Foreword

The Handbook of Evolutionary Computatiorepresents a major milestone for the field of evolutionary
computation (EC). As is the case with any new field, there are a number of distinct stages of growth and
maturation. The field began in the late 1950s and early 1960s as the availability of digital computing
permitted scientists and engineers to build and experiment with various models of evolutionary processes.
This early work produced a number of important EC paradigms, including evolutionary programming (EP),
evolution strategies (ESs), and genetic algorithms (GAs), which served as the basis for much of the work
done in the 1970s, a period of intense exploration and refinement of these ideas. The result was a variety
of robust algorithms with significant potential for addressing difficult scientific and engineering problems.
By the late 1980s and early 1990s the level of activity had grown to the point that each of the subgroups
associated with the primary EC paradigms (GAs, ESs, and EP) was involved in planning and holding its
own regularly scheduled conferences.

However, within the field there was a growing sense of the need for more interaction and cohesion
among the various subgroups. If the field as a whole were to mature, it needed a name, it needed to
have an articulated cohesive structure, and it needed a reservoir for archival literature. The 1990s reflect
this maturation with the choice @volutionary computatioas the name of the field, the establishment of
two journals for the field, and the commitment to produce this handbook as the first clear and cohesive
description of the field.

With the publication of this handbook there is now a sense of unity and maturity to the field. The
handbook represents a momentous accomplishment for which we owe the editors and the many contributors
a great deal of thanks. More importantly, it is designed to be an evolving description of the field and will
continue to serve as a foundational reference for the future.

Kenneth De Jong George Mason University
Lawrence Foge] Natural Selection Inc.
Hans-Paul Schwefel University of Dortmund

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Vi

Why Evolutionary Computation?

Al.1 Introduction
David B Fogel

Abstract

A rationale for simulating evolution is offered in this section. Efforts in evolutionary
computation commonly derive from one of four different motivations: improving
optimization, robust adaptation, machine intelligence, and facilitating a greater
understanding of biology. A brief overview for each of these avenues is offered here.

Al1.1.1 Introductory remarks

As a recognized fieldevolutionary computatioiis quite young. The term itself was invented as recently as
1991, and it represents an effort to bring together researchers who have been following different approaches
to simulating various aspects of evolution. These techniquegenétic algorithmsevolution strategies B1.2 B1.3
and evolutionary programmindiave one fundamental commonality: they each involve the reproductra,
random variation, competition, and selection of contending individuals in a population. These form the
essential essence of evolution, and once these four processes are in place, whether in nature or in a
computer, evolution is the inevitable outcome (Atmar 1994). The impetus to simulate evolution on a
computer comes from at least four directions.

Al1.1.2 Optimization

Evolution is an optimization process (Mayr 1988, p 104). Darwin (1859, ch 6) was struck with the ‘organs
of extreme perfection’ that have been evolved, one such example being the image-forming eye (Atmar,
1976). Optimization does not imply perfection, yet evolution can discover highly precise functional
solutions to particular problems posed by an organism’s environment, and even though the mechanisms
that are evolved are often overly elaborate from an engineering perspective, function is the sole quality that
is exposed to natural selection, and functionality is what is optimized by iterative selection and mutation.

It is quite natural, therefore, to seek to describe evolution in terms of an algorithm that can be used to
solve difficult engineering optimization problems. The classic techniques of gradient descent, deterministic
hill climbing, and purely random search (with no heredity) have been generally unsatisfactory when applied
to nonlinear optimization problems, especially those with stochastic, temporal, or chaotic components. But
these are the problems that nature has seemingly solved so very well. Evolution provides inspiration for
computing the solutions to problems that have previously appeared intractable. This was a key foundation
for the efforts in evolution strategies (Rechenberg 1965, 1994, Schwefel 1965, 1995).

A1.1.3 Robust adaptation

The real world is never static, and the problems of temporal optimization are some of the most challenging.
They require changing behavioral strategies in light of the most recent feedback concerning the success
or failure of the current strategy. Holland (1975), under the framework of genetic algorithms (formerly
called reproductive plany described a procedure that can evolve strategies, either in the form of coded
strings or as explicit behavioral rule bases cattessifier systemsy exploiting the potential to recombinei.s.2
successful pieces of competing strategies, bootstrapping the knowledge gained by independent individuals.
The result is a robust procedure that has the potential to adjust performance based on feedback from the
environment.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.1:1

Introduction

Al.1.4 Machine intelligence

Intelligence may be defined as the capability of a system to adapt its behavior to meet desired goals in a
range of environments (Fogel 1995, p xiii). Intelligent behavior then requires prediction, for adaptation to
future circumstances requires predicting those circumstances and taking appropriate action. Evolution has
created creatures of increasing intelligence over time. Rather than seek to generate machine intelligence
by replicating humans, either in the rules they may follow or in their neural connections, an alternative
approach to generating machine intelligence is to simulate evolution on a class of predictive algorithms.
This was the foundation for the evolutionary programming research of Fogel (1962, ét@je1966).

Al1.1.5 Biology

Rather than attempt to use evolution as a tool to solve a particular engineering problem, there is a desire
to capture the essence of evolution in a computer simulation and use the simulation to gain new insight
into the physics ohatural evolutionary processgfRay 1991). Success raises the possibility of studya>3
alternative biological systems that are merely plausible images of what life might be like in some way.
It also raises the question of what properties such imagined systems might have in common with life as
evolved on Earth (Langton 1987). Although every model is incomplete, and assessing what life might be
like in other instantiations lies in the realm of pure speculation, computer simulations under the rubric of
artificial life have generated some patterns that appear to correspond with naturally occurring phenomena.

Al1.1.6 Discussion

The ultimate answer to the question ‘why simulate evolution?’ lies in the lack of good alternatives. We
cannot easily germinate another planet, wait several millions of years, and assess how life might develop
elsewhere. We cannot easily use classic optimization methods to find global minima in functions when
they are surrounded by local minima. We find that expert systems and other attempts to mimic human
intelligence are often brittle: they are not robust to changes in the domain of application and are incapable
of correctly predicting future circumstances so as to take appropriate action. In contrast, by successfully
exploiting the use of randomness, or in others wdtasuseful use of uncertaintyall possible pathways

are open’ for evolutionary computation (Hofstadter 1995, p 115). Our challenge is, at least in some
important respects, to not allow our own biases to constrain the potential for evolutionary computation to
discover new solutions to new problems in fascinating and unpredictable ways. However, as always, the
ultimate advancement of the field will come from the careful abstraction and interpretation of the natural
processes that inspire it.

References

Atmar J W 1976Speculation on the Evolution of Intelligence and its Possible Realization in Machine Boutoral
Dissertation, New Mexico State University

Atmar W 1994 Notes on the simulation of evolutitBEE Trans. Neural NetworksIN-5 130-47

Darwin C R 18590n the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in
the Struggle for Life(London: Murray)

Fogé D B 1995 Evolutionary Computation: Toward a New Philosophy of Machine IntelligéRégcataway, NJ: IEEE)

Fogéd L J 1962 Autonomous automatadustr. Res4 14-9

Fogel L J, Owen A J and Walsh M J 1968urtificial Intelligence through Simulated EvolutidiNew York: Wiley)

Hofstadter D 1995-luid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of
Thought(New York: Basic Books)

Holland J H 1975Adaptation in Natural and Artificial Systen{fé&nn Arbor, MI: University of Michigan Press)

Langtan C G 1987 Atrtificial life Artificial Life ed C G Langton (Reading, MA: Addison-Wesley) pp 1-47

Mayr E 1988Toward a New Philosophy of Biology: Observations of an Evolutiof@etmbridge, MA: Belknap)

Ray T 1991 An approach to the synthesis of IAetificial Life Il ed C G Langton, C Taylor, J D Farmer and
S Rasmussen (Reading, MA: Addison-Wesley) pp 371-408

Rechenberg | 196%ybernetic Solution Path of an Experimental ProbldRoyal Aircraft Establishment Library
Translation 1122, Farnborough, UK

——1994 Evolutionsstrategies '94Stuttgart: Frommann-Holzboog)

Schwefel H-P 1965%Kybernetische Evolution als Strategie der Experimentellen Forschung in dem&tgstechnik
Diploma Thesis, Technical University of Berlin

——1995Evolution and Optimum Seekin@®lew York: Wiley)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.1:2

Why Evolutionary Computation?

Al.2 Possible applications of evolutionary computation
David Beasley

Abstract

This section describes some of the applications to which evolutionary computation has
been applied. Applications are divided into the areas of planning, design, simulation and
identification, control, and classification.

Al1.2.1 Introduction

Applications of evolutionary computation (EC) fall into a wide continuum of areas. For convenience, in
this section they have been split into five broad categories:

planning

design

simulation and identification
control

classification.

These categories are by no means meant to be absolute or definitive. They all overlap to some extent,
and many applications could rightly appear in more than one of the categories.

These categories correspond to the sections found in Part F roughly as follolasning is
covered by F1.5 (scheduling) and F1.7 (packing)nulation and identification are covered by F1.4r15F17F1.4
(identification), F1.8 (simulation models) and F1.10 (simulated evolutiargntrol is covered by rigF1.10
F1.3 (control);classificationis covered by F1.6 (pattern recognitio)esignis not covered by a specifiF1.3 F1.6
section in Part F.

Some of the applications mentioned here are described more fully in other parts of this book as
indicated by marginal cross-references. The final part of this section lists a number of bibliographies
where more extensive information on EC applications can be found.

Al.2.2 Applications in planning
Al.2.2.1 Routing

Perhaps one of the best known combinatorial optimization problems itrdtieling salesman problenci.3 ce.5
or TSP (Goldberg and Lingle 1985, Grefenstette 1987, Fogel 1988, Giivalr1987, Mihlenbein 1989,
Whitley et al 1989, Fogel 1993a, Homaifat al 1993). A salesman must visit a number of cities, and then
return home. In which order should the cities be visited to minimize the distance traveled? Optimizing
the tradeoff between speed and accuracy of solution has been one aim (Verbbal/2892).

A generalization of the TSP occurs when there is more than one salesman (Fogel 199Ghithe
routing problemis similar. There is a fleet of vehicles, all based at the same depot. A set of customers
must each receive one delivery. Which route should each vehicle take for minimum cost? There are
constraints, for example, on vehicle capacity and delivery times (Blanton and Wainwright 1993, Thangia
et al 1993).

Closely related to this is thigansportation problemin which a single commodity must be distributecb s

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.2:1

Possible applications of evolutionary computation

to a number of customers from a number of depots. Each customer may receive deliveries from one or
more depots. What is the minimum-cost solution? (Michalewicz 1992, 1993).

Planning the path which eobot should take is another route planning problem. The path must be
feasible and safe (i.e. it must be achievable within the operational constraints of the robot) and there
must be no collisions. Examples include determining the joint motions required to move the gripper of a
robot arm between locations (Parketral 1989, Davidor 1991, McDonne#t al 1992), and autonomous
vehicle routing (Jakolet al 1992, Pagest al 1992). In unknown areas or nonstatic environments, on-line
planning/navigatings required, in which the robot revises its plans as it travels. G3.6

Al.2.2.2 Scheduling

Scheduling involves devising a plan to carry out a number of activities over a period of time, where
the activities require resources which are limited, there are various constraints and there are one or more
objectives to be optimized.

Job shop schedulinig a widely studied NP-complete problem (Davis 1985, Biegel and Davern 18903
Syswerda 1991, Yamada and Nakano 1992). The scenario is a manufacturing plant, with machines of
different types. There are a number of jobs to be completed, each comprising a set of tasks. Each task
requires a particular type of machine for a particular length of time, and the tasks for each job must be
completed in a given order. What schedule allows all tasks to be completed with minimum cost? Husbands
(1993) has used the additional biological metaphor oteosystemHis method optimizes the sequena.a
of tasks in each job at the same time as it builds the schedule. In real job shops the requirements may
change while the jobs are being carried out, requiring that the schedule be replannect(Bah§93).

In the limit, the manufacturing process runs continuously, so all scheduling must be carried out on-line,
as in a chemical flowshop (Cartwright and Tuson 1994).

Another scheduling problem is to devise a timetable for a set of examinations (Ebaid994),
university lectures (Ling 1992), staff rota (Easton and Mansour 1993) or suchlike. G9.4

In computing, scheduling problems include efficiently allocating tasks to processors in a multiprocessor
system (Van Driessche and Piessens 1992, Kidwell 1993, Fogel and Fogel 1996), and devising memory
cache replacement policies (Altmathal 1993).

Al1.2.2.3 Packing

Evolutionary algorithms (EAs) have been applied to many packing problems, the simplest of which is
the one-dimensionatero—one knapsack problenGiven a knapsack of a certain capacity, and a seca.?
items, each with a particular size and value, find the set of items with maximum value which can be
accommodated in the knapsack. Various real-world problems are of this type: for example, the allocation
of communication channels to customers who are charged at different rates.

There are various examples of two-dimensional packing problems. When manufacturing items are
cut from sheet materials (e.g. metal or cloth), it is desirable to find the most compact arrangement of
pieces, so as to minimize the amount of scrap (Smith 1985, Fetjith1993). A similar problem arises
in the design of layouts for integrated circuits—how should the subcircuits be arranged to minimize the
total chip area required (Fourman 1985, Cohoon and Paris 1987, étleri991)?

In three dimensions, there are obvious applications in which the best way of packing objects into a
restricted space is required. Juliff (1993) has considered the problem of packing goods into a truck for
delivery. (See also Section F1.7 of this handbook.) F1.7

Al1.2.3 Applications in design

The design ofilters has received considerable attention. EAs have been used to design electronic orc¥ jital
systems which implement a desired frequency response. Both finite impulse response (FIR) and infinite
impulse response (IIR) filter structures have been employed (&itt@r1982, Suckley 1991, Fogel 1991,
Fonsecaet al 1993, Ifeachor and Harris 1993, Namibar and Mars 1993, Roberts and Wade 1993, Schaffer
and Eshelman 1993, White and Flockton 1993, Wicks and Lawson 1993, Wilson and Macleod 1993). EAs
have also been used to optimize the design of signal processing systems (San Martin and Knight 1993)
and in integrated circuit design (Louis and Rawlins 1991, Rahmani and Ono 1993)urElgeal-area

facility layout problem(Smith and Tate 1993) is similar to integrated circuit design. It involves finding

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.2:2

Possible applications of evolutionary computation

a two-dimensional arrangement of ‘departments’ such that the distance which information has to travel
between departments is minimized.

EC techniques have been widely appliedattificial neural networks both in the design of network
topologies and in the search for optimum sets of weights (Mileal 1989, Fogelet al 1990, Harp
and Samad 1991, Baba 1992, Hancock 1992, Feldman 1993, Gruau 1993, Polani and Uthmann 1993,
Romaniuk 1993, Spittle and Horrocks 1993, Zhang andhMnbein 1993, Portet al 1995). They
have also been applied to Kohonen feature map design (Polani and Uthmann 1992). Other types of
network design problems have also been approached (see Section G1.3 of this handbook), for exasi;3le, in
telecommunications (Cogt al 1991, Davis and Cox 1993).

There have been margngineeringapplications of EC: structure design, both two-dimensional, sczh
as a plane truss (Lohmann 1992, Watabe and Okino 1993), and three-dimensional, such as aircraft design
(Bramlette and Bouchard 1991), actuator placement on space structures (Furuya and Haftkin893),
acceleratordesign, gearbox design, and chemical reactor design (Powell and Skolnick 1993). In rez4on
to high-energy physics, the design Mbnte Carlo generatorfias been tackled. G4.1

In order to perform parallel computations requiring global coordination, EC has been used to design
cellular automatawith appropriate communication mechanisms. G16

There have also been applicationgtésting and fault diagnosig-or example, an EA can be used to
search for challenging fault scenarios for antonomous vehicle controller G3.4

Al.2.4 Applications in simulation and identification

Simulation involves taking a design or model for a system, and determining how the system will behave.
In some cases this is done because we are unsure about the behavior (e.g. when designing a new aircraft).
In other cases, the behavior is known, but we wish to test the accuracy of the model (e.g. see Section
F1.8 of this handbook). F1.8

EC has been applied to difficult problemsdhemistryand biology. Roosen and Meyer (1992) usech, ce
an evolution strategy to determine the equilibrium of chemically reactive systems, by determining the
minimum free enthalpy of the compounds involved. The determination of the three-dimensional structure
of a protein, given its amino acid sequence, has been tackled (Lueasilis991). Lucasius and Kateman
(1992) approached this as a sequenced subset selection problem, using two-dimensional nuclear magnetic
resonance spectrum data as a starting point. Others have searched for energetically favorable protein
conformations (Schulze-Kremer 1992, Unger and Moult 1993), and used EC to assist with drug design
(Gehlhaaret al 1995). EC has been used to simulate how the nervous system learns in order to test an
existing theory (see Section G8.4 of this handbook). Similarly, EC has been used in order to help css.2lop
models of biological evolution (see Section F1.10 of this handbook). F1.10

In the field ofeconomicsEC has been used to modstonomic interactiorof competing firms in ac7.1
market.

Identificationis the inverse of simulation. It involves determining the design of a system giver1.4s
behavior.

Many systems can be represented by a model which produces a single-valued output in response to one
or more input signals. Given a number of observations of input and output valystem identificationc1.4
is the task of deducing the details of the model. Flockton and White (1993) concern themselves with
determining the poles and zeros of the system.

One reason for wanting to identify systems is so that we can predict the output in response to a given
set of inputs. In Section G4.3 of this handbook EC is employed to fit equations to noisy, chaotic ms4'ical
data, in order to predict future values. Janikow and Cai (1992) similarly used EC to estimate statistical
functions for survival analysis in clinical trials. In a similar area, Maretlal (1993) used EC to fit spline
functions to noisy pharmaceutical fermentation process data.

In Section G5.1 of this handbook, EC is used to identify the sources of airborne pollution, giverss'ata
from a number of monitoring points in an urban area—dbarce apportionment problem

In electromagneticsTanakaet al (1993) have applied EC to determining the two-dimensional current
distribution in a conductor, given its external magnetic field.

Away from conventionakystemidentification, in Section G8.3 of this handbook, an EC approcs’a
was used to help with identifying criminal suspects. This system helps witnesses to create a likeness of
the suspect, without the need to give an explicit description.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.2:3

Possible applications of evolutionary computation

Al1.2.5 Applications in control

There are two distinct approaches to the use of EC in contifflline andon-line. The off-line approach

uses an EA to design a controller, which is then used to control the system. The on-line approach uses
an EA as an active part of the control process. Therefore, with the off-line approach there is nothing
evolutionary about the control process itself, only about the design of the controller.

Some researchers (Fogatlal 1966, DeJong 1980) have sought to use the adaptive qualities of EAs
in order to build on-line controllers for dynamic systems. The advantage of an evolutionary controller
is that it can adapt to cope with systems whose characteristics change over time, whether the change is
gradual or sudden. Most researchers, however, have taken the off-line approach to the control of relatively
unchanging systems.

Fonseca and Fleming (1993) used an EA to design a controller for a gas turbine engine, to optimize
its step response. A control system to optimize combustion in multiple-burner furnaces and boiler plants
is discussed in Section G3.2. EC has also been applied to the control of guidance and navigation czatems
(Krishnakumar and Goldberg 1990, 1992).

Hunt (1992b) has tackled the problem of synthesizing LQG (linear—quadratic-Gaussiaij.and
(H-infinity) optimal controllers. He has also considered the frequency domain optimization of controllers
with fixed structures (Hunt 1992a).

Two control problems which have been well studied are balancing a pole on a movable cart (Fogel
1995), and backing up a trailer truck to a loading bay from an arbitrary starting point (Abu Zitar and
Hassoun 1993). In robotics, EAs have been developed which can evolve control systems for visually
guided behaviors (see Section G3.7). They can also learn how to control mobile robots (Kim ancs5him
1995), for example, controlling the legs of a six-legged ‘insect’ to make it crawl or walk (Spencer 1993).
Almassy and Verschure (1992) modeled the interaction between natural selection and the adaptation of
individuals during their lifetimes to develop an agent with a distributed adaptive control framework which
learns to avoid obstacles and locate food sources.

Al1.2.6 Applications in classification

A significant amount of EC research has concerned the theory and practitassfifier system¢CFS) B1.5.2
(Booker 1985, Holland 1985, 1987, Hollared al 1987, Robertson 1987, Wilson 1987, Fogarty 1994).
Classifier systems are at the heart of many other types of system. For example, many control systems rely
on being able taclassify the characteristics of their environment before an appropriate control decision
can be made. This is true in mambotics applications of EC, for example, learning to control robot arm
motion (Patel and Dorigo 1994) and learning to solve mazes (Pipe and Carse 1994).

An important aspect of a classifier system, especially in a control application, is how the state space
is partitioned. Many applications take for granted a particular partitioning of the state space, while in
others, the appropriate partitioning of the state space is itself part of the problem (Melhuish and Fogarty
1994). In Section G2.3, EC was used to determine optimal symbolic descriptions for concepts. 2.3

Game playingis another application for which classification plays a key role. Although EC is often
applied to rather simple games (e.g. the prisoner’s dilemma (Axelrod 1987, Fogel 1993b)), this is sometimes
motivated by more serious applications, such as military ones (e.g. the two-tanks game (Fairley and Yates
1994) and airombat maneuvering G33

EC has been hybridized with feature partitioning and applied to a range of tasker{ic and
Sirin 1993), including classification of iris flowers, prediction of survival for heart attack victims from
echocardiogram data, diagnosis of heart disease, and classification of glass sampigsistics, EC has
been applied to the classification of Swedish words.

In economics Oliver (1993) has found rules to reflect the way in which consumers choose one brand
rather than another, when there are multiple criteria on which to judge a product. A fuzzy hybrid system
has been used fdinancial decision makingwith applications to credit evaluation, risk assessment, 7.4
insurance underwriting.

In biology, EC has been applied to the difficult task of protein secondary-structure determination, for
example, classifying the locations of particupaptein segmentéHandley 1993). It has also been applics.1
to the classification of soil samples (Punethal 1993).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.2:4

Possible applications of evolutionary computation

In image processingthere have been further military applications, classifying features in images
as targets (Bala and Wechsler 1993, Tackett 1993), and also non-military applications, sayuticals
character recognition G8.1

Of increasing importance is the efficient storage and retrievainfifrmation. Section G2.2 isG2.2
concerned with generating equifrequency distributions of material, to improve the efficiency of information
storage and its subsequent retrieval. EC has also been employed to assist with the representation and storage
of chemical structures, and the retrieval from databases of molecules containing certain substructures (Jones
et al 1993). The retrieval oflocumentswhich match certain characteristics is becoming increasingly
important as more and more information is held on-line. Tools to retrieve documents which contain
specified words have been available for many years, but they have the limitation that constructing an
appropriate search query can be difficult. Researchers are now using EAs to hetperghconstructionc2.1
(Yang and Korfhage 1993).

Al.2.7 Summary

EC has been applied in a vast number of application areas. In some cases it has advantages over existing
computerized techniques. More interestingly, perhaps, it is being applied to an increasing number of areas
in which computers have not been used before. We can expect to see the number of applications grow
considerably in the future. Comprehensive bibliographies in many different application areas are listed in
the further reading section of this article.

References

Abu Zitar R A and Hassou M H 1993 Regulator control via genetic search and assisted reinforcéPnenit 5th
Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1968)S Forrest (San Mateo, CA: Morgan
Kaufmann) pp 254-62

Almassy N and Verschure P 1992 Optimizing self-organising control architectures with genetic algorithms: the
interaction between natural selection and ontogenaisllel Problem Solving from Nature, 2 (Proc. 2nd Int.
Conf. on Parallel Problem Solving from Nature, Brussels, 199@)R Manner and B Manderick (Amsterdam:
Elsevier) pp 451-60

Altman E R, Agarw&V K and Gao G R 1993 A novel methodology using genetic algorithms for the design of caches
and cache replacement poliyoc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1@@3)
S Forrest (San Mateo, CA: Morgan Kaufmann) pp 392—-9

Axelrod R 1987 The evolution of strategies in the iterated prisoner's dile@miaetic Algorithms and Simulated
Annealinged L Davis (Boston, MA: Pitman) ch 3, pp 32-41

Baba N 1992 Utilization of stochastic automata and genetic algorithms for neural network |eRanaiigl Problem
Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, é89R)
Manner and B Manderick (Amsterdam: Elsevier) pp 431-40

Bagchi S, Uckun S, Miyabe Y and Kawamura K 1991 Exploring problem-specific recombination operators for job
shop schedulingroc. 4th Int. Conf. on Genetic Algorithms (San Diego, CA, July 1@@1RR Belew and L Booker
(San Mateo, CA: Morgan Kaufmann) pp 10-7

Bala J W and Wechsler H 1993 Learning to detect targets using scale-space and geneti€mearstn Int. Conf.
on Genetic Algorithms (Urbana-Champaign, IL, July 19@8) S Forrest (San Mateo, CA: Morgan Kaufmann)
pp 516-22

Biegd J E and Daver J J 1990 Genetic algorithms and job shop schedWiomput. Indust. Engl9 81-91

Blanton J L and WainwrighR L 1993 Multiple vehicle routing with time and capacity constraiftec. 5th Int. Conf.
on Genetic Algorithms (Urbana-Champaign, IL, July 19@8) S Forrest (San Mateo, CA: Morgan Kaufmann)
pp 452-9

Booker L 1985 Improving the performance of genetic algorithms in classifier sysemes 1st Int. Conf. on Genetic
Algorithms (Pittsburgh, PA, July 1988J J J Grefenstette (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 80-92

Bramlete M F and Bouchat E E 1991 Genetic algorithms in parametric design of airdrEfhdbook of Genetic
Algorithmsed L Davis (New York: Van Nostrand Reinhold) ch 10, pp 109-23

Cartwright H M and Tuson A L 1994 Genetic algorithms and flowshop scheduling: towards the development of a real-
time process control systefvolutionary Computing (AISB Workshop, Leeds, 1994, Selected Papers) (Lecture
Notes in Computer Science 86&) T C Fogarty (Berlin: Springer) pp 277-90

Chan H, Mazumder P and Shahookar K 1991 Macro-cell and module placement by genetic adaptive search with
bitmap-represented chromosommeegration VLSI J12 49-77

Cohom J P and PasiW D 1987 Genetic placemetEEE Trans. Computer-Aided DesigdAD-6 956—64

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.25

Possible applications of evolutionary computation

Corne D, Ross P and Fang H-L 1994 Fast practical evolutionary timetaBliolitionary Computing (AISB Workshop,
Leeds, 1994, Selected Papers) (Lecture Notes in Computer Sciena8b%&) Fogarty (Berlin: Springer) pp 250—
63

Cox L A, Davis L and Qiu Y 1991 Dynamic anticipatory routing in circuit-switched telecommunications networks
Handbook of Genetic Algorithmed L Davis (New York: Van Nostrand Reinhold) ch 11, pp 124-43

Davidor Y 1991 A genetic algorithm applied to robot trajectory generatiamdbook of Genetic Algorithmesd L
Davis (New York: Van Nostrand Reinhold) ch 12, pp 144-65

Davis L 1985 Job shop scheduling with genetic algorititnac. 1st Int. Conf. on Genetic Algorithms (Pittsburgh, PA,
July 1985)ed J J Grefenstette (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 136—40

Davis L and Cox A 1993 A genetic algorithm for survivable network destgrc. 5th Int. Conf. on Genetic Algorithms
(Urbana-Champaign, IL, July 1993)d S Forrest (San Mateo, CA: Morgan Kaufmann) pp 408-15

DeJong K 1980 Adaptive system design: a genetic apprtiBEE Trans. Systems, Man CybeBMC-10 566-74

Eastam F F and Mansour N 1993 A distributed genetic algorithm for employee staffing and scheduling prBodems
5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 198985 Forrest (San Mateo, CA: Morgan
Kaufmann) pp 360-67

Etter D M, Hicks M J and Cho K H 1982 Recursive adaptive filter design using an adaptive genetic algd&im
Int. Conf. on Acoutics, Speech and Signal Procesgiigcataway, NJ: IEEE) pp 635-8

Fairley A and Yats D F 1994 Inductive operators and rule repair in a hybrid genetic learning system: some initial
results Evolutionary Computing (AISB Workshop, Leeds, 1994, Selected Papers) (Lecture Notes in Computer
Science 865¢d T C Fogarty (Berlin: Springer) pp 166—79

Fang H-L, Ross P and Corne D 1993 A promising genetic algorithm approach to job-shop scheduling, rescheduling
and open-shop scheduling problefec. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July
1993)ed S Forrest (San Mateo, CA: Morgan Kaufmann) pp 375-82

Feldman D S 1993 Fuzzy network synthesis with genetic algorithngc. 5th Int. Conf. on Genetic Algorithms
(Urbana-Champaign, IL, July 19933d S Forrest (San Mateo, CA: Morgan Kaufmann) pp 312—7

Flockton S J and White M 1993 Pole-zero system identification using genetic algomhons5th Int. Conf. on Genetic
Algorithms (Urbana-Champaign, IL, July 1998) S Forrest (San Mateo, CA: Morgan Kaufmann) pp 531-5

Fogary T C 1994 Co-evolving co-operative populations of rules in learning control sydEoisitionary Computing
(AISB Workshop, Leeds, 1994, Selected Papers) (Lecture Notes in Computer SciemteBESFogarty (Berlin:
Springer) pp 195-209

Fogé D B 1988 An evolutionary approach to the traveling salesman protd@h Cybernet6 139-44

——1990 A parallel processing approach to a multiple traveling salesman problem using evolutionary programming
Proc. 4th Ann. Symp. on Parallel Processi(Rjscataway, NJ: IEEE) pp 318-26

——1991 System Identification through Simulated Evolut{pleedham, MA: Ginn)

——1993a Applying evolutionary programming to selected traveling salesman proklghesnet. Sys24 27-36

——1993b Evolving behaviors in the iterated prisoner’s dilentvalut. Computl 77-97

——1995 Evolutionary Computation: Toward a New Philosophy of Machine IntelligdRigcataway, NJ: IEEE)

Foged D B and Fogé L J 1996 Using evolutionary programming to schedule tasks on a suite of heterogeneous
computersComput. Operat. Re23 527-34

Fogel D B, FogkL J and Pord V W 1990 Evolving neural networkBiol. Cybern.63 487—93

Fogel L J, Owen A J and Walsh M J 1968urtificial intelligence Through Simulated Evolutighew York: Wiley)

Fonsea C M and Flemig P J 1993 Genetic algorithms for multiobjective optimization: formulation, discussion and
generalizatiorProc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1@@B% Forrest (San
Mateo, CA: Morgan Kaufmann) pp 416-23

Fonseca C M, Mendes E M, FlengnP J and Billing S A 1993 Non-linear model term selection with genetic
algorithmsNatural Algorithms in Signal Processing (Workshop, Chelmsford, UK, November $693)London:
IEE) pp 27/1-27/8

Fourman M P 1985 Compaction of symbolic layout using genetic algoritir. 1st Int. Conf. on Genetic Algorithms
(Pittsburgh, PA, July 1985¢d J J Grefenstette (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 141-53

Fujita K, Akagi S and Hirokawa N 1993 Hybrid approach for optimal nesting using genetic algorithm and a local
minimization algorithmAdvances in Design Automatiaol 1, DE-65-1 (ASME) pp 477-84

Furuya H and Hafta R T 1993 Genetic algorithms for placing actuators on space strudtuoes 5th Int. Conf.
on Genetic Algorithms (Urbana-Champaign, IL, July 19@8) S Forrest (San Mateo, CA: Morgan Kaufmann)
pp 536-42

Gehlhaar D K, Verkhivker G M, Rejto P A, Sherman C J, Fogel D B, Fdgd and Free S T 1995 Molecular
recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary
programmingChem. Biol.2 317-24

Goldbeg D E and Lingle R 1985 Alleles, loci and the travelling salesman probfeat. 1st Int. Conf. on Genetic
Algorithms (Pittsburgh, PA, July 1988y J J Grefenstette (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 154-9

Grefensteg J J 1987 Incorporating problem specific knowledge into genetic algoritBeretic Algorithms and
Simulated Annealingd L Davis (Boston, MA: Pitman) ch 4, pp 42—60

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.2:6

Possible applications of evolutionary computation

Gruau F 1993 Genetic synthesis of modular neural netw®reg. 5th Int. Conf. on Genetic Algorithms (Urbana-
Champaign, IL, July 1993¢d S Forrest (San Mateo, CA: Morgan Kaufmann) pp 318-25

Guvenir H A andSjrin | 1993 A genetic algorithm for classification by feature recognititmoc. 5th Int. Conf.
on Genetic Algorithms (Urbana-Champaign, IL, July 19@8) S Forrest (San Mateo, CA: Morgan Kaufmann)
pp 543-8

Hancock P 1992 Recombination operators for the design of neural nets by genetic ald@aithial Problem Solving
from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, £8OR)Manner and
B Manderick (Amsterdam: Elsevier) pp 441-50

Handley S 1993 Automated learning of a detectordenelices in protein sequences via genetic programriirag.
5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 19985 Forrest (San Mateo, CA: Morgan
Kaufmann) pp 271-8

Harp S A and Samad T 1991 Genetic synthesis of neural network architétandbook of Genetic Algorithmed L
Davis (New York: Van Nostrand Reinhold) ch 15, pp 202-21

Holland J H 1985 Properties of the bucket-brigade algoritArac. 1st Int. Conf. on Genetic Algorithms (Pittsburgh,
PA, July 1985)d J J Grefenstette (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 1-7

——1987 Genetic algorithms and classifier systems: foundations and future dirdetam2nd Int. Conf. on Genetic
Algorithms (Pittsburgh, PA, July 19884 J J Grefenstette (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 82—9

Holland J H, Holyoak K J, NishéR E and Thagat P R 1987 Classifier system@-morphisms and inductioGenetic
Algorithms and Simulated Annealirggl L Davis (Boston, MA: Pitman) ch 9, pp 116-28

Homaifar, A., Guan S and Liepins G 1993 A new approach to the travelling salesman problem by genetic algorithms
Proc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1#3B5S Forrest (San Mateo, CA:
Morgan Kaufmann) pp 460-6

Hunt K J 1992a Optimal control system synthesis with genetic algoritRarallel Problem Solving from Nature, 2
(Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, 1882 Manner and B Manderick
(Amsterdam: Elsevier) pp 381-9

——1992b Polynomial LQG andl,, controller synthesis: a genetic algorithm solutProc. IEEE Conf. on Decision
and Control (Tuscon, AZ|Picataway, NJ: IEEE)

Husbands P 1993 An ecosystems model for integrated production plamirlg Comput. Integrated Manufacturing
6 74-86

Ifeacha E C and Haris S P 1993 A new approach to frequency sampling filter design using genetic algaxigtanal
Algorithms in Signal Processing (Workshop, Chelmsford, UK, November 1293) (London: IEE) pp 5/1-5/8

Jakob W, Gorges-Schleuter M and Blume C 1992 Application of genetic algorithms to task planning and learning
Parallel Problem Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels,
1992)ed R Manner and B Manderick (Amsterdam: Elsevier) pp 291-300

Janikav C Z and Cai H 1992 A genetic algorithm application in nonparametric functional estinfagiilel Problem
Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, &89R)
Manner and B Manderick (Amsterdam: Elsevier) pp 249-58

Jones G, Brown R D, Clark D E, Willett P and @l&R C 1993 Searching databases of two-dimensional and three
dimensional chemical structures using genetic algoritifree. 5th Int. Conf. on Genetic Algorithms (Urbana-
Champaign, IL, July 1993%d S Forrest (San Mateo, CA: Morgan Kaufmann) pp 597-602

Juliff K 1993 A multi-chromosome genetic algorithm for pallet loadiRgc. 5th Int. Conf. on Genetic Algorithms
(Urbana-Champaign, IL, July 19933d S Forrest (San Mateo, CA: Morgan Kaufmann) pp 467-73

Kidwell M D 1993 Using genetic algorithms to schedule distributed tasks on a bus-based &ysterth Int. Conf.
on Genetic Algorithms (Urbana-Champaign, IL, July 19@8) S Forrest (San Mateo, CA: Morgan Kaufmann)
pp 368-74

Kim J-H and Shim H-S 1995 Evolutionary programming-based optimal robust locomotion control of autonomous
mobile robotsProc. 4th Ann. Conf. on Evolutionary Programmied J R McDonnell, R G Reynolds and D B
Fogel (Cambridge, MA: MIT Press) pp 631-44

Krishnakumar K and GoldbgrD E 1990 Genetic algorithms in control system optimizatiBroc. AIAA Guidance,
Navigation, and Control Conf. (Portland, ORp 1568—77

——1992 Control system optimization using genetic algorithim&uidance Control Dynamni5 73540

Ling S-E 1992 Integrating genetic algorithms with a prolog assignment program as a hybrid solution for a polytechnic
timetable problenParallel Problem Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving
from Nature, Brussels, 1992d R Manner and B Manderick (Amsterdam: Elsevier) pp 321-9

Lohmann R 1992 Structure evolution and incomplete inducBanallel Problem Solving from Nature, 2 (Proc. 2nd
Int. Conf. on Parallel Problem Solving from Nature, Brussels, 133PR Manner and B Manderick (Amsterdam:
Elsevier) pp 175-85

Louis S J and Rawlis G J E1991 Designer genetic algorithms: genetic algorithms in structure d&sam 4th Int.
Conf. on Genetic Algorithms (San Diego, CA, July 198d)R Belew and L Booker (San Mateo, CA: Morgan
Kaufmann) pp 53-60

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.2:77

Possible applications of evolutionary computation

Lucasius C B, Blommers M J, Buyderi. M and Kateman G 1991 A genetic algorithm for conformational analysis
of DNA Handbook of Genetic Algorithnmed L Davis (New York: Van Nostrand Reinhold) ch 18, pp 251-81
Lucasits C B and Kateman G 1992 Towards solving subset selection problems with the aid of the genetic algorithm
Parallel Problem Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels,
1992)ed R Manner and B Manderick (Amsterdam: Elsevier) pp 239-47

Manela, M., Thornhill N and CampHel A 1993 Fitting spline functions to noisy data using a genetic algorfot.
5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 19985 Forrest (San Mateo, CA: Morgan
Kaufmann) pp 549-56

McDonnell J R, Andersen B L, Pagw C and Pin F G 1992 Mobile manipulator configuration optimization using
evolutionary programmingroc. 1st Ann. Conf. on Evolutionary Programmiaed D B Fogel and W Atmar (La
Jolla, CA: Evolutionary Programming Society) pp 52-62

Melhuish C and Fogarty T C 1994 Applying a restricted mating policy to determine state space niches using immediate
and delayed reinforcemerivolutionary Computing (AISB Workshop, Leeds, 1994, Selected Papers) (Lecture
Notes in Computer Science 86&) T C Fogarty (Berlin: Springer) pp 224-37

Michalewicz Z 1992Genetic Algorithms + Data Structures = Evolution Prografierlin: Springer)

——1993 A hierarchy of evolution programs: an experimental stidglut. Computl 51-76

Miller G F, Todd P M and Hegd S U 1989 Designing neural networks using genetic algoritfimec. 3rd Int. Conf.
on Genetic Algorithms (Fairfax, VA, June 1982) J D Schaffer (San Mateo, CA: Morgan Kaufmann) pp 379-84

Mihlenbein H 1989 Parallel genetic algorithms, population genetics and combinatorial optimRedmr3rd Int.
Conf. on Genetic Algorithms (Fairfax, VA, June 198%9) J D Schaffer (San Mateo, CA: Morgan Kaufmann)
pp 416-21

Namibar R and Mars P 1993 Adaptive IIR filtering using natural algoritiNatural Algorithms in Signal Processing
(Workshop, Chelmsford, UK, November 1998) 2 (London: IEE) pp 20/1-20/10

Oliver J R 1993 Discovering individual decision rules: an application of genetic algorifros. 5th Int. Conf.
on Genetic Algorithms (Urbana-Champaign, IL, July 19@8) S Forrest (San Mateo, CA: Morgan Kaufmann)
pp 216-22

Oliver I M, Smith D J and Hollad J R C1987 A study of permutation crossover operators on the travelling salesman
problemProc. 2nd Int. Conf. on Genetic Algorithms (Cambridge, MA, 198Y)J J Grefenstette (Hillsdale, NJ:
Erlbaum) pp 224-30

Page W C, McDonnell J R and Anderson B 1992 An evolutionary programming approach to multi-dimensional
path planningProc. 1st Ann. Conf. on Evolutionary Programmiad D B Fogel and W Atmar (La Jolla, CA:
Evolutionary Programming Society) pp 63-70

Parker J K, Goldber D E and KhoogaA R 1989 Inverse kinematics of redundant robots using genetic algorithms
Proc. Int. Conf. on Robotics and Automation (Scottsdale, AZ, 19689 (Los Alamitos: IEEE Computer Society
Press) pp 271-6

Paté M J and Dorigo M 1994 Adaptive learning of a robot afavolutionary Computing (AISB Workshop, Leeds,
1994, Selected Papers) (Lecture Notes in Computer Sciencee865)C Fogarty (Berlin: Springer) pp 180-94

Pipe A G and Carse B 1994 A comparison between two architectures for searching and learning in maze problems
Evolutionary Computing (AISB Workshop, Leeds, 1994, Selected Papers) (Lecture Notes in Computer Science
865)ed T C Fogarty (Berlin: Springer) pp 238-49

Polani D and Uthmann T 1992 Adaptation of Kohonen feature map topologies by genetic algétahalisl Problem
Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, é89R)
Manner and B Manderick (Amsterdam: Elsevier) pp 421-9

——1993 Training Kohonen feature maps in different topologies: an analysis using genetic algdpitbenbth
Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1968)S Forrest (San Mateo, CA: Morgan
Kaufmann) pp 326-33

Porto V W, FogéD B and FogéL J 1995 Alternative neural network training methd@&EE Expert10 16-22

Powell D and Skolnik M M 1993 Using genetic algorithms in engineering design optimization with non-linear
constraintsProc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 193B)S Forrest (San
Mateo, CA: Morgan Kaufmann) pp 424-31

Punch W F, Goodman E D, Pei, M, Chia-Shun L, Hovland P and Enbody R 1993 Further research on feature selection
and classification using genetic algorithsc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL,
July 1993)ed S Forrest (San Mateo, CA: Morgan Kaufmann) pp 557-64

Rahmani A T and Ono N 1993 A genetic algorithm for channel routing prolfeat. 5th Int. Conf. on Genetic
Algorithms (Urbana-Champaign, IL, July 1998) S Forrest (San Mateo, CA: Morgan Kaufmann) pp 494-8

Roberts A and Wade G 1993 A structured GA for FIR filter desigiural Algorithms in Signal Processing (Workshop,
Chelmsford, UK, November 1998pl 1 (London: IEE) pp 16/1-16/8

Robertson G 1987 Parallel implementation of genetic algorithms in a classifier sydégmtic Algorithms and
Simulated Annealingd L Davis (Boston, MA: Pitman) ch 10, pp 129-40

Romanik S G 1993 Evolutionary growth perceptroRsoc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign,
IL, July 1993)ed S Forrest (San Mateo, CA: Morgan Kaufmann) pp 334-41

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.2:8

Possible applications of evolutionary computation

Roosen P and Meyer F 1992 Determination of chemical equilibria by means of an evolution sRateligl Problem
Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, &89R)
Manner and B Manderick (Amsterdam: Elsevier) pp 411-20

San Martin R and Knight J P 1993 Genetic algorithms for optimization of integrated circuit synfPresis5th
Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1968)S Forrest (San Mateo, CA: Morgan
Kaufmann) pp 432-8

Schaffe J D and Eshelmal J 1993 Designing multiplierless digital filters using genetic algoritPme. 5th Int. Conf.
on Genetic Algorithms (Urbana-Champaign, IL, July 19@8) S Forrest (San Mateo, CA: Morgan Kaufmann)
pp 439-44

Schulze-Kremer S 1992 Genetic algorithms for protein tertiary structure predietioallel Problem Solving from
Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, €98 Manner and B
Manderick (Amsterdam: Elsevier) pp 391-400

Smith A E and Tate D M 1993 Genetic optimization using a penalty fundiime. 5th Int. Conf. on Genetic Algorithms
(Urbana-Champaign, IL, July 1993 S Forrest (San Mateo, CA: Morgan Kaufmann) pp 499-505

Smith D 1985 Bin packing with adaptive searetoc. 1st Int. Conf. on Genetic Algorithms (Pittsburgh, PA, July 1985)
ed J J Grefenstette (Hillsdale, NJ: Lawrence Erlbaum Associates)

Spence G F 1993 Automatic generation of programs for crawling and walkifrgc. 5th Int. Conf. on Genetic
Algorithms (Urbana-Champaign, IL, July 1998} S Forrest (San Mateo, CA: Morgan Kaufmann) p 654

Spittle M C and Horrock D H 1993 Genetic algorithms and reduced complexity artificial neural netwdaksral
Algorithms in Signal Processing (Workshop, Chelmsford, UK, November 1893) (London: IEE) pp 8/1-8/9

Suckley D 1991 Genetic algorithm in the design of FIR filtdf& Proc. G 138 234-8

Syswerda G 1991 Schedule optimization using genetic algorithamlbook of Genetic Algorithmed L Davis(New
York: Van Nostrand Reinhold) ch 21, pp 332-49

Tacket W A 1993 Genetic programming for feature discovery and image discriminBtion 5th Int. Conf. on Genetic
Algorithms (Urbana-Champaign, IL, July 1998) S Forrest (San Mateo, CA: Morgan Kaufmann) pp 303-9

Tanaka, Y., Ishiguro A and Uchikawa Y 1993 A genetic algorithms application to inverse problems in electromagnetics
Proc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1%3BS Forrest (San Mateo, CA:
Morgan Kaufmann) p 656

Thangia S R, Vinayagamoorthy R and GubbV 1993 Vehicle routing with time deadlines using genetic and local
algorithmsProc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 199B)S Forrest (San
Mateo, CA: Morgan Kaufmann) pp 506-13

Unger R and Moult J 1993 A genetic algorithm for 3D protein folding simulatiBrizc. 5th Int. Conf. on Genetic
Algorithms (Urbana-Champaign, IL, July 1998§ S Forrest (San Mateo, CA: Morgan Kaufmann) pp 581-8

Van Driessche R and Piessens R 1992 Load balancing with genetic algoRtmaltel Problem Solving from Nature,
2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, 18688 Manner and B Manderick
(Amsterdam: Elsevier) pp 341-50

Verhoeves M G A, Aarts E H L, van deSluis E and VaessenR J M 1992 Parallel local search and the travelling
salesman problerRarallel Problem Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving
from Nature, Brussels, 1992d R Manner and B Manderick (Amsterdam: Elsevier) pp 543-52

Watabe H and Okino N 1993 A study on genetic shape deBige. 5th Int. Conf. on Genetic Algorithms (Urbana-
Champaign, IL, July 1993¢d S Forrest (San Mateo, CA: Morgan Kaufmann) pp 445-50

White M and Flockton S 1993 A comparative study of natural algorithms for adaptive IIR filtsidbgral Algorithms
in Signal Processing (Workshop, Chelmsford, UK, November 1983} (London: IEE) pp 22/1-22/8

Whitley D, Starkweather T and Fuquay D 1989 Scheduling problems and travelling salesmen: the genetic edge
recombination operatd®?roc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, VA, June 1988)) D Schaffer (San
Mateo, CA: Morgan Kaufmann) pp 133-40

Wicks T and Lawson S 1993 Genetic algorithm design of wave digital filters with a restricted coefficiétataedl
Algorithms in Signal Processing (Workshop, Chelmsford, UK, November $893)(London: IEE) pp 17/1-17/7

Wilson P B and Macled M D 1993 Low implementation cost IIR digital filter design using genetic algoritNisiral
Algorithms in Signal Processing (Workshop, Chelmsford, UK, November 1893) (London: |IEE) pp 4/1-4/8

Wilson S W 1987 Hierarchical credit allocation in a classifier sys@emetic Algorithms and Simulated Annealieg)

L Davis (Boston, MA: Pitman) ch 8, pp 104-15

Yamada T and Nakano R 1992 A genetic algorithm applicable to large-scale job-shop prétdesmiel Problem
Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, 889R)
Manner and B Manderick (Amsterdam: Elsevier) pp 281-90

Yang J-J and Korfhag R R 1993 Query optimization in information retrieval using genetic algoritPmeg. 5th
Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1968)S Forrest (San Mateo, CA: Morgan
Kaufmann) pp 603-11

Zhang B-T and Mihlenbein H 1993 Genetic programming of minimal neural nets using Occam’s Paaor 5th
Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1968)S Forrest (San Mateo, CA: Morgan
Kaufmann) pp 342-9

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al.29

Possible applications of evolutionary computation

Further reading

This article has provided only a glimpse into the range of applications for evolutionary computing.
series of comprehensive bibliographies has been produycdd Alander of the Department of Information
Technology and Production Economics, University of Vaasa, as listed below.

1. Art and Music: Indexed Bibliography of Genetic Algorithms in Art and MusiReport 94-1-ART
(ftp.uwasa.fi/cs/report94-1/gaARTbib.ps.Z)

2. Chemistry and Physics: Indexed Bibliography of Genetic Algorithms in Chemistry and PhyBiegort 94-1-
CHEMPHYS (ftp.uwasa.fi/cs/report94-1/gaCHEMPHY Shib.ps.Z)

3. Control: Indexed Bibliography of Genetic Algorithms in ControlReport 94-1-CONTROL
(ftp.uwasa.fi/cs/report94-1/gaCONTROLbib.ps.Z)

4. Computer Aided Design: Indexed Bibliography of Genetic Algorithms in Computer Aided DeBigport 94-1-
CAD (ftp.uwasa.fi/cs/report94-1/gaCADbib.ps.Z)

5. Computer Science: Indexed Bibliography of Genetic Algorithms in Computer ScieRaport 94-1-CS
(ftp.uwasa.fi/cs/report94-1/gaCShib.ps.Z)

6. Economics: Indexed Bibliography of Genetic Algorithms in EconomicReport 94-1-ECO
(ftp.uwasa.fi/cs/report94-1/gaECObib.ps.Z)

7. Electronics and VLSI Design and Testing: Indexed Bibliography of Genetic Algorithms in Electronics and VLSI
Design and TestingReport 94-1-VLSI (ftp.uwasa.fi/cs/report94-1/gaVLSIbib.ps.Z)

8. Engineering: Indexed Bibliography of Genetic Algorithms in Engineerin@eport 94-1-ENG
(ftp.uwasa.fi/cs/report94-1/gaENGbib.ps.Z)

9. Fuzzy Systems: Indexed Bibliography of Genetic Algorithms and Fuzzy Syst&mport 94-1-FUZZY
(ftp.uwasa.fi/cs/report94-1/gaFUZZYbib.ps.Z)

10. Logistics: Indexed Bibliography of Genetic Algorithms in LogisticReport 94-1-LOGISTICS
(ftp.uwasa.fi/cs/report94-1/gaLOGISTICSbib.ps.Z)

11. Manufacturing: Indexed Bibliography of Genetic Algorithms in Manufacturirigeport 94-1-MANU
(ftp.uwasa.fi/cs/report94-1/gaMANUbib.ps.Z)

12. Neural Networks: Indexed Bibliography of Genetic Algorithms and Neural NetwoFksport 94-1-NN
(ftp.uwasa.fi/cs/report94-1/gaNNbib.ps.Z)

13. Optimization: Indexed Bibliography of Genetic Algorithms and Optimizati®eport 94-1-OPTIMI
(ftp.uwasa.fi/cs/report94-1/gaOPTIMIbib.ps.Z)

14. Operations Research: Indexed Bibliography of Genetic Algorithms in Operations Rese&eport 94-1-OR
(ftp.uwasa.fi/cs/report94-1/gaORbib.ps.Z)

15. Power Engineering: Indexed Bibliography of Genetic Algorithms in Power Engineeiitgport 94-1-POWER
(ftp.uwasa.fi/cs/report94-1/gaPOWERDbib.ps.Z)

16. Robotics: Indexed Bibliography of Genetic Algorithms in RobotRisport 94-1-ROBO (ftp.uwasa.fi/cs/report94-
1/gaROBObib.ps.z)

17. Signal and Image Processing:Indexed Bibliography of Genetic Algorithms in Signal and Image Processing
Report 94-1-SIGNAL (ftp.uwasa.fi/cs/report94-1/gaSIGNALbib.ps.Z)

A

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al1.2:10

Why Evolutionary Computation?

