahead of time (e.g. "4") by
applying iterative-deepening to AND/OR tree search in much the same way as we did to state-space
search. The idea is that one starts with a small depth limit (e.g. "1") and if the search is unsuccessful, try
again with a larger limit, see Figure 6-16. We still impose a depth-limit, but here it is an overall limit
beyond

Figure 6-15
Solution AND tree with depth limit of 4

Page 167

which no iteration should venture. As in the state-space version, the same search is repeated at ever
increasing depths, and so there is repeated work, and if we force backtracking, also repeated solutions.

In the following example, iterative deepening increases the search tree depth from 0 to 1 to 2 before
finding the first solution:

 ?- spy iterative_deepening_backwards_search.
 Spypoint placed on iterative_depening_backwards_search/4
 yes
 ?- iterative_deepening_backwards_search ([[go]], 0, 20, Tree).
 ** (1) Call : iterative_deepening_backwards_search([[go]], 0, 20, _1)?
 ** (2) Call : iterative_deepening_backwards_search([[go]], 1, 20, _1)?
 ** (3) Call : iterative_deepening_backwards_search([[go]], 2, 20, _1)?
 ** (3) Exit : iterative_deepening_backwards_search([[go]], 2, 20,
 [[[go], [[next], [[stop1]], [[stop2]]]]])?
 ** (2) Exit : iterative_deepening_backwards_search ([[go]], 1, 20,
 [[[go], [[next], [[stop1]], [[stop2]]]]])?
 ** (1) Exit : iterative_deepening_backwards_search([[go]], 0, 20,
 [[[go], [[next], [[stop1]], [[stop2]]]]])?
 Tree = [[[go], [[next], [[stop1]], [[stop2]]]]] ?
 yes

<><><><><><><><><><><><>

/* iterative_deepening_backwards_search(+Goals, +Depth, +Depth_limit, -Tree)
iterative deepening succeeds with the search Tree for the given Goals,
if backwards_search_tree succeeds within the overall Depth_limit. */

iterative_deepening_backwards_search(Goals, Depth, Depth_limit, Tree) -
 backwards_search_tree (Goals, Depth, Tree).

iterative_deepening_backwards_search(Goals, Depth, Depth_limit, Tree) -
 Depth < Depth_limit,
 New_depth is Depth + 1,
 iterative_deepening_backwards_search(Goals, New_depth, Depth_limit, Tree).

Figure 6-16
Iterative deepening AND/OR tree search in Prolog

Page 168

Reading

Some helpful readings for the topics covered in this chapter are Rich (1983, Chapter 8) and Feigenbaum
and McCorduck (1984, Part 3). Charniak and McDermott (1985, Chapter 8) provide a broad coverage of
the reasoning as does Volume 2 of the Al handbook (Barr and Feigenbaum 1982, pp. 77-222). Bratko
(1990), Chapter 13, deals with AND/OR tree search in Prolog, and Burton and Shadbolt (1987) deal
with this topic in POP-11. Sterling and Shapiro (1986) deal much more extensively with AND/OR tree
search in Prolog under the heading of meta-interpreters, as does O'Keefe (1990).

Exercises

1. Implement a set of rules which capture stereotypic relationships between occupations and personal
characteristics, e.g.

[doctor white_coat stethoscope superiority_complex]
[stock_broker bloodshot_eyes gin_and_tonic_in_hand]
[hgv_driver yorkie_in_hand]
[social_worker guardian_under_arm no_shoes]

Write programs in POP-11 and in Prolog which take as input a list of basic characteristics and return a
list of all the occupations that someone with those characteristics might hold.

2. Extend the Prolog definition of backwards_search/1 which checks for loops so that it also
records facts that have been proved thus saving them being reproved a second time.

3. Write a Prolog version of AO_search_tree.

4 Write a Prolog state-space version of successors and use it to generate OR search trees.

5. Write a POP-11 version of iterative deepening AND/OR search.

6. Adjust the loop checking mechanism in the POP-11 state space version so that it works correctly.
Also make successors remove identical duplicated goals in a state.

7. In either POP-11 or Prolog write an AND/OR search procedure that checks for loops by recording and
checking the ancestors of each goal.

Page 169

Notes

1. To make showtree work properly for AND/OR trees we make the following adjustments:

 define root(tree) -> root_name;
 vars word goal subtrees;
 tree --> [?goal ??subtrees];
 '' -> root_name;
 for word in goal do
 root_name >< word >< ' ' -> root_name
 endfor
 enddefine;

2. To make showtree work properly for nodes of arbitrary width or height we make the following
adjustments:

 define root(tree) -> root_name;
 vars i word this_name state;
 tree --> [?state ==];
 initv(length(state)) -> root_name;
 for i to length(state) do '' -> this_name;
 for word in state(i) do
 this_name >< word >< ' ' -> this_name;
 endfor;
 allbutlast(1, this_name) -> root_name(i)
 endfor
 enddefine;

 define width(tree,name) -> w;
 vars i, 1 = length(name), w = 0;
 if name = {} then 3 -> w
 else for i from 1 to 1 do
 max(length(name(i)), w) -> w
 endfor;
 w + 2 -> w
 endif
 enddefine;

 define height(tree, name) -> h;
 if name = {} then 3 -> h else length(name) + 2 -> h endif
 enddefine;

Page 170

 define draw_node(node,val);
 vars r1 r2 c1 c2 i name;
 val --> (?r1 ?r2 ?c1 ?c2];
 hd(node_draw_data() (node)) -> name;
 box(c1, r1, c2-2, r2);
 c1 + 1 -> c1; r1 + 1 -> r1;
 for i from 1 to length(name) do
 vedjumpto(r1, c1);
 vedinsertstring (name (i));
 r1 + 1 -> r1;
 endfor
 enddefine;

 define name_&_subtrees(tree) -> name -> subtrees;
 root(tree) -> name;
 tl(tree) -> subtrees
 enddefine;

Page 171

7
Planning (Microworld Search)

Introduction

Descriptions corresponding to nodes in a search space can vary in complexity. In the case of simple, path-finding search,
the descriptions we used were atomic; that is to say they were just single words labeling a given location, e.g.
"old_steine". In the case of the search space for the water jugs problem, the descriptions we used were list structures
with two components, each component identifying the amount of liquid in one of the two jugs. In the case of the search
space for the 8-puzzle, the descriptions used were list structures with nine components, e.g. [1 2 3 4 5 6 7 8
hole]. When considering sets of goals as a states in the previous chapter, each state could be made up of some
arbitrary number of such goals. In principle, descriptions (i.e. nodes) can be as complex as we like. Provided the
successor function can be computed, the search process can be applied in the usual way.

In the previous chapter we introduced the idea of searching AND-OR trees though the nodes in the resultant trees were
still atomic, corresponding to particular goals or subgoals.

We can apply our search functions to search spaces in which nodes correspond to very complex descriptions. But in what
cases might we want to do this? There are a variety of possibilities. But one case which has been extensively studied in
AI involves the use of descriptions which describe the current state of a physical environment. We can illustrate what
this means using an example. Consider the following list expression:

 [[ontable b1]
 [ontable b3]
 [b1 on b2]
 [cleartop b2]]

Given the assumption that the words "b1", "b2" etc. are labels of blocks, this

Page 172

expression constitutes a description of a physical environment consisting of a table and three blocks; cf. Figure 7-1. The
first and second sublists express the fact that the blocks "b1" and "b3" are both on the table. The third sublist expresses
the fact that the block ''b1" is on top of "b2 and the fourth sublists state that "b2" has nothing on top of it. The artificial
environment represented by this sort of description is referred to as a microworld Microworlds consisting of blocks
and table tops are often used as testbeds in AI and called blocksworlds.

There are a number of points to note about blocksworld descriptions. First of all, the sublists are not in any particular
order. Each one just describes some feature of the environment which is being represented. Secondly, only some features
of the microworld are explicitly represented. Typically, represented features include things like shape, size, position and
colour of blocks. Features which are not usually represented include things such as state-of-repair, aesthetic value,
country of manufacture, weight, smell, etc. Note that, in some sense, microworld descriptions provide an abstract
perspective on the environment which they represent.

We can obtain some quite sophisticated behaviour by applying our search function to search spaces consisting of
microworld states. If we implement a successor function which returns the set of microworld states which arise as the
result of performing a single action in the microworld (e.g. the picking up of a block), then a solution path connecting
some starting state to some goal state will constitute a sequence of actions which achieves the goal state. This is
interesting because a sequence of actions for performing a given goal can be construed as a plan for achieving that
goal. Therefore the application of search to search spaces consisting of microworld descriptions can be construed as a
form of planning. We saw a very simple application of this idea in the previous chapter, but here we develop it
further to include the effects of actions.

One problem with this idea is the fact that the successor function looks as if it is going to be very hard to implement. To
find the successors of a given microworld

Figure 7-1
A simple blocksworld

Page 173

state which are produced as a result of the application of a given action seems to necessitate taking account of every
possible configuration of the microworld in which the action would be feasible. If the microworld description is quite
complex (e.g. if it refers to a large number of blocks and possible relationships) then there may be a astronomical
number of possible configurations to take account of. Does this mean that, in practice, the successor function will be
impossible to implement?

In fact the successor function can be implemented; and the way in which we go about it involves using the same "trick"
we used to implement the successor function for the water jugs problem. Recall that in the water jugs problem, a given
action (e.g. filling one jug from the other jug) can be performed in a wide variety of different situations: 3 pints in one
jug and 2 pints in the other, 1 pint in one jug and 3 pints in the other, and so on. Instead of making our successor
function consider every single possibility explicitly, we just wrote rules which ensured that a given action would only be
performed (i.e. a given successor would only be generated) if the features of the input state satisfied certain criteria (e.g.
contents of jug X greater than contents of jug Y).

We can use exactly the same approach to implement a successor function for microworld descriptions. We just construct
rules which ensure that a given successor is only produced if the features of the input state description satisfy certain
criteria. Using this approach, our successor function will only need one rule for every possible action rather than one rule
for every possible combination of action and microworld state.

Operators

Typically, the successor function for microworld descriptions is made up from rules of a rather specific form. These
rules state, in effect, that a given successor node exists provided that the description of the current node includes certain
features, e.g. [ontable b1]. Moreover, they specify the form of the successor node in terms of additions and
deletions to be applied to the current node. That is to say, they specify the successor node as that variant of the current
node which is derived either by adding some features to it, or by deleting some features from it, or both.

In the literature, a rule of this type is normally referred to as an operator on the grounds that it provides all the
information about what happens in the microworld when a given operation (i.e. action) is applied. The best known form
of operator in AI is the STRIPS operator described by Fikes and Nilsson (1971).

STRIPS operators are linear data structures with four fields. The first field provides a description of (i.e. a label or title
for) the action implemented. The second provides a list of preconditions for the action; these are just the set of features
which the current node must have in order for the successor in question to exist. The third and fourth fields provide lists
of additions and deletions. Figure 7-2 shows a typical STRIPS operator represented as a list of four sublists.

Page 174

<><><><><><><><><><><><>

[[place b1 on table] ACTION-IMPLEMENTED

[[holding b1] PRECONDITIONS

[[ontable b1] [emptyhand]]] ADDITIONS

[[holding b1]] DELETIONS

Figure 7-2
A STRIPS-like operator

Strategies For Microworld Search

Let us consider some arbitrary state S. In general, it will be possible to apply many actions to S; so S is likely to have a
large number of successor states. Conversely, there may be only a small number of ways of producing S using a single
action; so S is likely to have a relatively small number of predecessors. What this means is that the branching factor of
the space for forwards search will be much higher than the branching factor of the space for backwards search. Thus,
backwards search is likely to do less work in discovering a path connecting two arbitrary states.

This seems to suggest that backwards search is the best strategy in the case where nodes correspond to microworld
states. But there is a problem. If the successor function is implemented using operators then predecessor states are not
defined! An operator just says that a state which has certain features can be transformed into a successor state by adding
and deleting components. It does not say exactly what the original state is.

In fact, the problem is even worse than this. In general, where microworld descriptions are used, a goal node will just be
any state which has certain features. But in the case where goal nodes are not fully defined, the search space for a
backwards function has no root. This means that backwards search cannot be applied directly due to the fact that it has
no well-defined starting position.[1]

Fortunately, there is quite a simple way of getting around this problem. We implement a form of backwards search
which starts out with the set of features (preconditions) which are required in a goal state. The first thing the function
does is check whether the current microworld representation has all the desired features. If it does, then the search is
terminated. If it does not then the function finds out which operators would serve to achieve1 the desired preconditions.
The process then begins again only this time these newly desired preconditions are the preconditions of the operators
rather than the preconditions of the original goal state.

[1] For the same reason, ordinary backwards-chaining search cannot be applied to the water jugs problem.

Page 175

In a sense, this strategy is a cheat. In the absence of fully defined predecessor states, sets of preconditions are forced to
play the role of "partial state descriptions". However, it turns out to work rather well, as we will see.

A very important point to note is the fact that, in the new strategy, the structure of the search tree is an AND/OR tree.
Given some set of N preconditions which the search function wants to achieve, there will, in the simplest case, be a set
of N operators each one of which will achieve one of the preconditions. Each of these operators will itself have some
preconditions which will need achieving.

If we visualise the search tree which is explored by the function, we see that some nodes correspond to specific
preconditions. It will be possible to satisfy an arbitrary precondition in a number of alternative ways (corresponding to
the operators which have the effect of adding the desired feature) and these alternatives constitute the successors of the
node in the usual fashion. In effect, the precondition node can be achieved provided that any of the successor nodes can
be achieved.

But each of these successor nodes corresponds to an operator; and any operator has a set of preconditions all of which
must be satisfied before the corresponding action can be applied. The preconditions constitute the successors of the
operator node, but whereas in the usual case, they are disjoint (i.e. they represent alternatives) here they are conjoint.
Thus, the operator node can only be achieved if all the successor nodes can be achieved.

Figure 7-3
An AND/OR tree of operators

Page 176

<><><><><><><><><><><><>

 [[[operator stand_back]
 [preconditions [near box]]
 [additions [safe]]
 [deletions [near box]]]
 [[operator go_forward]
 [preconditions [safe]]
 [additions [near box]]
 [deletions [safe]]]
 [[operator light_firework_safely]
 [preconditions [near box] [box open] [have fire] [firework out]]
 [additions [firework alight]]
 [deletions [firework out]]]
 [[operator open_box]
 [preconditions [near box] [box closed]]
 [additions [box open]]
 [deletions [box closed]]]
 [[operator close_box]
 [preconditions [near box] [box open]]
 [additions [box closed]]
 [deletions [box open]]]
 [[operator use_lighter]
 [preconditions [have lighter]]
 [additions [have fire]]
 [deletions]]
 [[operator strike_match]
 [preconditions [have matches]]
 [additions [have fire]]
 [deletions]]
 [[operator enjoy_firework]
 [preconditions [firework alight] [box closed] [safe]]
 [additions [happy]]
 [deletions]]] -> operators1;

 define title(operator) -> header;
 operator --> [[operator ??header] = = =]
 enddefine;

 define preconditions(operator) -> preconds;
 operator --> [= [preconditions ??preconds] = =]
 enddefine;

 define additions(operator) -> adds;
 operator --> [= = [additions ??adds] =]
 enddefine;

 define deletions(operator) -> dels;
 operator --> [= = = [deletions ??dels]]
 enddefine;

Figure 7-4
Firework operators

Page 177

Search spaces consisting of nodes which can have either conjoint or disjoint successors are called AND/OR-trees as we
saw in the previous chapter. Nodes which have conjoint successors are the AND-nodes or AND-branches. Nodes which
have disjoint successors are the OR-nodes or OR-branches. In the simplest case, an AND/OR-tree consists of alternate
layers of AND-nodes and OR-nodes. A very simple example of this organisation occurs when nodes correspond to
microworld operators and preconditions, provided that any operator has a set of preconditions each of which can be
satisfied by a unique operator. This situation is depicted in Figure 7-3, where nodes corresponding to preconditions have
labels prefixed with "Pre" and nodes corresponding to operators have nodes prefixed with "Op".

Implementing the New Search Function

To clarify the way in which the new search strategy works we will look at the way it can be used to solve a specific
microworld search problem. The problem we will focus on is a simple planning problem about lighting fireworks. This
involves discovering a sequence of actions which will enable the the firework lighter to be happy and safe.

The most convenient approach involves creating a rulebase of STRIPS-like operators. The list shown in Figure 7-4
contains eight operators together with functions to extract the various components of an operator. Given this list of
operators we can implement the backwards-chaining search process in terms of two functions: an achieve1 function
which attempts to achieve an arbitrary set of preconditions (given a microworld) and returns the list of operators used,
together with the final version of the microworld; and a find_plan function which calls achieve1 giving it the
initial state of the world, an arbitrary depth limit and the features making up the goal description. achieve1 is yet
another variant of backwards_search. We have adapted the loop checking version of backwards_search from
the previous chapter which maintains a depth limit. These two functions are shown in Figure 7-5, as well as a function
for printing comments on what achieve is doing at different stages. Note that here we are using the database to store the
microworld representation rather than the operator lists which implement the successor function.

Function achieve1 is an adaptation of the version of backwards_search from the previous chapter which
checked for loops. Points of difference include:

(i) backwards_search merely added successfully proved goals to the database, whereas achieve1 both adds the
"additions" and removes the "deletions".

(ii) achieve1 has initial_state as an argument and database as a local output variable. These two variables
hold the initial and final states of world. Given that an operator may delete some part of the state and yet later find it not
to be needed for the eventual plan, we need to be able to reset the world state to its

Page 178

<><><><><><><><><><><><>

/* achieve1 takes a list of goals, a database and a depth limit and returns
a plan consisting of a list of operator titles and the resultant database. */

define *achieve1(goals, initial_state, depth) -> plan -> database;
 vars goal operator other_goals sub_plan rest_plan;
 initial_state -> database;
 if goals = [] then [] -> plan;
 elseif depth <= 0 then false -> plan;
 else chatty_print([attempting ^goals]);
 goals -> [?goal ??other_goals];
 if present(goal)
 then chatty_print ([^goal is already true]);
 achieve1(other_goals, initial_state, depth)
 -> plan -> database;
 else
 for operator in operators do
 if member(goal, addition (operator))
 then chatty_print ([trying ^(title(operator))]);
 achieve1 (preconditions (operator), initial_state,
 depth-l) -> sub_plans -> database;
 if islist (sub_plan)
 then allremove(deletions(operator));
 alladd (addition(operator));
 chatty_print(state now is ^^database]);
 achieve1(other_goals, database, depth)
 -> rest_plan -> database;
 if islist(rest_plan)
 then
 [^^sub_plan ^(title(operator)) ^^rest_plan]
 -> plan; quitloop
 else chatty_print([backtracking]);
 endif
 else chatty_print([backtracking]);
 endif;
 endif
 endfor
 endif;
 unless allpresent (goal) then
 false -> plan; initial_state -> database
 endunless
 endif
enddefine;

/* find_plan takes an initial state and a list of goals and returns a plan
or false. It sets an arbitrary depth limit of 10 on achieve1. */

define find_plan(initial_state, goals) -> plan;
 vars final_state;
 achieve(goals, initial_state, 10) -> plan -> final_state;
enddefine;

Figure 7-5
Planning as backwards search with operators

value before that operator was tried, hence the use of these two variables.

(iii) achieve1 cycles through all the applicable operators, rather than through the

Page 179

subgoal lists, though the subgoal list of a rule from the previous chapter is roughly equivalent to the add list of an
operator.

(iv) Given the possibility that achieving later goals may undo goals already achieved (because of deletions), achieve1
checks that all goals are present in the database and returns false as the value of the plan and resets the original
database if any are not present.

(v) We have added several calls to chatty_print, see Figure 7-6. These are used to print out what achieve1 is
doing at various points, so long as the global variable chatty is set to true.

(vi) The main output of achieve1 is a flat list representing a plan rather than either a boolean value as in
backwards_search or an AND tree as in backwards_search_tree.

We have set an arbitrary depth limit of 10 inside find_plan; as in the previous chapter, this arbitrary limit could be
avoided by applying iterative deepening. This limit does not affect the number of goals we try to achieve, but limits the
number of operators that can be linked through their preconditions to achieve any single one of these goals.

The behaviour of achieve1 can be summarised as follows. The function looks at the first goal in its list. If it is already
present in the initial world state, the function calls itself recursively to deal with the remaining goals. If the goal is not
present, the function scans the list of operators looking for one which has the desired feature in its list of "additions". A
recursive call on achieve1 is then made with the input being the preconditions of the operator. The result of this call is
just the list of operators (i.e. a sub-plan) which was used to achieve the preconditions so this is simply merged into the
main plan list. Next, the "additions" of the operator are added to the current state description and its "deletions" are
deleted. The function then continues scanning the list of original goals (via a second recursive call as in
backwards_search).

<><><><><><><><><><><><>

/* chatty_print prints its argument if chatty is true */

 define chatty_print (comment);
 if chatty then comment ==> endif
 enddefine;

Figure 7-6
Chatty print

Page 180

We can get this search function to discover a sequence of actions which achieve [firework alight] and [box
closed] given the initial microworld description [[have lighter] [safe] [firework out] [box
closed]] as follows:

 true -> chatty;
 operators1 -> operators;
 achieve1 -> achieve;

 find_plan([[have lighter] [safe] [firework out] [box closed]],
 [[firework alight] [box closed]]) ==>

 ** [attempting [[firework alight] [box closed]]]
 ** [trying [light_firework_safely]]
 ** [attempting [[near box] [box open] [have fire] [firework out]]]
 ** [trying [go_forward]]
 ** [attempting [[safe]]]
 ** [[safe] is already true]
 ** [state now is [near box] [have lighter] [firework out]
 [box closed]]
 ** [attempting [[box open] [have fire] [firework out]]]
 ** [trying [open_box]]
 ** [attempting [[near box] [box closed]]]
 ** [[near box] is already true]
 ** [attempting [[box closed]]]
 ** [[box closed] is already true]
 ** [state now is [box open] [near box] [have lighter]
 [firework out]]
 ** [attempting [[have fire] [firework out]]]
 ** [trying [use_lighter]]
 ** [attempting [[have lighter]]]
 ** [[have lighter] is already true]
 ** [state now is
 [have fire]
 [box open]
 [near box]
 [have lighter]
 [firework out]]
 ** [attempting [[firework out]]]
 ** [[firework out] is already true]
 ** [state now is
 [firework alight]
 [have fire]
 [box open]

Page 181

 [near box]
 [have lighter]]
 ** [attempting [[box closed]]]
 ** [trying [close_box]]
 ** [attempting [[near box] [box open]]]
 ** [[near box] is already true]
 ** [attempting [[box open]]]
 ** [[box open] is already true]
 ** [state now is
 [box closed]
 [firework alight]
 [have fire]
 [near box]
 [have lighter]]

 ** [[go_forward]
 [open_box]
 [use_lighter]
 [light_firework_safely]
 [close_box]]

The above plan was found without any backtracking, as every operator first tried turned out to be the correct one to use.
This will not always be the case:

 find_plan([[have matches] [safe] [firework out] [box closed]],
 [[firework alight][box closed]]) ==>

 ** [attempting [[firework alight] [box closed]]]
 ** [trying [light_firework_safely]]
 ** [attempting [[near box] [box open] [have fire] [firework out]]]
 ** [trying [go_forward]]
 ** [attempting [[safe]]]
 ** [[safe] is already true]
 ** [state now is [near box] [have matches] [firework out]
 [box closed]]
 ** [attempting [[box open] [have fire] [firework out]]]
 ** [trying [open_box]]
 ** [attempting [[near box] [box closed]]]
 ** [[near box] is already true]
 ** [attempting [[box closed]]]
 ** [[box closed] is already true]
 ** [state now is [box open] [near box] [have matches]
 [firework out]]

Page 182

 ** [attempting [[have fire] [firework out]]]
 ** [trying [use_lighter]]
 ** [attempting [[have lighter]]] /* BACKTRACKING HERE */
 ** [backtracking] /* AS NO LIGHTER */
 ** [trying [strike_match]]
 ** [attempting [[have matches]]]
 ** [[have matches] is already true]
 ** [state now is
 [have fire]
 [box open]
 [near box]
 [have matches]
 [firework out]]
 ** [attempting [[firework out]]]
 ** [[firework out] is already true]
 ** [state now is
 [firework alight]
 [have fire]
 [box open]
 [near box]
 [have matches]]
 ** [attempting [[box closed]]]
 ** [trying [close_box]]
 ** [attempting [[near box] [box open]]]
 ** [[near box] is already true]
 ** [attempting [[box open]]]
 ** [[box open] is already true]
 ** [state now is
 [box closed]
 [firework alight]
 [have fire]
 [near box]
 [have matches]]

 ** [[go_forward]
 [open box]
 [strike_match]
 [light_firework_safely]
 [close_box]]

Page 183

Difference Tables

The search strategy introduced above forms the main component in a process known as Means-Ends Analysis
(MEA). This process was used in the General Problem Solver program of Newell and Simon (1963). However, our
implementation does not do ''proper" means-ends analysis; it just does an approximation of it. In real means-ends
analysis the process of achieving a set of preconditions P does not necessarily involve finding operators which
collectively achieve each element of P. It involves finding operators which reduce the "difference" between the current
state and the state which exhibits all of P.

In many circumstances, reducing the difference between an existing state and a desired state may simply involve the
process which we have implemented, i.e. finding some set of operators which achieve all the missing preconditions (and
then achieving their preconditions, etc.). However, in general, a difference table may be used which shows the
extent to which any operator reduces the difference between the existing state and the desired state. Obviously, the
process we have implemented is just a special case of means-ends analysis; namely, the case where operators reduce the
difference between a state subsuming P and a state not subsuming P by just adding all of P (cf. Rich, 1983, pp. 99-102.)

Goal Interactions

The variant of backward search which we have introduced above detects whether later actions in a plan undo earlier
goals but cannot repair the plan. At any one stage, the search process we have implemented tries to find out how to
achieve certain effects in the microworld. If it finds an operator which has the desired effects it just "applies" it (i.e.
performs the specified deletions and additions). But it may well be that the application of the operator has an affect on
another goal we are trying to achieve.

We can demonstrate one aspect of this effect in our firework example as follows:

 find_plan([[safe][box closed]],[[safe][box open]]) ==>

 ** [attempting [[safe] [box open]]]
 ** [[safe] is already true]
 ** [attempting [[box open]]]
 ** [trying [open_box]]
 ** [attempting [[near box] [box closed]]]
 ** [trying [go_forward]]
 ** [attempting [[safe]]]
 ** [[safe] is already true]

Page 184

 ** [state now is [near box] [box closed]]
 ** [attempting [[box closed]]]
 ** [[box closed] is already true]
 ** [state now is [box open] [near box]]

 ** <false>

Getting the box open interfered with being safe so no plan could be found. Just to show the fragility of these kinds of
planner, the following does work:

 find_plan([[safe][box closed]],[[box open][safe]]) ==>

 ** [attempting [[box open] [safe]]]
 ** [trying [open_box]]
 ** [attempting [[near box] [box closed]]]
 ** [trying [go_forward]]
 ** [attempting [[safe]]]
 ** [[safe] is already true]
 ** [state now is [near box] [box closed]]
 ** [attempting [[box closed]]]
 ** [[box closed] is already true]
 ** [state now is [box open] [near box]]
 ** [attempting [[safe]]]
 ** [trying [stand_back]]
 ** [attempting [[near box]]]
 ** [[near box] is already true]
 ** [state now is [safe] [box open]]

 ** [[go_forward] [open_box] [stand_back]]

The classic case of interference between goals occurs where we have a blocksworld planning mechanism whose
operators show that to construct a tower out of two blocks it has to put one on top of the other. If we give it a microworld
state in which there are three blocks b1, b2 and b3, and ask it to achieve the state [[b1 on b2][b2 on b3]] it is quite likely
to fail. The typical behaviour is as follows.

First of all the search mechanism tries to achieve [b1 on b2]. It checks that b1 has a "cleartop" and then applies a "put"
operator to put b1 on b2. It then turns to the second feature which needs to be achieved: [b2 on b3]. To achieve this it
first checks that b2 has a cleartop. It discovers that b2 does not have a cleartop so sets about achieving this. This involves
taking b1 off b2 which effectively undoes the achievement of the first feature in the goal description.

This is a rather contrived scenario but the problem that it characterises is very pervasive. It is simply the fact that, in
general, the achieving of any given feature via

Page 185

the application of an operator may have side-effects either on features which have already been achieved, or on features
which will need to be achieved in the future. The problem is called the frame problem and at the present time it has no
totally effective solution in its general form.

We can partially get round the problem of goal interactions as follows. When the existing version of achieve1 detects
that not all the original goals are achieved it simply returns false. In the new version of the function, see Figure 7-7,
achieve2 calls itself recursively at the point where it finds that not all goals have been achieved. At this point many of
the goals will have been achieved and it may be possible simply to extend the otherwise unacceptable plan with a few
extra actions that repair the plan. This is similar to STRIPS placing individual goals as well as conjunctions of goals on
its stack.

Let us try this on the earlier example which failed:

 achieve2 -> achieve;

 find_plan([[safe][box closed]],[[safe][box open]]) ==>

 ** [attempting [[safe] [box open]]]
 ** [[safe] is already true]
 ** [attempting [[box open]]]
 ** [trying [open_box]]
 ** [attempting [[near box] [box closed]]]
 ** [trying [go_forward]]
 ** [attempting [[safe]]]
 ** [[safe] is already true]
 ** [state now is [near box] [box closed]]
 ** [attempting [[box closed]]]
 ** [[box closed] is already true]
 ** [state now is [box open] [near box]] /* FAILURE STATE */
 ** [repair plan [[go_forward] [open_box]]
 for goals [[safe] [box open]]]
 ** [attempting [[safe] [box open]]]
 ** [trying [stand_back]]
 ** [attempting [[near box]]]
 ** [[near box] is already true]
 ** [state now is [safe] [box open]]
 ** [attempting [[box open]]]
 ** [[box open] is already true]
 ** [[go_forward] [open_box] [stand_back]]

The one that succeeded, still succeeds, without need of repair:

Page 186

/* achieve2 takes a list of goals as input and returns a plan consisting of
a list of operator titles. If the initial plan does not achieve all the
goals, because of an interaction, a repair is added onto the end of the plan. */

 define achieve2(goals, initial_state, depth) -> plan -> database;
 vars goal operator other_goals sub_plan rest_plan repair;
 initial_state -> database;
 if goals = [] then [] -> plan;
 elseif depth <= 0 then false -> plan;
 else chatty_print([attempting ^goals]);
 goals --> [?goal ??other_goals];
 if present (goal)
 then chatty_print ([^goal is already true]);
 achieve2(other_goals, initial_state, depth)
 -> plan -> database;
 else
 for operator in operators do
 if member (goal, additions (operator))
 then chatty_print([trying ^(title(operator))]);
 achieve2 (preconditions(operator), initial_state,
 depth-1) -> sub_plan -> database;
 if islist(sub_plan)
 then allremove(deletions(operator));
 alladd(additions(operator));
 chatty_print([state now is ^^database]);
 achieve2(other_goals, database, depth)
 -> rest_plan -> database;
 if islist(rest_plan)

 then
 [^^sub_plan ^(title(operator)) ^^rest_plan]
 -> plan;
 quitloop
 else chatty_print([backtracking]);
 endif
 else chatty_print([backtracking]);
 endif;
 endif
 endfor
 endif;
 unless allpresent(goals) then
 chatty_print([repair plan ^plan for goals ^goals]);
 achieve2(goals, database, depth-1) -> repair -> database;
 if allpresent(goals)
 than plan <> repair -> plan
 else false -> plan;
 initial_state -> database;
 endif
 endunless
 endif
 enddefine;

Figure 7-7
Constructing a plan involving goal interactions

 find_plan([[safe][box closed]],[[box open][safe]]) ==>

 ** [attempting [[box open] [safe]]]

Page 187

 ** [trying [open_box]]
 ** [attempting [[near box] [box closed]]]
 ** [trying [go_forward]]
 ** [attempting [[safe]]]
 ** [[safe] is already true]
 ** [state now is [near box] [box closed]]
 ** [attempting [[box closed]]]
 ** [[box closed] is already true]
 ** [state now is [box open] [near box]]
 ** [attempting [[safe]]]
 ** [trying [stand_back]]
 ** [attempting [[near box]]]
 ** [[near box] is already true]
 ** [state now is [safe] [box open]]
 ** [[go_forward] [open_box] [stand_back]]

Operators Containing Variables

One of the shortcomings of the approach we have outlined so far is that the operators do not contain variables. If we
wanted to plan in a blocksworld it would be much better to have an operator for stacking (say) any block, rather than
having identical operators for stacking block A, block B and so on. One possible set of such operators might be a
follows, see Figure 7-8. We can read the last operator as saying that to unstack a block from another, the block must be
on the other, the block must be clear and the robot hand must be empty.

However if we try to run our existing plan generating program we get nowhere because selecting a possible operator via
a call to member will not work. The reason is that the various parts of the operator now contain variables and so the
matching is more complex. Also when working backward through the preconditions, adding the additions and deleting
the deletions we will have to ensure that we work with "instantiated" versions of these operator parts (i.e. ?x should be
"b1" or whatever). The starting state in the following interaction is intended as a representation of the situation in Figure
7-3:

 operators2 -> operators;
 false -> chatty;
 untrace achieve;

 find_plan([[clear b2][clear b3][on b2 b1][on_table b1]
 [on_table b3][empty hand]], [[on_table b2]]) ==>

 ** <false>

Page 188

<><><><><><><><><><><><>

 [
 [[operator pick up ?x]
 [preconditions [on_table ?x] [clear ?x] [empty hand]]
 [additions [holding ?x]]
 [deletions [on_table ?x] [clear ?x] [empty hand]]]

 [[operator put down ?x]
 [preconditions [holding ?x]]
 [additions [on_table ?x] [clear ?x] [empty hand]]
 [deletions [holding ?x]]]

 [[operator stack ?x on ?y]
 [preconditions [holding ?x][clear ?y]]
 [additions [on ?x ?y] [clear ?x] [empty hand]]
 [deletions [holding ?x][clear ?y]]]

 [[operator unstack ?x from ?y]
 [preconditions [on ?x ?y] [clear ?x] [empty hand]]
 [additions [holding ?x][clear ?y]]
 [deletions [on ?x ?y] [clear ?x] [empty hand]]]

] -> operators2;

Figure 7-8
Blocksworld operators

The depth limit prevents achieve2 recursing indefinitely in its attempt to repair the failed plan. Ideally we should now
match the goal against the patterns in each operator's addition list and then set about trying to achieve the preconditions,
having first substituted appropriate values for variables in the preconditions. This is straightforward for any variables
that get their values via matching the goal, but more problematic for variables occurring in other parts of the additions
list. For example, consider matching the goal [clear b2] againts the additions list of the operator [stack ?x on
?y]. What should be the value of ?y?

Realistic planning systems undertake reasoning about variable values as part of the search process, via a mechanism
called goal regression. We can get round this problem in a slightly unprincipled way by arranging to expand the list of
operators containing variables into a list of operators mentioning specific block names. In other words we will sidestep
the issue by expanding the list of operators containing variables into the much longer list of all possible operators for
every variable value. Where the number of values is not too great, this is feasible at some cost in search effort in making
the plan. The advantage is that we can use find_plan without any change.

Page 189

There is a built-in function in POP-11 named instance which takes a pattern and returns a list with every match
variable replaced by its current value:

 vars x y;
 23 -> x;
 "fred" -> y;
 instance([is ?y really only ?x years old]) ==>
 ** [is fred really only 23 years old]

Figure 7-9 gives a definition of instantiate which takes a list of operators containing variables and a list of block
names and returns a complete list of operators mentioning specific block names. It calls remove_dups in order to
remove any duplicated operators generated in the process:

<><><><><><><><><><><><>

/* instantiate takes a list of operators and a list of block names
and returns a complete list of specific operators. It assumes that
the variables used in the operators are x and y. */

 define instantiate (operators, blocks) -> new_operators;
 vars x y;
 [^(for operator in operators do
 for x in blocks do
 for y in blocks do
 unless x = y then instance(operator) endunless
 endfor
 endfor
 endfor)] -> new_operators;
 remove_dups(new_operators) -> new_operators;
 enddefine;

/* remove_dups takes a list and returns a copy of the list omitting
duplications. */

 define remove_dups(inlist) -> outlist;
 if inlist = [] then [] -> outlist
 elseif member(hd(inlist), tl(inlist))
 then remove_dups(tl(inlist)) -> outlist
 else hd(inlist) :: remove_dups(tl(inlist)) -> outlist
 endif
 enddefine;

Figure 7-9
Instantiating operators

Page 190

 [[put ?x on ?y][take ?x off ?y] [burn ?x]] -> operators3;

 instantiate(operators3, [small medium large]) ==>

 ** [[put small on medium]
 [put small on large]
 [put medium on small]
 [put medium on large]
 [put large on small]
 [put large on medium]
 [take small off medium]
 [take small off large]
 [take medium off small]
 [take medium off large]
 [take large off small]
 [take large off medium]
 [burn small]
 [burn medium]
 [burn large]]

We can try out the existing version of find_plan having first instantiated the block operators using the names b1, b2
and b3. The initial state corresponds to the picture of blocks on a table at the start of this chapter. The goal is simply to
get b2 on the table when it is initially stacked on top of b1 which is on the table:

 false -> chatty;

 instantiate(operators2, [b1 b2 b3]) -> operators;

 find_plan([[clear b2][clear b3][on b2 b1][on_table b1]
 [on_table b3][empty hand]], [[on_table b2]]) ==>

 ** [[unstack b2 from b1]
 [put down b2]
 [pick up b2]
 [put down b2]
 [pick up b2]
 [put down b2]
 [pick up b2]
 [put down b2]]

 find_plan([[clear b2][clear b3][on b2 b1][on_table b1]
 [on_table b3][empty hand]], [[on b1 b3][on b2 b1]]) ==>

Page 191

 ** [[unstack b2 from b1]
 [put down b2]
 [pick up b1]
 [put down b1]
 [pick up b1]
 [put down b1]
 [pick up b1]
 [put down b1]
 [pick up b1]
 [stack b1 on b3]
 [pick up b2]
 [stack b2 on b1]]

Both these plans work but are non-optimal. The reason is that our loop checking mechanism is crude; it merely limits
how deep any single chain of operators may be. Because it is searching depth-first, we get the first solution found (not
the shortest) and this will tend to be a solution just within the depth bound, as we saw in the previous chapter when
recursive rules were searched by backwards_search.

Inverting the order of the goals, the first of which is already true in the initial state, causes no problem though does not
improve the quality of the solution:

 find_plan([[clear b2][clear b3][on b2 b1][on_table b1]
 [on_table b3][empty hand]],[[on b2 b1][on b1 b3]]) ==>

 ** [[unstack b2 from b1]
 [put down b2]
 [pick up b1]
 [put down b1]
 [pick up b1]
 [put down b1]
 [pick up b1]
 [put down b1]
 [pick up b1]
 [stack b1 on b3]
 [pick up b2]
 [stack b2 on b1]]

By reducing the depth bound in find_plan, better solutions can be found. Thus if we reduce it to 4 we get the
following:

 find_plan([[clear b2][clear b3][on b2 b1][on_table b1]
 [on_table b3][empty hand]],[[on b2 b1][on b1 b3]]) ==>

Page 192

<><><><><><><><><><><><>

/* operator(-[[operator, Operator_Name]
[preconditions, Preconditions]
[additions, Additions]
[deletions, Deletions]]). */

operator([[operator, stand_back],
 [preconditions, near_box],
 [additions, safe],
 [deletions, near_box]]).

operator([[operator, go_forward],
 [preconditions, safe],
 [additions, near_box],
 [deletions, safe]]).

operator([[operator, light_firework_safely],
 [preconditions, near_box, box_open, have_fire, firework_out],
 [additions, firework_alight],
 [deletions, firework_out]]).

operator([[operator, open_box],
 [preconditions, near_box, box_closed],
 [additions, box_open],
 [deletions, box_closed]]).

operator([[operator, close_box],
 [preconditions, near_box, box_open],
 [additions, box_closed],
 [deletions, box_open]]).

operator([[operator, use_lighter],
 [preconditions, have_lighter],
 [additions, have_fire],
 [deletions]]).

operator([[operator, strike_match],
 [preconditions, have_matches],
 [additions, have_fire],
 [deletions]]).

operator([[operator, enjoy_firework],
 [preconditions, firework_alight, box_closed, safe],
 [additions, happy],
 [deletions]]).

Figure 7-10
Firework operators in Prolog

Page 193

<><><><><><><><><><><><>

/* achieve1(+Goals, +Initial_state, +Depth, -Plan, -Final_state)
achieve1 takes a list of Goals and an Initial state of the world and a
Depth and succeeds with a Plan and a Final state of the world. */

 achieve1([], Initial, _, [], Final) :-
 Initial = Final.

 achieve1([Goal | Goals], Initial, Depth, Plan, Final) :-
 Depth > 0,
 member(Goal, Initial), !,
 achieve1(Goals, Initial, Depth, Plan, Final),
 allpresent([Goal | Goals], Final).

 achieve1([Goal | Goals], Initial, Depth, Plan, Final) :-
 Depth > 0,
 operator([[operator | Operator],
 [preconditions | Preconds],
 [additions | Adds],
 [deletions | Dels]]),
 member(Goal, Adds),
 New_depth is Depth - 1,
 achieve1(Preconds, Initial, New_depth, Pre_plan, Intermediate1),
 append(Pre_plan, Operator, Sub_plan),
 allremove(Dels, Intermediate1, Intermediate2),
 append(Adds, Intermediate2, Intermediate3),
 achieve1(Goals, Intermediate3, Depth, Plans, Final),
 allpresent([Goal | Goals], Final),
 append(Sub_plan, Plans, Plan).

/* find_plan(+Starting State, +Goal State, -Resultant Plan) */
find_plan succeeds if achieve1 succeeds with a depth limit of 10 */

 find_plan(Start_state, Goals, Plan) :-
 achieve1(Goals, Start_state, 10, Plan, _).

Figure 7-11
Simple planning in Prolog

 ** [[unstack b2 from b1]
 [put down b2]
 [pick up b1]
 [stack b1 on b3]
 [pick up b2]
 [stack b2 on b1]]

There are several solutions to the above issue. One is to employ iterative deepening.

Page 194

Another is to keep track of goals that have already been achieved and not make use of an operator that would remove
any of them via its deletions list.

Simple Plan Finding in Prolog

The Prolog equivalents of achieve1 and find_plan are given below. The role of the POP-11 Database is played by
two variables in the predicate achieve1. One holds the initial state of the world before the attempt to achieve some
goals, the other holds the (usually changed) final state of the world after those goals have been achieved. We shall adapt
the depth-bounded backwards_search_tree/3 procedure from the previous chapter.

The ''firework" operators are stored as individual clauses with the same meanings as the POP-11 versions, see Figure 7-
10.

We have implemented a version of achieve1/5 that checks for loops in just the same way as the POP-11 version, i.e.
by making sure that the value of depth is always positive, see Figure 7-11. The main predicate is achieve1/5 which
deals with three cases. In the first, there are no goals to be achieved so it terminates with an empty plan and with
whatever world it was given handed on unchanged. The second clause deals with the case where the goal to be achieved
is already true in the given world. In that case achieve1/5 calls itself recursively to deal with any remaining goals
and hands on the resultant plan and resultant world that arise from them.

The final case does the real work. An operator is selected which has the first goal of achieve1/5 amongst its
additions list. achieve calls itself recursively to deal with the preconditions of this selected operator. The additions
and deletions are added and removed from the given world to produce a resultant world. Finally the remaining goals are
dealt with recursively and the resultant plan put together. A check is made to ensure that all the original goals are true in
the resultant world Note that we can make use of the built-in Prolog backtracking to ensure that operators are tried in
sequence until one is found that is successful. Figure 7-12 shows definitions for Prolog equivalents of the built in
procedures allremove and allpresent.

Here are two examples, the first is the same as the POP-11 example given earlier:

 ?- find_plan([have_matches, safe, firework_out, box_closed],
 [firework_alight, box_closed], Plan).
 Plan = [go_forward, open_box, strike_match,
 light_firework_safely, close_box] ?
 yes

 ?- find_plan([have_matches, safe, firework_out, box_closed],
 [happy, safe], Plan).

Page 195

<><><><><><><><><><><><>

/* allremove(+Items to be Removed, +From this List, -Resultant List)
allremove removes each item in its first list from its second list
to give its third list. */

 allremove ([], World, World).
 allremove([Item | Items], World, Result_World) :-
 remove(Item, World, New_World),
 allremove(Items, New_World, Result_World).

/* remove(+an Item, +From this List, -Resultant List)
remove removes only the first instance of the Item,
and fails if there is no instance to remove. */

 remove(Item, [Item | Rest], Rest).
 remove(Item, [First | Rest], [First | New Rest]) :-
 remove(Item, Rest, New_Rest).

/* allpresent(+Given Items, +List which should contain given Items)
allpresent succeeds if it can remove each one of the given items. */

 allpresent(Items, List) :-
 allremove(Items, List, _).

Figure 7-12
State manipulating procedures for the planner

 Plan = [go_forward, open_box, strike_match,
 light_firework_safely, close_box, stand_back,
 enjoy_firework] ?
 yes

The blocks world was altogether more demanding of the POP-11 planner, so we shall try this out as well. As before, we
face the issue of correctly instantiating the variables mentioned in the operators, see Figure 7-13.

We can rely on Prolog unification to ensure that the variables in these operators with the following problems get bound
to sensible values without having to instantiate the operators themselves as we did in POP-11.

Running find_plan on the same problems as before gives, in the first case, a non-optimal solution. Remember that
the basic search method is depth first with a depth limit of 10, so long solutions will often be derived first:

 ?- find_plan([[clear, b2],[clear, b3],[on, b2, b1],
 [on_table, b1], [on_table, b3],[empty_hand]],

Page 196

 [[on, b1, b3],[on, b2, b1]], Plan).

 Plan = [[unstack, b2, from, b1], [put_down, b2], [pick_up, b1],
 [put_down, b1], [pick_up, b1], [put_down, b1],
 [pick_up, b1], [put_down, b1], [pick_up, b1],
 [stack, b1, on, b3], [pick_up, b2],
 [stack, b2, on, b1]] ?
 yes

Reducing the depth limit to 5 (e.g. via a new definition of find_plan/3) gives the optimal solution:

 Plan = [[unstack, b2, from, b1], [put_down, b2], [pick_up, b1],
 [stack, b1 on, b3], [pick_up, b2], [stack, b2, on, b1]]

<><><><><><><><><><><><>

/* operator(-[[operator, Operator_Name]
[preconditions, Preconditions]
[additions, Additions]
[deletions, Deletions]]). */

 operator([[operator, [pick_up, X]],
 [preconditions, [on_table, X],[clear, X],[empty_hand]],
 [additions, [holding, X]],
 [deletions, [on_table, X],[clear, X],[empty_hand]]]).

 operator([[operator, [put_down, X]],
 [preconditions, [holding, X]],
 [additions, [on_table, X], [clear, X], [empty_hand]],
 [deletions, [holding, X]]]).

 operator([[operator, [stack, X, on, Y]],
 [preconditions, [holding, X],[clear, Y]],
 [additions, [on, X, Y],[clear, X],[empty_hand]],
 [deletions, [holding, X],[clear, Y]]]).

 operator([[operator, [unstack, X, from, Y]],
 [preconditions, [on, X, Y],[clear, X],[empty_hand]],
 [additions, [holding, X],[clear, Y]],
 [deletions, [on, X, Y],[clear, X],[empty_hand]]]).

Figure 7-13
Blocksworld operators in Prolog

Page 197

However, inverting the order of the goals, causes no plan to be found because of the goal interactions. achieve1/5 is
able to detect that not all the goals have been achieved but cannot repair the interaction. Even with a depth limit of 10 the
answer is no:

 ?- find_plan([[clear, b2],[clear, b3],[on, b2, b1],
 [on_table, b1], [on_table, b3], [empty_hand]],
 [[on, b2, b1],[on, b1, b3]], Plan).

 no

We adopt the same partial solution to goal interactions as we did in POP-11. Once a plan has been found it is checked to
ensure that all the goals are still true in the final state of the world. If so, the plan is adopted as the final plan. If not,
achieve2/5 calls itself recursively to attempt to repair the failed plan by adding new actions onto its end which will
re-achieve the goals that have been knocked out by the interaction, see Figure 7-14.

To improve the quality of the solutions, we have reduced the depth limit to 5. The earlier problem without goal
interactions works as before:

 ?- find_plan2([[clear, b2],[clear, b3],[on, b2, b1],
 [on_table, b1], [on_table, b3],[empty_hand]],
 [[on, b1, b3],[on, b2, b1]], Plan).

 Plan = [[unstack, b2, from, b1], [put_down, b2], [pick_up, b1],
 [stack, b1, on, b3], [pick_up, b2], [stack, b2, on, b1]]
 ?
 yes

But the problem with goal interactions now also succeeds:

 ?- find_plan2([[clear, b2],[clear, b3],[on, b2, b1],
 [on_table, b1], [on_table, b3], [empty_hand]],
 [[on, b2, b1],[on, b1, b3]], Plan).

 Plan = [[unstack, b2, from, b1], [put_down, b2], [pick_up, b1],
 [stack, b1, on, b3], [pick_up, b2], [stack, b2, on, b1]]
 ?
 yes

Page 198

<><><><><><><><><><><><>

/* achieve2(+Goals, +Initial_state, +Depth, -Plan, -Final_state)
achieve2 takes a list of Coals and an Initial state of the world
and a Depth and succeeds with a Plan and a Final state of the world. */

 achieve2([], Initial, _, [], Final) :-
 Initial = Final.

 achieve2([Goal | Goals], Initial, Depth, Plan, Final) :-
 Depth > 0,
 member(Goal, Initial), !,
 achieve2(Goals, Initial, Depth, Plan1, Final1),
 (allpresent([Goal | Goals], Final1), !,
 Final = Final1,
 Plan s Plan1
 ; New_depth is Depth -1,
 achieve2([Goal | Goals], Final1, New_depth, Plan2, Final2),
 append(Plan1, Plan2, Plan),
 Final = Final2).

 achieve2([Goal | Goals], Initial, Depth, Plan, Final) :-
 Depth > 0,
 operator([[operator | Operator],
 [preconditions | Preconds],
 [additions | Adds],
 [deletions | Dels]]),
 member(Goal, Adds),
 New_depth is Depth - 1,
 achieve2(Preconds, Initial, New_depth, Pre_plan, Intermediate1),
 append(Pre_plan, Operator, Sub_plan),
 allremove(Dels, Intermediate1, Intermediate2),
 append(Adds, Intermediate2, Intermediate3),
 achieve2(Goals, Intermediate3, Depth, Plans, Final1),
 append(Sub_plan, Plans, Plan1),
 (allpresent([Goal | Goals], Final1), !,
 Final = Final1,
 Plan = Plan1
 ; New_depth is Depth -1,
 achieve2([Goal | Goals], Final1, New_depth, Plan2, Final2),
 append(Plan1, Plan2, Plan),
 Final = Final2).

/* find_plan2(+Starting State, +Goal State, -Resultant Plan)
find_plan2 succeeds if achieve2 succeeds with a depth limit of 5 */

 find_plan2(Start_state, Goals, Plan) :-
 achieve2(Goals, Start_state, 5, Plan, _).

Figure 7-14
A planner that partially deals with goal interactions

Page 199

Reading

Planning is one of the major topics in artificial intelligence and is covered in most good AI textbooks. The very simple
implementation of planning which we have discussed in this chapter is dealt with by Burton and Shadbolt (1987,
Chapter 9), Rich, (1983, pp. 247-266) and Winston (Winston, 1984, pp. 146-157). Chapter 7 of (Winston, 1984) looks at
the frame problem in some depth. Aleksander and Burnett (1987) provide an accessible discussion of means-ends
analysis complete with colour illustrations.

More advanced treatment of approaches to planning are provided by Charniak and McDermott (1985, Chapter 9),
Nilsson (1980) and by Kowalski (1979). Chapter 1 of Ramsay and Barrett (1987) presents an introduction to the subject
which includes the implementation of a large planning system in POP-11. Volume III of the AI Handbook contains a
review of important material (Cohen and Feigenbaum, 1982, Section XV). The volume of general readings in artificial
intelligence edited by Webber and Nilsson (Webber and Nilsson 1981) contains a classic paper on the frame problem by
Hayes (Hayes, 1981) and also one on "learning and executing generalised robot plans" by Fikes, Hart and Nilsson
(Fikes, Hart and Nilsson, 1981).

Chapter 16 of Bratko (1990) offers Prolog code for various planners, including one able to deal with goal regression (i.e.
where operators involve variables).

Exercises

1. Implement a simple planning system in POP-11. Ideally, the system should use means-ends analysis and be able to
cope intelligently in the case where it generates an "unintelligent" plan. But an easier approach would be to implement a
system which uses simple forwards or backwards search in a state-space and which is able to stop itself from going into
a loop.

The system should be able to construct plans for transporting objects between locations in one town to locations in
another. A goal might be something like

[at_brighton hi_fi]

whose achievement would entail constructing a plan whose effect is to transport a hi-fi from its current location to the
location labelled "at_brighton". Transporting different objects will entail using different forms of transportation. For
instance

[at_brighton record]

might involve a plan which uses a "bus trip" operator, whereas

Page 200

[at_brighton mattress]

might not.

2. Write an iterative deepening version of either the POP-11 or Prolog planner.

3. Improve either the POP-11 or the Prolog version of the planner by arranging that it keeps a record of goals already
achieved and does not apply an operator that would remove such a goal.

4. Write a more principled POP-11 version of achieve that copes with operators containing variables by more
sophisticated two-way matching.

5. Formulate a problem using operators with variables in Prolog where difficulties arise through failure to instantiate
variables correctly—and fix them.

Page 201

8
Parsing (Search as Analysis)

Introduction

When we are talking about search processes, the word "goal" has a very flexible meaning. In Chapter 6 we saw that
one option is to construe goals in terms of conclusions or hypotheses. This means that search rules are, in effect,
rules which show what conclusions can be drawn from what bits of evidence. The conclusion corresponds to the
goal and the bits of evidence are just the subgoals. When we implement search rules in this way, the backward
AND/OR-tree search function effectively tests whether it can draw certain conclusions from the available
evidence; that is to say, it implements a form of primitive reasoning.

In the current chapter we will look at another way of implementing search rules and see that it enables us to extract
a completely different sort of functionality from the AND/OR-tree search mechanism. The basic idea is that we
will construe goals as entities or objects, and consider search rules to be descriptions showing the internal structure
of an object. That is to say, a given search rule will be assumed to state that a given object is made up of a set of N
components. Facts will be assumed to simply name components which are assumed to exist.

Solution Trees as Analyses

The application of backward search given a rulebase containing rules which describe the structure of objects will
determine whether or not some high-level object exists given the known existence of N low-level objects. More
importantly, the solution AND-tree for a backwards search will show the way in which the high-level object
decomposes into lower-level objects, which themselves decompose into lower-level objects, etc. An example may
help to clarify this idea. First of all let us set up a rulebase showing the way in which a "teaching institution" object
is made up from components. The rulebase might look like this:

Page 202

 [[[university] [university admin] [university buildings]]
 [[school] [school admin] [school buildings]]
 [[school buildings] [classrooms] [offices]]
 [[university buildings] [labs] [offices] [library]]
 [[school admin] [headmaster] [bursar]]
 [[university admin] [VC] [senate]]
] -> rulebase6;

Let us say that we now add the following facts into the database:

 [[[labs]]
 [[offices]]
 [[library]]
 [[VC]]
 [[senate]]
] -> facts6;

If we run proof_tree from Chapter 6 on these facts and this rulebase giving it the initial goal of [school], the
behaviour produced is as follows:

 trace backwards_search tree;

 proof_tree([school], facts6 <> rulebase6, 10) ==>

 > backwards_search_tree [[school]] 10
 !> backwards_search_tree [[school admin] [school buildings]] 9
 !!> backwards_search_tree [[headmaster] [bursar]] 8
 !!< backwards_search_tree <false>
 !< backwards_search_tree <false>
 < backwards_search_tree <false>

 ** <false>

The search function cannot satisfy the goals [headmaster] [bursar]] because these correspond to
components[l] which, given our rulebase, do not exist. The behaviour is rather different if we give the search
function the goal [university]:

 proof_tree (university], facts6 <> rulebase6, 10) ==>

 > backwards_search_tree [[university]] 10
 !> backwards_search_tree [[university admin]

[1] We use the word "component" interchangeably with "object".

Page 203

 [university buildings]] 9
!!> backwards_search_tree [[VC] [senate]] 8
!!!> backwards_search_tree[] 7
!!!< backwards_search_tree []
!!!> backwards_search_tree [[senate]] 8
!!!!> backwards_search_tree [] 7
!!!!< backwards_search_tree []
!!!!> backwards_search_tree [] 8
!!!!< backwards_search_tree []
!!!< backwards_search_tree [[[senate]]]
!!< backwards_search_tree [[[VC]] [[senate]]]
!!> backwards_search_tree [[university buildings]] 9
!!!> backwards_search_tree [[labs] [offices] [library]] 8
!!!!> backwards_search_tree [] 7
!!!!< backwards_search_tree []
!!!!> backwards_search_tree [[offices] [library]] 8
!!!!!> backwards_search_tree [] 7

!!!!!< backwards_search_tree []
!!!!!> backwards_search_tree [[library]] 8
!!!!!!> backwards_search_tree [] 7
!!!!!!< backwards_search_tree []
!!!!!!> backwards_search_tree [] 8
!!!!!!< backwards_search_tree []
!!!!!< backwards_search_tree [[[library]]]
!!!!< backwards_search_tree [[[offices]] [[library]]]
!!!< backwards_search_tree [[[labs]] [[offices]] [[library]]]
!!!> backwards_search_tree [] 9
!!!< backwards search_tree []
!!< backwards_search_tree [[[university buildings] [[labs]]
 [[offices]] [[library]]]]
!< backwards_search_tree [[[university admin] [[VC]] [[senate]]]
 [[university buildings] [[labs]] [[offices]] [[library]]]]
!> backwards_search_tree [] 10
!< backwards_search_tree []
< backwards_search_tree [[[university] [[university admin]
 [[VC] [[senate]]] [[university buildings] [[labs]]
 [[offices]] [[library]]]]]

** [[university]
 [[university admin] [[VC]] [[senate]]]
 [[university buildings] [[labs]] [[offices]]
 [[library]]]]

Page 204

Not only does the search succeed in satisfying the original goal, it also returns a solution AND-tree which shows
the internal structure of the ''university" object given the rules in the rulebase. We can display this representation
using showtree in the usual way (see Chapter 6, footnote 3), as in Figure 8-1.

Parsing

There is a special case of this particular usage of the search function which is of major importance in AI. This
occurs when the bottom-level entities (the "facts") are arranged into a sequence, and form a linguistic entity such as
a sentence. The solution AND-tree of a search in the case where search rules describe the internal structure of
objects constitutes a description of the structure of the high-level object forming the goal of the search. If the object
in question is a sentence, then the structural description can tell us about the syntactic structure of the sentence.
Descriptions of syntactic structure, which are very important in natural language processing (and in compiler
theory), are usually called parse trees.

How can we modify the search function such that it is able to cope appropriately with facts (i.e. objects) which are
arranged into a sequence? We need to modify the behaviour of the function in two ways. Firstly, we must ensure
that it will only satisfy a goal by invoking some facts if the facts are arranged in the right sequence. Secondly, we
must ensure that it will not use a sequence of facts to satisfy a goal if those facts have already been used to satisfy
some other goal.

A convenient way to obtain this new behaviour involves adding a second argument to the function and also
arranging that it outputs two values rather than one.

Figure 8-1
Deconstructing a university

Page 205

The second argument will receive the sequence and the second output will pass on whatever is left over from the
sequence once the goals have been satisfied. The function, renamed backwards_parse_tree is just a
modified version of the loop checking backwards_search_tree introduced in Chapter 6. The only other
change (apart from the extra argument and output) is a check to see if the first of the goals matches the first of the
given sequence. This happens when the function has followed the chain of rules right down to the "bottom" and is
trying to match the right-hand side of "lexical rule" (i.e. a word against the words in the sequence.

Let us see what all this means in the case where we want to discover the structure of a sequence of objects (i.e.
words) forming a sentence. First of all we need to set up a rulebase in which the rules show how sentences are
made up (according to the rules of grammar) out of lower-level linguistic objects such as noun-phrases and verb
phrases. To keep the rulebase simple, we will use a system of abbreviations. "s" will stand for "sentence"; "np" will
stand for "noun phrase''; "pp" will stand for "prepositional phrase", and so on. The final seven rules which relate
lexical categories such as "det" to actual words such as "the" are the lexical rules. The earlier rules which relate
grammatical categories together are the syntactic rules:

 [[s np vp]
 [np snp] [np snp pp]
 [snp det noun]
 [pp prep snp]
 [vp verb np]
 [noun man] [noun flies] [noun girl] [noun plane] [noun computer]
 [verb hated] [verb kissed] [verb flies]
 [det the] [det a]
] -> grammar1;

Let us start with a trivial case of parsing the sequence [the girl] as an "np":

 trace backwards_parse_tree;
 grammar1 -> database;

 backwards_parse_tree ([np], [the girl], 10) ==> ==>

 > backwards_parse_tree [np] [the girl] 10
 !> backwards_parse_tree [snp] [the girl] 9
 !!> backwards_parse_tree [det noun] [the girl] 8
 !!!> backwards_parse_tree [the] [the girl] 7
 !!!!> backwards_parse_tree [] [girl] 6
 !!!!< backwards_parse_tree [girl] []
 !!!< backwards_parse_tree [girl] [the]
 !!!> backwards_parse_tree [noun] [girl] 8

Page 206

<><><><><><><><><><><><>

/* backwards_parse_tree takes a list of goals, e.g. categories and a
list containing a sequence of words and a depth limit. It returns a list
containing the parse tree and a list of any unused words. If the parse
fails it returns false plus the original list of words. */

 define backwards_parse_tree(goals, sequence, depth)
 -> trees -> remainder;
 vars goal rest subgoals other_goals first_tree other_trees;
 if goals = []
 then [] -> trees; sequence -> remainder
 elseif depth <= 0 then false -> trees; sequence -> remainder
 else goals --> [?goal ??other_goals];
 if sequence matches [^goal ??rest]
 then backwards_parse_tree(other_goals, rest, depth-1)
 -> other trees -> remainder;
 [^goal ^^other_trees] -> trees;
 return
 else foreach [^goal ??subgoals] do
 backwards_parse_tree (subgoals, sequence, depth-1)
 -> first tree -> rest;
 if islist(first_tree)
 then backwards_parse_tree(other_goals, rest, depth)
 -> other_trees -> remainder;
 if islist(other_trees)
 then
 [[^goal ^^first_tree] ^^other_trees] -> trees;
 return
 endif
 endif
 endforeach
 endif;
 false -> trees; sequence -> remainder;
 endif;

 enddefine;

Figure 8-2
Parsing as backwards search

 !!!!> backwards_parse_tree [man] [girl] 7
 !!!!< backwards_parse_tree [girl] <false>
 !!!!> backwards_parse_tree [flies] [girl] 7
 !!!!< backwards_parse_tree [girl] <false>
 !!!!> backwards_parse_tree [girl] [girl] 7
 !!!!!> backwards_parse_tree [] [] 6
 !!!!!< backwards_parse_tree [] []

Page 207

 !!!!< backwards_parse_tree [] [girl]
 !!!!> backwards_parse_tree [] [] 8
 !!!!< backwards_parse_tree [] []
 !!!< backwards_parse_tree [] [[noun girl]]
 !!< backwards_parse_tree [] [[det the] [noun girl]]
 !!> backwards_parse_tree [] [] 9
 !!< backwards_parse_tree [] []
 !< backwards_parse_tree [] [[snp [det the] [noun girl]]]
 !> backwards_parse_tree [] [] 10
 !< backwards_parse_tree [] []
 < backwards_parse_tree [] [[np [snp [det the] [noun girl]]]]

 ** [[np [snp [det the] [noun girl]]]]
 ** []

Notice how the system works its way down through the rules from "np" to "snp" to "det'' and to "noun" and tries to
match "noun" against "man" before it tries "girl". Notice also that backwards_parse_tree returns two values,
the tree and the unused words, in this case, [], because all the words were used. This would be an extremely costly
strategy if there were a realistic number of words in the lexicon part of grammar1:

 untrace backwards_parse_tree;

 backwards_parse_tree ([np], [the girl from ipanema], 10) ==> ==>
 ** [[np [snp [det the] [noun girl]]]]
 ** [from ipanema]

 backwards_parse_tree ([s], [the man hated the computer], 10) ==>
 ==>

 ** [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 ** []

 backwards_parse_tree ([s], [the girl flies the plane], 10) ==>
 ==>

 ** [[s [np [snp [det the] [noun girl]]]
 [vp [verb flies] [np [snp [det the] [noun plane]]]]]]
 ** []

We can use showtree to display the structure of the solution tree as shown in Figure

Page 208

Figure 8-3
A parse tree

8-3[2]:

 backwards_parse_tree([s], [the man], 10) ==> ==>
 ** <false>
 ** [the man]

 backwards_parse_tree ([s], [the girl kissed the computer], 10) ==>
 ==>

 ** [[s [np [snp [det the] [noun girl]]]
 [vp [verb kissed] [np [snp [det the] [noun computer]]]]]]
 ** []

So far in these examples there have been no particular search problems. The rules in the database were ordered in
such a way that what turned out to be the right rules were usually tried first (e.g. the rules for "np"). More
importantly the rules did not

[2] We employ the default version of root defined in library showtree.

Page 209

cause the search process to loop. However this looping behaviour is easy enough to produce. Let us add extra rules
of the form:

 [[snp det ap noun]
 [ap ap adj] [ap adj]
 [adj big] [adj red] [adj hot]
] -> grammar2;

The intention of these "ap" (adjectival phrase) rules is to allow noun phrases of the form "the big computer", "the
red hot computer", "the big big man" etc, i.e. a determiner, an arbitrary number of adjectives and a noun. For
sentences (or other structures) not containing adjectives, everything goes well, but here is part of a trace involving
an adjective:

 grammar1 <> grammar2 -> database;

 backwards_parse_tree([np], [the big man], 10) ==> ==>

 ** [[np [snp [det the] [ap [adj big]] [noun man]]]]
 ** []

Because of the depth limit, the parse works. But if we examine the centre part of the overall trace we see that the
function recurses fruitlessly until it hits this limit:

 /* EARLIER PARTS OF TRACE OMITTED */

 !!!> backwards_parse_tree [ap noun] [big man] 8
 !!!!> backwards_parse_tree [ap adj] [big man] 7
 !!!!!> backwards_parse_tree [ap adj] [big man] 6
 !!!!!!> backwards_parse_tree [ap adj] [big man] 5
 !!!!!!!> backwards_parse_tree [ap adj] [big man] 4
 !!!!!!!!> backwards_parse_tree [ap adj] [big man] 3
 !!!!!!!!!> backwards_parse_tree [ap adj] [big man] 2
 !!!!!!!!!!> backwards_parse_tree [ap adj] [big man] 1
 !!!!!!!!!!!> backwards_parse_tree [ap adj] [big man] 0
 !!!!!!!!!!!< backwards_parse_tree [big man] <false>

 /* LATER PARTS OF TRACE OMITTED */

The problem is that the "ap" rule we have given is "left_recursive", that is ap contains itself as its first sub-
structure. In general there will be recursive rules in our grammars but unless special care is taken, these rules can
lead to loops.

Page 210

Data-Driven (Bottom-Up) Parsing

We have implemented the backwards_parse_tree function using backward search. Could we implement it
using forward search? In Chapter 6 we noted that, in general, forward AND/OR-tree search was not a particularly
practical proposition. The reason being that given some collection of satisfied subgoals, it is not at all clear how
they should be arranged so as to enable the picking-out of an appropriate search rule. But of course in the special
case we are currently considering there is no difficulty. Given some collection of satisfied subgoals, we know that
the only goals we can consider to be solved are the ones which have the subgoals in the right sequence. This makes
the whole process much more tractable.

It turns out that implementing a forward search function which constructs solution trees (i.e. parse trees) is a little
bit more tricky. However, there is no difficulty in implementing a forward function forwards_parse_goals
which simply returns its goals if they cover the sequence or <false>. The function takes, as inputs, a list of goals
and a sequence of words or structures. If goals match the sequence, the process is deemed to be finished and it
terminates. Otherwise it tries the rules in turn seeing whether it can find the right-hand side of any rule somewhere
in the sequence. If it can, it replaces the right-hand side by the left-hand side and recursively continues parsing. If
no rule can be found the function returns false. A depth limit is applied to catch loops.

<><><><><><><><><><><><>

/* forwards_parse_goals takes a list of goals and of words and returns the
list of goals if the sequence conforms to them, or false. */

 define forwards_parse_goals (goals, sequence, depth) -> outgoals;
 vars goal subgoals before after;
 if sequence matches goals then goals -> outgoals
 elseif depth <= 0 then false -> outgoals
 else foreach [?goal ??subgoals] do
 if sequence matches [??before ^^subgoals ??after] then
 forwards_parse_goals (goals, [^^before ^goal ^^after],
 depth-1) -> outgoals;
 if islist(outgoals) then return endif
 endif
 endforeach;
 false -> outgoals
 endif
 enddefine;

Figure 8-4
Bottom-up parsing

Page 211

Typically we set the goals to be [s]. If the sentence is in the language which is covered by the grammar, then this
process of substituting syntactic categories will continue up to the point where the sequence is itself reduced to
[s]:

 trace forwards_parse_goals;
 grammar1 -> database;

 forwards_parse_goals([s], [the man hated the computer], 20) ==>

 > forwards_parse_goals [s] [the man hated the computer] 20
 !> forwards_parse_goals [s] [the noun hated the computer] 19
 !!> forwards_parse_goals [s] [the noun hated the noun] 18
 !!!> forwards_parse_goals [s] [the noun verb the noun] 17
 !!!!> forwards_parse_goals [s] [det noun verb the noun] 16
 !!!!!> forwards_parse_goals [s] [snp verb the noun] 15
 !!!!!!> forwards_parse_goals [s] [np verb the noun] 14
 !!!!!!!> forwards_parse_goals [s] [np verb det noun] 13
 !!!!!!!!> forwards_parse_goals [s] [np verb snp] 12
 !!!!!!!!!> forwards_parse_goals [s] [np verb np] 11
 !!!!!!!!!!> forwards_parse_goals [s] [np vp] 10
 !!!!!!!!!!!> forwards_parse_goals [s] [s] 9
 !!!!!!!!!!!< forwards_parse_goals [s]
 !!!!!!!!!!< forwards_parse_goals [s]
 !!!!!!!!!< forwards_parse_goals [s]
 !!!!!!!!< forwards_parse_goals [s]
 !!!!!!!< forwards_parse_goals [s]
 !!!!!!< forwards_parse_goals [s]
 !!!!!< forwards_parse_goals [s]
 !!!!< forwards_parse_goals [s]
 !!!< forwards_parse_goals [s]
 !!< forwards_parse_goals [s]
 !< forwards_parse_goals [s]
 < forwards_parse_goals [s]

 ** [s]

 forwards_parse_goals ([s], [the holy man], 20) ==>

 > forwards_parse_goals [s] [the holy man] 20
 !> forwards_parse_goals [s] [the holy noun] 19
 !!> forwards_parse_goals [s] [det holy noun] 18
 !!< forwards_parse_goals <false>
 !< forwards_parse_goals <false>

Page 212

 !> forwards_parse_goals [s] [det holy man] 19
 !!> forwards_parse_goals [s] [det holy noun] 18
 !!< forwards_parse_goals <false>
 !< forwards_parse_goals <false>
 < forwards_parse_goals <false>

 ** <false>

 untrace forwards_parse_goals;

 forwards_parse_goals([det holy noun], [the holy man], 20) ==>

 ** [det holy noun]

 forwards_parse_goals([s], [the man flies the flies], 20) ==>

 ** [s]

The behaviour of the function is shown above. It should be noted that our forward search function
forwards_parse_goals does not do a lot of redundant work on these examples, partly because of the
grammar and partly because of the given sentences. In the second example, the system identifies the "det" and the
"noun" but can get no further because "holy" is not recognised. If we supply the three goals [det holy noun]
and the same sequence the search succeeds. However the trace output of forwards_parse_goals([s],
[the man flies the flies], 20) ==> is nearly 300 lines long, caused partly by the ambiguity of the
word flies which can be either a noun or a verb.

Building Trees Bottom-Up

It is possible to extend the definition of forwards_parse_goals so that it returns the parse trees rather than
simply the category(s) such as [s]. Recall that in bottom-up parsing we replaced a sequence of subgoals by the
corresponding goal. To produce a tree, we simply replace a sequence of subtrees by the corresponding piece of
tree, i.e. [^goal ^^trees]. These pieces of tree gradually accumulate and coalesce on the way up until finally
the tree for the whole sentence is produced.

There is, however, a complication in that we now need to match our grammar rules not just against sequences such
as [the man] or [snp vp] but also against sequences that contain bits of tree inter-mixed from the earlier
stages of the parse. We have two choices. Either we can change the grammar rules in the database to allow this
kind of match or we can change the matching in forwards_parse_goals. We will choose the latter and re-
use the existing grammars.

Page 213

<><><><><><><><><><><><>

/* forwards_parse_trees takes a list of goals and a sequence of words
and returns a list containing the parse-trees, or false if no parse
trees can be built */

 define forwards_parse_trees(goals, sequence, depth) -> trees;
 vars goal subgoals before after tree;
 if topcats(sequence, goals) then sequence -> trees
 elseif depth <= 0 then false -> trees
 else
 foreach [?goal ??subgoals] do
 if sequence matches
 [??before ??tree: ^(topcats(%subgoals%)) ??after]
 then
 forwards_parse_trees(goals,
 [^^before [^goal ^^tree] ^^after], depth-1)
 -> trees;
 if islist(trees) then return endif
 endif
 endforeach;
 false -> trees
 endif
 enddefine;

/* topcats takes a tree (or a list of words) and a list categories
(or a list of words) as input, and returns true if the major
categories in the tree match the list of categories. If
both inputs are lists of words, it returns true if they match. */

 define topcats(tree, cats) -> boolean;
 if tree = [] and cats = [] then true -> boolean
 elseif tree = [] or cats = [] then false -> boolean
 elseif atom (hd(tree))
 then hd(tree) = hd(cats) and topcats(tl(tree), tl(cats))
 -> boolean
 else hd(hd(tree)) = hd(cats) and topcats(tl(tree), tl(cats))
 -> boolean
 endif
 enddefine;

Figure 8-5
Building parse trees bottom-up

The more complex matching occurs in two places: one is to detect when parsing is complete, the other is during the
process of seeing whether a candidate grammar rule can be used. In both cases we make use of the function
topcats in Figure 8-5. This function behaves as follows. In each case it picks each top-level item from the

Page 214

first argument and sees if it matches against the corresponding item in its second argument:

 topcats([the old man], [the old man]) ==>
 ** <true>

 topcats([fred [np [snp [det the] [noun man]]]], [fred np]) ==>
 ** <true>

 topcats([[s [np [snp [det the] [noun man]]]
 [vp [verb flies] [np [snp [det the]
 [noun flies]]]]]],
 [s]) ==>
 ** <true>

The complexity of forwards_parse_trees comes in the use of topcats to restrict the matching on
??tree. We have used a technique called partial application to create dynamically a special version of topcats
(each time this match is tried) which fixes its second argument to the value of the subgoals of the rule being
considered. Tracing the behaviour of this function gives:

 trace forwards_parse_trees;

 forwards_parse_trees([s], [the man hated the computer], 20) ==>

 > forwards_parse_trees [s]
 [the man hated the computer] 20
 !> forwards_parse_trees [s]
 [the [noun man] hated the computer] 19
 !!> forwards_parse_trees [s]
 [the [noun man] hated the [noun computer]] 18
 !!!> forwards_parse_trees [s]
 [the [noun man] [verb hated] the [noun computer]] 17
 !!!!> forwards_parse_trees [s]
 [[det the] [noun man] [verb hated] the [noun computer]] 16
 !!!!!> forwards_parse_trees [s]
 [[snp [det the] [noun man]] [verb hated] the [noun computer]] 15
 !!!!!!> forwards_parse_trees [s]
 [[np [snp [det the] [noun man]]] [verb hated] the [noun computer]] 14
 !!!!!!!> forwards_parse_trees [s]
 [[np [snp [det the] [noun man]]] [verb hated] [det the] [noun computer]] 13
 !!!!!!!!> forwards_parse_trees [s]
 [[np [snp [det the] [noun man]]]
 [verb hated] [snp [det the] [noun computer]]] 12
 !!!!!!!!!> forwards_parse_trees [s]
 [[np [snp [det the] [noun man]]]
 [verb hated] [np [snp [det the] [noun computer]]] 11
 !!!!!!!!!!> forwards_parse_trees [s]
 [[np [snp [det the] [noun man]]]

Page 215

 [vp [verb hated] [np [snp [det the] (noun computer]]]]] 10
 !!!!!!!!!!!> forwards_parse_trees [s]
 [[s [np [snp [det the] [non man]]]
 [vp (verb hated] [np [snp [det the] [noun computer]]]]]] 9
 !!!!!!!!!!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !!!!!!!!!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !!!!!!!!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [asp [det the] [noun computer]]]]]]
 !!!!!!!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !!!!!!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !!!!!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !!!!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !!!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !!!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !!< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 !< forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]
 < forwards_parse_trees
 [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]

 ** [[s [np [snp [det the] [noun man]]]
 [vp [verb hated] [np [snp [det the] [noun computer]]]]]]

The behaviour is largely the same as forwards_parse_goals given earlier, except that bits of tree are
included in the input and output at each level rather than merely category names.

Page 216

Advantages of Bottom-Up Search

Forward search applied to a rulebase consisting of linguistic rules is often referred to as bottom-up parsing.
Backward search is called top-down parsing. As was noted in the previous chapter, the terms top-down and bottom-
up reflect that fact that the backward process constructs the solution-tree working from the top-down. The forward
process works in the opposite way. Note that bottom-up search is likely to be more efficient than top-down
whenever the branching factor in the search tree is particularly high, i.e. whenever we have several competing rules
at any given level.

Backwards and Forwards Parsing in Prolog

Top-down parsing in Prolog to produce a parse tree is a simple extension of code from earlier chapters and follows
much the same method as for the POP-11 version. As before, we will adapt the loop checking version of our
backwards search procedure.

Procedure backwards_parse_tree/5 has three cases to consider, see Figure 86. The first case is where there
are no further goals in which case it returns an empty parse-tree and whatever sequence it was given as the
remainder. The second case is where the first word in the sequence matches the first goal in the goal list. In this
case it parses the remaining goals and the remaining sequence and adds the given word onto the front of the parse-
tree. The final case takes the first goal from the goal list, finds a rule which has that goal on its left-hand side. It
then continues parsing the sequence first with the subgoals from the right-hand side of the rule thus found and then
with whatever further goals it originally had. It constructs an appropriate tree out of the parts of trees so produced.

The behaviour of backwards_parse_tree is similar to its POP-11 version:

 ?- spy backwards_parse_tree.
 Spypoint placed on backwards_parse_tree/5
 yes

 ?- backwards_parse_tree([np], [the, girl], 10, Rem, Tree).

 ** (1) Call : backwards_parse_tree([np], [the, girl], 10, _1, _2)?
 ** (2) Call : backwards_parse_tree([snp], [the, girl], 9, _3, _4)?
 ** (3) Call : backwards_parse_tree([det, noun], [the, girl], 8, _5, _6)?
 ** (4) Call : backwards_parse_tree([the], [the, girl], 7, _7, _8)?
 ** (5) Call : backwards_parse_tree([], [girl], 7, _7, _9)?
 ** (5) Exit : backwards_parse_tree([], [girl], 7, [girl], [])?
 ** (4) Exit : backwards_parse_tree([the], [the, girl], 7, [girl], [the]) ?
 ** (6) Call : backwards_parse_tree([noun], [girl], 8, _5, _10)?
 ** (7) Call : backwards_parse_tree([man], [girl], 7, _11, _12)?
 ** (7) Fail : backwards_parse_tree([man], [girl], 7, _11, _12)?

Page 217

<><><><><><><><><><><><>

/* rule(-grammar_rule)
each rule predicate has as its argument a list containing either a syntactic
or lexical rule */

 rule([s, np, vp]).
 rule([np, snp]) .
 rule([np, snp, pp]).
 rule([snp, det, noun]).
 rule([pp, prep, snp]).
 rule([vp, verb, np]).
 rule([noun, man]) .
 rule([noun, flies]).
 rule([noun, girl]).
 rule([noun, plane]).
 rule([noun, computer]).
 rule([verb, hated]).
 rule([verb, kissed]).
 rule([verb, flies]).
 rule([det, the]).
 rule([det, a]).
 rule([prep, with]).

/* backwards_parse_tree(+Goals, +Sequence, +Depth, -Remainder, -Trees)
backwards_parse_tree takes a list of Goals and a sequence of words
and returns the corresponding parse-trees and any words left unused at
the end of the sequence */

 backwards_parse_tree([], Rem, _, Rem, []).

 backwards_parse_tree([Word | Goals], [Word | Words], Depth, Remainder,
 [Word | Trees]) :-
 backwards_parse_tree(Goals, Words, Depth, Remainder, Trees), !.

 backwards_parse_tree([Goal | Goals], Sequence, Depth, Remainder,
 [[Goal | Tree] | Trees]) :-
 Depth > 0,
 rule([Goal | Subgoals]),
 New_depth is Depth - 1,
 backwards_parse_tree(Subgoals, Sequence, New_depth, Intermediate, Tree),
 backwards_parse_tree (Goals, Intermediate, Depth, Remainder, Trees).

Figure 8-6
Top-down parsing in Prolog

 ** (8) Call :backwards_parse_tree([girl], [girl], 7, _11, _12)?
 ** (9) Call : backwards_parse_tree(], [], 7, _11, _13)?
 ** (9) Exit : backwards_parse_tree([], [], 7, [], [])?
 ** (8) Exit : backwards_parse_tree([girl], [girl], 7, [], [girl])?
 ** (10) Call : backwards_parse_tree([], [], 8, _5, _14)?
 ** (10) Exit : backwards_parse_tree([], [], 8, [], [])?