Al.3 Advantages (and disadvantages) of evolutionary
computation over other approaches

Hans-Paul Schwefel

Abstract

The attractiveness of evolutionary algorithms is obvious from the many successful
applications already and the huge number of publications in the field of evolutionary
computation. Trying to offer hard facts about comparative advantages in general,
however, turns out to be difficult—if not impossible. One reason for this is the so-
called no-free-lunch (NFL) theorem.

A1.3.1 No-free-lunch theorem

Since, according to the no-free-lunch (NFL) theorem (Wolpert and Macready 1996), there cannot exist
any algorithm for solvingall (e.g. optimization) problems that is generally (on average) superior to any
competitor, the question of whether evolutionary algorithms (EAs) are inferior/superior to any alternative
approach is senseless. What could be claimed solely is that EAs behave better than other methods with
respect to solving a specific class of problems—uwith the consequence that they behave worse for other
problem classes.

The NFL theorem can be corroborated in the case of EAs versus many classical optimization methods
insofar as the latter are more efficient in solving linear, quadratic, strongly convex, unimodal, separable,
and many other special problems. On the other hand, EAs do not give up so early when discontinuous,
nondifferentiable, multimodal, noisy, and otherwise unconventional response surfaces are involved. Their
effectiveness (or robustness) thus extends to a broader field of applications, of course with a corresponding
loss in efficiency when applied to the classes of simple problems classical procedures have been specifically
devised for.

Looking into the historical record of procedures devised to solve optimization problems, especially
around the 1960s (see the book by Schwefel (1995)), when a couple of direct optimum-seeking algorithms
were published, for example, in tf@omputer Journala certain pattern of development emerges. Author
A publishes a procedure and demonstrates its suitability by means of tests using some test functions. Next,
author B comes along with a counterexample showing weak performance of A’s algorithm in the case of
a certain test problem. Of course, he also presents a new or modified technique that outperforms the older
one(s) with respect to the additional test problem. This game could in principle be @dyiafinitum

A better means of clarifying the scene ought to result from theory. This should clearly define
the domain of applicability of each algorithm by presenting convergence proofs and efficiency results.
Unfortunately, however, it is possible to prove abilities of algorithms only by simplifying them as well as
the situations to which they are confronted. The huge remainder of questions must be answered by means
of (always limited) test series, and even that cannot tell much about an actual real-world problem-solving
situation with yet unanalyzed features, that is, the normal case in applications.

Again unfortunately, there does not exist an agreed-upon test problem catalogue to evaluate old as
well as new algorithms in a concise way. It is doubtful whether such a test bed will ever be agreed upon,
but efforts in that direction would be worthwhile.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al1.3:1

Advantages (and disadvantages) of evolutionary computation over other approaches

Al1.3.2 Conclusions

Finally, what are the truths and consequences? First, there will always remain a dichotomy between
efficiency and general applicability, between reliability and effort of problem-solving, especially optimum-
seeking, algorithms. Any specific knowledge about the situation at hand may be used to specify an
adequate specific solution algorithm, the optimal situation being that one knows the solution in advance.
On the other hand, there cannot exist one method that solves all problems effectively as well as efficiently.
These goals are contradictory.

If there is already a traditional method that solves a given problem, EAs should not be used. They
cannot do it better or with less computational effort. In particular, they do not offer an escape from the
curse of dimensionality—the often quadratic, cubic, or otherwise polynomial increase in instructions used
as the number of decision variables is increased, arising, for example, from matrix manipulation.

To develop a new solution method suitable for a problem at hand may be a nice challenge to a
theoretician, who will afterwards get some merit for his effort, but from the application point of view the
time for developing the new technique has to be added to the computer time invested. In that respect, a
nonspecialized, robust procedure (and EAs belong to this class) may be, and often proves to be, worthwhile.

A warning should be given about a common practice—the linearization or other decomplexification
of the situation in order to make a traditional method applicable. Even a guaranteed globally optimal
solution for the simplified task may be a long way off and thus largely inferior to an approximate solution
to the real problem.

The best one can say about EAs, therefore, is that they present a methodological framework that is
easy to understand and handle, and is either usable as a black-box method or open to the incorporation of
new or old recipes for further sophistication, specialization or hybridization. They are applicable even in
dynamic situations where the goal or constraints are moving over time or changing, either exogenously or
self-induced, where parameter adjustments and fithess measurements are disturbed, and where the landscape
is rough, discontinuous, multimodal, even fractal or cannot otherwise be handled by traditional methods,
especially those that need global prediction from local surface analysis.

There exist EA versions famultiple criteria decision makingMCDM) and many different parallelcas F1.9
computing architectures. Almost forgotten today is their applicability in experimental (non-computing)
situations.

Sometimes striking is the fact that even obviously wrgragameter settingslo not prevent fairly ex
good results: this certainly can be described as robustness. Not yet well understood, but nevertheless
very successful are those EAs which self-adapt some of their internal parameters, a feature that can be
described as collective learning of the environmental conditions. Nevertheless, even self-adaptation does
not circumvent the NFL theorem.

In this sense, and only in this sense, EAs always present an intermediate compromise; the enthusiasm
of its inventors is not yet taken into account here, nor the insights available from the analysis of the
algorithms for natural evolutionary processes which they try to mimic.

References

Schwefel H-P 199%Fvolution and Optimum Seekirflew York: Wiley)
Wolpett D H and Macreag W G 1996No Free Lunch Theorems for Searthchnical Report SFI-TR-95-02-010 Santa
Fe Institute

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Al1.32

Evolutionary Computation: The Background

A2.1 Principles of evolutionary processes

David B Fogel

Abstract

The principles of evolution are considered. Evolution is seen to be the inevitable outcome
of the interaction of four essential processes: reproduction, competition, mutation, and
selection. Consideration is given to the duality of natural organisms in terms of their
genotypes and phenotypes, as well as to characterizing evolution in terms of adaptive
landscapes.

A2.1.1 Overview

The most widely accepted collection of evolutionary theories is the neo-Darwinian paradigm. These
arguments assert that the vast majority of the history of life can be fully accounted for by physical processes
operating on and within populations and species (Hoffman 1989, p 39). These processes are reproduction,
mutation, competition, and selection. Reproduction is an obvious property of extant species. Further,
species have such great reproductive potential that their population size would increase at an exponential
rate if all individuals of the species were to reproduce successfully (Malthus 1826, Mayr 1982, p. 479).
Reproduction is accomplished through the transfer of an individual’s genetic program (either asexually or
sexually) to progeny. Mutation, in a positively entropic system, is guaranteed, in that replication errors
during information transfer will necessarily occur. Competition is a consequence of expanding populations
in a finite resource space. Selection is the inevitable result of competitive replication as species fill the
available space. Evolution becomes the inescapable result of interacting basic physical statistical processes
(Huxley 1963, Wooldridge 1968, Atmar 1979).

Individuals and species can be viewed as a duality of their genetic prograngetiwype and A2.2.2
their expressed behavioral traits, theenotype The genotype provides a mechanism for the storage of
experiential evidence, of historically acquired information. Unfortunately, the results of genetic variations
are generally unpredictable due to the universal effects of pleiotropy and polygeny (figure A2.1.1) (Mayr
1959, 1963, 1982, 1988, Wright 1931, 1960, Simpson 1949, p 224, Dobzhansky 1970, Stanley 1975,
Dawkins 1986). Pleiotropy is the effect that a single gene may simultaneously affect several phenotypic
traits. Polygeny is the effect that a single phenotypic characteristic may be determined by the simultaneous
interaction of many genes. There are no one-gene, one-trait relationships in naturally evolved systems. The
phenotype varies as a complex, nonlinear function of the interaction between underlying genetic structures
and current environmental conditions. Very different genetic structures may code for equivalent behaviors,
just as diverse computer programs can generate similar functions.

Selection directly acts only on the expressed behaviors of individuals and species (Mayr 1988,
pp 477-8). Wright (1932) offered the concept of adaptive topography to describe the fitness of individuals
and species (minimally, isolated reproductive populations termed demes). A population of genotypes maps
to respective phenotypesgnsuLewontin 1974), which are in turn mapped onto the adaptive topography
(figure A2.1.2). Each peak corresponds to an optimized collection of phenotypes, and thus to one of more
sets of optimized genotypes. Evolution probabilistically proceeds up the slopes of the topography toward
peaks as selection culls inappropriate phenotypic variants.

Others (Atmar 1979, Raven and Johnson 1986, pp 400-1) have suggested that it is more appropriate to
view the adaptive landscape from an inverted position. The peaks become troughs, ‘minimized prediction

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.1:1

Principles of evolutionary processes

GENE GENE PRODUCT CHARACTER

O—@
@—»A% §Z
® u =

=1 =] B [e] [[e] o] o] [=] [¢]

Figure A2.1.1. Pleiotropy is the effect that a single gene may simultaneously affect several phenotypic
traits. Polygeny is the effect that a single phenotypic characteristic may be determined by the simultaneous
interaction of many genes. These one-to-many and many-to-one mappings are pervasive in natural systems.
As a result, even small changes to a single gene may induce a raft of behavioral changes in the individual
(after Mayr 1963).

Figure A2.1.2. Wright's adaptive topography, inverted. An adaptive topography, or adaptive landscape, is
defined to represent the fitness of all possible phenotypes (generated by the interaction between the genotypes
and the environment). Wright (1932) proposed that as selection culls the last appropriate existing behaviors
relative to others in the population, the population advances to areas of higher fitness on the landscape.
Atmar (1979) and others have suggested viewing the topography from an inverted perspective. Populations
advance to areas of lower behavioral error.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.1:2

Principles of evolutionary processes

error entropy wells’ (Atmar 1979). Searching for peaks depicts evolution as a slowly advancing, tedious,

uncertain process. Moreover, there appears to be a certain fragility to an evolving phyletic line; an

optimized population might be expected to quickly fall of the peak under slight perturbations. The inverted

topography leaves an altogether different impression. Populations advance rapidly down the walls of the
error troughs until their cohesive set of interrelated behaviors is optimized, at which point stagnation

occurs. If the topography is generally static, rapid descents will be followed by long periods of stasis. If,

however, the topography is in continual flux, stagnation may never set in.

Viewed in this manner, evolution is an obvious optimizing problem-solving process (not to be confused
with a process that leads to perfection). Selection drives phenotypes as close to the optimum as possible,
given initial conditions and environment constraints. However the environment is continually changing.
Species lag behind, constantly evolving toward a new optimum. No organism should be viewed as being
perfectly adapted to its environment. The suboptimality of behavior is to be expected in any dynamic
environment that mandates tradeoffs between behavioral requirements. However selection never ceases to
operate, regardless of the population’s position on the topography.

Mayr (1988, p 532) has summarized some of the more salient characteristics of the neo-Darwinian
paradigm. These include:

(i) The individual is the primary target of selection.

(i) Genetic variation is largely a chance phenomenon. Stochastic processes play a significant role in
evolution.

(iif) Genotypic variation is largely a product of recombination and ‘only ultimately of mutation’.

(iv) ‘Gradual’ evolution may incorporate phenotypic discontinuities.

(v) Not all phenotypic changes are necessarily consequencas labc natural selection.

(vi) Evolution is a change in adaptation and diversity, not merely a change in gene frequencies.

(vii) Selection is probabilistic, not deterministic.

These characteristics form a framework for evolutionary computation.

References

Atmar W 1979 The inevitability of evolutionary invention, unpublished manuscript

Dawkins R 1986The Blind Watchmake(Oxford: Clarendon)

Dobzhansky T 197@enetics of the Evolutionary Process@éew York: Columbia University Press)

Hoffman A 1989Arguments on Evolution: a Paleontologist’s PerspeciiMew York: Oxford University Press)

Huxley J 1963 The evolutionary proceBsolution as a Processd J Huxley, A C Hardy ahE B Ford (New York:
Collier) pp 9-33

Lewontin R C 1974The Genetic Basis of Evolutionary Chang@dew York: Columbia University Press)

Malthus T R 1826An Essay on the Principle of Population, as it Affects the Future Improvement of S6thegdn
(London: Murray)

Mayr E 1959 Where are weold Spring Harbor Symp. Quant. Bid?4 409-40

——1963 Animal Species and EvolutiofCambridge, MA: Belknap)

——1982The Growth of Biological Thought: Diversity, Evolution and Inheritarf{@ambridge, MA: Belknap)

——1988Toward a New Philosophy of Biology: Observations of an Evolutiof@mbridge, MA: Belknap)

Raven P H and JohnsoG B 1986Biology (St Louis, MO: Times Mirror)

Simpsm G G 1949The Meaning of Evolution: a Study of the History of Life and its Significance for (Maw Haven,
CT: Yale University Press)

Stanley S M 1975 A theory of evolution above the species leéRedc. Natl Acad. Sci. USX2 646-50

Wooldridge D E 1968The Mechanical Man: the Physical Basis of Intelligent L{iéew York: McGraw-Hill)

Wright S 1931 Evolution in Mendelian populatio@enetics16 97-159

——1932 The roles of mutation, inbreeding, crossbreeding, and selection in evddutior6th Int. Congr. on Genetics
(Ithaca, NY)vol 1, pp 356-66

——1960 The evolution of life, panel discussig@volution After Darwin: Issues in Evolutionol 3, ed S Tax and C
Callender (Chicago, IL: University of Chicago Press)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.1:3

Evolutionary Computation: The Background

A2.2 Principles of genetics
Raymond C Paton

Abstract

The purpose of this section is to provide the reader with a general overview of

the biological background to evolutionary computing. This is not a central issue

to understanding how evolutionary algorithms work or how they can be applied.

However, many biological terms have been reapplied in evolutionary computing and

many researchers seek to introduce new ideas from biological sources. It is hoped to
provide valuable background for such readers.

A2.2.1 Introduction

The material covers a number of key areas which are necessary to understanding the nature of the
evolutionary process. We begin by looking at some basic ideas of heredity and how variation occurs
in interbreeding populations. From here we look at the gene in more detail and then consider how it can
undergo change. The next section looks at aspects of population thinking needed to appreciate selection.
This is crucial to an appreciation of Darwinian mechanisms of evolution. The article concludes with
selected references to further information. In order to keep this contribution within its size limits, the
material is primarily about the biology of higher plants and animals.

A2.2.2 Some fundamental concepts in genetics

Many plants and animals are produced through sexual means by which the nucleus of a male sperm cell
fuses with a female egg cell (ovum). Sperm and ovum nuclei each contain a single complement of nuclear
material arranged as ribbon-like structures called chromosomes. When a sperm fuses with an egg the
resulting cell, called a zygote, has a double complement of chromosomes together with the cytoplasm of
the ovum. We say that a single complement of chromosomes constitutes a haploid set (abbrewipted as

Gametogenesis @
n
E § {) Fusion of
* gametes
Development \ -
=D

Figure A2.2.1. A common life cycle model.

(© 1997 I0OP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.2:1

Principles of genetics

and a double complement is called the diploid set)(2Gametes (sex cells) are haploid whereas most
other cells are diploid. The formation of gametes (gametogenesis) requires the number of chromosomes
in the gamete-forming cells to be halved (see figure A2.2.1).

Gametogenesis is achieved through a special type of cell division called meiosis (also called reduction
division). The intricate mechanics of meiosis ensures that gametes contain only one copy of each
chromosome.

A genotype is the genetic constitution that an organism inherits from its parents. In a diploid organism,
half the genotype is inherited from one parent and half from the other. Diploid cells contain two copies of
each chromosome. This rule is not universally true when it comes to the distribution of sex chromosomes.
Human diploid cells contain 46 chromosomes of which there are 22 pairs and an additional two sex
chromosomes. Sex is determined by one pair (called the sex chromosomes); female is X and male is Y.
A female human has the sex chromosome genotype of XX and a male is XY. The inheritance of sex is
summarized in figure A2.2.2. The members of a pair of nonsex chromosomes are said to be homologous
(this is also true for XX genotypes whereas XY are not homologous).

Diploid complement ﬁ
of sex chromosomes X X XYy
Haploid (gamete) compl-
ement of sex chromosomes XorY
Fusion of gametes
Diploid complement
XX XY

of sex chromosomes

Figure A2.2.2. Inheritance of sex chromosomes.

Although humans have been selectively breeding domestic animals and plants for a long time, the
modern study of genetics began in the mid-19th century with the work of Gregor Mendel. Mendel
investigated the inheritance of particular traits in peas. For example, he took plants that had wrinkled
seeds and plants that had round seeds and bred them with plants of the same phenotype (i.e. observable
appearance), so wrinkled were bred with wrinkled and round were bred with round. He continued this
over a number of generations until round always produced round offspring and wrinkled, wrinkled. These
are called pure breeding plants. He then cross-fertilized the plants by breeding rounds with wrinkles. The
subsequent generation (called the F1 hybrids) was all round. Then Mendel crossed the F1 hybrids with
each other and found that the next generation, the F2 hybrids, had round and wrinkled plants in the ratio
of 3 (round) : 1 (wrinkled).

Mendel did this kind of experiment with a humber of pea characteristics such as:

color of cotyledons yellow or green
color of flowers red or white

color of seeds gray/brown or white
length of stem tall or dwarf.

In each case he found that the the F1 hybrids were always of one form and the two forms reappeared
in the F2. Mendel called the form which appeared in the F1 generation dominant and the form which
reappeared in the F2 recessive (for the full text of Mendel's experiments see an older genetics book, such
as that by Sinnotet al (1958)).

A modern interpretation of inheritance depends upon a proper understanding of the nature of a gene
and how the gene is expressed in the phenotype. The nature of a gene is quite complex as we shall
see later (see also Alber&t al 1989, Lewin 1990, Futuyma 1986). For now we shall take it to be the
functional unit of inheritance. An allele (allelomorph) is one of several forms of a gene occupying a given
locus (location) on a chromosome. Originally related to pairs of contrasting characteristics (see examples

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.2:2

Principles of genetics

above), the idea of observable unit characters was introduced to genetics around the turn of this century
by such workers as Bateson, de Vries, and Correns (see Darden 1991). The concept of a gene has tended
to replace allele in general usage although the two terms are not the same.

How can the results of Mendel's experiments be interpreted? We know that each parent plant provides
half the chromosome complement found in its offspring and that chromosomes in the diploid cells are in
pairs of homologues. In the pea experiments pure breeding parents had homologous chromosomes which
were identical for a particular gene; we say they are homozygous for a particular gene. The pure breeding
plants were produced through self-fertilization and by selecting those offspring of the desired phenotype.
As round was dominant to wrinkled we say that the round form of the gene is R (‘big r’) and the wrinkled
r (‘little r'). Figure A2.2.3 summarizes the cross of a pure breeding round (RR) with a pure breeding

wrinkled (rr).
CRR) e - SN
<>

CrRO RO C RO i

~ T
1 2 1

1

Figure A2.2.3. A simple Mendelian experiment.

We see the appearance of the heterozygote (in this case Rr) in the F1 generation. This is phenotypically
the same as the dominant phenotype but genotypically contains both a dominant and a recessive form of
the particular gene under study. Thus when the heterozygotes are randomly crossed with each other
the phenotype ratio is three dominant : one recessive. This is called the monohybrid ratio (i.e. for one
allele). We see in Mendel's experiments the independent segregation of alleles during breeding and their
subsequent independent assortment in offspring.

In the case of two genes we find more phenotypes and genotypes appearing. Consider what happens
when pure breeding homozygotes for round yellow seeds (RRYY) are bred with pure breeding homozygotes
for wrinkled green seeds (rryy). On being crossed we end up with heterozygotes with a genotype of RrYy
and phenotype of round yellow seeds. We have seen that the genes segregate independently during meiosis
so we have the combinations shown in figure A2.2.4.

RrYy

genes segregate
independently

RY Ry rY ry

Figure A2.2.4. Genes segregating independently.

Thus the gametes of the heterozygote can be of four kinds though we assume that each form can occur
with equal frequency. We may examine the possible combinations of gametes for the next generation by
producing a contingency table for possible gamete combinations. These are shown in figure A2.2.5.

We summarize this set of genotype combinations in the phenotype table (figure (&2.2.9he
resulting ratio of phenotypes is called the dihybrid ratio (9:3:3:1). We shall consider one final example in
this very brief summary. When pure breeding red-flowered snapdragons were crossed with pure breeding
white-flowered plants the F1 plants were all pink. When these were selfed the population of offspring was
in the ratio of one red : two pink : one white. This is a case of incomplete dominance in the heterozygote.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.2:3

Principles of genetics

RY Ry rY ry

Ry RRYY | RRYy| RiYY | RrYy

Ry RRYy | RRyy | RrYy Rryy

ry RrY'Y RrYy Yy Yy dominant for both genes (9)

dominant for one gene (3)
dominant for one gene (3)
recessive for both genes (1)

ry RrYy Rryy Yy ITyy

(a) Pattern of Genotypes (b) Pattern of Phenotypes

Figure A2.2.5. Genotype and phenotype patterns in F2.

It has been found that the Mendelian ratios do not always apply in breeding experiments. In some
cases this is because certain genes interact with each other. Epistasis occurs when the expression of one
gene masks the phenotypic effects of another. For example, certain genotypes (cyanogenics) of clover can
resist grazing because they produce low doses of cyanide which makes them unpalatable. Two genes are
involved in cyanide production, one which produces an enzyme which converts a precursor molecule into a
glycoside and another gene which produces an enzyme which converts the glycoside into hydrogen cyanide
(figure A2.2.6a)). If two pure breeding acyanogenic strains are crossed the heterozygote is cyanogenic
(figure A2.2.6D)).

LLhh x IIHH acyanogenic

Gene 1 Gene 2
| | phenotypes
Enzy!e 1 Enzvyme 2 %
Precursor ----> Glycosi de ---- > Cyanide Release LIHh CYanogene
phenotype
(a) Cyanide Production (b) Cyanogenic hybrid

Figure A2.2.6. Cyanogenic clover: cyanide production and cyanogenic hybrid.

When the cyanogenic strain is selfed the genotypes are as summarized in figuréd2.Phére are
only two phenotypes produced, cyanogenic and acyanogenic, as summarized in figurébh2.2.7

So far we have followed Mendel’s laws regarding the independent segregation of genes. This
independent segregation does not occur when genes are located on the same chromosome. During meiosis
homologous chromosomes (i.e. matched pairs one from each parental gamete) move together and are seen
to be joined at the centromere (the clear oval region in figure A2.2.8).

In this simplified diagram we show a set of genes (rectangles) in which those on the top are of the
opposite form to those on the bottom. As the chromosomes are juxtaposed they each are doubled up so

LH Lh 1H lh
11 LILHH | LLHh LIHH LIHh
Lh LILHh | LLhh LIHh Llhh
IH| LIHH LIHh 1THH 1THh EEE Cyanogenic
lh | LHh | Lhh | lHh Ilhh] Non cyanogenic
(a) Genotype patterns (b) Phenotype patterns

Figure A2.2.7. Epistasis in clover: genotype and phenotype patterns.

(© 1997 I0OP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.2:4

Principles of genetics

IO s

Figure A2.2.9. Crossing over in a tetrad.

that four strands (usually called chromatids) are aligned. The close proximity of the inner two chromatids
and the presence of enzymes in the cellular environment can result in breakages and recombinations of
these strands as summarized in figure A2.2.9.

The result is that of the four juxtaposed strands two are the same as the parental chromosomes and
two, called the recombinants, are different. This crossover process mixes up the genes with respect to
original parental chromosomes. The chromosomes which make up a haploid gamete will be a random
mixture of parental and recombinant forms. This increases the variability between parents and offspring
and reduces the chance of harmful recessives becoming homozygous.

A2.2.3 The gene in more detail

Genes are located on chromosomes. Chromosomes segregate independently during meiosis whereas genes
can be linked on the same chromosome. The conceptual reasons why there has been confusion are
the differences in understanding about gene and chromosome such as which is the unit of heredity (see
Darden 1991). The discovery of the physicochemical nature of hereditary material culminated in the
Watson—Crick model in 1953 (see figure A2.2.10). The coding parts of the deoxyribonucleic acid (DNA)

are called bases; there are four types (adenine, thymine, cytosine, and guanine). They are strung along a
sugar-and-phosphate string, which is arranged as a helix. Two intertwined strings then form the double
helix. The functional unit of this code is a triplet of bases which can code for a single amino acid. The
genes are located along the DNA strand.

~., i
The chromosome contains a highly
supercoiled complex of chromatin.
Chromatin is composed of DNA
wrapped around a histone core.

The DNA is further supercoiled.

When the DNA is ultimately uncoiled
we end up with a double helical coil of
two complementary helices held
together by weak chemical bonds.

XX

Figure A2.2.10. Idealization of the organization of chromosomes in a eukaryotic cell. (A eukaryotic cell
has an organized nucleus and cytoplasmic organelles.)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.25

Principles of genetics

Transcription is the synthesis of ribonucleic acid (RNA) using the DNA template. It is a preliminary
step in the ultimate synthesis of protein. A gene can be transcribed through the action of enzymes and
a chain of transcript is formed as a polymer called messenger RNA (mRNA). This mRNA can then be
translated into protein. The translation process converts the mRNA code into a protein sequence via
another form of RNA called transfer RNA (tRNA). In this way, genes are transcribed so that mMRNA may
be produced, from which protein molecules (typically the ‘workhorses’ and structural molecules of a cell)
can be formed. This flow of information is generally unidirectional. (For more details on this topic the
reader should consult a molecular biology text and look at the central dogma of molecular biology, see
e.g. Lewin 1990, Albertet al 1989.)

Figure A2.2.11 provides a simplified view of the anatomy of a structural gene, that is, one which
codes for a protein or RNA.

exons introns

promoter

operator terminator
enhancer

1= BN

Figure A2.2.11. A simplified diagram of a structural gene.

That part of the gene which ultimately codes for protein or RNA is preceded upstream by three
stretches of code. The enhancer facilitates the operation of the promoter region, which is where RNA
polymerase is bound to the gene in order to initiate transcription. The operator is the site where transcription
can be halted by the presence of a repressor protein. Exons are expressed in the final gene product (e.g.
the protein molecule) whereas introns are transcribed but are removed from the transcript leaving the
fragments of exon material to be spliced. One stretch of DNA may consist of several overlapping genes.
For example, the introns in one gene may be the exons in another (Lewin 1990). The terminator is the
postexon region of the gene which causes transcription to be terminated. Thus a biological gene contains
not only code to be read but also coded instructions on how it should be read and what should be read.
Genes are highly organized. An operon system is located on one chromosome and consists of a regulator
gene and a number of contiguous structural genes which share the same promoter and terminator and code
for enzymes which are involved in specific metabolic pathways (the classical example is the Lac operon,
see figure A2.2.12).

gene 1 gene 2 gene 3

T

regulator

operator

promoter

terminator

Figure A2.2.12. A visualization of an operon.

Operons can be grouped together into higher-order (hierarchical) regulatory genetic systems (Neidhart
et al 1990). For example, a number of operons from different chromosomes may be regulated by a single
gene known as a regulon. These higher-order systems provide a great challenge for change in a genome.
Modification of the higher-order gene can have profound effects on the expression of structural genes that
are under its influence.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.2:6

Principles of genetics

A2.2.4 Options for change

We have already seen how sexual reproduction can mix up the genes which are incorporated in a gamete
through the random reassortment of paternal and maternal chromosomes and through crossing over and
recombination. Effectively though, the gamete acquires a subset of the same genes as the diploid gamete-
producing cells; they are just mixed up. Clearly, any zygote that is produced will have a mixture of genes
and (possibly) some chromosomes which have both paternal and maternal genes.

There are other mechanisms of change which alter the genes themselves or change the number of
genes present in a genome. We shall describe a mutation as any change in the sequence of genomic
DNA. Gene mutations are of two types: point mutation, in which a single base is changed, and frameshift
mutation, in which one or more bases (but not a multiple of three) are inserted or deleted. This changes
the frame in which triplets are transcribed into RNA and ultimately translated into protein. In addition
some genes are able to become transposed elsewhere in a genome. They ‘jump’ about and are called
transposons. Chromosome changes can be caused by deletion (loss of a section), duplication (the section
is repeated), inversion (the section is in the reverse order), and translocation (the section has been relocated
elsewhere). There are also changes at the genome level. Ploidy is the term used to describe multiples of
a chromosome complement such as hapleid diploid (2z), and tetraploid (4). A good example of the
influence of ploidy on evolution is among such crops as wheat and cotton. Somy describes changes to the
frequency of particular chromosomes: for example, trisomy is three copies of a chromosome.

A2.2.5 Population thinking

So far we have focused on how genes are inherited and how they or their combinations can change. In
order to understandvolutionary processaese must shift our attention to looking at populations (we sha?1

not emphasize too much whether of genes, chromosomes, genomes, or organisms). Population thinking is
central to our understanding of models of evolution.

The Hardy—Weinberg theorem applies to frequencies of genes and genotypes in a population of
individuals, and states that the relative frequency of each gene remains in equilibrium from one generation
to the next. For a single allele, if the frequency of one fornp ithen that of the other (say) is 1— p.

The three genotypes that exist with this allele have the population proportions of

p’+2pg+q°=1

This equation does not apply when a mixture of four factors changes the relative frequencies of genes in
a population: mutation, selection, gene flow, and random genetic drift (drift). Drift can be described as
the effect of the sampling of a population on its parents. Each generation can be thought of as a sample
of its parents’ population. In that the current population is a sample of its parents, we acknowledge that
a statistical sampling error should be associated with gene frequencies. The effect will be small in large
populations because the relative proportion of random changes will be a very small component of the large
numbers. However, drift in a small population will have a marked effect.

One factor which can counteract the effect of drift is differential migration of individuals between
populations which leads to gene flow. Several models of gene flow exist. For example, migration which
occurs at random among a group of small populations is calleisiéwed modelwhereas in thestepping ce.3
stonemodel each population receives migrants only from neighboring populations. Mutation, selection,
and gene flow are deterministic factors so that if fithess, mutation rate, and rate of gene flow are the same
for a number of populations that begin with same gene frequencies, they will attain the same equilibrium
composition. Drift is a stochastic process because the sampling effect on the parent population is random.

Sewall Wright introduced the idea of aadaptive landscapéo explain how a population’s allele2.7
frequencies might evolve over time. The peaks on the landscape represent genetic compositions of a
population for which the mean fitness is high and troughs are possible compositions where the mean
fithness is low. As gene frequencies change and mean fitness increases the population moves uphill. Indeed,
selection will operate to increase mean fithess so, on a multipeaked landscape, selection may operate to
move populations to local maxima. On a fixed landscape drift and selection can act together so that
populations may move uphill (through selection) or downhill (through drift). This means that the global
maximum for the landscape could be reached. These ideas are formally encapsulated in Wright's (1968—
1978) shifting balance theoryf evolution. Further information on the relation of population genetics to

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.27

Principles of genetics

evolutionary theory can be studied further in the books by Wright (1968-1978), Crow and Kimura (1970)
and Maynard Smith (1989).

The change of gene frequencies coupled with changes in the genes themselves can lead to the
emergence of new species although the process is far from simple and not fully understood (Futuyma,
1986, Maynard Smith 1993). The nature of the species concept or (for some) concepts which is central to
Darwinism is complicated and will not be discussed here (see e.g. Futuyma 1986). Several mechanisms
apply to promote speciation (Maynard Smith 1993): geographical or spatial isolation, barriers preventing
formation of hybrids, nonviable hybrids, hybrid infertility, and hybrid breakdown—in which post-F1
generations are weak or infertile.

Selectionist theories emphasize invariant properties of the system: the system is an internal generator
of variations (Changeux and Dehaene 1989) and diversity among units of the population exists prior to
any testing (Manderick 1994). We have seen how section operates to optimize fitness. Darden and Cain
(1987) summarize a number of common elements in selectionist theories as follows:

a set of a given entity type (i.e. the units of the population)

a particular property P) according to which members of this set vary

an environment in which the entity type is found

a factor in the environment to which members react differentially due to their possession or

nonpossession of the propeity)

e differential benefits (both shorter and longer term) according to the possession or nonpossession of
the property(P).

This scheme summarizes the selectionist approach. In addition, Maynard Smith (1989) discusses a
number of selection systems (particular relevant to animals) including sexual, habitat, family, kin, group,
and synergistic (cooperation). A very helpful overview of this area of ecology, behavior, and evolution
is that by Sigmund (1993). Three selectionist systems in the biosciences are the neo-Darwinian theory of
evolution in a population, clonal selection theory applied to the immune system, and the theory of neuronal
group selection (for an excellent summary with plenty of references see that by Manderick (1994)).

There are many important aspects of evolutionary biology which have had to be omitted because of
lack of space. The relevance of neutral molecular evolution theory (Kimura 1983) and nonselectionist
approaches (see e.g. Goodwin and Saunders 1989, Lima de Faria 1988, Kauffman 1993) has not been
discussed. In addition some important ideas have not been considered, such as evolutionary game theory
(Maynard Smith 1989, Sigmund 1993), the role of sex (see e.g. Hangltah 1990), the evolution of
cooperation (Axelrod 1984), the red queen (Van Valen 1973, Maynard Smith 1989), structured genomes,
for example, incorporation of regulatory hierarchies (Kauffman 1993, Beaumont 1993, &trke
1993), experiments with endosymbiotic systems (Margulis and Foster 1991, Hilario and Gogarten 1993),
coevolving parasite populations (see e.g. Collins 1994; for a biological critique and further applications
see Sumida and Hamilton 1994), inheritance of acquired characteristics (Landman 1991), and genomic
imprinting and other epigenetic inheritance systems (for a review see Paton 1994). There are also
considerable philosophical issues which must be addressed in this area which impinge on how biological
sources are applied to evolutionary computing (see Sober 1984). Not least among these is the nature of
adaptation.

References

Alberts B, Bray D, Lewis J, Raff M, Roberts K and Watson J D 1988lecular Biology of the Cell(New York:
Garland)

Axelrod R 1984The Evolution of Co-operatiofHarmondsworth: Penguin)

Beaumon M A 1993 Evolution of optimal behaviour in networks of Boolean autondat@heor. Biol.165 455-76

Changeux J-P and Dehaene S 1989 Neuronal models of cognitive funGammstion 33 63-109

Clarke B, Mittenth&J E and Senn M 1993 A model for the evolution of networks of geh&$heor. Biol.165269-89

Collins R 1994 Artificial evolution and the paradox of s@omputing with Biological Metaphored R C Paton
(London: Chapman and Hall)

Crow J F and Kimura M 197@n Introduction to Population Genetics Theofiew York: Harper and Row)

Darden L 1991Theory Change in Scieng®lew York: Oxford University Press)

Darden L and Cai J A 1987 Selection type theori&hil. Sci.56 106—29

Futuyma D J 1986Evolutionary Biology(MA: Sinauer)

Goodwin B C and SaunderP T (eds) 198 heoretical Biology: Epigenetic and Evolutionary Order from Complex
SystemgEdinburgh: Edinburgh University Press)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.2:8

Principles of genetics

Hamilton W D, Axelrod A and Tanese R 1990 Sexual reproduction as an adaptation to resist p&nasitddatl
Acad. Sci. USM7 3566—73

Hilario E and Gogarte J P 1993 Horizontal transfer of ATPase genes—the tree of life becomes a netBibHigstems
31111-9

Kauffman S A 1993The Origins of Order(New York: Oxford University Press)

Kimura, M 1983The Neutral Theory of Molecular EvolutiofCambridge: Cambridge University Press)

Landman O E 1991 The inheritance of acquired characteristion. Rev. GeneR5 1-20

Lewin B 1990Genes IV (Oxford: Oxford University Press)

Lima de Faria A 198&volution without SelectiofAmsterdam: Elsevier)

Margulis L and Foster R (eds) 19%8lymbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis
(Cambridge, MA: MIT Press)

Manderick B 1994 The importance of selectionist systems for cogn@iemputing with Biological Metaphored R
C Paton (London: Chapman and Hall)

Maynard Smith J 198&volutionary Genetic§Oxford: Oxford University Press)

——1993The Theory of Evolutioil€anto edn (Cambridge: Cambridge University Press)

Neidhart F C, Ingraha J L and Schaechter M 19%hysiology of the Bacterial Ce(Sunderland, MA: Sinauer)

Patm R C 1994 Enhancing evolutionary computation using analogues of biological mechaBisshgionary
Computing (Lecture Notes in Computer Science &85 C Fogarty (Berlin: Springer) pp 51-64

Sigmund K 1993Games of Life(Oxford: Oxford University Press)

Sinnott E W, Dum L C and Dobzhansky T 195Brinciples of Genetic§New York: McGraw-Hill)

Sober E 1984The Nature of Selection: Evolutionary Theory in Philosophical Fo¢@hicago, IL: University of
Chicago Press)

Sumida B and Hamilton W D 1994 Both Wrightian and ‘parasite’ peak shifts enhance genetic algorithm performance
in the travelling salesman proble@omputing with Biological Metaphored R C Paton (London: Chapman and
Hall)

Van Valen L 1973 A new evolutionary lavolutionary Theoryl 1-30

Wright S 1968-197&volution and the Genetics of Population®ls 1-4 (Chicago, IL: Chicago University Press)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.29

Evolutionary Computation: The Background

A2.3 A history of evolutionary computation
Kenneth De Jong, David B Fogel and Hans-Paul Schwefel

Abstract

This section presents a brief but comprehensive summary of the history of evolutionary
computation, starting with the ground-breaking work of the 1950s, tracing the rise and
development of the three primary forms of evolutionary algorithms (evolution strategies,
evolutionary programming and genetic algorithms), and concluding with the present time,
in which a more unified view of the field is emerging.

A2.3.1 Introduction

No one will ever produce a completely accurate account of a set of past events since, as someone once
pointed out, writing history is as difficult as forecasting. Thus we dare to begin our historical summary of
evolutionary computation rather arbitrarily at a stage as recent as the mid-1950s.

At that time there was already evidence of the use of digital computer models to better understand
the natural process of evolution. One of the first descriptions of the use of an evolutionary process for
computer problem solving appeared in the articles by Friedberg (1958) and Friextkadr(1959). This
represented some of the early work in machine learning and described the use of an evolutionary algorithm
for automatic programming.e. the task of finding a program that calculates a given input—output function.
Other founders in the field remember a paper of Fraser (1957) that influenced their early work, and there
may be many more such forerunners depending on whom one asks.

In the same time frame Bremermann presented some of the first attempts to apply simulated evolution
to numerical optimization problems involving both linear and convex optimization as well as the solution
of nonlinear simultaneous equations (Bremermann 1962). Bremermann also developed some of the early
evolutionary algorithm (EA) theory, showing that the optimal mutation probability for linearly separable
problems should have the value of¢lin the case of¢ bits encoding an individual (Bremermar al
1965).

Also during this period Box developed h&volutionary operationEVOP) ideas which involved
an evolutionary technique for the design and analysis of (industrial) experiments (Box 1957, Box and
Draper 1969). Box’s ideas were never realized as a computer algorithm, although Spetrall¢$962)
used them as the basis for their so-cakbédplex desigmethod. It is interesting to note that the REVOP
proposal (Satterthwaite 1959a, b) introducing randomness into the EVOP operations was rejected at that
time.

As is the case with many ground-breaking efforts, these early studies were met with considerable
skepticism. However, by the mid-1960s the bases for what we today identify as the three main forms of
EA were clearly established. The rootsefolutionary programmingEP) were laid by Lawrence Fogegi.4
in San Diego, California (Fogett al 1966) and those ofienetic algorithmqGAs) were developed ati.2
the University of Michigan in Ann Arbor by Holland (1967). On the other side of the Atlantic Ocean,
evolution strategie$ESs) were a joint development of a group of three students, Bienert, Rechenbergi.and
Schwefel, in Berlin (Rechenberg 1965).

Over the next 25 years each of these branches developed quite independently of each other, resulting
in unique parallel histories which are described in more detail in the following sections. However, in
1990 there was an organized effort to provide a forum for interaction among the various EA research

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.311

A history of evolutionary computation

communities. This took the form of an international workshop entiffedallel Problem Solving from
Nature at Dortmund (Schwefel and &hner 1991).

Since that event the interaction and cooperation among EA researchers from around the world has
continued to grow. In the subsequent years special efforts were made by the organife@GAS1
(Belew and Booker 1991EP’92 (Fogel and Atmar 1992), andPSN’'92 (Manner and Manderick 1992)
to provide additional opportunities for interaction.

This increased interaction led to a consensus for the name of this newefieldtionary computation
(EC), and the establishment in 1993 of a journal by the same name published by MIT Press. The increasing
interest in EC was further indicated by tHeEE World Congress on Computational Intelligence (WCCI)
at Orlando, Florida, in June 1994 (Michalewiet al 1994), in which one of the three simultaneous
conferences was dedicated to EC along with conferences on neural networks and fuzzy systems. The
dramatic growth of interest provided additional evidence for the need of an organized EC handbook
(which you are now reading) to provide a more cohesive view of the field.

That brings us to the present in which the continued growth of the field is reflected by the many
EC events and related activities each year, and its growing maturity reflected by the increasing number of
books and articles about EC.

In order to keep this overview brief, we have deliberately suppressed many of the details of the
historical developments within each of the three main EC streams. For the interested reader these details
are presented in the following sections.

A2.3.2 Evolutionary programming

Evolutionary programming (EP) was devised by Lawrence J Fogel in 1960 while serving at the National
Science Foundation (NSF). Fogel was on leave from Convair, tasked as special assistant to the associate
director (research), Dr Richard Bolt, to study and write a report on investing in basic research. Atrtificial
intelligence at the time was mainly concentrated around heuristics and the simulation of primitive neural
networks. It was clear to Fogel that both these approaches were limited because they model humans rather
than the essential process that produces creatures of increasing intellect: evolution. Fogel considered
intelligence to be based on adapting behavior to meet goals in a range of environments. In turn, prediction
was viewed as the key ingredient to intelligent behavior and this suggested a series of experiments on the
use of simulated evolution dfnite-state machineto forecast nonstationary time series with respectcis
arbitrary criteria. These and other experiments were documented in a series of publications (Fogel 1962,
1964, Fogekt al 1965, 1966, and many others).

Intelligent behavior was viewed as requiring the composite ability to (i) predict one’s environment,
coupled with (ii) a translation of the predictions into a suitable response in light of the given goal. For the
sake of generality, the environment was described as a sequence of symbols taken from a finite alphabet.
The evolutionary problem was defined as evolving an algorithm (essentially a program) that would operate
on the sequence of symbols thus far observed in such a manner so as to produce an output symbol
that is likely to maximize the algorithm’s performance in light of both the next symbol to appear in the
environment and a well-defined payoff function. Finite-state machines provided a useful representation
for the required behavior.

The proposal was as follows. A population of finite-state machines is exposed to the environment, that
is, the sequence of symbols that have been observed up to the current time. For each parent machine, as
each input symbol is offered to the machine, each output symbol is compared with the next input symbol.
The worth of this prediction is then measured with respect to the payoff function (e.g. all-none, absolute
error, squared error, or any other expression of the meaning of the symbols). After the last prediction is
made, a function of the payoff for each symbol (e.g. average payoff per symbol) indicates the fitness of
the machine.

Offspring machines are created by randomly mutating each parent machine. Each parent produces
offspring (this was originally implemented as only a single offspring simply for convenience). There are
five possible modes of random mutation that naturally result from the description of the machine: change
an output symbol, change a state transition, add a state, delete a state, or change the initial state. The
deletion of a state and change of the initial state are only allowed when the parent machine has more
than one state. Mutations are chosen with respect to a probability distribution, which is typically uniform.
The number of mutations per offspring is also chosen with respect to a probability distribution or may be
fixed a priori. These offspring are then evaluated over the existing environment in the same manner as

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.32

A history of evolutionary computation

their parents. Other mutations, such as majority logic mating operating on three or more machines, were
proposed by Fogett al (1966) but not implemented.

The machines that provide the greatest payoff are retained to become parents of the next generation.
(Typically, half the total machines were saved so that the parent population remained at a constant
size.) This process is iterated until an actual prediction of the next symbol (as yet unexperienced) in
the environment is required. The best machine generates this prediction, the new symbol is added to
the experienced environment, and the process is repeated. Fogel (1964) (anetRaig@l966)) used
‘nonregressive’ evolution. To be retained, a machine had to rank in the best half of the population. Saving
lesser-adapted machines was discussed as a possibility (@oglel 966, p 21) but not incorporated.

This general procedure was successfully applied to problems in prediction, identification, and
automatic control (Fogekt al 1964, 1966, Fogel 1968) and was extended to simulate coevolving
populations by Fogel and Burgin (1969). Additional experiments evolving finite-state machines
for sequence prediction, pattern recognition, and gaming can be found in the work of Lutter and
Huntsinger (1969), Burgin (1969), Atmar (1976), Dearholt (1976), and Takeuchi (1980).

In the mid-1980s the general EP procedure was extended to alternative representations including
ordered lists for the traveling salesman problem (Fogel and Fogel 1986), and real-valued vectors for
continuous function optimization (Fogel and Fogel 1986). This led to other applications in route planning
(Fogel 1988, Fogel and Fogel 1988), optimal subset selection (Fogel 1989), and training neural networks
(Fogelet al 1990), as well as comparisons to other methodsrafilated evolutiofFogel and Atmar 1990).F1.10
Methods for extending evolutionary search to a two-step process including evolution of the mutation
variance were offered by Foget al (1991, 1992). Just as the proper choice of step sizes is a crucial part
of every numerical process, including optimization, the internal adaptation of the mutation variance(s) is of
utmost importance for the algorithm’s efficiency. This process is calédadaptationor autoadaptationc7.1
in the case of no explicit control mechanism, e.g. if the variances are part of the individuals’ characteristics
and underlie probabilistic variation in a similar way as do the ordinary decision variables.

In the early 1990s efforts were made to organize annual conferences on EP, these leading to the
first conference in 1992 (Fogel and Atmar 1992). This conference offered a variety of optimization
applications of EP in robotics (McDonnedt al 1992, Anderseret al 1992), path planning (Larsen and
Herman 1992, Paget al 1992),neural network design and trainin@ebald and Fogel 1992, Porto 19951
McDonnell 1992),automatic control(Sebaldet al 1992), and other fields. F1.3

First contacts were made between the EP and ES communities just before this conference, and the
similar but independent paths that these two approaches had taken to simulating the process of evolution
were clearly apparent. Members of the ES community have participated in all successive EP conferences
(Back et al 1993, Sprave 1994, &k and Sciitz 1995, Fogelet al 1996). There is less similarity
between EP and GAs, as the latter emphasize simulating specific mechanisms that apply to natural genetic
systems whereas EP emphasizes the behavioral, rather than genetic, relationships between parents and their
offspring. Members of the GA and GP communities have, however, also been invited to participate in
the annual conferences, making for truly interdisciplinary interaction (see e.g. Altenberg 1994, Land and
Belew 1995, Koza and Andre 1996).

Since the early 1990s, efforts in EP have diversified in many directions. Applications in training neural
networks have received considerable attention (see e.g. English 1994, Angletihd994, McDonnell
and Waagen 1994, Portt al 1995), while relatively less attention has been devoted to evolftingy b2
systemgHaffner and Sebald 1993, Kim and Jeon 1996). Image processing applications can be found in
the articles by Bhattacharjya and Roysam (1994), Brotheztal (1994), Rizkiet al (1995), and others.
Recent efforts to use EP in medicine have been offered by Faigedl(1995) and Gehlhaast al (1995).

Efforts studying and comparing methods of self-adaptation can be found in the articles by Samtvanan
al (1995), Angelineet al (1996), and others. Mathematical analyses of EP have been summarized by
Fogel (1995).

To offer a summary, the initial effortsfd. J Fogel indicate some of the early attempts to (i) use
simulated evolution to perform prediction, (ii) include variable-length encodings, (iii) use representations
that take the form of a sequence of instructions, (iv) incorporate a population of candidate solutions, and
(v) coevolve evolutionary programs. Moreover, Fogel (1963, 1964) and Fedgal (1966) offered the
early recognition that natural evolution and the human endeavor of the scientific method are essentially
similar processes, a notion recently echoed by Gell-Mann (1994). The initial prescriptions for operating
on finite-state machines have been extended to arbitrary representations, mutation operators, and selection
methods, and techniques for self-adapting the evolutionary search have been proposed and implemented.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.3:3

A history of evolutionary computation

The population size need not be kept constant and there can be a variable number of offspring per
parent, much like théx + 1) methodsoffered in ESs. In contrast to these methods, selection is oftesu
made probabilistic in EP, giving lesser-scoring solutions some probability of surviving as parents into the
next generation. In contrast to GAs, no effort is made in EP to support (some say maxéctizeha 2.5
processing nor is the use of random variation constrained to emphasize specific mechanisms of genetic
transfer, perhaps providing greater versatility to tackle specific problem domains that are unsuitable for
genetic operators such as crossover.

A2.3.3 Genetic algorithms

The first glimpses of the ideas underlying genetic algorithms (GAs) are found in Holland’'s papers in
the early 1960s (see e.g. Holland 1962). In them Holland set out a broad and ambitious agenda for
understanding the underlying principles of adaptive systems—systems that are capable of self-modification
in response to their interactions with the environments in which they must function. Such a theory of
adaptive systems should facilitate both the understanding of complex forms of adaptation as they appear
in natural systems and our ability to design robust adaptive artifacts.

In Holland’s view the key feature of robust natural adaptive systems was the successful use of
competition and innovation to provide the ability to dynamically respond to unanticipated events and
changing environments. Simple models of biological evolution were seen to capture these ideas nicely via
notions of survival of the fittest and the continuous production of new offspring.

This theme of using evolutionary models both to understand natural adaptive systems and to design
robust adaptive artifacts gave Holland’'s work a somewhat different focus than those of other contemporary
groups that were exploring the use of evolutionary models in the design of efficient experimental
optimization techniques (Rechenberg 1965) or for the evolution of intelligent agents @toalel966),
as reported in the previous section.

By the mid-1960s Holland’s ideas began to take on various computational forms as reflected by the
PhD students working with Holland. From the outset these systems had a distinct ‘genetic’ flavor to
them in the sense that the objects to be evolved over time were represented internally as ‘genomes’ and
the mechanisms of reproduction and inheritance were simple abstractions of familiar population genetics
operators such as mutation, crossover, and inversion.

Bagley’s thesis (Bagley 1967) involved tuning sets of weights used in the evaluation functions of
game-playing programs, and represents some of the earliest experimental work in the use of diploid
representations, the role of inversion, and selection mechanisms. By contrast Rosenberg’s thesis (Rosenberg
1967) has a very distinct flavor of simulating the evolution of a simple biochemical system in which
single-celled organisms capable of producing enzymes were represented in diploid fashion and were
evolved over time to produce appropriate chemical concentrations. Of interest here is some of the earliest
experimentation with adaptive crossover operators.

Cavicchio’s thesis (Cavicchio 1970) focused on viewing these ideas as a form of adaptive search,
and tested them experimentally on difficult search problems involving subroutine selection and pattern
recognition. In his work we see some of the early studieselitist forms of selection and ideas fot2.7.4
adapting the rates of crossover and mutation. Hollstien’s thesis (Hollstien 1971) took the first detailed
look at alternate selection and mating schemes. Using a test suite of two-dimeffisi@ss landscapess2.7.4
he experimented with a variety of breeding strategies drawn from techniques used by animal breeders.
Also of interest here is Hollstien’s use of binary string encodings of the genome and early observations
about the virtues of Gray codings.

In parallel with these experimental studies, Holland continued to work on a general theory of adaptive
systems (Holland 1967). During this period he developed his now famsclusma analysisf adaptive B2.5
systems, relating it to the optimal allocation of trials usingrmed bandit models (Holland 1969). He
used these ideas to develop a more theoretical analysis ogrisductive plangsimple GAs) (Holland
1971, 1973). Holland then pulled all of these ideas together in his pivotal Adaktation in Natural and
Artificial SystemqHolland 1975).

Of interest was the fact that many of the desirable properties of these algorithms being identified
by Holland theoretically were frequently not observed experimentally. It was not difficult to identify the
reasons for this. Hampered by a lack of computational resources and analysis tools, most of the early
experimental studies involved a relatively small number of runs using small population sizes (generally

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.34

A history of evolutionary computation

less than 20). It became increasingly clear that many of the observed deviations from expected behavior
could be traced to the well-known phenomenon in population genetigsradtic drift,the loss of genetic
diversity due to the stochastic aspects of selection, reproduction, and the like in small populations.

By the early 1970s there was considerable interest in understanding better the behavior of
implementable GAs. In particular, it was clear that choices of population size, representation issues, the
choice of operators and operator rates all had significant effects of the observed behavior of GAs. Frantz’'s
thesis (Frantz 1972) reflected this new focus by studying in detail the roles of crossover and inversion in
populations of size 100. Of interest here is some of the earliest experimental work on multipoint crossover
operators.

De Jong’s thesis (De Jong 1975) broaded this line of study by analyzing both theoretically and
experimentally the interacting effects of population size, crossover, and mutation on the behavior of a
family of GAs being used to optimize a fixed test suite of functions. Out of this study came a strong sense
that even these simple GAs had significant potential for solving difficult optimization problems.

The mid-1970s also represented a branching out of the family tree of GAs as other universities
and research laboratories established research activities in this area. This happened slowly at first since
initial attempts to spread the word about the progress being made in GAs were met with fairly negative
perceptions from the artificial intelligence (Al) community as a result of early overhyped work in areas
such as self-organizing systems and perceptrons.

Undaunted, groups from several universities including the University of Michigan, the University of
Pittsburgh, and the University of Alberta organized/fsdaptive Systems Workshopthe summer of 1976
in Ann Arbor, Michigan. About 20 people attended and agreed to meet again the following summer.
This pattern repeated itself for several years, but by 1979 the organizers felt the need to broaden the
scope and make things a little more formal. Holland, De Jong, and Sampson obtained NSF funding for
An Interdisciplinary Workshop in Adaptive Systemvkjch was held at the University of Michigan in the
summer of 1981 (Sampson 1981).

By this time there were several established research groups working on GAs. At the University of
Michigan, Bethke, Goldberg, and Booker were continuing to develop GAs and explore Holidesbdier B1.5.2
systemsas part of their PhD research (Bethke 1981, Booker 1982, Goldberg 1983). At the University of
Pittsburgh, Smith and Wetzel were working with De Jong on various GA enhancements includRit the
approachto rule learning (Smith 1980, Wetzel 1983). At the University of Alberta, Brindle continued to
look at optimization applications of GAs under the direction of Sampson (Brindle 1981).

The continued growth of interest in GAs led to a series of discussions and plans to hold the first
International Conference on Genetic Algorithms (IC@APittsburgh, Pennsylvania, in 1985. There were
about 75 participants presenting and discussing a wide range of new developments in both the theory and
application of GAs (Grefenstette 1985). The overwhelming success of this meeting resulted in agreement
to continuel CGA as a biannual conference. Also agreed upd&A’'85 was the initiation of a moderated
electronic discussion group call&siA List.

The field continued to grow and mature as reflected by tB&A conference activities
(Grefenstette 1987, Schaffer 1989) and the appearance of several books on the subject (Davis 1987,
Goldberg 1989). Goldberg’s book, in particular, served as a significant catalyst by presenting current GA
theory and applications in a clear and precise form easily understood by a broad audience of scientists and
engineers.

By 1989 thelCGA conference and other GA-related activities had grown to a point that some more
formal mechanisms were needed. The result was the formation of the International Society for Genetic
Algorithms (ISGA), an incorporated body whose purpose is to serve as a vehicle for conference funding
and to help coordinate and facilitate GA-related activities. One of its first acts of business was to support
a proposal to hold a theory workshop on fheundations of Genetic Algorithms (FOGH) Bloomington,

Indiana (Rawlins 1991).

By this time nonstandard GAs were being developed to evolve complex, nonlinear variable-length
structures such as rule sets, LISP code, and neural networks. One of the motivatiB@3Amwas the
sense that the growth of GA-based applications had driven the field well beyond the capacity of existing
theory to provide effective analyses and predictions.

Also in 1990, Schwefel hosted the fiBPSN conference in Dortmund, which resulted in the first
organized interaction between the ES and GA communities. This led to additional interad@®Ai01
in San Diego which resulted in an informal agreement to h6IBA and PPSN in alternating years, and
a commitment to jointly initiate a journal for the field.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.35

A history of evolutionary computation

It was felt that in order for the journal to be successful, it must have broad scope and include other
species of EA. Efforts were made to include the EP community as well (which began to organize its own
conferences in 1992), and the new jourRablutionary Computatiomvas born with the inaugural issue in
the spring of 1993.

The period from 1990 to the present has been characterized by tremendous growth and diversity of
the GA community as reflected by the many conference activities I@@A and FOGA), the emergence
of new books on GAs, and a growing list of journal papers. New paradigms sunkssy GA§Goldberg ca.2.4
et al 1991) andgenetic programmindKoza 1992) were being developed. The interactions with otiues.1
EC communities resulted in considerable crossbreeding of ideas and many new hybrid EAs. New GA
applications continue to be developed, spanning a wide range of problem areas from engineering design
problems to operations research problems to automatic programming.

A2.3.4 Evolution strategies

In 1964, three students of the Technical University of Berlin, Bienert, Rechenberg, and Schwefel, did not at
all aim at devising a new kind of optimization procedure. During their studies of aerotechnology and space
technology they met at an Institute of Fluid Mechanics and wanted to construct a kind of research robot
that should perform series of experiments on a flexible slender three-dimensional body in a wind tunnel
so as to minimize its drag. The method of minimization was planned to be either a one variable at a time
or a discrete gradient technique, gleaned from classical numerics. Both strategies, performed manually,
failed, however. They became stuck prematurely when used for a two-dimensional demonstration facility,
a joint plate—its optimal shape being a flat plate—with which the students tried to demonstrate that it was
possible to find the optimum automatically.

Only then did Rechenberg (1965) hit upon the idea to use dice for random decisions. This was
the breakthrough—on 12 June 1964. The first version of an evolutionary strategy (ES), later called the
(14 1) ES, was born, with discrete, binomially distributed mutations centered at the ancestor’s position,
and just one parent and one descendant per generation. This ES was first tested on a mechanical calculating
machine by Schwefel before it was used for t@erimentum crucijghe joint plate. Even then, it took a
while to overcome a merely locally optimal S shape and to converge towards the expected global optimum,
the flat plate. Bienert (1967), the third of the three students, later actually constructed a kind of robot that
could perform the actions and decisions automatically.

Using this simplegwo-memberedS, another student, Lichtful3 (1965), optimized the shape of a bent
pipe, also experimentally. The result was rather unexpected, but nevertheless obviously better than all
shapes proposed so far.

First computer experiments, on a Zuse Z23, as well as analytical investigations using binomially
distributed integer mutations, had already been performed by Schwefel (1965). The main result was that
such a strategy can become stuck prematurely, i.e. at ‘solutions’ that are not even locally optimal. Based
on this experience the use of normally instead of binomially distributed mutations became standard in
most of the later computer experiments with real-valued variables and in theoretical investigations into
the method’s efficiency, but not however in experimental optimization using ESs. In 1966 the little ES
community was destroyed by dismissal from the Institute of Fluid Mechanics (‘Cybernetics as such is
no longer pursued at the institute!’). Not before 1970 was it found together again at the Institute of
Measurement and Control of the Technical University of Berlin, sponsored by grants from the German
Research Foundation (DFG). Due to the circumstances, the group missed publishing its ideas and results
properly, especially in English.

In the meantime the often-cited two-phase nozzle optimization was performed at the Institute of
Nuclear Technology of the Technical University of Berlin, then in an industrial surrounding, the AEG
research laboratory (Schwefel 1968, Klockgether and Schwefel 1970), also at Berlin. For a hot-
water flashing flow the shape of a three-dimensional convergent—divergent (thus supersonic) nozzle with
maximum energy efficiency was sought. Though in this experimental optimization an exogenously
controlled binomial-like distribution was used again, it was the first time that gene duplication and deletion
were incorporated into an EA, especially i B+ 1) ES, because the optimal length of the nozzle was
not known in advance. As in case of the bent pipe this experimental strategy led to highly unexpected
results, not easy to understand even afterwards, but definitely much better than available before.

First Rechenberg and later Schwefel analyzed and improved their ES. Fdrtig ES, Rechenberg,
in his Dr.-Ing. thesis of 1971, developed, on the basis of two comvdimensional model functions, a

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.3:6

A history of evolutionary computation

convergence rate theory far > 1 variables. Based on these results he formulat%j [alccess rule

for adapting the standard deviation of mutation (Rechenberg 1973). The hope of arriving at an even
better strategy by imitating organic evolution more closely led to the incorporation of the population
principle and the introduction of recombination, which of course could not be embedded (b th#)

ES. A first multimemberecES, the (u + 1) ES—the notation was introduced later by Schwefel—was
also designed by Rechenberg in his seminal work of 1973. Because of its inability to self-adapt the
mutation step sizes (more accurately, standard deviations of the mutations), this strategy was never widely
used.

Much more widespread became thet+A) ES and(u, A) ES, both formulated by Schwefel in his Dr.-

Ing. thesis of 1974-1975. It contains theoretical results such as a convergence rate theorglfoppheS

and the(1, A) ES (. > 1), analogous to the theory introduced by Rechenberg fo(lthel) ES (Schwefel

1977). Themultimemberedu > 1) ESs arose from the otherwise ineffective incorporation of mutatable
mutation parameters (variances and covariances of the Gaussian distributions used). Self-adaptation was
achieved with the€u, 1) ES first, not only with respect to the step sizes, but also with respect to correlation
coefficients. The enhanced ES version with correlated mutations, described already in an internal report
(Schwefel 1974), was published much later (Schwefel 1981) due to the fact that the author left Berlin
in 1976. A more detailed empirical analysis of the on-line self-adaptation of the internal or strategy
parameters was first published by Schwefel in 1987 (the tests themselves were secretly performed on one
of the first small instruction multiple data (SIMD) parallel machines (CRAY1) at the Nuclear Research
Centre (KFA) dilich during the early 1980s with a first parallel version of the multimembered ES with
correlated mutations). It was in this work that the notiorself-adaptation by collective learnirfgst came

up. The importance of recombination (for object as well as strategy parameters) and soft selection (or
u > 1) was clearly demonstrated. Only recently has Beyer (1995a, b) delivered the theoretical background
to that particularly important issue.

It may be worth mentioning that in the beginning there were strong objections against increasing
as well asu beyond one. The argument against 1 was that the exploitation of the current knowledge
was unnecessarily delayed, and the argument againstl was that the survival of inferior members of
the population would unnecessarily slow down the evolutionary progress. The hintsbatessors could
be evaluated in parallel did not convince anybody since parallel computers were neither available nor
expected in the near future. The two-membered ES and the very similar creeping random search method
of Rastrigin (1965) were investigated thoroughly with respect to their convergence and convergence rates
also by Matyas (1965) in Czechoslovakia, Born (1978) on the Eastern side of the Berlin wall (!), and
Rappl (1984) in Munich.

Since this early work many new results have been produced by the ES community consisting of the
group at Berlin (Rechenberg, since 1972) and that at Dortmund (Schwefel, since 1985). In particular,
strategy variants concerning other than only real-valued parameter optimization, i.e. real-world problems,
were invented. The first use of an ES for binary optimization using multicellular individuals was presented
by Schwefel (1975). The idea of using several subpopulations raciting mechanismdor global ce.1
optimization was propagated by Schwefel in 1977; due to a lack of computing resources, however, it
could not be tested thoroughly at that time. Rechenberg (1978) invented a notational scheme for such
nested ESs.

Beside these nonstandard approaches there now exists a wide range of other ESs, e.g. several
parallel concepts (Hoffmeister and Schwefel 1990, Lohmann 1991, Rudolph 1991, 1992, Sprave 1994,
Rudolph and Sprave 1995), ESs faulticriterion problemgKursawe 1991, 1992), for mixed-integer taskr.9
(Lohmann 1992, Rudolph 1994 aBk and Schitz 1995), and even for problems with a variable-dimensional
parameter space (Sita and Sprave 1996), and variants concerning nonstandard step size and direction
adaptation schemes (see e.g. Matyas 1967, Stewaft1967, Rirstet al 1968, Heydt 1970, Rappl 1984,
Ostermeieret al 1994). Comparisons between ESs, GAs, and EP may be found in the articleicky B
et al (1991, 1993). It was Bck (1996) who introduced a common algorithmic scheme for all brands of
current EAs.

Omitting all these other useful nonstandard ESs—a commented collection of literature concerning ES
applications was made at the University of Dortmundd¢Bet al 1992)—the history of ESs is closed with
a mention of three recent books by Rechenberg (1994), Schwefel (1995) a&akd 296) as well as three
recent contributions that may be seen as written tutorials (Schwefel and Rudolph Ee85ml Schwefel
1995, Schwefel and &k 1995), which on the one hand define the actual standard ES algorithms and on
the other hand present some recent theoretical results.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.377

A history of evolutionary computation

References

Altenberg L 1994 Emergent phenomena in genetic programiing. 3rd Annu. Conf. on Evolutionary Programming
(San Diego, CA, 19949d A V Sebald ad L J Fogel (Singapore: World Scientific) pp 233-41

Andersen B, McDonnell J and Page W 1992 Configuration optimization of mobile manipulators with equality
constraints using evolutionary programmiRgoc. 1st Ann. Conf. on Evolutionary Programming (La Jolla, CA,
1992)ed D B Fogel and W Atmar (La Jolla, CA: Evolutionary Programming Society) pp 71-9

Angeline P J, FodeD B and FogéL J 1996 A comparison of self-adaptation methods for finite state machines in a
dynamic environmenEvolutionary Programming V—Proc. 5th Ann. Conf. on Evolutionary Programming (1996)
ed L J Fogel P J Angeline and T &ck (Cambridge, MA: MIT Press)

Angeline P J, SaundeiG M and Pollak J B 1994 An evolutionary algorithm that constructs recurrent neural networks
IEEE Trans. Neural Network8IN-5 54—65

Atmar J W 1976Speculation of the Evolution of Intelligence and Its Possible Realization in Machine &clnT hesis,
New Mexico State University

Back T 1996Evolutionary Algorithms in Theory and Practi¢blew York: Oxford University Press)

Back T, Hoffmeister F and Schwefel H-P 1991 A survey of evolution stratelgies. 4th Int. Conf. on Genetic
Algorithms (San Diego, CA, 19921 R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 2-9

——1992 Applications of Evolutionary Algorithm3echnical Report of the University of Dortmund Department of
Computer Science Systems Analysis Research Group SYS-2/92

Back T, Rudolph G and Schwefel H-P 1993 Evolutionary programming and evolution strategies: similarities and
differencesProc. 2nd Ann. Conf. on Evolutionary Programming (San Diego, CA, 188D B Fogel and
W Atmar (La Jolla, CA: Evolutionary Programming Society) pp 11-22

Back T and Scitz M 1995 Evolution strategies for mixed-integer optimization of optical multilayer systems
Evolutionary Programming IV—Proc. 4th Ann. Conf on Evolutionary Programming (San Diego, CA, €895)
J R McDonnell R G Reynolds ath D B Fogel (Cambridge, MA: MIT Press) pp 33-51

Back T and Schwefel H-P 1995 Evolution strategies |: variants and their computational implemef@atietic
Algorithms in Engineering and Computer Science, Proc. 1st Short Course EUROGEN-@5Ninter, J Briaux,
M Galan and P Cuesta (New York: Wiley) pp 111-26

Bagley J D 1967 The Behavior of Adaptive Systems which Employ Genetic and Correlation AlgorRhisThesis,
University of Michigan

Belew R K and Booke L B (eds) 1991Proc. 4th Int. Conf. on Genetic Algorithms (San Diego, CA, 194$&n Mateo,
CA: Morgan Kaufmann)

Bethke A D 1981Genetic Algorithms as Function OptimizelPhD Thesis, University of Michigan

Beyer H-G 1995ddow GAs do Not Work—Understanding GAs Without Schemata and Building Blecksical Report
of the University of Dortmund Department of Computer Science Systems Analysis Research Group SYS-2/95

——1995b Toward a theory of evolution strategies: on the benefit of sextfye, A)-theory Evolutionary Comput.
381-111

Bhattacharjp A K and Roysam B 1994 Joint solution of low-, intermediate- and high-level vision tasks by evolutionary
optimization: application to computer vision at low SNIREE Trans. Neural NetworksIN-5 83—95

Bienert P 1967Aufbau einer Optimierungsautomatilrfdrei ParameterDipl.-Ing. Thesis, Technical University of
Berlin, Institute of Measurement and Control Technology

Booker L 1982Intelligent Behavior as an Adaptation to the Task EnvironnmehD Thesis, University of Michigan

Born J 1978 volutionsstrategien zur numerischeoduihg von Adaptationsaufgab&mD Thesis, Humboldt University
at Berlin

Box G E P1957 Evolutionary operation: a method for increasing industrial productiiyl. Stat.6 81-101

Box G E P andrape N P 1969Evolutionary Operation. A Method for Increasing Industrial Productiiidew York:
Wiley)

Bremerman H J 1962 Optimization through evolution and recombinatatf-Organizing Systermresd M C Yovits et
al (Washington, DC: Spartan)

Bremermann H J, Rogson M and Salaff S 1965 Search by evol&iigphysics and Cybernetic Systems—Proc. 2nd
Cybernetic Sciences Syngd M Maxfield, A Callahan ahL J Fogel (Washington, DC: Spartan) pp 157-67

Brindle A 1981Genetic Algorithms for Function OptimizatidPhD Thesis, University of Alberta

Brotherton T W, Simpson P K, FobP B and Pollard T 1994 Classifier design using evolutionary programmaimg.
3rd Ann. Conf. on Evolutionary Programming (San Diego, CA, 199#A V Sebald ad L J Fogel (Singapore:
World Scientific) pp 68-75

Burgin G H 1969 On playing two-person zero-sum games against nonminimax plEjE S rans. Syst. Sci. Cybernet.
SSC-5369-70

Cavicchb D J 1970Adaptive Search Using Simulated EvolutiBhD Thesis, University of Michigan

Davis L 1987Genetic Algorithms and Simulated Annealifigondon: Pitman)

Dearhot D W 1976 Some experiments on generalization using evolving autoRra@ 9th Int. Conf. on System
Sciences (Honolulu, Hipp 131-3

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.38

A history of evolutionary computation

De Jong K A 1975Analysis of Behavior of a Class of Genetic Adaptive Systehi3 Thesis, University of Michigan

English T M 1994 Generalization in populations of recurrent neural netwBreg. 3rd Ann. Conf. on Evolutionary
Programming (San Diego, CA, 19943 A V Sebald ad L J Fogel (Singapore: World Scientific) pp 26-33

Fogd D B 1988 An evolutionary approach to the traveling salesman profdeh Cybernet.60 139-44

——1989 Evolutionary programming for voice feature analy®isc. 23rd Asilomar Conf. on Signals, Systems and
Computers (Pacific Grove, CAdp 381-3

——1995 Evolutionary Computation: Toward a New Philosophy of Machine Intelliggisav York: IEEE)

Foge D B and Atma J W 1990 Comparing genetic operators with Gaussian mutations in simulated evolutionary
processing using linear systerB®l. Cybernet63 111-4

——(eds) 1992Proc. 1st Ann. Conf. on Evolutionary Programming (La Jolla, CA, 1922) Jolla, CA: Evolutionary
Programming Society)

Fogé D B and FogéL J 1988 Route optimization through evolutionary programmirgc. 22nd Asilomar Conf. on
Signals, Systems and Computers (Pacific Grove, ipA§79-80

Fogel D B, FogeL J and Atma J W 1991 Meta-evolutionary programmirgyoc. 25th Asilomar Conf. on Signals,
Systems and Computers (Pacific Grove, @4)R R Chen pp 540-5

Fogel D B, Fogel L J, AtmaJ W and FogeG B 1992 Hierarchic methods of evolutionary programmiigc. 1st
Ann. Conf. on Evolutionary Programming (La Jolla, CA, 19%2) D B Fogel and W Atmar (La Jolla, CA:
Evolutionary Programming Society) pp 175-82

Fogel D B, FogkL J and Pord V W 1990 Evolving neural networkBiol. Cybernet.63 487-93

Fogel D B, Wasso E C and Boughto E M 1995 Evolving neural networks for detecting breast ca@aarcer Lett.

96 49-53

Fogé L J 1962 Autonomous automatadustrial Res4 14-9

——1963Biotechnology: Concepts and ApplicatiofEnglewood Cliffs, NJ: Prentice-Hall)

——19640n the Organization of IntelledPhD Thesis, University of California at Los Angeles

——1968 Extending communication and control through simulated evol@ioengineering—an Engineering View
Proc. Symp. on Engineering Significance of the Biological Scierde& Bugliarello (San Francisco, CA: San
Francisco Press) pp 286-304

Fogel L J, Angelie P J and Bck T (eds) 199@&volutionary Programming V—Proc. 5th Ann. Conf. on Evolutionary
Programming (1996JCambridge, MA: MIT Press)

Fogé L J and Burgin G H 196 ompetitive Goal-seeking through Evolutionary Programm#igForce Cambridge
Research Laboratories Final Report Contract AF 19(628)-5927

Fogé L J and FogéD B 1986 Atrtificial Intelligence through Evolutionary ProgrammindS Army Research Institute
Final Report Contract PO-9-X56-1102C-1

Fogel L J, Owern A J and Walsh M J 1964 On the evolution of artificial intelligefgec. 5th Natl Symp. on Human
Factors in Electronic§San Diego, CA: IEEE)

——1965 Artificial intelligence through a simulation of evoluti@ophysics and Cybernetic Systeets A Callahan,

M Maxfield ard L J Fogel (Washington, DC: Spartan) pp 131-56

——1966 Artificial Intelligence through Simulated Evolutidihlew York: Wiley)

Franz D R 1972Non-linearities in Genetic Adaptive SearéthD Thesis, University of Michigan

Frase A S 1957 Simulation of genetic systems by automatic digital computass. J. Biol. Scil0 484-99

Friedbeg R M 1958 A learning machine: partiBM J. 2 2-13

Friedberg R M, Dunham B and Nd&rt) H 1959 A learning machine: partIBM J. 3 282—7

Furst H, Muller P H and Nollau V 1968 Eine stochastische Methode zur Ermittlung der Maximalstelle einer
Funktion von mehreren Vanderlichen mit experimentell ermittelbaren Funktionswerten und ihre Anwendung
bei chemischen Prozess@mem.—Tech20 400-5

Gehlhaaret al 1995Gehlhaar D Ket al 1995 Molecular recognition of the inhibitor AG-1343 by HIV-1 protease:
conformationally flexible docking by evolutionary programmi@gem. Biol.2 317-24

Gell-Mann M 1994The Quark and the JaguaiNew York: Freeman)

Goldbeg D E 1983Computer-Aided Gas Pipeline Operation using Genetic Algorithms and Rule LeaPhiDdr hesis,
University of Michigan

——1989 Genetic Algorithms in Search, Optimization and Machine Learr{iRgading, MA: Addison-Wesley)

Goldberg D E, Deb K and Korb B 1991 Don't worry, be me$dpc. 4th Int. Conf. on Genetic Algorithms (San Diego,
CA, 1991)ed R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 24-30

Grefenstet J J (ed) 198%°roc. 1st Int. Conf. on Genetic Algorithms and Their Applications (Pittsburgh, PA, 1985)
(Hillsdale, NJ: Erlbaum)

——1987 Proc. 2nd Int. Conf. on Genetic Algorithms and Their Applications (Cambridge, MA, 188Rdale, NJ:
Erlbaum)

Haffner S B and SebdlA V 1993 Computer-aided design of fuzzy HVAC controllers using evolutionary programming
Proc. 2nd Ann. Conf. on Evolutionary Programming (San Diego, CA, 1883p B Fogel and W Atmar (La
Jolla, CA: Evolutionary Programming Society) pp 98—-107

Heyd G T 1970Directed Random SearcRhD Thesis, Purdue University

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.39

A history of evolutionary computation

Hoffmeister F and Schwefel H-P 1990 A taxonomy of parallel evolutionary algoritRarsella '90, Proc. 5th Int.
Workshop on Parallel Processing by Cellular Automata and Arragis2, ed G Wolf, T Legendi and U Schendel
(Berlin: Academic) pp 97-107

Holland J H 1962 Outline for a logical theory of adaptive system&CM 9 297-314

——1967 Nonlinear environments permitting efficient adaptattmmputer and Information Sciences(New York:
Academic)

——1969 Adaptive plans optimal for payoff-only environmermsoc. 2nd Hawaii Int. Conf. on System Sciences
pp 917-20

——1971 Processing and processors for schemaisociative information processingd E L Jacks (New York:
Elsevier) pp 127-46

——1973 Genetic algorithms and the optimal allocation of trialaM J. Comput2 88-105

——1975Adaptation in Natural and Artificial Systenf&nn Arbor, MI: University of Michigan Press)

Hollstien R B 1971Artificial Genetic Adaptation in Computer Control SysteRtsD Thesis, University of Michigan

Kim J-H and Jeon J-Y 1996 Evolutionary programming-based high-precision controller dEsigintionary
Programming V—Proc. 5th Ann. Conf. on Evolutionary Programming (1€26). J Fogel, P J Angeline and
T Back (Cambridge, MA: MIT Press)

Klockgether J and Schwefel H-P 1970 Two-phase nozzle and hollow core jet experiRrects11th Symp. on
Engineering Aspects of Magnetohydrodynanad< G Elliott (Pasadena, CA: California Institute of Technology)
pp 141-8

Koza J R 1992Genetic ProgrammingCambridge, MA: MIT Press)

Koza J R and Andre D 1996 Evolution of iteration in genetic programniinglutionary Programming V—Proc. 5th
Ann. Conf. on Evolutionary Programming (199J L J Fogel, P J Angeline and TaBk (Cambridge, MA: MIT
Press)

Kursawe F 1991 A variant of evolution strategies for vector optimizakamallel Problem Solving from Nature—
Proc. 1st Workshop PPSN | (Lecture Notes in Computer Science 496) (Dortmund, e8P Schwefel and
R Manner (Berlin: Springer) pp 193-7

——1992 Naturanaloge Optimierverfahren—Neuere Entwicklungen in der Inforn&itidien zur Evolutorischen
Okonomik Il (Schriften des VereinsrfSocialpolitik 195 Il)ed U Witt (Berlin: Duncker and Humblot) pp 11-38

Land M and Belev R K 1995 Towards a self-replicating language for computakeolutionary Programming IV—
Proc. 4th Ann. Conf on Evolutionary Programming (San Diego, CA, 1885) R McDonnell, R G Reynolds and
D B Fogel (Cambridge, MA: MIT Press) pp 403-13

Larsen R W and Herma J S 1992 A comparison of evolutionary programming to neural networks and an application of
evolutionary programming to a navy mission planning probligoc. 1st Ann. Conf. on Evolutionary Programming
(La Jolla, CA, 1992kd D B Fogel and W Atmar (La Jolla, CA: Evolutionary Programming Society) pp 127-33

Lichtfu? H J 1965 volution eines RohrkrhmersDipl.-Ing. Thesis, Technical University of Berlin, Hermanatiinger
Institute for Hydrodynamics

Lohmann R 1991 Application of evolution strategy in parallel populatiPasallel Problem Solving from Nature—
Proc. 1st Workshop PPSN | (Dortmund, 1991) (Lecture Notes in Computer Sciencedi®6pP Schwefel and
R Manner (Berlin: Springer) pp 198-208

——1992 Structure evolution and incomplete inductiarallel Problem Solving from Nature 2 (Brussels, 19@#)

R Manner and B Manderick (Amsterdam: Elsevier—North-Holland) pp 175-85

Lutter B E and HuntsingeR C 1969 Engineering applications of finite autom&teulation13 5-11

Manner R and Manderick B (eds) 19Parallel Problem Solving from Nature 2 (Brussels, 19¢@nsterdam: Elsevier—
North-Holland)

Matyas J 1965 Random optimizatidiutomation Remote Contrd@6 244-51

——1967 Das zuillige Optimierungsverfahren und seine Konverg@mac. 5th Int. Analogue Computation Meeting
(Lausanne, 1967) 540-4

McDonnel J R 1992 Training neural networks with weight constraiftec. 1st Ann. Conf. on Evolutionary
Programming (La Jolla, CA, 1992¢d D B Fogel and W Atmar (La Jolla, CA: Evolutionary Programming
Society) pp 111-9

McDonnell J R, Andersen B D, PagW C and Pin F 1992 Mobile manipulator configuration optimization using
evolutionary programmin@roc. 1st Ann. Conf. on Evolutionary Programming (La Jolla, CA, 199PP B Fogel
and W Atmar (La Jolla, CA: Evolutionary Programming Society) pp 52-62

McDonnel J R and Waagen D 1994 Evolving recurrent perceptrons for time-series prediEfidh Trans. Neural
NetworksNN-5 24-38

Michalewicz Zet al (eds) 1994Proc. 1st IEEE Conf. on Evolutionary Computation (Orlando, FL, 19%4$cataway,
NJ: |IEEE)

Ostermeier A, Gawelczyk A and Hansen N 1994 Step-size adaptation based on non-local use of selection information
Parallel Problem Solving from Nature—PPSN III Int. Conf. on Evolutionary Computation (Jerusalem, 1994)
(Lecture notes in Computer Science 8&€)Y Davidor, H-P Schwefel and R &hner (Berlin: Springer) pp 189—
98

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.3:10

A history of evolutionary computation

Page W C, AnderseB D and McDonnélJ R 1992 An evolutionary programming approach to multi-dimensional path
planningProc. 1st Ann. Conf. on Evolutionary Programming (La Jolla, CA, 1982)D B Fogel and W Atmar
(La Jolla, CA: Evolutionary Programming Society) pp 63-70

Porb V W 1992 Alternative methods for training neural netwoR®c. 1st Ann. Conf. on Evolutionary Programming
(La Jolla, CA, 1992kd D B Fogel and W Atmar (La Jolla, CA: Evolutionary Programming Society) pp 100-10

Porto V W, FogéD B and FogéL J 1995 Alternative neural network training methd&EE Expert10 16-22

Rappl G 1984Konvergenzraten von Random-Search-Verfahren zur globalen Optimid?hidy Thesis, Bundeswehr
University

Rastrigh L A 1965Random Search in Optimization Problems for Multiparameter Systems (translated from the Russian
original: Sluchainyi poisk v zadachakh optimisatsii mnogoarametricheskikh sistem, Zinatne, ARRigégrce
System Command Foreign Technology Division FTD-HT-67-363

Rawlins G J E(ed) 1991Foundations of Genetic Algorithm@an Mateo, CA: Morgan Kaufmann)

Rechenberg | 196%ybernetic Solution Path of an Experimental ProbldRoyal Aircraft Establishment Library
Translation 1122

——1973Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Ev(Sutitigart:
Frommann-Holzboog)

——1978 EvolutionsstrategieBimulationsmethoden in der Medizin und BiologgtB Schneider and U Ranft (Berlin:
Springer) pp 83-114

——1994 Evolutionsstrategie '94Stuttgart: Frommann—Holzboog)

Rizki M M, Tamburiro L A and Zmu& M A 1995 Evolution of morphological recognition systei&golutionary
Programming IV—Proc. 4th Ann. Conf on Evolutionary Programming (San Diego, CA, #895R McDonnell,
R G Reynolds ath D B Fogel (Cambridge, MA: MIT Press) pp 95-106

Rosenberg R 1963imulation of Genetic Populations with Biochemical Propertd® Thesis, University of Michigan

Rudolph G 1991 Global optimization by means of distributed evolution stratd®peallel Problem Solving from
Nature—Proc. 1st Workshop PPSN | (Dortmund, 1991) (Lecture Notes in Computer Sciened #BB) Schwefel
and R Manner (Berlin: Springer) pp 209-13

——1992 Parallel approaches to stochastic global optimiza®iarallel Computing: from Theory to Sound Practice,
Proc. Eur. Workshop on Parallel Computired W Joosen and E Milgrom (Amsterdam: 10S) pp 256-67

——1994 An evolutionary algorithm for integer programmiRgrallel Problem Solving from Nature—PPSN Il Int.
Conf. on Evolutionary Computation (Jerusalem, 1994) (Lecture notes in Computer Sciencd86a)avidor,
H-P Schwefel and R Fnner (Berlin: Springer) pp 139-48

Rudolph G and Sprave J 1995 A cellular genetic algorithm with self-adjusting acceptance thFasieoltst IEE/IEEE
Int. Conf. on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA '95) (Sheffield,
1995) (London: IEE) pp 365-72

Sampsa J R 1981A Synopsis of the Fifth Annual Ann Arbor Adaptive Systems WorkBepgartment of Computing
and Communication Science, Logic of Computers Group Technical Report University of Michigan

Saravanan N, Fo® B and Nelsm K M 1995 A comparison of methods for self-adaptation in evolutionary algorithms
BioSystems36 157—66

Satterthwai F E 1959a Random balance experimentafiechnometricsl 111-37

——1959bREVOP or Random Evolutionary Operatidterrimack College Technical Report 10-10-59

Schaffe J D (ed) 1989Proc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, WA, 19§8an Mateo, CA: Morgan
Kaufmann)

Schitz M and Sprave J 1996 Application of parallel mixed-integer evolution strategies with mutation rate pooling
Evolutionary Programming V—~Proc. 5th Ann. Conf. on Evolutionary Programming (1286} J Fogel,
P J Angeline and T Bck (Cambridge, MA: MIT Press)

Schwefel H-P 196%Kybernetische Evolution als Strategie der experimentellen Forschung in dem&tgstechnik
Dipl.-Ing. Thesis, Technical University of Berlin, Hermanitinger Institute for Hydrodynamics

——1968 Experimentelle Optimierung einer Zweiphasesel Teil | AEG Research Institute Project MHD-
Staustrahlrohr 11034/68 Technical Report 35

——1974 Adaptive Mechanismen in der biologischen Evolution und ihr EinfluBauf die Evolutionsgeschwindigkeit
Technical University of Berlin Working Group of Bionics and Evolution Techniques at the Institute for
Measurement and Control Technology Technical Report Re 215/3

——1975Binare Optimierung durch somatische Mutati®orking Group of Bionics and Evolution Techniques at the
Institute of Measurement and Control Technology of the Technical University of Berlin and the Central Animal
Laboratory of the Medical Highschool of Hannover Technical Report

——1977Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie (Interdisciplinary Systems
Research 26}Basle: Birktauser)

——1981 Numerical Optimization of Computer Modgl€hichester: Wiley)

——1987 Collective phenomena in evolutionary systétrablems of Constancy and Change—the Complementarity of
Systems Approaches to Complexity, Papers Presented at the 31st Ann. Meeting Int. Society Gen. @yis?, Res.
ed P Checkland and | Kiss (Budapest: International Society for General System Research) pp 1025-33

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.3:11

A history of evolutionary computation

——1995Evolution and Optimum Seekin®lew York: Wiley)

Schwefel H-P and Bck T 1995 Evolution strategies |l: theoretical aspegenetic Algorithms in Engineering and
Computer Science Proc. 1st Short Course EUROGEN@®3%5 Winter, J Briaux, M Gahn and P Cuesta (New
York: Wiley) pp 127-40

Schwefel H-P and Mnner R (eds) 199Rarallel Problem Solving from Nature—Proc. 1st Workshop PPSN | (Dortmund,
1991) (Lecture Notes in Computer Science 4&3rlin: Springer)

Schwefel H-P and Rudolph G 1995 Contemporary evolution stratefyi@snces in Artificial Life—Proc. 3rd Eur.
Conf. on Atrtificial Life (ECAL'95) (Lecture Notes in Computer Science @20F Moian, A Moreno, J J Merelo
and P Chagén (Berlin: Springer) pp 893-907

Sebatl A V and FogéD B 1992 Design of fault-tolerant neural networks for pattern classificdime. 1st Ann. Conf.
on Evolutionary Programming (La Jolla, CA, 1992)l D B Fogel and W Atmar (La Jolla, CA: Evolutionary
Programming Society) pp 90-9

Sebald A V, Schlenzig J and Fdde B 1992 Minimax design of CMAC encoded neural controllers for systems with
variable time delayProc. 1st Ann. Conf. on Evolutionary Programming (La Jolla, CA, 192D B Fogel and
W Atmar (La Jolla, CA: Evolutionary Programming Society) pp 120-6

Smith S F 1980A Learning System Based on Genetic Adaptive AlgoritRim® Thesis, University of Pittsburgh

Spendley W, HexG R and Himswott F R 1962 Sequential application of simplex designs in optimisation and
evolutionary operatiofechnometrict 441-61

Sprave J 1994 Linear neighborhood evolution strate@ec. 3rd Ann. Conf. on Evolutionary Programming (San Diego,
CA, 1994)ed A V Sebald ad L J Fogel (Singapore: World Scientific) pp 42-51

Stewart E C, KavanailgW P and BrockeD H 1967 Study of a global search algorithm for optimal conRadc. 5th
Int. Analogue Computation Meeting (Lausanne, 196a1)1, pp 207-30

Takeuchi A 1980 Evolutionary automata—comparison of automaton behavior and Restle’s learnindgnfoooheltion
Sci.2091-9

Wetzel A 1983Evaluation of the Effectiveness of Genetic Algorithms in Combinatorial Optimizatigublished
manuscript, University of Pittsburgh

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 A2.3:12

Evolutionary Algorithms and Their Standard Instances

B1.1 Introduction

Thomas Rck

Abstract

Within this introduction to Chapter B1, we present a general outline of an evolutionary
algorithm, which is consistent with all mainstream instances of evolutionary computation
and summarizes the major features common to evolutionary computation approaches;
that is, a population of individuals, recombination and/or mutation, and selection. Some
of the differences between genetic algorithms, evolution strategies, and evolutionary
programming are briefly mentioned to provide a short overview of the features that are
most emphasized by these different approaches. Furthermore, the basic characteristics
of genetic programming and classifier systems are also outlined.

B1.1.1 General outline of evolutionary algorithms

Since they are gleaned from the model of organic evolution, all basic instances of evolutionary algorithms
share a number of common properties, which are mentioned here to characterize the prototype of a general
evolutionary algorithm:

() Evolutionary algorithms utilize the collective learning process of a population of individuals. Usually,
each individual represents (or encodes) a search point in the space of potential solutions to a given
problem. Additionally, individuals may also incorporate further information; for exangilategy c1.3.2, cs.2.2
parametersof the evolutionary algorithm.

(i) Descendants of individuals are generated by randomized processes intended tormtzdielnand c3.2
recombination Mutation corresponds to an erroneous self-replication of individuals (typically, sc33l
modifications are more likely than large ones), while recombination exchanges information between
two or more existing individuals.

(iii) By means of evaluating individuals in their environment, a measure of quality or fithess value can be
assigned to individuals. As a minimum requirement, a comparison of individual fithess is possible,
yielding a binary decision (better or worse). According to the fitness measureeléhetionprocess c2
favors better individuals to reproduce more often than those that are relatively worse.

These are just the most general properties of evolutionary algorithms, and the instances of evolutionary
algorithms as described in the following sections of this chapter use the components in various different
ways and combinations. Some basic differences in the utilization of these principles characterize the
mainstream instances of evolutionary algorithms; thatgenetic algorithmsevolution strategiesand B1.2 B1.3
evolutionary programmingSee D B Fogel (1995) andaBk (1996) for a detailed overview of similarities1.4
and differences of these instances ar&tiBand Schwefel (1993) for a brief comparison.

e Genetic algorithms (originally described by Holland (1962, 1975) at Ann Arbor, Michigan, as so-
called adaptive or reproductive plans) emphasemombination (crossovers the most importantsa.s
search operator and apphgutationwith very small probability solely as a ‘background operatccs.2
They also use a probabilistic selection opergfmoportional selectionand often rely on &inary c22 ci1.2
representatiorof individuals.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.11

Introduction

e Evolution strategies (developed by Rechenberg (1965, 1973) and Schwefel (1965, 1977) at the
Technical University of Berlin) use normally distributed mutations to modédwl-valued vectorsci.3
and emphasizenutationand recombinationas essential operators for searching in the search spaee, c3.3.2
and in the strategy parameter space at the same time.sdlbetion operatoiis deterministic, andc2.4
parent and offspring population sizes usually differ from each other.

e Evolutionary programming (originally developed by Lawrence J Fogel (1962) at the University of
California in San Diego, as described in Fogehl (1966) and refined by David B Fogel (1992) and
others) emphasizes mutation and does not incorporate the recombination of individuals. Similarly to
evolution strategies, when approaching real-valued optimization problems, evolutionary programming
also works with normally distributed mutations and extends the evolutionary process to the strategy
parameters. Theelection operatois probabilistic, and presently most applications are reportedctos.1
search spaces involving real-valued vectors, but the algorithm was originally developed to evolve
finite-state machines cL5

In addition to these three mainstream methods, which are described in detail in the following
sectionsgenetic programmingclassifier systemandhybridizationsof evolutionary algorithms with othems1.5.1, B1.5.2,
techniques are considered in this chapter. As an introductory remark, we only mention that génetic
programming applies the evolutionary search principle to automatically develop computer programs in
suitablelanguageqoften LISP, but others are possible as well), while classifier systems search the cieace
of production rules (or sets of rules) of the fordF* <condition> THEN <action>’.

A variety of different representations of individuals and corresponding operators are presently known
in evolutionary algorithm research, and it is the aim of Part C (Evolutionary Computation Models) to
present all these in detail. Here, we will use Part C as a construction kit to assemble the basic instances
of evolutionary algorithms.

As a general framework for these basic instances, we ddfite denote an arbitrary space of
individualsa € I, and F : I — R to denote a real-valued fitness function of individuals. Using
and A to denote parent and offspring population sizB$;) = (a1(z), ..., a,()) € I* characterizes a
population at generation Selection, mutation, and recombination are described as opesatdts— I+,

m . I — I*, andr : I* — I* that transform complete populations. By describing all operators on the
population level (though this is counterintuitive for mutation), a high-level perspective is adopted, which
is sufficently general to cover different instances of evolutionary algorithms. For mutation, the operator
can of course be reduced to the level of single individuals by defimirtgrough a multiple application

of a suitable operator’ : I — I on individuals.

These operators typically depend on additional sets of paramétgrsd,,, and ®, which are
characteristic for the operator and the representation of individuals. Additionally, an initialization procedure
generates a population of individuals (typically at random, but an initialization with known starting points
should of course also be possible), an evaluation routine determines the fitness values of the individuals of
a population, and a termination criterion is applied to determine whether or not the algorithm should stop.

Putting all this together, a basic evolutionary algorithm reduces to the simple recombination—mutation—
selection loop as outlined below:

Input: w, A, 0,0, 06,, 6
Output: a*, the best individual found during the run, or
P*, the best population found during the run.
t < 0;
P(t) < initialize(u);
F(t) < evaluatef (), u);
while (¢(P(¢), ®,) # true) do
P'(t) <« recombinef(z), ®,);
P"(t) <« mutatef’(r), ©,,);
F(t) <« evaluatef’(r), 1);
P(t + 1) < select’(¢), F(t), u, ©y);
t ~—t+1

O©oo~NOULA,WDNPRE

od

After initialization of ¢ (line 1) and the populatiorP(z) of size 1 (line 2) as well as its fithess
evaluation (line 3), the while-loop is entered. The termination criteriomght depend on a variety of
parameters, which are summarized here by the argumenSimilarly, recombination (line 5), mutation

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.12

Introduction

(line 6), and selection (line 8) depend on a number of algorithm-specific additional parameters. While
P(t) consists ofu individuals, P’'(¢) and P”(¢) are assumed to be of sizeand, respectively. Of course,
A =k = u is allowed and is the default case in genetic algorithms. The settiagu is also often used
in evolutionary programming (without recombination), but it depends on the application and the situation
is quickly changing. Either recombination or mutation might be absent from the main loop, such that
k = u (absence of recombination) er= X (absence of mutation) is required in these cases. The selection
operator selectg individuals from P”(¢) according to the fitness valuds(z), ¢ is incremented (line 9),
and the body of the main loop is repeated.

The input parameters of this general evolutionary algorithm include the populationusaed). as
well as the parameter set, ©,, ©,,, and®; of the basic operators. Notice that we allow recombination
to equal the identity mapping; that i®(r) = P’(¢) is possible.

The following sections of this chapter present the common evolutionary algorithms as particular
instances of the general scheme.

References

Back T 1996Evolutionary Algorithms in Theory and Practi¢dlew York: Oxford University Press)

Back T and Schwefel H-P 1993 An overview of evolutionary algorithms for parameter optimiz&tiofutionary
Computation1(1) 1-23

Fogé D B 1992 Evolving Artificial IntelligencePhD Thesis, University of California, San Diego

——1995Evolutionary Computation: Toward a New Philosophy of Machine IntelliggRiscataway, NJ: IEEE)

Fogé L J 1962 Autonomous automatadustr. Res4 14-9

Fogel L J, Owen A J and Walsh M J 196@\rtificial Intelligence through Simulated EvolutiofiNew York: Wiley)

Holland J H 1962 Outline for a logical theory of adaptive systeln®\CM 3 297-314

——1975 Adaptation in Natural and Artificial System{&nn Arbor, MI: University of Michigan Press)

Rechenberg | 1965 Cybernetic solution path of an experimental probilerary Translation No 1122Royal Aircraft
Establishment, Farnborough, UK

——1973Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Ev(fhutitigart:
Frommann-Holzboog)

Schwefel H-P 196%Kybernetische Evolution als Strategie der experimentellen Forschung in dem@tgstechnik
Diplomarbeit, Technische Univeratt Berlin

——1977 Numerische Optimierung von Computer-Modellen mittels der Evolutionsstratggiglisciplinary Systems
Research, vol 26 (Basel: Biriser)

Further reading

The introductory section to evolutionary algorithms certainly provides the right place to mention the most
important books on evolutionary computation and its subdisciplines. The following list is not intended to
be complete, but only to guide the reader to the literature.

1. Back T 1996Evolutionary Algorithms in Theory and Practi¢dlew York: Oxford University Press)

A presentation and comparison of evolution strategies, evolutionary programming, and genetic algorithms with

respect to their behavior as parameter optimization methods. Furthermore, the role of mutation and selection
in genetic algorithms is discussed in detail, arguing that mutation is much more useful than usually claimed in

connection with genetic algorithms.

2. Goldbeg D E 1989Genetic Algorithms in Search, Optimization, and Machine LearrfRgading, MA: Addison-
Wesley)

An overview of genetic algorithms and classifier systems, discussing all important techniques and operators used
in these subfields of evolutionary computation.

3. Rechenberg | 199B8volutionsstrategie '94Merkstatt Bionik und Evolutionstechnik, vol 1 (Stuttgart: Frommann-
Holzboog)

A description of evolution strategies in the form used by Rechenberg’s group in Berlin, including a reprint of
(Rechenberg 1973).

4. Schwefel H-P 199%&volution and Optimum Seekirgjxth-Generation Computer Technology Series (New York:
Wiley)

The most recent book on evolution strategies, covering(the.)-strategy and all aspects of self-adaptation of
strategy parameters as well as a comparison of evolution strategies with classical optimization methods.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.13

Introduction

5. Fogé D B 1995 Evolutionary Computation: Toward a New Philosophy of Machine IntelliggRigcataway, NJ:
IEEE)

The book covers all three main areas of evolutionary computation (i.e. genetic algorithms, evolution strategies,
and evolutionary programming) and discusses the potential for using simulated evolution to achieve machine
intelligence.

6. Michalewicz Z 1994Genetic Algorithmst Data Structures= Evolution Programs(Berlin: Springer)

Michalewicz also takes a more general view at evolutionary computation, thinking of evolutionary heuristics as
a principal method for search and optimization, which can be applied to any kind of data structure.

7. Kinnea K E 1994 Advances in Genetic Programmir{@ambridge, MA: MIT Press)

This collection of articles summarizes the state of the art in genetic programming, emphasizing other than
LISP-based approaches to genetic programming.