Page 218

 ** (6) Exit : backwards_parse_tree([noun], [girl], 8, [], [[noun, girl]])?
 ** (3) Exit : backwards_parse_tree([det, noun], [the, girl], 8, [],
 [[det, the], [noun, girl]])?
 ** (11) Call : backwards_parse_tree([], [], 9, _3, _15)?
 ** (11) Exit : backwards_parse_tree([], [], 9, [], [])?
 ** (2) Exit : backwards_parse_tree([snp], [the, girl], 9, [],
 [[snp, [det, the], [noun, girl]]])?
 ** (12) Call : backwards_parse_tree([], [], 10, _1, _16)?
 ** (12) Exit : backwards_parse_tree([], [], 10, [], [])?
 ** (1) Exit : backwards_parse_tree([np], [the, girl], 10, [],
 [[np, [snp, [det, the], [noun, girl]]]])?

 Rem = []
 Tree = [[np, [snp, [det, the], [noun, girl]]]] ?

 yes

 ?- nospy.
 ?- backwards_parse_tree([s], [the, girl, flies, the, plane, expertly],
 10, Rem, T).

 Rem = [expertly]
 T = [[s, [np, [snp, [det, the], [noun, girl]]],
 [vp, [verb, flies],
 [np, [snp, [det, the], [noun, plane]]]]]] ?

 yes

In the final example above, the sentence is parsed with the exception of the trailing ''expertly" which is treated as a
remainder. Note that extra words can only be accepted at the end of the sequence on not within it. In the next
example a more complex sentence is parsed. Note that the first solution found treats the whole trailing phrase "with
the man expertly" as remainder. This is because the grammar rules are ordered such that the rule for an "np"
without a trailing "pp" is prior to the rule which includes the "pp". By forcing backtracking, this other "np" rule is
used, see Figure 8-7 for the output of showtree/1 in this case (using the standard definition of root):

 ?- backwards_parse_tree ([s],
 [the, girl, with, a, computer, flies,
 the, plane, with, the, man, expertly],
 10, Rem, [T]),
 showtree(T).

 Rem = [with, the, man, expertly]
 T = [s, [np, [snp, [det, the], [noun, girl]], [pp, [prep, with],

Page 219

 [snp, [det, a], [noun, computer]]]], [vp, [verb, flies],
 [np, [snp, [det, the], [noun, plane]]]]] ? ;

 Rem = [expertly]
 T = [s, [np, [snp, [det, the], [noun, girl]], [pp, [prep, with],
 [snp, [det, a], [noun, computer]]]], [vp, [verb, flies],
 [np, [snp, [det, the], [noun, plane]], [pp, [prep, with],
 [snp, [det, the], [noun, man]]]]]] ? ;

 no

The Prolog Grammar Rule Formalism

The Prolog version of backwards_parse_tree above was designed to be a close match to the POP-11 version
provided earlier. In fact Prolog has built in top-down parsing capabilities based around a special notation for
grammar rules using the operator "-->". Below is a very brief example. References to more extended use of this
notation are given at the end of the chapter. All we need do is express the grammar rules themselves and then treat
each category as a predicate which succeeds if it is given a list of words which starts with the category in question
(and returns the remaining words). These predicates are built automatically when compiling the grammar rules by
adding extra arguments:

 s --> np, vp.
 np --> snp.
 np --> snp, pp.
 snp --> det, noun.
 pp --> prep, snp.
 vp --> verb, np.
 noun --> [man].
 noun --> [girl].
 noun --> [computer].
 verb --> [hated].
 verb --> [kissed].
 det --> [the].
 det --> [a].

In the example below we first show the predicate that is automatically generated for np and then trace it with the
same argument as in the backwards_parse_tree example earlier:

 ?- listing(np).

Page 220

Figure 8-7
Second parse-tree

 np(_1, _2) :-
 snp(_1, _2).
 np(_1, _2) :-
 snp(_1, _3),
 pp(_3, _2).

 ?- spy.
 Spypoint placed on np/2
 Spypoint placed on s/2

Page 221

 Spypoint placed on noun/2
 Spypoint placed on vp/2
 Spypoint placed on det/2
 Spypoint placed on pp/2
 Spypoint placed on verb/2
 Spypoint placed on snp/2
 yes
 ?- np([the, girl], []).
 ** (1) Call : np([the, girl], [])?
 ** (2) Call : snp([the, girl], [])?
 ** (3) Call : det([the, girl], _1)?
 ** (3) Exit : det([the, girl], [girl])?
 ** (4) Call : noun([girl], [])?
 ** (4) Exit : noun([girl], [])?
 ** (2) Exit : snp([the, girl], [])?
 ** (1) Exit : np([the, girl], [])?
 yes

Grammar rules using --> can also be used in a very straightforward way to generate parse trees, by adding further
arguments by hand.

Bottom-Up Parsing in Prolog

Although Prolog provides only a top-down (i.e. backwards) search mechanism and a built-in operator for making
grammars, it is easy to write a Prolog version of the bottom-up (i.e. forwards) parsing procedure given earlier in
POP-11.

Procedure forwards_parse_goals/3 has only two cases to consider, see Figure 8-8. If it is given a sequence
which matches its goals it succeeds. In the second case it searches the grammar rules for one which has a right-
hand side that is a subsequence of the sequence it has been given. If successful, it replaces that subsequence by the
left-hand side of the rule and calls itself recursively with shortened sequence:

 ?- forwards_parse_goals([the, green, frog], [the, green, frog],
 10).
 yes
 ?- forwards_parse_goals([snp], [the, green, frog], 10).
 no
 ?- forwards_parse_goals([snp], [the, man], 10).
 yes
 ?- forwards_parse_goals([snp, snp], [the, man, a, girl], 10).
 yes
 ?- forwards_parse_goals([s],

Page 222

<><><><><><><><><><><><>

/* forwards_parse_goals(+Goals, +Sequence, +Depth)
forwards_parse_goals takes a sequence of words and succeeds if it can
reduce this sequence to the given Goals by repeatedly replacing
subsequences using the grammar rules */

 forwards_parse_goals(Goals, Goals, _) :- !.

 forwards_parse_goals(Goals, Sequence, Depth) :-
 Depth > 0,
 rule([Cat | Subcats]),
 sublist(Start, Subcats, Rest, Sequence),
 replace(Start, [Cat], Rest, Intermediate),
 New_depth is Depth - 1,
 forwards_parse_goals(Goals, Intermediate, New_depth).

/* sublist(-Start, +Subcats, -Rest, +Description)
sublist isolates Subcats within Description and returns the words
preceding and following it */

 sublist(Start, Subcats, Rest, Description) :-
 append(L2, Rest, Description),
 append(Start, Subcats, L2).

/* replace(+Start, +Replacement, +Rest, -Description)
replace links Start, Replacement and Rest into a single list which it
returns in Description */

 replace(Start, Replacement, Rest, Description) :-
 append(Start, Replacement, L2),
 append(L2, Rest, Description).

Figure 8-8
Bottom-up recognising in Prolog

 [the, girl, hated, the, plane, with, a,
 man], 20).
 yes

Our solution is not very efficient because of the way it uses the double call to append/3 in sublist/4 to
generate all possible subsequences of the given sequence which it then tests against each of the rules. If you spy
forwards_parse_goals you will see that the second argument (the given sequence) is gradually transformed
to become equal to the first argument. This contrasts with backwards search where the first argument (the goals) is
gradually transformed to becoming equal to the

Page 223

sequence.

Procedure forwards_parse_goals can be adapted to return a parse-tree by employing a similar method as in
POP-11 earlier. As before, see Figure 8-9 the appropriate bits of tree are inserted in the sequence rather than simply
the left-hand side of the matching rule. We show only a single example, in Figure 8-10.

Both the forwards (goal driven, top-down, downwards) and the backwards (data driven, bottom-up, upwards)
parsing methods given in POP-11 and in Prolog work depth-first. That is, where there is a choice of possible things
to do (either replacing a goal by its subgoals in different ways or collapsing a subsequence of the input in different
ways), these systems make a choice and then move on to deal with

<><><><><><><><><><><><>

/* forwards_parse_trees(+Goals, +Sequence, +Depth, Trees)
forwards_parse_goals takes a sequence of words and succeeds with Trees
if it can reduce this sequence to the given Goals by repeatedly replacing
subsequences by pieces of tree using the grammar rules */

 forwards_parse_trees(Goals, Sequence, _, Trees) :-
 topcats(Sequence, Goals), !,
 Sequence = Trees.

 forwards_parse_trees(Goals, Sequence, Depth, Trees) :-
 Depth > 0,
 rule([Cat | Subcats]),
 sublist(Start, Subtrees, Rest, Sequence),
 topcats(Subtrees, Subcats),
 replace(Start, [[Cat | Subtrees]], Rest, Intermediate),
 New_depth is Depth - 1,
 forwards_parse_trees(Goals, Intermediate, New_depth, Trees).

/* topcats(+Trees, +Cats)
topcats succeeds if Trees and Cats are both flat lists equal.
It also succeeds if Trees is a list of trees and Cats is a list
of the major categories of these trees. */

 topcats([], []).

 topcats([Word | Trees], [Word | Cats]) :-
 topcats(Trees, Cats).

 topcats([[Cat | _] | Trees], [Cat | Cats]) :-
 topcats(Trees, Cats).

Figure 8-10
Bottom-up production of a parse tree in Prolog

Page 224

the repercussions of that choice. Only if the system reaches a dead end or runs out of depth, does it move back to
the previous choice point and try a different choice. One of the problems of this is that the parsers we offer here are
very susceptible to the order of the rules in the grammar. For example, we have deliberately put the rules for "np"s
in a non-optimal order so that the systems first attempt to parse on the basis of there being no "pp" before
backtracking (if needed) to try to incorporate a ''pp".

One could get around this partially by working breadth first (either forwards or backwards) via some variant on the
agenda mechanism described for state-space search. There would be a cost in the amount of storage required by the
program to keep partial parses.

More realistic parsers decouple the process of parsing almost entirely from the expression of the grammar rules,
e.g. by employing a chart parser (see, e.g. Gazdar and Mellish, 1989b).

Figure 8-10
Building a parse tree by forwards search in Prolog

Page 225

Why Is Parsing Useful

If we are interested in constructing programs which are capable of dealing, to some degree, with natural language
then we need to be able to have some way of extracting the meaning of an arbitrary sentence. It turns out that
knowing what the syntactic structure of a sentence is can be very helpful here. The basic idea that syntactic
structure tells us something about meaning (i.e. semantics) is called the principle of compositional semantics. The
principle is attributed to the philosopher Frege. Frege hypothesised that the meaning of any complete linguistic
entity could be derived from the meanings of its syntactic components. Their meanings could, in turn, be derived
from the meanings of their syntactic components. Ultimately, syntactic components will just be words whose
meanings can be assumed to be given.

We can attempt to put Frege's idea into practice as follows. Imagine that we want to write a program which is able
to converse about the contents of a blocksworld[3], i.e. is able to answer questions about where certain blocks are
and what blocks are on top of which other blocks.

A possible approach would be as follows. First of all we set up a representation for the blocksworld model. We can
do this in the usual way (see Chapter 4), using a list of lists:

 [[isa block objR] [colour red objR] [size large objR]
 [isa block objr] [colour red objr] [size small objr]
 [isa block objG] [colour green objG] [size large objG]
 [isa block objg] [colour green objg] [size small objg]
 [isa block objB] [colour blue objB] [size large objB]
 [isa block objb] [colour blue objb] [size small objb]
 [objb ison objG]
 [objG ison objR]
 [objR ison table]
 [objg ison table]
 [objr ison objB]
 [objB ison table]] -> database;

Note that we have given blocks names which indicate what their "size" and "colour" are. An upper case final letter
indicates a large block. A small letter indicates a small block. The letter itself indicates the colour. Thus the large
red block is called "objR". The small red block is called ''objr". Obviously this convention is for our convenience
only. The program that we will write will not take any notice of it. Notice also that the table has no properties other
than that of supporting some of the blocks.

[3] This section is based on the POPLOG Teach File and Library program "msblocks" by David Hogg and Aaron Sloman.

Page 226

Let us imagine that we want our program to be able to respond effectively to a question such as "where is the big
blue block?" To respond sensibly to this, the program needs to find out which block is being referred to.
Technically, it needs to find out what the referent of the noun phrase "big blue block" is. How can it do this?

To explain the implementation we first of all need to introduce the built-in POP-11 function called which. This
function takes a list of match-patterns and a list of variables which are used as query-variables in the match-
patterns. It then tries to find a way of matching the lists against the database such that all the query variables are
consistently instantiated. If it can do this it just returns the values of the query variables. For example, if we do:

 which("x", [[size large ?x] [colour blue ?x] [isa block ?x]]) ==>

the function returns the list:

 ** [objB]

This is because, the input lists will only match against the database all at once in the case where ?x is matched
against the word objB. If it turns out that there is more than one way to match the lists, which returns all the
candidate instantiations. Thus:

 which("x", [[size small ?x] [isa block ?x]]) ==>
 ** [objr objg objb]

Using the "which" function we can always find out which object(s) is being referred to provided that we are given
an appropriate list of match patterns. So one way to work out what object is referred to by a question like "where is
the big blue block?" is to try to derive some match patterns which will enable us to derive the object using the
which function.

Let us note that if the input question contains a subsequence whose parse tree looks like:

 [[det ...] [adj ...] [n...]]

then the subsequence must be a noun phrase, i.e. it must be a reference to an object. This implies that a set of
match-patterns which will pick-out the appropriate object from the microworld representation will look like this:

 [[isa block ?x] [= ... ?x]]

where the "..." is just the adjective in the subsequence. Thus the subsequence "the big block" has a parse tree:

Page 227

<><><><><><><><><><><><>

/* meaning takes a parse-tree and returns the meaning built out of match
patterns. If the meaning cannot be found it returns [] */

 define meaning(parse_tree) -> result;
 vars snp result adj pp ap np noun word aps;
 if parse_tree matches [noun ?word] then
 [[isa ^word ?x]] -> result
 elseif parse_tree matches [adj ?word] then
 [[=^word ?x]] -> result
 elseif parse_tree matches [snp ?noun] then
 meaning(noun) -> result
 elseif parse_tree matches [ap ?adj] then
 meaning(adj) -> result
 elseif parse_tree matches [ap ?adj ?ap] then
 [^^(meaning(adj)) ^^ (meaning(ap))] -> result;
 elseif parse_tree matches [snp ?ap ?noun] then
 [^^(meaning(ap)) ^^ (meaning(noun))] -> result;
 elseif parse_tree matches [np [det =] ?snp] then
 meaning(snp) -> result
 elseif parse_tree matches [pp [prep =] ?np] then
 meaning(np) -> result
 elseif parse_tree matches [s [wh1 where] [vbe is] ?np] then
 [where ^ (meaning(np))] -> result
 elseif parse_tree matches [s [wh2 what] [vbe is] ?pp] then
 [what ^(meaning(pp))] -> result
 else
 [] -> result
 endif;
 enddefine;

Figure 8-11
Extracting the meaning from a parse tree

 [[det the] [adj big] [n block]]

and the appropriate match-patterns which will enable us to pick out the block being referred to are:

 [[isa block ?x][= big ?x]]

Now, we can always just set up a mapping between specific sequences of words and specific match-patterns. But
how should our implementation respond where there is more than one subsequence and hence, more than one set of
match-patterns? This is where the compositional semantics comes in. We arrange for the implementation to

Page 228

<><><><><><><><><><><><>

 vars grammar3;

 [[s v np pp] [adj white]
 [s wh1 vbe np] [adj red]
 [s wh2 vbe pp] [adj blue]
 [np pn] [adj green]
 [np det snp] [adj big]
 [np det snp pp] [adj small]
 [snp noun] [adj large]
 [snp ap noun] [adj little]
 [ap adj] [prep on]
 [ap adj ap] [prep onto]
 [pp prep np] [prep to]
 [noun block] [prep over]
 [noun box] [prep in]
 [noun table] [prep at]
 [noun one] [prep under]
 [wh1 where] [prep above]
 [wh2 what] [prep by]
 [pn it] [det each]
 [v put] [det every]
 [v move] [det the]
 [v pickup] [det a]
 [v putdown] [det some]
 [vbe is]] -> grammar3;

Figure 8-12
Blocksworld grammar

respond to this situation by "composing" a new list of match-patterns which is formed by bringing together match-
patterns produced for the syntactic components of the subsequence.

We can express this in the form of a function as is shown in Figure 8-13. Note that the function implements what is
basically just a mapping between specific parse-trees and specific match patterns. But in the case where a complex
parse-tree is input, the function combines together the meanings (i.e. match-patterns) of the components of the
parse-tree. Note that we have arranged things such that in the case where the parse-tree indicates an original
sentence beginning with either the word "what" or "where", the word is tagged onto the front of the result. This
will enable the ''conversation" program which we will implement below to deal with these two different types of
question more appropriately. The function therefore associates a piece of meaning with each of the syntactic rules
in the grammar. However sometimes it overlooks important distinctions. Thus for example the meaning of a noun

Page 229

phrase "np" is the same whatever the determiner (e.g. "the", "a'' or "some") and prepositional phrases "pp"
effectively ignore their prepositions!.

Given the reasonably large grammar (rulebase) defined in Figure 8-12, we can obtain quite complex parse trees
from our parse function. Since we are now using the database for a different purpose, we need to define a new
function which will locally reset the database to the grammar list. This will enable the "parse" function can
work in the intended manner. This function can be defined very easily; see Figure 8-13.

We can now obtain the following behaviour:

 parse_with([where is the big green block], grammar3) ==>
 ** [[s [wh1 where]
 [vbe is]
 [np [det the]
 [snp [ap [adj big]
 [ap [adj green]]] [noun block]]]]]

If we call the meaning function on this parse tree, the result is as follows:

 meaning (parse_with([where is the big green block], grammar3)) ==>
 ** [where [[= big ? x] [= green ? x] [isa block ? x]]]

Tracing the meaning function shows us more clearly what is going on here:

/* parse_with takes a list of words and a grammar and returns a parse-tree
for a sentence. If the parse fails it returns false. If there are extra
words on the end of the sentence it prints a message */

 define parse_with(sentence, grammar) -> tree;
 vars database remainder;
 grammar -> database;
 backwards_parse_tree ([s], sentence, 30) -> tree -> remainder;
 unless remainder = []
 then [^^remainder has been ignored] =>
 endunless;
 if islist(tree) then hd(tree) -> tree endif
 enddefine;

Figure 8-13
Parsing with a particular grammar

Page 230

 trace meaning;

 meaning(parse_with([where is the big green block], grammar3)) ==>

 >meaning [s [wh1 where] [vbe is] [np [det the] [snp [ap [adj big]
 [ap [adj green]]] [noun block]]]]
 !>meaning [np [det the] [snp [ap [adj big] [ap [adj green]]]
 [noun block]]]
 !!>meaning [snp [ap [adj big] [ap [adj green]]] [noun block]]
 !!!>meaning [ap [adj big] [ap [adj green]]]
 !!!!>meaning [adj big]
 !!!!<meaning [[= big ? x]]
 !!!!>meaning [ap [adj green]]
 !!!!!>meaning [adj green]
 !!!!!<meaning [[= green ? x]]
 !!!!<meaning [[= green ? x]]
 !!!<meaning [[= big ? x] [= green ? x]]
 !!!>meaning [noun block]
 !!!<meaning [[isa block ? x]]
 !!<meaning [[= big ? x] [= green ? x] [isa block ? x]]
 !<meaning [[= big ? x] [= green ? x] [isa block ? x]]
 <meaning [where [[= big ? x] [= green ? x] [isa block ? x]]]

 ** [where [[= big ? x] [= green ? x] [isa block ? x]]]

Note that the result returned by the call:

 !!!>meaning [ap [adj big] [ap [adj green]]]

is the following list of match-patterns:

 [[= big ? x] [= green ? x]]

This list is a composition of the results returned by the calls:

 !!!!>meaning [adj big]

and

 !!!!!>meaning [adj green]

Page 231

<><><><><><><><><><><><>

/* analyse takes a sentence as input and passes it to subsidiary functions
for parsing and response */

 define analyse(sentence);
 vars trees tree match_patterns;
 if sentence = [bye] then return endif;
 parse_with (sentence, grammar3) -> tree;
 if tree = false then
 [cannot parse sentence] =>
 else
 meaning(tree) -> match_patterns;
 if match_patterns = [] then
 [that does not make sense] =>
 elseif hd(match_patterns) = "where" then
 process_where_question(match_patterns)
 elseif hd(match_patterns) = "what" then
 process_what_question(match_patterns)
 endif;
 endif;
 enddefine;

Figure 8-14
Distinguishing different kinds of sentence

Building a Top-Level Interpreter

Now that we have a function which computes the meaning of "where" and "what" type input questions in terms of
match-patterns, we can write the top-level of the program, i.e. the functions which will interact with the user. First
of all we need a function which can take an input question and decide whether it is a "where" question or a "what"
question and respond appropriately. Given the way "meaning'' treats questions, this is very easy to write. The
definition is shown in Figure 8-14.

Next, we need to write the functions which are going to actually deal with the two different types of question. To
respond to a "where" question, we need to compute the meaning of the question in terms of match-patterns, match
the patterns against the database (using "which") so as to find out which specific objects fit the given description,
and finally, output some text which indicates either (1) the fact that there is no single block matching the
description or (2) that the block is on a specific thing in the model. The definition of a function which carries out
these tasks is shown in the upper part of Figure 8-15. The definition of a function which processes "what"
questions using roughly the same strategy is shown in the lower part of the figure.

Finally, we need a function which will interact with the user, i.e. repeatedly read in questions and get them
processed. This definition of this function, which is

Page 232

<><><><><><><><><><><><>

/* process_where_question takes the meaning of a [where is the....] question
and searches the database of block facts for an appropriate answer */

 define process_where_question (question);
 vars patterns objects x y;
 question --> [where ?patterns];
 which ("x", patterns) -> objects;
 if objects = [] then
 [no block matches that description] =>
 elseif objects matches [?x] then
 if [^x ison ?y] isin database
 then [on top of ^y] =>
 else [^x is not on top of anything] =>
 endif
 else
 [more than one block matches that description] =>
 endif;
 enddefine;

/* process_what_question takes the meaning of a [what is on the....] question
and searches the database of block facts for an appropriate answer */

 define process_what_question (question);
 vars patterns objects x y;
 question --> [what ?patterns];
 which("x", patterns) -> objects;
 if objects = [] then
 [no block matches that description] =>
 elseif objects matches [?x] then
 if [?y ison ^x] isin database
 then [^y is on top of ^x] =>
 else [nothing is on top of ^x] =>
 endif
 else
 [more than one block matches that description] =>
 endif;
 enddefine;

Figure 8-15
Dealing with two kinds of questions

called converse, is shown in Figure 8-16. An interaction with the program we have implemented is as follows:

 converse ();

Page 233

 ** [hello]
 ? where is the large red block
 ** [on top of table]
 ? what is on the large red block
 ** [objG is on top of objR]
 ? where is the large red block darling
 ** [darling has been ignored]
 ** [on top of table]
 ? where is the green block
 ** [more than one block matches that description]
 ? where is the small green block
 ** [on top of table]
 ? where is the white block
 ** [no block matches that description]
 ? where is the table
 ** [no block matches that description]
 ? where is the large green block
 ** [on top of objR]
 ? where are my socks
 ** [cannot parse sentence]
 ? bye
 ** [bye]

Obviously, the program we have implemented only allows the most primitive sort of "natural language"
interaction. Nevertheless it does illustrate the reason why parse-

<><><><><><><><><><><><>

/* converse repeatedly takes input from the user and passes it to analyse
for response, until the user types bye */

 define converse;
 vars input;
 [hello] =>
 until input = [bye] do
 readline() -> input;
 analyse(input);
 enduntil;
 [bye] =>
 enddefine;

Figure 8-16
Handling interaction with the user

Page 234

trees are useful in natural language processing. The most important point to note is the fact that parsing is
essentially just an implementation of the search mechanism for AND/OR-trees in the special case where rules
describe the internal structure of linguistic entities (such as sentences) and "facts" are arranged into a given
sequence that will normally correspond to the sequence of words in a sentence.

Meaning in Prolog

We can extract meanings in Prolog in much the same manner as in POP-11. First we express the same facts about
the same world of blocks, see Figure 8-17.

The individual predicates of meaning/3 correspond exactly to the elseif branches of the POP-11 function. It
has one clause to deal with each part of a possible parse-tree:

 ?- meaning([noun, box], Meaning, Variable).
 Meaning = fact(isa, box, _1)
 Variable = _1 ?

 yes

 ?- meaning ([adj, red], Meaning, Variable).
 Meaning = fact(_1, red, _2)
 Variable = 2 ?

 yes
 ?-meaning([ap, [adj, big], [ap, [adj, red]]], Meaning,
 Variable).
 Meaning = fact(_1, big, _2), fact(_3, red, _2)
 Variable = _2 ?

 yes
 ?- meaning([snp, [ap, [adj, big], [ap, [adj, red]]],
 [noun, box]], Meaning, Variable).
 Meaning = (fact (_1, big, _2), fact(_3, red, _2)),
 fact(isa, box, _2)
 Variable = 2 ?

 yes
 ?- meaning([noun, elephant], Meaning, Variable).
 Meaning = fact(isa, elephant, _1)
 Variable = 1 ?

Page 235

<><><><><><><><><><><><>

/* fact(Relation, Value, Object_name) */

 fact(isa, block, objR). fact(colour, red, objR).
 fact(size, large, objR). fact(isa, block, objr).
 fact(colour, red, objr). fact(size, small, objr).
 fact(isa, block, objG). fact(colour, green, objG).
 fact(size, large, objG). fact(isa, block, objg).
 fact(colour, green, objg). fact(size, small, objg).
 fact(isa, block, objB). fact(colour, blue, objB).
 fact(size, large, objB). fact(isa, block, objb).
 fact(colour, blue, objb). fact(size, small, objb).
 fact(objb, ison, objG). fact(objG, ison, objR).
 fact(objR, ison, table). fact(objg, ison, table).
 fact(objr, ison, objB). fact(objB, ison, table).

/* meaning(+Tree, -Meaning, -Variable)
meaning takes a parse-tree and succeeds with a meaning containing match
patterns and the variable used in the match patterns. The meaning
consists of either where(f1, f2...fn) or what(f1, f2...fn) where f1...fn
are match patterns based on fact(<relation>, <value>, X) and X is the
match variable. */

 meaning([noun, Word], fact(isa, Word, X), X).
 meaning([adj, Word], fact(_, Word, X), X).
 meaning([snp, Noun], Meaning, X) :-
 meaning(Noun, Meaning, X).
 meaning([ap, Adj], Meaning, X) :-
 meaning(Adj, Meaning, X).
 meaning([ap, Adj, Ap], (M1, M2), X) :-
 meaning(Adj, M1, X),
 meaning(Ap, M2, X).
 meaning([snp, Ap, Noun], (M1, M2), X) :-
 meaning(Ap, M1, X),
 meaning(Noun, M2, X).
 meaning([np, [det, _], Snp], Meaning, X) :-
 meaning(Snp, Meaning, X).
 meaning([pp, [prep, _], Np], Meaning, X) :-
 meaning(Np, Meaning, X).
 meaning([s, [wh1, where], [vbe, is], Np], where(Meaning), X) :-
 meaning(Np, Meaning, X).
 meaning([s, [wh2, what], [vbe, is], Pp], what(Meaning), X) :-
 meaning(Pp, Meaning, X).
 meaning(_, [], _).

Figure 8-17
Extracting the meaning from a parse-tree in Prolog

Page 236

<><><><><><><><><><><><>

 /* rule(+grammar_rule) */

 rule([s, v, np, pp]). rule([s, wh1, vbe, np]).
 rule([s, wh2, vbe, pp]). rule([np, pn]).
 rule([np, det, snp])). rule([np, det, snp, pp]).
 rule([snp, noun]). rule([snp, ap, noun]).
 rule([ap, adj]). rule([ap, adj, ap]).
 rule([pp, prep, np]). rule([noun, block]).
 rule([noun, box]). rule([noun, table]).
 rule([noun, one]). rule([wh1, where]).
 rule([wh2, what]). rule([pn, it]).
 rule([v, put]). rule([v, move]).
 rule([v, pickup]). rule([v, putdown]).
 rule([vbe, is]). rule([adj, white]).
 rule([adj, red]). rule([adj, blue]).
 rule([adj, green]). rule([adj, big]).
 rule([adj, small]). rule([adj, large]).
 rule([adj, little]). rule([prep, over]).
 rule([prep, to]). rule([prep, on]).
 rule([prep, onto]). rule([prep, in]).
 rule([prep, at]). rule([prep, under]).
 rule([prep, above]). rule([prep, by]).
 rule([det, each]). rule([det, every]).
 rule([det, the]). rule([det, a]).
 rule([det, some]).

Figure 8-18
The blocksworld grammar in Prolog

 yes

Note that meaning/3 makes no direct reference itself to the grammar. If the parse-tree indicates that "elephant" is a
noun, then meaning/3 builds a meaning for it.

The predicates to conduct the conversation and process the two kinds of sentences which can be dealt with follow
the same organisation as in POP-11. We have used a built-in library to provide a Prolog version of the POP-11
function readline/O.

The work done by which in POP-11 is here done in Prolog by bagof/3 in process_meaning/2. The
following examples demonstrate the behaviour of some of the components of the conversational system:

 ?- where_is([objb]).
 on top of objG
 yes

Page 237

<><><><><><><><><><><><>

 :- library(readline).

/* converse drives the program. */

 converse :-
 write('Hello'), nl,
 one_line (Input),
 possibly_more (Input).

/* one_line(-Input)
one_line reads in and deals with a line from the user. */

 one_line(Input) :-
 readline (Input),
 analyse (Input).

/* possibly_more(+Input)
possibly_more enables further input to be collected. */

 possibly_more ([bye]) :-
 write('Bye'), n1.

 possibly_more (_) :-
 one_line(Input),
 possibly_more(Input).

/* analyse(+Input)
analyse parses, extracts the meaning from and responds to
the user's input. */

 analyse([bye]).

 analyse(Sentence) :-
 backwards_parse_tree([s], Sentence, 30, Extra, [Tree]),
 maybe_write(Extra),
 meaning(Tree, Meaning, X),
 process_meaning (Meaning, X), !.

 analyse(Sentence) :-
 write('cannot parse sentence'), nl.

/* maybe_write(+Input)
maybe_write writes any extra words of input. */

 maybe_write([]).

 maybe_write (Extra) :-
 write(Extra),
 write(' has been ignored'), nl.

Figure 8-19
Blocksworld conversation in Prolog

Page 238

 ?- what_is_on([objG]).
 objb is on top of objG
 yes

 ?- meaning([noun, box], Meaning, Variable).
 Meaning = fact(isa, box, _1)
 Variable = _1 ?

 yes
 ?- meaning([noun, box], Meaning, Variable),
 process_meaning(where(Meaning), Variable).
 no block matches that description
 Meaning = fact(isa, box, _1)
 Variable = _1 ?

 yes
 ?- meaning([noun, block], Meaning, Variable),
 process_meaning (where (Meaning), Variable).
 more than one block matches that description
 Meaning = fact(isa, block, _1)
 Variable = _1 ?

 yes

Finally, we try out the whole system:

 ?- converse.
 Hello
 ? where is the small block
 more than one block matches that description
 ? where is the small green block
 on top of table
 ? what is on the large red block
 objG is on top of objR
 ? where is the green block darling
 [darling] has been ignored
 more than one block matches that description
 ? where is the tiny little cube
 cannot parse sentence
 ? bye
 Bye
 yes

Page 239

<><><><><><><><><><><><>

/* process_meaning(+Meaning, +Pattern variable))
process_meaning takes a meaning structure containing patterns
and a pattern variable and deals with it. */

 process_meaning(], _) :-
 write('that does not make sense'), nl.

 process_meaning(where(Patterns), X) :-
 bagof (X, Patterns, Objects), !,
 where_is(objects).

 process_meaning(what(Patterns), X) :-
 bagof(X, Patterns, Objects), !,
 what_is_on(Objects).

 process_meaning(_, _) :-
 write ('no block matches that description'), nl.

/* where_is(+Object)
where_is takes an object and answers the where question. */

 where_is([Object]) :-
 fact(Object, ison, Site), !,
 write('on top of'),
 write(Site), nl.

 where_is([Object]) :-
 write(Object),
 write(' is not on top of anything'), nl.

 where_is([_ | _) :-
 write('more than one block matches that description'), nl.

/* what_is_on(+Object)
what_is_on takes an object and answers the what is on question. */

 what_is_on([Object]) :-
 (fact(Cover, ison, Object) ; Cover = nothing),
 write (Cover),
 write(' is on top of '),
 write(Object), nl.

 what_is_on([_ | _]) :-
 write('more than one block matches that description'), nl.

Figure 8-20
Dealing with different question types in Prolog

Page 240

Reading

Burton and Shadbolt (1987) cover simple natural language processing using POP-11, but their treatment exploits
the transition net formalism rather than the phrase-structure grammar formalism used here. Noble's book Natural
Language Processing (Noble, 1988) looks at the problem of natural language in more depth with algorithms
presented in POP-11. This book forms an ideal next stop for anyone interested in the NLP subfield. Chapter 5 of
Ramsay and Barrett (1987) present a large language processing program in POP-11; however, this is a state of the
art implementation rather than a toy system. Inevitably, it is quite complex. A more detailed treatment is to be
found in either Natural Language Processing in POP-11 or Natural Language Processing in Prolog by Gazdar and
Mellish (1989a,b).

Volume 1 of the AI handbook (Barr and Feigenbaum 1981, Section IV) introduces a wide variety of NLP strategies
and programs. Winston (1984, Chapter 9) and Charniak and McDermott (1985, Chapter 4) both provide a
comprehensive coverage of sentence parsing and the use of augmented transition nets. Chapter 10 of Charniak and
McDermott deals with the processing of larger linguistic entities such as stories. Aleksander and Burnett's
discussion (1987) makes extensive use of colour illustrations to clarify the linguistic background for elementary
NLP strategies. Bundy et al. (1980) begin their discussion of language processing by looking at the problem of
sentence generation. Examples in this text are in LOGO and LISP. Ramsay's general overview of the field
(Ramsay, 1986) includes a very useful annotated bibliography. A major introductory text in this area is (Winograd,
1983).

Bratko (1990) and Sterling and Shapiro (1986) both have chapters on parsing using the grammar rule notation.

Exercises

1. Extend either of the converse programs given above so that it is able to handle questions of the form

where is <block> ?

which block is on <block> ?

which is the small green block?

which is objb?

and

is <block> on <block or table> ?

Page 241

To do this you will need to implement mechanisms which deal with each type of question
(''analyse_where_question" etc.) and modify the "meaning" function very slightly so that it tacks on the appropriate
labels to lists of match patterns.

2. Extend either of the converse programs given above so that they accept factual statements about the blocks
(as well as questions) and make appropriate changes to the representation of the blocksworld: for example,

objz is a small white box.

3. Extend either of the converse programs given above so that they they accept commands, such as

put the small green block on the table.

4. Extend your answer to no. 3 to incorporate the planning program from Chapter 7 so that commands can be given
which rely on the system being able to plan how to carry out the command.

5. Compare forwards and backwards parsing methods across a range of sentences and grammars, e.g. in terms of
the size of the search space, efficiency and possibly kind of solution first found.

Page 243

9
Expert Systems (probabilistic search)

Introduction

We saw in Chapter 6 that in the case where search rules associate given conclusions with bits of
evidence the behaviour produced by the search function simulates a simple form of reasoning.
Backwards search corresponds to a process in which a high-level hypothesis is "proved" by invoking
lower-level hypotheses and, ultimately, basic facts. Forwards-search corresponds to a process in which
an attempt is made to see what conclusions can be drawn by combining basic facts together in different
ways.

The complexity and sophistication of the reasoning process produced by the search function is limited
only by the sophistication of the rulebase. So far we have only looked at very trivial cases but the basic
approach will handle arbitrarily complex domains. Provided that knowledge about a given domain can
be expressed in the form of inference rules (search rules), then, we can always build a program which
will reason about that domain by applying the ordinary search mechanism.

This opens up the possibility of constructing computer programs which will provide the user with the
kind of expert reasoning which can usually only be obtained from a real human expert. For example, we
might set up a rulebase which captures the reasoning processes involved in diagnosing some kind of
disease. Or alternatively, a rulebase which captures the reasoning processes involved in diagnosing
faults in some complex piece of machinery. Once we have the rulebase set up, we can, in principle,
obtain "expert" diagnoses simply by running the search function.

Unfortunately, there are at least two problems. Firstly, we have to find some way of making sure that, in
any given case, the rulebase contains the correct facts. Setting up a rulebase whose rules enable the
diagnosis of complex diseases is all very well. But if we want to use the rulebase to obtain a diagnosis of
a disease in a given case we need to make sure that we first put in the appropriate facts (e.g. symptoms).

Page 244

A second problem relates to the nature of the rules themselves. So far we have always assumed that any
kind of reasoning process can be implemented in terms of ordinary inference rules. As currently
described, these show what conclusions can be drawn from what sort of evidence. But, of course, in
many cases, reasoning processes do not involve the application of hard-and-fast inference rules. They
involve the application of rules in which bits of evidence provide support for a given conclusion without
justifying it completely. A medical diagnosis will typically be constructed on the basis of this sort of
rule. A given symptom will not completely justify a given diagnosis, it will just provide evidence in
favour of it.

Both these problems can be solved quite neatly using a technique which was originally applied in a
famous AI program called MYCIN. This program used search-like processes and a rulebase of inference
rules to provide diagnoses of blood disorders. The important thing about MYCIN from our point of view
is the way in which it solved the two problems noted above. It solved the problem concerning the
provision of basic facts by arranging things so that the search function could ask the user questions. It
solved the problem concerning non-hard-and-fast inference rule by allowing search rules to be
associated with certainty factors.

Probabilistic Rules

We will deal with the implementation of certainty factors first. The basic idea is quite straightforward.
Normally, search rules construed as inference rules have been of the form:

[<conclusion> <bit-of-evidence-1> <bit-of-evidence-2> ...]

A rule of this type states that the <conclusion> is justified if we can show the existence of <bit-of-
evidence-1>, <bit-of-evidence-2> etc. As far as the search function is concerned, the rule is just a search
rule: the <conclusion> goal can be satisfied provided that all the <bit-of-evidence> subgoals can be
satisfied.

An obvious way to implement inference processes which are not hard-and-fast is to provide some means
of associating certainty factors with inference rules. A certainty factor might just be a probability value,
i.e. a real number between 0 and 1. In this case, an inference rule associated with a given certainty factor
C has a different reading to the ordinary inference rule. We say that the probability of the <conclusion>
being justified given the existence of all the bits of evidence is C.

Unfortunately, this does not quite solve the problem. Recall that the process of showing that the bits of
evidence exist will involve satisfying all the <bit-of-evidence> subgoals. These subgoals may
correspond to facts and in this case they are just satisfied automatically. On the other hand they may
only be satisfiable by invoking other inference rules. This raises the question of what should happen if
the other inference rules are also probabilistic. In this case, the <bit-of-evidence> subgoals can

Page 245

only be satisfied with a given level of certainty.

The problem is actually a very general one. It can be stated as follows. Given a set of assumptions, all of
which are associated with a given level of certainty, and which, in combination, justify the drawing of a
given conclusion, how can we combine together the certainties of the assumptions so as to assign a
certainty to the conclusion?

Basic Probability Theory

Basic probability theory seems to provide an answer. It states that if two arbitrary events[1] A and B are
associated with given levels of probability P(A) and P(B), the probability of A and B occurring together
is just P(A) x P(B).

Let us put this in the context of concrete example. Imagine that we have an inference rule of the form:

 [[wind none] 0.3 [pressure high] [clouds altostratus]]

This states that the probability of the conclusion [wind none] (i.e. "no wind") given the fact that there are
alto-stratus clouds and the pressure is high is exactly 0.3. Note that the rule is of the usual search-rule
form except for the presence of the certainty factor which appears between the goal and the subgoals,
and the fact that goals are list objects rather than word objects.

Let us imagine that we have found that the [pressure high] subgoal can be satisfied with a certainty of
0.6 and that the [clouds altostratus] subgoal can be satisfied with a certainty of 0.5. Seemingly,
probability theory dictates that the probability of the [wind none] conclusion being justified is:

0.5 x0.6 x0.3

since the probability of both subgoals together is just the product of the corresponding certainties.

What is rather unfortunate is the fact that we are left drawing the conclusion [wind none] with an
extremely low level of certainty, namely 0.09. This seems extremely low given the fact that we are fairly
certain that there is high pressure and fairly certain that the clouds are alto-stratus.

In fact, this way of combining together certainty factors is quite inappropriate. The whole point of the
given inference rule is that the combination of high pressure and alto-stratus is a special case which
should lead to the conclusion [no wind]. Thus, straightforward application of the product rule from
probability theory is

[1] In probability theory an "event" can be anything with which we can associate a given probability. Thus,
events can correspond to bits of evidence.

Page 246

inappropriate. The product rule works on the basis that there is nothing special about the conjunction of
the pieces of evidence.[2]

Fuzzy Set Theory

A strand of probability theory attributable to Zadeh, called Fuzzy Set theory (Zadeh 1965), provides a
solution.[3] Fuzzy set theory states that, for ordinary conjunctive inference rules (i.e. the sort of rule we
have considered so far), the certainty of a given conclusion is just the minimum of the certainties of the
premises (i.e. the <bit-of-evidence subgoals). This seems to make reasonably good intuitive sense. If our
certainty that the pressure is high is 0.6, and our certainty that the clouds are alto-stratus is 0.5, then it
seems acceptable to say that our certainty that the pressure is high and that the clouds are alto-stratus is
the lesser of the two figures, namely 0.5.