8. Koza J R 1992Genetic Programming: On the Programming of Computers by Means of Natural Selection
(Cambridge, MA: MIT Press)

9. Koza J R 19945enetic Programming l(Cambridge, MA: MIT Press)

The basic books for genetic programming using LISP programs, demonstrating the feasibility of the method by
presenting a variety of application examples from diverse fields.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.14

Evolutionary Algorithms and Their Standard Instances

B1.2 Genetic algorithms

Larry J Eshelman

Abstract

This section gives an overview of genetic algorithms (GAs), describing the canonical
GAs proposed by John Holland and developed by his first students, as well as later
variations. Whereas many of the GA variations are distinguished by the methods used
for selection, GAs as a class, including later variations, are distinguished from other
evolutionary algorithms by their reliance upon crossover. Selection and crossover are
discussed in some detail, and representation and parallelization are discussed briefly.

B1.2.1 Introduction

Genetic algorithms (GAs) are a class of evolutionary algorithms first proposed and analyzed by John
Holland (1975). There are three features which distinguish GAs, as first proposed by Holland, from
other evolutionary algorithms: (i) the representation usbidstrings (i) the method of selection—czi.2
proportional selectionand (iii) the primary method of producing variationsressover Of these threec22 c3.3
features, however, it is the emphasis placed on crossover which makes GAs distinctive. Many subsequent
GA implementations have adopted alternative methods of selection, and many have abandoned bitstring
representations for other representations more amenable to the problems being tackled. Although many
alternative methods of crossover have been proposed, in almost every case these variants are inspired
by the spirit which underlies Holland’s original analysis of GA behavior in terms of the processing of
schemata or building blocks. It should be pointed out, however, thattbkition strategyparadigm hasei1.3
added crossover to its repertoire, so that the distinction between classes of evolutionary algorithms has
become blurred (Bck et al 1991).

We shall begin by outlining what might be called the canonical GA, similar to that described and
analyzed by Holland (1975) and Goldberg (1987). We shall introduce a framework for describing GAs
which is richer than needed but which is convenient for describing some variations with regard to the
method of selection. First we shall introduce some terminology. The individual structures are often
referred to as chromosomes. They are the genotypes that are manipulated by the GA. The evaluation
routine decodes these structures into some phenotypical structure and assigns a fitness value. Typically,
but not necessarily, the chromosomes are bitstrings. The value at each locus on the bitstring is referred to
as an allele. Sometimes the individuals loci are also called genes. At other times genes are combinations
of alleles that have some phenotypical meaning, such as parameters.

B1.2.2 Genetic algorithm basics and some variations

An initial population of individual structure® (0) is generated (usually randomly) and each individual

is evaluated for fitness. Then some of these individuals are selected for mating and copieddpad@ct

to the mating bufferC(¢). In Holland’s original GA, individuals are chosen for mating probabilistically,
assigning each individual a probability proportional to its observed performance. Thus, better individ-
uals are given more opportunities to produce offspring (reproduction with emphasis). Next the genetic
operators (usually mutation and crossover) are applied to the individuals in the mating buffer, producing
offspring C’(¢). The rates at which mutation and crossover are applied are an implementation decision.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.21

Genetic algorithms

If the rates are low enough, it is likely that some of the offspring produced will be identical to their
parents. Other implementation details are how many offspring are produced by crossover (one or two),
and how many individuals are selected and paired in the mating buffer. In Holland’'s original descrip-
tion, only one pair is selected for mating per cycle. The pseudocode for the genetic algorithm is as follows:

begin
t =0;
initialize P(t);
evaluate structures in P(t);
while termination condition not satisfied do
begin
t =t + 1;
select_repro C(t) from P(t-1);
recombine and mutate structures in C(t) forming C’(t);
evaluate structures in C’ (t);
select_replace P(t) from C’(t) and P(t-1);
end
end

After the new offspring have been created via the genetic operators the two populations of parents and
children must be merged to create a new population. Since most GAs maintain a fixed-sized population
M, this means that a total d#f individuals need to be selected from the parent and child populations to
create a new population. One possibility is to use all the children generated (assuming that the number is
not greater thar/) and randomly select (without any bias) individuals from the old population to bring
the new population up to siz&. If only one or two new offspring are produced, this in effect means
randomly replacing one or two individuals in the old population with the new offspring. (This is what
Holland’s original proposal did.) On the other hand, if the number of offspring created is eqial to
then the old parent population is completely replaced by the new population.

There are several opportunities for biasing selection: selection for reproduction (or mating) and
selection from the parent and child populations to produce the new population. The GAs most closely
associated with Holland do all their biasing at the reproduction selection stage. Even among these GAs,
however, there are a number of variations. If reproduction with emphasis is used, then the probability
of an individual being chosen is a function of its observed fitness. A straightforward way of doing this
would be to total the fitness values assigned to all the individuals in the parent population and calculate
the probability of any individual being selected by dividing its fithess by the total fithess. One of the
properties of this way of assigning probabilities is that the GA will behave differently on functions that
seem to be equivalent from an optimization point of view such asax? andy = ax?+b. If the b value
is large in comparison to the differences in the value produced bythéerm, then the differences in the
probabilities for selecting the various individuals in the population will be small, and selection pressure will
be very weak. This often happens as the population converges upon a narrow range of values. One way
of avoiding this behavior is tecalethe fitness function, typically to the worst individual in the populationz.2
(De Jong 1975). Hence the measure of fitness used in calculating the probability for selecting an individual
is not the individual’'s absolute fitness, but its fithess relative to the worst individual in the population.

Although scaling can eliminate the problem of not enough selection pressure, often GAs using fitness
proportional selection suffer from the opposite problem—too much selection pressure. If an individual is
found which is much better than any other, the probability of selecting this individual may become quite
high (especially if scaling to the worst is used). There is the danger that many copies of this individual
will be placed in the mating buffer, and this individual (and its similar offspring) will rapidly take over the
population (premature convergence). One way around this is to replace fitness proportional selection with
ranked selectiorfWhitley 1989). The individuals in the parent population are ranked, and the probac1y
of selection is a linear function of rank rather than fitness, where the ‘steepness’ of this function is an
adjustable parameter.

Another popular method of performing selectiontasirnament selectiofGoldberg and Deb 1991)c23
A small subset of individuals is chosen at random, and then the best individual (or two) in this set is (are)
selected for the mating buffer. Tournament selection, like rank selection, is less subject to rapid takeover
by good individuals, and the selection pressure can be adjusted by controlling the size of the subset used.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.22

Genetic algorithms

Another common variation of those GAs that rely upon reproduction selection for their main source
of selection bias is to maintain one copy of the best individual found so far (De Jong 1975). This is
referred to as thelitist strategy It is actually a method of biased parent selection, where the best member
of the parent population is chosen and all but one of xhenembers of the child population are chosen.
Depending upon the implementation, the selection of the child to be replaced by the best individual from
the parent population may or may not be biased.

A number of GA variations make use of biased replacement selection. Whitley's GENITOR, for
example, creates one child each cycle, selecting the parents using ranked selection, and then replacing the
worst member of the population with the new child (Whitley 1989). Syswerda’s steady-state GA creates
two children each cycle, selecting parents using ranked selection, and then stochastically choosing two
individuals to be replaced, with a bias towards the worst individuals in the parent population (Syswerda
1989). Eshelman’s CHC uses unbiased reproductive selection by randomly pairing all the members of
the parent population, and then replacing the worst individuals of the parent population with the better
individuals of the child population. (In effect, the offspring and parent populations are merged and the
best M (population size) individuals are chosen.) Since the new offspring are only chosen by CHC if
they are better than the members of the parent population, the selection of both the offspring and parent
populations is biased (Eshelman 1991).

These methods of replacement selection, and especially that of CHC, resemfletthg ES method c2.4.4
of selection sometimes originally used by evolution strategies (ESsk@& al 1991). Fromu parentsi
offspring are produced; the parents and. offspring are merged; and the begstindividuals are chosen
to form the new parent population. The other ES selection method).) ES, places all the bias in the2.4.4
child selection stage. In this case,parents produce offspring (. > w), and the besp offspring are
chosen to replace the parent populationiiiénbein’s breeder GA also uses this selection mechanism
(Muhlenbein and Schlierkamp-Voosen 1993).

Often a distinction is made betweganerationakndsteady-stat&sAs. Unfortunately, this distinctionc2.7.3
tends to merge two properties that are quite independent: whether the replacement strategy of the GA is
biased or not and whether the GA produces one (or two) versus many (usfiptljfspring each cycle.
Syswerda’s steady-state GA, like Whitley's GENITOR, allows only one mating per cycle and uses a
biased replacement selection, but there are also GAs that combine multiple matings per cycle with biased
replacement selection (CHC) as well as a whole class of E5$ £) ES). Furthermore, the GA described
by Holland (1975) combined a single mating per cycle and unbiased replacement selection. Of these two
features, it would seem that the most significant is the replacement strategy. De Jong and Sarma (1993)
found that the main difference between GAs allowing many matings versus few matings per cycle is that
the latter have a higher variance in performance.

The choice between a biased and an unbiased replacement strategy, on the other hand, is a major
determinant of GA behavior. First, if biased replacement is used in combination with biased reproduction,
then the problem of premature convergence is likely to be compounded. (Of course this will depend upon
other factors, such as the size of the population, whether ranked selection is used, and, if so, the setting
of the selection bias parameter.) Second, the obvious shortcoming of unbiased replacement selection can
turn out to be a strength. On the negative side, replacing the parents by the children, with no mechanism
for keeping those parents that are better than any of the children, risks losing, perhaps forever, very good
individuals. On the other hand, replacing the parents by the children can allow the algorithm to wander,
and it may be able to wander out of a local minimum that would trap a GA relying upon biased replacement
selection. Which is the better strategy cannot be answered except in the context of the other mechanisms
of the algorithm (as well as the nature of the problem being solved). Both Syswerda’s steady-state GA and
Whitley’s GENITOR combine a biased replacement strategy with a mechanism for eliminating children
which are duplicates of any member in the parent population. CHC uses unbiased reproductive selection,
relying solely upon biased replacement selection as its only source of selection pressure, and uses several
mechanisms for maintaining diversity (not mating similar individuals and seeded restarts), which allow it
to take advantage of the preserving properties of a deterministic replacement strategy without suffering
too severely from its shortcomings.

B1.2.3 Mutation and crossover

All evolutionary algorithms work by combining selection with a mechanism for producing variations.
The best known mechanism for producing variationmigtation where one allele of a gene is randomé3.2

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.23

Genetic algorithms

replaced by another. In other words, new trial solutions are created by making small, random changes in
the representation of prior trial solutions. If a binary representation is used, then mutation is achieved by
‘flipping’ bits at random. A commonly used rate of mutation is one over the string length. For example,

if the chromosome is one hundred bits long, then the mutation rate is set so that each bit has a probability
of 0.01 of being flipped.

Although most GAs use mutation along with crossover, mutation is sometimes treated as if it were
a background operator for assuring that the population will consist of a diverse pool of alleles that can
be exploited by crossover. For many optimization problems, however, an evolutionary algorithm using
mutation without crossover can be very effective (Mathias and Whitley 1994). This is not to suggest that
crossover never provides an added benefit, but only that one should not disparage mutation.

The intuitive idea behind crossover is easy to state: given two individuals who are highly fit, but
for different reasons, ideally what we would like to do is create a new individual that combines the best
features from each. Of course, since we presumably do not know which features account for the good
performance (if we did we would not need a search algorithm), the best we can do is to recombine features
at random. This is how crossover operates. It treats these features as building blocks scattered throughout
the population and tries to recombine them into better individuals via crossover. Sometimes crossover
will combine the worst features from the two parents, in which case these children will not survive for
long. But sometimes it will recombine the best features from two good individuals, creating even better
individuals, provided these features are compatible.

Suppose that the representation is the classical bitstring representation: individual solutions in our
population are represented by binary strings of zeros and ones of IEngtHGA creates new individuals
via crossover by choosing two strings from the parent population, lining them up, and then creating two
new individuals by swapping the bits at random between the strings. (In some GAs only one individual
is created and evaluated, but the procedure is essentially the same.) Holland originally proposed that the
swapping be done in segments, not bit by bit. In particular, he proposed that a single locus be chosen
at random and all bits after that point be swapped. This is knowon&spoint crossover Another c33
common form of crossover is two-point crossover which involves choosing two points at random and
swapping the corresponding segments from the two parents defined by the two points. There are of course
many possible variants. The best known alternative to one- and two-point crossowdioisn crossover
Uniform crossover randomly swaps individual bits between the two parents (i.e. exchanges between the
parents the values at loci chosen at random).

Following Holland, GA behavior is typically analyzed in terms sdhemata Given a space ofs2s
structures represented by bitstrings of lendthschemata represent partitions of the search space. If
the bitstrings of length are interpreted as vectors in ladimensional hypercube, then schemata are
hyperplanes of the space. A schema can be represented by a stfirgyotfbols from the set 0, 1, # where
is a ‘wildcard’ matching either 0 or 1. Each string of lendthmay be considered a sample from the
partition defined by a schema if it matches the schema at each of the defined positions (i.e. the non-#
loci). For example, the string 011001 instantiates the schema 01##0#. Each string, in fact, instdntiates 2
schemata.

Two important schema properties are order and defining length. The order of a schema is the number
of defined loci (i.e. the number of non-# symbols). For example the schema #01##1### is an order 3
schema. The defining length is the distance between the loci of the first and last defined positions. The
defining length of the above schema is four since the loci of the first and last defined positions are 2 and
6.

From the hyperplane analysis point of view, a GA can be interpreted as focusing its search via
crossover upon those hyperplane partition elements that have on average produced the best-performing
individuals. Over time the search becomes more and more focused as the population converges since
the degree of variation used to produce new offspring is constrained by the remaining variation in the
population. This is because crossover has the property that Radcliffe refers to as respect—if two parents
are instances of the same schema, the child will also be an instance (Radcliffe 1991). If a particular schema
conveys high fitness values to its instances, then the population is likely to converge on the defining bits
of this schema. Once it so converges, all offspring will be instances of this schema. This means that as
the population converges, the search becomes more and more focused on smaller and smaller partitions of
the search space.

It is useful to contrast crossover with mutation in this regard. Whereas mutation creates variations by
flipping bits randomly, crossover is restricted to producing variations at those loci on which the population

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.24

Genetic algorithms

has not yet converged. Thus crossover, and especially bitwise versions of crossover, can be viewed as a
form of adaptive mutation, or convergence-controlled variation (CCV).

The standard explanation of how GAs operate is often referred to asufliéng block hypothesisg2.5.3
According to this hypothesis, GAs operate by combining small building blocks into larger building blocks.
The intuitive idea behind recombination is that by combining features (or building blocks) from two good
parents crossover will often produce even better children; for example, a mother with genes for sharp teeth
and a father with genes for sharp claws will have the potential of producing some children who have both
features. More formally, the building blocks are the schemata discussed above.

Loosely interpreted, the building block hypothesis is another way of asserting that GAs operate through
a process of CCV. The building block hypothesis, however, is often given a stronger interpretation. In
particular, crossover is seen as having the added value of being able to recombine middle-level building
blocks that themselves cannot be built from lower-level building blocks (wherel refers to either
the defining length or order, depending on the crossover operator). We shall refer to this explanation
as to how GAs work as the strict building block hypothesis (SBBH), and contrast it with the weaker
convergence-controlled variation hypothesis (CCVH).

To differentiate these explanations, it is useful to compare crossover with an alternative mechanism
for achieving CCV. Instead of pairing individuals and swapping segments or bits, a more direct method of
generating CCVs is to use the distribution of the allele values in the population to generate new offspring.
This is what Syswerda’s bitwise simulated crossover (BSC) algorithm does (Syswerda 1993). In effect,
the distribution of allele values is used to generate a vector of allele probabilities, which in turn is used
to generate a string of ones and zeros. Baluja’s PBIL goes one step further and eliminates the population,
and simply keeps a probability vector of allele values, using an update rule to modify it based on the
fithess of the samples generated (Baluja 1995).

The question is, if one wants to take advantage of CCV with its ability to adapt, why use crossover,
understood as involving pairwise mating, rather than one of thesiviseschemes? One possible answer
is that the advantage is only one of implementation. The pairwise implementation does not require any
centralized bookkeeping mechanism. In other words, crossover (using pairwise mating) is simply nature’s
way of implementing a decentralized version of CCV.

A more theoretically satisfying answer is that pairwise mating is better able to preserve essential
linkages among the alleles. One manifestation of this is that there is no obvious way to implement a
segment-based version of poolwise mating, but this point also applies if we compare poolwise mating
with only crossover operators that operate at the bit level, such as uniform crossover. If two allele values
are associated in some individual, the probability of these values being associated in the children is much
higher for pairwise mating than poolwise. To see this consider an example. Suppose the population size is
100, and that an individual of average fitness has some unique combination of allele values, say all ones
in the first three positions. This individual will have a 0.01 probability (one out of 100) of being selected
for mating, assuming it is of average fitness. If uniform crossover is being used, with a 0.5 probability of
swapping the values at each locus, and one offspring is being produced per mating, then the probability
of the three allele values being propagated without disruption has a lower bound of 0.8%)5 Tbis is
assuming the worst-case scenario that every other member in the population has all zeros in the first three
positions (and ignoring the possibility of mating this individual with a copy of itself). Thus, the probability
of propagating this schema is 0.001250(Dx 0.125). On the other hand, if BSC is being used, then the
probability of propagating this schema is much lower. Since there is only one instance of this individual
in the population, there is only one chance in 100 of propagating each allele and only 0.0000a8)L (0
of propagating all three.

Ultimately, one is faced with a tradeoff: the enhanced capability of pairwise mating to propagate
difficult-to-find schemata is purchased at the risk of increased hitchhiking; that is, the population may
prematurely converge on bits that do not convey additional fitness but happen to be present in the individuals
that are instances of good schemata. According to both the CCVH and the SBBH, crossover must not
simply preserve and propagate good schemata, but must also recombine them with other good schemata.
Recombination, however, requires that these good schemata be tried in the context of other schemata. In
order to determine which schemata are the ones contributing to fitness, we must test them in many different
contexts, and this involves prying apart the defining positions that contribute to fitness from those that
are spurious, but the price for this reduced hitchhiking is higher disruption (the breaking up of the good
schemata). This price will be too high if the algorithm cannot propagate critical, highly valued, building
blocks or, worse yet, destroys them in the next crossover cycle.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.25

Genetic algorithms

This tradeoff applies not only to the choice between poolwise and pairwise methods of producing
variation, but also to the choice between various methods of crossover. Uniform crossover, for example,
is less prone to hitchhiking than two-point crossover, but is also more disruptive, and poolwise mating
schemes are even more disruptive than uniform crossover. In Holland’'s original analysis this tradeoff
between preserving the good schemata while performing vigorous recombination is downplayed by using
a segment-based crossover operator such as one- or two-point crossover and assuming that the important
building blocks are of short defining length. Unfortunately, for the types of problem to which GAs are
supposedly ideally suited—those that are highly complex with no tractable analytical solution—there is
no a priori reason to assume that the problem will, or even can, be represented so that important building
blocks will be those with short defining length. To handle this problem Holland proposed an inversion
operator that could reorder the loci on the string, and thus be capable of finding a representation that had
building blocks with short defining lengths. The inversion operator, however, has not proven sufficiently
effective in practice at recoding strings on the fly. To overcome this linkage problem, Goldberg has
proposed what he callmessy GAsbut, before discussing messy GAs, it will be helpful to describe a ctass
of problems that illustrate these linkage issues: deceptive problems.

Deceptionis a notion introduced by Goldberg (1987). Consider two incompatible schemata, Azand
B. A problem is deceptive if the average fithess of A is greater than B even though B includes a string that
has a greater fitness than any member of A. In practice this means that the lower-order building blocks lead
the GA away from the global optimum. For example, consider a problem consisting of five-bit segments
for which the fitness of each is determined as follows (Liepins and Vose 1991). Fooeatte segment
receives a point, and thus five points for alles but for all zerosit receives a value greater than five.

For problems where the value of the optimum is between five and eight the problem is fully deceptive
(i.e. all relevant lower-order hyperplanes lead toward the deceptive attractor). The total fithess is the sum
of the fitness of the segments.

It should be noted that it is probably a mistake to place too much emphasis on the formal definition
of deception (Grefenstette 1993). What is really important is the concept of being misled by the lower-
order building blocks. Whereas the formal definition of deception stresses the average fithess of the
hyperplanes taken over the entire search space, selection only takes into account the observed average
fitness of hyperplanes (those in the actual population). The interesting set of problems is those that are
misleading in that manipulation of the lower-order building blocks is likely to lead the search away from
the middle-level building blocks that constitute the optimum solution, whether these middle-level building
blocks are deceptive in the formal sense or not. In the above class of functions, even when the value of the
optimum is greater than eight (and so not fully deceptive), but still not very large, e.g. ten, the problem is
solvable by a GA using segment-based crossover, very difficult for a GA using bitwise uniform crossover,
and all but impossible for a poolwise-based algorithm like BSC.

As long as the deceptive problem is represented so that the loci of the positions defining the building
blocks are close together on the string, it meets Holland’s original assumption that the important building
blocks are of short defining length. The GA will be able to exploit this information using one- or two-
point crossover—the building blocks will have a low probability of being disrupted, but will be vigorously
recombined with other building blocks along the string. If, on the other hand, the bits constituting the
deceptive building blocks are maximally spread out on the chromosome, then a crossover operator such as
one- or two-point crossover will tend to break up the good building blocks. Of course, maximally spreading
the deceptive bits along the string is the extreme case, but bunching them together is the opposite extreme.

Since one is not likely to know enough about the problem to be able to guarantee that the building
blocks are of short defining length, segmented crossover loses its advantage over bitwise crossover. It is
true that bitwise crossover operators are more disruptive, but there are several solutions to this problem.
First, there are bitwise crossover operators that are much less disruptive than the standard uniform crossover
operator (Spears and De Jong 1991, Eshelman and Schaffer 1995). Second, the problem of preservation
can often be ameliorated by using some form of replacement selection so that good individuals survive
until they are replaced by better individuals (Eshelman and Schaffer 1995). Thus a disruptive form of
crossover such as uniform crossover can be used and good schemata can still be preserved. Uniform
crossover will still make it difficult to propagate these high-order, good schemata once they are found, but,
provided the individuals representing these schemata are not replaced by better individuals that represent
incompatible schemata, they will be preserved and may eventually be able to propagate their schemata
on to their offspring. Unfortunately, this proviso is not likely to be met by any but low-order deceptive
problems. Even for deceptive problems of order five, the difficulty of propagating optimal schemata is

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.26

Genetic algorithms

such that the suboptimal schemata tend to crowd out the optimum ones.

Perhaps the ultimate GA for tackling deceptive problems is Goldberg’s messy GA (mGA) (Goldberg
et al 1991). Whereas in more traditional GAs the manipulation of building blocks is implicit, mGAs
explicitly manipulate the building blocks. This is accomplished by using variable-length strings that may
be underspecified or overspecified; that is, some bit positions may not be defined, and some positions may
have conflicting specifications. This is what makes mGAs messy.

These strings constitute the building blocks. They consist of a set of position—value pairs.
Overspecified strings are evaluated by a simple conflict resolution strategy such as first-come-first-served
rules. Thus, ((1 0) (2 1) (1 1) (3 0)) would be interpreted as 010, ignoring the third pair, since the first
position has already been defined. Underspecified strings are interpreted by filling in the missing values
using a competitive template, a locally optimal structure. For example, if the locally optimal structure,
found by testing one bit at a time, is 111, then the string ((1 0) (3 0)) would be interpreted by filling in
the value for the (missing) second position with the value of the second position in the template. The
resulting 010 string would then be evaluated.

MGAs have an outer and an inner loop. The inner loop consists of three phases: the initialization,
primordial, and juxtaposition phases. In the initialization phase all substrings of Iérayth created and
evaluated, i.e. all combinations of strings wittdefining positions (wheré is an estimate of the highest
order of deception in the problem). As was explained above the missing values are filled in using the
competitive template. (As will be explained below, the template forithevel of the outer loop is the
solution found at thé& — 1 level.)

In the primordial phase, selection is applied to the population of individuals produced during the
initialization phase without any operators. Thus the substrings that have poor evaluations are eliminated
and those with good evaluations have multiple copies in the resulting population.

In the juxtapositional phase selection in conjunction with cut and splice operators is used to evolve
improved variations. Again, the competitive template is used for filling in missing values, and the first-
come-first-served rule is used for handling overspecified strings created by the splice operator. The cut
and splice operators act much like one-point crossover in a traditional GA, keeping in mind that the strings
are of variable length and may be underspecified or overspecified.

The outer loop is over levels. It starts at the levekof 1, and continues through each level until it
reaches a user-specified stopping criterion. At each level, the solution found at the previous level is used
as the competitive template.

One of the limitations of mGAs as originally conceived is that the initialization phase becomes
extremely expensive as the mGA progresses up the levels. A new variant of the mGA speeds up the
process by eliminating the need to process all the variants in the initialization stage (Gatlbei®93).

The initialization and primordial phases of the original mGA are replaced by a ‘probabilistically complete
initialization’ procedure. This procedure is divided into several steps. During the first step strings of nearly
length L are evaluated (using the template to fill in the missing values). Then selection is applied to these
strings without any operators (much as was done in the primordial phase of the original mGA, but for only

a few generations). Then the algorithm enters a filtering step where some of the genes in the strings are
deleted, and the shortened strings are evaluated using the competitive template. Then selection is applied
again. This process is repeated until the resulting strings are of lénglthen the mGA goes into the
juxtaposition stage like the original mGA. By replacing the original initialization and primordial stages
with stepwise filtering and selection, the number of evaluations required is drastically reduced for problems
of significant size. (Goldbergt al (1993) provide analytical methods for determining the population and
filtering reduction constants.) This new version of the mGA is very effective at solving loosely linked
deceptive problems, i.e. those problems where the defining positions of the deceptive segments are spread
out along the bitstring.

mMGAs were designed to operate according to the SBBH, and deceptive problems illustrate that there
are problems where being able to manipulate building blocks can provide an added value over CCV. It
still is an open question, however, as to how representative deceptive problems are of the types of real-
world problem that GAs might encounter. No doubt, many difficult real-world problems have deceptive
or misleading elements in them. If they did not, they could be easily solved by local search methods.
However it does not necessarily follow that such problems can be solved by a GA that is good at solving
deceptive problems. The SBBH assumes that the misleading building blocks will exist in the initial
population, that they can be identified early in the search before they are lost, and that the problem can
be solved incrementally by combining these building blocks, but perhaps the building blocks that have

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.277

Genetic algorithms

misleading alternatives have little meaning until late in the search and so cannot be expected to survive in
the population.

Even if the SBBH turns out not to be as useful an hypothesis as originally supposed, the increased
propagation capabilities of pairwise mating may give a GA (using pairwise mating) an advantage over a
poolwise CCV algorithm. To see why this is the case it is useful to define the prototypical individual for a
given population: for each locus we assign a one or a zero depending upon which value is most frequent in
the population (randomly assigning a value if they are equally frequent). Suppose the population contains
some maverick individual that is quite far from the prototypical individual although it is near the optimum
(as measured by Hamming distance) but is of only average fitness. Since an algorithm using a poolwise
method of producing offspring will tend to produce individuals that are near the prototypical individual,
such an algorithm is unlikely to explore the region around the maverick individual. On the other hand,
a GA using pairwise mating is more likely to explore the region around the maverick individual, and so
more likely to discover the optimum. Ironically, pairwise mating is, in this respect, more mutation-like
than poolwise mating. While pairwise mating retains the benefits of CCV, it less subject to the majoritarian
tendencies of poolwise mating.

B1.2.4 Representation

Although GAs typically use a bitstring representation, GAs are not restricted to bitstrings. A number of
early proponents of GAs developed GAs that use other representations, stedl-ealued parametersci.3
(Davis 1991, Janikow and Michalewicz 1991, Wright 199agrmutations(Davis 1985, Goldberg anct1.4
Lingle 1985, Grefenstettet al 1985), andtreelike hierarchies(Antonisse and Keller 1987). Koza'ti.e
genetic programmingGP) paradigm (Koza 1992) is a GA-based method for evolving programs, wihere
the data structures are LISP S-expressions, and crossover creates new LISP S-expressions (offspring) by
exchanging subtrees from the two parents.

In the case of combinatorial problems such asttageling salesman probleTSP), a number ofce.s
order-based or sequencing crossover operators have been proposed. The choice of operator will depend
upon one’s goal. If the goal is to solve a TSP, then preserving adjacency information will be the priority,
which suggests a crossover operator that operates on common edges (links between cities shared by the
two parents) (Whitleyet al 1989). On the other hand, if the goal is to solvechedulingproblem, thenris
preserving relative order is likely to be the priority, which suggests an order preserving crossover operator.
Syswerda’s order crossover operator (Syswerda 1991), for example, chooses several positions at random
in the first parent, and then produces a child so that the relative order of the chosen elements in the first
parent is imposed upon the second parent.

Even if binary strings are used, there is still a choice to be made as to which binary coding scheme
to use for numerical parameters. Empirical studies have usually found that Gray code is superior to the
standard power-of-two binary coding (Caruana and Schaffer 1988), at least for the commonly used test
problems. One reason is that the latter introduces Hamming cliffs—two numerically adjacent values may
have bit representations that are many bits apart (ub t01). This will be a problem if there is some
degree of gradualness in the function, i.e. small changes in the variables usually correspond to small
changes in the function. This is often the case for functions with numeric parameters.

As an example, consider a five-bit parameter, with a range from 0 to 31. If it is encoded using the
standard binary coding, then 15 is encoded as 01111, whereas 16 is encoded as 10000. In order to move
from 15 to 16, all five bits need to be changed. On the other hand, using Gray coding, 15 would be
represented as 01000 and 16 as 11000, differing only by 1 bit.

When choosing an alternative representation, it is critical that a crossover operator be chosen that
is appropriate for the representation. For example, if real-valued parameters are used, then a possible
crossover operator is one that for each parameter uses the parameter values of the two parents to define an
interval from which a new parameter is chosen (Eshelman and Schaffer 1993). As the GA makes progress
it will narrow the range over which it searches for new parameter values.

If, for the chosen representation and crossover operator, the building blocks are unlikely to be
instantiated independently of each other in the population, then a GA may not be appropriate. This
problem has plagued finding crossover operators that are good for solving TSPs. The natural building
blocks, it would seem, are subtours. However, what counts as a good subtour will almost always depend
upon what the other subtours are. In other words, two good, but suboptimal solutions to a TSP may not

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.28

Genetic algorithms

have many subtours (other than very short ones) that are compatible with each other so that they can be
spliced together to form a better solution. This hurdle is not unique to combinatorial problems.

Given the importance of the representation, a number of researches have suggested methods for
allowing the GA to adapt its own coding. We noted earlier that Holland proposed the inversion operator
for rearranging the loci in the string. Another approach to adapting the representation is Shaefer's ARGOT
system (Shaefer 1987). ARGOT contains an explicit parameterized representation of the mappings from
bitstrings to real numbers and heuristics for triggering increases and decreases in resolution and for shifts in
the ranges of these mappings. A similar idea is employed by Schraudolph and Belew (1992) who provide
a heuristic for increasing the resolution triggered when the population begins to converge. Mathias and
Whitley (1994) have proposed what they call delta coding. When the population converges, the numeric
representation is remapped so that the parameter ranges are centered around the best value found so far,
and the algorithm is restarted. There are also heuristics for narrowing or extending the range.

There are also GAs with mechanisms for dynamically adapting the rate at which GA operators are
used or which operator is used. Davis, who has developed a number of nontraditional operators, proposed
a mechanism for adapting the rate at which these operators are applied based on the past success of these
operators during a run of the algorithm (Davis 1987).

B1.2.5 Parallel genetic algorithms

All evolutionary algorithms, because they maintain a population of solutions, are naturally parallelizable.
However, because GAs use crossover, which is a way of sharing information, there are two other variations
that are unique to GAs (Gordon and Whitley 1993). The first, most straightforward, method is to simply
have one global population with multiple processors for evaluating individual solutions. The second
method, often referred to as tland modelalternatively, the migration or coarse-grain model), maintatss
separate subpopulations. Selection and crossover take place in each subpopulation in isolation from the
other subpopulations. Every so often an individual from one of the subpopulations is allowed to migrate
to another subpopulation. This way information is shared among subpopulations.

The third method, often referred to as teighborhood modéhlternatively, the diffusion or fine-grairce.4
model), maintains overlapping neighborhoods. The neighborhood for which selection (for reproduction and
replacement) applies is restricted to a region local to each individual. What counts as a neighborhood will
depend upon the neighborhood topology used. For example, if the population is arranged upon some type
of spherical structure, individuals might be allowed to mate with (and forced to compete with) neighbors
within a certain radius.

B1.2.6 Conclusion

Although the above discussion has been in the context of GAs as potential function optimizers, it should
be pointed out that Holland’s initial GA work was in the broader context of exploring GAs as adaptive
systems (De Jong 1993). GAs were designed to be a simulation of evolution, not to solve problems. Of
course, evolution has come up with some wonderful designs, but one must not lose sight of the fact that
evolution is an opportunistic process operating in an environment that is continuously changing. Simon has
described evolution as a process of searching where there is no goal (Simon 1983). This is not to question
the usefulness of GAs as function optimizers, but only to emphasize that the perspective of function
optimization is somewhat different from that of adaptation, and that the requirements of the corresponding
algorithms will be somewhat different.

References

Antonis® H J and Kelle K S 1987 Genetic operators for high-level knowledge representalloos 2nd Int. Conf.
on Genetic Algorithms (Cambridge, MA, 1985 J J Grefenstette (Hillsdale, NJ: Erbaum) pp 69-76

Back T, Hoffmeister F and Schwefel H 1991 A survey of evolution stratégies. 4th Int. Conf. on Genetic Algorithms
(San Diego, CA, 19919d R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 2-9

Baluja S 1995An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heur@gicsgie
Mellon University School of Computer Science Technical Report CMU-CS-95-193

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.29

Genetic algorithms

Caruam R A and SchaffeJ D 1988 Representation and hidden bias: Gray vs. binary coding for genetic algorithms
Proc. 5th Int. Conf. on Machine LearningBan Mateo, CA: Morgan Kaufmann) pp 153-61

Davis L 1985 Applying adaptive algorithms to epistatic domadngc. Int. Joint Conference on Artificial Intelligence
pp 162-4

——1987 Adaptive operator probabilities in genetic algorithrec. 3rd Int. Conf. on Genetic Algorithms (Fairfax,
VA, 1989)ed J D Schaffer (San Mateo, CA: Morgan Kaufmann) pp 61-9

——1991 Hybridization and numerical representatiile Handbook of Genetic Algorithnesl L Davis (New York:
Van Nostrand Reinhold) pp 61-71

De Jong K 197%An Analysis of the Behavior of a Class of Genetic Adaptive Sysbratoral Thesis, Department of
Computer and Communication Sciences, University of Michigan

——1993 Genetic algorithms are not function optimiz&aundations of Genetic Algorithms @d D Whitley (San
Mateo, CA: Morgan Kaufmann) pp 5-17

De Jong K and Sarma J 1993 Generation gaps revigitachdations of Genetic Algorithms @d D Whitley (San
Mateo, CA: Morgan Kaufmann) pp 19-28

Eshelma L J 1991 The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional
genetic recombinatioRoundations of Genetic Algorithmed G J ERawlins (San Mateo, CA: Morgan Kaufmann)
pp 265-83

Eshelma L J and SchaffeJ D 1993 Real-coded genetic algorithms and interval schefatadations of Genetic
Algorithms 2ed D Whitley (San Mateo, CA: Morgan Kaufmann) pp 187-202

——1995 Productive recombination and propagating and preserving schematdations of Genetic Algorithms 3
ed D Whitley (San Mateo, CA: Morgan Kaufmann) pp 299-313

Goldbeg D E 1987 Simple genetic algorithms and the minimal, deceptive prolenetic Algorithms and Simulated
Annealinged L Davis (San Mateo, CA: Morgan Kaufmann) pp 74-88

——1989Genetic Algorithms in Search, Optimization, and Machine Learr{Rgading, MA: Addison-Wesley)

Goldbeg D E and Deb K 1991 A comparative analysis of selection schemes used in genetic algéidthmastions
of Genetic Algorithmsed G J ERawlins (San Mateo, CA: Morgan Kaufmann) pp 69-93

Goldberg D E, Deb K, Kargupta H and Harik G 1993 Rapid, accurate optimization of difficult problems using fast
messy genetic algorithniroc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, 1$3BF Forrest
(San Mateo, CA: Morgan Kaufmann) pp 56-64

Goldberg D E, Deb K and Korb B 1991 Don'’t worry, be megsypc. 4th Int. Conf. on Genetic Algorithms (San Diego,
CA, 1991)ed R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 24-30

Goldbeg D E and Linge R L 1985 Alleles, loci, and the traveling salesman probRnwc. 1st Int. Conf. on Genetic
Algorithms (Pittsburgh, PA, 198%d J J Grefenstette (Hillsdale, NJ: Erbaum) pp 154-9

Gordm V S and Whitley 1993 Serial and parallel genetic algorithms and function optinfzecs 5th Int. Conf. on
Genetic Algorithms (Urbana-Champaign, IL, 1998) S Forrest (San Mateo, CA: Morgan Kaufmann) pp 177-83

Grefenstett J J 1993 Deception considered harnffolindations of Genetic Algorithms &d D Whitley (San Mateo,
CA: Morgan Kaufmann) pp 75-91

Grefenstette J J, Gopal R, Rosnaal8 J and Van Gucht D 1985 Genetic algorithms for the traveling salesman problem
Proc. 1st Int. Conf. on Genetic Algorithms (Pittsburgh, PA, 1988)J J Grefenstette (Hillsdale, NJ: Erbaum)
pp 160-8

Holland J H 1975Adaptation in Natural and Artificial Systen{g&nn Arbor, MI: University of Michigan Press)

Janikav C Z and Michalewicz Z 1991 An experimental comparison of binary and floating point representations
in genetic algorithmdProc. 4th Int. Conf. on Genetic Algorithms (San Diego, CA, 1984)R K Belew and
L B Booker (San Mateo, CA: Morgan Kaufmann) pp 31-6

Koza J 1992Genetic Programming: on the Programming of Computers by Means of Natural Selection and Genetics
(Cambridge, MA: MIT Press)

Liepins G E and Vose M D 1991 Representational issues in genetic optimizhtiexp. Theor. Al2 101-15

Mathies K E and Whitly L D 1994 Changing representations during search: a comparative study of delta coding
Evolutionary Comput2

Muhlenbein H and Schlierkamp-Voosen 1993 The science of breeding and its application to the breeder genetic
algorithm Evolutionary Computl

Radcliffe N J 1991 Forma analysis and random respectful recombinBtion. 4th Int. Conf. on Genetic Algorithms
(San Diego, CA, 19919d R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 222-9

Schaffer J D, Eshelnmal J and Offutt D 1991 Spurious correlations and premature convergence in genetic algorithms
Foundations of Genetic Algorithmesd G J ERawlins (San Mateo, CA: Morgan Kaufmann) pp 102-12

Schraudolp N N and Belev R K 1992 Dynamic parameter encoding for genetic algoritiviashine Learningd 9-21

Shaefer C G 1987 The ARGOT strategy: adaptive representation genetic optimizer tedBeigetic Algorithms
and Their Applications: Proc. 2nd Int. Conf. on Genetic Algorithms (Cambridge, MA, 1887)J Grefenstette
(Hillsdale, NJ: Erlbaum) pp 50-8

Siman H A 1983 Reason in Human AffairéStanford, CA: Stanford University Press)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.210

Genetic algorithms

Speas W M and De Jong K A 1991 On the virtues of parameterized uniform crosguower 4th Int. Conf. on Genetic
Algorithms (San Diego, CA, 199&} R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 230-6

Syswerda G 1989 Uniform crossover in genetic algoritifnsc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, VA,
1989)ed J D Schaffer (San Mateo, CA: Morgan Kaufmann) pp 2-9

——1991 Schedule optimization using genetic algoritid@dbook of Genetic Algorithmed L Davis (New York:
Van Nostrand Reinhold) pp 332-49

——1993 Simulated crossover in genetic algoritnRmaindations of Genetic Algorithmsé&d D Whitley (San Mateo,
CA: Morgan Kaufmann) pp 239-55

Whitley D 1989 The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is
bestProc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, VA, 19&89) J D Schaffer (San Mateo, CA: Morgan
Kaufmann) pp 116-21

Whitley D, Starkweather T and Fuquay D 1989 Scheduling problems and traveling salesmen: the genetic edge
recombination operatoProc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, VA, 1989) J D Schaffer (San
Mateo, CA: Morgan Kaufmann) pp 116-21

Wright A 1991 Genetic algorithms for real parameter optimizakonndations of Genetic Algorithnesd G J ERawlins
(San Mateo, CA: Morgan Kaufmann) pp 205-18

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.211

Evolutionary Algorithms and Their Standard Instances

B1.3 Evolution strategies

Glnter Rudolph

Abstract

This section provides a description of evolution strategies (ESs) as a special instance of
evolutionary algorithms. After the presentation of the archetype of ESs, accompanied

with some historical remarks, contemporary ESs (the standard instances) are described in
detail. Finally, the design and potential fields of application of nested ESs are discussed.

B1.3.1 The archetype of evolution strategies

Minimizing the total drag of three-dimensional slender bodies in a turbulent flow was, and still is, a general
goal of research in institutes of hydrodynamics. Three students (Peter Bienert, Ingo Rechenberg, and
Hans-Paul Schwefel) met each other at such an institute, the HerntdtimgEr Institute of the Technical
University of Berlin, in 1964. Since they were amazed not only by aerodynamics, but also by cybernetics,
they hit upon the idea to solve the analytically (and at that time also numerically) intractable form design
problem with the help of some kind of robot. The robot should perform the necessary experiments by
iteratively manipulating a flexible model positioned at the outlet of a wind tunnelexf@rimentum crucis
was set up with a two-dimensional foldable plate. The iterative search strategy—first performed by hand,
a robot was developed later on by Peter Bienert—was expected to end up with a flat plate: the form with
minimal drag. But it did not, since a one-variable-at-a-time as well as a discrete gradient-type strategy
always got stuck in a local minimum: an S-shaped folding of the plate. Switching to small random
changes that were only accepted in the case of improvements—an idea of Ingo Rechenberg—brought
the breakthrough, which was reported at the joint annual meeting of WGLR and DGRR in Berlin, 1964
(Rechenberg 1965). The interpretation of binomially distributed changes as mutations and of the decision
to step back or not as selection (on 12 June 1964) was the seed for all further developments leading to
evolution strategies (ESs) as they are known today. So much about the birthE&the

It should be mentioned that the domain of the decision variables was not fixed or even restricted to
real variables at that time. For example, the experimental optimization of the shape of a supersonic two-
phase nozzle by means of mutation and selection required discrete variables and mutations (Klockgether
and Schwefel 1970) whereas first numerical experiments with the early ES on a Zuse Z 23 computer
(Schwefel 1965) employed discrete mutations of real variables. The apparent fixation of ESs to Euclidean
search spaces nowadays is probably due to the fact that Rechenberg (1973) succeeded in analyzing the
simple version in Euclidean space with continuous mutation for several test problems.

Within this setting the archetype of ESs takes the following form. An individuadonsisting of
an elementX e R”" is mutated by adding a normally distributed random vedor- N(O, |,) that is
multiplied by a scalas > 0 (I, denotes the unit matrix with rank). The new point is accepted if it
is better than or equal to the old one, otherwise the old point passes to the next iteration. The selection
decision is based on a simple comparison of the objective function values of the old and the new point.
Assuming that the objective functiofi : R” — R is to be minimized, the simple ES, starting at some
point X, € R”, is determined by the following iterative scheme:

X, + 0, Z, if fXi+0,Z) < f(X))

X1 = { X, otherwise (B1.3.1)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.31

Evolution strategies

wheret € Ny denotes the iteration counter and whétg : ¢+ > 0) is a sequence of independent and
identically distributed standard normal random vectors.

The general algorithmic scheme (B1.3.1) was not a novelty: Schwefel (1995, pp 94-5), presents a
survey of forerunners and related versions of (B1.3.1) since the late 1950s. Most methods differed in the
mechanism to adjust the paramedgrthat is used to control the strength of the mutations (i.e. the length
of the mutation steps in-dimensional space). Rechenberg’s solution to control paramgtier known
as the 15 success rule: Increase if the relative frequency of successful mutations over some period
in the past is larger than/B, otherwise decrease. Schwefel (1995, p 112), proposed the following
implementation. Let € N be the generation (or mutation) counter and assumer thatOn.

(i) If t modn = O then determine the numberof successful mutations that have occurred during the
stepst — 10n to r — 1.

(iiy If s < 2n then multiply the step lengths by the factaBb.

(i) If s > 2n then divide the step lengths by the facto8®.

First ideas to extend the simple ES (B1.3.1) can be found in the book by Rechenberg (1973, pp 78-86). The
population consists oft > 1 parents. Two parents are selected at random and recombined by multipoint
crossover and the resulting individual is finally mutated. The offspring is added to the population. The
selection operation chooses tjpebest individuals out of the: + 1 in total to serve as parents of the

next iteration. Since the search space was binary, this ES was exactly the same evolutionary algorithm as
became known later under the testeady-state genetic algorithniThe usage of this algorithmic scheme.7.1
for Euclidean search spaces poses the problem of how to control the step length control pasameter
Therefore, the ‘steady-state’ ES is no longer in use.

B1.3.2 Contemporary evolution strategies

The general algorithmic frame of contemporary ESs is easily presented by the symbolic notation introduced
in Schwefel (1977). The abbreviatign + 1) ES denotes an ES that generatesffspring fromu parents

and selects thg best individuals from the. + A individuals (parents and offspring) in total. This notation

can be used to express the simple ES(by 1) ES and the ‘steady-state’ ES gy + 1) ES. Since the

latter is not in use it is convention that the abbreviatiprt- A) ES always refers to an ES parametrized
according to the relation £ u < A < oo.

The abbreviation(,) ES denotes an ES that generatesffspring from . parents but selects the
wu best individuals only from the. offspring. As a consequencg,must be necessarily at least as large
as u. However, since the parameter setting= A represents nothing more than a random walk, it is
convention that the abbreviatiqm,) ES always refers to an ES parametrized according to the relation
1<pu<i<oo.

Apart from the population concept contemporary ESs differ from early ESs in that an individual
consists of an element € R" of the search space plus several individual parameters controlling the
individual mutation distribution. Usually, mutations are distributed according to a multivariate normal
distribution with zero mean and some covariance mdgrithat is symmetric and positive definite. Unless
matrix C is a diagonal matrix, the mutations in each coordinate directiorcamelated (Schwefel 1995,

p 240). It was shown in Rudolph (1992) that a matrix is symmetric and positive definite if and only if it
is decomposable vi€ = (ST)’'ST whereS is a diagonal matrix with positive diagonal entries and

n=1 n
Tzl_[1_[R;j (@) (B1.3.2)

i=1 j=it1

is an orthogonal matrix built by a product ef(n — 1)/2 elementary rotation matrice®;; with angles
wr € (0,27]. An elementary rotation matriR;;(w) is a unit matrix where four specific entries are
replaced by-; = r;; = cosw andr;; = —r;; = —sinw.

As a consequence, (n — 1)/2 angles and: scaling parameters are sufficient to generate arbitrary
correlated normal random vectors with zero mean and covariance MatsiXST)'ST via Z = T'S'N,
where N is a standard normal random vector (since matrix multiplication is associative, random Zector
can be created in @) time by multiplication from right to left).

There remains, however, the question of how to choose and adjust these individual strategy parameters.
The idea that a population-based ES could be able to aglaptlividually by including these parameters

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.32

Evolution strategies

in the mutation—selection process came up early (Rechenberg 1973, pp 132-7). Although first experiments
with the (u + 1) ES provided evidence that this approach works in principle, the first really successful
implementation of the idea dfelf-adaptationwas presented by Schwefel (1977) and it is based onct.e
observation that a surplus of offspring (i2e> w) is a good advice to establish self-adaptation of individual
parameters.

To start with a simple case l&€ = o21,. Thus, the only parameter to be self-adapted for each
individual is the step length control parameter For this purpose let the the genome of each individual
be represented by the tuplX, o) € R" x R, that undergoes the genetic operators. Now mutation is a
two-stage operation:

0111 = 0; EXP(TZ7)
Xip1=Xi+01112

wheret = n~%2 and Z, is a standard normal random variable whergag a standard normal random
vector. This scheme can be extended to the general case: ith- 1) /2 parameters.

() Letw e (0,2x]""V/2 denote the angles that are necessary to build the orthogonal rotation matrix
T(w) via (B1.3.2). The mutated angles’, are obtained by

oy = @ +¢Z) mod 2r
whereg > 0 and the independent random numbg{8 with i = 1,...,n(n — 1)/2 are standard
normally distributed.

(i) Let o € R’ denote the standard deviations that are represented by the diagonal 8atyix=
diaglc®, ..., 0™). The mutated standard deviations are obtained as follows. Draw a standard
normally distributed random numbeét,. For eachi =1, ..., n set

ol = 0" exprZ, + nZ?)

where(z, n) €]Ri and the independent random numbgf8 are standard normally distributed. Note
that Z, is drawn only once.

(iii) Let X e R" be the object variables and be a standard normal random vector. The mutated object
variable vector is given by

X1 =X + T(w41)S(0141) Z.

According to Schwefel (1995) a good heuristic for the choice of the constants appearing in the above
mutation operation is

(¢, 7, 1) = (57/180, (2n) Y2, (4n)~ %)

but recent extensive simulation studies (Kursawe 1996) revealed that the above recommendation is not the
best choice—especially in the case of multimodal objective functions it seems to be better to use weak
selection pressuregw(/A not too small) and a parametrization obeying the relationn. As a consequence,

a final recommendation cannot be given here, yet.

As soon asp > 1, the decision variables as well as the internal strategy parameters can be
recombined with usual recombination operators. Notice that there is no reason to employ the same
recombination operator for the angles, standard deviations, and object variables. For example, one could
apply intermediate recombinatioto the angles as well as standard deviations amiform crossoveto cs:3
the object variables. With this choice recombination of two parents works as follows. Choose two parents
(X,0,w) and (X', o/, @) at random. Then the preliminary offspring resulting from the recombination
process is

/ / d4_[.
(UX—}-(I—U)X’,U_'_U (w+ ') Mo)

2 2

wherel is the unit matrix andJ is a random diagonal matrix whose diagonal entries are either zero or
one with the same probability. Note that the angles must be adjusted to the int&ral].

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.33

Evolution strategies

After these preparations a sketch of a contemporary ES can be presented:

Generateu initial parents of the typ&€X, o, w) and determine their objective function valugeX).
repeat
do A times:
Choosep > 2 parents at random.
Recombine their angles, standard deviations, and object variables.
Mutate the angles, standard deviations, and object variables of the preliminary offspring
obtained via recombination.
Determine the offspring’s objective function value.
Put the offspring into the offspring population.
end do
Select theu best individuals either from the offspring population
or from the union of the parent and offspring population.
The selected individuals represent the new parents.
until some stopping criterion is satisfied.

It should be noted that there are other proposals to agjagh the case of &1, 1) ES with i = 3%
andk € N, Rechenberg (1994), p 47, devised the following rule: Genéraféspring witho;, k offspring
with ¢ o, andk offspring with o, /c for somec > 0 (¢ = 1.3 is recommended fot < 100, for largern
the constant should decrease).
Further proposals, that are however still in an experimental state, try to derandomize the adaptation
process by exploiting information gathered in preceding iterations (Osteretei¢1 995). This approach
is related to (deterministic) variable metric (or quasi-Newton) methods, where the Hessian matrix is
approximated iteratively by certain update rules. The inverse of the Hessian matrix is in fact the optimal
choice for the covariance matr@. A large variety of update rules is given by tBeen—Luenberger class
(Oren and Luenberger 1974) and it might be useful to construct probabilistic versions of these update
rules, but it should be kept in mind that ESs are designed to tackle difficult nonconvex problems and not
convex ones: the usage of such techniques increases the risk that ESs will be attracted by local optima.
Other ideas that have not yet achieved a standard include the introduction of an additional age
parameter for individuals in order to have intermediate forms of selection betweeriithe 1) ES with
x = oo and the(u, A) ES withk = 1 (Schwefel and Rudolph 1995), as well as the huge variety of ESs
whose population possesses a spatial structure. Since the latter is important for parallel implementations
and applies to other evolutionary algorithms as well the description is omitted here.

B1.3.3 Nested evolution strategies

The shorthand notatiof T 1) ES was extended by Rechenberg (1978) to the expression
[+ 2 (utr?] ES

with the following meaning. There ang’ populations ofu parents. These are used to generate (e.g. by
merging)2’ initial populations ofu individuals each. For each of thesepopulations au T A) ES is run

for y generations. The criterion to rank thepopulations after termination might be the average fitness of

the individuals in each population. This scheme is repeatdines. The obvious generalization to higher
levels of nesting is described by Rechenberg (1994), where it is also attempted to develop a shorthand
notation to specify the parametrization completely.

This nesting technique is of course not limited to ESs: other evolutionary algorithms and even
mixtures of them can be used instead. In fact, the somewhat artificial distinction between ESs, genetic
algorithms, and evolutionary programs becomes more and more blurred when higher concepts enter the
scene. Finally, some fields of application of nested evolutionary algorithms will be described briefly.

Alternative method to control internal parameterdderdy (1992) used.” subpopulations, each of them
possessing its own different and fixed step size Thus, there is no step size control at the level of
individuals. Aftery generations the improvements (in terms of fithess) achieved by each subpopulation
is compared to each other and the bgstsubpopulations are selected. Then the process repeats with
slightly modified values ob. Since subpopulations with a near-optimal step size will achieve larger

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.34

Evolution strategies

improvements, they will be selected (i.e. better step sizes will survive), resulting in an alternative method
to control the step size.

Mixed-integer optimization. Lohmann (1992) considered optimization problems in which the decision
variables are partially discrete and partially continuous. The nested approach worked as follows. The
ESs in the inner loop were optimizing over the continuous variables while the discrete variables were
held fixed. After termination of the inner loop, the evolutionary algorithm in the outer loop compared the
fitness values achieved in the subpopulations, selected the best ones, mutated the discrete variables and
passed them as fixed parameters to the subpopulations in the inner loop.

It should be noted that this approach to mixed-integer optimization may cause some problems. In
essence, a Gaul3—Seidel-like optimization strategy is realized, because the search alternates between the
subspace of discrete variables and the subspace of continuous variables. Such a strategy must fail whenever
simultaneous changes in discreted continuous variables are necessary to achieve further improvements.

Minimax optimization. Sebald and Schlenzig (1994) used nested optimization to tackle minimax problems
of the type

min{max{ f (x, y)}}

xeX yeY

whereX C R" andY C R™. Equivalently, one may state the problem as follows:
min{g(x) : x € X} where g(x) = max{f(x,y):yeY}

The evolutionary algorithm in the inner loop maximizgsx, y) with fixed parameters, while the outer
loop is responsible to minimizg(x) over the setX.

Other applications of this technique are imaginable. An additional aspect touches the evident degree
of independence of executing the evolutionary algorithms in the inner loop. As a consequence, nested
evolutionary algorithms are well suited for parallel computers.

References

Herdy M 1992 Reproductive isolation as strategy parameter in hierachically organized evolution sti2segikes
Problem Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, 1992)
ed R Manner and B Manderick (Amsterdam: Elsevier) pp 207-17

Klockgether J and Schwefel H-P 1970 Two-phase nozzle and hollow core jet experiRrects1lth Symp. on
Engineering Aspects of MagnetohydrodynamédsD Elliott (Pasadena, CA: California Institute of Technology)
pp 141-8

Kursawe F 1996 Breeding evolution strategies—first results, talk presented at Dagstuhl |dgiplieations of
Evolutionary Algorithms (March 1996)

Lohmann R 1992 Structure evolution and incomplete induckamallel Problem Solving from Nature, 2 (Proc. 2nd
Int. Conf. on Parallel Problem Solving from Nature, Brussels, 133PR Manner and B Manderick (Amsterdam:
Elsevier) pp 175-85

Oren S and Luenberger D 1974 Self scaling variable metric (SSVM) algorithms, Part II: criteria and sufficient conditions
for scaling a class of algorithnidanagement ScR0 845-62

Ostermeier A, Gawelczyk A and Hansen N 1995 A derandomized approach to self-adaptation of evolution strategies
Evolut. Comput2 369-80

Rechenberg | 196%&ybernetic solution path of an experimental probléfbrary Translation 1122, Royal Aircraft
Establishment, Farnborough, UK

——1973Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Ev(Sutithgart:
Frommann-Holzboog)

——1978 EvolutionsstrategieBimulationsmethoden in der Medizin und Biologg:B Schneider and U Ranft (Berlin:
Springer) pp 83-114

——1994 Evolutionsstrategie '94(Stuttgart: Frommann-Holzboog)

Rudolph G 1992 On correlated mutations in evolution strategasllel Problem Solving from Nature, 2 (Proc. 2nd
Int. Conf. on Parallel Problem Solving from Nature, Brussels, 133PR Manner and B Manderick (Amsterdam:
Elsevier) pp 105-14

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.35

Evolution strategies

Schwefel H-P 196%Kybernetische Evolution als Strategie der experimentellen Forschung in dem&tgstechnik
Diplomarbeit, Technical University of Berlin

——1977Numerische Optimierung von Computer-Modellen mittels der Evolutionsstraf@gsel: Birklauser)

——1995Evolution and Optimum Seekin@®lew York: Wiley)

Schwefel H-P and Rudolph G 1995 Contemporary evolution stratégieances in Atrtificial Lifeed F Moranaet al
(Berlin: Springer) pp 893-907

Sebatl A V and Schlenzig J 1994 Minimax design of neural net controllers for highly uncertain pEBE Trans.
Neural NetworksNN-5 73-82

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.36

Evolutionary Algorithms and Their Standard Instances

B1.4 Evolutionary programming

V William Porto

Abstract

This section describes the basic concepts of evolutionary programming (EP) as originally
introduced by Fogel, with extensions by numerous other researchers. EP is distinguished
from other forms of evolutionary computation, such as genetic algorithms, in that
it simulates evolution emphasizing the phenotypic relationship between parent and
offspring, rather than the genetic relationship. Emphasis is placed on the use of one
or more mutation operations which generate diversity among the population of solutions
while maintaining a high degree of correlation between parent and offspring behavior.
Recent efforts in the areas of pattern recognition, system identification, parameter
optimization, and automatic control are presented.

B1.4.1 Introduction

Evolutionary programming (EP) is one of a class of paradigms for simulating evolution which utilizes
the concepts obarwinian evolutionto iteratively generate increasingly appropriate solutions (organissz.z)

in light of a static or dynamically changing environment. This is in sharp contrast to earlier research
into artificial intelligence research which largely centered on the search for simple heuristics. Instead of
developing a (potentially) complex set of rules which were derived from human experts, EP evolves a set
of solutions which exhibit optimal behavior with regard to an environment and desired payoff function.
In a most general framework, EP may be considered an optimization technique wherein the algorithm
iteratively optimizes behaviors, parameters, or other constructs. As in all optimization algorithms, it is
important to note that the point of optimality is completely independent of the search algorithm, and is
solely determined by the adaptive topography (i.e. response surface) (Atmar 1992).

In its standard form, the basic evolutionary program utilizes the four main components of all
evolutionary computation (EC) algorithms: initialization, variation, evaluation (scoring), and selection.
At the basis of this, as well as other EC algorithms, is the presumption that, at least in a statistical sense,
learning is encoded phylogenically versus ontologically in each member of the population. ‘Learning’
is a byproduct of the evolutionary process as successful individuals are retained through stochastic trial
and error. Variation (e.g. mutation) provides the means for moving solutions around on the search space,
preventing entrapment in local minima. The evaluation function directly measures fithess, or equivalently
the behavioral error, of each member in the population with regard to the environment. Finally, the
selection process probabilistically culls suboptimal solutions from the population, providing an efficient
method for searching the topography.

The basic EP algorithm starts with a population of trial solutions which are initialized by random,
heuristic, or other appropriate means. The size of the populatiomay range over a broadly distributed
set, but is in general larger than one. Each of these trial solutions is evaluated with regard to the specified
fitness function. After the creation of a population of initial solutions, each ofptment members is
altered through application of a mutation process; in strict EP, recombination is not utilized. Each parent
memberi generates.; progeny which are replicated with a stochastic error mechanism (mutation). The
fithess or behavioral error is assessed for all offspring solutions with the selection process performed by
one of several general techniques including: (i) the pesblutions are retained to become the parents for

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.41

Evolutionary programming

the next generatione(itist), or (ii) « of the best solutions are statistically retainégu¢(nameny, or (iii) c2.7.4c23
proportional-based selectiorin most applications, the size of the population remains constant, but thez2is

no restriction in the general case. The process is halted when the solution reaches a predetermined quality,
a specified number of iterations has been achieved, or some other criterion (e.g. sufficient convergence)
stops the algorithm.

EP differs philosophically from other evolutionary computational techniques suclgeastic B1.2
algorithms(GASs) in a crucial manner. EP is a top-down versus bottom-up approach to optimization. It is
important to note that (according to neo-Darwinism) selection operates only on the phenotypic expressions
of a genotype; the underlying coding of the phenotype is only affected indirectly. The realization that a
sum of optimal parts rarely leads to an optimal overall solution is key to this philosophical difference.
GAs rely on the identification, combination, and survival of ‘good’ building blocks (schemata) iteratively
combining to form larger ‘better’ building blocks. In a GA, the coding structure (genotype) is of primary
importance as it contains the set of optimal building blocks discovered through successive iterations. The
building block hypothesiss an implicit assumption that the fitness is a separable function of the pasts
of the genome. This successively iterated local optimization process is different from EP, which is an
entirely global approach to optimization. Solutions (or organisms) in an EP algorithm are judged solely
on their fitness with respect to the given environment. No attempt is made to partition credit to individual
components of the solutions. In EP (andewolution strategie$ESs)), the variation operator allows f1.3
simultaneous modification of all variables at the same time. Fitness, described in terms of the behavior
of each population member, is evaluated directly, and is the sole basis for survival of an individual in
the population. Thus, a crossover operation designed to recombine building blocks is not utilized in the
general forms of EP.

B1.4.2 History

The genesiof EP was motivated by the desire to generate an alternative approach to artificial intelligence.
Fogel (1962) conceived of using the simulation of evolution to develop artificial intelligence which did not
rely on heuristics, but instead generated organisms of increasing intellect over time. Fogel (1964t Fogel

al 1966) made the observation that intelligent behavior requires the ability of an organism to make correct
predictions within its environment, while being able to translate these predictions into a suitable response
for a given goal. This early work focused on evolvifigite-state machineésee the articles by Mealyci.5
(1955), and Moore (1957) for a discussion of these automata) which provided a most generic testbed for
this approach. A finite-state machine (figure B1.4.1) is a mechanism which operates on a finite set (i.e.
alphabet) of input symbols, possesses a finite number of internal states, and produces output symbols from
a finite alphabet. As in all finite-state machines, the corresponding input—output symbol pairs and state
transitions from every state define the specific behavior of the machine.

In a series of experiments (Fogatlal 1966), an environment was simulated by a sequence of symbols
from a finite-length alphabet. The problem was defined as follows: evolve an algorithm which would
operate on the sequence of symbols previously observed in a manner that would produce an output symbol
which maximizes the benefit to the algorithm in light of the next symbol to appear in the environment,
relative to a well-defined payoff function.

EP was originally defined by Fogel (1964) in the following manner. A populatigpacdntfinite-state
machines, after initialization, is exposed to the sequence of symbols (i.e. environment) which have been
observed up to the current time. As each input symbol is presented to each parent machine, the output
symbol is observed (predicted) and compared to the next input symbol. A predefined payoff function
provides a means for measuring the worth of each prediction. After the last prediction is made, some
function of the sequence of payoff values is used to indicate the overall fithess of each machine. Offspring
machines are created by randomly mutating each parent machine. As defined above, there are five possible
resulting modes of random mutation for a finite-state machine. These are: (i) change an output symbol;
(ii) change a state transition; (iii) add a state; (iv) delete an existing state; and (v) change the initial state.
Other mutations were proposed but results of experiments with these mutations were not described by
Fogelet al (1966). To prevent the possibility of creating null machines, the deletion of a state and the
changing of the initial state were allowed only when a parent machine had more than one state.

Mutation operators are chosen with respect to a specified probability distribution which may be
uniform, or another desired distribution. The number of mutation operations applied to each offspring
is also determined with respect to a specified probability distribution function (e.g. Poisson) or may be

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.42

Evolutionary programming

Figure B1.4.1. A simple finite-state machine diagram. Input symbols are shown to the left of the slash.
Output symbols are to the right of the slash. The finite-state machine is presumed to start in state A.

fixed a priori. Each of the mutated offspring machines is evaluated over the existing environment (set of
input—output symbol pairs) in the same manner as the parent machines.

After offspring have been created through application of the mutation operator(s) on the members
of the parent population, the machines providing the greatest payoff with respect to the payoff function
are retained to become parent members for the next generation. Typically, one offspring is created for
each parent, and half of the total machines are retained in order to maintain a constant population size.
The process is iterated until it is required to make an actual prediction of the next output symbol in the
environment, which has yet to be encountered. This is analogous to the presentation of a naive exemplar
to a previously trained neural network. Out of the entire population of machines, only the best machine, in
terms of its overall worth, is chosen to generate the new output symbol. Fogel originally proposed selection
of machines which score in the top half of the entire population, i.e. a nonregressive selection mechanism.
Although discussed as a possibility to increase variance, the retention of lesser-quality machines was not
incorporated in these early experiments.

Since the topography (response surface) is changed after each presentation of a symbol, the fitness
of the evolved machines must change to reflect the payoff from the previous prediction. This prevents
evolutionary stagnation as the adaptive topography is experiencing continuous change. As is evidenced
in nature, the complexity of the representation is increased as the finite-state machines learn to recognize
more subtle features in the experienced sequence of symbols.

B1.4.2.1 Early foundations

Fogel (see Fogel 1964, Foget al 1966) used EP on a series of successively more difficult prediction
tasks. These experiments ranged from simple two-symbol cyclic sequences, eight-symbol cyclic sequences
degraded by addition of noise, and sequences of symbols generated by other finite-state machines to
nonstationary sequences and sequences taken from the article by Flood (1962).

In one example, the capability for predicting the ‘primeness’, i.e. whether or not a humber is prime,
was tested. A nonstationary sequence of symbols was generated by classifying each of the monotonically
increasing set of integers as prime (with symbol 1) or nonprime (with symbol 0). The payoff function
consisted of an all-or-none function where one point was provided for each correct prediction. No points or
penalty were assessed for incorrect predictions. A small penalty term was added to maximize parsimony,
through the subtraction of 0.01 multiplied by the number of states in the machine. This complexity
penalty was added due to the limited memory available on the computers at that time. After presentation
of 719 symbols, the iterative process was halted with the best machine possessing one state, with both

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.43

Evolutionary programming

100 T T T T T T T T T T

80+ -

Experiment 15

70

60

Percent correct

Primeness of the increasing integers
0.01 complexity cost/state

5 machines selected/generation
Single mutation, random series 1

10 generations/prediction

50

30 ! | 1) | | | 1 1 1
0 20 40 60 80 100 120 140 160 180 200 220
Number of symbols experienced

Figure B1.4.2. A plot showing the convergence of EP on finite-state machines evolved to predict primeness
of numbers.

output symbols being zero. Figure B1.4.2 indicates the prediction score achieved in this nonstationary
environment. Because prime numbers become increasingly infrequent (Burton 1976), the asymptotic worth
of this machine, given the defined payoff function, approaches 100%.

After initial, albeit qualified, success with this experiment, the goal was altered to provide a greater
payoff for correct prediction of a rare event. Correct prediction of a prime was worth one plus the number
of nonprimes preceding it. For the first 150 symbols, 30 correct predictions were made (primes predicted
as primes), 37 false positives (nonprimes predicted as primes), and five primes were missed. On predicting
the 151st through 547th symbols there were 65 correct predictions of primes, and 67 false positives. Of
the first 35 prime numbers, five were missed, but of the next 65 primes, none were missedetFadgel
(1966) indicated that the machines demonstrated the capability to quickly recognize numbers which are
divisible by two and three as being nonprime, and that some capability to recognize divisibility by five as
being indicative of nonprimes was also evidenced. Thus, the machines generated evidence of learning a
definition of primeness without prior knowledge of the explicit nature of a prime number, or any ability
to explicitly divide.

Fogel and Burgin (1969) researched the use of EP in game theory. In a number of experiments,
EP was consistently able to discover the globally optimal strategy in simple two-player, zero-sum games
involving a small number of possible plays. This research also showed the ability of the technique to
outperform human subjects in more complicated games. Several extensions were made to the simulations
to address nonzero-sum games (e.g. pursuit evasion.) A three-dimensional model was constructed where
EP was used to guide amterceptortowards a moving target. Since the target was, in most circumstances,
allowed a greater degree of maneuverability, the success or failure of the interceptor was highly dependent
upon the learned ability to predict the position of the target witteopiriori knowledge of the target’'s
dynamics.

A different aspect of EP was researched by Wadshl (1970) where EP was used for prediction as
a precursor to automatic control. This research concentrated on decomposing a finite-state machine into
submachines which could be executed in parallel to obtain the overall output of the evolved system. A
primary goal of this research was to maximize parsimony in the evolving machines. In these experiments,
finite-state machines containing seven and eight states were used as the generating function for three
output symbols. The performance of three human subjects was compared to the evolved models when
predicting the next symbol in the respective environments. In these experiments, EP was consistently able
to outperform the human subjects.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 Bl1.44

Evolutionary programming

B1.4.2.2 Extensions
The basic EP paradigm may be described by the following EP algorithm:
t:=0;

initialize P (0) := {a}(0), a5(0). ..., a,(0)}
evaluateP (0) : {®(a1(0)), ®(a5(0)). ..., ®(a,(0)}

iterate

{
mutate: P’'(t) .= mg, (P(t))
evaluate:P'(t) : {®(aj (1)), ®(a)(1)), ..., ®(a} (1))}
select: P(t + 1) := s, (P'(1) U Q)
t=t+1

1

where:

a’ is an individual member in the population

u > 1 is the size of the parent population

A > 1 is the size of the offspring population

P(t) = {ay(t), a5(1), ..., a,(t)} is the population at time

® : I — R is the fithess mapping

me, IS the mutation operator with controlling parametérs

se, is the selection operatar se, @ (I* U I*T) — I*

Q0 € {0, P(1)} is a set of individuals additionally accounted for in the selection step, i.e. parent
solutions.

Other than on initialization, the search space is generally unconstrained; constraints are utilized for
generation and initialization of starting parent solutions. Constrained optimization may be addressed
through imposition of the requirement that (i) tmeutation operatoris formulated to only generates.2.
legitimate solutions (often impossible) or (ii) @enalty functionis applied to offspring mutations lyings.2
outside the constraint bounds in such a manner that they do not become part of the next generation. The
objective function explicitly defines the fithess values which may be scaled to positive values (although
this is not a requirement, it is sometimes performed to alter the range for ease of implementation).

In early versions of EP applied to continuous parameter optimization (Fogel 1992) the mutation
operator is Gaussian with a zero mean and variance obtained for each component of the object variable
vector as the square root of a linear transform of the fitness value

xi(k + 1) := x; (k) + /B () (x; (k) + ;) + Ni(0, 1)

wherex(k) is the object variable vectof is the proportionality constant, andis an offset parameter.
Both 8 and y must be set externally for each probleny; (0, 1) is theith independent sample from a
Gaussian distribution with zero mean and unit variance.

Several extensions to the finite-state machine formulation of Fegal (1966) have been offered
to address continuous optimization problems as well as to allow for various degrees of parametric self-
adaptation (Fogel 1991a, 1992, 1995). There are three main variants of the basic paradigm, identified as
follows:

(i) original EP, where continuous function optimization is performed without any self-adaptation
mechanism;

(i) continuous EP where new individuals in the population are inserted directly without iterative
generational segmentation (i.e. an individual becomes part of the existing (surviving) population
without waiting for the conclusion of a discrete generation; this is also knowgteasly-state selectior2.7.3
in GAs and(u + 1) selectionin ES); B1.3

(i) self-adaptiveEP, which augments the solution vectors with one or more parameters governirgy.the
mutation process (e.g. variances, covariances) to permit self-adaptation of these parameters through
the same iterative mutation, scoring, and selection process. In addition, self-adaptive EP may also be
continuous in the sense of (ii) above.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.45

Evolutionary programming

The original EP is an extension of the formulation of Fogelal (1966) wherein continuous-
valued functions replace the discrete alphabets of finite-state machines. The continuous form of EP was
investigated by Fogel and Fogel (1993). To properly simulate this algorithmic variant, it is necessary
to insert new population members by asynchronous methods (e.g. event-driven interrupts in a true
multitasking, real-time operating system). Iterative algorithms running on a single central processing
unit (CPU) are much more prevalent, since they are easier to program on today’s computers, hence most
implementations of EP are performed on a generational (epoch-to-epoch) basis.

Self-adaptive EP is an important extension of the algorithm in that it successfully overcomes the need
for explicit user-tuning of the parameters associated with mutation. Global convergence may be obtained
even in the presence of suboptimal parameterization, but available processing time is most often a precious
resource and any mechanism for optimizing the convergence rate is helpful. As proposed by Fogel (1992,
1995), EP can self-adapt the variances for each individual in the following way:

)Cj(k + 1) =)C,'(k) —+ Ui(k) ES N,'(O, 1)
vi(k + 1) == v (k) + [ov; ()Y % N; (0, 1).

The variables ensures that the varianeg remains nonnegative. Fogel (1992) suggests a simple rule
whereinVuv; (k) < 0, v;(k) is set to&, a value close to but not identically equal to zero (to allow some
degree of mutation). The sequence of updating the object variakded variancev; was proposed to
occur in opposite order from that of ESsg&k and Schwefel 1993, Rechenberg 1965, Schwefel 1981).
Gehlhaar and Fogel (1996) provide evidence favoring the ordering commonly found in ES.

Further development of this theme led Fogel (1991a, 1992) to extend the procedure to alter the
correlation coefficients between components of the object vector. A symmetric correlation coefficient
matrix P is incorporated into the evolutionary paradigm in addition to the self-adaptation of the standard
deviations. The components Bfare initialized over the intervaH21, 1] and mutated by perturbing each
component, again, through the addition of independent realizations from a Gaussian random distribution.
Bounding limits are placed upon the resultant mutated variables wherein any mutated coefficient which
exceeds the bounds-[L, 1] is reset to the upper or lower limit, respectively. Again, this methodology is
similar to that of Schwefel (1981), as perturbations of both the standard deviations and rotation angles
(determined by the covariance mat®y allow adaptation to arbitrary contours on the error surface. This
self- adaptation through the incorporation of correlated mutations across components of each parent object
vector provides a mechanism for expediting the convergence rate of EP.

Fogel (1988) developed different selection operators which utilieachament competitiobetween c2.3
solution organisms. These operators assigned a number of wins for each solution organism based on a set
of individual competitions (using fitness scores as the determining factor) among each solution and each
of the g competitors randomly selected from the total population.

B1.4.3 Current directions

Since the explosion of research into evolutionary algorithms in the late 1980s and early 1990s, EP has been
applied to a wide range of problem domains with considerable success. Application areas in the current
literature include training, construction, and optimization of neural networks, optimal routing (in two, three,
and higher dimensions), drug design, bin packing, automatic control, game theory, and optimization of
intelligently interactive behaviors of autonomous entities, among many others. Beginning in 1992, annual
conferences on EP have brought much of this research into the open where these and other applications
as well as basic research have expanded into humerous interdisciplinary realms.

Notable within a small sampling of the current research is the workeinral network designEarly b1
efforts (Porto 1989, Fogedt al 1990, McDonnell 1992, and others) focused on utilizing EP for training
neural networks to prevent entrapment in local minima. This research showed not only that EP was
well suited to training a range of network topologies, but also that it was often more efficient than
conventional (e.g. gradient-based) methods and was capable of finding optimal weight sets while escaping
local minima points. Later research (Fogel 1992, Angekteal 1994, McDonnell and Waagen 1993)
involved simultaneous evolution of both the weights and structure of feedforward and feedback networks.
Additional research into the areas of using EP for robustness training (Sebald and Fogel 1992), and for
designingfuzzy neural networkfor feature selection, pattern clustering, and classification (Brothertono2nd
Simpson 1995) have been very successful as well as instructive.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.46

Evolutionary programming

EP has been also used to solve optimal routing problems tréfieling salesman problefTSP), one o5
of many in the class of nondeterministic-polynomial-time- (NP-) complete (seeefbbl1974) problems,
has been studied extensively. Fogel (1988, 1993) demonstrated the capability of EP to address such
problems. A representation was used wherein each of the cities to be visited was listed in order, with
candidate solutions being permutations of this listing. A population of random tours is scored with respect
to their Euclidean length. Each of the tours is mutated using one of many possible inversion operations
(e.g. select two cities in the tour at random and reverse the order of the segment defined by the two cities)
to generate an offspring. All of the offspring are then scored, with either elitist or stochastic competition
used to cull lower-scoring members from the population. Optimization of the tours was quite rapid. In
one such experiment with 1000 cities uniformly distributed, the best tour (after orlyl@ function
evaluations) was estimated to be within 5—7% of the optimal tour length. Thus, excellent solutions were
obtained after searching only an extremely small portion of the total potential search space.

EP has also been utilized in a number of medical applications. For example, the issue of optimizing
drug design was researched by Gehlhetaal (1995). EP was utilized to perform a conformational and
position search within the binding site of a protein. The search space of small molecules which could
potentially dock with the crystallographically determined binding site was explored iteratively guided by
a database of crystallographic protein—ligand complexes. Geometries were constrained by known physical
(in three dimensions) and chemical bounds. Results demonstrated the efficacy of this technique as it
was orders of magnitude faster in finding suitable ligands than previous hands-on methodologies. The
probability of successfully predicting the proper binding modes for these ligands was estimated at over
95% using nominal values for the crystallographic binding mode and number of docks attempted. These
studies have permitted the rapid development of several candidate drugs which are currently in clinical
trials.

The issue of utilizing EP tacontrol systemshas been addressed widely (Fogel and Fogel 19173,
Fogel 1991a, Paget al 1992, and many others). Automatic control of fuzzy heating, ventilation,
and air conditioning (HVAC) controllers was addressed by Haffner and Sebald (1993). In this study,
a nonlinear, multiple-input, multiple-output (MIMO) model of a HVAC system was used and controlled
by a fuzzy controller designed using EP. Typical fuzzy controllers often use trial and error methods to
determine parameters and transfer functions, hence they can be quite time consuming with a complex
MIMO HVAC system. These experiments used EP to design the membership functions and values (later
studies were extended to find rules as well as responsibilities of the primary controller) to automate the
tuning procedure. EP worked in an overall search space containing 76 parameters, 10 controller inputs,
seven controller outputs, and 80 rules. Simulation results demonstrated that EP was quite effective at
choosing the membership functions of the control laboratory and corridor pressures in the model. The
synergy of combining EP with fuzzy set constructs proved quite fruitful in reducing the time required to
design a stable, functioning HVAC system.

Game theory has always been at the forefront of artificial intelligence research. One interesting
game, the iterated prisoner’s dilemma, has been studied by numerous investigators (Axelrod 1987, Fogel
1991b, Harrald and Fogel 1996, and others). In this two-person game, each player can choose one of two
possible behavioral policies: defection or cooperation. Defection implies increasing one’s own reward at
the expense of the opposing player, while cooperation implies increasing the reward for both players. If
the game is played over a single iteration, the dominant move is defection. If the players’ strategies depend
on the results of previous iterations, mutual cooperation may possibly become a rational policy, whereas
if the sequence of strategies is not correlated, the game degenerates into a series of single plays with
defection being the end result. Each player must choose to defect or cooperate on each trial. Table B1.4.1
describes a general form of the payoff function in the prisoner’'s dilemma.

In addition, the payoff matrix defining the game is subject to the following constraints (Rapoport
1966):

2y1> y2+ 3

Y3>VY1>Ya> Yo

Both neural network approaches (Harrald and Fogel 1996) and finite-state machine approaches (Fogel
1991b) have been applied to this problem. Finite-state machines are typically used where there are
discrete choices between cooperation and defection. Neural networks allow for a continuous range of
choices between these two opposite strategies. Results of these preliminary experiments using EP, in

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.47

Evolutionary programming

Table B1.4.1. A general form of the payoff matrix for the prisoner’s dilemma problem.is the payoff
to each player for mutual cooperatiop, is the payoff for cooperating when the other player defegts.
is the payoff for defecting when the other player cooperatesis the payoff to each player for mutual
defection. Entriege, 8) indicate payoffs to players A and B, respectively.

Player B
C D
C (uy) (v2, va)
Player A
D (312 (vas ya)

general, indicated that mutual cooperation is more likely to occur when the behaviors are limited to the
extremes (the finite-state machine representation of the problem), whereas in the neural network continuum
behavioral representation of the problem, it is easier to slip into a state of mutual defection.

Development of interactively intelligent behaviors was investigated by Fegell (1996). EP
was used to optimize computer-generated force (CGF) behaviors such that they learned new courses
of action adaptively as changes in the environment (i.e. presence or absence of opposing side forces) were
encountered. The actions of the CGFs were created at the response of an event scheduler which recognized
significant changes in the environment as perceived by the forces under evolution. New plans of action
were found during these event periods by invoking an evolutionary program. The iterative EP process
was stopped when time or CPU limits were met, and relinquished control of the simulated forces back to
the CGF simulator after transmitting newly evolved instruction sets for each simulated unit. This process
proved quite successful and offered a significant improvement over other rule-based systems.

B1.4.4 Future research

Important research is currently being conducted into the understanding adrikiergence propertiesf EP, B2.25

as well as the basic mechanisms of different mutation operators and selection mechanisms. Certainly of
great interest is the potential for self-adaptation of exogeneous parameters of the mutation operation (meta
and Rmeta-EP) , as this not only frees the user from the often difficult task of parameterization, but also
provides a built-in, automated mechanism for providing optimal settings throughout a range of problem
domains. The number of application areas of this optimization technique is constantly growing. EP, along
with the other EC techniques, is being used on previously untenable, often NP-complete, problems which
occur quite often in commercial and military problems.

References

Aho A V, Hopcrot J E and Ullma J D 1974The Design and Analysis of Computer Algorithifigeading, MA:
Addison-Wesley) pp 143-5, 318-26

Angeline P, Saunders G and Pollack J 1994 Complete induction of recurrent neural nd@nark8rd Ann. Conf. on
Evolutionary Programming (San Diego, CA, 19%t) A V Sebald ad L J Fogel (Singapore: World Scientific)
pp 1-8

Atmar W 1992 On the rules and nature of simulated evolutionary programpning 1st Ann. Conf. on Evolutionary
Programming (La Jolla, CA, 1992%d D B Fogel and W Atmar (San Diego, CA: Evolutionary Programming
Society) pp 17-26

Axelrod R 1987 The evolution of strategies in the iterated prisoner’s diler@miaetic Algorithms and Simulated
Annealinged L Davis (London) pp 32-42

Back T and Schwefel H-P 1993 An overview of evolutionary algorithms for parameter optimiZatiolutionary
Comput.1 1-23

Brothertan T W and Simpso P K 1995 Dynamic feature set training of neural networks for classific&iuautionary
Programming IV: Proc. 4th Ann. Conf. on Evolutionary Programming (San Diego, CA, ¥383)R McDonnell,
R G Reynolds ath D B Fogel (Cambridge, MA: MIT Press) pp 83-94

Burton D M 1976 Elementary Number Theor§Boston, MA: Allyn and Bacon) p 136-52

Flood M M 1962 Stochastic learning theory applied to choice experiments with cats, dogs ariBetmavioral Sci.7
289-314

Fogé D B 1988 An evolutionary approach to the traveling salesman protdah Cybernet60 139-44

——1991aSystem ldentification through Simulated Evolutipieedham, MA: Ginn)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.48

Evolutionary programming

——1991b The evolution of intelligent decision making in gamibgbernet. Sys2 223-36

——1992Evolving Atrtificial IntelligencePhD Dissertation, University of California

——1993 Applying evolutionary programming to selected traveling salesman prolilgbernet. Sys4 27-36

——1995 Evolutionary Computation, Toward a New Philosophy of Machine Intelligg¢Rigcataway, NJ: IEEE)

Fogé D B and FogéL J 1990 Optimal routing of multiple autonomous underwater vehicles through evolutionary
programmingProc. Symp. on Autonomous Underwater Vehicle Techno(®gyshington, DC: IEEE Oceanic
Engineering Society) pp 44—7

Fogel D B, FogkL J and Pord V W 1990 Evolving neural networkBiol. Cybernet.63 487-93

Fogéd G B and FogeD B 1993 Continuous evolutionary programming: analysis and experint@ytiernet. Sys26
79-90

Fogé L J 1962 Autonomous automatadustrial Res4 14-9

Fogéd L J 1964 0n The Organization of Intelled®hD Dissertation, University of California

Fogd L J and Burgin G H 196%Competitive Goal-Seeking through Evolutionary ProgrammitigForce Cambridge
Research Labratories Final Report Contract AF19(628)-5927

Fogel L J, Owen A J and Walsh M J 1968trtificial Intelligence through Simulated EvolutidiNew York: Wiley)

Fogel L J, Pod V W and Owen M 1996 An intelligently interactive non-rule-based computer generateddayce
6th Conf. on Computer Generated Forces and Behavioral Represeni@idando, FL: Institute for Simulation
and Training STRICOM-DMSO) pp 265-70

GehlhaaD K and FogéD B 1996 Tuning evolutionary programming for conformationally flexible molecular docking
Proc. 5th Ann. Conf. on Evolutionary Programming (19@@) L J Fogel, P J Angeline and TaBk (Cambridge,
MA: MIT Press) pp 419-29

Gehlhaar D K, Verkhivker G, Rejto P A, Fogel D B, FodeJ and FreeS T 1995 Docking conformationally flexible
small molecules into a protein binding site through evolutionary programigirgutionary Programming IV:
Proc. 4th Ann. Conf. on Evolutionary Programming (San Diego, CA, 1@@ainbridge, MA: MIT Press) pp 615—
27

Harrad P G and FodeD B 1996 Evolving continuous behaviors in the iterated prisoner’s dilerBin&ystems37
135-45

Haffner S B and SebdlA V 1993 Computer-aided design of fuzzy HVAC controllers using evolutionary programming
Proc. 2nd Ann. Conf. on Evolutionary Programming (San Diego, CA, 1883p B Fogel and W Atmar (San
Diego, CA: Evolutionary Programming Society) pp 98-107

McDonnel J M 1992 Training neural networks with weight constrail®goc. 1st Ann. Conf. on Evolutionary
Programming (La Jolla, CA, 1992d D B Fogel and W Atmar (San Diego, CA: Evolutionary Programming
Society) pp 111-9

McDonnel J M and Waagen D 1993 Neural network structure design by evolutionary progranircg2nd Ann.
Conf. on Evolutionary Programming (San Diego, CA, 19@8) D B Fogel and W Atmar (San Diego, CA:
Evolutionary Programming Society) pp 79-89

Mealy G H 1955 A method of synthesizing sequential circlBtdl Syst. Tech. B4 1054-79

Moore E F 1957 Gedanken-experiments on sequential machines: automata studés of Mathematical Studies
vol 34 (Princeton, NJ: Princeton University Press) pp 129-53

Page W C, McDonnéll M and Anderson B 1992 An evolutionary programming approach to multi-dimensional path
planningProc. 1st Ann. Conf. on Evolutionary Programming (La Jolla, CA, 1992)D B Fogel and W Atmar
(San Diego, CA: Evolutionary Programming Society) pp 63-70

Porb V W 1989 Evolutionary methods for training neural networks for underwater pattern classifiedtiorAnn.
Asilomar Conf. on Signals, Systems and Computet2 pp 1015-19

Rapoport A 19680ptimal Policies for the Prisoner’s Dilemmidniversity of North Carolina Psychometric Laboratory
Technical Report 50

Rechenberg | 196&ybernetic Solution Path of an Experimental Probl@uyal Aircraft Establishment Translation
1122

Schwefel H-P 198 Numerical Optimization of Computer Modegl€hichester: Wiley)

Sebatl AV and FogéD B 1992 Design of fault tolerant neural networks for pattern classificdimet. 1st Ann. Conf.
on Evolutionary Programming (La Jolla, CA, 1998)l D B Fogel and W Atmar (San Diego, CA: Evolutionary
Programming Society) pp 90-9

Walsh M J, Burgin G H and Fogi& J 1970Prediction and Control through the Use of Automata and their Evolution
US Navy Final Report Contract NO0014-66-C-0284

Further reading

There are several excellent general references available to the reader interested in furthering his or her
knowledge in this exciting area of EC. The following books are a few well-written examples providing a
good theoretical background in EP as well as other evolutionary algorithms.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.49

Evolutionary programming

1. Back T 1996Evolutionary Algorithms in Theory and Practi¢dlew York: Oxford University Press)

2. Fogé D B 1995 Evolutionary Computation, Toward a New Philosophy of Machine IntelligéRigcataway, NJ:
IEEE)

3. Schwefel H-P 198 Numerical Optimization of Computer Modgl€hichester: Wiley)

4. Schwefel H-P 199%&volution and Optimization Seekirilew York: Wiley)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.410

Evolutionary Algorithms and Their Standard Instances

B1.5 Derivative methods

Kenneth E Kinnear, JB1.5.1) Robert E SmitlB1.5.2)
and Zbigniew Michalewicm1.5.3)

Abstract

See the individual abstracts for sections B1.5.1-B1.5.3.

B1.5.1 Genetic programming

Kenneth E Kinnear, Jr

Abstract

The fundamental concepts of genetic programming are discussed here. Genetic
programming is a form of evolutionary algorithm that is distinguished by a particular set
of choices as to representation, genetic operator design, and fithess evaluation.

B1.5.1.1 Introduction

This article describes the fundamental concepts of genetic programming (GP) (Koza 1989, 1992). Genetic
programming is a form of evolutionary algorithm which is distinguished by a particular set of choices as to
representation, genetic operator design, and fithess evaluation. When examined in isolation, these choices
define an approach to evolutionary computation (EC) which is considered by some to be a specialization
of the genetic algorithm(GA). When considered together, however, these choices define a concepgrally
different approach to evolutionary computation which leads researchers to explore new and fruitful lines
of research and practical applications.

B1.5.1.2 Genetic programming defined and explained

Genetic programming is implemented as an evolutionary algorithm in which the data structures that
undergo adaptation are executable computer programs. Fitness evaluation in genetic programming involves
executing these evolved programs. Genetic programming, then, involves an evolution-directed search of
the space of possible computer programs for ones which, when executed, will produce the best fithess.

In short, genetic programming breeds computer programs. To create the initial population a large
number of computer programs are generated at random. Each of these programs is executed and the results
of that execution are used to assign a fithess value to each program. Then a new population of programs,
the next generation, is created by directly copying certain selected existing programs, where the selection is
based on their fithess values. This population is filled out by creating a number of new offspring programs
through genetic operations on existing parent programs which are selected based, again, on their fitness.
Then, this new population of programs is again evaluated and a fitness is assigned to each program based
on the results of its evaluation. Eventually this process is terminated by the creation and evaluation of a
‘correct’ program or the recognition of some other specific termination criteria.

More specifically, at the most basic level, genetic programming is defined as a genetic algorithm with
some unusual choices made as to the representation of the problem, the genetic operators used to modify
that representation, and the fithess evaluation techniques employed.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.51

Derivative methods

A specialized representation: executable program&ny evolutionary algorithm is distinguished by
the structures used to represent the problem to be solved. These are the structures which undergo
transformation, and in which the potential solutions reside.

Originally, most genetic algorithms usédear strings of bitsas the structures which evolved (Hollarct.2
1975), and the representation of the problem was typically the encoding of these bits as numeric or logical
parameters of a variety of algorithms. The evolving structures were often used as parameters to human-
coded algorithms. In addition, the bitstrings used were frequently of fixed length, which aided in the
translation into parameters for the algorithms involved.

More recently, genetic algorithms have appeared with real-valued numeric sequences used as the
evolvable structures, still frequently used as parameters to particular algorithms. In recent years, many
genetic algorithm implementations have appeared with sequences which are of variable length, sometimes
based on the order of the sequences, and which contain more complex and structured information than
parameters to existing algorithms.

The representation used by genetic programming is that of an executable program. There is no single
form of executable program which is used by all genetic programming implementations, although many
implementations use @ee-structured representatiomighly reminiscent of a LISP functional expressioci.e
These representations are almost always of a variable size, though for implementation purposes a maximum
size is usually specified.

Figure B1.5.1 shows an example of a tree-structured representation for a genetic programming
implementation. The specific task for which this is a reasonable representation is the learning of a Boolean
function from a set of inputs.

and) (ond
(o) (not)(30) (a1)
(a0) (a1)

Figure B1.5.1. Tree-structured representation used in genetic programming.

This figure contains two different types of node (as do most genetic programming representations)
which are called functions and terminals. Terminals are usually inputs to the program, although they may
also be constants. They are the variables which are set to values external to the program itself prior to
the fitness evaluation performed by executing the program. In this example dO and d1 are the terminals.
They can take on binary values of either zero or one.

Functions take inputs and produce outputs and possibly produce side-effects. The inputs can be either
a terminal or the output of another function. In the above example, the functions are AND, OR, and NOT.
Two of these functions are functions of two inputs, and one is a function of one input. Each produces a
single output and no side effect.

The fithess evaluation for this particulendividual is determined by the effectiveness with which it
will produce the correct logical output for all of the test cases against which it is tested.

One way to characterize the design of a representation for an application of genetic programming to
a particular problem is to view it as the design of a language, and this can be a useful point of view.
Perhaps it is more useful, however, to view the design of a genetic programming representation as that of
the design of a virtual machine—since usually the execution engine must be designed and constructed as
well as the representation or language that is executed.

The representation for the program (i.e. the definition of the functions and terminals) must be designed
along with the virtual machine that is to execute them. Rarely are the programs evolved in genetic
programming given direct control of the central processor of a computer (although see the article by
Nordin (1994)). Usually, these programs are interpreted under control of a virtual machine which defines
the functions and terminals. This includes the functions which process the data, the terminals that provide

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.52

Derivative methods

the inputs to the programs, and any control functions whose purpose is to affect the execution flow of the
program.

As part of this virtual machine design task, it is important to note that the output of any function or
the value of any terminal may be used as the input to any function. Initially, this often seems to be a trivial
problem, but when actually performing the design of the representation and virtual machine to execute that
representation, it frequently looms rather large. Two solutions are typically used for this problem. One
approach is to design the virtual machine, represented by the choice of functions and terminals, to use only
a single data type. In this way, the output of any function or the value of any terminal is acceptable as input
to any function. A second approach is to allow more than one data type to exist in the virtual machine.
Each function must then be defined to operate on any of the existing data types. Implicit coercions are
performed by each function on its input to convert the data type that it receives to one that it is more
normally defined to process. Even after handling the data type problem, functions must be defined over
the entire possible range of argument values. Simple arithmetic division must be defined to return some
value even when division by zero is attempted.

It is important to note that the definition of functions and the virtual machine that executes them is
not restricted to functions whose only action is to provide a single output value based on their inputs.
Genetic programming functions are often defined whose primary purpose is the actions they take by virtue
of their side-effects. These functions must return some value as well, but their real purpose is interaction
with an environment external to the genetic programming system.

An additional type of side-effect producing function is one that implements a control structure within
the virtual machine defined to execute the genetically evolved program. All of the common programming
control constructs such as if—then—else, while—do, for, and others have been implemented as evolvable
control constructs within genetic programming systems. Looping constructs must be protected in such a
way that they will never loop forever, and usually have an arbitrary limit set on the number of loops which
they will execute.

As part of the initialization of a genetic programming run, a large number of individual programs are
generated at random. This is relatively straightforward, since the genetic programming system is supplied
with information about the number of arguments required by each function, as well as all of the available
terminals. Random program trees are generated using this information, typically of a relatively small size.
The program trees will tend to grow quickly to be quite large in the absence of some explicit evolutionary
pressure toward small size or some simple hard-coded limits to growth (see Section C4.4 for some rcz.shods
to handle this problem).

Genetic operators for evolving programsThe second specific design approach that distinguishes genetic
programming from other types of genetic algorithm is the design of the genetic operators. Having decided
to represent the problem to be solved as a population of computer programs, the essence of an evolutionary
algorithm is to evaluate the fitness of the individuals in the population and then to create new members
of the population based in some way on the individuals which have the highest fitness in the current
population.

In genetic algorithmsrecombinationis typically the key genetic operator employed, with some
utility ascribed to mutation as well. In this way, genetic programming is no different from any other
genetic algorithm. genetic algorithms usually have genetic material organized in a linear fashion and
the recombination, or crossover, algorithm defined for such genetic material is quite straightforward
(see Section C3.3.1). The usual representation of genetic programming programs as tree-strsctured
combinations of functions and terminals requires a different form of recombination algorithm. A major
step in the invention of genetic programming was the design of a recombination operator which would
simply and easily allow the creation of an offspring program tree using as inputs the program trees of two
individuals of generally high fithess as parents (Cramer 1985, Koza 1989, 1992).

In any evolutionary algorithm it is vitally important that the fitness of the offspring be related to that
of the parents, or else the process degenerates into one of random search across whatever representation
space was chosen. It is equally vital that some variation, indeed heritable variation, be introduced into the
offspring’s fitness, otherwise no improvement toward an optimum is possible.

The tree-structured genetic material usually used in genetic programming has a particularly elegant
recombination operator that may be defined for it. In figure B1.5.2, there are two parent program trees,
(a) and p). They are to be recombined through crossover to create an offspring progranc)treg& (

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.53

Derivative methods

b (o) ond) \\ (and
(or) / fand) @@@®
(a1) (009 (o) (a0t (40) (a1
(a0)\(a0) (a1)

Figure B1.5.2. Recombination in genetic programming.

subtree is chosen in each of the parents, and the offspring is created by inserting the subtree chosen from
(b) into the place where the subtree was chosema)n This very simply creates an offspring program

tree which preserves the same constraints concerning the number of inputs to each function as each parent
tree. In practice it yields a offspring tree whose fitness has enough relationship to that of its parents to
support the evolutionary search process. Variations in this crossover approach are easy to imagine, and are
currently the subject of considerable active research in the genetic programming community (D’haeseleer
1994, Teller 1996).

Mutation is a genetic operator which can be applied to a single parent program tree to crecs2 an
offspring tree. The typical mutation operator used selects a point inside a parent tree, and generates a
new random subtree to replace the selected subtree. This random subtree is usually generated by the same
procedure used to generate the initial population of program trees.

Fitness evaluation of genetically evolved programBinally, then, the last detailed distinction between
genetic programming and a more usual implementation of the genetic algorithm is that of the assignment
of a fitness value for a individual.

In genetic programming, the representation of the individual is a program which, when executed
under control of a defined virtual machine, implements some algorithm. It may do this by returning some
value (as would be the case for a system to learn a specific Boolean function) or it might do this through
the performance of some task through the use of functions which have side-effects that act on a simulated
(or even the real) world.

The results of the program’s execution are evaluated in some way, and this evaluation represents
the fitness of the individual. This fitness is used to drive the selection process for copying into the next
generation or for the selection of parents to undergo genetic operations yielding offspring. Any selection
operator from those presented in Chapter C2 can be used. c2

There is certainly a desire to evolve programs using genetic programming that are ‘general’, that
is to say that they will not only correctly process the fithess cases on which they are evolved, but will
process correctly any fitness cases which could be presented to them. Clearly, in the cases where there
are infinitely many possible cases, such as evolving a general sorting algorithm (Kinnear 1993), the
evolutionary process can only be driven by a very limited number of fithess cases. Many of the lessons
from machine learning on the tradeoffs between generality and performance on training cases have been
helpful to genetic programming researchers, particularly those from decision tree approaches to machine
learning (Ibaet al 1994).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.54

Derivative methods

B1.5.1.3 The development of genetic programming

LISP was the language in which the ideas which led to genetic programming were first developed (Cramer
1985, Koza 1989, 1992). LISP has always been one of the preeminent language choices for implementation
where programs need to be treated as data. In this case, programs are data while they are being evolved,
and are only considered executable when they are undergoing fithess evaluation.

As genetic programming itself evolved in LISP, the programs that were executed began to look less
and less like LISP programs. They continued to be tree structured but soon few if any of the functions used
in the evolved programs were standard LISP functions. Around 1992 many people implemented genetic
programming systems in C and C++, along with many other programming languages. Today, other than
a frequent habit of printing the representation of tree-structured genetic programs in a LISP-like syntax,
there is no particular connection between genetic programming and LISP.

There are many public domain implementations of genetic programming in a wide variety of
programming languages. For further details, see the reading list at the end of this section.