Fuzzy set theory also provides a way of combining together a set of certainties for the same conclusion.
This is essential if we want to find out what the overall certainty of a conclusion is. Recall, that in the
usual search scenario, there will be a range of ways of deriving a certain conclusion. In a simple case,
these will just correspond to the search rules which feature the given conclusion, e.g.

[[westerly wind] [low pressure] [unstable weather]]
[[westerly wind] [warm front]]

If we are only interested in testing to see whether the conclusion can be proved, then any way of
deriving it is sufficient. But where our rules are probabilistic then we can never prove a conclusion
completely. We can only show that it has a certain degree of certainty (probability of being true). So, if
there are N ways of deriving a conclusion deriving it one way gives it a certain degree of certainty,
deriving it another way gives it an extra degree of certainty, and so on. The question is, how can we add
up all these probabilities to work out what the overall certainty of the conclusion is?

Shortliffe, in his work on the MYCIN system (Shortliffe, 1976), proposed the following method. If H is
a conclusion which has previously been shown to have certainty C1, then, if we find a way of showing
that it also has a certainty C2 (using a different proof tree), then the overall certainty of H is:

C1 + C2 - (C1 x C2) if C1 and C2 are both positive

C1 + C2 + (C1 x C2) if C1 and C2 are both negative

(C1 + C2) /(1 - min(abs(C1), abs(C2))) if C1 and C2 have different signs

[2] Technically, it assumes that they are statistically independent.
[3] Fuzzy Set theory is a generalisation of Boolean logic.

Page 247

These rules seem to provide the sort of effect we are looking for. For example in the case where we have
derived two different levels of (positive) certainty for a given conclusion we would like to somehow add
them together so as to get an increased level overall. But we cannot just add them together. In general
this will give us a probability that exceeds 1. Shortliffe's first rule above allows them to be added
together in a way which will increase the level of certainty but not cause it to exceed 1. The other rules
take care of the other cases in a similar way.

MYCIN-Like Search

How can we implement these ideas about certainty factors in the search function? As usual there are a
number of possibilities; we will look at a very simple approach. First of all, let us set up a rulebase
which captures reasoning processes related to the domain of weather-prediction.[4] The rules will all be
probabilistic; that is to say all rules will be associated with a given certainty factor. The certainty factor
will indicate the probability of the conclusion given the premises (i.e. bits of evidence):

 [[[season winter] 1 [month december]]
 [[season winter] 1 [month january]]
 [[season winter] 0.9 [month february]]
 [[season spring] 0.7 [month march]]
 [[season spring] 0.9 [month april]]
 [[season spring] 0.6 [month may]]
 [[season summer] 0.8 [month june]]
 [[season summer] 1 [month july]]
 [[season summer] 1 [month august]]
 [[season autumn] 0.8 [month september]]
 [[season autumn] 0.7 [month october]]
 [[season autumn] 0.6 [month november]]
 [[pressure high] 0.6 [weather_yesterday good]
 [stability_of_the_weather stable]]
 [[pressure high] 0.9 [clouds high]]
 [[pressure high] 0.9 [clouds none]]
 [[temp cold] 0.9 [season winter] [pressure high]]
 [[temp cold] 0.6 [season summer] [pressure low]]
 [[wind none] 0.3 [pressure high]]
 [[wind east] 0.3 [pressure high]]
 [[wind west] 0.6 [pressure low]]
 [[temp warm] 0.8 [wind south]]

[4] The rulebase is a slightly modified version of the one provided in Chapter 3 of Ramsay and Barrett (1987).

Page 248

 [[temp cold] 0.9 [wind east] [clouds none] [season winter]]
 [[temp warm] 0.9 [wind none] [pressure high]
 [season summer]]
 [[rain yes] 0.4 [whereabouts west]]
 [[temp cold] 0.4 [whereabouts north]]
 [[rain no] 0.7 [whereabouts east]]
 [[rain yes] 0.3 [season spring] [clouds low]]
 [[rain yes] 0.3 [season spring] [clouds high]]
 [[temp warm] 0.7 [season summer]]
 [[rain yes] 0.2 [season summer] [temp warm]]
 [[rain yes] 0.6 [pressure low]]
 [[rain yes] 0.6 [wind west]]
 [[rain yes] 0.8 [clouds low]]
 [[temp cold] 0.8 [season autumn] [clouds none]]
 [[temp cold] 0.7 [season winter]]
] -> rulebase7;

If you examine this rulebase carefully, you will find that the rules seem to make sense. The second-to-
last rule, for example, captures the proposition that the probability of it being cold, given the fact that it
is autumn and the fact that there are no clouds, is quite high (0.8). Many other propositions are captured
by this rulebase, e.g. the fact that it rains more in the west, the fact that it is colder in the north and the
fact that high pressure and no wind are usually associated with warm weather.

In setting up this rulebase we have departed from the format followed in previous chapters. Rules are of
the form:

[<goal> <certainty> <subgoal1> <subgoal2> ...]

rather than of the form:

[<goal> <subgoal1> <subgoal2> ...]

To take account of this we need to update our backwards search function and, of course, the way in
which we change the function must reflect the certainty-combination rules provided by Fuzzy set theory.
If we want the function to implement a search process similar to that implemented by the MYCIN
program, we also need to arrange things such that in the case where it is unable to find a fact it is
looking for, it asks the user a question. It will be easier if we address the latter task first.

We need to change the function so that, given any particular goal, it checks the rulebase to see if there
are any rules (or facts) which might satisfy that goal, and if not, asks the user whether the goal can be
assumed to be "given by assumption". This involves calling the database function "present" to check
whether the desired entry is present and then, if it is not, calling the interactive function "yesno". The
new version

Page 249

of the function is as shown in Figure 9-1.

However the function terminates (like previous versions of backwards search) when it finds its first
solution. It does not seek out all solutions and join them together as multiple evidence for the goal.

Note also that in the case where the rulebase contains no rule which will enable the satisfaction of the
given goal, the function yesno is called. In effect, the function asks the user whether the goal can be
assumed to be satisfied. If the user responds with a "yes", the yesno function returns <true> and the
overall result is a list with the word USER_RESPONSE substituted in for the solution tree.

Testing the search function on the goal [rain yes] produces the following behaviour (note that
words typed after the ? prompt are input from the user):

<><><><><><><><><><><><>

/* backwards_search_tree1 takes a list of goals and produces a list of
solution trees or false if no solution can be found */

 define backwards_search_tree1(goals) -> tree;
 vars goal subgoals other_goals first_tree other_trees;
 if goals = [] then [] -> tree; return
 else goals --> [?goal ??other_goals];
 if present([^goal ==]) then
 foreach [^goal = ??subgoals] do
 backwards_search_tree1(subgoals) -> first_tree;
 if islist(first_tree)
 then backwards_search_tree1 (other_goals)
 -> other_trees;
 if islist(other_trees)
 then [[^goal ^^first_tree] ^^other_trees]
 -> tree; return
 endif
 endif
 endforeach;
 elseif yesno([is ^(goal(2)) the value of ^(goal(1))]) then
 backwards_search_tree1(other_goals) -> other_trees;
 if islist(other_trees)
 then [[^goal [[USER RESPONSE]]] ^^other_trees] -> tree;
 return
 endif
 endif;
 endif;
 false -> tree

 enddefine;

Figure 9-1
Building solution trees with input from the user

Page 250

 vars tree;
 rulebase7 -> database;
 trace backwards_search_tree1;

 backwards_search_tree1([[rain yes]]) -> tree;

 > backwards_search_tree1 [[rain yes]]
 !> backwards_search_tree1 [[whereabouts west]]
 ** [is west the value of whereabouts]
 ? no
 !< backwards_search_tree1 <false>
 !> backwards_search_tree1 [[season spring] [clouds low]]
 !!> backwards_search_tree1 [[month march]]
 ** [is march the value of month]
 ? no
 !!< backwards_search_tree1 <false>
 !!> backwards_search_tree1 [[month april]]
 ** [is april the value of month]
 ? yes
 !!!> backwards_search_tree1 []
 !!!< backwards_search_tree1 []
 !!< backwards_search_tree1 [[[month april] [[USER RESPONSE]]]]
 !!> backwards_search_tree1 [[clouds low]]
 ** [is low the value of clouds]
 ? yes
 !!!> backwards_search_tree1 []
 !!!< backwards_search_tree1 []
 !!< backwards_search_tree1 [[[clouds low] [[USER RESPONSE]]]]
 !< backwards_search_tree1 [[[season spring] [[month april]
 [[USER RESPONSE]]]] [[clouds low] [[USER RESPONSE]]]]
 !> backwards_search_tree1 []
 !< backwards_search_tree1 []
 < backwards_search_tree1 [[[rain yes] [[season spring]
 [[month april] [[USER RESPONSE]]]] [[clouds low]
 [[USER RESPONSE]]]]

We assigned the result of this call into the global variable tree. Thus we can get the tree printed out
using the showtree command, see Figure 9-2.

In a liberal reading of this solution tree we might say that the search function showed that it is raining by
showing that it is springtime and the clouds are low. It showed that it is springtime by showing that it is
April; and it showed that it is April

Page 251

Figure 9-2
A solution tree

and the clouds are low by asking the user[5].

Implementing Certainty-Factors

We have now shown that the backwards search function can be adapted so as to handle the case where
facts can be extracted either directly from the rulebase itself or indirectly from the user. Attention can
now turn to the second modification required. This involves arranging things such that the function can
combine certainty values together in a manner which reflects the dictates of Fuzzy set theory (and the
implementation of the MYCIN program).

The approach here involves changing the function such that instead of returning a solution tree (proof
tree) for the input goals (conclusions), it returns a certainty value for them. In the case where the
function obtains one certainty value c1 for the subgoals of the current goal, and another c2 for all the
remaining goals, it should simply multiply c1 by the certainty factor for the search rule in question and
then

[5] We define root to make showtree work nicely

 define root (tree) -> root_name;
 vars property value subtrees;
 tree --> [[?property ?value] ??subtrees];
 property >< ' ' >< value -> root_name
 enddefine;

Page 252

return the minimum of the result and c2. This will lead to a correct application of the Fuzzy set theory
formulae.

Obviously, in the case where a goal is satisfied by querying the user, the goal can be assumed to have
been satisfied with perfect certainty, i.e. with a certainty value of 1. The overall certainty value to be
returned is therefore just the c2 value, i.e. the certainty for the remaining goals. The new definition is
shown in Figure 9-3.

Testing this function on the same goal leads to the following behaviour. Note that the user responses are
identical:

trace backwards_search_value;

<><><><><><><><><><><><>

/* backward_search_value takes a list of goals and returns the certainty
factor derived from the first successful solution which it finds for each
goal */

 define backwards_search_value(goals) -> certainty;
 vars goal subgoals other_goals c c1 c2;
 if goals = [] then 1 -> certainty; return
 else goals --> [?goal ??other_goals];
 if present([^goal ==]) then
 foreach [^goal ?c ??subgoals] do
 backwards_search_value (subgoals) -> c1;
 if isnumber(c1)
 then backwards_search_value(other_goals) -> c2;
 if isnumber(c2)
 then min(c * c1, c2) -> certainty;
 return
 endif
 endif
 endforeach;

 elseif yesno([is ^(goal(2)) the value of ^(goal(1))]) then
 backwards_search_value(other_goals) -> c2;
 if isnumber(c2)
 then c2 -> certainty;
 return
 endif
 endif;
 endif;
 false -> certainty
 enddefine;

Figure 9-3
Computing the certainty value of a solution tree

Page 253

 backwards_search_value([[rain yes]]) ==>
 > backwards_search_value [[rain yes]]
 !> backwards_search_value [[whereabouts west]]
 ** [is west the value of whereabouts]
 ? no
 !< backwards_search_value <false>
 !> backwards_search_value [[season spring] [clouds low]]
 !!> backwards_search_value [[month march]]
 ** [is march the value of month]
 ? no
 !!< backwards_search_value <false>
 !!> backwards_search_value [[month april]]
 ** [is april the value of month]
 ? yes
 !!!> backwards_search_value []
 !!!< backwards_search_value 1
 !!< backwards_search_value 1
 !> backwards_search_value [[clouds low]]
 ** [is low the value of clouds]
 ? yes
 !!!> backwards_search_value []
 !!!< backwards_search_value 1
 !!< backwards_search_value 1
 !< backwards_search_value 0.9
 !> backwards_search_value []
 !< backwards_search_value 1
 < backwards_search_value 0.27
 ** 0.27

Thus, the [rain yes] conclusion is derived in this solution with a certainty of 0.27, i.e. with a fairly
low degree of certainty given the evidence provided.

But the above changes still return the certainty factor for the first solution found. Further modification is
required to ensure that all solutions are found and their certainty factors combined as described earlier.
In this case we have to make some decision about negative evidence and we have arranged that the value
-1 is returned as the certainty factor if the user answers ''no" when asked a factual question. An
implication of this is that each time we fail to prove a goal, this failure in itself reduces our certainty of
the goal. We could make failure more neutral by returning the value 0 if the user answers "no" to a
question. Another implication is that if we can prove the goal by a variety of routes, this increases our
certainty of the goal. A second change that has to be made is to store the user's answer to each question
because the same question should not be asked more than once (where it is required by more than one
solution tree). This is achieved by using the built-in

Page 254

procedure add to add the goal asked about to the database together with 1 if the answer was "yes" or -1
if the answer was "no", e.g. [[month april] 1]. This has the same form as the other rules in the
database except that there are no subgoals, i.e. it is a fact.

Running backwards_search_values gives the following behaviour:

 rulebase7 -> database;

 backwards_search_values([[rain yes]]) ==>
 ** [is west the value of whereabouts]
 ? yes
 ** [is march the value of month]
 ? no
 ** [is low the value of clouds]
 ? yes
 ** [is april the value of month]
 ? yes
 ** [is may the value of month]
 ? no
 ** [is high the value of clouds]
 ? no
 ** [is june the value of month]
 ? no
 ** [is south the value of wind]
 ? yes
 ** [is good the value of weather_yesterday]
 ? yes
 ** [is stable the value of stability_of_the_weather]
 ? yes
 ** [is none the value of clouds]
 ? no

 ** [is july the value of month]
 ? no
 ** [is august the value of month]
 ? no
 ** [is low the value of pressure]
 ? no
 ** 0.204799

 database ==>
 ** [[[pressure low] -1] /* STORED ANSWERS TO */
 [[month august] -1] /* QUESTIONS */
 [[month july] -1]

Page 255

<><><><><><><><><><><><>

/* backwards_search_values takes a list of goals and returns the overall
certainty that they are all true by exploring the whole search space.
Negative answers score -1. */

 define backwards_search_values(goals) -> certainty;
 vars goal subgoals other_goals boolean c c1 c2;
 if goals = [] then 1 -> certainty
 else goals --> [?goal ??other_goals];
 if present([^goal ==]) then
 0 -> certainty;
 foreach [^goal ?c ??subgoals] do
 backwards_search_values (subgoals) -> c1;
 backwards_search_values(other_goals) -> c2;
 combine(min(c * c1, c2),certainty) -> certainty;
 endforeach;
 else yesno([is ^(goal(2)) the value of ^(goal(1))])
 -> boolean;
 if boolean then 1 -> c1 else -1 -> c1 endif;
 add([^goal ^c1]);
 backwards_search_values(other_goals) -> c2;
 min(c1, c2) -> certainty;
 endif;
 endif;
 enddefine;

/* combine takes two certainty values each of which refers to the same goal
and computes their combined effect as per the rules given in the text. */

 define combine(c1,c2) -> certainty;
 if c1 >= 0 and c2 >= 0
 then c1 + c2 - (c1 * c2) -> certainty
 elseif c1 < 0 and c2 < 0
 then c1 + c2 + (c1 * c2) -> certainty
 else (1 - min(abs(c1),abs(c2))) -> certainty;
 unless certainty = 0
 then (c1 + c2)/certainty -> certainty
 endunless
 endif
 enddefine;

Figure 9-4
Computing the the certainty value from the whole search tree

 [[clouds none] -1]
 [[stability_of_the_weather stable] 1]
 [[weather_yesterday good] 1]

Page 256

 [[wind south] 1]
 [[month june] -1]
 [[clouds high] -1]
 [[month may] -1]
 [[month april] 1]
 [[clouds low] 1]
 [[month march] -1]
 [[whereabouts west] 1]
 [[season winter] 1 [month december]]
 [[season winter] 1 [month january]]

 /* AND SO ON, AS IN THE ORIGINAL RULEBASE */

Notice that the system explores all ways of establishing [rain yes]. Notice also that it has no way (in the
system as given) of inferring that if the month is April then the month is not August! See, e.g. Ramsay
and Barrett (1987) on how to deal with this.

Forwards or Backwards

The version of the search function developed in this chapter is similar, in its behaviour, to the AI system
called MYCIN. MYCIN is usually referred to as an expert system on the grounds that the way in which
it carries out the search process roughly approximates the way in which a real human expert might go
about constructing a medical diagnosis. The inference rules employed are probabilistic and in the case
where some piece of evidence is required but not given as a fact, the program just the asks the user
whether it can be assumed to exist.

The search strategy employed by MYCIN (and the function constructed above) employs backwards
search, i.e. reasoning backwards from goals to known facts. This is inevitable given the assumption that
all facts are provided directly by the user in query responses. If there are no facts in the rulebase, there is
no basis on which a forwards search can be initiated. However, although the interactive behaviour of
MYCIN is incompatible with forwards search, the probabilistic aspect of its behaviour is not. It is quite
possible for a forwards search function to implement the Fuzzy set rules in exactly the same way as the
backwards function.

An interesting intermediate strategy involves search which alternates between forwards behaviour and
backwards behaviour. This sort of system might initially accept some basic facts (e.g. symptoms). It
would then work bottom-up until some hypotheses have been developed. From these hypotheses it could
work top-down so as to generate a new set of primitive goals which can be presented as queries to the
patient. The patient's answers constitute satisfaction of the primitive goals; thus another phase of bottom-
up search can begin. Eventually, this bi-directional strategy will tend to isolate a single high-level
conclusion representing a diagnosis (if a single

Page 257

<><><><><><><><><><><><>

/* rule(+Rule)
rule([<Successor>, <Certainty>, <Predecessor(s)>]) */

 rule([[season, winter], 1, [month, december]]).
 rule([[season, winter], 1, [month, january]]).
 rule([[season, winter], 0.9, [month, february]]).
 rule([[season, spring], 0.7, [month, march]]).
 rule([[season, spring], 0.9, [month, april]]).
 rule([[season, spring], 0.6, [month, may]]).
 rule([[season, summer], 0.8, [month, june]]).
 rule([[season, summer], 1, [month, july]]).
 rule([[season, summer], 1, [month, august]]).
 rule([[season, autumn], 0.8, [month, september]]).
 rule([[season, autumn], 0.7, [month, october]]).
 rule([[season, autumn], 0.6, [month, november]]).
 rule([[pressure, high], 0.6,
 [weather_yesterday, good], [stability_of_the_weather, stable]]).
 rule([[pressure, high], 0.9, [clouds, high]]).
 rule([[pressure, high], 0.9, [clouds, none]]).
 rule([[temp, cold], 0.9, [season, winter], [pressure, high]]).
 rule([[temp, cold], 0.6, [season, summer], [pressure, low]]).
 rule([[wind, none], 0.3, [pressure, high]]).

 rule([[wind, east], 0.3, [pressure, high]]).
 rule([[wind, west], 0.6, [pressure, low]]).
 rule([[temp, warm], 0.8, [wind, south]]).
 rule([[temp, cold], 0.9,
 [wind, east], [clouds, none], [season, winter]]).
 rule([[temp, warm], 0.9,
 [wind, none], [pressure, high], [season, summer]]).
 rule([[rain, yes], 0.4, [whereabouts, west]]).
 rule([[temp, cold], 0.4, [whereabouts, north]]).
 rule([[rain, no], 0.7, [whereabouts, east]]).
 rule([[rain, yes], 0.3, [season, spring], [clouds, low]]).
 rule([[rain, yes], 0.3, [season, spring], [clouds, high]]).
 rule([[temp, warm], 0.7, [season, summer]]).
 rule([[rain, yes], 0.2, [season, summer], [temp, warm]]).
 rule([[rain, yes], 0.6, [pressure, low]]).
 rule([[rain, yes], 0.6, [wind, west]]).
 rule([[rain, yes], 0.8, [clouds, low]]).
 rule([[temp, cold], 0.8, [season, autumn], [clouds, none]]).
 rule([[temp, cold], 0.7, [season, winter]]).

Figure 9-5
The weather rules in Prolog

Page 258

diagnosis only is wanted).

This strategy seems to combine the good-features of backwards search with the good features of
forwards search and in fact, there is a well-known expert system called "Internist" which exploits it. The
system diagnoses diseases of the internal organs like heart, lungs, and liver.

Probabilistic Search in Prolog

Only a small change is needed to the predicate backwards_search_tree/2 introduced in Chapter
6 to take account of the new rule format which includes a certainty value. The rules themselves are very
similar to those in Chapter 6 except for the inclusion of the certainty value, see Figure 9-5.

Augmenting backwards_search_tree/2 to return a certainty value rather than a tree is also
straightforward except that some of the arithmetic functions available in POP-11 have to be defined by
hand in POPLOG Prolog, see Figure 9-6. This time backwards_search_tree/2 has three cases to
deal with. The first clause represents the stopping condition that when there is an empty list of goals
there is an empty tree. The second clause is similar to the previous definitions and deals with the case
where there is a rule for the first of the goals. The third clause deals with the case where there is no rule
for the goal and the user should be asked directly. Function yesno/2 prints its first argument and
returns in its second argument a list of whatever the user types in response:

 ?- yesno([month, april], Answer).
 is april the value of month
 ? yes
 Answer = [yes] ? ;
 no

 ?- yesno([jack, sprat], [no]).
 is sprat the value of jack
 ? no
 yes

Running backwards_search_tree/2 produces the same behaviour as in POP-11:

 ?- backwards_search_tree([[rain, yes]], Tree).
 is west the value of whereabouts
 ? no
 is march the value of month
 ? no
 is april the value of month

Page 259

<><><><><><><><><><><><>

/* backwards_search_tree(+Goals, -Trees).
backwards_search_tree takes a list of goals and constructs a list of
search trees. Where no rule can be found the user is asked about the goal.
The first solution found for each goal is returned. */

 backwards_search_tree([], []).

 backwards_search_tree([Goal | Goals], [[Goal | Tree] | Trees]) :-
 rule([Goal, Certainty | Subgoals]),
 backwards_search_tree(Subgoals, Tree),
 backwards_search_tree(Goals, Trees).

 backwards_search_tree([Goal | Goals],
 [[Goal, 'USER_RESPONSE'] | Trees]) :-
 yesno(Goal, [yes]),
 backwards_search_tree(Goals, Trees).

/* yesno(+Goal, ?Answer)
yesno prints a question constructed from the Goal and returns the user's
answer or matches it against the desired answer. */

 :- library(readline).

 yesno([Property, Value], Answer) :-
 write('is '),
 write (Value),
 write(' the value of '),
 write(Property), nl,
 readline(Answer).

Figure 9-6
Finding a solution tree in Prolog

Page 260

<><><><><><><><><><><><>

/* backwards_search_value(+Goals, -Certainty).
backwards_search_value takes a list of goals and returns the certainty
of them all being true based on taking the minimum of the certainties
of a set of goals as the certainty of the set. */

 backwards_search_value ([], 1).

 backwards_search_value([Goal | Goals], Certainty) :-
 rule([Goal, C | Subgoals]),
 backwards_search_value(Subgoals, C1),
 backwards_search_value(Goals, C2),
 C here is C * C1,
 min(C_here, C2, Certainty).

 backwards_search_value([Goal | Goals], C2) :-
 yesno(Goal, [yes]),
 backwards_search_value(Goals, C2).

/* min(+X, +Y, -Z).
min returns in Z the minimum of X and Y */

 min(X, Y, X) :-
 X =< Y, !.
 min(X, Y, Y).

Figure 9-7
Computing the certainty value of a solution tree in Prolog

 ? yes
 is low the value of clouds
 ? yes
 Tree = [[[rain, yes], [[season, spring],
 [[month, april], USER_RESPONSE]],
 [[clouds, low], USER_RESPONSE]]] ?
 yes

 ?- backwards_search_value([[rain, yes]], Value).
 is west the value of whereabouts
 ? no
 is march the value of month
 ? no
 is april the value of month
 ? yes
 is low the value of clouds

Page 261

 ? yes
 Value = 0.27 ?
 yes

Extending the procedure to compute the combined certainty of all solutions requires the same extra
facilities as in POP-11, namely a method of working through all the applicable rules and combining their
certainties as well as storing user's answers so that the same question does not get asked twice over. In
POP-11 we used a foreach to loop through the rules. Here we use bagof to generate the list of rules
to be considered and a new predicate backwards_search_or to consider them all, see Figure 9-8.

In many respects this is the same kind of search that was discussed in Chapter 5, namely searching a
game tree using minimaxing. As there, the whole tree is searched below a given point (or at least down
to a given depth) and values from the leaf nodes are fed upwards to combine to give the overall score of
the root node.

Let us demonstrate combine/3. Note that abs/2 was defined in Chapter 4 in connection with the 8-
puzzle:

 ?- combine(0.5, 0.5, K).
 K = 0.75 ? ;
 no

 ?- combine(0, 1, K).
 K=0 ?;
 no

In each case combine/3 returns only a single solution because of the cuts.

The predicate backwards_search_value/2 considers the whole solution space, and so searches
an AND/OR tree. The rule for combining certainties at the AND nodes is to take the minimum of the
contributing values. The rule for combining certainties at the OR nodes is via the predicate combine/3
called within backwards_search_or/2. Running backwards_search_values/2 gives
largely the same behaviour as the POP-11 version, though some of the questions are asked in a slightly
different order.

We use augment/3 to add to the database of rules once a question has been asked. This means that if
you rerun the program it may make use of rules asserted as part of the previous run unless the original
ruleset is recompiled before restarting. Unlike the POP-11 procedure of the same name, yesno/2 does
not loop until the user either types "yes", "no", "y" or "n". This means that mistyping exactly either "yes"
or "no" will produce unexpected certainty values and questions:

 ?- backwards_search_values([[rain, yes]], V).
 is west the value of whereabouts

Page 262

<><><><><><><><><><><><>

/* backwards_search_values(+Goals, -Certainty).
backwards_search_values takes a list of goals and computes the overall
certainty that the goals are all true via all possible paths. paths which
fail reduce the overall certainty. */

 backwards_search_values ([], 1).

 backwards_search_values([Goal | Goals], Certainty) :-
 bagof([C | Subgoals], rule([Goal, C | Subgoals]), List),
 backwards_search_or (List, C1),
 backwards search values(Goals, C2),
 min(C1, C2, Certainty).

 backwards_search_values([Goal | Goals], Certainty) :-
 yesno(Goal, Answer),
 augment(Goal, Answer, C1),
 backwards search values (Goals, C2),
 min(C1, C2, Certainty).

/* backwards_search_or(+Bag_of_subgoals, -Certainty)
backwards_search_or takes a bag of alternative subgoals each associated
with a certainty and computes the combined certainty of the set. */

 backwards_search_or([], 0).

 backwards_search_or([[C | Subgoals] | Others], Certainty) :-
 backwards_search_values(Subgoals, C1),
 backwards_search_or(Others, C2),
 C_here is C * C1,
 combine(C_here, C2, Certainty).

Figure 9-8
Computing the certainty value of the search space

Page 263

<><><><><><><><><><><><>

/* combine(+C1, +C2, -Certainty)
combine computes certainty from C1 and C2 as for an OR node. */

 combine(C1, C2, Certainty) :-
 C1 >= 0, C2 >= 0, !,
 Certainty is C1 + C2 - (C1 * C2).

 combine(C1, C2, Certainty) :-
 C1 < 0, C2 < 0, !,
 Certainty is C1 + C2 + (C1 * C2).

 combine(C1, C2, 0) :-
 abs(C1, C11), abs(C2, C22),
 min(C11, C22, 1), !.

 combine(C1, C2, Certainty) :-
 abs(C1, C11), abs(C2, C22),
 min(C11, C22, C3),
 Certainty is (C1 + C2)/(1 - C3).

/* augment(+Goal, +Answer, -Value)
augment returns the numerical value of answer and also adds the goal
with its numerical value to the database. The new database entries
are similar in form to existing rules, except that they have no
subgoals. */

 augment(Goal, [yes], 1) :-
 asserta(rule([Goal, 1])).

 augment(Goal, [no], -1) :-
 asserta(rule([Goal, -1])).

Figure 9-9
Computing certainty values in Prolog

 ? yes
 is march the value of month
 ? no
 is april the value of month
 ? yes
 is may the value of month
 ? no
 is low the value of clouds
 ? yes
 is high the value of clouds

Page 264

 ? no
 is june the value of month
 ? no
 is july the value of month
 ? no
 is august the value of month
 ? no
 is south the value of wind
 ? yes
 is good the value of weather_yesterday
 ? yes
 is stable the value of stability_of_the_weather
 ? yes
 is none the value of clouds
 ? no
 is low the value of pressure
 ? no
 V = 0.204799 ?
 yes

 ?- listing(rule).
 rule([[pressure, low], -1]). /* HERE ARE THE FACTS */
 rule([[clouds, none], -1]). /* THAT HAVE BEEN ADDED */
 rule([[stability_of_the_weather, stable], 1]). /* AS A RESULT */
 rule([[weather_yesterday, good], 1]). /* OF THE USER'S ANSWERS */
 rule([[wind, south], 1]).
 rule([[month, august], -1]).
 rule([[month, july], -1]).
 rule([[month, june], -1]).
 rule([[clouds, high], -1]).
 rule([[clouds, low], 1]).
 rule([[month, may], -1]).
 rule([[month, april], 1]).
 rule([[month, march], -1]).
 rule([[whereabouts, west], 1]).

 rule([[season, winter], 1, [month, december]]).
 rule([[season, winter], 1, [month, january]]).

 /* AND SO ON, AS IN THE ORIGINAL RULES */

Page 265

Reading

The main reference for MYCIN is (Shortliffe, 1976). Chapter 3 or Ramsay and Barrett (1987) provides a
discussion of, and a POP-11 implementation for a MYCIN-like system. Charniak and McDermott (1985,
Chapter 8) provide an excellent discussion of ways of dealing with uncertainty in expert systems.
Volume 2 of the AI handbook (Barr and Feigenbaum, 1981) covers most of the more important expert
systems. Forsyth (1984, pp. 51-62) discusses the processing of certainty factors.

Bratko (1990) describes a more complex expert system mechanism in Prolog including the possibility of
answering ''why" and "how" questions.

Exercises

1. Write a set of probabilistic rules which would enable the "backwards_search" function provided
above to diagnose bicycle faults. The rules will need to be set up so as to capture relationships between
faults and symptoms, e.g.

[[fault chain-off] 0.8 [pedals spinning][back-wheel jammed]]

Define a function called "diagnose_fault" which will take a list of symptoms and produce a list of
possible diagnoses with their associated certainties.

2. Change the value of an answer "no" from -1 to 0 in backwards_search_values and see what
effect it has.

3. Augment backwards_search_values and/or the rulebase so that answering yes to one question
about which month it is automatically excludes the other possibilities (and, e.g. agreeing that the clouds
are "high" excludes them being "low").

4. Compare the programs to compute the minimax value of a node with the programs given in this
chapter to compute the certainty value of a node.

5. Write a program to draw the AND/OR search tree defined by the weather rules.

Page 267

10
Concept Learning (Description Search)

Introduction

We have seen that, in general, search is a process which tries to link up goals with facts. In forwards search,
the search function works forwards from the set of facts looking for the set of goals. In backwards search,
the search function works backwards from the goals looking for the supporting facts. Although, normally,
both the goals and the facts are given we have seen in the previous chapter that in the case where we
construe goals as conclusions and facts as premises it is sometimes advantageous to make the search
function generate the goals and/or the facts. Forwards search can be used to discover which high-level
conclusions can be drawn from the given set of facts and backwards search can be used to see which sets of
facts might enable the drawing of given conclusions.

The latter process (generating facts by searching backwards from goals) has a very useful application
outside the domain of expert reasoning. To understand this application we need to come to terms with yet
another way of construing the goals and facts which make up search rules. We have to construe goals and
facts as names of properties or features. In this construal, goals always correspond to higher-level (i.e.
more abstract) features while facts will correspond to lower-level (i.e. more concrete) features. Search rules
will simply state that a given higher-level feature subsumes some given lower-level features.[1]

Consider the following rulebase:

[[polygon rectangle]
[polygon triangle]

[1] Note that from here on we will use the word "feature" interchangeably with "property".

Page 268

[triangle equilateral_triangle]
[triangle right_angled_triangle]]

In the normal construal we would read the first search rule as stating that the goal "polygon" can be
satisfied if the subgoal "rectangle" can be satisfied. However, in the new construal we say that the first
search rule states that the ''polygon" feature subsumes the "rectangle" feature. We read the last search rule
as stating that the "triangle" feature subsumes the "right_angled_triangle" feature. Moreover, since there are
no rules in this rulebase which have "right_angled_triangle" appearing as the first element we assume that
this feature is a concrete feature which does not subsume any lower-level feature.

Let us imagine that we have a version of the backwards search function which takes in a list of goals and
generates the sets of facts which would enable the goals to be satisfied. If the rulebase contains rules
relating higher-level features to lower-level features then our new search function will, effectively, take in a
list of higher-level features and return all the different sets of concrete features which are compatible with
(i.e. subsumed by) the set of higher-level features. In the case of the rulebase above, if we give the search
function the input:

[polygon]

we would expect the output:

[[equilateral_triangle]
[right_angled_triangle]
[rectangle]]

Let us make the assumption that a set of concrete features is a description of a specific object, namely the
object which has the given concrete features. In this case a single set of concrete features identifies a
specific object and N sets of concrete features collectively identify a set of objects. Given our new search
function, we can generate sets of concrete features from a set of higher-level features. This means that any
set of high-level features constitutes, in effect, a description which deterministically identifies a set of
objects. For clarity, we will use the term primitive description to refer to a description which identifies a
single object.

All this is interesting for two reasons. Firstly, descriptions which identify sets of objects are known in logic
as intensional descriptions. The set of objects identified by an intensional description is sometimes called
the extension of the description. In the framework we are envisaging, the ordinary backwards search
function provides an explicit computational link between intensional descriptions and their corresponding
extensions.

But the real reason to be interested in this new way of construing the rulebase is that it provides a way of
making a link between search processes and one of the main

Page 269

mechanisms which has been developed in AI for concept learning. This mechanism performs a task known
as learning from examples. This involves learning a given concept from a sequence of primitive
descriptions some of which describe things which are examples of the concept and some of which describe
things which are not examples of the concept.

The mechanism is said to "learn" a concept but what it actually does is try to construct a definition of the
concept in the form of an intensional description. Initially, the mechanism just constructs an "empty"
description and then, every time it receives a new example (positive or negative), it finds the most specific
(and most general) description whose extension excludes all the negative examples but includes all the
positive ones. Its internal functioning is, in fact, quite complex. However, we can get a very good
understanding of it without going very far beyond the simple backwards search function envisaged in
earlier chapters.

Generalisation Hierarchies

Below, we have a rulebase in which the goals and facts are easily construed as features. The first rule in the
rulebase says that the "object" feature subsumes the "colour" feature and the "shape" feature (i.e. if
something is an object then it has a colour and a shape). The second rule states that the "colour" feature
subsumes the ''striped" feature, and so on:

 [[object colour shape]
 [colour striped]
 [colour uniform]
 [uniform primary]
 [uniform pastel]
 [primary red]
 [primary blue]
 [primary yellow]
 [pastel pink]
 [pastel green]
 [pastel grey]
 [shape block]
 [shape sphere]
 [block brick]
 [block wedge]
 [brick cube]
 [brick cuboid]] -> blocks;

Clearly a rule which states that some higher-level feature subsumes some lower-level feature is effectively
saying that the higher-level feature is a generalisation of the

Page 270

lower-level feature. Thus, the AND/OR tree which is expressed in this rulebase is effectively a
generalisation hierarchy in which ancestor nodes are generalisations of descendant nodes.

Generalisation hierarchies have played a very important role in many different aspects of AI. They come in
a variety of forms. Apart from hierarchies which describe generality relationships between features, we can
also have hierarchies which describe generality relationships between types of object. These are normally
called ISA hierarchies on the grounds that links from child to parent nodes show that the child is an
example of the class represented by the parent

So as to make this point a little clearer (and also so as to be able to show exactly what the generalisation
hierarchies represented by the above rulebase actually are) let us write a version of the
backwards_search_tree function which will construct what is, in effect, a list of the solution trees
for a given set of goals. The "solution tree" for a goal which corresponds to the highest level feature, is just
the generalisation hierarchy for that feature. Thus we can construct representations of generalisation
hierarchies just by constructing representations of solution trees. This new function is called
backwards_search_trees; its definition is shown in Figure 10-1. This program is a variant on
AO_search_tree defined in Chapter 6.

This function takes a list as input and iterates over it checking whether each element is a valid goal (using
the familiar call on present). If an item turns out to be a valid goal then a list is returned which features
the goal itself followed by the tree

<><><><><><><><><><><><>

/* backwards_search_trees takes a list of descriptions and returns the
ISA trees below them. */

 define backwards_search_trees (descriptions) -> tree;
 vars goal subgoals;
 [] -> tree;
 for goal in descriptions do
 if present([^goal ==]) then
 [^^tree [^goal
 ^(foreach [^goal ??subgoals] do
 explode(backwards_search_trees (subgoals))
 endforeach)]] -> tree;
 else
 [^^tree ^goal] -> tree;
 endif
 endfor;
 enddefine;

Figure 10-1
Generating a generalisation hierarchy

Page 271

Figure 10-2
Generalisation hierarchy

representations of all the different sets of subgoals (obtained via recursive calls on
backwards_search_trees). If the item turns out not to be a goal then it is just included in the result
list explicitly.

We can use showtree to construct a graphical representation of the AND/OR tree defined above. This
representation is shown in Figure 10-2. It allows one to see the exact form of the implicit generalisation
hierarchies embedded in the rulebase.

Deriving Extensions

A function which generates the extension of an intensional description can also be derived by modifying
the backwards-search mechanism. The function should take, as input, a list of goals (i.e. high-level
features) and return the sets of facts (i.e. concrete features) each of which would suffice to enable the goals
to be satisfied. The construction of this new search function is made a lot easier if we define a function
which simply tests whether a given item corresponds to an abstract feature. The task is identical to testing
whether an item is a goal or not. Thus the function can be defined as in Figure 10-2.

Page 272

Given this definition it is quite easy to write the new version of the backwards search function. The
function uses the matcher (with is_abstract_feature as a restriction procedure) to find the first item
in the list of goals which constitutes an abstract rather than a concrete feature. It then iterates over the
rulebase finding all the rules for the given "goal". Each set of subfeatures found in this way is substituted
into the list of features at the appropriate position and the resulting list is used in a recursive call on the
search function. If none of the items in the list is a valid goal then they must all be concrete features. In this
case the list constitutes a primitive description (i.e. a description of an object) and it is therefore returned
unchanged. The definition is shown in Figure 10-3.

If we call this function by giving it the description [object] it constructs and returns the corresponding
extension:

 backwards_search_objects([object]) =>

<><><><><><><><><><><><>

/* backwards_search_objects takes a description and returns all the
specific objects covered by that description. */

 define backwards_search_objects (description) -> extension;
 vars before after subgoals goal;
 [] -> extension;
 if description matches
 [??before ?goal:is_abstract_feature ??after] then
 foreach [^goal ??subgoals] do
 [^^extension
 ^^(backwards_search_objects ([^^before ^^subgoals ^^after]))
] -> extension;
 endforeach
 else /* ALL PARTS OF THE DESCRIPTION ARE CONCRETE */
 [^description] -> extension
 endif;
 enddefine;

/* is_abstract_feature returns true if its input is an abstract feature,
and false otherwise. */

 define is_abstract_feature(feature) -> boolean;
 present([^feature ==]) -> boolean
 enddefine;

Figure 10-3
Computing the extension of description

Page 273

 ** [[striped cube] [striped cuboid] [striped wedge]
 [striped sphere] [red cube] [red cuboid] [red wedge]
 [red sphere] [blue cube] [blue cuboid] [blue wedge]
 [blue sphere] [yellow cube] [yellow cuboid] [yellow wedge]
 [yellow sphere] [pink cube] [pink cuboid] [pink wedge]
 [pink sphere] [green cube] [green cuboid] [green wedge]
 [green sphere] [grey cube] [grey cuboid] [grey wedge]
 [grey sphere]]

So we see that, given the backwards_search_objects function and the rulebase, the description
[object] effectively identifies the complete set of possible objects in this scenario. The extension of the
description [pastel brick] is much smaller:

 backwards_search_objects ([pastel brick]) ==>

 ** [[pink cube]
 [pink cuboid]
 [green cube]
 [green cuboid]
 [grey cube]
 [grey cuboid]]

If we want to compute the extensions of descriptions in some other scenario we need to set up a new
rulebase. For example, we might set up a rulebase in which the rules specify the way in which lower-level
linguistic objects are examples of higher-level linguistic objects. This rulebase is just the familiar phrase-
structure grammar discussed in Chapter 6:

 [[s np vp]
 [np snp]
 [snp det noun]
 [vp verb np]
 [noun girl]
 [noun man]
 [verb hated]
 [verb moved]
 [det the]
 [det a]] -> grammar4;

The extension of the description [s] is quite large. It includes all possible sentences in the language
described by this grammar:

 grammar4 -> database;

Page 274

<><><><><><><><><><><><>

/* backwards_search_descriptions takes a list of descriptions and returns
all the descriptions that they cover. */

 define backwards_search_descriptions(goals) -> descriptions;
 vars before after subgoals goal;
 [] -> descriptions;
 if goals matches [== ?goal:is_abstract_feature ==]
 then for goal in goals do
 goals --> [??before ^goal ??after];
 foreach [^goal ??subgoals] do
 [^^descriptions
 ^^(backwards_search_descriptions
 ([^^before ^^subgoals ^^after])
)
] -> descriptions;
 endforeach;
 endfor;
 [^goals ^^descriptions] -> descriptions;
 endif;
 enddefine;

Figure 10-4
Generating descriptions by backwards search

 backwards_search_objects([s]) ==>

 ** [[the girl hated the girl]
 [the girl hated the man]
 [the girl hated a girl]
 [the girl hated a man]
 [the girl moved the girl]
 [the girl moved the man]
 [the girl moved a girl]
 [the girl moved a man]
 [the man hated the girl]
 [the man hated the man]
 [the man hated a girl]
 [the man hated a man]
 [the man moved the girl]
 [the man moved the man]
 [the man moved a girl]
 [the man moved a man]
 [a girl hated the girl]

Page 275

 [a girl hated the man]
 [a girl hated a girl]
 [a girl hated a man]
 [a girl moved the girl]
 [a girl moved the man]
 [a girl moved a girl]
 [a girl moved a man]
 [a man hated the girl]
 [a man hated the man]
 [a man hated a girl]
 [a man hated a man]
 [a man moved the girl]
 [a man moved the man]
 [a man moved a girl]
 [a man moved a man]]

Compare the extension of "s" with the more limited extension below:

 backwards_search_objects([det noun verb]) ==>

 ** [[the girl hated]
 [the girl moved]
 [the man hated]
 [the man moved]
 [a girl hated]
 [a girl moved]
 [a man hated]
 [a man moved]]

Quantifying Generality

Recall that, in the current scenario, goals are being construed as components of descriptions and facts are
being construed as components of primitive descriptions. All descriptions have well-defined extensions
which are computed by the backwards_search_objects function.

Descriptions can vary in their degree of generality. The description [striped shape] is more general than the
description [striped brick] but less general than the description [object]. Clearly, the degree of generality in
a description is affected by the height at which the component terms appear in the generalisation
hierarchies represented by the rulebase. This suggests that we might measure generality in terms of "height
of component terms".

Page 276

But this approach is not particularly convenient. In the case where a description includes.terms which
appear at different heights in the generalisation hierarchies, it is not clear what overall "height" we should
assign to the description as a whole. A far simpler approach involves quantifying generality in terms of
"size of extension".

Any description in the envisaged scenario has a well-defined extension and the size of this extension can be
easily derived. More general descriptions will tend to have component terms which are higher in the
corresponding generalisation hierarchies and therefore they will tend to have larger extensions. Thus we
can measure degree of generality simply in terms of size of extension. Of course, in some sense, this is the
obvious approach. The generality of a description is the degree to which it covers multiple cases. But the
degree to which it covers multiple cases is just the number of multiple cases covered, i.e. the size of the
corresponding extension.

Let us imagine that we have some way of working out all the descriptions that can be derived from some
given rulebase. Each one of these descriptions has a well-defined extension and we can compute this using
the backwards_search_objects function. We can compute the generality of the description just by
measuring the length of the extension; so if we wanted, we could arrange all the descriptions into a
sequence of increasing generality.

<><><><><><><><><><><><>

/* make description table constructs a table made up of lists of
descriptions each paired with the specific objects that they
cover. The lists of paired descriptions and specific objects is
sorted by length. */

 define make_description_table() -> description_table;
 vars description;
 [^(for description in backwards_search_descriptions ([object]) do
 [^description ^^ (backwards_search_objects(description))]
 endfor)
] -> description_table;
 syssort(description_table, shorter) -> description_table;
 enddefine;

/* shorter returns true if the first list is shorter than the second,
and otherwise false. */

 define shorter(list1, list2) -> boolean;
 length (list1) < length (list2) -> boolean
 enddefine;

Figure 10-5
Computing an ordered description table

Page 277

Having done this it would be very easy to work out what is the most general description whose extension
includes a given set of objects. Or perhaps, what is the most general description whose extension excludes
one set of objects but includes all of another set. These tasks are exactly the tasks which are performed by
the simple concept learning mechanism described above. Thus, it seems, that if we implement all the
envisaged machinery, it is going to be quite easy for us to implement that particular type of learning:

 blocks -> database;

 backwards_search_descriptions ([primary block]) ==>

 ** [[primary block] /* DESCRIPTIONS BUT NOT SPECIFIC OBJECTS */
 [red block]
 [red brick]
 [blue block]
 [blue brick]
 [yellow block]
 [yellow brick]
 [primary brick]
 [red brick]
 [blue brick]
 [yellow brick]
 [primary cube]
 [primary cuboid]
 [primary wedge]]

 backwards_search_objects ([primary block]) ==>

 ** [[red cube] /* SPECIFIC OBJECTS BUT NOT DESCRIPTIONS */
 [red cuboid]
 [red wedge]
 [blue cube]
 [blue cuboid]
 [blue wedge]
 [yellow cube]
 [yellow cuboid]
 [yellow wedge]]

Page 278

Concept Learning

First of all, let us clarify the mechanism that we want to implement. It will attempt to learn a "concept"
from some sequence of positive and negative examples of that concept. It will do so by constructing a
definition of it, and this definition will take the form of an intensional description whose extension includes
all the presented positive examples but excludes all the presented negative examples. The extension of any
given description will be computed using the backwards_search_objects function and a rulebase
which is assumed to be given.

The mechanism will work as follows. Initially it will construct the set of all possible descriptions and, for
each one, derive its extension. These will be arranged into a sequence such that descriptions with smaller
extensions (less generality) always precede descriptions with larger extensions (more generality). The
mechanism will then enter a loop in each iteration of which it will request a new example from the user.
The user will also be asked to specify if the example is a positive example of the desired concept or a
negative example. The most general description whose extension includes all the positive examples but
none of the negative ones will then be identified. If such a description does not exist the mechanism will
terminate and output the most recent description.

At each stage in this iteration, the identified description constitutes a definition of the desired concept.
After every new input, the mechanism updates its current concept definition so as to make sure that it is
still compatible with all the presented information.

Implementing the Generalisation Mechanism

To implement the envisaged concept learning mechanism there are a number of functions which we need to
construct. First and foremost, we need to construct the function which will compute the complete set of
possible descriptions. In fact this function can be written as a variant of the
backwards_search_objects function. To derive this variant we need to modify the original
function so that instead of outputting primitive descriptions and recursing on ordinary descriptions it
outputs ordinary descriptions and ignores primitive descriptions. The definition is shown in Figure 10-4.

We can now turn attention to the function which will take the complete set of descriptions and order them
according to their level of generality. To do this the function will use the
backwards_search_objects function to compute extensions. It can be constructed as shown in
Figure 10-6. Note that this function cheats a little. The function which is specified in the call on syssort
compares the lengths of complete entries in the "description_table". Complete entries include the
description itself followed by the extension. To compute generality we should really just look at the length
of the extension. But since the length of an entry will always be the length of

Page 279

<><><><><><><><><><><><>

/* is_negative_example returns true if its input is a member
of the non-local variable (negative_examples) and false otherwise. */

 define is_negative_example(primitive_description) -> boolean;
 member(primitive_description, negative_examples) -> boolean
 enddefine;

/* subset_of returns true if list1 is a subset of list2, and false
otherwise. */

 define subset_of(list1, list2) -> boolean;
 vars item;
 true -> boolean;
 for item in list1 do
 unless member(item, list2) then false -> boolean; return
 endunless
 endfor;
 enddefine;

/* covers takes a description and a set of examples. It scans
the non-local variable, description_table, to find the description
entry and returns true if the examples input turn out to be a subset
of the extension of the given description in the table. */

 define covers(description, examples) -> boolean;
 vars extension;
 if [^description ??extension] isin description_table
 then subset_of(examples, extension) -> boolean
 else false -> boolean
 endif;
 enddefine;

Figure 10-6
Determining whether a description covers a list of examples

the extension + 1, we can just look at the overall length.

Having implemented the make_description_table function and assigned its result to the variable
description_table, we can begin to work on the main part of the implementation. This will be a
function which will take a list of positive examples and a list of negative examples and find the most
specific (i.e. least general) description whose extension includes all the positive examples but none of the
negative examples. We will assume that the list of positive examples is contained in the global variable
positive_examples and the list of negative examples is contained in the global variable
negative_examples.

Page 280

Next we need a function which will test whether some arbitrary primitive description is a description of an
object which has already been presented as a negative example of the concept to be learned. This function
is very simple to implement. Its definition is shown in the upper portion of Figure 10-6.

Finally we need to define a function which will test whether some given set of primitive descriptions is
subsumed in a given extension. This function will be called covers since it will compute whether or not
some given description covers a given range of objects. The implementation of covers is made easier if
we initially implement a function which tests whether one set is a subset of another. Both definitions are
shown in Figure 10-6. Note that the covers mechanism works by (a) getting the extension of the given
description by looking up the appropriate entry in the description table and by (b) checking whether the
given examples constitute a subset of this extension.

The implementation of the function which computes a satisfactory description given a list of positive
examples and a list of negative examples is now straightforward. It must search through the description
table (which is ordered according to generality of descriptions) looking for the first (i.e. most specific)
description whose extension includes all the positive examples but none of the negative examples. It can be
defined as shown in the upper part of Figure 10-7.

We can implement the part of the program which is going to interact with the user (the provider of positive
and negative examples) in terms of a function to process new examples and a function to actually carry out
the interaction; see the lower portion of Figure 10-7.

If in an interaction with the learn function we provide:

 [red cube]
 [blue cuboid]
 [yellow wedge]

as positive examples and:

 [blue sphere]

as a negative example, the description:

 [primary block]

is derived. We can regard this description as a definition of the concept which covers the given list of
positive examples but not the negative example. The interaction is as follows:

 learn();
 ** [type in a primitive description]

Page 281

<><><><><><><><><><><><>

/* best_description takes a list of negative examples and positive examples
and via the description table returns that description which excludes all
the negative examples and covers all the positive examples. */

 define best_description(negative_examples, positive_examples) -> description;
 vars entry primitive_description;
 for entry in description_table do
 if not (entry matches [?description ==
 ?primitive_description:is_negative_example ==])
 and covers(description, positive_examples) then return
 endif
 endfor;
 false -> description
 enddefine;

/* process_example takes a primitive description and a boolean denoting whether
the example is positive or not and returns a new description. */

 define process_example(primitive_description, positive) -> description;
 if positive then
 [^primitive_description ^^positive_examples] -> positive_examples;
 else
 [^primitive_description ^^negative_examples] -> negative_examples;
 endif;
 best_description(negative_examples, positive_examples) -> description;
 enddefine;

/* learn sets up the initial list of positive and negative examples together
with the description table and then loops asking the user for a new example.
The loop terminates when a positive example cannot be processed. */

 define learn;
 vars input positive description_table positive_examples
 negative_examples;
 make_description_table() -> description_table;
 [] -> positive _examples; [] -> negative_examples;
 repeat forever
 [type in a primitive description] ==>
 readline() -> input; if input = [bye] then return endif;
 yesno([is it positive?]) -> positive;
 process_example(input, positive) -> description;
 if description then [concept definition is ^description] ==>
 else quitloop
 endif;
 endrepeat;
 enddefine;

Figure 10-7
Learning a concept description from examples

Page 282

 ? red cube
 ** [is it positive ?]
 ? yes
 ** [concept definition is [red brick]]
 ** [type in a primitive description]
 ? blue cuboid
 ** [is it positive ?]
 ? yes
 ** [concept definition is [primary brick]]
 ** [type in a primitive description]
 ? blue sphere
 ** [is it positive ?]
 ? no
 ** [concept definition is [primary brick]]
 ** [type in a primitive description]
 ? yellow wedge
 ** [is it positive ?]
 ? yes
 ** [concept definition is [primary block]]
 ** [type in a primitive description]
 ? bye

The Focussing Algorithm

The concept learning mechanism which we have implemented above works in roughly the same way as the
main AI mechanism for this task, namely the version space or focussing algorithm. However, it has at least
one major flaw which that algorithm does not have. Note that given the way we have implemented the
mechanism it has no way of knowing when it has fully learned the desired concept. If it cannot find a
description whose extension includes all the given positive examples and none of the given negative
examples, it simply exits. However, ideally we would like the function to be able to detect the point at
which it has a definition of the concept which cannot be improved on any further.

To achieve this effect, the focussing and version space algorithms adopt a slightly different approach to the
task. Instead of always looking for a single best description they actually maintain at all times a set of two
best descriptions. One of these is the most general description which is compatible with all the positive and
negative examples presented so far. The other is the most specific description compatible with all the
presented examples.

The great advantage of keeping both a most-general and a most-specific description is that it is possible to
detect the point at which the descriptions cannot be improved on any further. This point arises when the
descriptions are identical.

Page 283

Clearly, if the most-general description is identical to the most-specific description, then it is the case that
the most-general description cannot be made any more specific without making it more specific than the
most specific description which is compatible with all the examples presented so far. Thus we know that it
cannot be made any more specific. Similarly, we know that the most-specific description cannot be made
any more general without making it more general than the most-general description.

If the most-specific description cannot be made any more general and the most-general description cannot
be made any more specific the algorithm cannot improve its descriptions any further. Thus the current
descriptions are the best that can be achieved. Since they are identical either one provides a definition of the
desired concept.

Focussing in Prolog

We now give a simple Prolog version of the focussing algorithm that maintains both a most general and a
most specific solution and exits should these become the same. The Prolog code does not implement a
description table as in the earlier part of the chapter but searches the isa hierarchies repeatedly. The relative
simplicity of the code hides a great deal of backtracking search behaviour, in that generalisation and
specialisation are defined at base in terms of chaining along these hierarchies.

Our database, Figure 10-8, is largely as drawn in Figure 10-2, with the predicate isa representing both the
relationship between classes (such as uniform and primary) as well as between a class and an instance
(such as brick and cube).

We will represent a description of an object as a two element Prolog list, with the first element taken from
the colour hierarchy and the second from the shape hierarchy, such as:

 [striped, block]

or

 [uniform, brick]

As before, we need ways of generalising and specialising such descriptions in this space. The predicate
covers/2 defines the relation between a pair of descriptions, where the first is a generalisation of the
second, see Figure 10-8. covers/2 is itself defined in terms of ancestor/2 which relates a pair of
descriptors from one of the hierarchies. ancestor/2 is defined so that it searches either up the hierarchy
(if the child is known and an ancestor sought) or down the hierarchy (if the ancestor is known and a child
sought), for instance:

Page 284

<><><><><><><><><><><><>

/* isa(?Colour, ?Shape) */

 isa(colour, uniform).
 isa(colour, striped).
 isa(uniform, primary).
 isa(uniform, pastel).
 isa(primary, red).
 isa(primary, blue).
 isa(primary, yellow).
 isa(pastel, pink).
 isa(pastel, green).
 isa(pastel, grey).

 isa(shape, block).
 isa(shape, sphere).
 isa(block, brick).
 isa(block, wedge).
 isa(brick, cube).
 isa(brick, cuboid).

Figure 10-8
Isa hierarchy in Prolog

 ?- covers(D, [uniform, sphere]).
 D = [uniform, sphere] ? ;
 D = [uniform, shape] ? ;
 D = [colour, sphere] ? ;
 D = [colour, shape] ? ;
 no

 ?- covers([red, brick], D).
 D = [red, brick] ? ;
 D = [red, cube] ? ;
 D = [red, cuboid] ? ;
 no

Repeatedly calling for solutions to the query covers([colour, shape], D) would provide all
possible descriptions D, and restricting these to be at the tips of the hierarchies gives the extension of this
concept. Repeating an earlier POP-11 example of the use backwards_search_objects gives:

Page 285

 ?- bagof([C, S],
 (covers([pastel, brick], [C, S]), tip(C), tip(S)),
 Extension).
 C= _1
 S= _2
 Extension = [[pink, cube], [pink, cuboid], [green, cube],
 [green, cuboid], [grey, cube], [grey, cuboid]] ?

Procedure generalise/3 takes a general description and a positive primitive description and constructs,
using covers/2, a more general description that covers both of them. specialise/3 takes a general
description and a negative primitive description and constructs, also using covers/2, a less general
description that excludes the negative example, see Figure 10-8.

The main part of the algorithm is provided by dealwith/4 and by learn1/2. These predicates
maintain the current most general description (that excludes all the negative examples so far) and the
current most specific description (that covers all the positive examples so far). The initial value of the most
general description is [colour, shape] and the initial value of the most specific description is the
empty list []. The four clauses of dealwith/4 are for (i) negative examples (ii) the first positive example
(iii) further positive examples, and (iv) a "catch all" for cases where the example cannot be incorporated.

When a positive example is entered, generalise/3 builds a new most specific description. When a new
negative example is entered, specialise/3 builds a new most general description. Below is a similar
interaction as that given in POP-11 earlier:

 ?- learn.
 Most general concept is [colour, shape]
 Most special concept is []

 Type in a primitive description e.g. red cube? red cube
 Is it positive? yes./no. ? yes
 Most general concept is [colour, shape]
 Most special concept is [red, cube]

 Type in a primitive description e.g. red cube? blue cuboid
 Is it positive? yes./no. ? yes
 Most general concept is [colour, shape]
 Most special concept is [primary, brick]

 Type in a primitive description e.g. red cube? blue sphere
 Is it positive? yes./no. ? no
 Most general concept is [colour, block]
 Most special concept is [primary, brick]

Page 286

<><><><><><><><><><><><>

/* generalise(+Description, +Positive example, -New higher description)
generalise succeeds if the higher description covers both the
original description and the positive example. */

 generalise(Description, Pos_example, Higher_description) :-
 covers(Higher_description, Description),
 covers (Higher_description, Pos_example).

/* specialise(+Description, +Negative example, -New lower description)
specialise succeeds if the lower description is covered by the
original description but excludes the negative example. */

 specialise(Description, Neg_example, Lower_description) :-
 covers(Description, Lower_description),
 not(covers(Lower_description, Neg_example)).

/* covers(?Description1, ?Description2)
covers succeeds if Description1 covers Description2. */

 covers ([Colour_high, Shape_high], [Colour_low, Shape_low]) :-
 ancestor(Colour_high, Colour_low),
 ancestor(Shape_high, Shape_low).

/* ancestor(?Ancestor, ?Child)
ancestor succeeds if Ancestor is above Child in the isa hierarchy. */

 ancestor(Ancestor, Ancestor).
 ancestor(Ancestor, Child) :-
 nonvar (Child), !,
 isa(Intermediate, Child), /* SEARCH UP THE HIERARCHY */
 ancestor(Ancestor, Intermediate).
 ancestor(Ancestor, Child) :-
 nonvar(Ancestor),
 isa(Ancestor, Intermediate), /* SEARCH DOWN THE HIERARCHY */
 ancestor(Intermediate, Child).

/* tip(?Word)
tip succeeds if Word is at the tip of the isa hierarchy. */

 tip(X) :- isa(_, X), not(isa(X, _)).

Figure 10-9
Generalising and specialising in Prolog

Page 287

<><><><><><><><><><><><>

/* dealwith(+Value, +Description, +General, +Special)
dealwith takes a description plus its value plus the current most
general and most special lists and processes them. */

 dealwith(neg, Description, General, Special) :-
 specialise(General, Description, NewGeneral),
 above(NewGeneral, Special),
 learn1(NewGeneral, Special).

 dealwith(pos, Description, General, []) :-
 learn1(General, Description).

 dealwith(pos, Description, General, Special) :-
 generalise(Special, Description, NewSpecial),
 above(General, NewSpecial),
 learn1(General, NewSpecial).

 dealwith(_, Description, General, Special) :-
 write(Description),
 write(' is inconsistent and ignored.'), nl,
 learn1 (General, Special).

/* learn1(+General, +Special)
learn1 takes the most general and most specific descriptions so
far and exits if they are the same, otherwise it recursively gets
a new example for the next cycle. */

 learn1(C, C) :-
 write('The concept is '),
 write(C), nl.

 learn1(General, Special) :-
 write('Most general concept is '),
 write(General), nl,
 write('Most special concept is '),
 write(Special), nl, nl,
 getexample(Value, Description),
 dealwith(Value, Description, General, Special).

Figure 10-10
Learning mechanism in Prolog

 Type in a primitive description e.g. red cube? yellow wedge
 Is it positive? yes./no. ? yes
 Most general concept is [colour, block]
 Most special concept is [primary, block]

Page 288

 Type in a primitive description e.g. red cube? striped wedge
 Is it positive? yes./no. ? yes
 The concept is [colour, block]
 yes

The interaction is the same as for that given earlier except that one more example is offered which causes
the algorithm to exit.

The predicate above/2 makes sure that the most specific description remains covered by the most general
description. The remaining part of the program is devoted to collecting and checking input from the user
and other odds and ends. It checks that primitive descriptions only are entered.

The program is very simple-minded and gets into a muddle if inconsistent data are entered (e.g. if the same
description is offered as both a positive and a negative example). Also it avoids all the hard problems of
specialisation by always specialising down the shape hierarchy if it can, before trying the colour hierarchy.
In either case it specialises down left branches of the tree before right branches (and cannot backtrack). So
the order of the examples from the user is important in determining the outcome. Because of this, the one
difference between the factbase in Figure 10-10 and the tree drawn in Figure 10-2 is to put striped to the
right of uniform, in order to force more sensible specialising behaviour.

Generalisation as Search

In the present chapter we have tried to show that in the case where goals play the role of description-
components, a slight variant of the backwards search function can be used to relate descriptions with
extensions. We have seen that it is quite easy to exploit this property of the search function to implement a
very simple version of a ''learning-from-examples" mechanism and thereby to make a link between search
processes and concept learning processes.

This is not the only way to make a link between search and learning. It has been shown by Mitchell (1982)
that we can think about the process of generalisation as a search process.[2] In order to understand what is
being proposed here, we need to make some adjustments in the way in which we are thinking about the
learning mechanism. First of all, instead of assuming that the most-general and most-specific descriptions
are re-derived from scratch by scanning through the complete description table, we should assume that
these descriptions are actually explicitly updated so as to bring about the required increase/decrease in
generality.

The mechanism via which this is achieved can be safely ignored here. The point to note is simply that, in
general, it will be possible to prevent the extension of the

[2] In fact, Mitchell showed that both generalisation and specialisation can be understood in terms of search.

Page 289

<><><><><><><><><><><><>

/* learn drives the learning program. */

 learn :- learn1([colour, shape], []).

/* above(+Description1, +Description2)
above succeeds if Description1 covers Description2 as well as if
Description2 is the empty list. */

 above(_, []).

 above(High, Low) :-
 covers (High, Low).

/* getexample(-Value, -Description)
getexample gets a Description and a Value from the user. */

 getexample(Value, Description) :-
 repeat, /* TO ALLOW FOR INPUT ERRORS */
 askfor(Value, Description).

/* askfor(-Value, -Description)
askfor gets a Description and a Value from the user. */

 askfor(Value, [Colour, Shape]) :-
 write('Type in a primitive description e.g. red cube'),
 readline([Colour, Shape]),
 tip(Colour),
 tip(Shape),
 yesno(Value).

/* yesno(-Value)
yesno provides the Value. */

 :- library(readline).

 yesno (pos) :-
 write('Is it positive? yes./no. '),
 readline([yes]), !.

 yesno(neg).

Figure 10-11
User interaction with the learning program in Prolog

Page 290

current most-general description from including some new negative example in more than one way.[3]
Thus, each time we specialise a most-general description we face a range of choices. These choices form a
search-tree and our decisions at each point constitute a path through that tree.

This way of looking at things may or may not be helpful with respect to the overall task at hand. However,
it is worth bearing in mind that construing the specialisation operation in terms of a search process has been
quite useful from the point of view of reasoning about the difficulties inherent in the process of concept
learning using generalisation and specialisation. To cut a long story short, it has been shown that, in
general, there is no heuristic which will enable a correct path to be found in the tree. Thus, in principle, the
learning process will always face the possibility of needing to backtrack (Bundy, Silver and Plummer
1985).

Reading

A clear formulation of the original version of what is now called the focussing algorithm is provided in
Chapters 11 and 12 of (Winston, 1984). The latter chapter also looks at links between learning, matching
and analogy. Charniak and McDermott (1985) deal with the focussing strategy (which they call the
empiricist algorithm) with sample algorithms presented in LISP. Volume 3 of the AI Handbook (Cohen
and Feigenbaum, 1982, pp. 385-401) looks at a very well-known formulation of the algorithm called the
version space algorithm and introduces a variety of other programs and techniques in the general area of
learning (Section XIV). Rich, deals with the original Winstonian formulation of the focussing algorithm
(pp. 368-374). Stillings et al (1987) look at learning from a "cognitive science" point of view. Chapters 10
and 11 of Gilhooly (1989) provides a comparison of human and machine learning.

Bratko (1990) offers Prolog code for a number of learning programs including one similar to the above.

Exercises

1. Re-implement the program, provided above in Prolog, in POP-11 such that it maintains at all times a
most-general description and a most-specific description. The most-general description should be the most
general description which covers none of the presented negative examples. The most-specific description
should be the most specific description which covers all of the positive examples. The main learn
function should return an appropriate output at the point where the most-specific and the most-general
descriptions become identical.

[3] Technically, this situation is known as a far miss.

Page 291

2. Change the Prolog program so that it can backtrack if it makes the wrong specialisation choice.

3. Augment either the POP-11 or the Prolog program to work with more than two hierarchies.

Page 293

11
Prolog (Search as Computation)

Introduction

The earlier chapters of this book have tried to show that the search mechanism has a surprisingly high degree
of generality. It has been shown how OR-tree search can be used for route—finding, problem—solving and
heuristic problem-solving, and how AND/OR-tree search can be used for planning, reasoning, parsing, expert
diagnosis and concept learning. Most of these applications involve the use of some additional computational
machinery and/or the construing of goals and facts in a particular way. But in all cases the search mechanism
provides the basic driving force.

In some sense the generality of the search process is unlimited, since it turns out that a variant of the AND/OR-
tree mechanism can actually be used to implement arbitrary forms of computation, i.e. it can function as a
general purpose programming language. In this chapter we will look at an implementation of the AND/OR-
tree search mechanism which can play this role. The mechanism will amount to a description in POP-11 of
the basic mechanisms of Prolog. Unfortunately, the implementation necessarily involves using POP-11 in a
slightly more complex way than we have been using it throughout this book. There are several places where
much more compact code could be included by introducing data structures and built-in POP-11 functions that
have not been used elsewhere. We have tried to keep this to a minimum, and indicated via footnotes
alternative possibilities.

Search Rules as Predicates

There are a number of ideas which we need to come to terms with in order to understand the way in which the
search mechanism can implement arbitrary forms of computation. First and foremost, we need to recognise
that in some cases search rules can be conveniently interpreted as defining predicates, a predicate being a
function which returns a truth value (i.e. <true> or <false>). Consider the rulebase which we used in

Page 294

Chapter 6:

 [/* FACTS */
 [[weak battery]]
 [[damp weather]]
 [[old car]]
 /* RULES */
 [[low current] [damp weather] [weak battery]]
 [[old starter] [old car]]
 [[car wont start] [low current] [old starter]]
 [[write off] [car wont start] [not AA member]]
 [[not AA member] [irresponsible]]
] -> rulebase3;

The rules making up this rulebase were construed as relationships between conclusions and bits of evidence.
For example, the rule:

 [[car wont start] [low current] [old starter]]

was read as stating that the conclusion [car wont start] could be justified provided that the
conclusions [low current] and [old starter] could be justified. An alternative is to construe all
goals as predicates. On this view the rule above is effectively a definition of the predicate [car wont
start]. It states that [car wont start] is true if [low current] is true and [old starter] is
true.

If there was another rule in the rulebase whose first item is [car wont start], e.g.

 [[car wont start] [ignition broken]]

then we would say that the definition of the predicate [car wont start] is provided by the combination
of the two rules.

It might be argued that the "predicate" construal has no real advantage over the "inference rule" construal. But
in fact it provides us with a useful stepping-stone on the way to understanding how search can implement
arbitrary forms of computation. Once we are comfortable with the idea that rules can provide definitions of
predicates it becomes much easier to make the next step -- which involves assimilating the idea that rules can
provide definitions of procedures and functions.

Page 295

The Use of Variables in Search Rules

Of course, it is perfectly obvious that computation involves more than just the derivation of truth values. This
is certainly one form of computation; but, in general, computation involves the construction and manipulation
of arbitrary types of data. This seems to suggest that any system which only allows for the application of
predicates cannot possibly be used to implement arbitrary forms of computation. And this is certainly the
case.

What is rather remarkable, however, is the fact that by the very simple expedient of allowing search rules to
contain variables it is possible to obtain general computational behaviour out of the search function. Consider
the following rulebase:

 [[[friends X Y] [likes X Y] [likes Y X]]
 [[likes fred albert]]
 [[likes fred john]]
 [[likes albert fred]]
 [[likes john jane]]] -> rulebase8;

The rules are of the normal form, except for the fact that rule components are list objects rather than word
objects. There are four facts [likes fred albert], [likes fred john] etc. and just one rule.
Adopting the predicate construal, we should read the rule as stating that [friends X Y] is true if both
[likes X Y] and [likes Y X] are true.[1] We know that application of the normal backwards search
function to the goal [friends X Y] will fail because there is no way for the function to satisfy the
subgoals [likes X Y] and [likes Y X].

But what happens if we assume that X and Y are variables? In other words, what happens if we assume that
these two items are objects which can take on arbitrary values? The rule should now be read as stating that
[friends X Y] is true if [likes X Y] and [likes Y X] are true -- given that X and Y take on some
particular values. This changes the picture somewhat. If X takes on the value fred and Y takes on the value
albert then both the subgoals can be satisfied. Why? Because [likes fred albert] and [likes
albert fred] are both facts in the rulebase.

But why should X and Y take on (i.e. be instantiated to) these values? One possibility might be that the search
mechanism is modified so that in the case where it is trying to satisfy goals which contain variables, it scans
the database to see which instantiations might be fruitful. The presence of the fact [likes fred
albert] would, in this case, inform the search function that instantiating X to fred and Y to albert will
allow the goal to be satisfied by invoking this fact.

Obviously, there are a lot of questions which need to be answered with respect to the mechanism we are
envisaging. But even at this early stage, we can see that it

[1] Goals are assumed to define two-place predicates here. The first item of a goal is the predicate term and the second
two items are the arguments.

Page 296

would provide very real advantages. For one thing having rules with variables would seem to enable us to cut
down on the total number of rules which we need to specify a given set of goal-reductions. The rulebase:

 [[friends fred albert]
 [friends albert fred]
 [friends fred john]
 [friends john fred]
 [friends fred jane]
 [friends jane fred]
 [friends albert john]
 [friends john albert]
 [friends albert jane]
 [friends jane albert]
 [friends john jane]
 [friends jane john]]

rewritten using rules containing variables becomes:

 [[friends fred albert]
 [friends albert john]
 [friends john jane]
 [friends jane fred]]
 [[friends X Y] [friends X Z] [friends Z Y]]

The single rule in this rulebase (i.e. the last element) allows us, in effect, to show that some unidentified
person X is a friend of some other unidentified person Y if we can show that X is a friend of a person Z and Z
is a friend of Y. We are therefore able to show all the missing facts simply by invoking (perhaps repeatedly
invoking) the single rule.[2]

Apart from the fact that using variables allows us to reduce the size of rulebases, it also allows us to obtain a
more general type of data manipulation than is possible with ordinary rules. For example, let us say that we
attempt to ask the new search mechanism to satisfy the goal:

 [likes fred Y]

Given our assumptions about the way the way the mechanism works, it will show us that it can satisfy this
goal in a number of different ways by instantiating Y to a number of different values, namely, albert,
john and jane. This is much more like what we think of as computation. The mechanism we are envisaging
would take in

[2] As a Prolog program, this would derive that fred was friends with fred and would loop.

Page 297

the "input" [likes fred Y] and produce an "output" corresponding to the set of instantiations for Y
which enable the goal to be satisfied.

We have glossed over most of the complications; but this is, in a nutshell, the way in which the search
mechanism can be used to implement arbitrary forms of computation. There are three main ideas underlying
the search-as-computation construal: (1) the carrying out of the computation involves satisfying predicates,
and rules describe the way in which given predicates can be satisfied; (2) the input to the computation takes
the form of a set of goals; (3) the output takes the form of a truth value and (in the case of success) a set of
variable instantiations. Below we will look at the way in which this new variant of the search function can be
written in POP-11. First, however, we will consider the way in which the manipulation of data structures can
be achieved in the current scenario.

Data Structures

Some forms of computation involve the creation of data made up of structures rather than atomic elements
such as fred and albert. This process sounds as if it is likely to involve a further modification of the
search mechanism; but in fact, this is not the case. We have already seen that goals can be atomic entities (i.e.
words) or non-atomic entities (i.e. lists). As far as the ordinary search mechanism is concerned it does not
make any difference what the goals are; it treats all goals as atomic entities anyway. But the search function
we are envisaging is concerned with the internal structure of goals. In the case where a goal contains variable
terms then the internal structure of the goal can vary depending on which instantiations the mechanism is
currently considering.

The point about this is that the instantiation of variables as carried out by the search function effectively
involves inserting values into specific places in goals (i.e. lists). We can very easily exploit this process to
obtain the construction of complex data objects. The basic idea is that we arrange things so that the
instantiation mechanism causes a value which is itself a data-structure to be inserted into a goal structure,
thereby forming a structured object. Arbitrarily complex objects can be constructed by simply getting data
structures inserted into data structures, which are then inserted in further data structures, and so on.

The following rulebase may clarify this idea a little:

 [[tree leaf]
 [tree [branch X Y]] [tree X] [tree Y]]

Imagine that we ask the new search function to try to satisfy the goal:

 [tree Z]

Page 298

where Z is assumed to be a variable. The search function is going to be able to satisfy this simply by invoking
the first entry in the rulebase, i.e.:

 [tree leaf]

The Z variable will be instantiated to leaf.

Notice that the search function will also be able to satisfy the original goal by invoking the rule:

 [tree [branch X Y]] [tree X] [tree Y]]

Of course, this will involve it satisfying the subgoals:

 [tree X] and [tree Y]

but it can satisfy both of these by invoking the fact [tree leaf]. In this case (if you think about it) Z will
be instantiated to the list structure:

 [branch X Y]

but of course this has variables in it and these have both been instantiated to leaf Thus X is instantiated to:

 [branch leaf leaf]

The search mechanism can always choose between satisfying a tree goal (or subgoal) by using either the
fact or the rule. But if it uses the rule then it will have to go on and satisfy two tree subgoals. This means, in
effect, that the structure which it ultimately constructs will have one more level to it. For instance, if the
search function had satisfied the two tree subgoals by invoking the rule, this would have involved it in
satisfying two more subgoals (in each case) and the ultimate instantiation for our Z variable would have been:

 [branch [branch leaf leaf] [branch leaf leaf]]

The next possible instantiation for Z would be:

 [branch
 [branch [branch leaf leaf][branch leaf leaf]]
 [branch [branch leaf leaf][branch leaf leaf]]]

and so on.

Page 299

There is probably no great advantage in labouring this point. Suffice it to say that given the implementation of
a variable mechanism and the assumption that goals can have components which are themselves structures,
the search mechanism has the potential to ''build" arbitrarily complex data objects and therefore to implement
forms of computation which involve the construction and manipulation of complex data structures.

Unification

The point has been reached where we can begin to think about the ways in which the various modifications
which we have envisaged might be implemented. Firstly we need to specify the mechanism via which the
search function arrives at instantiations for given variables (this was glossed over above). Secondly, given all
that has been said about variables being instantiated to arbitrarily complex data structures, we need to think
about what should happen in the case where the search function has to decide whether two variables which are
instantiated to complex data structures are "equal". After all, if the search function cannot do this, it cannot
decide whether a goal corresponds to a given fact. And if it cannot do this then it cannot do search.

Let us take the first problem first. We need a modification of the search function which will enable it to come
up with sensible instantiations for variables. This is, in fact, quite easily arranged. Recall that, given a goal,
the search function attempts to satisfy that goal by searching through the rulebase from beginning to end
looking for an entry which has the goal as its first element. If the entry has no other elements (i.e. if it is a
fact) then the goal is just automatically satisfied. If the entry does have other elements (i.e. if it is a rule) then
the goal is satisfied provided that the subgoals can be satisfied.

A sensible instantiation for a variable in a goal will be anything which allows it to match (i.e. be regarded as
the same as) the first item in an entry in the rulebase. This leads us towards a very simple solution. We simply
modify the search function so that, at the point where it considers whether the first item of an entry in the
rulebase is the same as the current goal, it simply instantiates any variables in the goal to the values of
corresponding elements in the first item.

In fact, the solution is not quite this simple. In the case we have discussed the variables appear in the goal but
not in the first item of the entry. But there are, of course, several other possibilities. There may be variables in
the first item of the entry but none in the goal. Or there may be variables in both the goal and the first item of
the entry. This leads us to specify our requirements in more general terms.

We would like a mechanism which tries to see if the goal can be made to match the first item of the entry; and
we want it to instantiate variables in the goal using corresponding values from the first item -- and vice versa --
as necessary. The mechanism should check each component in the goal to see whether it matches the
corresponding component in the first item. It gives a "yes" answer indicating an

Page 300

overall match only if all the components match.

But how should it check whether two components match? The rules can be formulated as follows. If neither
component is an uninstantiated variable then they only match if they have identical values. If one component
is an uninstantiated variable and the other is a constant (or an instantiated variable) then they match with the
side-effect that the uninstantiated variable is instantiated to the value in question. If both components are
uninstantiated variables then they match with the side-effect that they become shared. This means that if ever
one of the pair becomes instantiated the other one does too -- and to the same value.

This mechanism goes quite a long way towards providing us with an implementation of the search function
we have envisaged above. However, certain problems remain. For example, as was noted in the previous
section, variables can become instantiated to arbitrarily complex data structures. What should the matching
mechanism do in the case where it is trying to check the identity of two variables both of which are
instantiated to data structures?

Reflection on the arguments put forward in the previous section will reveal that the data structures which can
form the values of variables are always tree-like structures. This is because they are constructed via a process
in which simple structures are inserted into other simple structures to make complex structures. Thus, to
compare two data structures the matching mechanism should just check whether they match as trees. But of
course it must take account of the fact that the trees may contain variables. Thus in the case where it is
checking whether some subtree in one structure matches the corresponding subtree in the other structure and it
discovers that instead of a subtree the second structure has an uninstantiated variable, the components should
match but with the side-effect that the uninstantiated variable becomes instantiated to the subtree.

The matching mechanism which we are envisaging here is usually called unification. More technically, it is
known as graph unification. It constitutes a general matching function which tests whether two arbitrary
components match. Imagine that we have two components called A and B; we will say that A and B can be
unified in either of the following two cases.

- One of the two components is either an instantiated variable or a constant and the other is an uninstantiated
variable. In this case they match with the side-effect that the uninstantiated variable becomes instantiated to
the value of the corresponding item.

- Neither component is an uninstantiated variable. In this case they match in two cases: (1) where both have
atomic values and the values are identical and (2) where their values are both structures and all corresponding
components of the structures can be unified.

Note that the second case here has a recursive definition. This allows for the possibility of having nested
structures.

Page 301

<><><><><><><><><><><><>

/* value_of takes a term and returns its value. If the term is
a "Prolog" variable, value_of calls itself recursively on its
contents, otherwise it returns the term itself. */

 define value_of(term) -> value;
 if is_var(term)
 then value_of(contents (term)) -> value
 else term -> value
 endif
 enddefine;

/* the updater of value_of, assigns value to term. If term
contains a "Prolog" variable, the updater calls itself recursively
on the contents, otherwise it assigns the value to the
directly contents of the variable. */

 define updaterof value_of(value, term);
 if is_var(contents(term))
 then value -> value_of(contents (term))
 else value -> contents(term)
 endif
 enddefine;

Figure 11-1
Accessing Prolog terms

Implementing the Unification Matcher

The unification matcher, which is the major element in the new version of the search mechanism, has now
been defined quite precisely. Still to be considered are those bits of machinery which will enable the search
function to be used as a general-purpose programming language. In developing these bits of machinery, we
will, as far as is possible, follow the approach taken in the Prolog. That is to say, we will provide a Prolog-like
computational facility based on the new variant of the search function. We will also follow the Prolog
conventions with respect to terminology; thus, we will refer to components of goals as terms and to search
rules as clauses.

The first task is to implement the unification mechanism; but before we can do this we need to decide how we
are going to implement the "variable" mechanism. There are a number of things which this must do for us.
Obviously, it must provide some way of representing instantiated and uninstantiated variables; it must also
provide some way of uninstantiated variables becoming instantiated, and it must provide a mechanism by
which uninstantiated variables can become shared. Recall that this occurs whenever two uninstantiated
variables are matched. And since an

Page 302

uninstantiated variable may wind up being matched against more than one other uninstantiated variable, it is
quite possible for arbitrarily many uninstantiated variables to become shared. The implementation must allow
for this possibility.