B1.5.1.4 The value of genetic programming

Genetic programming is defined as a variation on the theme of genetic algorithms through some specific
selections of representation, genetic operators appropriate to that representation, and fitness evaluation as
execution of that representation in a virtual machine. Taken in isolation, these three elements do not
capture the value or promise of genetic programming. What makes genetic programming interesting is the
conceptual shift of the problem being solved by the genetic algorithm. A genetic algorithm searches for
something, and genetic programming shifts the search from that of parameter discovery for some existing
algorithm designed to solve a problem to a search for a program (or algorithm) to solve the problem
directly. This shift has a number of ramifications.

e This conceptualization of evolving computer programs is powerful in part because it can change the
way that we think about solving problems. Through experience, it has become natural to think about
solving problems through a process of human-oriented program discovery. Genetic programming
allows us to join this approach to problem solving with powerful EC-based search techniques.

An example of this is a variation of genetic programming called stack genetic programming
(Perkis 1994), where the program is a variable-length linear string of functions and terminals, and
the argument passing is defined to be on a stack. The genetic operators in a linear system such
as this are much closer to the traditional genetic algorithm operators, but the execution and fitness
evaluation (possibly including side-effects) is equivalent to any other sort of genetic programming.
The characteristics of stack genetic programming have not yet been well explored but it is clear that
it has rather different strengths and weaknesses than does traditional genetic programming.

Many of the approaches to simulation of adaptive behavior involve simple programs designed
to controlanimats The conceptualization of evolving computer programs as presented by genetic
programming fits well with work on evolving adaptive entities (Reynolds 1994, Sims 1994).

e There has been a realization that not only can we evolve programs that are built from human-
created functions and terminals, but that the functions from which they are built can evolve as well.
Koza’s invention of automatically defined functions (ADFs) (Koza 1994) is one such example of this
realization. ADFs allow the definitions of certain subfunctions to evolve even while the functions
that call them are evolving. For certain classes of problems, ADFs result in considerable increases in
performance (Koza 1994, Angeline and Pollack 1993, Kinnear 1994).

e Genetic programming is capable of integrating a wide variety of existing capabilities, and has potential
to tie together several complementary subsystems into an overall hybrid system. The functions need
not be simple arithmetic or logical operators, but could instead be fast Fourier transforms, GMDH
systems, or other complex building blocks. They could even be the results of other evolutionary
computation algorithms.

e The genetic operators that create offspring programs from parent programs are themselves programs.
These programs can also be evolved either as part of a separate process, or in a coevolutionary way
with the programs on which they operate. While any evolutionary computation algorithm could have
parameters that affect the genetic operators be part of the evolutionary process, genetic programming
provides a natural way to let the operators (defined as programs) evolve directly (Teller 1996, Angeline
1996).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.55

Derivative methods

e Genetic programming naturally enhances the possibility for increasingly indirect evolution. As an
example of the possibilities, genetic programming has been used to evolve grammars which, when
executed, produce the structure of an untrainedral network These neural networks are thex
trained, and the trained networks are then evaluated on a test set. The results of this evaluation are
then used as the fitnesses of the evolved grammars (Gruau 1993).

This last example is a step along the path toward modeling embryonic development in genetic
programming. The opportunity exists to evolve programs whose results are themselves programs. These
resulting programs are then executed and their values or side-effects are evaluated—and become the fitness
for the original evolving, program creating programs. The analogy to natural embryonic development is
clear, where the genetic material, the genotype, produces through development a body, the phenotype,
which then either does or does not produce offspring, the fitness (Kauffman 1993).

Genetic programming is valuable in part because we find it natural to examine issues such as
those mentioned above when we think about evolutionary computation from the genetic programming
perspective.

B1.5.2 Learning classifier systems

Robert E Smith

Abstract

Learning classifier systems (LCSs) are rule-based machine learning systems that use
genetic algorithms as their primary rule discovery mechanism. There is no standard
version of the LCS; however, all LCSs share some common characteristics. These
characteristics are introduced here by first examining reinforcement learning problems,
which are the most frequent application area for LCSs. This introduction provides a
motivational framework for the representation and mechanics of LCSs. Also examined
are the variations of the LCS scheme.

B1.5.2.1 Introduction

The learning classifier system (LCS) (Goldberg 1989, Hollahcl 1986) is often referred to as the
primary machine learning technique that employs genetic algorithms (GAs). It is also often described as
a production system framework with a genetic algorithm as the primary rule discovery method. However,
the details of LCS operation vary widely from one implementation to another. In fact, no standard version
of the LCS exists. In many ways, the LCS is more of a concept than an algorithm. To explain details of
the LCS concept, this article will begin by introducing the type of machine learning problem most often
associated with the LCS. This discussion will be followed by a overview of the LCS, in its most common
form. Final sections will introduce the more complex issues involved in LCSs.

B1.5.2.2 Types of learning problem

To introduce the LCS, it will be useful to describe types of machine learning problem. Often, in the
literature, machine learning problems are described in terms of cognitive psychology or animal behavior.
This discussion will attempt to relate the terms used in machine learning to engineering control.

Consider the generic control problem shown in figure B1.5.3. In this problem, inputs from an external
control system, combined with uncontrollable disturbances from other sources, change the state of the plant.
These changes in state are reflected in the state information provided by the plant. Note that, in general,
the state information can be incomplete and noisy.

Consider thesupervised learningroblem shown in figure B1.5.4 (Barto 1990). In this problem, an
inverse plant model (or teacher) is available that provides errors directly in terms of control actions. Given
this direct error feedback, the parameters of the control system can be adjusted by means of gradient
descent, to minimize error in control actions. Note that this is the method used in the neural network
backpropagation algorithm.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.56

Derivative methods

Figure B1.5.3. A generic control problem.

Figure B1.5.4. A supervised learning problem.

Now consider thereinforcement learningproblem shown in figure B1.5.5 (Barto 1990). Here, no
inverse plant model is available. However, a critic is available that indicates error in the state information
from the plant. Because error is not directly provided in terms of control actions, the parameters of the
controller cannot be directly adjusted by methods such as gradient descent.

Figure B1.5.5. A reinforcement learning problem.

The remaining discussion will consider the control problem to operateMerkov decision problem
That is, the control problem operates in discrete time steps, the plant is always in one of a finite number
of discrete states, and a finite, discrete number of control actions are available. At each time step, the
control action alters the probability of moving the plant from the current state to any other state. Note
that deterministic environments are a specific case. Although this discussion will limit itself to discrete
problems, most of the points made can be related directly to continuous problems.

A characteristic of many reinforcement learning problems is that one may need to consider a sequence
of control actions and their results to determine how to improve the controller. One can examine the

(© 1997 0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.57

Derivative methods

implications of this by associating eeward or cost with each control action. The error in state in
figure B1.5.5 can be thought of as a cost. One can consider the long-term effects of an action formally as
the expected, infinite-horizon discounted cost

=00

Z AMe,

t=0

where 0< A < 1 is thediscount parameterandc, is the cost of the action taken at time

To describe a strategy for picking actions, consider the following approach: for each action
associated with a state assign a valued(i, u). A ‘greedy’ strategy is to select the action associated
with the bestQ at every time step. Therefore, an optimum setting for ¢healues is one in which a
‘greedy’ strategy leads to the minimum expected, infinite-horizon discounted@dstarningis a method
that yields optimalQ-values in restricted situations. Consider beginning with random settings for each
Q-value, and updating eaaf-value on-line as follows:

Q1 ur) = Q1 (i,)1 — &) + o [¢; () + A MiN Q(j, ur41)]

where minQ(J, u,,1) is the minimumQ available in state/, which is the state arrived in after actian
is taken in staté (Barto et al 1991, Watkins 1989). The parameteris a learning rate parameter that
is typically set to a small value between zero and one. Arguments basdgnamic programmingnd
Bellman optimalityshow that if each state—action pair is tried an infinite number of times, this procedure
results in optimalQ-values. Certainly, it is impractical to try every state—action pair an infinite number of
times. With finite explorationQ-values can often be arrived at that are approximately optimal. Regardless
of the method employed to update a strategy in a reinforcement learning problem, this exploration—
exploitation dilemma always exists.

Another difficulty in the Q-value approach is that it requires storage of a sepapatalue for each
state—action pair. In a more practical approach, one could store@ue for a group of state—action pairs
that share the same characteristics. However, it is not clear how state—action pairs should be grouped. In
many ways, the LCS can be thought of as a GA-based technique for grouping state—action pairs.

B1.5.2.3 Learning classifier system introduction

Consider the following method for representing a state—action pair in a reinforcement learning problem:
encode a state in binary, and couple it to an action, which is also encoded in binary. In other words, the
string

0110/010

represents one of 16 states and one of eight actions. This string can also be seen as a rule that says ‘IF
in state0 1 1 0, THEN take actior0 1 0. In an LCS, such a rule is called a classifier. One can easily
associate a)-value, or other performance measures, with any given classifier.

Now consider generalizing over actions by introducing a ‘don’t care’ character (#) into the state
portion of a classifier. In other words, the string

#11#/010

is a rule that says ‘IFin state 1 1 0 OR state0 1 1 1 OR state1 1 1 0 OR statet 1 1 1, THEN

take action0 1 0’. The introduction of this generality allows an LCS to represent clusters of states and
associated actions. By using the genetic algorithm to search for such strings, one can search for ways of
clustering states together, such that they can be assigned joint performance statistics, @uaives.

Note, however, thap-learning is not the most common method of credit assignment in LCSs. The
most common method is called thecket brigade algorithnfor updating a classifier performance statistic
calledstrength Details of the bucket brigade algorithm will be introduced later in this section.

The structure of a typical LCS is shown in figure B1.5.6. This is what is knowrsimalus—response
LCS, since no internal messages are used as memory. Details of internal message posting in LCSs will
be discussed later. In this system, detectors encode state information from an environment into binary
messages, which are matched against a list of rules called classifiers. The classifiers used are of the form

IF (condition) THEN (action).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.58

Derivative methods

Black Box Environment

LCS

external
messages CA

message
ace
:

messages

Figure B1.5.6. The structure of an LCS.

The operational cycle of this LCS is:

(i) Detectors post environmental messages on the message list.

(i) All classifiers are matched against all messages on the message list.

(iii) Fully matched classifiers are selected to act.

(iv) A conflict resolution (CR) mechanism narrows the list of active classifiers to eliminate contradictory
actions.

(v) The message list is cleared.

(vi) The CR-selected classifiers post their messages.

(vii) Effectors read the messages from the list, and take appropriate actions in the environment.

(viii) If a reward (or cost) signal is received, it is used by a credit allocation (CA) system to update
parameters associated with the individual classifiers (such as the traditional strength mediwre,
values, or other measures (Booker 1989, Smith 1991)).

B1.5.2.4 ‘Michigan’ and ‘Pitt’ style learning classifier systems

There are two methods of using the genetic algorithm in LCSs. One is for each genetic algorithm
population member to represent an entire set of rules for the problem at hand. This type of LCS is typified
by Smith’s LS-1 (Smith 1980), which was developed at the University of Pittsburgh. Often, this type of
LCS is called the ‘Pitt’ approach. Another approach is for each genetic algorithm population member to
represent a single rule. This type of LCS is typified by the CS-1 of Holland and Reitman (1978), which
was developed at the University of Michigan, and is often called the ‘Michigan’ approach.

In the ‘Pitt’ approach, crossover and other operators are often employed that change the number of
rules in any given population member. The ‘Pitt’ approach has the advantage of evaluating a complete
solution within each genetic algorithm individual. Therefore, the genetic algorithm can converge to a
homogeneous population, as in an optimization problem, with the best individual located by the genetic
algorithm search acting as the solution. The disadvantage is that each genetic algorithm population member

(© 1997 0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.59

Derivative methods

must be completely evaluated as a rule set. This entails a large computational expense, and may preclude
on-line learning in many situations.

In the ‘Michigan’ approach, one need only evaluate a single rule set, that comprised by the entire
population. However, one cannot use the usual genetic algorithm procedures that will converge to a
homogeneous population, since one rule is not likely to solve the entire problem. Therefore, one must
coevolvea set of cooperative rules that jointly solve the problem. This requires a genetic algorithm
procedure that yields a diverse population at steady state, in a fashion that is sinsitarittg (Deb and ce.1.2
Goldberg 1989, Goldberg and Richardson 1987), or other multimodal genetic algorithm procedures. In
some cases simply dividing reward between similar classifiers that fire can yield sharing-like effects (Horn
et al 1994).

B1.5.2.5 The bucket brigade algorithm (implicit form)

As was noted earlier, the bucket brigade algorithm is the most common form of credit allocation for LCSs.
In the bucket brigade, each classifier has a stren§jthivhich plays a role analogous to@-value. The
bucket brigade operates as follows:

(i) Classifier A is selected to act at time

(i) Rewardr, is assigned in response to this action.
(i) Classifier B is selected to act at timet 1.

(iv) The strength of classifier A is updated as follows:

St = Sh(1—a) +alr, + (ASe)].
(v) The algorithm repeats.

Note that this is thémplicit form of the bucket brigade, first introduced by Wilson (Goldberg 1989, Wilson
1985).

Note that this algorithm is essentially equivalentQelearning, but with one important difference. In
this case, classifier A’s strength is updated with the strength of the classifier that actually acts (classifier B).
In O-learning, theQ-value for the rule at time is updated with the begR-valued rule that matches the
state at time + 1, whether that rule is selected to act at time 1 or not. This difference is key to the
convergence properties associated witliearning. However, it is interesting to note that recent empirical
studies have indicated that the bucket brigade (and similar procedures) may be supé@rileatnoing in
some situations (Rummery and Niranjan 1994, Twardowski 1993).

A wide variety of variations of the bucket brigade exits. Some include a varietgx@s which
degrade strength based on the number of times a classifier has matched and fired and the number of
generations since the classifier’s creation. or other features. Some variations include a variety of methods
for using classifier strength in conflict resolution through strength-bbiskting proceduregHolland et al
1986). However, how these techniques fit into the broader context of machine learning, through similar
algorithms such ag-learning, remains a topic of research.

In many LCSs, strength is used as fitness in the genetic algorithm. However, a promising recent
study indicates that other measures of classifier utility may be more effective (Wilson 1995).

B1.5.2.6 Internal messages

The LCS discussed to this point has operated entirely in stimulus—response mode. That is, it possesses
no internal memory that influences which rule fires. In a more advanced form of the LCS, the action
sections of the rule are internal messages that are posted on the message list. Classifiers have a condition
that matches environmental messages (those which are posted by the environment) and a condition that
matches internal messages (those posted by other classifiers). Some internal messages will cause effectors
to fire (causing actions in the environment), and others simply act as internal memory for the LCS.

The operational cycle of a LCS with internal memory is as follows:

(i) Detectors post environmental messages on the message list.

(ii) All classifiers are matched against all messages on the message list.

(iii) Fully matched classifiers are selected to act.

(iv) A conflict resolution (CR) mechanism narrows the list of active classifiers to eliminate contradictory
actions, and to cope with restrictions on the number of messages that can be posted.

(v) The message list is cleared.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.510

Derivative methods

(vi) The CR-selected classifiers post their messages.
(vii) Effectors read the messages from the list, and take appropriate actions in the environment.
(viii) If a reward (or cost) signal is received, it updates parameters associated with the individual classifiers.

In LCSs with internal messages, the bucket brigade can be used in its original, explicit form. In this
form, the next rule that acts is ‘linked’ to the previous rule through an internal message. Otherwise, the
mechanics are similar to those noted above. Once classifiers are linked by internal messages, they can
form rule chainsthat express complex sequences of actions.

B1.5.2.7 Parasites

The possibility of rule chains introduced by internal messages, and by ‘payback ' credit allocation schemes
such as the bucket brigade @rlearning, also introduces the possibility of rydarasites Simply stated,
parasites are rules that obtain fithess through their participation in a rule chain or a sequence of LCS actions,
but serve no useful purpose in the problem environment. In some cases, parasite rules can prosper, while
actually degrading overall system performance.

A simple example of parasite rules in LCSs is given by Smith (1994). In this study, a simple
problem is constructed where the only performance objective is to exploit internal messages as internal
memory. Although fairly effective rule sets were evolved in this problem, parasites evolved that exploited
the bucket brigade, and the existing rule chains, but that were incorrect for overall system performance.
This study speculates that such parasites may be an inevitable consequence in systems that use temporal
credit assignment (such as the bucket brigade) and evolve internal memory processing.

B1.5.2.8 Variations of the learning classification system

As was stated earlier, this article only outlines the basic details of the LCS concept. It is important to note
that many variations of the LCS exist. These include:

e \Variations in representation and matching procedurde {1, 0, # representation is by no means
defining to the LCS approach. For instance, Valenzuela-8&\t991) has experimented witHfuzzy b2
representationof classifier conditions, actions, and internal messages. Higher-cardinality alphabets
are also possible. Other variations include simple changes in the procedures that match classifiers to
messages. For instance, sometimes partial matches between messages and classifier conditions are
allowed (Booker 1982, 1985). In other systems, classifiers have multiple environmental or internal
message conditions. In some suggested variations, multiple internal messages are allowed on the
message list at the same time.

e \Variations in credit assignmentAs was noted above, a variety of credit assignment schemes can
be used in LCSs. The examination of such schemes is the subject of much broader research in
the reinforcement learning literature. Alternate schemes for the LCS prominently inghatdnal
techniques, where the history of reward (or cost) signals is recorded for some period of time, and
classifiers that act during the epoch are updated simultaneously.

e \Variations in discovery operatorsin addition to various versions of the genetic algorithm, LCSs
often employ other discovery operators. The most common nongenetic discovery operators are those
which create new rules to match messages for which no current rules exist. Such operators are often
calledcreate covering or guessingoperators (Wilson 1985). Other covering operators are suggested
that create new rules that suggest actions not accessible in the current rule set (Riolo 1986, Robertson
1988).

B1.5.2.9 Final comments

As was stated in section B1.5.2.1, the LCS remains a concept, more than a specific algorithm. Therefore,
some of the details discussed here are necessarily sketchy. However, recent research on the LCS is
promising. For a particularly clear examination of a simplified LCS, see a recent article by Wilson
(1994). This article also recommends clear avenues for LCS research and development. Interesting LCS
applicationsare also appearing in the literature (Smith and Dike 1995). G33
Given the robust character of evolutionary computation algorithms, the machine learning techniques
suggested by the LCS concept indicate a powerful avenue of future evolutionary computation application.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.511

Derivative methods

B1.5.3 Hybrid methods

Zbigniew Michalewicz

Abstract

The concept of a hybrid evolutionary system is introduced here. Included are references
to other sections in this handbook in which such hybrid systems are discussed in more
detail.

There is some experimental evidence (Davis 1991, Michalewicz 1993) that the enhancement of evolutionary
methods by some additional (problem-specific) heuristics, domain knowledge, or existing algorithms can
result in a system with outstanding performance. Such enhanced systems are often referdegbtad as
evolutionary systems.

Several researchers have recognized the potential of such hybridization of evolutionary systems. Davis
(1991, p 56) wrote:

When | talk to the user, | explain that my plan is to hybridize the genetic algorithm technique
and the current algorithm by employing the following three principles:

e Use the Current EncodingUse the current algorithm’s encoding technique in the hybrid
algorithm.

e Hybridize Where Possibldncorporate the positive features of the current algorithm in the
hybrid algorithm.

e Adapt the Genetic OperatorLreate crossover and mutation operators for the new type of
encoding by analogy with bit string crossover and mutation operators. Incorporate domain-
based heuristics as operators as well.

[...] I use the termhybrid genetic algorithmfor algorithms created by applying these three
principles.

The above three principles emerged as a result of countless experiments of many researchers, who
tried to ‘tune’ their evolutionary algorithms to some problem at hand, that is, to create ‘the best’ algorithm
for a particular class of problems. For example, during the last 15 years, various application-specific
variations of evolutionary algorithms have been reported (Michalewicz 1996); these variations included
variable-length strings (including strings whose elements Wethen—elserules), richer structures than
binary strings, and experiments with modified genetic operators to meet the needs of particular applications.
Some researchers (e.g. Grefenstette 1987) experimented with incorporating problem-specific knowledge
into the initialization routine of an evolutionary system:; if a (fast) heuristic algorithm provides individuals
of the initial population for an evolutionary system, such a hybrid evolutionary system is guaranteed to do
no worse than the heuristic algorithm which was used for the initialization.

Usually there exist several (better or worse) heuristic algorithms for a given problem. Apart from
incorporating them for the purpose of initialization, some of these algorithms transform one solution
into another by imposing a change in the solution’s encoding (e.g. 2-opt step flatleding salesmanco.s
problen). One can incorporate such transformations into the operator set of evolutionary system, which
usually is a very useful addition (see Chapter D3). D3

Note also (see Sections C1.1 and C3.1) that there is a strong relationship between encocttycsof
individuals in the population and operators, hence the operators of any evolutionary system must be
chosen carefully in accordance with the selected representation of individuals. This is a responsibility of
the developer of the system; again, we would cite Davis (1991, p 58):

Crossover operators, viewed in the abstract are operators that combine subparts of two parent
chromosomes to produce new children. The adopted encoding technique should support operators
of this type, but it is up to you to combine your understanding of the problem, the encoding
technique, and the function of crossover in order to figure out what those operators will be. [...]

The situation is similar for mutation operators. We have decided to use an encoding technique
that is tailored to the problem domain; the creators of the current algorithm have done this
tailoring for us. Viewed in the abstract, a mutation operator is an operator that introduces
variations into the chromosome. [...] these variations can be global or local, but they are critical
to keeping the genetic pot boiling. You will have to combine your knowledge of the problem,

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.512

Derivative methods

the encoding technique, and the function of mutation in a genetic algorithm to develop one or
more mutation operators for the problem domain.

Very often hybridization techniques make use of local search operators, which are considered as
‘intelligent mutations’. For example, the best evolutionary algorithms for the traveling salesman problem
use 2-opt or 3-opt procedures to improve the individuals in the population (see élderMeinet al
1988). It is not unusual to incorporate gradient-based (or hill-climbing) methods as ways for a local
improvement of individuals. It is also not uncommon to combéiraulated annealindechniques with pa.s
some evolutionary algorithms (Adler 1993).

The class of hybrid evolutionary algorithms described so far consists of systems which extend
evolutionary paradigm by incorporating additional features (local search, problem-specific representations
and operators, and the like). This class also includes also so-called morphogenic evolutionary techniques
(Angeline 1995), which include mappings (development functions) between representations that evolve
(i.e. evolved representations) and representations which constitutes the input for the evaluation function
(i.e. evaluated representations). However, there is another class of evolutionary hybrid methods,
where the evolutionary algorithm acts as a separate component of a larger system. This is often the
case for various scheduling systems, where the evolutionary algorithm is just responsible for ordering
particular items (see, for example, Section F1.5). This is also the case for fuzzy systems, rihere
the evolutionary algorithms may control the membership function (see Chapter D2), or of meural
systems, where evolutionary algorithms may optimize the topology or weights of the network (see
Chapter D1). D1

In this handbook there are several articles which refer (in a more or less explicit way) to the above
classes of hybridization. In particular, Chapter C1 describes various representations, Chapter C3 apgnciiate
operators for these representations, and Chapter D3 hybridizations of evolutionary methods witibsother
optimization methods, whereas Chapters D1 and D2 provide an overview of neural—evolutionary andsuzy—
evolutionary systems, respectively. Also, many articles in Part G (Evolutionary Computation in Practice)
describe evolutionary systems with hybrid components: it is apparent that hybridization techniques have
generated a number of successful optimization algorithms.

References

Adler D 1993 Genetic algorithms and simulated annealing: a marriage proPasal IEEE Int. Conf. on Neural
Networkspp 1104-9

Angeline P J 1995 Morphogenic evolutionary computation: introduction, issues, and exapnptegith Ann. Conf.
on Evolutionary Programming (San Diego, CA, March 1988)J R McDonnell, R G Reynolds drD B Fogel
(Cambridge, MA: MIT Press) pp 387-401

——1996 Two self-adaptive crossover operators for genetic programmitvgnces in Genetic Programming &t
P J Angeline ad K E Kinnear Jr (Cambridge, MA: MIT Press)

Angeline P J and Pollack J B 1993 Competitive environments evolve better solutions for compleRaskSth
Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1968)S Forrest (San Mateo, CA: Morgan
Kaufmann)

Barto A G 1990 Some Learning Tasks from a Control Perspect®®INS Technical Report 90-122, University of
Massachusetts

Barto A G, Bradtle S J and SingS P 199Real-time Learning and Control using Asynchronous Dynamic Programming
COINS Technical Report 91-57, University of Massachusetts

Booke L B 1982 Intelligent behavior as an adaptation to the task environBDisertations Abstracts In43 469B;
University Microfilms 8214966

——1985 Improving the performance of genetic algorithms in classifier systeacs Int. Conf. on Genetic Algorithms
and Their Applicationgp 80-92

——1989 Triggered rule discovery in classifier systePnsc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, VA, June
1989)ed J D Schaffer (San Mateo, CA: Morgan Kaufmann) pp 265-74

Crame N L 1985 A representation of the adaptive generation of simple sequential pro@@amslst Int. Conf. on
Genetic Algorithms (Pittsburgh, PA, July 198&) J J Grefenstette (Hillsdale, NJ: Erlbaum)

Davis L (ed) 1987Genetic Algorithms and Simulated Annealifigps Altos, CA: Morgan Kaufmann)

——1991 Handbook of Genetic Algorithm®ew York: Van Nostrand Reinhold)

Deb K and Goldbey D E 1989 An investigation of niche and species formation in genetic function optimization
Proc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, VA, June 1988)J D Schaffer (San Mateo, CA: Morgan
Kaufmann) pp 42-50

D’haeseleer P 1994 Context preserving crossover in genetic progranistitigEE Conf. on Evolutionary Computation
(Orlando, FL, June 1994jPiscataway, NJ: IEEE)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.513

Derivative methods

Goldbeg D E 1989 Genetic Algorithms in Search, Optimization, and Machine Learr{iRgading, MA: Addison-
Wesley)

Goldbeg D E and Richardson J 1987 Genetic algorithms with sharing for multimodal function optimiZxton2nd
Int. Conf. on Genetic Algorithms (Cambridge, MA, 198d)J J Grefenstette (Hillsdale, NJ: Erlbaum) pp 41-9

Grefensteg J J 1987 Incorporating problem specific knowledge into genetic algoritAersetic Algorithms and
Simulated Annealingd L Davis (Los Altos, CA: Morgan Kaufmann) pp 42—-60

Gruau F 1993 Genetic synthesis of modular neural netwBrg. 5th Int. Conf. on Genetic Algorithms (Urbana-
Champaign, IL, July 1993¢d S Forrest (San Mateo, CA: Morgan Kaufmann)

Holland J H 1975Adaptation in Natural and Artificial Systenf&nn Arbor, MI: The University of Michigan Press)

Holland J H, Holyoak K J, NisbetR E and Thagat P R 1986Induction: Processes of Inference, Learning, and
Discovery(Cambridge, MA: MIT Press)

Holland J H and Reitma J S 1978 Cognitive systems based on adaptive algoriBatiern Directed Inference Systems
ed D A Waterman and F Hayes-Roth (New York: Academic) pp 313-29

Horn J, Goldbay D E and Deb K 1994 Implicit niching in a learning classifier system: Nature’s Exalutionary
Comput.2 37-66

Iba H, de Garis H and Sato T 1994 Genetic programming using a minimum description length priubipleces in
Genetic Programminged K E Kinnear Jr (Cambridge, MA: MIT Press)

Kauffman S A 1993The Origins of Order: Self-Organization and Selection in Evolugidiew York: Oxford University
Press)

Kinnea K E Jr 1993 Generality and difficulty in genetic programming: evolving a Booc. 5th Int. Conf. on Genetic
Algorithms (Urbana-Champaign, IL, July, 19983 S Forrest (San Mateo, CA: Morgan Kaufmann)

——1994 Alternatives in automatic function definition: a comparison of performafdeances in Genetic
Programminged K E Kinnear Jr (Cambridge, MA: MIT Press)

Koza J R 1989 Hierarchical genetic algorithms operating on populations of computer prdgraend 1th Int. Joint
Conf. on Atrtificial IntelligencgSan Mateo, CA: Morgan Kaufmann)

——1990 Genetic Programming: a Paradigm for Genetically Breeding Populations of Computer Programs to Solve
ProblemsTechnical Report STAN-CS-90-1314, Computer Science Department, Stanford University

——1992 Genetic ProgrammindCambridge, MA: MIT Press)

——1994 Genetic Programming Il(Cambridge, MA: MIT Press)

Michalewicz Z 1993 A hierarchy of evolution programs: an experimental skutionary Computl 51-76

——1996 Genetic Algorithms + Data Structures = Evolution Progra®el edn (New York: Springer)

Mihlenbein H, Gorges-Schleuter M andafrer O 1988 Evolution algorithms in combinatorial optimizatRarallel
Comput.7 65-85

Nordin P 1994 A compiling genetic programming system that directly manipulates the machinéadweaieces in
Genetic Programminged K E Kinnear Jr (Cambridge, MA: MIT Press)

Perkis T 1994 Stack-based genetic programniingc. 1st IEEE Int. Conf. on Evolutionary Computation (Orlando,
FL, June 1994)Piscataway, NJ: IEEE)

Reynold C R 1994 Competition, coevolution and the game of Aatificial Life IV: Proc. 4th Int. Workshop on the
Synthesis and Simulation of Living SystesisR A Brooks and P Maes (Cambridge, MA: MIT Press)

Riolo R L 1986CFS-C: a Package of Domain Independent Subroutines for Implementing Classifier Systems in Arbitrary
User-defined Environmentdniversity of Michigan, Logic of Computers Group, Technical Report

Robertsa G G and Riolo R 1988 A tale of two classifier systemachine Learning3 139-60

Rummey G A and Niranjan M 199©n-line Q-Learning using Connectionist Syste@ambridge University Technical
Report CUED/F-INFENG/TR 166

Sims K 1994 Evolving 3D morphology and behavior by competitiatificial Life IV: Proc. 4th Int. Workshop on the
Synthesis and Simulation of Living SystemasR A Brooks and P Maes (Cambridge, MA: MIT Press)

Smith R E 1991Default Hierarchy Formation and Memory Exploitation in Learning Classifier Systemisersity of
Alabama TCGA Report 91003; PhD Dissertation; University Microfilms 91-30 265

——1995 Memory exploitation in learning classifier systeBwlutionary Comput2 199-220

Smith R E and Dike B A 1995 Learning novel fighter combat maneuver rules via genetic algotithnds Expert
Syst.8 84-94

Smith S F 1980 A learning system based on genetic adaptive algorithms

Teller A 1996 Evolving programmers: the co-evolution of intelligent recombination operAtbrances in Genetic
Programming 2ed P J Angeline ahK E Kinnear Jr (Cambridge, MA: MIT Press)

Twardowski K 1993 Credit assignment for pole balancing with learning classifier systemss 5th Int. Conf. on
Genetic Algorithms (Urbana-Champaign, IL, July 1998 S Forrest (San Mateo, CA: Morgan Kaufmann)
pp 238-45

Valenzuela-Renth M 1991 The fuzzy classifier system: a classifier system for continuously varying varbies
4th Int. Conf. on Genetic Algorithms (San Diego, CA, July 198d)R Belew and L Booker (San Mateo, CA:
Morgan Kaufmann) pp 346-53

Watkins J C H1989 Learning with delayed rewards

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.514

Derivative methods

Wilson S W 1985 Knowledge growth in an artificial animBroc. Int. Conf. on Genetic Algorithms and Their

Applicationspp 16-23

——1994 ZCS: a zeroth level classifier syst&wolutionary Comput2 1-18
——1995 Classifier fithess based on accurkeplutionary Comput3 149-76

Further reading

1.

Koza J R 199Zenetic ProgrammingdCambridge, MA: MIT Press)

The first book on the subject. Contains full instructions on the possible details of carrying out genetic
programming, as well as a complete explanation of genetic algorithms (on which genetic programming is based).
Also contains 11 chapters showing applications of genetic programming to a wide variety of typical artificial
intelligence, machine learning, and sometimes practical problems. Gives many examples of how to design a
representation of a problem for genetic programming.

Koza J R 19945enetic Programming l(Cambridge, MA: MIT Press)

A book principally about automatically defined functions (ADFs). Shows the applications of ADFs to a wide
variety of problems. The problems shown in this volume are considerably more complex than those shown in
Genetic Programmingand there is much less introductory material.

Kinnea K E Jr (ed) 1994Advances in Genetic Programmir{@ambridge, MA: MIT Press)

Contains a short introduction to genetic programming, and 22 research papers on the theory, implementation,
and application of genetic programming. The papers are typically longer than those in a technical conference and
allow a deeper exploration of the topics involved. Shows a wide range of applications of genetic programming,
as well as useful theory and practice in genetic programming implementation.

Forrest S (ed) 199Broc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1983an Mateo,
CA: Morgan Kaufmann)

Contains several interesting papers on genetic programming.
19941st IEEE Conf. on Evolutionary Computation (Orlando, FL, June 19®43cataway, NJ: IEEE)
Contains many papers on genetic programming as well as a wide assortment of other EC-based papers.

Eshelma L J (ed) 1995roc. 6th Int. Conf. on Genetic Algorithms (Pittsburgh, PA, July 19@3mbridge, MA:
MIT Press)

Contains a considerable number of applications of genetic programming to increasingly diverse areas.
Angelire P J and KinnaaK E Jr (eds) 1996Advances in Genetic Programming (Cambridge, MA: MIT Press)

A volume devoted exclusively to research papers on genetic programming, each longer and more in depth than
those presented in most conference proceedings.

Kauffman S A 1993The Origins of Order: Self-Organization and Selection in Evolut{dlew York: Oxford
University Press)

A tour-de-force of interesting ideas, many of them applicable to genetic programming as well as other branches
of evolutionary computation.

ftp.io.com pub/genetic-programming

An anonymous ftp site with considerable public domain information and implementations of genetic programming
systems. This is a volunteer site, so its lifetime is unknown.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B1.515

Theoretical Foundations and Properties of Evolutionary Computations

B2.1 Introduction

Nicholas J Radcliffe

Abstract

This section introduces the basic terminology of search, and reviews some of the key
ideas underpinning its analysis. It begins with a discussion of search spaces, objective
functions and the various possible goals of search. This leads on to a consideration of
structure within search spaces, both in the form of a neighborhood structure and through
the imposition of metrics over the space. Given such structure, various kinds of optima
can be distinguished, including local, global and Pareto optima, all of which are defined.
The main classes of operators typically used in search are then introduced, and the section
closes with some remarks concerning the philosophy of search.

B2.1.1 Introduction

Evolutionary computation draws inspiration from natural evolving systems to build problem-solving
algorithms. The range of problems amenable to solution by evolutionary methods includes optimization,
constraint satisfaction, and covering, as well as more general forms of adaptation, but virtually all of the
problems tackled arsearchproblems. Our first definitions, therefore, concern search in general.

B2.1.2 Search

A search spaces is a set of objects for potential consideration during search. Search spaces may be finite
or infinite, continuous or discrete. For example, if the search problem at hand is that of finding a minimum
of a function

F: X —)

then the search space would typically ieor possibly some subset or supersefiof Alternatively, if the
problem is finding a computer program to test a number for primality, the search space might be chosen to
be the set of LISP S-expressions using some given set of terminals and operators, perhaps limited to some
depth of nesting (see Section B1.5.1). Notice that there is usually some choice in the definition mfsthe
search space, and that resolving this choice is part of the process of defining a well-posed search problem.
Points in the search spaceare usually referred to asolutionsor candidate solutions.

The goal of a search problem is usually to find one or more points in the search space having some
specified property or properties. These properties are usually defined with respect to a function over the
search spacé. This function, which generally takes the form

f:S§—R

whereR is most commonly the real numbei®, or some subset thereof, is known as dhgective function.

When the search goal is optimization, the aim is to find one or more points in the search space which
maximize f (in which casef is often known as autility or fithessfunction, or occasionally figure of
merit), or which minimizef (in which casef is often known as &ost functionor anenergy). Of course,
since maxf = — min(— f), maximization and minimization are equivalent.

When the goal is constraint satisfactigh,usually measures the degree to which a solution violates
the constraints, and is calledpgnalty function.Here the goal is to find any zero of the penalty function.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.11

Introduction

Penalty functions are also commonly used to modify objective functions in optimization tasks in cases

where there are constraints on the solution, though evolutionary methods also admit other approaches (see

Section C5.2). C5.2
When the search task is a covering problem, the goal is usually to find a set of poisita/fich

together minimize some function or satisfy some other properties. In this case, the objective function,

which we will denoteO, usually takes the form

O:PS) — R

whereP(S) is the power set (i.e. set of all subsets)%fi.e. the objective function associates a value with
a set of objects from the search space.

B2.1.3 Structure on the search space
B2.1.3.1 Global optima

Let us assume that the search problem is an optimization problem and, without loss of generality, that the
goal is to minimizef. Then theglobal optimaare precisely those points & for which f is a minimum.
The global optima are usually denoted with a star, so that

eSS f(x") = miglf(x).

Notice that the global optima are always well defined provided that the objective function is well defined,
and that they are independent of any structure definesl.dror practical applications, it is often adequate
to find instead a member of tHevel setdefined by

Liye={xeS| fx) < f(x*)+¢}

for some suitably choses > 0.

B2.1.3.2 Neighborhoods and local optima

It is often useful to consider the search sp@té¢o be endowed with structure in the form of either a
connectivitybetween its points or metric (distance function) over it. In the case of a discrete space, the
structure is usually associated withreve operator M, which, starting from any point € S, generates
amoveto a pointy € S. The move operator considered is usually stochastic, so that different points
may be generated. The points which can be generated by a single application of the move operator from
x are said to form th@eighborhoodof x, denoted Nh@). Those points that can be generated by up to
applications ofM are sometimes known as theneighborhoodof x, denoted Nhdk, k). For example, if

S = B* and the move operatde randomly changes a single bit in a solution, then the neighbors of 1010
are 0010 111Q 1000, and 1011, while the 2-neighbors are Q1000Q 0011 110Q 1111, and 1001.
Assuming thatM is symmetric (so thay € Nhd(x, k) <= x € Nhd(y, k)), a neighborhood structure
automatically induces a connectivity on the space, together with a naktiicen by

d(x,y) =min{k € N | y € Nhd(x, k)}.

In the case of a continuous space, a metric may be similarly defined with respect to a move operator,
but it is more commonly chosen to be one of the natural metrics on the space such as the Euclidean
metric. In this case, rather than discrete neighborhoods, one talks of contiswnmighborhoods.The
e-neighborhood of a point € S is simply the set of points within distaneeof x with respect to the
chosen metriel:

Nhd(x,e) ={y € S |d(x,y) < ¢}.

Once a neighborhood structure has been establishedSviebecomes meaningful to talk dbcal
optima (figure B2.1.2). In the case of a discrete space, a solution is said to be a local optimum if its
objective function value is at least as low as that of each of its immediate neighbors. Thus the set of local
optima L C S, defined with respect to the chosen neighborhood structure, is given by

L={xe8|VyeNhdx): f(x) < f(}.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.12

Introduction

In the case of a continuous space, a local optimum is a point for which, for small empaghmember
of its e-neighborhood has a lower objective function value, so that

L={xeS|3e>0VyeNhdx,e): f(x) < f(y)}.

Of course, all global optima are also local optima, though the term local optimum is often used loosely to
refer to points which are locally but not globally optimal. A function is said tauhanodal if there is a

unique global optimum and there are no nonglobal optima,rantfimodal if there are multiple optima.

(In fact, a search space that had multiple optima not separated by suboptimal solutions would also often be
called unimodal, but such a definition depends on the structure imposed on the search space, so is avoided
here.)

B2.1.3.3 Pareto optimality and multiple objectives

Another form of optimum arises when there are multiple objective functions, or, equivalently, when the
objective function is vector valued. In suchulticriterion or multiobjectiveproblems, there is typicallyca.s F1.9
no solution that is ‘better than’ all others, but rather tradeoffs must be made between the various objective
functions (Schaffer 1985, Fonseca and Fleming 1993).

Suppose, without loss of generality, that the objective functions form the vector function

.f:(fbfz""vfn)
with
fi:S§—R

for each componenf;, and assume further that each function is to be minimized. A solutienS is
now said todominateanother solutiory € S if it is no worse with respect to any component thaand
is better with respect to at least one. Formally

x dominatesy <— Vie{l,2,...,n}: fi(x) < fi(y)
and 3je{1,2,...,n}: fi(x) < f;(y).
A solution is said to béareto optimalin S if it is not dominated by any other solution &, and the
Pareto-optimal sebr Pareto-optimal frontis the set of such nondominated solutions, defined formally as

S*={xeS |4y eS:ydominatesr}.

A typical Pareto-optimal front is shown in figure B2.1.1.
Multiobjective problems are usually formulated as covering problems, with the goal being to find the
either the entire Pareto-optimal set, or a number of different points near it.

A
Sz

Achievable region

Unachievable
region

Figure B2.1.1. The Pareto-optimal frontrepresents the best possible tradeoffs between two competing
functions, both of which, in this case, are to be minimized. Each point on it represents the best (lowest)
value for f, that can be achieved for a given value faf andvice versa.All points in S have values for

f on or above the front.

(© 1997 I0OP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.1:3

Introduction

B2.1.4 Landscapes and energy surfaces

Intuitively, the reason that local optima are relevant to search is that in many circumstances it is easy to
become ‘trapped’ in a local optimum, and for this to impede further progress. It is sometimes helpful to
imagine the objective function as definingfaness) landscap@Nright 1932, Jones 1995) or genergy) B2.7
surface with points laid out to reflect the neighborhood structure discussed above. A solution then
corresponds to a point on the landscape, and the height of that point represents its objective function
value. Figure B2.1.2 can be considered to show the profile of a one-dimensional continuous landscape and
an aerial view of a discrete landscape. If we again assume that the problem is a minimization problem,
traditional gradient-based descent methods can be likened to releasing a marble from some point on the
landscape: in all cases, the marble will come to rest at one of the minima of the landscape, but typically
it will be a local rather than a global optimum.

A a2

@/\
\e\s/f
(J/ \/\El/m\-4

3

Figure B2.1.2. The left-hand graph shows the global minimum (large dot) of a continuous one-dimensional
search space as well as the local optima. The right-hand graph shows the two global optima (in circles)
and two local optima (squares) for a discrete space, where the numbers are function values and the letters
are labels for later reference.

It is important to note, however, that the landscape structure is relevant to a search method only when
the move operators used in that search method are strongly related to those which induce the neighborhood
structure used to define the landscape. Referring again to the discrete landscape shown in figure B2.1.2,
a move operator which moves only in the immediate neighborhood of any point will be unable to escape
from the local optima marked with squares &ndi). However, a move operator which moves to points
at exactly distance 2 from any starting point will see poitand f, but noti, as local optima.

While the intuition provided by the landscape analogy can be helpful in understanding search
processes, it also carries some dangers. In particular, it is worth noting that the determination of the height
of a point in the landscape involves computing the objective function. While in simple cases this may be
a fast function evaluation, in real-world scenarios it is typically much more complex, perhaps involving
running and taking measurements from a numerical simulation, or fitting a model to some parameters. In
this sense, each point sampled from the landscape only comes into existence after the decision has been
made to sample that solution. (There is thus no possibility of ‘looking around’ to spot points from a
distance.) It is the evaluation of solutions that, in applications, usually takes the overwhelming proportion
of the run time of an evolutionary algorithm.

B2.1.5 Representation

It is a particular characteristic of evolutionary computation that the search model in many cases defines
moves not directly in the search space, but rather in an auxiliary space knownraprésentation space,

I. Members of thegpopulation,which acts as the memory for an evolutionary algorithm, are members of
this representation space, not of the search space. There are a number of reasons for this.

e Biologists make a strong distinction between ¢flemotypehatspecifiesan organism (its genetic code),
and its observable characteristics, which together constitugghéaotype For this reason, members
of the search spacg are often referred to gshenotypeswhile members of the representation space
I are called variouslgenotypes, genomest chromosomesThe termindividual is also used, and
usually refers to a member of the population—an element of the representation space.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.14

Introduction

e Many of the schools of evolutionary computation utilize standard move operators which are defined
explicitly with respect to some representation. In this case, if the original search space is not the
same as the representation space with respect to which these operators are defined, it is necessary to
form a mapping between the two spaces.

e Certain of the evolutionary paradigms store within an individual not only information about the point
in S represented, but also other information used to guide the search (Sections B1.3 andsT4 ET4
Such auxiliary information usually takes the formstfategy parametersyhich influence the moves
made from the individual in question, and which are normally themselves subject to adaptation
(Section C7.1). cr.1

Before an individual can be evaluated (wiff), it must first be mapped to the search space. In
deference to the evolutionary analogy, the process of transforming an individual genotype into a solution
(phenotype) is often known amorphogenesisand the functiorg that effects this is known as trggowth
function,

g: 1 —S.

It should be clear that the choice of representation space and growth function is an important part of the
strategy of using an evolutionary algorithm (Hattal 1994).

The complexity of the growth function varies enormously between applications and between
paradigms. In the simplest case (for example, real parameter optimization with an evolution strategy,
or optimization of a Boolean function with a genetic algorithm) the growth function may be the identity
mapping. In other cases the growth function may be stochastic, may involve repair procedures to produce
a feasible (i.e. constraint-satisfying) solution from an infeasible one, or a legal (well-formed) solution from
an illegal (ill-formed) individual. In more complex cases stilmay even involve a greedy construction
of a solution from some starting information coded by the population member.

The representation space is sometimes larger than the search space (in which casg ®&ither
noninjective, and the representation is said tadegeneratéRadcliffe and Surry 1994), or some individuals
are illegal), sometimes the same size (in which case, assuming that all solutions are reprgséented,
invertible), and occasionally smaller (in which case the global optima may not be represented).

The most common representations use a vector of values to represent a solution. The components of
the vector are known agenesagain borrowing from the evolutionary analogy, and the values that a gene
may take on are italleles. For example, ifz integers are used to represent solutions, andtthemay take
values in the range %, then the alleles for geneare {1, 2, ..., Z;}. If all combinations of assignments
of allele values to genes are legal (i.e. represent members of the search space), the representation is said
to beorthogonal; otherwise the representationnsnorthogonal(Radcliffe 1991).

B2.1.6 Operators

Evolutionary algorithms make use of two quite different kinds of operator. The first set are essentially
independent of the details of the problem at hand, and even of the representation chosen for the problem.
These are the operators for population maintenance—for exasgikxtionand replacementmigration c2 ce.3
and deme managemeniMove operators, on the other hand, are highly problem dependent, and falcézto
three main groups-+autation operatorsrecombination operatotsandlocal searchoperators.
The main characteristic ahutationoperators is that they operate on a single individual to prodcz2
a new individual. Most mutation operators, with typical parameter settings, have the characteristic that,
for some suitably chosen metric on the space, they are relatively likely to generate offspring close to the
parent solution, that is, within a small or k-neighborhood. In some cases, the degree to which this is
true is controlled by the strategy parameters for the individual undergoing mutatimk @d Schwefel
1993). Mutation operators are normally understood to serve two primary functions. The first function
is as an exploratory move operator, used to generate new points in the space to test. The second is the
maintenance of the ‘gene pool'—the set of alleles available to recombination in the population. This
is important because most recombination operators generate new solutions using only genetic ‘material’
available in the parent population. If the range of gene values in the population becomes small, the
opportunity for recombination operators to perform useful search tends to diminish accordingly.
Recombinatior(or crossove} operators, the use of which is one of the more distinguishing featcss
of many evolutionary algorithms, take two (or occasionally more) parents and produce from them one or

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.15

Introduction

more offspring. These offspring normally take some characteristics from each of their parents, where a
characteristic is usually, but not always, an explicit gene value.

Local searchoperators typically iteratively apply some form of unary move operator (oftenciz
mutation operator), accepting some or all improving moves.

B2.1.7 The process of search

The basic choice that all search algorithms have to make at each stage of the search is which point (or points)
in the search space to sample next. At the start, assuming no prior knowledge, the choice is essentially
random. After a while, as various points are sampled, and information is retained in whatever form of
memory the search algorithm possesses, the choice becomes more informed. The likely effectiveness of
the search is dependent on the strategy used to make choices on the basis of partial information about the
search space and the degree to which the strategy is well matched to the problem at hand. In evolutionary
algorithms, the population acts as the memory, and the choice of the next point in the search space to
sample is determined by a combination of the individuals in the population and their objective function
values, the representation used, and the move operators employed. It is important to note that the degree
to which the move operators used are affected by any neighborhood structure imposed on the search space
S depends on the interaction between the moves they effect in the representation space and the growth
function g. In particular, local optima in the search spagaunder some given neighborhood structure

may not be local optima in the representation spader the chosen move operators. Conversely, there

may be points in the representation space which do not correspond to obvious local opfimautrfrom

which there is no (reasonably likely) move to a neighboring point/{irwith better objective function

value underg. It is the latter points, rather than the former, which will tend to act as local traps for
evolutionary algorithms.

B2.1.8 The philosophy of search
The ideal goals of search are:

e to find a global optimum (optimization)
e to find all global optima, or all non-dominated solutions (covering)
e tofind a zero of the function (constraint satisfaction).

A more realistic goal, given some finite time and limited knowledge of the search space, is to make the
maximum progress towards the appropriate goal—to find the best solution or solutions achievable in the
time available. This point is reinforced by realizing that except in special cases, or with prior knowledge,
it is not even possible to determinghethera given point is a global optimum without examining every
point in the search space. Given the size and complexity of search spaces now regularly tackled, it is
therefore rarely realistic to expect to find global optima, and to know that they are global optima.

There is an ongoing debate about whether or not evolutionary algorithms are properly classified
as optimization methodper se. The striking elegance and efficiency of many of the results of natural
evolution have certainly led many to argue that evolution is a process of optimization. Some of the more
persuasive arguments for this position include the existence of organisms that exhibit components that are
close to known mathematical optima to mechanical and other problemspamdrgent evolutiornwhereby
nearly identical designs evolve independently in nature.

Others argue that evolution, and evolutionary algorithms, are better descrilzethpistive systems
(Holland 1975, De Jong 1992). Motivations for this view include the absence of guarantees of convergence
of evolutionary search to solutions of any known quality, the changing environment in which natural
evolution occurs, and arguments over ‘fitness functions’ in nature. Among others, Dawkins (1976) has
argued particulary cogently that if evolution is to be understood as an optimization process at all, it is the
propagation of DNA and the genes it contains that is maximized by evolution.