A convenient approach here is to represent variables as quasi single-field data objects, which we will call REF
objects as if they really were POP-11 REF objects. It would be better to use built-in POP-11 REF objects or
define a new class via record-class, but either method would introduce a POP-11 data-structure which is
not used elsewhere in the book. These quasi REF objects will be lists starting and finishing with $ and the
actual value (foo, say) in between, e.g.

 [$ foo $]

There is nothing special about the dollar symbol or the fact that there are two of them. Its just our way of
making an object that is unlikely to occur anywhere "by accident". As far as POP-11 is concerned this is just
an ordinary list with three things in it.

Uninstantiated variables are represented as REF objects which contain some special object denoting "no
instantiation". Instantiated variables are represented as REF objects which contain the item to which they are
instantiated. Thus the value of an instantiated variable is just the contents of the corresponding REF object,
e.g.

 [$ [$ foo $] $]

So what are the advantages of this approach? Basically, it allows variable sharing to be handled in a very
simple fashion. In the case where two variables X and Y are shared the REF object corresponding to X will
contain the REF object corresponding to Y (or vice versa). If Y becomes shared with another variable, then
that variable's REF object will become the new contents of Y's REF. Thus, to find the ultimate value of a
variable it is necessary to get the contents of the corresponding REF object. If this is another REF object, then
it must represent a variable which is shared with the initial variable. Thus to find the ultimate value of the
initial variable, it is necessary to get the contents of the new REF object, and so on and so forth. Eventually at
the end of such a chain, the function either finds a particular value or the special object denoting "no
instantiation".

This process can be implemented using a simple recursive function; see the first function in Figure 11-1. The
function first checks whether the contents of the REF are another REF object. If so, it calls itself recursively
on the contents. Otherwise, it just returns the contents. Note that the contents of a REF object are accessed
using the function contents.

Note that an evaluation function is defined as well as its updater. A function which has an updater can be
assigned to in the same way that the built-in function "hd" can be assigned to. We need this in order to be able
to update the value of a term as well as access it.

Page 303

<><><><><><><><><><><><>

/* is_uninstantiated_var takes a term and returns true if it is a "Prolog"
variable and its value is a word starting with the underscore character. */

 define is_uninstantiated_var(term) -> boolean;
 vars w;
 value_of(term) -> w;
 is_var(term) and isword(w) and w(1) = '_' -> boolean;
 enddefine;

/* is_var returns true if its argument is a "Prolog" variable. */

 define is_var(term) -> boolean;
 term matches [$ = $] -> boolean
 enddefine;

/* cons_var takes a value and constructs a new "Prolog" variable. */

 define cons_var(value) -> new_variable;
 [$ Ùvalue $] -> new_variable
 enddefine;

/* contents takes a "Prolog" variable and returns its immediate value. */

 define contents(variable) -> value;
 variable --> [$?value $]
 enddefine;

/* the updater of contents */

 define updaterof contents(value, term);
 value -> hd(tl(term))
 enddefine;

/* prterm prints a term without the extra $'s and [] around "Prolog" variables. */

 define prterm(term);
 vars x;
 if is_var(term) then prterm(value_of (term))
 elseif islist(term)
 then pr("["); for x in term do prterm(x); sp(1) endfor; pr("]")
 else pr(term)
 endif
 enddefine;

Figure 11-2
Procedures associated with Prolog variables

Page 304

<><><><><><><><><><><><>

/* unify takes two terms and returns true if they unify, and otherwise
false. It may have the side effect of making variables share, whether
the unification is successful or not. */

 define unify(term1, term2) -> boolean;
 vars i;
 true -> boolean;
 if is_uninstantiated_var(term1)
 then term2 -> value_of(term1) /* SIDE-EFFECT */
 elseif is_uninstantiated_var(term2)
 then term1 -> value_of(term2)
 else value_of(term1) -> term1;
 value_of(term2) -> term2; /* SIDE-EFFECT */
 if islist(term1) and islist(term2)
 and length(term1) = length(term2)
 then for i from 1 to length(term1) do
 unless unify(term1(i), term2(i))
 then false -> boolean; return
 endunless
 endfor
 else term1 = term2 -> boolean
 endif
 endif
 enddefine;

Figure 11-3
The unification matcher

In order to be able to represent the fact that a variable is uninstantiated we need to have some special symbol
which we can put in the variable's REF to indicate that it is not yet instantiated. But ideally we would like to
use different symbols for different REFs so as to be able to distinguish between them (e.g. when we print
them out -- see below). A convenient compromise is to say that a variable will be assumed to be
uninstantiated if its REF contains an arbitrary word beginning with an underscore character. This convention
allows us to achieve both our aims and to write a function to test a given term to see if it is an uninstantiated
variable; see Figure 11-3. The other functions in Figure 11-3 are for accessing, creating and printing REF
objects.

Given the availability of the functions defined, we can now get down to the main task, i.e. the implementation
of the unification matcher. This follows the specification introduced above. The function accepts as input two
terms and attempts to see if they can be unified.

First, it tests the status of the two terms. If one of them turns out to be an uninstantiated variable, the
immediate value of the other one (which will be a constant or a REF object) is assigned to be its new value. In
the case where the second term is an

Page 305

<><><><><><><><><><><><>

/* top_level_instantiations_ok prints out the top level instantiations,
if any, and reads whether the user types ";" in response. If so,
false is returned so that the search continues, otherwise true is
returned. */

 define top_level_instantiations_ok(insts) -> boolean;
 vars input pop_readline_prompt inst;
 '? ' -> pop_readline_prompt;
 if insts = [] /* THERE WERE NO TOP-LEVEL VARIABLES */
 then pr('yes'); nl(2); /* INDICATE THAT THE SEARCH SUCCEEDED */
 true -> boolean /* AND RETURN <TRUE> */
 else for inst in insts do /* PRINT INSTANTIATIONS */
 pr(inst(1)); pr(' = ');
 prterm(inst (2)); nl (1)
 endfor;
 readline() -> input;
 if input = [;]
 then false -> boolean /* CAUSE SEARCH TO CONTINUE */
 else pr('yes'); nl(2); /* THE USER TYPED <RETURN> */
 true -> boolean
 endif
 endif
 enddefine;

Figure 11-4
Checking the instantiations at the top level

uninstantiated variable this causes the two variables to become "shared".

If the second variable is instantiated (or is a constant), the first variable becomes instantiated to the value of
the second variable. If the two terms turn out to be structures, the procedure tries to unify the components of
the structures recursively. The definition of the function is shown in Figure 11-4. Note the way the built-in
function islist is used to test whether the terms are atomic or non-atomic. unify may have side-effects
even if the unification fails (via the calls to the updater of value_of). However this is taken care of later via
a procedure which restores variables to their previous values when either unification or search fails.

Note that in the case where term1 turns out to be a variable (i.e. when the call
is_uninstantiated_var (term1) returns <true>), then term2 is assigned to be the new
value_of term1. If term1 is a variable this will cause the REF for term2 to become the contents of the
REF for term1. If term1 is uninstantiated, the effect is to cause term1 and term2 to become shared. If
term1 is instantiated the effect is to instantiate term2 to the value of term1. If term1 is not a variable
then the assignment will just have the effect of instantiating term2 directly. (Obviously, this all applies

Page 306

vice versa.)

Machinery to Deliver Output

We have said above that the search function together with the unification mechanism can be used to
implement general computational behaviour. In order to clarify this point we intend to implement a Prolog-
like programming environment. This will allow "programs" to be written and executed, and for output to be
obtained. The execution of the programs will involve applications of the search function which will make use
of the unification function; the writing of programs will involve setting up a rulebase in the normal way.

The first part of this task involves providing some machinery which will enable the "programmer" to obtain
output. As we suggested, the general strategy here will be to allow the inputing of goals containing variable
terms. In the case where the search mechanism is able to satisfy the goals, the instantiations of the variables
appearing in the original goals will be printed out for the programmer's inspection. This printing-out of
variable instantiations will constitute the production of output.

Let us assume that the variables which appear in the goals input by the programmer are held in a list of pairs
together with their corresponding REF object. For efficiency it would be better to use a POP-11 association
table but, again, this would introduce a data-structure not used elsewhere in the book. Each entry pair in this
list of pairs will map a given variable name onto the corresponding REF object

We now define a function top_level_instantiations_ok to be called at the point where the search
function has found a way of satisfying all the goals presented as input; see the lower part of Figure 11-4. This
function just prints out the instantiations used and then enters into a simple interaction with the user. This
interaction is modelled on the sort of interaction which Prolog implements. In it, the user can either ask for an
alternative set of instantiations (i.e. a continuation of the search) by typing ; or bring the execution to an end
by pressing <RETURN>.

The Search Function

We now have the unification function and the machinery with which we can arrange for output to be
presented to the user. Attention can therefore turn to the central task which is the implementation of the new
search function. There are a number of subsidiary mechanisms to be constructed. For example, we need a
function which can construct representations for the variables in a given goal (i.e. structure). This can be
defined as in Figure 11-5. The function set_vars takes a POP-11 list representing a structure and
recursively converts all the user variables into internal variables, i.e. REF objects. The function works its way
through whatever structure it is given. Every time it comes across an item that it should treat as a variable (i.e.
starting with

Page 307

<><><><><><><><><><><><>

/* treat_as_var takes a term and checks whether it is a word that
starts with an uppercase letter, e.g. X, Y or Foo. */

 define treat_as_var(term) -> boolean;
 isword(term) and isuppercode(term(l)) -> boolean
 enddefine;

/* set_vars takes a structure and returns a new structure where
every word starting with an uppercase letter is replaced by
a "Prolog" variable. It also returns a list of pairs which
map the original variable names with the "Prolog" variables. */

 define set_vars(structure) -> new_structure -> insts;
 vars database;
 [] -> database;
 set_vars1(structure) -> new_structure;
 database -> insts
 enddefine;

/* set_vars1 works its way through a structure and replaces
all the variables, defined via treat_as_var, by REF objects. It uses
the database to keep track of which variables have been so replaced. */

 define set_vars1(structure) -> new_structure;
 vars component new_variable;
 [^(for component in structure do
 if treat_as_var(component)
 then
 if present([^component ?variable])
 then variable
 else cons_var(gensym("_")) -> new_variable;
 add([^component ^new_variable]); /* ADD TO INSTS */
 new_variable
 endif;
 elseif islist(component) then
 set_vars1(component)
 else
 component
 endif;
 endfor)] -> new_structure;
 enddefine;

Figure 11-5
Placing Prolog variables inside a list structure

Page 308

<><><><><><><><><><><><>

/* make_restorative_pairs takes a structure and returns a list of pairs of its
uninstantiated variables and their contents. */

 define make_restorative_pairs(structure) -> pairs;
 vars component;
 [^(for component in structure do
 if is_uninstantiated_var(component)
 then [^(contents(component)) ^component]
 elseif islist(component)
 then explode(make_restorative_pairs(component))
 endif
 endfor)] -> pairs;
 enddefine;

Figure 11-6
Extracting uninstantiated (though possibly sharing) variables

an upper case letter), it constructs a new uninstantiated REF object (unless that particular variable has already
been dealt with). Novel objects are created using the built-in function gensym The database is used to
keep track of which variables have been dealt with, so that all instances of, say, X in the structure are
associated with the identical REF object and not given separate values. The function returns both the new
version of the structure as well as the list of pairs that map variable names to REF objects.

The function make_restorative_pairs defined in Figure 11-6 gets every uninstantiated REF object
(i.e. every variable) in a structure and constructs in each case a pair consisting of its contents and itself. This
can be used to reset the REF objects to their original values if either unification or the search process fails and
an alternative rule is chosen.

We finally come to implementation of the new search function! This is defined in Figure 11-7. It has much the
same structure as previous backwards searching functions. In the case where the goal list is empty, the
interactive function top_level_instantiations_ok (with the variable insts having as its value the
map of the top level instantiations of variables in the top level goal) is called and its result is returned as the
value of the current call. This means that in the case where the user triggers backtracking by typing ;, the
value of the result (i.e. <false>) is returned as the result of the current call. This ensures that the calling
function will go on to try the next alternative (whatever it is), i.e. it ensures that backtracking will take place.

In the case where there are some goals to be searched, the function is able to commence its main activity. First
make_restorative_assignments is called to obtain the list of pairs which will enable the effects of
any variable instantiations to be undone -- should that become necessary. Then it iterates over all the clauses
(rules)

Page 309

<><><><><><><><><><><><>

/* backwards_search_prolog takes a list of goals and set of instantiations
and returns true if the goals can be satisfied and false otherwise. */

 define backwards_search_prolog(goals, insts) -> boolean;
 vars var_map clause clause_goal renamed_clause subgoals
 search_goal other_goals pair pairs;
 if goals = []
 then top_level_instantiations_ok(insts) -> boolean;
 else goals --> [?search_goal ??other_goals];
 make_restorative_pairs (search_goal) -> pairs;
 for clause in database do
 set_vars(clause) -> renamed_clause -> var_map;
 renamed_clause --> [?clause_goal ??subgoals];
 if unify(search_goal, clause_goal) and
 backwards_search_prolog([^^subgoals ^^other_goals],
 insts)
 then true -> boolean; return
 else /* RESTORE OLD VALUES FOR SEARCH_GOAL VARS */
 for pair in pairs do
 pair(l) -> contents(pair(2))
 endfor
 endif
 endfor;
 false -> boolean
 endif;
 enddefine;

Figure 11-7
Backwards search for Prolog

in the database. For each clause, the unify function is called to find out whether the current goal (the value
of search_goal) can be unified with the goal which appears in the clause (the value of clause_goal).
If it can be unified, a recursive call on backwards_search_prolog is made. The input is just a list made
up of the subgoals of the clause and the goals still left to be satisfied (as well as the inherited top level
instantiations). The remaining part of the function is fairly self-explanatory.

Now that we have defined the main search mechanism, we need to define a function which will take the goals
input by the programmer and, before presenting them as input in a call on backwards_search_prolog,
initialise the top_level_insts correctly. The function is defined as in Figure 11-8.

The programming ''environment" can now be implemented as an interactive loop which reads in a set of goals
from the user (using the function readline) and then tries to see if (and how) they can be satisfied by
calling satisfy_top_level_goals. The function is called toyplog. The top-level loop

Page 310

involves a single call on readline and a test for [bye]. The readline prompt is locally redefined so as to
make the interaction more Prolog-like. Unfortunately, although readline returns a list, it does not cope
with input which has internal list structure (an alternative is to use listread but this interacts with VED in
a different way to readline). That is, any list brackets that are read in are simply treated as ordinary
characters and not indicators of embedded structure. To get around this, function makelist builds the
appropriate structure (see Notes at the end of this chapter for a neater way to define makelist).

Programming in Toyplog

The machinery that we have implemented above provides a simple Prolog-like programming language which
we will call Toyplog. Many of the things which can be done with real Prolog can be done using Toyplog.
Obviously, it is impractical to try to work through all the possibilities. However, just to give a flavour we will
show how a program can be written to perform the basic list-manipulation tasks member and append

Before discussing the rules which are required we need to decide on a way of representing list structures. As
was argued above, the variable instantiation mechanism provides a way of building and accessing arbitrarily
complex (tree) data structures. But in order to deal with a specific type of structure we need to specify what
the characteristics of that data type are.

We shall simply follow the Prolog conventions here. A list data structure will be assumed to made up of
structures of three elements which for convenience we will call "dot structures". The first element of a dot
structure will always be the dot character, i.e. ".". The second element of a dot structure will be an arbitrary
item while the third element will either be another dot structure, or the empty list item; namely []. There is
nothing special about choosing "dot" rather than some other way of denoting lists; this just follows standard
Prolog conventions. Thus a list which in POP-11 we would write:

 [1 2 3]

will be represented under the proposed conventions as follows:

 [. 1 [. 2 [. 3 []]]]

Given these conventions it is quite easy to construct a couple of clauses which in combination will implement
a predicate to test whether a given item is a member of a given list. The two clauses look like this:

 [[[member X [. X Y]]]

Page 311

<><><><><><><><><><><><>

/* satisfy_top_level_goals takes a list of goals and tries to satisfy them. */

 define satisfy_top_level_goals(goals);
 vars top_level_insts;
 1 -> gensym("_");
 set_vars(goals) -> goals -> top_level_insts;
 if not(backwards_search_prolog(goals, rev(top_level_insts)))
 then pr('no'); nl(2)
 endif;
 enddefine;

/* toyplog takes a rulebase and conducts a Prolog like interaction */

 define toyplog(rulebase);
 vars goals pop_readline_prompt database;
 '?- ' -> pop_readline_prompt;
 pr('Toyplog version 1'); nl(1);
 rulebase -> database;
 until goals = [bye] do
 makelist(readline()) -> goals;
 unless goals = [bye] or goals = [] then
 satisfy_top_level_goals(goals);
 endunless;
 enduntil;
 enddefine;

/* makelist takes a flat list possibly containing "[" and "]" and
returns a correspondingly nested list. */

 define makelist(flatlist) -> structure;
 makelist1() -> structure
 enddefine;

 define makelist1() -> structure;
 [^(until flatlist = [] or hd(flatlist) = "]" do
 if hd(flatlist) = "["
 then tl(flatlist) -> flatlist;
 makelist1()
 else hd(flatlist);
 endif;
 tl(flatlist) -> flatlist
 enduntil)] -> structure
 enddefine;

Figure 11-8
The top level of the Prolog system

Page 312

 [[member X [. Z Y]] [member X Y]]] -> database;

The first clause is just a fact. It says, in effect, that some arbitrary object is a member of a list if it appears as
the first element of that list. The second clause is a rule. It says that an object is a member of a list if it is a
member of the "tail" of the list (i.e. the list minus its first element). In some sense these two clauses
implement a procedure for testing membership.

We can look at the way the machinery we have implemented deals with a member goal by tracing the main
functions and calling satisfy_top_level_goals on an appropriate input. Thus:

 trace backwards_search_prolog unify;
 satisfy_top_level_goals([[member 2 [. 1 [. 2 []]]]);

 > backwards_search_prolog [[member 2 [. 1 [. 2 []]]]] []
 !> unify [member 2 [. 1 [. 2 []]]] [member [$ _1 $] [. [$ _1 $] [$ _2 $]]]
 !!> unify member member
 !!< unify <true>
 !!> unify 2 [$ _1 $]
 !!< unify <true>
 !!> unify [. 1 [. 2 []]] [. [$ 2 $] [$ _2 $]]
 !!!> unify . .
 !!!< unify <true>
 !!!> unify 1 [$ 2 $]
 !!!< unify <false>
 !!< unify <false>
 !< unify <false>
 !> unify [member 2 [. 1 [. 2 []]]] [member [$ _3 $] [. [$ _4 $] [$ _5 $]]]
 !!> unify member member
 !!< unify <true>
 !!> unify 2 [$ _3 $
 !!< unify <true>
 !!> unify 1. 1 [. 2 []] [. [$ _4 $] [$ _5 $]]
 !!!> unify . .
 !!!< unify <true>
 !!!> unify 1 [$ _4 $]
 !!!< unify <true>
 !!!> unify [. 2 []] [$ _5 $]
 !!!< unify <true>
 !!< unify <true>
 !< unify <true>
 !> backwards_search_prolog [[member [$ 2 $] [$ [2 []] $]]] []
 !!> unify [member [$ 2 $] [$ [. 2 []] $]] [member [$ _6 $] [. $ _6 $] [_7 $]]]
 !!!> unify member member
 !!!< unify <true>
 !!!> unify [$ 2 $] [$ _6 $]
 !!!< unify <true>
 !!!> unify [$ [. 2 []] $] [. [$ [$ 2 $] $] [$ _7 $]]
 !!!!> unify . .

 !!!!< unify <true>
 !!!!> unify 2 [$ [$ 2 $] $]

Page 313

 !!!!< unify <true>
 !!!!> unify [] [$ _7 $]
 !!!!< unify <true>
 !!!< unify <true>
 !!< unify <true>
 !!> backwards_search_prolog [] []
 yes

 !!< backwards_search_prolog <true>
 !< backwards_search_prolog <true>
 < backwards_search_prolog <true>

Toyplog printed out yes in response the initial goal. Note that this is the correct answer. One of the problems
of the trace is that any REF objects are printed out as the lists that they really are.[3]

Adopting a similar approach we can implement a "function" which effectively appends two lists together. The
clauses we need in this case are as follows:

 [[[append [] X X]]
 [[append [. H T] L [. H X] [append T L X]]] -> database;

The second and third elements will be used here as "input" variables and the fourth element of goals as a kind
of "result" variable. The answer we are looking for (i.e. the append of the two lists) will be the value to which
the fourth argument of the original goal is instantiated. Again we have one fact and one rule. The fact says
that an empty list appended to a list is just the list itself. The rule says that a list consisting of an initial
element H and a tail T appended to a list L, is just a list which has H as its first element and as its second
element, the result of appending T to L. Unfortunately, the way in which the search function tries to satisfy
even quite a simple append goal is quite involved:

 satisfy_top_level_goals([[append [. 1 [. 2 []]] [. 3 [. 4 [. 5 []]]] X]]);

 > backwards_search_prolog [[append [. 1 [. 2 []]] [. 3 [. 4 [. 5 []]]] _1]]
 [[X 1]]
 !> unify [append [. 1 [. 2 []]] [. 3 [. 4 [. 5 []]]] _1] [append [] _2 _2]
 !!> unify append append
 !!< unify <true>
 !!> unify [. 1 [. 2 []]] []
 !!< unify <false>
 !< unify <false>
 !> unify [append [. 1 [. 2 []]] [. 3 [. 4 [. 5 []]]] _1]

[3] We have already defined a procedure prterm which prints out such objects in a more compact way. In order to
make this have a global effect (i.e. even the output of tracing) it is necessary to adjust the way that POP-11 prints lists:

 prterm -> class_print(datakey([$ foo $]));

Page 314

 [append [. _3 _4] _5 [. _3 _6]]
 !!> unify append append
 !!< unify <true>
 !!> unify [. 1 [. 2 []]] [. _3 _4]
 !!!> unify . .
 !!!< unify <true>
 !!!> unify 1 _3
 !!!< unify <true>
 !!!> unify [. 2 [] _4
 !!!< unify <true>
 !!< unify <true>
 !!> unify [. 3 [. 4 [. 5 []]]] _5
 !!< unify <true>
 !!> unify _1 [. 1 _6]
 !!< unify <true>
 !< unify <true>
 !> backwards_search_prolog [[append [. 2 []] [. 3 [. 4 [. 5 []]]] _6]]
 [[X [. 1 _6]]]
 !!> unify [append [. 2 []] [. 3 [. 4 [. 5 []]]] _6] [append [] _7 _7]
 !!!> unify append append
 !!!< unify <true>
 !!!> unify [. 2 []] []
 !!!< unify <false>
 !!< unify <false>
 !!> unify [append [. 2 []] [. 3 [. 4 [. 5 []]]] _6]
 [append [. _8 _9] _10 [. _8 _11]]
 !!!> unify append append
 !!!< unify <true>
 !!!> unify [. 2 []] [. _8 _9]
 !!!!> unify . .
 !!!!< unify <true>
 !!!!> unify 2 _8
 !!!!< unify <true>
 !!!!> unify [] _9
 !!!!< unify <true>
 !!!< unify <true>
 !!!> unify [. 3 [. 4 [. 5 []]]] _10
 !!!< unify <true>
 !!!> unify _6 [. 2 _11]
 !!!< unify <true>
 !!< unify <true>
 !!> backwards_search_prolog [[append [] [. 3 [. 4 [. 5 []]]] _11]]
 [[X [. 1 [. 2 _11]]]]
 !!!> unify [append [] [. 3 [. 4 [. 5 []]]] _11] [append [] _12 _12]
 !!!!> unify append append
 !!!!< unify <true>

 !!!!> unify [] []
 !!!!< unify <true>
 !!!!> unify [. 3 [. 4 [. 5 []]]] _12
 !!!!< unify <true>
 !!!!> unify _11 [. 3 [. 4 [. 5 []]]]
 !!!!< unify <true>
 !!!< unify <true>
 !!!> backwards_search_prolog [] [[X [. 1 [. 2 [. 3 [. 4 [. 5 []]]]]]]]

Page 315

 X = [. 1 [. 2 [. 3 [. 4 [. 5 []]]]]]
 ? ;
 !!!< backwards_search_prolog <false>
 !!!> unify [append [] [. 3 [. 4 [. 5 []]]] _11]
 [append [. _13 _14] _15 [. _13 _16]]
 !!!!> unify append append
 !!!!< unify <true>
 !!!!> unify [] [. _13 _14]
 !!!!< unify <false>
 !!!< unify <false>
 !!< backwards_search_prolog <false>
 !< backwards_search_prolog <false>
 < backwards_search_prolog <false>
 no

The above trace demonstrates how much work goes on under the surface in Prolog.

A Sample Interaction With Toyplog

It is impossible to explore all the ways in which we can get computational behaviour out of the new search
function. Since Toyplog constitutes a subset of Prolog most computational strategies which are possible in
that language will be feasible in Toyplog. The interaction listed below demonstrates just a few of the
possibilities.

First of all we set up an initial rulebase (i.e. "program"). This just contains the definitions of the "member"
and "append" predicates:

 [[[append [] X X]]
 [[append [. H T] L [. H X]][append T L X]]
 [[member X [. X Y]]]
 [[member X [. Z Y]][member X Y]]] -> rulebase9;

Now we start the Toyplog interaction by calling the toyplog function:

 untrace backwards_search_prolog unify;

 toyplog(rulebase9);
 Toyplog version 1
 ?- [member foo [. bang [. foo []]]]
 yes

 ?- [member X [. bang [. ding []]]]
 X = bang
 ? ;
 X = ding
 ? ;

Page 316

 no

 ?- [member X [.bang [.ding []]]] [member X [. ding []]]
 X = ding
 ? ;
 no

 ?- [append [. 1 [. 2 []]] [. 3 []] X]
 x = [. 1 [. 2 [. 3 []]]]
 ? ;
 no

 ?- [append X Y [. foo [. bang [. ding []]]]]
 X = []
 Y = [. foo [. bang [. ding []]]]
 ? ;
 X = [. foo []]
 Y = [. bang [. ding []]]
 ? ;
 X = [. foo [. bang []]]
 Y = [. ding []]
 ? ;
 X = [. foo [. bang [. ding []]]]
 Y = []
 ? ;
 no

 ?- bye

As a second example we set up a rulebase containing a definitions of facts and rules for building a simple
backwards search tree without loop detection, see Chapter 6:

 [[[rule [. have_smarties []]]]
 [[rule [. have_eggs []]]]
 [[rule [. have_flour []]]]
 [[rule [. have_money []]]]
 [[rule [. have_car []]]]
 [[rule [. in_kitchen []]]]

 [[rule [. decorate_cake [. have_cake [. have_icing []]]]]]
 [[rule [. decorate_cake [. have_cake [. have_smarties []]]]]]
 [[rule [. have_money [. in_bank []]]]]
 [[rule [. have_cake [. have_money [. in_store []]]]]]

Page 317

 [[rule [. have_cake [. in_kitchen [. have_phone []]]]]]
 [[rule [. in_store [. have_car []]]]]
 [[rule [. in_bank [. have_car []]]]]

 [[backwards_search_tree [] []]]

 [[backwards_search_tree [. Goal Goals] [. [. Goal Tree] Trees]]
 [rule [. Goal Subgoals]]
 [backwards_search_tree Subgoals Tree]
 [backwards_search_tree Goals Trees]]
] -> rulebase10;

This example is rather recursive as we are using our POP-11 backwards search function to implement Prolog,
itself conducting a backwards search. Needless to say, this runs a bit slower than doing the backwards search
directly:

 toyplog(rulebase10);
 Toyplog version 1
 ?- [rule X]
 X = [. have_smarties []]
 ? ;
 X = [. have_eggs []]
 ?
 yes

 ?- [backwards_search_tree [. have_smarties []] [. Tree []]]
 Tree = [. have_smarties []]
 ?
 yes

 ?- [backwards_search_tree [. decorate_cake []] [. Tree []]]
 Tree = [. decorate_cake
 [. [. have_cake
 [. [. have_money []]
 [. [. in_store [. [. have_car []] []]] []]]]
 [. [. have_smarties []] []]]]
 ?
 yes

 ?- bye

In the final example above, we have slightly tidied the printing of the value of Tree in order to show its
structure (as a solution tree) more clearly. Note that the output

Page 318

matches that given in Chapter 6 for the same problem.

Reading

The fact that Prolog constitutes a general-purpose programming language means that it can be used to
implement search strategies! It should come as no surprise (now) to find that it is particularly good for this
sort of application. Ford provides a user-friendly discussion of this issue (see Ford 1987, Chapter 5). He also
covers Prolog implementations of planning strategies (Chapters 6 and 12), probabilistic search (Chapter 8)
and a form of concept learning which is related to the focussing algorithm (Chapter 11).

Bratko (1990) provides a general introduction to Prolog programming and gives Prolog implementations for
many of the search-related techniques which have been discussed above. The topics of heuristic search,
minimax and alpha-beta pruning are dealt with in Chapter 15; basic search strategies are dealt with in
Chapters 11, 12 and 13. Chapter 14 is devoted to the topic of expert systems.

Chapter 2 of Ramsay and Barrett (1987) describes the implementation of a sophisticated theorem prover in
POP-11. Kowalski (1979) discusses the logical foundations of Prolog and search techniques in general. For a
2-page introduction to Prolog see Rich (1983, pp. 401-402).

Exercises

1. Extend the definition of backwards_search_prolog so that it can cope sensibly with "extra-logical"
goals such as [write] or [assert Y].

2. Replace the rather awkward REF objects in the definition by true POP-11 REF objects.

3. Extend the definitions to cover such predicates as not and spy.

Page 319

Notes

A neater way to define makelist.

 define makelist(flatlist) -> structure;
 compile(stringin('' >< flatlist)) -> structure
 enddefine;

Page 321

References

Aleksander, I. and Burnett, P. (1987) Thinking Machines: The Search for Artificial Intelligence, Oxford:
Oxford University Press.

Amarel, S. (1981) On Representations of Problems of Reasoning about Actions. In B.L. Webber and
N.J. Nilsson (eds) Readings in Artificial Intelligence, Palo Alto: Tioga Publishing Company.

Barr, A. and Feigenbaum, E.A. (eds) (1981) The Handbook of Artificial Intelligence (Volume 1), Los
Altos: William Kaufmann.

Barrett, R., Ramsay, A. and Sloman, A. (1985) POP-11: A Practical Language for Artificial Intelligence
Programming, Chichester: Ellis Horwood.

Bratko, I. (1990) Prolog Programming for Artificial Intelligence (2nd Edition), Wokingham: Addison-
Wesley.

Bundy, A., Burstall, R.M., Weir, S. and Young,
R.M. (1980) Artificial Intelligence: An Introductory
Course, Edinburgh: Edinburgh University Press.

Bundy, A., Silver, B. and Plummer, D. (1985) An Analytical Comparison of some Rule-Learning
Programs, Artificial Intelligence, 27, 137-181.

Burton, M. and Shadbolt, N. (1987) POP-11 Programming for Artificial Intelligence, Wokingham:
Addison-Wesley.

Charniak, E. and McDermott, D. (1985) Introduction to Artificial Intelligence, Reading, MA: Addison-
Wesley.

Clocksin, W.F. and Mellish, C.S. (1987) Programming in Prolog (3rd Edition), Berlin: Springer-Verlag.

Page 322

Cohen, P.R. and Feigenbaum, E.A. (eds) (1982) The Handbook of Artificial Intelligence (Volume 3),
London: Pitman.

Fikes, R.E. and Nilsson, N.J. (1971) ''STRIPS: a New Approach to the Application of Theorem
Proving", Artificial Intelligence, 2, 189-208.

Fikes, R., Hart, P. and Nilsson, N.J. (1981) Learning and Executing Generalised Robot Plans. In B.L.
Webber and N.J. Nilsson (eds) Readings in Artificial Intelligence, Palo Alto: Tioga Publishing
Company.

Ford, N. (1987) How Machines Think: A General Introduction To Artificial Intelligence Illustrated In
Prolog, Chichester: John Wiley and Sons.

Forsyth, R. (ed.) (1984) Expert Systems: Principles And Case Studies, London: Chapman and Hall.

Gazdar, G. and Mellish, C. (1989a) Natural Language Processing in POP-11, Wokingham: Addison-
Wesley.

Gazdar, G. and Mellish, C. (1989b) Natural Language Processing in Prolog, Wokingham: Addison-
Wesley.

Gilhooly, K. (1989) Human and Machine Problem Solving, New York: Plenum Press.

Hart, P., Nilsson, N.J. and Raphael, B. (1968) A Formal Basis for the Heuristic Determination of
Minimum Cost paths, IEEE Transactions on SSC, SSC-4, 100-107.

Hayes, P. (1981) The Frame Problem and Related Problems in Artificial Intelligence. In B.L. Webber
and N.J. Nilsson (eds) Readings in Artificial Intelligence, Palo Alto: Tioga Publishing Company.

Korf, R.E. (1988) Search: A Survey of Recent Results. In H.E. Shrobe (ed.) Exploring Artificial
Intelligence: Survey Talks from the National Conferences on Artificial Intelligence, San Mateo: Morgan
Kaufmann.

Kowalski, R. (1979) Logic For Problem Solving, New York: North-Holland.

Laventhol, J. (1987) Programming in POP-11, Oxford: Blackwell Scientific Publications

Mitchell (1982) Generalisation as Search, Artificial Intelligence, 18, 203-226.

Page 323

Newell, A. and Simon, H.A. (1963) GPS: a Program that Simulates Human Thought. In E. A.
Feigenbaum and J. Feldman (eds) Computers And Thought, New York: McGraw-Hill.

Nilsson, N.J. (1980) Principles of Artificial Intelligence, Palo Alto: Tioga Publishing Company.

Noble, H.M. (1988) Natural Language Processing, Oxford: Blackwell Scientific Publishers.

O'Keefe, R. (1990) The Craft of Prolog, Cambridge, MA: MIT Press.

Pearl, J. (1984) Heuristics: Intelligent Search Strategies for Computer Problem Solving, Reading, MA:
Addison-Wesley.

Ramsay, A. (1986) Computer Processing of Natural Language. In M. Yazdani (ed.) Artificial
Intelligence, London: Chapman Hall.

Ramsay, A. and Barrett, B. (1987) AI in Practice: examples in POP-11, Chichester: Ellis Horwood.

Rich, E. (1983) Artificial Intelligence, New York: McGraw-Hill.

Rich, E. and Knight, K. (1991) Artificial Intelligence (2nd Edition), New York: McGraw-Hill.

Scott, P. and Nicolson, R. (1991) Cognitive Science Projects in Prolog, Hove: Lawrence Erlbaum
Associates.

Sharples, M., Hogg, D., Hutchison, C., Torrance, S. and Young, D. (1988) Computers And Thought: An
Introduction To Cognitive Science And Artificial Intelligence, Cambridge, MA: MIT press.

Shortliffe, E.H. (1976) Computer-Based Medical Consultations: MYCIN, New York: American
Elsevier.

Sterling, L. and Shapiro, E. (1986) The Art of Prolog: Advanced Programming Techniques, Cambridge,
MA: MIT Press.

Stillings, N.A., Feinstein, M.H., Garfield, J.L., Rissland, E.L., Rosenbaum, D.A., Weisler, S.E. and
Baker-Ward, L. (1987) Cognitive Science: An Introduction, Cambridge, MA: MIT Press.

Page 324

Webber, B.L., and Nilsson, N.J. (eds) (1981) Readings In Artificial Intelligence, Palo Alto: Tioga
Publishing.

Winograd, T. (1983) Language as a Cognitive Process (Volume 1: Syntax), Reading, MA: Addison-
Wesley.

Winston, P.H. (1984) Artificial Intelligence (2nd Edition), Reading, MA: Addison-Wesley.

Zadeh, L. (1965) Fuzzy Sets, Information And Control, 8, 338-353.

Page 325

APPENDIX A
Introduction to POP-11

Starting POP-11

To use the POP-11 language on a computer you first have to run the POP-11 system. The way in which
this is done will vary depending on the computer which is being used. But let us imagine that we are
using a computer which has the UNIX operating system. In this case it is quite likely that the POP-11
system can be run by just typing pop11 to the UNIX prompt, thus:

 % pop11

Once you have done this some messages will be printed out and then you will see a colon appear at the
far left of the screen. This says that the computer is ready to receive input in POP-11. By convention we
blur the distinction between the language and the computer and just say that POP-11 is waiting for input.

If you press the <RETURN> key, POP-11 will print a new colon on the next line. This shows that it is
responding to you. To make it do something interesting you have to type in some POP-11 code, i.e. you
have to type in some words in the POP-11 programming language. Note that if you present input which
is not perfectly correct POP-11 code, a complaint called a MISHAP message will be printed out. This
will consist of about three lines of text, each one preceded by three semi-colons. The interpretation of
mishap messages is quite a complex business and will not be covered here.

POP-11 As a Calculator

At a very basic level, the POP-11 programming language is a bit like a pocket calculator. To work
something out on a calculator you type in an expression such as "2 + 2" and then a command such as "="
and the calculator responds by printing out the value of the expression in the display. We can get this
sort of behaviour out of POP-

Page 326

11 by going through roughly the same steps; except with POP-11 you have to type in the command to
show that you want the value of the expression to be printed out If you type:

 2 + 2 ==>

followed by <RETURN>, POP-11 will respond by printing out:

 ** 4

Note that when typing in this expression it is necessary to type spaces between the various items. We
can actually type as many spaces between items as we like. POP-11 just skips over blanks and blank
lines. So we could have typed:

 2

 +

 2
 ==>

and got exactly the same result. Note that POP-11 always puts two asterisks before anything which you
have asked it to print out.

The 2 + 2 part of the code we typed in is an expression and the ==> bit is a command called the print
arrow; the print arrow tells POP-11 that you want it to print out the value of the expression which
appears immediately in front of the command. Typing <RETURN> tells POP-11 to respond to the code
that you have typed in. In fact, all POP-11 code consists of commands and expressions. Commands are
things which tell POP-11 to do something; expressions are things which have values.

POP-11 understands all the usual types of mathematical expression. Thus we can type things like:

 2 * 3 / 5 - 0.3 ==>
 ** 0.9

It also allows us to construct expressions using a number of more advanced operators. A useful operator
is rem The value of a expression involving the rem operator is just the remainder produced when the
number on the left is divided by the number on the right. Thus:

 3 rem 2 ==>
 ** 1

Page 327

As well as simple commands like ==> POP-11 also has more complicated commands. For instance we
can write some code which says "print out the value of 2 + 2 five times". This code is written as follows:

 repeat 5 times 2 + 2 ==> endrepeat;

Note that this command has a semi-colon at the end; this just tells POP-11 where the command ends. All
commands except ==> have to end with a semi-colon. If you type the command in and then hit
<RETURN> (to say "respond to this"), POP-11 will print out:

 ** 4
 ** 4
 ** 4
 ** 4
 ** 4

The "repeat 5 times ... endrepeat" bit is a command just like ==>. The difference is that it is a complex
command which can have other commands and expressions inside it. In fact, POP-11 allows you to put
arbitrarily many commands inside the repeat command. So we could do:

 repeat 5 times 2 + 2 ==> 3 * 3 ==> endrepeat;

Variables

POP-11 is like a sophisticated "scientific" calculator in the fact that it lets you create variables. These
are like boxes in which you can keep values of expressions. The command which tells POP-11 to set up
a variable is vars. To set up a variable called mine you would type:

 vars mine;

That is, you type "vars <name of variable> ;". Don't forget to end the command with a semi-colon.
Variables always have names; this means that if you want to put a value in a specific box you can tell
POP-11 which box to use by giving its name. To put a value in the variable (i.e. box) called mine we
would do:

 2 + 2 -> mine;

The -> is a command called the assignment arrow; commands using the assignment arrow are usually
just called assignments. They tell POP-11 to take the value of the

Page 328

expression on the left and put it into the variable whose name appears on the right. If the variable is
called mine, the value is said to be "assigned to mine".

One of the nice things about variables is that when you just type their names, POP-11 treats it as an
expression whose value is just the contents of the corresponding box. This means that we can do
something like:

 mine ==>

and POP-11 will respond by printing:

 ** 4

It also means that we can copy the contents of one variable into another using the assignment arrow, e.g.

 vars yours;
 mine -> yours;

 yours ==>
 ** 4

Functions

Usually, calculators have things like square-root functions. In order to get the square-root of a number
you type the number in, then hit the square-root command (i.e. button) and the calculator prints out the
answer in the display. POP-11 also has this sort of feature, but to make it work you have to type in the
name of the function and then the number to which it is to be applied in brackets, e.g. to get the square-
root of 25 we would type in the name of the function (in POP-11 its called sqrt) and then the number
in brackets:

 sqrt(25) ==>
 ** 5.0

The number which goes in between the brackets is referred to as an input to the function. The evaluation
of a function is referred to as a call of the function and the value computed is said to be returned. Often,
the returned value is called the result of the function. Thus, if we wanted to refer to the evaluation of a
specific function, e.g.

 sqrt(8)

we would talk about "the value which is returned when sqrt is called on the input 8"

Page 329

or perhaps "the result of sqrt called on 8".

Function calls are types of expression and as such, they have values; the value of a given function call is
just its result. Thus, we can use the assignment arrow to put the result of a call on the square-root
function into a variable:

 sqrt(100) -> mine;
 mine ==>
 ** 10.0

POP-11 has many other built-in functions as well as sqrt. Three useful examples are min, max and
abs; min takes two numerical inputs and returns the one which is smaller. Thus:

 min(2,3) ==>
 ** 2

max does the opposite: it takes two inputs and returns the one which is larger. Thus:

 max(2,3) ==>
 ** 3

The function abs just returns the absolute value of a positive or negative integer. Thus:

 abs (-3) ==>
 ** 3

 abs (4) ==>
 ** 4

Defining Functions

Of course, POP-11 provides many features which you would be unlikely to get on a calculator. For
example, POP-11 has a command which lets you set up new functions of your own. Imagine that we
would like there to be a function called double such that we could type:

 double (3) ==>

and get the response:

 ** 6

Page 330

POP-11 does not have this function built in, but we can set it up by using a define command as shown
in FigureA-1. The define command shown in this figure provides POP-11 with a script which tells it
how to evaluate an expression like double(6); by convention the script is called a definition. Let us
work our way through it bit by bit.

First of all, the word define begins the command and the word enddefine terminates it (compare
"repeat... endrepeat"). The word which comes immediately after define is just the name of the
function which we want to set up. The role played by the (number) part of the command is quite hard
to explain. Basically, it sets up a new variable called number. But it is not an ordinary variable. We can
always create an ordinary variable using the vars command. The variable set up is special because it is
the one into which POP-11 will put the input whenever the function is called. Technically, this bit of the
command is said to set up an input parameter for the function, i.e. a box into which the input to the
function (in some given call) is placed.

If we want to set up a function which takes more than one input, then we have to put more than one
word in between the initial brackets. For instance, we might type something like

define biggest(numa, numb) ...

so as to set up a function called biggest which might behave as follows:[l]

 biggest (3, 4) ==>
 ** 4

By putting two words in between the brackets we are effectively telling POP-11 that calls on biggest
will always include two inputs, so we need two input boxes (parameters). By putting the words in a
certain order we are specifying which input is to go in which box. We are telling POP-11 that we want
the first input to be put into numa (the first word) and the second input to be put into numb. For
functions which take

<><><><><><><><><><><><>

 define double(number) -> result;
 number * 2 -> result
 enddefine;

Figure A-1
|Function to double a number

[1] In fact, we have no need to define this function. POP-11 has this function built-in as max.

Page 331

three inputs we would need to include three input parameters, and so on.

The -> result of the first line of the definition indicates that our function will produce a single value
or result when it is complete. For the purposes of the function the variable holding this local output is
named result in this case.

The middle bit of the define command is relatively straightforward. It is made up from the expression
number * 2 and an assignment of the value of this expression to the local output variable result. If
the input was 5, then the value of the expression would be 5 * 2, i.e. 10. Thus the value returned by the
following call is 10:

 double (5) ==>
 ** 10

Now, in our definition of double there is only one POP-11 command inside the definition. But there
could be other commands. Suppose we wanted to define a function which doubles and then squares a
number. We might use a define command as shown in Figure A-2. POP-11 would then produce the
following behaviour.

 double_then_square(3) ==>
 ** 36

Note that in setting up this function we have used a word which is made out of three words joined
together with underscore characters. Normally we use the hyphen to join words together (e.g. we would
type double-then-square). But when talking to POP-11 we cannot do this. POP-11 always treats
a hyphen as a minus symbol.

Local Variables

The variables which we set up by putting words in between the initial brackets of a define command
and that following the -> in the title line have the property of being attached to the function. So when
we set up a variables called number and foo by typing:

<><><><><><><><><><><><>

 define double_then_square (number) -> output;
 number * 2 -> number;
 number * number -> output
 enddefine;

Figure A-2
function to double then square a number

Page 332

define double(number) -> foo; ...

we set up variables which are quite different to the variable which we set up using an ordinary vars
command. POP-11 treats the number and foo variables as if they belong to the function we have
defined. This means that they cannot get mixed up with any ordinary variables of the same name. We
can demonstrate this by setting up an ordinary variable called number and then calling the function
double. The fact that the original value of number is not affected by the call on double shows that
POP-11 treats these as two different variables. If it treated them as the same variable, then its placing of
the input 5 into double's number variable would change the value of the ordinary number variable:

 vars number;
 3 -> number;

 double(5) ==>
 ** 10

 number ==>
 ** 3

A good way to think about this is to imagine that the number or the foo variable belonging to
double has the word double appended as an invisible postfix; i.e. number_double. Variables
which are attached to a function are called local variables. Non-local variables are sometimes called
global variables. We can set up more local variables if we want by putting a vars command inside a
function definition. Thus:

 vars temp;
 10 -> temp;

 define double_then_square (number) -> result;
 vars temp;
 number * 2 -> temp;
 temp * temp -> result
 enddefine;

 double_then_square (3) ==>
 ** 36

 temp ==>
 ** 10

Page 333

Boolean Expressions

So far, we have only looked at expressions which are made up from numbers and arithmetic symbols
such as + and *. In POP-11, the numbers appearing either side of the arithmetic symbol are called
arguments and the symbol itself is called an operator. This sort of expression always has a numeric
value but in POP-11 we can also have expressions which have what are called boolean values; these are
called boolean expressions and are constructed using boolean operators.

In fact there are just two boolean values; one corresponds (roughly) to ''yes", the other corresponds to
"no". In POP-11 these values are printed out as follows:

 ** <true>
 ** <false>

where <true> corresponds to "yes", and <false> corresponds to "no". Expressions which have these
"yes/no" values are things like 2 = 2 and 4 > 3. Any expression involving the = operator has the
value <true> if the thing on the right is the same as the thing on the left; otherwise it has the value
<false>. By convention, an expression which has the value <true> (or <false>) is often just said
to be true (or false). Thus:

 3 = 2 ==>
 ** <false>

is false, but:

 2 = 2 ==>
 ** <true>

is true.

Expressions involving > are true if the number on the left is bigger than the number on the right;
otherwise they are false. Thus:

 3 > 2 ==>
 ** <true>

and

 2 > 3 ==>
 ** <false>

As well as = and >, POP-11 can also handle expressions involving < (less-than), >= (more-than-or-
equal) and <= (less-than-or-equal). Thus:

Page 334

 2 > 2 ==>
 ** <false>

 2 >= 2 ==>
 ** <true>

Expressions which just involve two numbers and a symbol like = are simple boolean expressions. But
POP-11 provides operators which join boolean expressions together to create more complex boolean
expressions. The operators provided are and, or. These work in exactly the way we would expect
expressions involving and are true if the expression on the left is true and the expression on the right is
true. Expressions involving the or operator are true if the expression on the left is true or the expression
on the right is true. For example:

 2 >= 2 and 3 < 4 ==>
 ** <true>

but

 2 >= 2 and 4 < 3
 ** <false>

Expressions involving or behave differently. Thus:

 2 >= 2 or 4 < 3 ==>
 ** <true>

This expression has the value <true> because one of the two expressions appearing either side of the
or has the value <true>. In order for an or expression to have the value <false>, both expressions
must have the value <false>, e.g.

 2 > 3 or 3 > 4 ==>
 ** <false>

Finally, POP-11 provides a function called not. Calls on not (e.g. not (2 > 3)) return <true> if
the expression which appears in the brackets has the value <false>:

 not(2 > 3) ==>
 ** <true>

Page 335

Conditionals

These boolean expressions may seem a bit pointless. It is usually quite possible to see which of two
numbers is the larger (say), so why have special machinery for working this out? The advantages of
boolean expressions only really begin to show up when we consider another complex POP-11
command. This is the if command. Let us consider the function we envisaged above called biggest.
We want to be able to type:

 biggest (2,3) ==>

and have POP-11 respond by printing:

 ** 3

We can obtain this behaviour this by defining up a function as is shown in Figure A3. Note that the
function has two local variables in between the brackets on the first line. This is because, as we noted
above, calls on biggest are always going to specify two inputs, so we must set up two boxes
(variables) for these two numbers to be put into. The definition we have provided tells POP-11 that the
result of a call such as biggest (2,3) is 2 if it turns out that 2 is greater than 3; otherwise it is 3.

The if command provides a way of doing something only if some boolean expression has the value
<true>, and doing something else in all other cases. POP-11 responds to an if command by first
testing to see whether the boolean expression which comes immediately after the if has the value
<true>.[2] If it does then POP-11 does all the commands which come between the then and the
else; otherwise it does all the commands which come between the else and the endif. We can have
if commands which do not have an else part. In this case, if the boolean expression has the value
<true>, POP-11 does all the commands between the then and the endif.

<><><><><><><><><><><><>

 define biggest(numa, numb) -> larger;
 if numa > numb
 then numa -> larger
 else numb -> larger
 endif;
 enddefine;

Figure A-3
Function to choose the larger of two numbers

[2] In fact, it checks that the expression does not have the value <false>.

Page 336

We can also have if commands which, instead of an else part have an elseif part. This has the
form:

elseif <expression> then <commands>

The commands between the elseif and the word endif are done if the expression which appears
between the elseif and the then has the value <true>. If necessary, it is possible to have multiple
elseif parts. That is to say you can have if commands of the form:

if <expression> then
<commands>

elseif <expression> then
<commands>

elseif <expression> then
<commands>

...

 endif;

POP-11 also has an unless command which works as a kind of inverted if. We could have used this
to write the biggest function as is shown in Figure A-4. The way in which POP-11 responds to
unless commands is effectively, the opposite of the way in which it responds to if commands. If the
boolean expression which comes between the unless and the then has the value <true> then all the
commands between the else and the endunless will be done. Otherwise, all the commands between
the then and the else will be done. For convenience POP-11 always treats any value which is not
equal to <false> as being equal to <true>. This makes it a lot easier to achieve certain effects as we
will see below.

<><><><><><><><><><><><>

 define biggest(numa, numb) -> larger;
 unless numa > numb
 then numb -> larger
 else numa -> larger
 endunless;
 enddefine;

Figure A-4
Function to select the larger of two numbers

Page 337

Words and Lists

We have seen that in POP-11, expressions can have numeric values or boolean values. But this is not the
end of the story. We can also have expression whose values are object-like entities called words. For
instance, if we type:

 "foobang" ==>

POP-11 will respond with:

 ** foobang

This is because, in POP-11, a bit of code which just consists of a number of characters enclosed in
double-quotes is an expression whose value is a special type of object called a word. Words should not
be confused with variables. If we had typed:

 foobang ==>

POP-11 would have assumed that the value of the expression foobang was the contents of the variable
with this name (see above).

Another type of expression which has an object-like value is as follows:

 [foobang 76 silly wally]

In POP-11, a bit of code which consists of a number of words and/or numbers enclosed between square
brackets is an expression whose value is an object called a list. Expressions of this sort will be called list
expressions. A list is just a sequence of values (numbers, words etc.) Note that POP-11 assumes that
contiguous sequences of characters appearing between the square brackets are words not variables. It
does not force you to put in the double-quotes to show that they are words.

Now, the valuable thing about lists is that they have internal structure. That is to say, they are not only
objects (i.e. values) themselves, but they have inside them, other objects. But how can we get at these
encapsulated objects? For instance, if we type something like:

 [foobang silly wally] -> mine;

so as to put the value of the list expression into the variable called mine, is there any way we can find
out what objects the list has inside it? (without looking at what we typed!). POP-11 provides a way of
writing expressions which lets us dig out components of the list. For example we can type:

 mine (1) ==>

Page 338

so as to ask POP-11 to produce the first element of the list in mine. POP-11 respond by printing:

 ** foobang

Other possibilities are as follows:

 mine(2) ==>
 ** silly

 mine (3) ==>
 ** wally

These expressions look like function calls but in fact this is not how POP-11 treats them. If we ever type
an expression which looks like a call on a function but where the function name is actually a variable
which has a list in it, POP-11 forms the value of the expression as that component of the list whose
position corresponds to the number which appears in between the brackets. Technically, this is called
subscripting the list.

POP-11 also provides some special functions for digging out the first and the last element of a list.
These are called hd and last. They work as follows:

 hd (mine) ==>
 ** foobang

 last(mine) ==>
 ** wally

Another very useful function is called delete. This works a bit like hd and last, except that whereas
these functions provide a way of accessing a specific component of a list, the delete function provides
a way of removing a certain component from a list. A typical call on delete might be:

 delete ("silly", mine) ==>
 ** [foobang wally]

The delete function takes two inputs; the second input is a list and the first input is an expression
whose value corresponds to one of the elements of the list. The value of the output is just a copy of the
list which has had the specified element removed.

A final list function which we will be making extensive use of is member. This function tests whether a
given item is included in a given list. The item is provided as the first input and the list is provided as the
second input. The function returns <true> if the item is included in the list and <false> otherwise.
Thus:

Page 339

 member(2, mine) ==>
 ** <false>

 member(2, [3 4 5 2 6]) ==>
 ** <true>

 member("silly", mine) ==>
 ** <true>

Hats

As was noted above, when evaluating a list expression, POP-11 assumes that any contiguous sequence
of non-numeric characters must be evaluated as a word expression, i.e. it assumes that there are some
invisible double-quotes around the sequence. But what if we want POP-11 to treat a sequence of
characters in the ordinary way? i.e. to treat it as an expression whose value is just the contents of the
corresponding variable. We can get this effect by using the symbol ^, which in POP-11 is called an up-
hat or just hat.. For example, if we put the value of a word expression into a variable:

 "funny" -> yours;

and then type in a list expression, we can arrange to get the value of:

 yours

included in the list by preceding the word yours with a single up-hat:

 [this is not ^yours] ==>
 ** [this is not funny]

In effect, POP-11 treats the up-hat as an instruction to evaluate the expression which follows. If the
expression is just a single item like yours then we can just put it after the up-hat; however, if the
expression consists of a series of items (e.g. 2 + 2) then we have to put it in brackets so that POP-11
can see where it begins and ends. Thus:

 [adding 2 and 2 makes ^(2 + 2)] ==>
 ** [adding 2 and 2 makes 4]

POP-11 responds to the up-hat by just inserting the value of the following expression into the list. This
means that, if we want, we can get lists inserted into lists, e.g.

Page 340

 [my old list was ^mine] ==>
 ** [my old list was [foobang silly wally]]

What happens if we want to get the contents of a list merged into another list? For instance, how can we
produce the list:

 [my old list was foobang silly wally]

by using the value of mine? One way to do this involves using the built-in function explode. This
function takes a list as input and returns all the elements of the list a, output. Thus we can do:

 [my old list was ^(explode(mine))] ==>
 ** [my old list was foobang silly wally]

But, in fact, we can get this effect more easily just by using a symbol called the double up-hat (written
^^). Thus:

 [my old list was ^^mine] ==>
 ** [my old list was foobang silly wally]

In the case where we have a command which evaluates an expression a certain number of times but
never does anything with the values, e.g.

 repeat 5 times 2 + 2 endrepeat;

POP-11 just keeps the values of the expressions stacked-up in the background. This means that we can
create a list of five 4s by doing:

 [^(repeat 5 times 2 + 2 endrepeat)] ==>
 ** [4 4 4 4 4]

For Loops

As has already been noted, lists play a very important role in most POP-11 programs In fact, a lot of the
functions which are built in to the language (e.g. delete and last do things to or with lists. There are
also a large number of commands which are specially designed for using with lists. A case in point is the
for command. This command allows a specific set of actions to be done to every element of a list. For
instance we might do:

 [1 2 3 4] -> mine;

Page 341

 vars item;

 for item in mine do double(item) ==> endfor;

POP-11 will respond by printing:

 ** 2
 ** 4
 ** 6
 ** 8

POP-11 responds to the for command as follows. First of all it looks at the word which appears
between the for and the in and designates it the loop variable.

Next it looks at the expression which appears between the in and the do and checks that its value is a
list. Then, for every single element in this list, it does all the commands which appear between the do
and the endfor. But each time it does them, it puts the next component of the list into the loop
variable. What this means, in effect, is that first of all it does double(1) ==>, then it does
double(2) ==>, then double(3) ==>, and finally double(4) ==>. One complete cycle
through the loop is called an iteration and the command is said to iterate over the list.

Since POP-11 has the ability to keep values of expressions stacked-up (see above), we can use the for
command to build lists, e.g.

 [^(for item in [7 18 49] do double(item) endfor)] ==>
 ** [14 36 98]

There are a couple of special commands for use with these commands which do a set of actions a certain
number of times (e.g. for and repeat). One of these, called quitloop, has the effect of making
POP-11 stop going around the loop. For example:

 for item in [1 2 3 4 5 6 7] do
 if double(item) > 8 then quitloop endif;
 item ==>
 endfor;

 ** 1
 ** 2
 ** 3
 ** 4

Here, POP-11 happily does the iterations for the 1, the 2, the 3 and the 4; but in the iteration for 5 the
call on double returns 10. This means that the quitloop command is executed and POP-11 stops
going around the loop.

Page 342

A variant of quitloop is nextloop. This command tells POP-11 not to do any more of the actions in
that iteration but to go on to the next element in the list and carry on from there. Thus:

 for item in [1 2 3 4 5 6 7] do
 if double(item) > 8 and double (item) <= 12 then nextloop
 endif;
 item ==>
 endfor;

 ** 1
 ** 2
 ** 3
 ** 4
 ** 7

A subsidiary use of the for command implements an iteration over a range of integers. For instance, we
can type:

 for x from 1 to 10 do x ==> endfor;

POP-11 responds by printing:

 ** 1
 ** 2
 ** 3
 ** 4
 ** 5
 ** 6
 ** 7
 ** 8
 ** 9
 ** 10

In this usage, rather than binding the loop variable to a different element of a list each time around the
loop, the for command binds it to the next number in the indicated sequence of integers (e.g. 1 to 10).

Applist

Very frequently, programs need to process the elements of a list using a single function. For instance we
might want to take a list of numbers and return a list in which

Page 343

all the numbers are doubled. We could do this by using a for command inside a list expression, e.g.

 vars list;
 [1 2 3 4] -> list;

 [^(for item in list do double(item) endfor)] ==>
 ** [2 4 6 8]

However, POP-11 provides a special-purpose function for doing this sort of thing. To carry out the
doubling process we could use the applist function thus:

 [^(applist(list, double))] ==>
 ** [2 4 6 8]

The applist function just has the effect of applying the function which is presented as the second
input, to all the elements of the list (first input) in turn.

Syssort

Another useful function which works on lists is syssort. This function reorders the elements of a list
using a function whose name we have to provide as an input. First of all let us define a function which
returns <true> if the number given as first input is less than the number given as second input. The
definition for this is shown in Figure A-5.

We can use this function so as to sort a list of numbers into ascending order thus:

 syssort([5 3 8 9 32 1 4 2], smaller) ==>
 ** [1 2 3 4 5 8 9 32]

<><><><><><><><><><><><>

 define smaller(numa, numb) -> boolean;
 numa < numb -> boolean
 enddefine;

Figure A-5
Function to compare two numbers

Page 344

What syssort actually does is make sure that for any two elements A and B in the list which is
provided as first input, A will appear before B in the list returned as result if the function provided as
second input returns <true> when called with A and B as inputs.[3]

Matching

One of the most powerful features of POP-11 is the pattern-matcher. This facility is packaged in the
form of a boolean operator which tests whether two lists match. The matches operator is usually just
called the matcher and matches expressions are just called match expressions.

If we want to test whether two lists are exactly the same we can use the = operator, e.g.

 [1 2 3] = [1 2 3] ==>
 ** <true>

 [1 2 3] = [2 2 3] ==>
 ** <false>

However, if we want to test something a little less categorical like whether or not a list ends with a
certain two elements we can use the matcher thus:

 [2 2 3] matches [= 2 3] ==>
 ** <true>

The matcher assumes that an = in the second list can match an item in the first list, no matter what that
item actually is. (Note that you cannot put an = in the first list.) There is another symbol called the
double-equals which the matcher assumes can match a sequence of arbitrary items in the first list. Thus,
if we want to check whether some list of arbitrary size ends in a certain two elements we might type:

 [foo bang ding 1 2 3] matches [== 2 3] ==>
 ** <true>

As far as the matcher is concerned, the double-equals matches any number of items in the other list. We
can put single-equals and double-equals wherever we want, e.g.

[3] Technically, since POP-11 treats any value which is not equal to <false> as <true>, A will appear
before B in the result if the function provided as second input does not return <false> when called with A
and B as inputs.

Page 345

 [foo bang ding 1 2 3] matches [== bang = 1 == 3] ==>
 ** <true>

 [foo bang ding 1 2 3] matches [== bang = = 1 == 3] ==>
 ** <false>

Note that by putting two separate single-equals after the bang in the second list we have effectively
stopped it from matching any list which has bang and 1 but only one element in between.

Very often, we will be interested to know what things the single-equals and double-equals matched
against. The matcher allows us to find this out by using two variants of the equals signs called the single-
query (written ?) and the double-query (written ??). If we do:

 [foo bang ding 1 2 3] matches [?mine bang = 1 == 3] ==>
 ** <true>

and then print out the value of mine

 mine ==>
 ** foo

we see that, as a side-effect of matching ?mine against foo, the matcher has put foo into the variable
called mine. If we use the double-query, then a list of the elements which have matched is put into the
corresponding variable, e.g.

 [foo bang ding 1 2 3] matches [??mine 1 2 3] ==>
 ** <true>

 mine ==>
 ** [foo bang ding]

Restriction Procedures

The single- and double-query can be used to great effect in POP-11 programs for ''digging out" bits and
pieces from list structures. However, the overall usefulness is increased still further by a feature known
as "restriction procedures". The use of restriction procedures can be illustrated by considering the way in
which a built-in function such as isnumber might be used to influence the result of a match process.
The isnumber function takes a single expression as input and tests whether its value is a number. If it
is, <true> is returned; otherwise <false> is returned. Thus:

Page 346

 isnumber(2 + 2) ==>
 ** <true>

 isnumber(3) ==>
 ** <true>

 isnumber("foo") ==>
 ** <false>

 isnumber([foo bang]) ==>
 ** <false>

Let us imagine that we want to test whether some list begins with a number, ends with the word foo,
and has an arbitrary number of elements in between. We can implement this test using the matcher as
follows:

 vars list;
 [1 ding bong foo] -> list;

 list matches [?mine:isnumber == foo] ==>
 ** <true>

By writing :isnumber after the ?mine, we tell POP-11 (in effect) that the first element of the list can
match against the mine variable provided that it is a number. Note that if it is not a number, the matcher
returns <false>>:

 [ding bong foo] -> list;

 list matches [?mine:isnumber == foo] ==>
 ** <false>

<><><><><><><><><><><><>

 define is_silly_word(w) -> boolean;
 if w = "foo" or w = "ding"
 then true -> boolean
 else false -> boolean
 endif
 enddefine;

Figure A-6
Function to check whether its argument is foo or ding

Page 347

Technically, putting : followed by the name of a function tells POP-11 that the variable can match an
element provided that, when the function is called with the element provided as input, it does not return
<false>>. We can illustrate this by defining a new function which returns boolean values as shown in
Figure A-6. This function can then be used in match expressions as follows:

 list matches [?mine:is_silly_word ==] ==>
 ** <true>

 [sensible ding bong] -> list;

 list matches [?mine:is_silly_word ==] ==>
 ** <false>

If the function whose name we write after the : returns a result which is not equal to <false> but not
equal to <true> either, then the value is assigned to the variable in the place of the element which was
actually provided as input Thus, if we redefine is_silly_word as in Figure A-7 then the behaviour
produced by the matcher is as follows:

 list matches [?mine:is_silly_word ==] ==>
 ** <true>

 mine ==>
 ** silly

As well as function names, we can also put integers after any colon which follows a double-query or a
double-equals. The idea here is that the integer forces the matcher to match the given variable against a
sequence of a given length. Inserting an integer N makes sure that the variable will only match against a
sequence of N elements.

<><><><><><><><><><><><>

 define is_silly_word(w) -> boolean;
 if w = "foo" or w = "ding"
 then "silly" -> boolean
 else false -> boolean
 endif
 enddefine;

Figure A-7
Function to return silly or false, depending on the input

Page 348

Thus, typing something like:

 list matches [== ??mine] ==>
 ** <true>

returns <true> and has the side effect of putting a list containing all the elements of the matched list into
the variable mine. Whereas, typing:

 list matches [== ??mine:2] ==>
 ** <true>

returns <true> and has the side effect of putting a list containing just the final two elements into the
variable mine:

 mine ==>
 ** [ding bong]

Lists which contain symbols which mean certain things to the matcher are usually called patterns. Note
that, for convenience, a match expression whose arguments are not list expressions works just like an =
expression. Thus:

 2 matches 3 ==>
 ** <false>

 "foo" matches "foo" ==>
 ** <true>

The Matcher Arrow

As we have seen, the POP-11 matcher can have side-effects. In some cases we may know that a list will
definitely match a pattern but want to obtain the side-effects of the match anyway. In this case we can
use a command --> which is called the matcher arrow. An expression featuring the matcher arrow
between two list expressions works just like a match expression except that it does not have a value.
Thus we might type:

 [foo 2 3] --> [?mine:is_silly_word ==];

so as to get the word silly assigned to the variable called mine:

 mine ==>
 ** silly

Page 349

Alternatively, we could use the matcher arrow to assign values to the variables called mine and yours
simultaneously:

 [1 2] -> [?mine ?yours];

 mine ==>
 ** 1

 yours ==>
 ** 2

The Database

As has already been shown, POP-11 is a good language for dealing with list structures. Because,
programs will often need to set up and then process many different lists, the language provides a general
place in which lists can be stored and accessed. This is called the database. In fact the database is itself a
list but normally, the lists that are of interest are the ones which are in the database list. POP-11 provides
simple commands for adding lists into the database, for taking them out and for finding all examples of
lists which match a certain pattern. To create a new database from scratch we can use an ordinary list
expression and an assignment, e.g.

 [[1 2 3] [foo bang] [noddy bigears]] -> database;

However, the normal way of adding lists into the database list, involves using a special POP-11
command called add. An add command consists of the word add followed by a list expression
appearing between round brackets. Thus:

 [] -> database;
 add([Chris Thornton Brighton Sussex]);

will cause the list in brackets to be added to the database list (which is initialised to be an empty list).
Since the database list is stored in a variable called database, we can print out the contents of the
database using the print arrow in the usual way:

 database ==>
 ** [[Chris Thornton Brighton Sussex]]

We can add more lists by executing a sequence of add commands, e.g.

 add([Fred Bloggs Lewes Sussex]);
 add([Simple Simon Dover Kent]);

Page 350

 add ([Margaret Thatcher London]);
 add([John Smith Brighton Sussex]);

We can use the present function to test whether there is a list in the database which matches a certain
pattern. The value of a call on present is <true> if there is a list in the database matching the
pattern given as first input, and <false> otherwise. Thus:

 present ([== Brighton Sussex]) ==>
 ** <true>

 present([== Surrey]) ==>
 ** <false>

If we want to check that the database contains a set of patterns then we can use the function
allpresent, thus:

 allpresent([[Chris Thornton ==][Fred Bloggs ==]]) ==>
 ** <true>

Another very useful command is foreach. This is like for except that instead of iterating over every
element of a list, it iterates over every element of the database which matches a certain pattern. Every
time it finds a match, it puts the list in question into a special variable called it. Thus:

 foreach [== Brighton Sussex] do it ==> endforeach;
 ** [John Smith Brighton Sussex]
 ** [Chris Thornton Brighton Sussex]

 foreach [== Sussex] do it => endforeach;
 ** [John Smith Brighton Sussex]
 ** [Fred Bloggs Lewes Sussex]
 ** [Chris Thornton Brighton Sussex]

If we want the foreach command to iterate over the sublists of some other list we can use a command
of the form:

 foreach <pattern> in <other list> do <commands> endforeach;

Note that there is version of present called isin which works for ordinary lists. This is actually an
operator like matches; expressions involving the isin operator have the value <true> or
<false>> depending whether the list (i.e. the value of the list expression) which appears on the right
can be matched with one of the sublists of the list which appears on the left. Thus:

Page 351

 [= 2 =] isin [[4 5 6] [7 8 9] [1 2 3]] ==>
 ** <true>

Readline

Another useful function which is built-in to POP-11 is readline. This takes no inputs at all. When it
is called it prints out a single question mark and then makes POP-11 wait until you type something. It
lets you type in whatever you want but when you press the <RETURN> key the function collects up all
the words which you have typed and returns them in a list as the result of the original call on
readline. Thus we can type:

 readline() -> mine;
 ? here are a few random words

 mine ==>
 ** [here are a few random words]

Quite often we will want to use readline in order to find out whether the user agrees to something or
not. In this case we can use the function yesno. This takes a list as input. It prints out the list, and then
calls readline to read the user's response. If the user responds either with "yes" or "no", the yesno
function returns <true> or <false> respectively. If the user types anything other than "yes" or "no"
the function prints out a complaint and goes through the whole process again. It will keep doing this
until the user types either a "yes" or a "no". Thus:

 yesno([do you agree that the world is flat?]) -> mine;

 ** [do you agree that the world is flat ?]
 ? what a stupid question
 ** [please answer either yes or no]
 ** [do you agree that the world is flat ?]
 ? I would prefer not to
 ** [please answer either yes or no]
 ** [do you agree that the world is flat ?]
 ? ok, yes
 ** [please answer either yes or no]
 ** [do you agree that the world is flat ?]
 ? yes

 mine ==>
 ** <true>

Page 352

Functions Calling Functions

In most cases a program will consist not of a single complex POP-11 function, but of a set of functions,
where one "drives" the program and "calls" the others either directly or indirectly. In the following
example, see Figure A-8 we define the function makedata which sets up the database, a function
find_person which scans the database, and a driving function find which makes the others go:

 find();
 ? Simple Simon
 ** [Dover Kent]
 ? Fred Smith
 ** [sorry - not in database]
 ? John Smith
 ** [Brighton Sussex]
 ? 1234

<><><><><><><><><><><><>

 define makedata();
 [] -> database;
 add([Fred Bloggs Lewes Sussex]);
 add([Simple Simon Dover Kent]);
 add([Margaret Thatcher London]);
 add([John Smith Brighton Sussex]);
 enddefine;

 define find_person(name) -> address;
 unless present([^^name ??address])
 then [sorry - not in database] -> address
 endunless
 enddefine;

 define find();
 vars name address;
 makedata ();
 repeat 4 times
 readline() -> name;
 find_person(name) -> address;
 address ==>
 endrepeat
 enddefine;

Figure A-8
Functions to find an address, given a name

Page 353

 ** [sorry - not in database]

In this example function find calls function makedata once and then calls function find_person
four times inside the loop. Note that find and makedata do not take any input and return no values,
whereas find_person takes a single value as input and returns a single value as output.

Recursion

We can sometimes obtain certain useful behaviour by arranging for functions to call themselves. This
sounds a bit strange but the idea is actually quite straightforward. Let us imagine that we would like to
write a function which will enable POP-11 to compute the factorial of a number. The factorial of N is
defined to be the result of multiplying N by N-1, and that value by N-2, and that value by N-3, etc. all
the way down to 1. Thus the factorial of 4 is:

 4 * 3 * 2 * 1 ==>
 ** 24

Now it turns out (if you think about it) that the factorial of N is the result of multiplying N by the
factorial of N-1, e.g. the factorial of 4 is the result of multiplying 4 by the factorial of 3. We can
demonstrate this as follows:

 3 *2 * 1 ==>
 ** 6

 4 * 6 = 4 * 3 * 2 * 1 ==>
 ** <true>

This means that we could define a factorial function which works out what the factorial of a
number is by multiplying its input with the result of computing the factorial of its input with 1 subtracted
from it. This function might be defined as in Figure A-9. Note that the text which appears between the
/* and the */ is a comment, i.e. it is just a bit of text which gives some information about the way the
function works. POP-11 always ignores any text which comes between a /* symbol, (called an opening
comment bracket) and a */ symbol (called a closing comment bracket).

We can test that this definition works as follows:

 factorial (4) ==>
 ** 24

The point to note here is that, given the way we have written this function, POP-11

Page 354

<><><><><><><><><><><><>

 define factorial(num) -> total;
 if num = 1 then
 1 -> total
 else /* do recursive call */
 num * factorial(num - 1) -> total
 endif
 enddefine;

Figure A-9
Function to compute the factorial of its input

has to go through quite an elaborate process to evaluate a call on factorial. The body of the function
consists of an if command. The input to the function is put into the variable num and the expression in
the if just tests whether the number in this variable is equal to 1. Now the input is actually 4; this is not
equal to 1 so POP-11 has to execute the commands between the else and the endif.

Now, there is only one command here and it is an assignment. This causes the value of the expression to
be returned as the value of the original function. But this expression is actually a call on the
factorial function! And to work out the value of this expression (i.e. to get the result of the call)
POP-11 has to make use of the factorial function which we have defined.

Now, of course, POP-11 is already making use of the definition which we have provided; but this makes
absolutely no difference. Whenever POP-11 tries to work out the result of a call on a function it just uses
a copy of the corresponding definition. This means that functions can "call themselves" without there
being any unfortunate interference effects.

To evaluate the call of factorial on the input 3 (i.e. 4 - 1) POP-11 has to go through the same
process that it went through to evaluate the call of factorial on the input 4. This, of course, means
that it is going to end up evaluating a call of factorial on the input 2, and another one on the input 1.
Now 1 is obviously equal to 1, so this final call will not produce any further calls. Given the provided
definition, it will just return the result 1. This will enable the call on the input 2, to return the result 2;
this result will enable the call on the input 3 to return the result 6 (2 * 3). And this, finally, will enable
the call on the input 4 to return the result 24 (6 * 4). This process in which a function uses itself to get a
job done is called recursion.

Tracing

Note that what really happens in the recursion described above is that the calls of factorial get
nested inside one another. POP-11 has a feature which lets us see this

Page 355

process happening. The feature is accessed via the trace command. A trace command just consists of
the word trace followed by the names of one or more functions. In executing a trace command we
are effectively telling POP-11 that we would like to be notified whenever there is a call on any one of
the specified functions and also whenever that call returns a result. We can demonstrate what this means
by first executing a trace command on the factorial function and then by calling that function
with the input 4:

 trace factorial;

 factorial(4) ==>

 >factorial 4
 !>factorial 3
 !!>factorial 2
 !!!>factorial 1
 !!!<factorial 1
 !!<factorial 2
 !<factorial 6
 <factorial 24
 ** 24

Note that once we have traced a function (i.e. executed a trace command on it) POP-11 responds to
calls on that function by printing out certain information. When we type:

 factorial (4)

POP-11 prints out

 > factorial 4

The > indicates that POP-11 is starting to evaluate a call, the word is just the name of the called
function, and any items which appear after are just the inputs which have been provided in the call. If in
the process of evaluating the call, a new call on a function is made, then POP-11 acts virtually the same
way except it precedes all the printing with an exclamation mark. This indicates that the new call is
nested inside the original call. For each level of nesting we get one more exclamation mark.

If ever we want to stop POP-11 printing our information about function calls we can use the untrace
command. This is handled in exactly the same way as the trace command: we type the word
untrace followed by one or more function names. POP-11 then turns tracing off for these functions,
i.e. it stops producing trace output every time they are called.

Page 356

Showtree

The trace feature allows us to display the structure of a sequence of nested function calls. POP-11 also
provides a useful feature which allows us to display and inspect the structure of a list. As was noted
above, lists can contain lists as elements. These nested lists can contain other lists, which can contain
still more lists. If we have such a structure we can see what it looks like by using a POP-11 command
called showtree. This command simply creates a graphic description in which the nesting structure is
shown as a tree structure. For reasons that will become obvious, the tree is always drawn upside-down
with its root sticking up in the air. Note that, in most implementations, to make the showtree
command available we need to type a special lib command as follows:

 lib showtree;

A possible interaction using the showtree command is shown in Figure A-10.

Figure A-10
 A simple tree, displayed by showtree

Page 357

Exiting From a Function

Normally POP-11 works through the commands of a function in order and exits from the function when
the final command terminates. There are occasions when we require a function to exit prematurely. For
this we make use of the built-in command return. This has the effect of immediately causing the
function to terminate as if all its commands had been properly completed. Function silly, see Figure
A-11, takes a list and a maximum number as input and returns the first number that it finds in the list
which is bigger than the maximum. It does not then search the rest of the list. If no number is found it
returns 0. The function also prints out all the numbers that it checks.

 silly([1 2 3 4 5], 2) ==>
 ** 1
 ** 2
 ** 3
 ** 3

 silly([l 2 3 4 5], 7) ==>
 ** 1
 ** 2
 ** 3
 ** 4
 ** 5
 ** 0

 silly([10 20 30 40], 2) ==>
 ** 10
 ** 10

<><><><><><><><><><><><>

 define silly(list, limit) -> wanted;
 for wanted in list do
 wanted ==>
 if wanted > limit then return endif
 endfor;
 0 -> wanted
 enddefine;

Figure A-11
Function with premature exit from a loop

Page 358

Partial Application

It is sometimes useful to be able to build a specific version of a function from a general definition.
Consider the function silly given above. Its second argument is used to determine the limit that will
cause the function to exit. Suppose we were interested in a specific version of silly that had, for
example, 31 as the value of its limit. The partial application mechanism allows us to build a new
function, max_month (say), by fixing its second argument to the value 31 as follows:

 vars max_month hundred;
 silly(%31%) -> max_month;
 max_month([10 20 30 40 50]) =>
 ** 10
 ** 20
 ** 30
 ** 40
 ** 40

 silly(%100%) -> hundred;
 hundred([40 80 120 160]) =>
 ** 40
 ** 80
 ** 120
 ** 120

The (%31%) is used to fix the value of the second input of silly to the value 31, thus making a new
function max_month which expects only one argument.

Concluding Comment

The present appendix has looked briefly at features of POP-11 such as pattern-matching, the database,
and simple recursive functions. The features covered form a very tiny subset of the complete language
so the above should not be seen as a comprehensive review of its capabilities.

To keep things as simple as possible, we have employed a number of ''little white lies". POP-11 experts,
who have a broad knowledge of the language will probably object to some of these. Anyone wanting the
whole truth and nothing but the truth should consult one of the introductory texts on the language (e.g.
Barrett, Ramsay & Sloman, 1985; Burton & Shadbolt, 1987; Laventhol, 1987). Ramsay and Barrett
(1987) will be of interest to anyone wanting to see a range of possible applications.