In a reference work such as this, it is perhaps best simply to note the different positions currently
held within the field. Regardless of any eventual outcome, both the results of natural evolution and proven
empirical work with evolutionary algorithms encourages the belief that, when applied to optimization
problems, evolutionary methods are powerful global search methods.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.16

Introduction

References

Back T and Schwefel H-P 1993 An overview of evolutionary algorithms for parameter optimidationtionary
Comput.1 1-24

Dawkins R 1976The Selfish GenfOxford: Oxford University Press)

De Jong K A 1992 Genetic algorithms are NOT function optimizeyandations of Genetic Algorithmsed D Whitley
(San Mateo, CA: Morgan Kaufmann) pp 2-18

Holland J H 1975Adaptation in Natural and Artificial Systen{fé&nn Arbor, MI: University of Michigan Press)

Fonsea C M and Flemig P J 1993 Genetic algorithms for multiobjective optimization: formulation, discussion and
generalizatiorProc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign, IL, July 1@@B% Forrest (San
Mateo, CA: Morgan Kaufmann) pp 416-23

Hart W, Kammeyer T and Bele R K 1994 The role of development in genetic algorithRaundations of Genetic
Algorithms 3ed D Whitley and M Vose (San Francisco, CA: Morgan Kaufmann) pp 315-32

Jones T C 1995Evolutionary Algorithms, Fitness Landscapes and Sedhb Thesis, University of New Mexico

Radcliffe N J 1991 Forma analysis and random respectful recombinBtion. 4th Int. Conf. on Genetic Algorithms
(San Diego, CA, July 1998d R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 222-9

Radcliffe N J and Sugr P D 1994 Fitness variance of formae and performance predi&bmdations of Genetic
Algorithms 1l ed L D Whitley amd M D Vose (San Mateo, CA: Morgan Kaufmann) pp 51-72

Schaffe J D 1985 Multiple objective optimization with vector evaluated genetic algoritRmes. 1st Int. Conf. on
Genetic Algorithms (Pittsburgh, PA, July 1988 J J Grefenstette (Hillsdale, NJ: Erlbaum)

Wright S 1932 The roles of mutation, inbreeding, crossbreeding and selection in evétatiorgth Int. Congress on
Geneticsvol 1, pp 256—366

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.17

Theoretical Foundations and Properties of Evolutionary Computations

B2.2 Stochastic processes
Glnter Rudolph

Abstract

The purpose of this section is threefold. First, the notion of stochastic processes
with particular emphasis on Markov chains and supermartingales is introduced and
some general results are presented. Second, it is exemplarily shown how evolutionary
algorithms (EAs) can be modeled by Markov chains. Third, some general sufficient

conditions for EAs are derived to decide whether or not a particular EA converges to the

global optimum.

B2.2.1 Stochastic processes in general

Historically, the termstochastic procestias been reserved for families of random variables with some
simple relationships between the variables (Doob 1967, p 47).

Definition B2.2.1.Let (X, : t € T) be a family of random variables on a joint probability spage 7, P)
with values in a sett of a measurable spadé, .A) and index sefl'. Then(X, :t € T) is called a
stochastic proceswith index setT'. 0

In general, there is no mathematical reason for restricting indeX setbe a set of numerical values.
In this section, however, the index sgtis identical withNy and the indices € T will be interpreted as
points of time.

Definition B2.2.2.A stochastic procese€X, : ¢t € T) with index setT’ = Ny is called astochastic process
with discrete time The sequenc&(w), X1(w), ... is termed asample sequencir each fixedw € Q.
The image spacé& of (X, : ¢ € T) is called thestate spaceof the process. O

The next two subsections present some special cases of relationships that are important for the analysis
of evolutionary algorithms.

B2.2.2 Markov chains

Stochastic processes possessingMhekov property(B2.2.1) below can be defined in a very general setting
(Nummelin 1984). Although specializations to certain state spaces allow for considerable simplifications
of the theory, the general case is presented first.

Definition B2.2.3.Let (X, : ¢t > 0) be a stochastic process with discrete time on a probability space
(2, F, P) with values inE of a measurable spad&, A). If for0 <t < < -+ <t <t with some
keNandAe A

P{X:eA| Xy, Xy, ..., Xy} =P{X, € A| Xy} (B2.2.1)

almost surelythen (X, : ¢t > 0) is called aMarkov chain If P{X,,;, € A | X, 4} = P{X, € A | X;} for B23
arbitrarys, t, k € Ng with s < ¢, then the Markov chain is termdsbmogeneoyotherwiseinhomogeneous
O

Condition (B2.2.1) expresses the property that the behavior of the process aftgrdsiep not depend
on states prior to step provided that the state at stgpis known.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.21

Stochastic processes

Definition B2.2.4.Let (X, : t > 0) be a homogeneous Markov chain on a probability sgacer, P) with
image spac€E, A). The mapK : E x A — [0, 1] is termed aMarkovian kernelor atransition probability
function for Markov chain(X, : r > 0) if K(-, A) is measurable for any fixed sdte A andK(x, -) is a
probability measure oGE, A) for any fixed statec € E. In particular,K(x;, A) = P{X,;.1 € A| X, = x,}.

Il

Therth iteration of the Markovian kernel given by

K(x, A) t=1

(@) =
K¥(x, A) = { fE K("l)(y, A) K(x, dy) r>1

describes the probability to transition to some A&t E within ¢ steps when starting from the statec E.
Let p(.) be the initial distribution over subsets of .A. Then the probability that the Markov chain is in
setA at stepr > 0 is determined by

p(A) t=0

PlX, e A} = { [K (x, A) p(dx) t>0

where integration is with respect to an appropriate measuréEomd). For example, ifE = R" then
integration is with respect to the Lebesgue measuré. iff finite then the counting measure is appropriate
and the integrals reduce to sums. Then the Markovian kernel can be described by a finite humber of
transition probabilitiesp,, = K(x, {y}) > 0 that can be gathered in a square maRix= (p,,) with

x,y € E. Since the state space is finite the states may be labeled uniquely2by. 1, ¢ = cardE)
regardless of the true nature of the elementstEof To emphasize this labeling, the states fr@mare
symbolized byi, j instead ofx, y.

Obviously, the matrixP plays the role of the Markovian kernel in case of finite Markov chains.
Therefore, each entry must be nonnegative and each row must add up to one in order to fulfill the
requirements for a Markovian kernel. Thih iterate of the Markovian kernel corresponds to dtiepower
of matrix P:

PP = P.P...P
_.,—/
t times

for + > 1. Since matrix multiplication is associative the relatl®i* = P’ . P* for s, > 0 is valid and it
is known as theChapman—Kolmogorov equatidor discrete Markov chains. By conventioR? = I, the
unit matrix. Theinitial distribution p; := P{Xo =i} for i € E of the Markov chain can be gathered in a
row vectorp = (p1, p2, ..., pe). Let p{”’ := P{X, = i} denote the probability that the Markov chain is

in statei € E at stepr > 0 with p© := p,. Then

p(t) — p(tfl) P = p(O) . P!

for t > 1. Therefore, a homogeneous finite Markov chain is completely determined by the{3aiP).
Evidently, the limit behavior of the Markov chain depends on the iterates of the Markovian kernel and
therefore on the structure of the transition matrix. For a classification some definitions are necessary
(Seneta 1981, Minc 1988).

Definition B2.2.5.A square matrixV : ¢ x c is called apermutation matrixif each row and each column
contain exactly one 1 and— 1 zeros. A matrixA is said to becogredientto a matrixB if there exists
a permutation matri®y/ such thatA = V'BV. A square matrixA is said to benonnegative(positive,
denotedA > 0 (> 0), if a;; > 0 (> 0) for each entrys;; of A. A nonnegative matrix is calleceducible
if it is cogredient to a matrix of the form
cC o
(= 7)

whereC andT are square matrices. Otherwise, the matrix is calletiucible An irreducible matrix is
called primitive if there exists a finite constaite N such that itskth power is positive. A nonnegative
matrix is said to bestochasticif all its row sums are unity. A stochastic matrix with identical rows is
termedstable O

Note that the product of stochastic matrices is again a stochastic matrix and that every positive matrix is
also primitive. Clearly, transition matrices are stochastic and they can be brought intcmeomed form

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.22

Stochastic processes

Theorem B2.2.1 (losifescu 1980, p 9&pach transition matrix of a homogeneous finite Markov chain is
cogredient to one of the followingormal forms

C1 1 c
(o 2
P, = or P, =
C.
Cr Ri R --- R T
where submatrice€4, ..., C, with » > 1 are irreducible and at least one of the submatiR,eis nonzero.

O
To proceed the following terms have to be introduced:

Definition B2.2.6.Let P be the transition matrix of a homogeneous finite Markov chain. A distribysion

on the states of the Markov chain is calledtationary distributionif pP = p and alimit distribution if

the limit p = p© lim P! exists. O
—00

Now some limit theorems may be stated:

Theorem B2.2.2 (losifescu 1980, p 123, Seneta 1981, p L8R be a primitive stochastic matrix. Then

P’ converges as — oo to a positive stable stochastic mati®R® = 1'p©, where the limit distribution
p® = p@ lim,_ P = p@P> has nonzero entries and is unique regardless of the initial distribution.
Moreover, the limit distribution is identical with the unique stationary distribution and is given by the
solutionp® of the system of linear equatiopg™ P = p™, p(*1’ = 1. O

Theorem B2.2.3 (Goodman 1988, pp 15843t P : ¢ x ¢ be a reducible stochastic matrix cogredient to

the normal form
p_ I 0
“"\R T

wherel has rankm < ¢. Then the iterates dP converge to

I 0

. I 0
(00) _ r_ =1 —
P =lmP=| Spr w _<(I—T)1R o)
k=0
and the limit distributionp® satisfiesp™ = 0 form < i < ¢ and Y., p\° = 1 regardless of the
initial distribution. O

A variation of theorem B2.2.3 is given below.

Theorem B2.2.4 (losifescu 1980, p 126, Seneta 1981, p L27R : ¢ x ¢ be a reducible stochastic matrix
cogredient to the normal form
p_ (cC o)
“\R T

whereC : m xm is a primitive stochastic matrix arid, T # 0. Then

c 0 .
Pr—timP =tim [2, o |=(S ©
AT =M SR T Re O
k=0

is a stable stochastic matrix with™ = 1'p>®, wherep™ = p@P> is unique regardless of the initial

distribution, andp® satisfiesp® > 0for 1<i <m andp™ =0form <i <ec. O

1 L

In the literature some efforts have been devoted to the question of how fast the distriptitioh
the Markov chain approaches the limit distribution. It can be shown |th&t — p© | = O(t*B") with
B € (0,1) anda > O for the transition matrices treated in theorems B2.2.2-B2.2.4 (see e.g. Isaacson and
Madsen 1976, losifescu 1980, Rosenthal 1995). Aglfabal convergenceates of evolutionary algorithmsz2.3
with finite search spaces, however, it will suffice to know the rates at which the iterates of matrix
theorems B2.2.3 and B2.2.4 approach the zero matrix. Since the limit distributions are approached with a

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.23

Stochastic processes

geometric rate it is clear that the rate for matfixs geometric as well, but the bound for the latter may
be smaller.

After having dealt with the limit behavior of some Markov chains the next question concerns the time
that must be awaited on average to reach a specific set of states.

Definition B2.2.7.The random timeH, = min{t > 0 : X, € A € E} is called thefirst hitting (entry,
passage) timeof setA C E while Ly, = max{r > 0 : X, € A C E} is termed thdast exit time A
non-empty setA C E is calledtransientif P{L, < oo | Xo=x}=1forallx € A. If K(x, A) = 1 for
all x € A then the setA is calledabsorbing (under Markovian kerneK). If A is absorbing therf, is
called theabsorption time O

Suppose that the state spacean be decomposed into two disjoint satand7 whereA is absorbing
andT is transient. For finite state spaces this situation is reflected by theorems B2.2.3 and B2.2.4 in which
the transient states are associated with mafriwhereas the absorbing set is associated with mattices
andC, respectively.

Obviously, asH, = Lt + 1, provided thatXy € T, it is sufficient to count the number of times that
the Markov chain is in the transient set in order to obtain the absorption time t. Sebnsequently, the
expected absorption time is given by

E[Ha | Xo=x] =) E[l7(X) | Xo=x]=) (1-P{X, €T | Xo=x}+0-P(X, ¢ T | Xo=x})
t=0 t=0

=Y P(X,eT |Xo=x}=)» K. T)
t=0

t=0

whereK© (x, T) = 17(x). In the finite case the Markovian kerniéli, {j}) for i, j € T is represented by
matrix T. Since}_,_, T = (I — T)~* one obtains the following result.

Theorem B2.2.5 (losifescu 1980, p 104, Seneta 1981, p #22).denotes the random time until absorp-
tion from statei € E anda = (ay, az, .. ., a.) thenE[a] = (I — T)"1". O

B2.2.3 Supermartingales

The next special case of stochastic processes considered here deals with those processes that have a
relationship between random variabYe and the conditional expectation &f, ;1 (Neveu 1975).

Definition B2.2.8.Let (2, F, P) be a probability space anflp € F; C ... F be an increasing family of
sube-algebras ofF and F, = o (U,]—"t) C F. A stochastic procesg€X,) that is F,-measurable for
eachr is termed asupermartingalef

E[| X:] < o0 and E[Xi11 | Fi] < Xi

forall + > 0. If P{X, > 0} = 1 for all t > 0 then the supermartingale is said tormnnegative O

Nonnegative supermartingales have the following remarkable property.

Theorem B2.2.6 (Neveu 1975, p 26)(X; : ¢+ > 0) is a nonnegative supermartingale thens X < oo.
O

Although nonnegative supermartingales do converge almost surely to a finite limit, nothing can be
said about the limit itself unless additional conditions are imposed. For later purposes it is of interest to
know under which conditions the limit is the constant zero. The proof of the following result is given by
Rudolph (1994a).

Theorem B2.2.7If (X, : r > 0) is a nonnegative supermartingale satisfyl{&;1 | ;] < ¢; X; almost

surely for allr > 0 with ¢, > 0 and
o0 —1
Z(ck> < (B2.2.2)
0

t=1 \k=
thenX, 5 0 andX, < 0 ast — oo. O 823

Condition (B2.2.2) is fulfilled if for example limsyp, : t > 0} < 1.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.24

Stochastic processes

B2.2.4 Stochastic process models of evolutionary algorithms

Evolutionary algorithms (EAs) can be modeled almost always as homogeneous Markov chains. For this
purpose one has to define an appropriate state sbaared the probabilistic behavior of the evolutionary
operators (variation and selection operators) must be expressed in terms of transition probabilities (i.e.
the Markovian kernel) over this state space. The general technique to derive the Markoviankkernel
rests on its property that it can be decomposed inta co mutually independent Markovian kernels

Ky, ..., Ky—each of them describing an evolutionary operator—suchHKhiatjust their product kernel

K(x, A)= (KiKz---Kp)(x, A)
= f Kl(xl»dXZ)/ Ka(xz, dx3)"'/ Ki—2(xr—2, dxkfl)/ Ki—1(xk—1, dxg) Ky (xe, A)
E E E E

with x; = x € E andA C E. Evidently, for finite state spaces the Markovian kernels for the evolutionary
operators are transition matrices and the product kernel is just the product of these matrices.

If I is the space representing admissible instances of an individual, then the most natural way to
define the state spade of an evolutionary algorithm withe individuals is given byE = 7*. Mostly this
choice exhibits some redundancy, because the actual arrangement of the individuals in the population is
seldom of importance. Especially for finifewith cardinality s the state spac& = I* can be condensed
to the smaller state spad® = {x € N}, : ||z|1 = n}. Here, each entry; of x represents the number of
individuals of typei; € I, where the elements df are uniquely labeled from 1 to < co. This type of
state space was often used to build an exact Markov model of an evolutionary algorithm for binary finite
search spaces withroportionate selectionbit-flipping mutation and one-point crossove(Davis 1991, c2.2 c3.2.1
Nix and Vose 1992, Davis and Principe 1993, and others). In order to obtain global convergence ¢&sults
qualitative Markov models of evolutionary algorithms are sufficient: see the articles by Fogel (1994),
Rudolph (1994b), and Suzuki (1995) for qualitative Markovian models of EAs with finite search spaces.

The essence of the above-mentioned references is that EAs on binary search spaces—as they are
commonly used—can be divided into two classes, providedditdiipping mutationis used: the transitioncs.2.1
matrix is primitive if the selection operator is nonelitist, while the matrix is reducible if the selection
operator is elitist. For example, lét= B* and E = I*. Since each bit in € E is mutated independently
with some probabilityp € (0, 1), the transition probabilityz;; to mutate population to population; € E
ism;; = p":D) (1— p)Ht="0-) > 0 whereh(i, j) is the Hamming distance betweeand j. Consequently,
the transition matrix for mutatiom = (m;;) is positive. LetC be the stochastic matrix gathering the
transition probabilities for some crossover operator &nthe transition matrix for selection. It is easy
to see that the produ&M is positive. If there exists a positive probability to select exactly the same
population as the one given prior to selection (which is true for proportionate stoclgaatig tournament
and some other selection rules), then the main diagonal entries of rBadni@ positive and the transition
matrix of the entire EA is positiveP = CMS > 0.

Finally, consider a(1 4+ 1) EA with search spac®”. An individual X, is mutated by adding a
normally distributed random vectdZ, ~ N(0,0?1l) with & > 0 where the sequencgZ, : + > 0) is
independent and identical distributed. The mutated p¥int X, + Z, is selected to serve as parent for
the next generation if it is better than or equalXo : f(Y;) < f(X,;) in the case of minimization.

To model this EA in a Markovian framework chooge= I = R”". Then the mutation kernel is given

by
Kn(r, A) = / Frz—) de
A

wherex € E, A C E, and f; is the probability density function of random vectdr~ N (0, o2 1). Let
Bx)={y € E . f(y) < f(x)} be the set of admissible solutions with a quality better than or equal to
the quality of solutionx € E. Since the selection kernel depends on the previous stat& this state is
attached tdKs as an additional parameter. Then the selection kernel is given by

Ks(y, A5 x) = 1po(¥) - 1a(y) + Lpeo (0) - Lalx) (B2.2.3)

and may be interpreted as follows. If statecs E is better than or equal to state(i.e. y € B(x)) and
also in setA, theny transitions to sef, and more precisely to set N B(x), with probability one. Ify
is worse thanx (i.e. y € B®(x)) theny is not accepted. Rathey, will transition to the old stater with

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.25

Stochastic processes

probability one. But ifx is in setA theny will transition tox € A with probability one. All other cases
have probability zero. Evidently, the selection kernel is purely deterministic here. Putting all this together
the product kernel of mutation and selection is

K(x, A) = / Ken(x, dy) - Ks(y, A3 x) = / Kan(, d) - Lasco () + 14 (6) - / Ken(dy) - gy ()

E E E

= / Km(x, dy) + 14(x) - / Km(x, dy) = Km(x, A N B(x)) + 14(x) - Km(x, B(x)).

ANB(x) B®(x)

There are two important observations: First, the above formula remains valid for arbitrary state space
E, only the integration must be done with respect to the appropriate measure. Secondkkenmey be
interpreted as a Markovian kernel describing all evolutionary operators that modify stateto generate
a new trial point inE.

As a consequence, the structure of kerdelemains valid for population-based EAs with arbitrary
search spaces and (a special version of) elitist selection. To see thisdat* with arbitrary ! and recall
the definition ofmapb : E — I that extracts the best individual from a population. Then the set of sts23s
better than or equal to statecan be redefined vi&@(x) = {y € E : f(b(y)) < f(b(x))}.

What happens with the selection kernel?yl& E is in B(x) N A the population transitions td. If
y ¢ B(x) then the best individual of populationis worse than the best individual of populatienIf the
entire population is rejected the kernel is identical to (B2.2.3). However under usual elitist selection the
best individualb(x) is reinserted—somehow—into populatignyielding y’ = e(x, y) € B(x). Here the
mape : E x E — E encapsulates the method to reinsert the best indivitlggl into y. Consequently,
the selection kernel becomes

Ks(y, A; x) = 1poyna () + 1gen (y) - 1a(x) - Lale(x, y))

leading to

K, A) = Kn(x, Bx) N A) + 1x(x) - / Km(x, dy) - 14(e(x, y)). (B2.2.4)
BC(x)

The integral in (B2.2.4) is unpleasant, but in the next section it will be investigated whether some EA is
able to converge in some sense to a specificAsethat is related to the globally optimal solutions of an
optimization problem. Restricted to this s&t the Markovian kernel shrinks to a very simple expression.

B2.2.5 Convergence conditions for evolutionary algorithms

Let Ac ={x € E: f(b(y)) — f* < ¢} for somee > 0 where f* is the global minimum of the objective
function. The main convergence condition is given below (the proof can be found in the article by Rudolph
(1996)).

Theorem B2.2.8An evolutionary algorithm, whose Markovian kernel satisfies the conditions A.) >

§ > 0forallx e A = E\ Ac andK(x, A.) = 1 for x € A, will converge completely to the global
minimum of a real-valued functiorf defined on an arbitrary search space, provided thi bounded
from below. O

But which evolutionary algorithms possess a Markovian kernel that satisfies the preconditions of
theorem B2.2.8? To answer the question consider EAs whose Markovian kernel is represented by (B2.2.4).
If Ac C B(x) thenx ¢ A., Ac N B(x) = A, andK(x, A¢) = Kn(x, Ao). If B(x) € A thenx € A,

Ac N B(x) = B(x) and

K(x, Ae) = Kn(x, B(x)) + [Km(x, dy) - 14 (e(x,) = Km(x, B(x)) + Km(x, B°(x)) =1
BC(x)
since e(x,y) € B(x) € A.. Therefore the Markovian kernel restricted to skt is K(x, A,) =

Km(x, Ae) - Lxe(x) + 14 (x) satisfying the preconditions of theorem B2.2.8Kif,(x, A.) > é > 0 for
all x € AS.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.26

Stochastic processes

As mentioned previously, the kern&l,, may be interpreted as the transition probability function
describing all evolutionary operators that modify the populattos E and yield the new preliminary
population before the elitist operator is applied. Consider a bounded search space (notice that finite search
spaces are always bounded). Assume that the mutation operator ensures that every point in the search space
can be reached in one step with some minimum probalglity- 0 regardless of the current location. For
example, the usual mutation operator for binary search sfigtdeas the boung,, = min{p*, (1—p)‘} > 0
where p € (0,1) denotes the mutation probability. L&t .ss and Kyt be the Markovian kernels for
crossover and mutation. Evidently, one obtains the bdgpg(x, {x*}) > 1 — (1 — Bm)* = m > 0 for
the mutation kernel. It follows that the joint kernel for crossover and mutation satisfies

Km(x, {x*}) = / Kerosdx, dy) Kmu(y, {x*}) > 5m/ Kerosdx, dy) = mKcrosdx, E) = ém > 0
E E

which in turn implies that this type of mutation and elitist selection leads to global convergence regardless
of the chosen crossover operator.

If the search space is not bounded the argumentation is different, but it is still possible to derive positive
bounds for the joint Markovian kernel for many combinations of crossover and mutation operators. See
the article by Rudolph (1996) for further examples.

Finally, consider the theory of supermartingales in order to obtain global convergence results.
Principally one has to calculate

ELf (b(Xps) | X, = /E FOO) - PlXisa € dy | X,). (82.2.5)

If E[f(b(X,+1)) | X,] < f(b(X,)) almost surely for alr > 0 and the conditional expectation in (B2.2.5)
exists, then the sequen¢g(b(X,)) — f* : ¢t > 0) is a honnegative supermartingale. In fact, it suffices to
calculate

ELf (X)) | Xo = x] = [FO) - Kix, dy)
E

and to compare this expression witf(b(x)). Then theorem B2.2.7 may be useful to prove global
convergence and to obtain bounds on the convergence rates. This topic is treated in more detail in
Section B2.4. B2.4

References

Davis T E 1991Toward an Extrapolation of the Simulated Annealing Convergence Theory onto the Simple Genetic
Algorithm PhD Thesis, University of Florida at Gainesville

Davis T E and Principe J 1993 A Markov chain framework for the simple genetic algoEtrotut. Computl 269-88

Doob J L 1967Stochastic Processe&h edn (New York: Wiley)

Fogd D B 1994 Asymptotic convergence properties of genetic algorithms and evolutionary programming: analysis
and experiment€ybernet. Sys25 389-407

Goodman R 1988ntroduction to Stochastic Model@enlo Park, CA: Benjamin—Cummings)

losifescu M 1980Finite Markov Processes and Their Applicatio@Ghichester: Wiley)

Isaacsa D L and Madse R W 1976Markov Chain Theory and Application®New York: Wiley)

Minc H 1988 Nonnegative MatricegNew York: Wiley)

Neveu J 197Discrete-Parameter MartingaleAmsterdam: North-Holland)

Nix A E and Vose M D 1992 Modeling genetic algorithms with Markov chafms. Math. Artificial Intell.5 79-88

Nummelin E 1984 General Irreducible Markov Chains and Non-negative Operat@@ambridge: Cambridge
University Press)

RosenthbJ S 1995 Convergence rates for Markov chaAM Rev.37 387-405

Rudolph G 1994a Convergence of non-elitist stratedlesc. 1st IEEE Conf. on Computational Intelligengel 1
(Piscataway, NJ: IEEE) pp 63-6

——1994b Convergence properties of canonical genetic algoritEfBE Trans. Neural NetworkbIN-5 96-101

——1996 Convergence of evolutionary algorithms in general search spaoes3rd IEEE Conf. on Evolutionary
Computation(Piscataway, NJ: IEEE) pp 504

Seneta E 198Non-negative Matrices and Markov Chai@ad edn (New York: Springer)

Suzuki J 1995 A Markov chain analysis on simple genetic algoritti#fE Trans. Syst. Man Cybern&MC-25 655-9

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.277

Stochastic processes

Further reading
1. Williams D 1991Probability with Martingales(Cambridge: Cambridge University Press)

A lively introduction to the theory of (super-) martingales. It also links supermartingales with potential theory
and Markov chains (pp 103-5).

2. Bucy R S 1965 Stability and positive supermartingaleBifferential Equationsl 151-5

This article establishes the connection between the convergence of nonnegative supermartingales and the concept
of Liapunov stability of dynamical stochastic systems.

3. Robbins H and Siegmund D 1971 A convergence theorem for non negative almost supermartingales and some
applicationsOptimizing Methods in Statistiosd J Rustagi (New York: Academic) pp 233-57

Robbins and Siegmund provide convergence theorems for stochastic processes that satisfy a weaker version of
the supermartingale condition.

4. Rudolph G and Sprave J 1995 A cellular genetic algorithm with self-adjusting acceptance thiesiroldist
IEE/IEEE Int. Conf. on Genetic Algorithms in Engineering Systems: Innovations and Applicétiomdon: |IEE)
pp 36572

These authors model evolutionary algorithms with spatial structure in the framework of probabilistic automata
networks.

5. Qi X and Palmieri F 1994 Theoretical analysis of evolutionary algorithms with infinite population size in
continuous space, part I: basic propertiEEE Trans. Neural NetworksIN-5 102-19

EAs with search spacR” are investigated under the assumption that the population size is infinite. Under this
scenario the theory becomes much simpler than for finite population size, but the qualitative behavior of these
evolutionary ‘algorithms’ is quite different from that of true EAs. In fact, the expected absorption time would
be of order @1). This objection also holds for the next three articles.

6. Vose M D and Liepis G E 1991 Punctuated equilibria in genetic seatomplex Syst 31-44
7. Vose M D and WrighA H 1995 Simple genetic algorithms with linear fithdsgolut. Comput2 347—-68

8. Whitley L D 1993 An executable model of a simple genetic algorithioundations of Genetic Algorithms &d
L D Whitley (San Mateo, CA: Morgan Kaufmann) pp 45-62

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.28

Theoretical Foundations and Properties of Evolutionary Computations

B2.3 Modes of stochastic convergence

Glnter Rudolph

Abstract

The purpose of this section is to introduce the notion of stochastic convergence of
sequences of random variables and to present some interrelationships between various
modes of stochastic convergence. Building on this foundation a precise definition of
global convergence of evolutionary algorithms is given.

The termconvergenceés used in classical analysis to describe the limit behavior of numerical deterministic
sequences. It is natural to expect that a similar concept ought exist for random sequences. In fact, such a
concept does exist—but there is a difference: since random sequences are defined on probability spaces the
main difference between the convergence concept of classical analysis and stochastic convergence relies
on the fact that the latter must take into account the existence of a probability measure. As a consequence,
depending on the manner in which the probability measure enters the definition various modes of stochastic
convergence must be distinguished.

Definition B2.3.1.Let X be a random variable and, : + > 0) a sequence of random variables defined
on a probability spacé, A, P). Then(X,) is said:

(i) to converge completeljo X, denoted asx, 5 X, if for anye >0
t
Ln;o; P{X; — X| > €} < 00 (B2.3.1)
(i) to converge almost surelio X, denoted as, Ex, if
P{Iim |X,—X|=o}=1
11— 00

(iii) to converge in probabilityto X, denoted as\, LY X, ifforanye >0

lim P{X, — X| > ¢} =0 (B2.3.2)
— 00

(iv) to converge in meario X, denoted as{, = x,if

lim E[|X, - X[] =0.

Some interrelations between these concepts are summarized below.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.31

Modes of stochastic convergence

Theorem B2.3.1 (Lukacs 1975, pp 33-6, 51-2, Chow and Teicher 1978, pp 48+4X be a random
variable and(X, : ¢+ > 0) a sequence of random variables defined on a probability sgacel, P).
The following implications are valid:

X, SXx=Xx8x=>x, B xandy, S x=x, 5 x

The reverse implications are not true in general. Buifs countable then convergence in probability is
equivalent to almost sure convergence. O

Evidently, if the probabilities in (B2.3.2) converge to zero sufficiently fast that the series in (B2.3.1)
is finite, then convergence in probability implies complete convergence, but which additional conditions
must be fulfilled such that some of the first three modes of convergence given in definition B2.3.1 imply
convergence in mean? In other words, when may one interchange the order of taking a limit and expectation
such that
lim E[X,] = E[lim X,]?
=00 =00

To answer the question one has to introduce the notiaamdbrm integrability of random variables.

Definition B2.3.2.A collection of random variablegX, : ¢+ > 0) is calleduniformly integrableif
SUpE[1X/]] : >0} < o0

and for everye > 0 there exists @& > 0 such thatP{A,} < § implies |E[X, - 14,]| < € for everyr > 0.0
Now the following result is provable.

Theorem B2.3.2 (Chow and Teicher 1978, p 1@0)»sequence of random variables converges in mean if
and only if the sequence is uniformly integrable and converges in probability. O

Since the defining condition of uniform integrability is rather unwieldly, sufficient but simpler
conditions are often useful.

Theorem B2.3.3 (Williams 1991, pp 127—-Bgt Y be a nonnegative random variable aif : ¢+ > 0) be
a collection of random variables on a joint probability space|Xlff < Y for all n > 0 andE[Y] < oo
then the random variables, : + > 0) are uniformly integrable. O

Evidently, the above result remains valid if the random varidblis replaced by some nonnegative
finite constant. Another useful convergence condition is given below.

Theorem B2.3.4 (Chow and Teicher 1978, pp 98H9)X, : r > 0) are random variables witg[| X,|] <
oo and
lim supE[|X; — X;]]=0

—>00 S>t

there exists a random variab}e with E[|X|] < oo such thatX, 2 X and conversely. d

The last mode of stochastic convergence considered here is related to convergence of distribution
functions.

Definition B2.3.3.Let { Fx(x), Fx,(x) : t > 0} be a collection of distribution functions of random variables
X and (X, : t > 0) on a probability space2, A, P). If

lim Fx, (x) = Fx(x)

for every continuity pointt of Fx(-), then the sequencegy, is said toconverge weaklyfo Fy, denoted
as Fy, e Fx. In such an event, the sequence of random variapfes ¢ > 0) is said toconverge in

distribution to X, denoted asX, < x. d
This concept has a simple relationship to convergence in probability.

Theorem B2.3.5 (Lukacs 1975, p 33, 3B&t X and(X, : r > 0) be random variables on a joint probability
space. Therx, B x = X; 4 x. Conversely, ifX, 4x and Fy is degenerated (i.eX is a constant)
thenX, > X. O

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.32

Modes of stochastic convergence

After these preparatory statements one is in the position to establish the connection between stochastic
convergence of random variables and the tglobal convergencef evolutionary algorithms. For this
purpose letd, be the object variable space of thptimization problem B2.1

min{ f(x) : x € A,} resp. maxf(x) :x € A,}

where f : A, — R is the objective function. An individual is an element of the space A, x A;

where A; is the (possibly empty) space of strategy parameters. Thus, the popukatiohindividuals

at generationr > 0 of some evolutionary algorithm is an element of the product sgécehere 1 is

the size of the parent population. Since the genetic operators are stochastic the sé@uence 0)
generated by some evolutionary algorithm (EA) is a stochastic trajectory through the Bpacthe
behavior of this trajectory, even in the limit> oo, may be very complicated in general, but in the sense

of optimization one is less interested in the behavior of this trajectory—rather, one would like to know
whether or not the sequence of populations contains admissible solutions of the optimization problem that
become successively better and are globally optimal in the end ideally. Therefore it suffices to observe the
behavior of the trajectory of the best solution contained in populatighs ¢+ > 0). For this purpose let

b I* — A, be a map that extracts the best solution represented by some individual of a population. Thus,
the stochastic sequen¢8, : ¢ > 0) with B, = b(P,) is a trajectory through the spacg.. But even this
stochastic sequence generally exhibits too complex a behavior to formulate a simple definition of global
convergence. For example, it may oscillate between globally optimal solutions and much more complex
dynamics are imaginable. To avoid these difficulties one could restrict the observations to the behavior
of the sequenc&f(B,) : + > 0) of the best objective function values contained in a population. For
this purpose seX, = | f(b(P,)) — f*| where f* is the global minimum or maximum of the optimization
problems above. Provided that the sequence of random varigbles: > 0) converges in some mode

to zero, one can be sure that the populatfprwill contain better and better solutions of the optimization
problem for increasing. Therefore it appears reasonable to agree upon the following convention.

Definition B2.3.4.Let (P, : t > 0) be the stochastic sequence of populations generated by some
evolutionary algorithm. The EA is said mnverge completely (almost surely, in probability, in mean, in
distribution) to the global optimunif the sequencéX, : ¢+ > 0) with X, = | f(b(P;)) — f*| converges
completely (almost surely, in probability, in mean, in distribution) to zero. d

There are some immediate conclusions. For example, if one can show that some EA converges in
distribution to the global optimum, theorem B2.3.5 ensures that the EA is globally convergent in probability.
Moreover, if it is known that f(x)| < oo for all x € A, one may conclude, owing to theorem B2.3.3,
that the EA converges in mean to the global optimum as well.

Finally, it should be remarked that the probabilistic behavior of the sequence of populations can be
modeled as atochastic processin fact, in most cases these stochastic processedarkov chains B2.2 8222
Then the state space of the processes is not necessarily the product/4$pheeause the order of the
individuals within a population is of no importance. However this does not affect the general concept given
above—only the actual implementation of the nigp has to adjusted beforgonvergence propertiesf B2.2.5
evolutionary algorithms can be derived.

References

Chow Y S and Teicher H 197Brobability Theory(New York: Springer)
Lukacs E 1975Stochastic Convergen@nd edn (New York: Academic)
Williams D 1991 Probability with Martingales(Cambridge: Cambridge University Press)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.33

Theoretical Foundations and Properties of Evolutionary Computation

B2.4 Local performance measures

Hans-Georg Beye2.4.1)and Qinter RudolphB2.4.2)

Abstract

See the individual abstracts for sections B2.4.1 and B2.4.2.

B2.4.1 Evolution strategies and evolutionary programming

Hans-Georg Beyer

Abstract

This section provides a summary of theoretical results on the performance analysis
of evolutionary algorithms (EAs), especially applicable to the evolution strategy (ES)
and evolutionary programming (EP). However, the methods and paradigms presented
are useful—at least in principle—for all EAs, including genetic algorithms (GAs).
Performance is defined in terms of the local change of the population toward the optimum.
There are different possibilities of introducing performance measures that quantify certain
aspects of the approach to the optimum. Two classes of performance measures will be
considered: the quality gain and the progress rate. Results on various EAs and fitness
landscapes are presented and discussed in the light of basic evolutionary principles.
Furthermore, the results of the progress rate analysis on the sphere model will be used
to investigate the evolutionary dynamics, that is, the convergence behavior of the EA in
the time domain.

B2.4.1.1 Introduction and motivation

It is important to evaluate the performance of an EA not only by empirical methods but also by theoretical
analysis. Furthermore, there is a need for theoretically provable statememteyamd how a specific

EA works. For example, the working principle of thhecombination—crossoveoperators is not yetcs.s
fully understood. The benefits of recombination are very often explained by some kinouibding B25.3
block hypothesigBBH) (Goldberg 1989). A thorough theoretical analysis of the performance behavior in
evolution strategie€ESs) shows (Beyer 1995d), however, that a totally different explanation for the benefits
of recombination holds for recombinative ESs: the so-cadjedetic repair (GR). That is, some kind of
statistical error correction diminishing the influence of the harmful parts of the mutations in nonlinear,
convex curved, fitness landscapes (for a definitiorcarivex curvedn GAs working on bitstrings, see
Beyer (1995a, 1996b)).

The question of how and why an EA or special operators work is thus synonymous with the
formulation/extraction obasic EA principles Such basic principles can be extracted as the qualitative
features from a theory which describes th&roscopicbehavior of the EA, i.e. the expected state change
of the population from generatianto generatiornr +1, whereas the quantitative aspects of the state change
are described bylocal) performance measures

Besides the GR principle, thevolutionary progress principldEPP) and themutation-induced
speciation by recombinatio@ISR) principle have been identified in ESs. It is hypothesized (Beyer

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.41

Local performance measures

1995a) that these three principles are also valid for other EAs, including GAs, thus building an alternative
EA working paradigm which is opposed to the BBH.

Apart from these more or less philosophical questions, the usefulness of local performance measures is
in three different areas. First, the influence of strategy parameters on the performance can be (analytically)
investigated. This is of vital importance if the EA is to tune itself for maximal performance. Second,
different genetic operators can be compared as to their (local) performance. Third, the runtime complexity
of the EA can be estimated by exploiting thracroscopic evolutiofevolutionary dynamics, convergence
order) which is governed by the microscopic forces (described by the local performance measures).

This contribution is organized as follows. In the next section (B2.4.1.2) the local performance
measures are defined. There are mainly two kinds of measureprtiggess ratep and thequality
gain 0. From a mathematical point of view and Q are functionals of the fitness functiaf. Thus,
determiningy and Q as functions of the strategy parameter requires the fixing’ ofThat is, models
of the fithess landscape are to be chosen such that they can represent a wide range of fithess functions
and are sufficiently simple to yield (approximate) analytical formulaegfaand Q. Such models will
be presented in section B2.4.1.3. Section B2.4.1.4 is devoted to the results of the quality gain theory,
whereas section B2.4.1.5 summarizes the results of the progress rate theory including multirecombinant
ESs as well as ESs on noisy fitness data. Section B2.4.1.6 is devoted to dynamical aspects, i.e. the
macroscopic evolution of the EAs.

B2.4.1.2 How to measure evolutionary algorithm performance

From a mathematical point of view the EA is a kind of inhomogeneous Markov process mapping the
population stateP(r) at generatiory onto a new statd’(z + 1) at generatiorr + 1. Generally, such
processes can be described by Chapman—Kolmogorov equations (see Section B2.2). However, g2.direct
treatment of these integral equations is almost always excluded. Very often it is not even possible to derive
analytically the transition kernel of the stochastic process. On the other hand, the full information of the
Markov process is seldom really needed. Furthermore, the state deBity) is difficult to interpret. In

most cases, expectations derived froitiP(¢)) suffice. Local performance measures are defined in order

to measure the expected change of certain functions of the populatiorPdtate generatiory to ¢ + 1.

The adjectivdocal refers to the Markovian character (first-order Markov process), that is, the statelat

is fully determined by the state There is nor — k memory withk > 0. Thus, the evolution dynamics

can be modeled by first-order difference equations (derived from the local performance measures) which
can be often approximated by differential equations (see section B2.4.1.6).

Choosing the right progress measure is important, and depends on the questions to be asked about
the EA under investigation. For example, if one is interestedschema processinghen the questions2.s
about the schema occupation numbers is the appropriate one. However, if optimization is the point of
interest, or more generaliyeliorizationof fitness, then the progress rateand the quality gairQ are the
appropriate performance measures.

The quality gainQ. As indicated by the notion of quality gai@ measures the expected fitness change
from generatiory to generatiorr + 1 for the populatiorP of a certain member(s); of the population.
If the population is considered, th@ obtained by averaging over the whole population is also known
as theresponse to selectionsed in quantitative genetics and introduced in GA theory hijhlénbein
and Schlierkamp-Voosen (1993). This measure is quite well suited to evplugertional selectior(see c2.2
Section C2.2) and can be used fpr + 1) selection (see Section B1.3) as well. However, up to now, 81.2
main application ofQ has been in the field of EAs witfl +) truncation selection (as in ES and EP).

In (1 + A) algorithms thex offspring a; are generated by mutationsfrom the best parent’'s state
y(#) according to

at+1) =y d=z.

(In the case of bitstrings the XOR serves as the addition opegtdor real or integer parameters is
used instead.) Due to the one-parent procreation there is no recombination in this EA. Let us introduce
the local quality functionQ,, (x)

Oyn (@) := F(y(t) @ x) — F(y()) (B2.4.1)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.42

Local performance measures

which describes the local fithess change from the parent's fitd&ggr)) to the offspring’s fithess
F(a;(t +1)). Thex a,(t + 1) values can be ordered according the their local qualty

Q1) = Qy(al;/\), Q2 = Qy(GZ;A)s coes Oy = Qy(am;)\)v vy Qo = Qy(axgk)-
Here we have introduced the:; A nomenclature indicating thenth best offspring from the set
{a1, ay, ..., ay} with respect to their local quality?. Note that this is a generalization of the : A
nomenclature often used arder statisticDavid 1970) which indicates the nondescending ordering of
random variate(; (i =1...1)

X135 = X0 < Xapn < ... = Xpp = ... = Xoun.

The quality gain 0y, is defined as
Q14 (1) = / Oy (@) priy(x) d'x. (B2.4.2)

That is, Qm is the expectation of the local quality change with respect tqthe) truncation selection.

Determining Q by definition (B2.4.2) is difficult. The success of the quality gain theory arises
from a second approach transforming ihelimensional integral over the parameter space domain into a
one-dimensional one in th@ picture

015.(1) = / Op1n. (Q | y(1)) dQ.

To be more specific, it will be assumed that the EA to be analyzed has the objecineeasethe local
quality (e.g. fitness maximizing EAs). Within th@, 1) selection the best offspring, i.e. the one with the
highest qualityQ, is chosen. Using order statistics notation one obtains

01.(1) = E{Ql;x} =E{Qu.} = / 03:5.0(Q5:1) Qi (B2.4.3)

Q1,(1) = / 0p:1(Q) dQ. (B2.4.4)

Here, p;.;.(Q) denotes the PDF (probability density function) of the largestalue.
In contrast to th&l,) selection, in(1+2) algorithms the parent’s qualit® = 0 survives ifQ;.; <0
holds. Therefore, one finds fap;

O14x(1) = E(Max[0,]} = / 0pa()d0 (B2.4.5)
Q:

i.e. the only difference from equation (B2.4.4) is in the lower integration limit. The determination of
D1 (Q) is a standard task of order statistics (see e.g. David 1970). Provided that the single-mutation PDF

p(Q) = p11(Q) is known, thenp,., (Q) reads
P (Q) = Ap(Q) [P(QT (B2.4.6)

with the CDF (cumulative distribution function)

0=0
ro= [pende (B2.4.7)

The central problem with this approach is to find appropriate approximations for the single-mutation density
p(Q). This will be discussed in section B2.4.1.4.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.43

Local performance measures

The progress rate. Unlike the quality gainQ which measures the fitness change in the one-dimensional

Q space, the progress rageis a measure that is defined in the object parameter space. It measures the
expected distance change derived from the individuals of the population and a fixedj [fthietreference

point). Depending on the EA considered and on the objective to be focused on there are different possible
definitions forg. As far as function optimization is considered, choosipgqual to that point which
(globally) optimizesF (y) seems to be a natural choice. Note that this choice is well defined only if the
optimum state is not degenerate (multiple global optima, e.g. degenerate ground states in spin-glass models
and the traveling salesman problem (TSP)). However, this problem has not been of importance so far,
because the model fithess landscapes which can be treated analytically (approximations!) are very simple,
having at best one optimum. Therefore, the progress rate definition

o) =E{h(g, P()) —h(g, Pt + 1)} (B2.4.8)

includes all cases investigated so far. Hérg, -) denotes a distance measure between the reference point
y and the populatior.
In (1% A) algorithms theh measure becomes

h(g, P®) = h(g, y@)) h(g, Pt +1) =h(g, an,(t+1) (B2.4.9)

and as far as real-valued parameter spaces are concerned the Euclidean norm can serve as distance measure.
Thus, ¢ reads

P10 = E{llg =yl = 19 — ar, (¢ + DI} . (B2.4.10)

If multiparent algorithms are considered, especially(af T 1) selection type, average distance
measures will be used. Let the parent statea,pg() at generation anda,,.;(t +1) att + 1, theng, +;
can be defined as

1 " A 1 " A
Q) =E{ = N — ann Ol = = D 1§ — apa(t + 1)||} (B2.4.11)
M m=1 M m=1
1¢
Gt = - Y E{l§ = ana Ol = 1§ — amst + DI} (B2.4.12)
m=1

This definition will be used to evaluate the performance of thel) ES on the spherical model (see
section B2.4.1.5).

Apart from definition (B2.4.12) there is another possibility to introduce a collective distance measure
with respect to theenter of masindividual

1
(@)@ = = > 0. (B2.4.13)

Especially, if recombinative EAs are under investigation this will be the appropriate measure leading to
the ¢ definition for (multi)recombinantu/p T 1) ESs

Pusptn @ = E{llg — (@) O] = 1§ — (@)t + DI} . (B2.4.14)

It is quite clear that definition (B2.4.11) and (B2.4.14) are not equivalent. Howevelspieries-like
populations crowded aroundwild-type parent—the center of mass individual—the two progress rates
become comparable, if the distance of the population from the referencegp@narge compared to the
spreading of the population.

The normal progresgr. The derivation of (analytical) results for the progress katis generally very
difficult even for (1 + 1) ESs, whereas the treatment of temeasure on(l + 1) strategies is easier

to accomplish (even for correlated mutations). This has led to a progress rate definition (Rechenberg
1994) which measures the distance from the hypersurfagg (x) = 0 atx = o to the hypersurface
Qyiny(x) = Qm in gradient directionv Qy(,)(a:)|m=0. This progress rate will be calletbrmal progress

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.44

Local performance measures

¢r, because the gradient direction 0, (x) is normal to the hypersurfac@, (x) = 0. By Taylor
expansion one finds

= VOyu (@)
Q1,0 = VOyn(@)|,_, 0 =1 VOy)(@) | T 7 ¢
0 VOOl o) EgesiSy
and therefore, the normal progress definition becomes
Q1. (1)
er(t) == : . (B2.4.15)
: || VQ?J(” (w)|a::o H

The normal progresgr can be used to obtain an estimate §orfrom the ‘hard’ definition (B2.4.10).
However, due to the simple definition (B2.4.15) one should not expect a ‘higher information content’ than
given by the quality gairQ.

Definition (B2.4.15) is just a local normalization f@. Only for fitness landscape@) (x) = 0
which are nearly symmetrical at = o and wherey is located in the vicinity of the symmetry axis (equal
to the direction of the local gradierWQy(,)(a:)|w:o) does thepr concept deliver results in accordance
with the ‘hard’ progress definition (B2.4.10) (see Beyer 1994a).

B2.4.1.3 Models of fitness landscapes

The determination ofp and Q0 depends on théitness landscapand on the search operators acting on
these landscapes. In order to derive analytical approximations & Q one has to choose sufficiently
simple fithess models. With the exception of thesMax function all models to be introduced are defined
in a real-valued parameter space of dimension

The sphere model. The most prominent model is thieypersphere The ‘equifitness’ value# (y) = c,
wherec is a constant, build concentric hyperspheres around the optimum $eiith fitness valuer

Fy)=F-F(ly—9|)=F-Frh)=F—-F@)

and the radius vectar := y — g of lengthr := ||r|. It is assumed thaF (r) is a monotonic function of
r and F(r = 0) = 0. The local qualityQ,, (x) thus becomes (cf equation (B2.4.1))

Qy(@) = F(Irl) — Flr+zl) = Fr) = F(I7I) = F(r) — F(r) =2 Q:()

with the offspring’s radius vectof := r + « of length7 ;= || 7.

The inclined (hyper)plane.From the sphere model one can easily derive the linear mimdéhed
(hyper)plane Under the condition that the local radiusis much larger than the generational change
x|, i.e. provided thai|r|| > |l«|| holds, thenQ,(x) can be expanded into a Taylor series breaking off
after the linear term

dF
Qx) = F(Irll) — Flr + z|)) = F(lr|) — (F(II?“II) ' VIITII:B)

dr »T7 dr . - T
Q(iﬂ)“‘—amiﬂ = E(—&,)w = cx.

Heree, := r/|r| has been introduced as the unity vector in thdirection.

The advantage of this approach arises from the possibility of deriving progress ffatethe inclined
plane from those of the sphere by applying fxdl > || z|| condition in thep formula of the sphere model.
That is, thep formulae can be obtained from the sphere by assuming small standard deviatdrike
z mutations (see section B2.4.1.5).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.45

Local performance measures

Models with constraints: corridor and discusThe corridor model introduced by Rechenberg (see
Rechenberg 1994) defines a success domain on an inclined hyperplane which is shaped like a narrow
corridorC

)) —00 < x1 < 00
corridor C: { b<x <b 1<i<n. (B2.4.16)
The quality functionQ(x) reads
) acxp) zel
O(x) = { lethal xdC (B2.4.17)

wherelethal may be+oo (minimization) or—oo (maximization), respectively. Therefore, progress is
only in the x; direction;gc(x1) is @ monotonic function of;.

Unlike the corridor, in thediscus modeD there is only a constraint in the direction (the optimum
direction) whereas the; (i = 2...r) directions are selectively neutral,

discus D: { Osx=2b . (B2.4.18)
—a<x;<a l<i<n
with
discus condition: b <K a. (B2.4.19)
The quality functionQ(x) reads
O(x) = { ‘1”;&21 v Zg (B2.4.20)

with gp(x1) having its optimum ak; = x; = b and the boundary conditiofip (0) = gp(2b) = O.

General quadratic and higher-order fitness landscapeSspecially for theQ measure but also for the
mean-radiudifferential geometry approach (see section B2.4.1.5) fithess models can be used which are
obtained by local Taylor expansion of equation (B2.4.1). This leads to the general quadratic model

Qyiy(@) =b"(x—z'Q)x (B2.4.21)
with
aF 1 0%F
(b(®)); = W) Q@) = -3 ®) (i,j=1...n). (B2.4.22)
i y=y() ayl ay/ y=y(1)

In cases of vanishing Hessian matfikit even can be necessary to use higher-order derivatives. As
an example the fithess model

n

Qyin(@) =Y bi()x; — Y _ci()(xi)* (B2.4.23)
i=1

i=1
will be considered.