Page 359

Index

A

8-puzzle, 4, 7-8, 51, 71-72, 77, 85, 87, 92, 103, 105, 109, 171, 261

A*, 88, 90, 92, 95, 99, 102

a_star, 93, 98, 102

abs, 96

Agenda, 8, 54-55, 58-60, 62-63, 67, 69, 82-85, 88, 90, 92-93, 99, 102-104, 224

agenda_search, 56, 64, 98

Algorithm, 8, 10, 88, 90, 103, 109, 282-283, 285, 288, 290, 318

allpresent, 195

allremove, 195

Alpha threshold, 117, 119

Alpha-beta pruning, 119, 130, 318

alphabeta_search, 119, 129

alphabeta_search_tree, 122

analyse_where_question, 241

Ancestor, 147, 270, 283, 286

AND-node, 137

AND-tree, 13, 150-151, 153, 164, 179, 201, 204

AND/OR-tree, 137-139, 141, 150, 153, 159, 161-162, 166, 168, 175, 177, 201, 210, 261, 270-271, 293

AO_search_tree, 154

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_4.html#JUMPDEST_Page_4
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_51.html#JUMPDEST_Page_51
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_105.html#JUMPDEST_Page_105
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_261.html#JUMPDEST_Page_261
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_95.html#JUMPDEST_Page_95
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_99.html#JUMPDEST_Page_99
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_96.html#JUMPDEST_Page_96
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_54.html#JUMPDEST_Page_54
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_67.html#JUMPDEST_Page_67
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_69.html#JUMPDEST_Page_69
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_99.html#JUMPDEST_Page_99
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_224.html#JUMPDEST_Page_224
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_56.html#JUMPDEST_Page_56
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_64.html#JUMPDEST_Page_64
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_282.html#JUMPDEST_Page_282
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_285.html#JUMPDEST_Page_285
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_195.html#JUMPDEST_Page_195
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_195.html#JUMPDEST_Page_195
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_117.html#JUMPDEST_Page_117
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_119.html#JUMPDEST_Page_119
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_119.html#JUMPDEST_Page_119
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_130.html#JUMPDEST_Page_130
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_119.html#JUMPDEST_Page_119
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_129.html#JUMPDEST_Page_129
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_122.html#JUMPDEST_Page_122
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_147.html#JUMPDEST_Page_147
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_283.html#JUMPDEST_Page_283
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_286.html#JUMPDEST_Page_286
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_137.html#JUMPDEST_Page_137
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_153.html#JUMPDEST_Page_153
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_164.html#JUMPDEST_Page_164
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_179.html#JUMPDEST_Page_179
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_137.html#JUMPDEST_Page_137
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_153.html#JUMPDEST_Page_153
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_168.html#JUMPDEST_Page_168
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_210.html#JUMPDEST_Page_210
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_261.html#JUMPDEST_Page_261
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_154.html#JUMPDEST_Page_154

append, 35, 313, 315

Arc, 5, 7

assert, 318

Atomic, 44, 61, 171, 297, 300, 305

B

Back-up, 107, 109-110, 117

Backtracking, 34, 53, 62, 80, 82, 134, 167, 181, 194, 218, 224, 283, 308

Backwards, 162, 174, 177, 199, 201, 216, 221-223, 241, 243, 248, 251, 256, 258, 267-269, 271, 288,
295, 308, 316

backwards_parse_tree, 206, 208, 217, 220

backwards_search, 148, 163, 265

backwards_search_objects, 272

backwards_search_or, 262

backwards_search_prolog, 309

backwards_search_tree, 151, 163, 165-166, 204, 259

backwards_search_value, 252, 260

Beam, 84-85, 90, 92-93, 103

Beam-search, 84, 90, 92, 103

Beam-width, 84-85, 92, 103

beam_search, 85

Best-first, 83, 87-88, 91-92, 95, 99, 102

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_35.html#JUMPDEST_Page_35
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_313.html#JUMPDEST_Page_313
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_315.html#JUMPDEST_Page_315
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_5.html#JUMPDEST_Page_5
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_297.html#JUMPDEST_Page_297
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_305.html#JUMPDEST_Page_305
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_107.html#JUMPDEST_Page_107
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_117.html#JUMPDEST_Page_117
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_34.html#JUMPDEST_Page_34
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_53.html#JUMPDEST_Page_53
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_80.html#JUMPDEST_Page_80
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_134.html#JUMPDEST_Page_134
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_167.html#JUMPDEST_Page_167
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_181.html#JUMPDEST_Page_181
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_194.html#JUMPDEST_Page_194
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_218.html#JUMPDEST_Page_218
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_224.html#JUMPDEST_Page_224
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_283.html#JUMPDEST_Page_283
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_174.html#JUMPDEST_Page_174
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_243.html#JUMPDEST_Page_243
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_248.html#JUMPDEST_Page_248
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_256.html#JUMPDEST_Page_256
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_267.html#JUMPDEST_Page_267
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_271.html#JUMPDEST_Page_271
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_295.html#JUMPDEST_Page_295
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_316.html#JUMPDEST_Page_316
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_206.html#JUMPDEST_Page_206
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_208.html#JUMPDEST_Page_208
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_217.html#JUMPDEST_Page_217
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_220.html#JUMPDEST_Page_220
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_148.html#JUMPDEST_Page_148
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_163.html#JUMPDEST_Page_163
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_265.html#JUMPDEST_Page_265
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_262.html#JUMPDEST_Page_262
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_309.html#JUMPDEST_Page_309
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_151.html#JUMPDEST_Page_151
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_163.html#JUMPDEST_Page_163
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_165.html#JUMPDEST_Page_165
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_259.html#JUMPDEST_Page_259
file:///C|/Website%20Rips/AI%20thru%20SEARCH/nlReader.dll?BookID=1925&FileName=Pag<A HREF=
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_260.html#JUMPDEST_Page_260
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_84.html#JUMPDEST_Page_84
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_84.html#JUMPDEST_Page_84
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_84.html#JUMPDEST_Page_84
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_83.html#JUMPDEST_Page_83
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_95.html#JUMPDEST_Page_95
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_99.html#JUMPDEST_Page_99
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102

Page 360

best_first, 93, 98, 102

Beta threshold, 117, 119

better_path_g_h, 88, 97

better_path_h, 84, 97

Bird's eye view, 24, 71

Blind search, 2

Block, 91-92, 172, 187-190, 225-227, 231, 235-236, 271, 284

Blocksworld, 172, 184, 187, 225, 241

Bottom up, 161, 210, 213, 221, 223, 256

Bottom-up parsing, 210

Branching factor, 76, 117, 174, 216

Breadth-first, 54-55, 58-60, 62-63, 66, 71, 83, 87, 90, 92, 103

C

Cake, 139, 163

Catch all, 285

Certainty, 244-248, 251-253, 255, 258, 260-261, 263, 265

chatty, 55, 60, 63

chatty_print, 64, 179

Children, 52, 89, 103, 107-108, 150

Clause, 13, 33, 36, 39, 41, 63, 66-67, 69, 98-99, 125, 128, 194, 234, 258, 309, 312

cleartop, 184

closeness_to_goal, 79, 97

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_117.html#JUMPDEST_Page_117
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_119.html#JUMPDEST_Page_119
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_97.html#JUMPDEST_Page_97
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_84.html#JUMPDEST_Page_84
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_97.html#JUMPDEST_Page_97
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_24.html#JUMPDEST_Page_24
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_2.html#JUMPDEST_Page_2
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_172.html#JUMPDEST_Page_172
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_187.html#JUMPDEST_Page_187
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_231.html#JUMPDEST_Page_231
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_271.html#JUMPDEST_Page_271
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_284.html#JUMPDEST_Page_284
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_172.html#JUMPDEST_Page_172
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_184.html#JUMPDEST_Page_184
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_187.html#JUMPDEST_Page_187
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_210.html#JUMPDEST_Page_210
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_213.html#JUMPDEST_Page_213
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_256.html#JUMPDEST_Page_256
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_210.html#JUMPDEST_Page_210
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_76.html#JUMPDEST_Page_76
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_117.html#JUMPDEST_Page_117
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_174.html#JUMPDEST_Page_174
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_54.html#JUMPDEST_Page_54
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_62.html#JUMPDEST_Page_62
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_66.html#JUMPDEST_Page_66
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_83.html#JUMPDEST_Page_83
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_139.html#JUMPDEST_Page_139
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_163.html#JUMPDEST_Page_163
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_285.html#JUMPDEST_Page_285
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_244.html#JUMPDEST_Page_244
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_255.html#JUMPDEST_Page_255
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_260.html#JUMPDEST_Page_260
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_263.html#JUMPDEST_Page_263
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_265.html#JUMPDEST_Page_265
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_55.html#JUMPDEST_Page_55
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_63.html#JUMPDEST_Page_63
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_64.html#JUMPDEST_Page_64
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_179.html#JUMPDEST_Page_179
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_107.html#JUMPDEST_Page_107
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_36.html#JUMPDEST_Page_36
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_39.html#JUMPDEST_Page_39
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_41.html#JUMPDEST_Page_41
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_63.html#JUMPDEST_Page_63
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_66.html#JUMPDEST_Page_66
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_69.html#JUMPDEST_Page_69
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_128.html#JUMPDEST_Page_128
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_194.html#JUMPDEST_Page_194
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_234.html#JUMPDEST_Page_234
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_309.html#JUMPDEST_Page_309
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_312.html#JUMPDEST_Page_312
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_184.html#JUMPDEST_Page_184
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_79.html#JUMPDEST_Page_79
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_97.html#JUMPDEST_Page_97

closer_to_goal, 79, 97

Cognitive science, 103, 290, 323

collect_subtrees, 9

combine, 245, 251, 255, 258, 261, 263

Compositional semantics, 227

Concept, 269, 277-278, 280, 282-284, 288, 290, 293, 318

Conjunctive, 246

count_tiles, 97

current_location, 20, 31, 55

D

Data structure, 54, 297, 302, 306, 310

dealwith, 287

delete, 177

Depth-first, 7, 50, 53-55, 58-60, 63, 66-67, 69, 71, 78, 82-83, 90, 92, 138, 191

Descendant, 270

description_table, 278

det, 205, 207, 212, 217, 220, 235

distance_to_goal, 78, 96, 108, 126

Dot structure, 310

Dynamic, 107, 111, 114, 116-118, 121

E

Evidence, 141-143, 159, 201, 243-247, 249, 253, 256, 294

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_79.html#JUMPDEST_Page_79
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_97.html#JUMPDEST_Page_97
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_323.html#JUMPDEST_Page_323
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_245.html#JUMPDEST_Page_245
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_255.html#JUMPDEST_Page_255
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_261.html#JUMPDEST_Page_261
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_263.html#JUMPDEST_Page_263
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_227.html#JUMPDEST_Page_227
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_269.html#JUMPDEST_Page_269
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_277.html#JUMPDEST_Page_277
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_280.html#JUMPDEST_Page_280
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_282.html#JUMPDEST_Page_282
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_246.html#JUMPDEST_Page_246
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_97.html#JUMPDEST_Page_97
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_20.html#JUMPDEST_Page_20
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_31.html#JUMPDEST_Page_31
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_55.html#JUMPDEST_Page_55
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_54.html#JUMPDEST_Page_54
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_297.html#JUMPDEST_Page_297
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_302.html#JUMPDEST_Page_302
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_310.html#JUMPDEST_Page_310
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_287.html#JUMPDEST_Page_287
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_50.html#JUMPDEST_Page_50
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_53.html#JUMPDEST_Page_53
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_63.html#JUMPDEST_Page_63
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_66.html#JUMPDEST_Page_66
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_69.html#JUMPDEST_Page_69
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_78.html#JUMPDEST_Page_78
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_138.html#JUMPDEST_Page_138
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_191.html#JUMPDEST_Page_191
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_278.html#JUMPDEST_Page_278
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_207.html#JUMPDEST_Page_207
file:///C|/Website%20Rips/AI%20thru%20SEARCH/nlReader.dll?BookID=1925&F<A HREF=
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_217.html#JUMPDEST_Page_217
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_220.html#JUMPDEST_Page_220
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_78.html#JUMPDEST_Page_78
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_96.html#JUMPDEST_Page_96
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_108.html#JUMPDEST_Page_108
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_126.html#JUMPDEST_Page_126
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_310.html#JUMPDEST_Page_310
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_107.html#JUMPDEST_Page_107
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_111.html#JUMPDEST_Page_111
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_114.html#JUMPDEST_Page_114
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_121.html#JUMPDEST_Page_121
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_243.html#JUMPDEST_Page_243
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_249.html#JUMPDEST_Page_249
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_253.html#JUMPDEST_Page_253
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_256.html#JUMPDEST_Page_256
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_294.html#JUMPDEST_Page_294

Exhaustive, 1, 8, 25, 76-77, 159

Expert system, 258, 265

extend_agenda, 65, 98

Extension, 58, 216, 269, 271-272, 272-273, 275-278, 280, 282, 284, 290

Extra-logical, 318

F

factorial, 353

Feature, 53, 109, 137, 162, 172, 175, 179, 184, 246, 267-271, 328, 345, 355

find_best, 127

find_plan, 178, 193

Focussing, 282-283, 290, 318

foreach, 160

Forwards search, 160, 174, 243, 256, 258, 267

forwards_parse_goals, 210, 222

forwards_parse_trees, 213, 223

Frame problem, 199, 322

Fuzzy set, 246, 248, 251, 256

G

Generalisation, 3, 246, 270-271, 275, 283, 288, 290, 322

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_25.html#JUMPDEST_Page_25
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_76.html#JUMPDEST_Page_76
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_265.html#JUMPDEST_Page_265
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_65.html#JUMPDEST_Page_65
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_269.html#JUMPDEST_Page_269
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_271.html#JUMPDEST_Page_271
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_275.html#JUMPDEST_Page_275
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_280.html#JUMPDEST_Page_280
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_282.html#JUMPDEST_Page_282
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_284.html#JUMPDEST_Page_284
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_353.html#JUMPDEST_Page_353
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_53.html#JUMPDEST_Page_53
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_137.html#JUMPDEST_Page_137
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_172.html#JUMPDEST_Page_172
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_179.html#JUMPDEST_Page_179
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_184.html#JUMPDEST_Page_184
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_246.html#JUMPDEST_Page_246
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_267.html#JUMPDEST_Page_267
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_328.html#JUMPDEST_Page_328
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_345.html#JUMPDEST_Page_345
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_355.html#JUMPDEST_Page_355
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_127.html#JUMPDEST_Page_127
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_178.html#JUMPDEST_Page_178
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_193.html#JUMPDEST_Page_193
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_282.html#JUMPDEST_Page_282
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_160.html#JUMPDEST_Page_160
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_160.html#JUMPDEST_Page_160
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_174.html#JUMPDEST_Page_174
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_243.html#JUMPDEST_Page_243
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_256.html#JUMPDEST_Page_256
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_267.html#JUMPDEST_Page_267
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_210.html#JUMPDEST_Page_210
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_222.html#JUMPDEST_Page_222
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_213.html#JUMPDEST_Page_213
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_322.html#JUMPDEST_Page_322
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_246.html#JUMPDEST_Page_246
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_248.html#JUMPDEST_Page_248
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_256.html#JUMPDEST_Page_256
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_246.html#JUMPDEST_Page_246
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_275.html#JUMPDEST_Page_275
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_283.html#JUMPDEST_Page_283
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_322.html#JUMPDEST_Page_322

Page 361

Generalisation hierarchy, 270

generalise, 286

Global, 25, 30, 33, 90, 98, 179, 250, 279, 313

Goal node, 32, 43-44, 48, 52, 77-78, 81, 83, 87-88, 109, 150, 174

Goal reduction, 136-137, 141

Goal regression, 199

Goal state, 6-8, 44, 50-51, 63, 77, 79, 95, 99, 103, 107-109, 155, 157, 172, 174, 193, 198

Graph, 5, 8, 24-25, 27, 30, 81

H

Hanoi, 51, 133, 135

Heuristic, 8, 77-78, 82-83, 87, 91-92, 103, 107-110, 116, 131, 290, 293, 318, 322

Heuristic search, 8, 82, 87, 92, 103, 318

heuristic_search, 80

Hierarchical, 4

Hill climbing, 80, 82, 84, 90, 92, 95, 98, 103

hill_climbing, 93, 98, 102

Hypothesis, 142, 243

I

i_deepening, 93, 102

Inference rule, 244-245, 294

Infinite, 7, 53, 166

initial_state, 56, 60, 178, 186

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_286.html#JUMPDEST_Page_286
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_25.html#JUMPDEST_Page_25
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_30.html#JUMPDEST_Page_30
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_179.html#JUMPDEST_Page_179
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_250.html#JUMPDEST_Page_250
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_279.html#JUMPDEST_Page_279
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_313.html#JUMPDEST_Page_313
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_48.html#JUMPDEST_Page_48
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_81.html#JUMPDEST_Page_81
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_83.html#JUMPDEST_Page_83
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_174.html#JUMPDEST_Page_174
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_136.html#JUMPDEST_Page_136
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_6.html#JUMPDEST_Page_6
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_50.html#JUMPDEST_Page_50
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_63.html#JUMPDEST_Page_63
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_79.html#JUMPDEST_Page_79
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_95.html#JUMPDEST_Page_95
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_99.html#JUMPDEST_Page_99
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_107.html#JUMPDEST_Page_107
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_157.html#JUMPDEST_Page_157
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_172.html#JUMPDEST_Page_172
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_174.html#JUMPDEST_Page_174
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_193.html#JUMPDEST_Page_193
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_198.html#JUMPDEST_Page_198
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_5.html#JUMPDEST_Page_5
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_24.html#JUMPDEST_Page_24
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_27.html#JUMPDEST_Page_27
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_30.html#JUMPDEST_Page_30
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_81.html#JUMPDEST_Page_81
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_51.html#JUMPDEST_Page_51
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_133.html#JUMPDEST_Page_133
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_135.html#JUMPDEST_Page_135
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_107.html#JUMPDEST_Page_107
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_131.html#JUMPDEST_Page_131
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_322.html#JUMPDEST_Page_322
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_80.html#JUMPDEST_Page_80
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_4.html#JUMPDEST_Page_4
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_80.html#JUMPDEST_Page_80
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_84.html#JUMPDEST_Page_84
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_95.html#JUMPDEST_Page_95
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_98.html#JUMPDEST_Page_98
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_142.html#JUMPDEST_Page_142
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_243.html#JUMPDEST_Page_243
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_244.html#JUMPDEST_Page_244
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_294.html#JUMPDEST_Page_294
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_53.html#JUMPDEST_Page_53
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_56.html#JUMPDEST_Page_56
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_178.html#JUMPDEST_Page_178
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_186.html#JUMPDEST_Page_186

insert, 80, 101

Instantiate, 189, 195, 200, 299

Intensional description, 268, 271, 278

Internist, 258

is_abstract_feature, 272

is_goal, 20, 35

isa, 235, 283, 286

isnumber, 346

Iterative deepening, 60, 67-68, 92, 167, 179, 200

iterative_deepening_search, 60, 67

J

Jugs problem, 44-46, 50, 52, 55, 59, 61, 61, 68-69, 71-72, 103, 109, 171, 173

K

Knowledge base, 3

L

Leaf, 32, 261, 298

Learning from examples, 288

Lexical, 205

limited_search_tree, 47

Local, 10, 90, 147, 177, 331-332, 335

lookahead, 112, 115-117, 119, 122, 125, 128

Loop variable, 341

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_80.html#JUMPDEST_Page_80
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_101.html#JUMPDEST_Page_101
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_189.html#JUMPDEST_Page_189
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_195.html#JUMPDEST_Page_195
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_200.html#JUMPDEST_Page_200
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_299.html#JUMPDEST_Page_299
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_268.html#JUMPDEST_Page_268
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_271.html#JUMPDEST_Page_271
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_278.html#JUMPDEST_Page_278
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_20.html#JUMPDEST_Page_20
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_35.html#JUMPDEST_Page_35
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_283.html#JUMPDEST_Page_283
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_286.html#JUMPDEST_Page_286
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_346.html#JUMPDEST_Page_346
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_67.html#JUMPDEST_Page_67
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_92.html#JUMPDEST_Page_92
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_167.html#JUMPDEST_Page_167
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_179.html#JUMPDEST_Page_179
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_200.html#JUMPDEST_Page_200
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_67.html#JUMPDEST_Page_67
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_50.html#JUMPDEST_Page_50
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_55.html#JUMPDEST_Page_55
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_59.html#JUMPDEST_Page_59
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_68.html#JUMPDEST_Page_68
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_173.html#JUMPDEST_Page_173
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_261.html#JUMPDEST_Page_261
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_298.html#JUMPDEST_Page_298
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_47.html#JUMPDEST_Page_47
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_147.html#JUMPDEST_Page_147
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_331.html#JUMPDEST_Page_331
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_335.html#JUMPDEST_Page_335
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_112.html#JUMPDEST_Page_112
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_115.html#JUMPDEST_Page_115
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_119.html#JUMPDEST_Page_119
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_122.html#JUMPDEST_Page_122
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_128.html#JUMPDEST_Page_128
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_341.html#JUMPDEST_Page_341

M

make_description_table, 276

make_restorative_pairs, 308

makelist, 311

Manhattan, 77

matcher, 46, 272, 301, 304, 344

MAX, 111, 116, 121, 128

maxs_go, 126

Meaning, 15, 201, 225, 227-228, 231, 235-236, 241

Micro-problems, 4

MIN, 111, 116

min, 260

Minimax, 111, 116-117, 121, 125, 130, 265, 318

minimax_search, 112, 119, 127

minimax_search_tree, 115

Most general, 269, 277-278, 282, 285, 288, 290

Most specific, 269, 279-280, 282, 285, 288, 290

msblocks, 225

N

Natural language, 204, 225, 233, 240, 322

negative_examples, 281

Negmax, 130

new_paths, 56, 65

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_6.html#JUMPDEST_Page_6
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_311.html#JUMPDEST_Page_311
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_77.html#JUMPDEST_Page_77
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_46.html#JUMPDEST_Page_46
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_301.html#JUMPDEST_Page_301
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_304.html#JUMPDEST_Page_304
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_344.html#JUMPDEST_Page_344
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_111.html#JUMPDEST_Page_111
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_121.html#JUMPDEST_Page_121
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_128.html#JUMPDEST_Page_128
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_126.html#JUMPDEST_Page_126
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_15.html#JUMPDEST_Page_15
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_227.html#JUMPDEST_Page_227
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_231.html#JUMPDEST_Page_231
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_4.html#JUMPDEST_Page_4
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_111.html#JUMPDEST_Page_111
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_260.html#JUMPDEST_Page_260
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_111.html#JUMPDEST_Page_111
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_121.html#JUMPDEST_Page_121
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_130.html#JUMPDEST_Page_130
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_265.html#JUMPDEST_Page_265
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_112.html#JUMPDEST_Page_112
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_119.html#JUMPDEST_Page_119
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_127.html#JUMPDEST_Page_127
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_115.html#JUMPDEST_Page_115
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_269.html#JUMPDEST_Page_269
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_277.html#JUMPDEST_Page_277
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_282.html#JUMPDEST_Page_282
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_285.html#JUMPDEST_Page_285
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_269.html#JUMPDEST_Page_269
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_279.html#JUMPDEST_Page_279
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_282.html#JUMPDEST_Page_282
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_285.html#JUMPDEST_Page_285
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_233.html#JUMPDEST_Page_233
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_240.html#JUMPDEST_Page_240
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_322.html#JUMPDEST_Page_322
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_281.html#JUMPDEST_Page_281
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_130.html#JUMPDEST_Page_130
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_56.html#JUMPDEST_Page_56
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_65.html#JUMPDEST_Page_65

Nim, 108, 110, 116-117, 121, 131

Non-atomic, 305

Noughts and crosses, 131

noun, 205, 207, 209, 212, 217,

Page 362

220, 226, 229, 235-236, 236

Noun phrase, 205, 226, 228

np, 205, 207-208, 217-218, 224, 229, 235

O

Operator, 3-5, 173-175, 177, 179, 181, 183-184, 187-188, 192, 194, 196, 199, 219, 221, 326, 333-334,
344, 350

OR-node, 137

OR-tree, 10, 26, 40, 137-139, 141, 150, 153, 157, 159, 161-162, 166, 168, 175, 177, 201, 210, 261, 270-
271, 293

P

Parent, 82, 270

Parse tree, 216, 223, 227-229, 235

Parsing, 1, 10, 205, 210, 213, 216, 219, 221, 223-224, 234, 240-241, 293

Path-finding, 15-16, 24, 32, 44, 60, 171

path_member, 91, 100

path_so_far, 22, 28, 47, 80

Planning, 1-4, 10, 43, 139, 141, 177, 184, 188, 199, 241, 293, 318

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_108.html#JUMPDEST_Page_108
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_110.html#JUMPDEST_Page_110
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_121.html#JUMPDEST_Page_121
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_131.html#JUMPDEST_Page_131
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_305.html#JUMPDEST_Page_305
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_131.html#JUMPDEST_Page_131
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_207.html#JUMPDEST_Page_207
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_209.html#JUMPDEST_Page_209
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_212.html#JUMPDEST_Page_212
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_217.html#JUMPDEST_Page_217
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_220.html#JUMPDEST_Page_220
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_226.html#JUMPDEST_Page_226
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_229.html#JUMPDEST_Page_229
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_236.html#JUMPDEST_Page_236
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_226.html#JUMPDEST_Page_226
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_228.html#JUMPDEST_Page_228
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_207.html#JUMPDEST_Page_207
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_217.html#JUMPDEST_Page_217
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_224.html#JUMPDEST_Page_224
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_229.html#JUMPDEST_Page_229
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_3.html#JUMPDEST_Page_3
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_173.html#JUMPDEST_Page_173
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_179.html#JUMPDEST_Page_179
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_181.html#JUMPDEST_Page_181
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_183.html#JUMPDEST_Page_183
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_187.html#JUMPDEST_Page_187
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_192.html#JUMPDEST_Page_192
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_194.html#JUMPDEST_Page_194
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_196.html#JUMPDEST_Page_196
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_326.html#JUMPDEST_Page_326
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_333.html#JUMPDEST_Page_333
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_344.html#JUMPDEST_Page_344
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_350.html#JUMPDEST_Page_350
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_137.html#JUMPDEST_Page_137
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_26.html#JUMPDEST_Page_26
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_137.html#JUMPDEST_Page_137
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_153.html#JUMPDEST_Page_153
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_157.html#JUMPDEST_Page_157
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_159.html#JUMPDEST_Page_159
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_168.html#JUMPDEST_Page_168
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_210.html#JUMPDEST_Page_210
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_261.html#JUMPDEST_Page_261
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_227.html#JUMPDEST_Page_227
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_210.html#JUMPDEST_Page_210
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_213.html#JUMPDEST_Page_213
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_234.html#JUMPDEST_Page_234
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_240.html#JUMPDEST_Page_240
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_15.html#JUMPDEST_Page_15
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_24.html#JUMPDEST_Page_24
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_100.html#JUMPDEST_Page_100
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_22.html#JUMPDEST_Page_22
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_28.html#JUMPDEST_Page_28
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_47.html#JUMPDEST_Page_47
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_80.html#JUMPDEST_Page_80
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_139.html#JUMPDEST_Page_139
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_141.html#JUMPDEST_Page_141
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_184.html#JUMPDEST_Page_184
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_188.html#JUMPDEST_Page_188
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318

Plateau, 82

positive_examples, 281

Predecessor, 136-139, 163, 174

Predicate, 10, 33, 36, 99, 194, 219, 258, 261, 283, 288, 293-295, 312

Prepositional phrase, 205

Primitive, 201, 233, 256, 269, 272, 278, 280-281, 285, 288

Primitive description, 272, 281, 285, 289

Probability theory, 245

Problem reduction, 5-7, 10, 133, 145, 155

Problem reduction search, 7

Problem space, 52

Production, 8, 162, 306

Production system, 162

Proof tree, 151, 163, 246, 251

proof_tree, 151, 204

Property, 25, 155, 259, 267, 288, 331

prterm, 303

prune, 91-92, 100, 118

Pseudo-code, 68, 130

R

readline, 237, 259, 289, 310

Recursion, 13, 39, 53-54, 80, 139, 145, 355

Recursion stack, 53, 80

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_281.html#JUMPDEST_Page_281
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_136.html#JUMPDEST_Page_136
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_163.html#JUMPDEST_Page_163
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_174.html#JUMPDEST_Page_174
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_33.html#JUMPDEST_Page_33
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_36.html#JUMPDEST_Page_36
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_99.html#JUMPDEST_Page_99
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_194.html#JUMPDEST_Page_194
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_258.html#JUMPDEST_Page_258
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_261.html#JUMPDEST_Page_261
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_283.html#JUMPDEST_Page_283
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_293.html#JUMPDEST_Page_293
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_312.html#JUMPDEST_Page_312
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_201.html#JUMPDEST_Page_201
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_233.html#JUMPDEST_Page_233
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_256.html#JUMPDEST_Page_256
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_269.html#JUMPDEST_Page_269
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_278.html#JUMPDEST_Page_278
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_280.html#JUMPDEST_Page_280
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_285.html#JUMPDEST_Page_285
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_281.html#JUMPDEST_Page_281
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_285.html#JUMPDEST_Page_285
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_289.html#JUMPDEST_Page_289
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_245.html#JUMPDEST_Page_245
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_5.html#JUMPDEST_Page_5
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_133.html#JUMPDEST_Page_133
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_145.html#JUMPDEST_Page_145
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_306.html#JUMPDEST_Page_306
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_162.html#JUMPDEST_Page_162
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_151.html#JUMPDEST_Page_151
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_163.html#JUMPDEST_Page_163
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_246.html#JUMPDEST_Page_246
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_151.html#JUMPDEST_Page_151
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_25.html#JUMPDEST_Page_25
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_259.html#JUMPDEST_Page_259
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_267.html#JUMPDEST_Page_267
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_288.html#JUMPDEST_Page_288
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_331.html#JUMPDEST_Page_331
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_303.html#JUMPDEST_Page_303
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_91.html#JUMPDEST_Page_91
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_100.html#JUMPDEST_Page_100
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_118.html#JUMPDEST_Page_118
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_68.html#JUMPDEST_Page_68
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_130.html#JUMPDEST_Page_130
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_237.html#JUMPDEST_Page_237
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_259.html#JUMPDEST_Page_259
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_289.html#JUMPDEST_Page_289
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_310.html#JUMPDEST_Page_310
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_39.html#JUMPDEST_Page_39
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_53.html#JUMPDEST_Page_53
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_80.html#JUMPDEST_Page_80
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_139.html#JUMPDEST_Page_139
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_145.html#JUMPDEST_Page_145
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_355.html#JUMPDEST_Page_355
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_53.html#JUMPDEST_Page_53
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_80.html#JUMPDEST_Page_80

remove_dups, 156, 189

Repair, 172, 183, 185, 188, 197

repeat, 327, 330

Restriction procedure, 272

right_angled_triangle, 268

S

satisfy_top_level_goals, 311

Search graph, 30

Search problem, 25, 40, 44, 87, 150, 177

Search space, 5, 7-8, 22, 25, 30, 32, 40, 43-44, 50, 52-53, 59, 66, 71, 75-78, 81, 83-84, 109-111, 116,
137-139, 157, 171, 241, 255

Search tree, 7, 9-10, 25, 27, 29, 31, 39-40, 47, 55, 75, 83, 87, 111, 115, 117, 121, 150, 154, 157-158,
164, 167, 175, 255, 265, 290, 316

search_path, 22-23, 35

search_tree, 9, 12, 28, 38

search_tree_no_dups, 31

search_type, 56, 84, 89, 93, 102

Sentence, 1, 10, 13, 204-205, 211-212, 218, 225, 228-229, 231, 234, 237, 240

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_156.html#JUMPDEST_Page_156
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_189.html#JUMPDEST_Page_189
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_172.html#JUMPDEST_Page_172
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_183.html#JUMPDEST_Page_183
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_185.html#JUMPDEST_Page_185
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_188.html#JUMPDEST_Page_188
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_197.html#JUMPDEST_Page_197
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_327.html#JUMPDEST_Page_327
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_330.html#JUMPDEST_Page_330
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_272.html#JUMPDEST_Page_272
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_268.html#JUMPDEST_Page_268
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_311.html#JUMPDEST_Page_311
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_30.html#JUMPDEST_Page_30
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_25.html#JUMPDEST_Page_25
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_5.html#JUMPDEST_Page_5
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_22.html#JUMPDEST_Page_22
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_25.html#JUMPDEST_Page_25
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_30.html#JUMPDEST_Page_30
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_50.html#JUMPDEST_Page_50
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_59.html#JUMPDEST_Page_59
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_66.html#JUMPDEST_Page_66
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_75.html#JUMPDEST_Page_75
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_81.html#JUMPDEST_Page_81
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_83.html#JUMPDEST_Page_83
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_109.html#JUMPDEST_Page_109
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_116.html#JUMPDEST_Page_116
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_137.html#JUMPDEST_Page_137
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_157.html#JUMPDEST_Page_157
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_241.html#JUMPDEST_Page_241
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_255.html#JUMPDEST_Page_255
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_25.html#JUMPDEST_Page_25
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_27.html#JUMPDEST_Page_27
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_29.html#JUMPDEST_Page_29
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_31.html#JUMPDEST_Page_31
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_39.html#JUMPDEST_Page_39
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_47.html#JUMPDEST_Page_47
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_55.html#JUMPDEST_Page_55
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_75.html#JUMPDEST_Page_75
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_83.html#JUMPDEST_Page_83
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_111.html#JUMPDEST_Page_111
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_115.html#JUMPDEST_Page_115
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_117.html#JUMPDEST_Page_117
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_121.html#JUMPDEST_Page_121
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_154.html#JUMPDEST_Page_154
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_157.html#JUMPDEST_Page_157
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_164.html#JUMPDEST_Page_164
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_167.html#JUMPDEST_Page_167
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_175.html#JUMPDEST_Page_175
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_255.html#JUMPDEST_Page_255
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_265.html#JUMPDEST_Page_265
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_316.html#JUMPDEST_Page_316
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_22.html#JUMPDEST_Page_22
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_35.html#JUMPDEST_Page_35
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_12.html#JUMPDEST_Page_12
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_28.html#JUMPDEST_Page_28
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_38.html#JUMPDEST_Page_38
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_31.html#JUMPDEST_Page_31
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_56.html#JUMPDEST_Page_56
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_84.html#JUMPDEST_Page_84
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_89.html#JUMPDEST_Page_89
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_93.html#JUMPDEST_Page_93
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_102.html#JUMPDEST_Page_102
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_1.html#JUMPDEST_Page_1
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_211.html#JUMPDEST_Page_211
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_218.html#JUMPDEST_Page_218
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_228.html#JUMPDEST_Page_228
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_231.html#JUMPDEST_Page_231
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_234.html#JUMPDEST_Page_234
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_237.html#JUMPDEST_Page_237
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_240.html#JUMPDEST_Page_240

Page 363

set_vars, 307

showtree, 26, 49, 69, 153, 166, 204, 208, 208, 251, 271, 356

Side-effect, 300, 345, 348

simple_search_tree, 31

snp, 207, 212, 217, 220, 235

Solution path, 8, 22, 25, 32, 50, 58, 63, 85, 90, 103, 172

Solution tree, 12, 150, 152, 161, 164, 207, 216, 249-252, 254, 260, 270, 318

specialise, 286, 290

spy, 128, 222

sqrt, 328

Start node, 32, 43-44, 54, 87

State-space, 5, 7-8, 10, 13, 40, 60, 68, 88, 133, 147, 150, 155-156, 166, 168, 199, 224

State-space search, 5, 7-8, 13, 40, 60, 68, 88, 133, 147, 150, 155-156, 166, 224

Static, 110-111, 114, 125, 128, 131

Static value, 111, 125-126, 128, 131

static_value, 108, 126

Statistically independent, 246

STRIPS, 173, 177, 185, 322

sub_trees, 38

sublist, 114, 134, 151, 172, 222

Subtree, 9, 27, 32, 38, 114, 300

Syntactic, 205, 211, 225, 228

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_307.html#JUMPDEST_Page_307
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_26.html#JUMPDEST_Page_26
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_49.html#JUMPDEST_Page_49
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_69.html#JUMPDEST_Page_69
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_153.html#JUMPDEST_Page_153
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_208.html#JUMPDEST_Page_208
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_208.html#JUMPDEST_Page_208
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_251.html#JUMPDEST_Page_251
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_271.html#JUMPDEST_Page_271
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_356.html#JUMPDEST_Page_356
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_345.html#JUMPDEST_Page_345
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_348.html#JUMPDEST_Page_348
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_31.html#JUMPDEST_Page_31
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_207.html#JUMPDEST_Page_207
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_212.html#JUMPDEST_Page_212
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_217.html#JUMPDEST_Page_217
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_220.html#JUMPDEST_Page_220
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_235.html#JUMPDEST_Page_235
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_8.html#JUMPDEST_Page_8
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_22.html#JUMPDEST_Page_22
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_25.html#JUMPDEST_Page_25
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_50.html#JUMPDEST_Page_50
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_63.html#JUMPDEST_Page_63
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_85.html#JUMPDEST_Page_85
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_90.html#JUMPDEST_Page_90
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_103.html#JUMPDEST_Page_103
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_172.html#JUMPDEST_Page_172
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_12.html#JUMPDEST_Page_12
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_152.html#JUMPDEST_Page_152
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_164.html#JUMPDEST_Page_164
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_207.html#JUMPDEST_Page_207
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_249.html#JUMPDEST_Page_249
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_254.html#JUMPDEST_Page_254
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_260.html#JUMPDEST_Page_260
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_270.html#JUMPDEST_Page_270
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_286.html#JUMPDEST_Page_286
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_290.html#JUMPDEST_Page_290
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_128.html#JUMPDEST_Page_128
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_222.html#JUMPDEST_Page_222
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_328.html#JUMPDEST_Page_328
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_43.html#JUMPDEST_Page_43
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_54.html#JUMPDEST_Page_54
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_87.html#JUMPDEST_Page_87
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_5.html#JUMPDEST_Page_5
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_10.html#JUMPDEST_Page_10
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_68.html#JUMPDEST_Page_68
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_133.html#JUMPDEST_Page_133
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_147.html#JUMPDEST_Page_147
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_168.html#JUMPDEST_Page_168
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_199.html#JUMPDEST_Page_199
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_224.html#JUMPDEST_Page_224
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_5.html#JUMPDEST_Page_5
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_7.html#JUMPDEST_Page_7
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_13.html#JUMPDEST_Page_13
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_40.html#JUMPDEST_Page_40
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_60.html#JUMPDEST_Page_60
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_68.html#JUMPDEST_Page_68
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_88.html#JUMPDEST_Page_88
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_133.html#JUMPDEST_Page_133
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_147.html#JUMPDEST_Page_147
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_155.html#JUMPDEST_Page_155
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_166.html#JUMPDEST_Page_166
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_224.html#JUMPDEST_Page_224
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_110.html#JUMPDEST_Page_110
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_114.html#JUMPDEST_Page_114
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_128.html#JUMPDEST_Page_128
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_131.html#JUMPDEST_Page_131
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_111.html#JUMPDEST_Page_111
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_125.html#JUMPDEST_Page_125
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_128.html#JUMPDEST_Page_128
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_131.html#JUMPDEST_Page_131
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_108.html#JUMPDEST_Page_108
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_126.html#JUMPDEST_Page_126
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_246.html#JUMPDEST_Page_246
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_173.html#JUMPDEST_Page_173
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_177.html#JUMPDEST_Page_177
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_185.html#JUMPDEST_Page_185
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_322.html#JUMPDEST_Page_322
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_38.html#JUMPDEST_Page_38
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_114.html#JUMPDEST_Page_114
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_134.html#JUMPDEST_Page_134
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_151.html#JUMPDEST_Page_151
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_172.html#JUMPDEST_Page_172
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_222.html#JUMPDEST_Page_222
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_9.html#JUMPDEST_Page_9
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_27.html#JUMPDEST_Page_27
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_32.html#JUMPDEST_Page_32
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_38.html#JUMPDEST_Page_38
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_114.html#JUMPDEST_Page_114
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_205.html#JUMPDEST_Page_205
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_211.html#JUMPDEST_Page_211
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_225.html#JUMPDEST_Page_225
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_228.html#JUMPDEST_Page_228

T

tail, 312

Theorem, 150, 318, 322

tic-tac-toe, 131

Tip, 161, 286

Top-down, 161, 216, 219, 221, 223, 256

top_level_instantiations_ok, 305

toyplog, 311

trace, 21, 23, 27, 39, 58, 82, 120, 144-145, 147, 209, 212, 219, 313, 315, 356

Tracing, 20, 23, 55, 63, 143, 214, 229, 312-313, 356

U

Unification, 94, 195, 300-301, 304-306, 308

unify, 304

untrace, 204

updater, 301, 303

V

value_of, 301

Version space, 282

W

Water-jugs problem, 44, 50, 52, 55, 59, 61, 71-72, 171, 173

Worm's eye view, 71

Y

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_312.html#JUMPDEST_Page_312
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_150.html#JUMPDEST_Page_150
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_318.html#JUMPDEST_Page_318
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_322.html#JUMPDEST_Page_322
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_131.html#JUMPDEST_Page_131
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_286.html#JUMPDEST_Page_286
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_161.html#JUMPDEST_Page_161
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_216.html#JUMPDEST_Page_216
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_221.html#JUMPDEST_Page_221
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_223.html#JUMPDEST_Page_223
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_256.html#JUMPDEST_Page_256
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_305.html#JUMPDEST_Page_305
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_311.html#JUMPDEST_Page_311
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_21.html#JUMPDEST_Page_21
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_23.html#JUMPDEST_Page_23
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_27.html#JUMPDEST_Page_27
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_39.html#JUMPDEST_Page_39
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_58.html#JUMPDEST_Page_58
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_82.html#JUMPDEST_Page_82
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_120.html#JUMPDEST_Page_120
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_144.html#JUMPDEST_Page_144
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_147.html#JUMPDEST_Page_147
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_209.html#JUMPDEST_Page_209
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_212.html#JUMPDEST_Page_212
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_219.html#JUMPDEST_Page_219
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_313.html#JUMPDEST_Page_313
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_315.html#JUMPDEST_Page_315
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_356.html#JUMPDEST_Page_356
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_20.html#JUMPDEST_Page_20
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_23.html#JUMPDEST_Page_23
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_55.html#JUMPDEST_Page_55
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_63.html#JUMPDEST_Page_63
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_143.html#JUMPDEST_Page_143
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_214.html#JUMPDEST_Page_214
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_229.html#JUMPDEST_Page_229
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_312.html#JUMPDEST_Page_312
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_356.html#JUMPDEST_Page_356
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_94.html#JUMPDEST_Page_94
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_195.html#JUMPDEST_Page_195
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_300.html#JUMPDEST_Page_300
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_304.html#JUMPDEST_Page_304
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_308.html#JUMPDEST_Page_308
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_304.html#JUMPDEST_Page_304
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_204.html#JUMPDEST_Page_204
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_301.html#JUMPDEST_Page_301
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_303.html#JUMPDEST_Page_303
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_301.html#JUMPDEST_Page_301
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_282.html#JUMPDEST_Page_282
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_44.html#JUMPDEST_Page_44
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_50.html#JUMPDEST_Page_50
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_52.html#JUMPDEST_Page_52
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_55.html#JUMPDEST_Page_55
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_59.html#JUMPDEST_Page_59
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_61.html#JUMPDEST_Page_61
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_171.html#JUMPDEST_Page_171
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_173.html#JUMPDEST_Page_173
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_71.html#JUMPDEST_Page_71

yesno, 249, 259, 289

http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_249.html#JUMPDEST_Page_249
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_259.html#JUMPDEST_Page_259
http://emedia.netlibrary.com/nlreader/nlReader.dll?BookID=1925&FileName=Page_289.html#JUMPDEST_Page_289

	Cover
	Title Page
	Foreword
	Contents
	Table of Figures
	1 Search-Related Techniques in AI
	2 Simple State Space Search
	3 State Space Search
	4 Heuristic State Space Search
	5 Heuristic Search of Game Trees
	6 Problem Reduction (AND/OR-Tree Search)
	7 Planning (Microworld Search)
	8 Parsing (Search as Analysis)
	9 Expert Systems (probablistic search)
	10 Concept Learning (Description Search)
	11 Prolog (Search as Computation)
	References
	APPENDIX A
	Index