Further fitness models are imaginable; however, the current analysis has been performed for
equations (B2.4.21) and (B2.4.23) only.

The bit counting functiorDneMax. The OneMax function simply counts the number of bits. Let
a = (ag, ...ay) be a bitstring of lengtit with a; € {0, 1}, then the fithness function reads

4
F(a):=) a. (B2.4.24)
i=1

Its maximumF = ¢ is obtained for; = 1 (i = 1...¢). The local quality function can be expressed as
Qany(at +1) = F(a(t + 1)) — F(a(t)) = F(t + 1) — F(r). (B2.4.25)

OneMax, equation (B2.4.24), plays a similar role &sy) = —[(y)?]*/? (a special sphere model) for the
real-valued EAs, becausg:, = Qi1 holds. In this case,, can be interpreted as the average change
of the Hamming distance toward the optimum.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.46

Local performance measures

Noisy fitness landscapesOptimization tasks in engineering science as well as computer simulations can
be affected by noise. That is, the measured fitness value is disturbed by random fluctuations. Noise can
mislead the evolutionary search considerably; in particular the selection process is deceived (see below).
Therefore, it is important to include simple noise models in the performance analysis. This has been done
for (1+ 1) strategies (the tildes above the 1 and thiadicate that the parent’s and the offspring’s fitness
determination is disturbed by noise). The noise model is a local one which assumes Gaussian fluctuations.
The measured local qualit is modeled as

Qyin (@) = Oy (@) + €0 (Y (1)) (B2.4.26)

where the fluctuation terray (y(¢)) is normally distributed

1 1 ? .
€0

Usg

The noise strengtlr., depends in general on the local parental state. Possible dependences with
respect tar are neglected.

B2.4.1.4 The quality gain theory for (1)) algorithms

General aspects—the single-mutation distributiofhe success of the quality gain theory arises from
the possibility of deriving approximations for the single-mutation CBEQ), equation (B2.4.7).P(Q)
describes the distribution of th@ fluctuations generated by single mutation z with mutation density
p(z) applied to the local quality functio®) (x) (e.g. equations (B2.4.21), (B2.4.23), or (B2.4.25)). The
single-mutation CDFP (Q) depends on the local quality function and on the mutation density. The latter
is assumed to be Gaussian

. . 1 1 127z
(i) variant: isotropic: p(z) = WF EXp(_EF) (B2.4.28)

1 1
(2r)"/2 (det{C})2

in the case of real-valued parameter spaces, and concerningnéNex function a single bit flipping
mutation ratepy, for each bitq; (cf section B2.4.1.3) is assumed

(ii) variant: correlated: p(z) =

exp(—%zTC1z> (B2.4.29)

plait+1) | a;(®) =pmélai(t+1) —1+a;#) + A— pm)d(a;(t +1) —a;(t)). (B2.4.30)

(Dirac’s delta-function usedy”. §(x — y)dx =1, [f(x)8(x — y)dx = f(y).) Itis quite clear that
there is no general closed expression fqQ). The basic idea for a suitable approximation®fQ) is
given by a series expansion #f(Q) using Hermite polynomials Héx)

dk

He(x) = (—1)’<ex2/2@(e*x2/2)

Heo(x) = 1 Hex (x) = x
He(x) =x2 -1 Hej(x) = x% — 3x
Hes(x) = x* — 6x2+ 3 Hes(x) = x° — 10x3 + 15x.

The approximated distribution functioR(Q) of a single mutation reads

s) (2m)Y/2 3!Hez s

K4 QO—m K§ Q—-—m
+ (EHeg,(-) + 7—2H95 (T)) + - } (B2.4.31)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.47

1
P(Q)ZE + ch(

Local performance measures

where ®g(-) is the Gauss integral (Bronstein and Semendjajew 1981) which is closely related to the error
function

X

dp(x) = 1 /t=x e 2q = }erf() (B2.4.32)
0 . 27)172 L > 512) 4.

The parameters:, s, andk; are the mean valua of the mutation-induced fluctuations, the standard
deviations of Q, and the cumulants, of the standardized variate®) — m)/s

mi=Q = / Q(z)p(z)d'z

s = (02— 0?2 2= / (Q(2)*p(2)d'z

1
Kr = Kg .

s

The cumulantsc, of a random variateX are connected with the central momenis of X (see e.g.
Abramowitz and Stegun 1984); far= 3 andk = 4 one obtains

ica{X} = pa{X} kaf X} = palX} — 3 (uaf X3
whereu, is defined by
md X} = (X — Xk

Let us present some examples where the parametersandx;, can be analytically calculated.
Assuming correlated mutations, equation (B2.4.29), with covariance n@tand the quadratic model
(B2.4.21) one finds up te,

m = —Tr{QC} s = (b"Cb + 2 Tr{(QC)%))"? (B2.4.33)
T 3 T 4
o _B0TCQCh + 8Tr{(QC;/2} o0 = 45 17CQCACH + Tr{(QC)z} (©2.4.34)
(bTCb + 2Tr{(QC)?}) (bCb + 2 Tr{(QC)3})

where T{M} is the trace of the matriM (i.e. the sum over the diagonal elementd\dy.

The isotropic mutation case, equation (B2.4.28), is easily obtained from the equations (B2.4.33) and
(B2.4.34) by the substitutio€ = oE (E is the identity matrix). The results can be found in the article
by Beyer (1994a).

For the local quality function (B2.4.23) the first three distribution parameters derived for isotropic
Gaussian mutations (B2.4.28) are as follows:

n n n 1/2 6 n n
m = —304;@ s=o (; b2 + 9606;c,.2> K3 = —36(;—3 (; b2c; + 26406;c?) :

As already pointed out, the quality gain concept can be applied t@ibBax function. The first
two parameters: ands can be easily derived from equation (B2.4.25) by use of equation (B2.4.30). One
obtains

m(t) = —pm(2F (t) — £) s = (OY [pm(1 — pm)]*2. (B2.4.35)

If the parameters of the single-mutation CDF are determined, then one can proceed with the quality
gain theory. The next section presents {her) formula whereas the following section gives results on
(1+ A) algorithms. The quality gain theory can be extended to multiparent algorithms, provided that the
parental distribution is known. This work remains to be done.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.48

Local performance measures

The (1) formula. The quality gain formula for1, 1) strategies can be derived from equations (B2.4.4),
(B2.4.6), and (B2.4.7) by applying the approximation (B2.4.31). One obtains the approxXimatermula

- 10{2 - 9K4 %) K3 ©) 4K2 — 3K4
Q1) =m + sci, <1+ 3’7—2) —l—s[(dM - 1)€ - du?‘T + i| .
Very often the simplified variants

K3

Ql.,)» =m + sci + S(d{?;—l) 6

or even

Q1 =m + scix (B2.4.36)

suffice. These formulae contaprogress coefficients; ; anddﬂ‘; which are defined by

® . A |l ot
d]_’)L = W re E + Dg(1) dr (52437)

and
— gD
c1y =dyp;. (B2.4.38)

The integral (B2.4.37) is tractable for small integeonly (A < 6). Numerical integration has been used
to obtain table B2.4.1.

Table B2.4.1. Progress coefficients fad, A) strategies.

A c1y dg) dy) A 1 dy) dy’)
1 0.0000 1.0000 0.0000 60 2.3193 5.5856 13.970
2 0.5642 1.0000 1.4105 70 2.3774 5.8512 14914
3 0.8463 1.2757 2.1157 80 2.4268 6.0827 15.755
4 1.0294 1.5513 2.7004 90 2.4697 6.2880 16.514
5 1.1630 1.8000 3.2249 100 2.5076 6.4724 17.207
6 1.2672 2.0217 3.7053 150 2.6492 7.1883 19.991
7 1.3522 2.2203 4.1497 200 2.7460 7.7015 22.077
8 1.4236 2.3995 4.5636 300 2.8778 8.4310 25.164
9 1.4850 2.5626 49512 400 2.9682 8.9524 27.457
10 1.5388 2.7121 5.3158 500 3.0367 9.3587 29.291
12 1.6292 2.9780 5.9866 600 3.0917 9.6919 30.826
14 1.7034 3.2092 6.5928 700 3.1375 99744 32.148
16 1.7660 3.4137 7.1464 800 3.1768 10.220 33.311
18 1.8200 3.5970 7.6565 900 3.2111 10.436 34.351
20 1.8675 3.7632 8.1298 1000 3.2414 10.630 35.292
25 1.9653 4.1210 9.1843 2000 3.4353 11.914 41.729
30 2.0428 4.4187 10.097 3000 3.5444 12.669 45.687
40 2.1608 4.8969 11.629 4000 3.6199 13.207 48.578
50 2.2491 5.2740 12.892 5000 3.6776 13.625 50.868

Example. Spherical model with local quality
Q@) =bY xi—» xf (B2.4.39)
i=1 i=1

and isotropic mutation€ = o?E. By completing the square in equation (B2.4.39) one finds the radius
of the model (i.e. the distance to the optimum point) as well as the optimum valaed the optimum

point x;
b . b\? b
r= (n)l/zE O=n (-) = >

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.49

Local performance measures

The quality gainQ1, using approximation (B2.4.36) with equation (B2.4.33) by takl@dg= E and
b= (b,b,...,b) into account reads

. o 1/2
Q1 = oc1,b(m)Y? (1 +2 (%)) —o’n. (B2.4.40)

If the normal progress definition (B2.4.15) is applied ahth)Y? = 2r, then one obtains (cf
section B2.4.1.2)

1 ny\27Y2 o?n
= 1+ — (o= - =
R Gcl"\[+2n(r)] 2 r
Example. OneMax: with equations (B2.4.36) and (B2.4.35) the quality gain becomes
015 = [pm(L = pm)] 72072 c1y — pmF (1) — 0). (B2.4.41)

Remark B2.4.1The quality of the approximations used depends @md¢, respectively. They are asymp-
totically exact(n, £ — o0).

Remark B2.4.2The formulae (B2.4.40) and (B2.4.41) support EfeP hypothesisThe EPP ¢volutionary
progress principle Beyer 1995a, 1996b) states that the evolutionary progress (or the quality gain) is the
result of two opposite tendencies, thmgress losand theprogress gain

The progress los$n approximation (B2.4.36), is due to thepart, i.e. the expected, mutation-induced
O change. The larger and pn,, the larger the progress loss will be (NB, this holds for equation (B2.4.41)
if F(t) > £/2).
The progress gainis associated with thec; ; term which describes the influence of selection. Note
c11 = 0; that is, in the case of one offspring, there is no progress gain at all. The progress gain depends
on the mutation strength and the mutation raten,.
Because of the opposite tendencies of progress loss and gain and their dependeiacel pR, there
must be a locally optimad and pr, value, respectively, that maximizes the quality gadelf-adaptation c7.1
as used in ES (Schwefel 1995) and EP (Fogel 1992), is aiming at the self-tuning which drives the algorithm
into the locally optimal mutation strength or mutation ratepy,.

The (1) formula. The derivation technique for the quality gain formula@nt+) algorithms (ES and
EP) is similar to that of thé€l, 1) formula. The only difference is in the lower limit of integral (B2.4.5).
However, this makes the derivation of analytical expressions difficult. The approximation result is

D1y = [m - sK—63 .] [1- (P(0)*]

2 _
’ <l+ 10K372 =)di‘l*)l(_1(P(O) - %))
. 1
() a (o5 (P00 -3))
2 _
. <4K3723x4)dﬁ)x((P(o) _ %)) o (B2.4.42)

Here, P(0) is given by equation (B2.4.31) (I&2 = 0), <I>51(-) is the inverse function to the Gauss integral
(B2.4.32) (note thatbgl(y) = 212 erf~1(2y) holds), andd{’jr)k(x) are the so-called progress functions

40 A T 2|1 ot
di,(x) = @i t“e > + (1) dr. (B2.4.43)
1=x

The difficulties of obtaining analytical,,, approximations are because of the (likely) intractability of
the integral (B2.4.43) fok > 2. The results foi. = 1 are

7¢\2/2 7x2/2 24+ x2

1
(2)1/2 d(Z)l() = 35 cI)O()C) +)C(2)1/2](.:—321() = (2)1/2

di, () = e /2 (B2.4.44)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.410

Local performance measures

and fora =2

1 /1 2 /(1 2
dD,(x) = e (E - <I)o(21/2x)> + G (5 + <I>0(x)> e /2 (B2.4.45)

2

1 2 2 (1 1
dii)Z(X) =1- <§ + q)O(X)) + W <§ + CDO(X)) e /2 + Eeﬂ‘

d(3)

1 5 1 1/2 2 1 7x2/2 X 2
l+2(x) = mé (E — <I>0(2 X)) + (2+x) E + QO(X) e + Ee .

(27-[)1/2

B2.4.1.5 The progress rate theory

Most effort in ES theory has been focused on the calculation of progress rates. There is a wealth of results
from different decades and of different approximation quality.

In order to have a certain system, results on the nonspherical corridor and discus models will be
presented first. In the subsequent section some preparations for the sphere model will be giverr: the *
normalization’ and the differential geometry approach which allows the introduction of a mean radius of
curvature on nonspherical (sufficiently smooth) fitness landscapes. The next section is deyatedio
algorithms in the asymptotic — oo limit, whereas the following two sections present results(fofu, 1)
multirecombinant evolution strategies and the last of these sections B2.4.1.5 prpVatesulae on noisy
fithess data.

Note B2.4.1All progress rate formulae derived so far assume isotropic Gaussian mutations (B2.4.28).
Results for the general case, equation (B2.4.29), can be obtained by the normal progress approach (cf
section B2.4.1.2); however, one should keep in mind that this approach is not equivalent to the ‘hard’
progress rate definition (section B2.4.1.2) and therefore can produce unsatisfactory and inexact results.

Note B2.4.2.The results concerningt) selection (elitist strategies, see Section C2.7.4) derived forahes
ES holdmutatis mutandigor EP (Fogel 1994, 1995).

The corridor and the discus.Corridor and discus are ‘early’ models of the progress rate theory in the

sense that they have not received further investigations since 1990 (or earlier).

The corridor model was treated for thi&¢ + 1) algorithm by Rechenberg in the late sixties. The
derivation is reprinted in the book by Rechenberg (1994). The result measures the progiediseotion
(cf the corridor definition (B2.4.16), (B2.4.17))

n—1
, o 2b 1 o 1 /2b\?
corridor: D141 = W |:2 @0(;) — W E (1 — eXp(—E <;))):| (82446)

and if o <« b holds, then one obtains from equation (B2.4.46)

b - o 1 1 o]t
o0Lb: $1+1 = (27)1/2 - (2m)12 Z

and further forn > 1

(o2 (o8 n
oLb, n>»1: Y141 = 202 exp(—)i 5) . (B2.4.47)
As can be easily shown (from equation (B2.4.4¢)),1 has its maximum at a mutation strength
6 = (2r)Y?b/n. The maximal progress rat@,,; achievable from formula (B2.4.47) is therefore
P11 = (b/n) e:l-
The (1 + 1) result for the corridor on noisy fithess data has been derived by Rechenberg (see the
reprint 1994). He obtained

1
1+ Z(UR/O')Z)

¢i+i = (1/2 Y141 (52448)

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.411

Local performance measures

whereor, is given by

/‘ dgc(x1)
UR - GQ

and ¢1,1 is the progress rate from the undisturbed case, equation (B2.44k7)xxd is the slope of the
corridor (cf equation (B2.4.17)) at the parental state apgdis the absolute noise strength defined by
equation (B2.4.27). As can be seen from equation (B2.4.48) noisy fithess data deteriorate the expected
progress.

The (1, 1) ES theory for the corridor has been investigated by Schwefel (reprinted in the book by
Schwefel (1995)). However, at the time of writing, there is no expligif formula. Only an implicit
(and approximate) = f (¢, o, 1) equation has been derived (see Schwefel 1995, p 139).

The second model with simple constraints is the discus, defined by equations (B2.4.18)—(B2.4.20).
Results measuring the progress in thedirection can be easily obtained. For t{ie+ 1) algorithm, for
example, one obtains (Beyer 1989)

discus: A PR O e 2
iscus: (p1+1_(2n)1/2 p o\ .

Maximal performance is achieved fér~ 1.26b which produces a progress raig,; ~ 0.36b.

Normalization of the sphere model and smooth fitness landscapé® exceptional role of the sphere
model for the progress rate theory is threefold.
First, the model iscalable i.e. by introduction of thenormalization

=gt sti=ol (B2.4.49)
r r
the progress rate formulae can be expressed in such a way that they do not depend on the actual parental
radiusr. That is, the normalize¢ becomes independent from the parental state, havingdependence
only. This allows for easy comparison of different EAs.

Second, from the asympotical (~ co) progress rate formulae on the sphere model one easily obtains
the ¢ formulae for the inclined plane (see section B2.4.1.3) . This can be done by Taylor expansion of the
¢*(c*) expressions breaking off after the linear term. Thus, one always finds a proportionality relation
p(0) xo.

Third, the sphere can serve as a local approximation for sufficiently smooth fitness landscapes which
can be expanded into a Taylor series in accordance with the equations (B2.4.21), and (B2.4.22). The idea
is to use the reciprocal of the local mean curvature as the (lmeca$n radius-. This is a differential
geometry task. For large parameter space dimensgian®e obtains (see Beyer 1995d)

n (bTb)l/Z
dius: == 1 B2.4.50
mean radius r 5 |Tr{Q} — bTQb/bTb| n>1 ()
with b and Q given by equation (B2.4.22). Thus, provided that the normalizedndc* are given for
the sphere, then the local progress rate) on the fitness landscap@(y) at the pointy = y(¢) can be
calculated by theenormalization equations

(bTb)Y2
¢(©) = ¢Spnerd spheer [Tr{Q) — b"Qb/bTY|

2
with Usphere W |TI’{Q} - (bTQb)/(bTb)| .
(B2.4.51)

In the following sections* ando* will always refer to the sphere mode}ceandodyere
Note that the quality of the approximation (B2.4.50) depends on the local fitness funaflgp, (x)

(equation (B2.4.21)). It mainly depends on the eigenvalue spectrugh df this spectrum is sufficiently

concentrated around {}/n, then the results will be excellent. In such cases, provided@hatdefinite,

the Rayleigh quotients in equation (B2.4.51) can be dropped and the simpler formula

T1\1/2
(b"b) with o 2 [Tr{Q}|

§0(0)=¢*(0*)W{Q}| o W

yields satisfactory results.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.412

Local performance measures

Progress rates ong(T 1) algorithms for then — oo sphere. The progress rate formulae from the
asymptotically § — oo) exact theory are applicable as approximationsdtrvalues which are not too

large; as a rule of thumb

("% <n (B2.4.52)

(see Beyer 1995b) should be fulfilled. Under this condition ¢hel) progress rate formula defined by
equations (B2.4.11), (B2.4.12), and (B2.4.49) reads

x oo . (0
(pu,}\(o') =Cu 0 — 2

(B2.4.53)

with the progress coefficient, ;. (In the casen > 1, ¢* ando* are defined ag* = ¢n/(r), and
o* = on/{r),, where(r), is the average radius of the parents.) The examples for = 1, i.e.c1;,
have been already displayed in table B2.4.1. A collectiomof 1 progress coefficients is presented in
table B2.4.2. The theory behind thg ; coefficients (foru > 1) is difficult (Beyer 1995b) and requires

Table B2.4.2. ¢, ; progress coefficients.

u =5 1=10 A1=20 A1=30 A=40 A=50 A=100 A=150 X=200 Xx=250
2 092 1.36 1.72 191 2.04 2.13 2.40 2.55 2.65 2.72
3 0.68 1.20 1.60 1.80 1.93 2.03 2.32 2.47 2.57 2.65
4 041 1.05 1.49 1.70 1.84 1.95 2.24 2.40 251 2.59
5 0.00 0.91 1.39 1.62 1.77 1.87 2.18 2.34 2.45 2.53
10 — 0.00 0.99 1.28 1.46 1.59 1.94 2.12 2.24 2.33
20 — — 0.00 0.76 1.03 1.20 1.63 1.84 1.97 2.07
30 — — — 0.00 0.65 0.89 1.41 1.64 1.79 1.90
40 — — — — 0.00 0.57 1.22 1.49 1.65 1.77
50 — — — — — 0.00 1.06 1.35 1.53 1.65
100 — — — — — — 0.00 0.81 1.07 1.24

sophisticated techniques and approximation methods which are beyond the scope of this introductory article.
In order to obtain a feeling of the problem to be solved the reader is reminded that the distribution of the
population ofu individuals is to be determined inself-consistenmanner. This requires the calculation
of distribution parameters derived from thig, A) sampling process. The details of the cumbersome
calculations can be found in the work of Beyer (1994b).

Apart from the sophisticated theory behind the, progress coefficients, the interpretation of the
¢;., progress rate formula in the sense of wolutionary progress principl€EPP) (see section B2.4.1.1
and remark 2 in section B2.4.1.4) is straightforward. inegress losss given by the(o*)?/2 term in
equation (B2.4.53), wheregsogress gains obtained from the first term, i.e, ;o*. The latter depends
on the selection intensity quantified by the, coefficient. The optimal working of g, 1) strategy is at
o* =&* = ¢y, because this* = 6* maximizes equation (B2.4.53)

A% _ (C,LL,A)Z

Pha=""5 (B2.4.54)

o= Cu,n =
As can be seen from tables B2.4.1 and B2.4.2, where maximal (local) progress is desit@d thersion

will be the best one:

91,0 = ¢, (). (B2.4.55)
However, this takes only the local behavior into account, i.e. it holds exactly for the sphere model.
Optimization in multimodal fitness landscapes as well as noisy fithess data may be better treated by
multimembered ¢ > 1) ESs which allow for a certain repertoire of descendants exploring the fithess
landscape.

The same argument holds for the algorithms with+ 1) elitist selection, especially used in EP
(Fogel 1992). However, the analysis of the+ A) algorithms is even more complicated than that of the

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.413

Local performance measures

(i, A) ES. At the time of writing, only the&1 + 1) algorithms can be treated (Beyer 1993):

* * * (1) o* (0*)2 1 o* »
@1, (0") =0"d, <7> - 1- (5 + CDO(?)) . (B2.4.56)

Here, the progress functi i)k (x) is given by the integral (B2.4.43). Analyticdﬁ’k functions are known
for the cases. = 1 (equation (B2.4.44)) andl = 2 (equation (B2.4.45)), only, and the optimai for
maximal progres$* = ¢*(¢*) can be obtained by numerical techniques only. Howevex, decreases,

¢* asymptotically approaches tlde¢ value of the(1, 1) ES. As a rule of thumh. ~20:6* — c1,, holds.
Like the inequality (B2.4.55) which holds far,) strategies, a similar inequality can be formulated
for the (+) algorithms:

TG T Y

This is plausible because the > 1 selection allows the procreation of offspring from worse parents,
whereas the: = 1 selection always takes the best.

Because of the elitigt+) selection the progress rate(n + 1) algorithms on the sphere model cannot
be negative, it always holds that

¢h., (0% = 0. (B2.4.57)

This is in contrast to the¢,) strategies which can have negative progress rates, due to the unbounded loss
part in equation (B2.4.53).

Generally,(u + 1) algorithms can exhibit slightly larger progress rates. For the gasel one can
derive the inequality

@1.,(0%) > ¢1;(0%)

from the associated progress rate integral (see Beyer 1993, p 171). It is conjectured that this relation can
be extended tq > 1:

conjecture: na(0™) =, (07).

A proof for this inequality, apart from the trivial cage= 1, is still pending.

Multirecombinant intermediateu(/ui, 2) evolution strategies. In general, the analysis of EAs with
recombination is much more difficult than the simple mutation—selection algorithms. However, there are
some exceptions ofu/p, A) ESs usingmultirecombination(see Section C3.3.2 for the definition) whicts.3.2
are both relatively simple to analyze and very powerful concerning their local performance (progress rate)
properties. There are two variants.

First, thep = u; intermediate recombinatioperforms the multimixing in terms of eenter of mass
recombination, i.e. the. selected parents are averaged in accordance with equation (B2.4.13). After that,
the mutations are applied to tloenter of mass parerto createx new offspring.

Second, the = ug dominant recombinatigroften calledglobal discrete recombinatiomecombines
the u parents coordinatewise in order to produce one offspring (which is mutated after that) by choosing
randomly one of the. coordinate values (i.elominantin contrast to the averaging jm= w; algorithms).

This strategy will be treated in the next section.

Because of the high progress rates obtained for relatively largalues, the condition (B2.4.52) for
the applicability of thes — oo asymptotical theory is more or less violated. Therefore stliependence
must be taken into account. This has been done by Beyer (1995c). For the intermegdiate ES one
obtains

\ . 14 (6%)2/2un (@*)2\"?
(pﬂmm(o):0‘ CM/I‘L9)\' (1+(a*)2/2n)1/2(1+(a*)z/p,n)l/z + n (1— (1+ n) (82458)

with the c,,/,» progress coefficient

Cujpr = Al ” e } + ®(1) e } — dg(r) " dr
s o \u/)) o 2 2

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.414

Local performance measures

Table B2.4.3. Thec,,,.,. progress coefficients.

p A=10 A=20 1=30 A=40 A=50 A=100 A=150 A =200
2 1270 1.638 1.829 1.957 2052 2328 2478 2580
3 1065 1469 1674 1810 1911 2201 2357 2.463
4 0893 1332 1550 1694 1799 2101 2263 2372
5 0739 1214 1446 1596 1705 2018 2185 2.297
10 0000 0768 1.061 1242 1372 1730 1.916 2.040
20 — 0.000 0530 0782 0950 1.386 1601 1.742
30 — — 0000 0414 0634 1149 1390 1545
40 — — — 0.000 0343 0958 1.225 1.393
50 — — — — 0000 0792 1085 1.265
100 — — — — — 0.000 0542 0.795

tabulated in table B2.4.3. Note that equation (B2.4.58) includes-tiependent case = u = 1, i.e. the
n-dependentl, 1) ES wherecy , = cy/1, holds. Thec,,, , coefficients obey the relation

0<cuuxr <cur=<cu (B2.4.59)
They are asymptotically equal 1@. — o0)
L1 1/ (1)\ w
Cufur ™ ; W eXp|:—§ (q)o (E — X)) i| 0< x <1 (52460)

(for <1>51(x) see the remark on equation (B2.4.42).) Equation (B2.4.60) can serve as an approximate
formula for A g 1000. By asymptotical iteration one finds from equation (B2.4.60) dhat, is of order

n=o((n(2)")

In order to see the main difference betwegn A) and (u/u, A) ESs it is worth investigating the
asymptoticn — oo case which can be obtained by Taylor expansion of the square roois*rn <« 1
in equation (B2.4.58)

1 (O,*)Z

@i (0 = 0" Cuypn — 2 (B2.4.61)

n— oo .

(see also Rechenberg (1994)).
Let us investigate this result in the light of the EPP hypothesis. As can be seeprotivess loss

in equation (B2.4.61) is smaller by a factor of/dthan that from the(u, A) ES (equation (B2.4.53)).

Although theprogress gains not increased (assuming equal values), because of inequality (B2.4.59),

Cu/ur < cu- The maximal achievable progress rate becomes

clzt//w\

2

The main effect of recombination is threductionof the progress loss. This allows for larger mutation
strengthss* with the result of a larger progress rate. The deeper reason for this behavior can be traced
back to the intermediate averaging acting on the mutatigns of the u best offspring. These,,., can

be decomposed into a componeanin optimum directioneq; (unit vector) and a perpendicular pdrt

PRGN at 6% = (B2.4.62)

Zimin = Xm;an€opt T hm;/\ egpth’m;k =0.

The directions of theh,,., parts are selectively neutral, whereas #)g, are selected according to their
length (optimum direction). By this decomposition it becomes clear thahtlectors are théarmful
components of the mutations. Now, perform the intermediate recombination, i.e. the averaging (B2.4.13).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.415

Local performance measures

Because the different mutation vectars are statistically independent of each other and so aréjhe
vectors, the averaging of thedg,., vectors produces a recombinatiievector (h), with an expected
length squarej(h),||?> which is smaller by a factor of /. than the expected length square of a sinfgle
Thus, the harmful part of the mutations is decreased by a factor of roughly (This is the reason why

the (u/p, 1) ESs withp = can exhibit larger (local) progress rates than the ‘bisexyat=(2) variant.)

Note that the averaging of ths,., valuesdoes notproduce a largex component, becausg), < x;:
always holds. That is, the recombinatidoes notproduce better descendants by superposition of good
‘partial solutions’ (as conjectured by the building block hypothesis, Section B2.5.3). It rather perfoemssa
statistical error correctionthat diminishes the influence of the harmful part of the mutations. This effect
of error correction has been termegénetic repair(GR) (Beyer 1995c). The GR hypothesis builds up
an alternative explanation for the working of recombination in EAs diametrically opposed to the building
block hypothesis (Goldberg 1989).

The limit n — oo case (equations (B2.4.61), and (B2.4.62)) is well suited to discussing the GR
principle and the benefits of multirecombination; however, it considerably deviates quantitatively from the
real-world case: < oo (equation (B2.4.58)). This becomes especially evident if one asks for the optimal
numberg of parents for a given (fixed) numberof offspring. The asymptotical theory yields~ 0.27 A
which can be obtained by maximization of th& formula (B2.4.62) with respect ta (for fixed A). The
numerical analysis of equation (B2.4.58), however, reveals a relatively strong dependence of the optimal
numberg of parents on the parameter space dimension

N
u
100 n=i nf . n=5000
80 |
1000
60 | 500
40 | 100
30
20
0 - - - : : A
200 400 600 800 1000

Figure B2.4.1. The optimal numbej. of parents in(i/u,) ESs depends on the number of offspring
and on the parameter space dimension

Figure B2.4.1 displays the results of the numerical analysis. For example, $6r100 one finds
a(n = o0) = 27, butji(n = 30) = 10; for A = 1000, 1(n = co) = 270 is predicted, but for = 100 one
finds it = 37. An extensive table of the optimal choice can be found in the article by Beyer (1995c).

Multirecombinant dominant(/ w4, A) evolution strategies. The theoretical analysis of the global discrete
recombination pattern (dominant recombination) is still in the early stages. The results obtained provide
rough estimates for the progress rate. The main problem of the analysis is concentrated on the determination
of the parental distribution. A first approximation to this problem is given by the assumption of isotropic,
normally distributedsurrogate mutations generated from ammaginary center of mass pareribue to the

isotropy assumption the examination of a single vector componesitsaffices, and the determination of

the parental distribution reduces to the calculation of the standard devigtmfithe surrogate mutations.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.416

Local performance measures

Given the (physical) mutation distribution equation (B2.4.28), these mutations are ‘transformed’ by the
repeated (i.e. over the generations) recombination process into the surrogate mutations. Their steady-state
standard deviation exhibits a saturation behavior; one finds

12,

Os =l

(Beyer 1995c). That is, starting from a parental population concentratateabint (0s = 0), the process
‘dominant recombinationand ‘(physical) mutations withy’ iteratively performed (over the generations)
produces a parental distribution (witly # 0) which is larger by a factor ofi'/? than the generating (i.e.
physical) mutations. The result of this process looks just lilgpeciationin biology. The individuals are
crowded around an (imaginarwild type A very interesting aspect of this result is that theapproaches a
steady-state value, i.65 is restricted for — co. Note that this result has been obtaingithout selection
(there is no selective pressure in the surrogate mutation model). Because this result is important for all
discrete/dominant recombination schemes it is regarded as a basic principle of EAsutttion-induced
speciation by recombinatioprinciple, MISR for short.

As already pointed out, the isotropy assumption is the weak point in the model. Due to the selection
the ‘shape’ of the surrogate mutation density will be distorted. Therefore one cannot expect quantitatively
exact progress rate formulae for the real-world case: (c0). This holds for

1/2 % w2 /2
- o MO Cu (o)
Gar©) = Tz T (1— <1+ ; >) (B2.4.63)

(Beyer 1995c¢), which yields satisfactory results for 1000, as well as the asymptotic case

y (O,*)Z
O Cu/u.r — 2

n— oo gz);/ﬂdqx(o*) =uY
(Rechenberg 1994) which can be easily derived from equation (B2.4.68) fof/n < 1.

Progress rates fori + 1) algorithms on noisy fitness dataNoisy fitness data always degrade the EA
performance as has been seen, for example, in the case of the corridor (equation (B2.4.48)).

For the spherical model the asymptotical theary> oo yields in the case of thél, 1) ES (Beyer
1993)

1 (o_*)Z
¥ (o*) = * - B2.4.64
(plq}t(O') €120 (1+ (U:/U*)z)l/z 2 ()
wherec? is the normalized noise strength
n H /.
0! = o, o with Q' =|Voyn@l|, | (B2.4.65)

o, is the standard deviation of the measuring error (cf equations (B2.4.26), and (B2.4.27))" asd
the absolute value of the normal derivative of the local quality functibat x = 0. For example, if
the local quality function depends on the radius of the sphere model sucl@that= O — cr? holds

(0 = constant), thew is obtained from equation (B2.4.65) as follows:

.) n
Oyi)(®) = Qyry(r) = 0 —cr = ol = O 5er2"

The influence of the noise on the progress rate can be studied by comparison with the undisturbed
case, equation (B2.4.53), far = 1. Again, theevolutionary progress principl€EPP) is observed. The
noise decreases the progress gain. This is because the fitness noise ‘deceives’ the selection process. The
progress loss, however, is not changed. The ‘deception’ can be so strong that even an evolutionary progress
is excluded. The necessary evolution conditiop*is> 0. If applied to equation (B2.4.64) one easily finds

(i,):) ES necessary evolution condition: 0! < 2c1;.

That is, if o is larger than 2 ;, then the(1, %) ES cannot converge at all.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.417

Local performance measures

The (1+ 1) algorithms do not have a generally closed analytical expression for the progre$§+rfite
So far, only thel = 1 case can be treated analytically:

* (*) * 1 (@H) o 1
~ ~(O =0 —_—
¢1+1 (1 + 2(0:/0*)2)1/2 1+1 2 (1 + 2(0.:/0*)2)1/2

(6")?1 ® o* 1
2 [E_ °<7 (1+2(a;/a*)2)1/2>]'

The comparison with equation (B2.4.56) & 1) shows that—unlike th&l, 1) ESs—in (+) selection
(elitist) algorithms both the progress gaindthe progress loss are affected by the noise. This also holds
for algorithms witha > 2. For these algorithms, however, there exists only an integral representation (see
Beyer 1993):

. N o* A o 1,2 1 r=1
(pi+i(o) = (1+ 2(c2 /0?2 (27)1/2 /;oote 2|51 Po(®)

1/2
1 o*\? (0*)?
T) 1 . —
<3 + o((+ <U§>) t 207 dr

An astonishing observation in+) selection algorithms on noisy fithess landscapes is the
nondefiniteness of the progress rage which is opposite to the standard wherg,;, > O,
inequality (B2.4.57), is always ensured. Thg,, > 0 property guarantees the convergence of the
algorithm. In noisy fitness landscapes, howeysr,; depends on the noise strength If o is too large,
theng,.; < 0 and the algorithm cannot convergés can be seen, elitism does not always guarantee
convergenceThere are further methods/principles which should be considered, too, in order to improve
the convergence security, such as tfemocracy principlgBeyer 1993, p 186) and thmultiparent(i.e.
population-based) strategies (Rechenberg 1994, p 228).

Theoretical results on multiparei, A) or (u/u, A) ESs are not available at the time of writing.
There is some strong empirical evidence that such strategies are much more advantageous in noisy fitness
landscapes than th@ 1) ESs (see Rechenberg 1994).

B2.4.1.6 Dynamics and convergence order of evolutionary algorithms

General aspects. Unlike the progress rate describing the microscopic change of the population from
generatiory to r 4+ 1, the dynamics refers to theacroscopicaspects of the EA. Topics of the evolution
dynamics are first of all the questions of whether there is convergence and how fast the EA approaches
the optimum (see also Section B2.2 and B2.3). B2.2 B2.3

The latter requires the time evolution of the residual distarkge) to the optimum (cf
equation (B2.4.9)). Letr(r) = E{h(t)} be the expectation of the distance, then by virtue of
definition (B2.4.8) one has

rt+1) =r(t) —e@).
This difference equation can be approximated by a differential equation. If, for example, the model class

hypersphere is consideredpecomes the (local average) radius and with the normalization (B2.4.49) one
finds

1
r@+1 —r(@)=—-r@) ;w*(ﬂ*(l))-

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.418

Local performance measures

Taylor expansion of(t + 1) yieldsr(t + 1) = r(t) + (dr/df) 1 + ...; thus, one obtains the differential
equation of the- evolution

O _ i loero. (B2.4.66)
dr n

Note that this approximation is possible because of the smallneg§ €. ¢p*/n « 1.
Equation (B2.4.66) can be formally solved fofr). Given a initial distance (0) at the start of the
EA run the solution reads

t'=t

r(t) =r(0) exp{—% f_o e (0*(t) dt/}) (B2.4.67)

As can be seerm,(t) depends on the time evolution of the normalized mutation stremgthThe special
caseo* = constant will be discussed in the next section, whereas the next but one is devoted to the
o = constant case.

Evolutionary dynamics foo* = constant. Maximal (local) EA performance is achieved for that

normalized mutation strengih* = 6* which maximizes the progress rapé. Therefore, the assumption

o* = constant~ 6* is a desired working regime which is usually attained by spetiaontrol rules.

These rules change the mutation strengtin such a way that it can keep pace with thehange such

thato (t)n/r(t) = o* ~ constant is roughly fulfilled. The most prominent algorithm that achieves this

tuning in a very natural, i.e. evolutionary, fashion, is Hedf-adaptatiorES developed by Rechenberg arc?.1

Schwefel in the late sixties (see e.g. Schwefel 1995) which is also widely used in EP (Fogel 1992, 1995).
The analysis of self-adaptation @, A) ESs can be found in the article by Beyer (1996). It will be

assumed here that the control mechanism works such that ~ constant and furthermorg*(¢*) > 0

is fulfilled. Then, from equation (B2.4.67) one finds the exponential time law

r(t) = r(0) eXp<— o) z) . (B2.4.68)

n

That is, the EA approaches the optimum exponentially. Such behavior is also kndiweaasonvergence
order. This notion becomes clear if one switches to the logarithmic scale,

InG-(1)) = In(r(0y) — £

t.

On the logarithmicr scale the time evolution becomes a linear function of the generation number

An astonishing observation in practice is that well-designed EP and ES algorithms do exhibit this time
behavior even for multimodal real-valued optimization problems. It is conjectured that this is because of
the curvature properties in higher-dimensional fitness landscapes, which can be well approximated by the
mean curvature equivalent to a (local) hypersphere.

Evolutionary dynamics of,) strategies forc = constant. Let us assume that for some reason the
o control does not work, i.ec* # constant, and the mutation strengthremains constant. Due
to equation (B2.4.49)¢g* = on/r(t), the normalized mutation strength* becomes a monotonically
increasing function of, provided thatr decreases with. In (+) selection algorithms (without fithess
noise, see section B2.4.1.5) this simply degrades the progresg*ratenvergence is still guaranteed (see
also Fogel 1994), but with sublinearconvergence order. However, this dows hold for (,) ESs. These
strategies exhibit am saturation, i.e. a steady-statg value is reached for — oco. The steady-state
solution can be easily obtained from the differential equation (B2.4.66) by the substi#ttieron/r and
the steady-state condition @t =0

d
steady-state: o =constant-0 A d_; =0 & ¢(0)=0 & o"=0g]>0.
Here, o} is the (second) zero op* (NB, the first zero iso* = 0). If renormalized one obtains the
steady-state value

re =22 0. (B2.4.69)

*
S0

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.419

Local performance measures

That is, forr — oo a residual distance to the optimum point remains. In other wards,strategies
without o control are not function optimizerghey do not converge to the optimum.
For example, consider th@g:, A) ES. From equation (B2.4.53) one obtains

on
(1, A) ES, o = constant> 0: o5 = 2, = Foo =

(B2.4.70)
26',,”)L

Similar results can be obtained (or observed in simulations) fof,allstrategies including bitstring
optimizations (forp, = constant> 0, see e.g. th@neMax @1, = Q1 (B2.4.41)) and combinatorial
problems (e.g. ordering problems; see Section G4.2). G4.2

B2.4.2 Genetic algorithms
Glnter Rudolph

Abstract

The expectation of the random time at which a genetic algorithm (GA) detects the global
solution or some other element of a distinguished set for the first time represents a useful
global performance measure for the GA. In this section it is shown how to deduce bounds
on the global performance measure from local performance measures in the case of GAs
with elitist selection, mutation, and crossover.

B2.4.2.1 Global performance measures

Let the tupleP; = (X,(l), cees X,(‘“) denote the random population pf < oo individuals at generation

t > 0 with X € B = {0,1}¢ for i = 1,..., 1. Assume that the genetic algorithm (GA) is used to
find a global solutionz* e B’ at which the objective functiorf : B¢ — R attains its global maximum
f@*) = f* =max f(x) : ¢ € B}. The best objective function value of a populatiBnat generation

t > 0 can be extracted via the mapping

foP) =max f(X):i=1,.... p}

Then the random variable
T =min{r > 0: fo(P) = f*}

denotes thdirst hitting timeof the GA. Assume that the expectation®fcan be bounded ViE[T] < T 8222
whereT is a polynomial in the problem dimensidn If the GA is stopped after T steps withc > 2 one
cannot be sure in general whether the best solution found is the global solution or not. The probability
that the candidate solution is not the global solutioR{& > ¢ T'} which can be bounded via the Markov
inequality yielding R

T 1 1
< —==- =<z
cT 2

c

After k independent runs (with different random seeds) the probability that the global solution has
been found at least once is larger than or equalta1*. For example, after 20 runs with= 2 (possibly
in parallel) the probability that the global solution has not been found is less th&n 10

If such a polynomial bound” existed for some evolutionary algorithm and a class of optimization
problems whose associated decision problem is nondeterministic polynomial-time (NP) complete, every
optimization problem of this difficulty could be treated with this fictitious evolutionary algorithm in a
similar manner. In fact, for the field of evolutionary algorithms this would be a pleasant result, but such
a result is quite unlikely to hold.

B2.4.2.2 Deducing the global performance measure from the local performance measure

The moments of the first hitting time can be calculated from the transition matrix dfigr&ov chain B2.2.2
associated with the GA and the objective function under consideration. Unless the transition matrix is
sparsely filled the practical application of the formulas given by losifescu (1980, pp 104, 133) is usually
excluded.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.420

Local performance measures

The general idea to circumvent this problem is as follows. $et B’ x --- x B = (B‘)* be the
state spacef the Markov chain. Then each elementc S represents a potential population that can dee 2
attained by the GA in the course of the search. Notice that it is always possible to decompose the state
space into: subsets via

s=Js with $nS;=p for i#;
i=1

with the property
Ve e S :VyeS;ti<j= fo@) < foly).

If the GA employselitist selectionit is guaranteed that a population in subSgtwill never transition to c2.7.4
a population represented by a state in some suf)setth i < j. Thus, the Markov chain moves through
the setsS; with ascending index. In general, this grouping of the states does not constitute a Markov
chain whose states are represented by the $efsee losifescu 1980, pp 166-70). In this case one has
to determine a lower bound on the probabilities to transition from some arbitrary elemépttanan
arbitrary element ir§;. These lower bounded probabilities represent the transition probabijiii¢sr the
grouped Markov chain to transition from st to S;. After the probabilitiesp;; have been determined

for j =i+ 1, ..., n the setting
pi=1- Z Pij

j=i+1
ensures that the row sums of the transition matrix of the grouped Markov chain are unity.
If the mutation of an individual is realized by inverting each bit with sometation probability c3.2.1
p € (0, 1) then there exist nonzero transition probabilities to move fromSseb S; for all indicesi, j
with 1 <i < j < n. This Markov chain can be simplified by setting

n
qii = pii + Z Dij

j=it2
qii+1 = Di,i+1
gii+k =0 fork>2andi +k<n
qij = 0 forj <.
Thus, only transitions from the s8tto S; ;1 fori = 1, ..., n—1 are considered—the remaining improving

transitions are ignored by bending them back to sfatdvidently, this simplified Markov chain must have

a worse performance than the original Markov chain, but its simple structure allows an easy determination
of the first hitting time representing an upper bound on the first hitting time of the original chain. To this
end, letT;; denote the random time that is necessary to transition frons;getS;. Then the expectation

of T is bounded by

n—1
E[T] <) E[Tiin] (B2.4.71)
i=1

Evidently, the probability distribution of random variable;,1 is geometric with probability density
function

P{Tiisi=1}=qiir1(1—qiiy)" "
and expectatiorE[7; ;1] = 1/¢:.;+1. Consequently, the expectation of the first hitting tifief the GA

can bounded by
n—1
E[T] < .
; qi.i+1

(B2.4.72)

It is not guaranteed that this approach will always lead to sharp bounds. The manner in which the state
space is decomposed determines the quality of the bounds. Unfortunately, there is currently no guideline
helping to decide which partitioning will be appropriate. The following examples will offer the opportunity

to gain some experience, but before beginning the examples notice that it can be sufficient to analyze the
(14+1) GA with mutation and elitist selection to obtain an upper bound of the first hitting time: an ordinary
GA with elitist selection, mutation, and crossover is at least as fas{hs-4) GA with the same mutation
probability. Thus, the potential improving effects of crossover will be ignored. This can lead to weak
bounds—nbut as long as the bounds are polynomially boundédtiis approach is reasonable.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.421

Local performance measures

B2.4.2.3 Linear binary problems

Definition B2.4.1.A function f : B — R is calledlinear if it is representable via

¢
f(x) =ao+ Zaixi
i—1

i=

with e B anda; e Rfori =0,1,..., £. O

The so-calleccounting ones probleroonsists of the task of finding the maximum of the linear function

[4
f@ =Y x
i=1

that is attained if all entries in vectar are set tol. Back (1992) investigated this problem fora+ 1)

GA with mutations as described previously and derived the transition probabilities for the Markov chain
while Miulhlenbein (1992) succeeded in calculating an approximation of the expected number of function
evaluations needed to reach the optimum.

The first step of the analysis is to reduce the state space of the Markov chain by an appropriate
grouping of states: to this end note that there é)estates withi ones that can be grouped into one
state because the specific instantiation of the vector with exaches is not important—the probability
of transition to any other state only depends on the number of ones (or zeros). Thus, the states of the
grouped Markov chain represent the number of ones. This reduces the cardinality of the state space from
2° to £ + 1: the Markov chain is in statee {0, 1, ..., £} if there are exactly ones in the current vector.
Consequently, one would like to know the expected time to reach &tate

The next step consists of the determination of the transition probabilities. Since the algorithm only
accepts improvements it is sufficient to know the transition probabilities from somei datgome state
Jj > i. Let A;; be the event thatk' ones out ofi flip to zero andi — k ones are not flipped’ and;;; the
event that k 4+ j — i zeros out of¢ — i flip to one and¢ — j — k zeros are not flipped’. Note that both
events are independent. The probabilities of these events are

i

P{Ay} = <k

. L —1 . .
k 1— i—k P!(B:. — k+j—i 1— Z—]—k.
)p 1-p and P{B} <k+j _l.>p 1-p

Thus, the probability to transition from statdo j is the sum ovek of the product of the probabilities of
both event§0 <i < j < ¥):

¢
pij = Z P{Ai} - P{Bijt}
=0

- i k i—k t—i k+j—i L—j—k
—Z<k>p 1-p) -(k+j_l.>p TA=-p

k=0

4 . .
i £—i 2kt i i 2k
— i(1— i—j
Z<k><k+j—i)p =p

k=0

. I iNS =i 2
— pi-i(1 — C—(j—i) (l>() (L) . B2.4.73
pd=p) Zkzo k)\k+j—i)\1-p ()

This formula is equivalent to that of &k (1992, p 88). The last nonzero term of the series in (B2.4.73)
is that with indexk = min{i, £ — j}. For larger indices at least one of the binomial coefficients becomes
zero. This reflects the fact that some of the events are impossible: for example, theAgveah not
occur if k > i because one cannot flipones when there are only Since the Markov chain stays in its
current state if mutation has generated a state of worse or equal quality the probabilities of staying are

¢
pii=1-— Z Dij

j=i+1

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.422

Local performance measures

for 0 <i < £. Clearly, p,, = 1. Since all other entries are zero the transition me®rix (p;;) has been
derived completely.

Now we are in the position to use the technique described previouslihldvibein (1992) used a
similar method to attack this problem: in principle, he also converted the exact Markov chain to another
one, that always performs less well than the original one but which is much simpler to analyze. Actually,
his analysis was a pure approximation without taking into account whether the approximations yielded a
lower or upper bound of the expected absorption time. However it will be shown in the following that
this approach leads to an upper bound of the expectation of the first hitting time.

In the third step the original Markov chain is approximated by a simpler one that has (provable)
worse performance. Recall that the key idea is to ignore all those paths that take shortcuts édogtate
jumping over some states in between. If the original Markov chain takes such a shortcut this move is
considered deteriorating in the approximating Markov chain and it stays at its current state. Consequently,
the approximating Markov chain needs more time to reach the absorbing¢ stat@verage. Moreover,
the approximating chain must pass all states greater than or equabtarrive at state when being
started in stateé < ¢.

Thus, one needs to know the transition probabilitjgsof the simplified Markov chain. Actually, it

is sufficient to know the values faf; ;.1 withi =0, ..., ¢ — 1. In this case (B2.4.73) reduces to
—pa— (T (-2 : (B2.4.74)
di,i+1 =P p ~ k k41 1—[7 4.
>pA-p)te—i). (B2.4.75)

Expression (B2.4.74) is still too complicated. Therefore it was bounded by (B2.4.75). In principle, the
approximating Markov chain was approximated again by a Markov chain with even worse performance:
the probabilities to transition to the next state were decreased so that this (third) Markov chain will take
an even longer time to reach stdteTo determine the expected time until absorption insert (B2.4.75) into
(B2.4.72). This leads to

S 1 1 ‘1 logl+1
E[T] < ; Py R 7 ey ;7 Y e (B2.4.76)

Evidently, the absorption time depends on the mutation probability(0, 1) and attains its minimum for
p* =1/¢. Then (B2.4.76) becomes (also seétNenbein 1992, p 19)

1-¢
E[T] <¢(ogt+ 1) (1 — %) < £ (log? + 1) exp1). (B2.4.77)

The bound (B2.4.77) is very close to the absorption time of the original Markov chainpadthl/¢. It
is clear that the optimal mutation probability for the original Markov chain will differ fropd,lbut the
difference is remarkably small as the numerical investigationsaamkR1993) reveal.

B2.4.2.4 Unimodal binary functions

The notion ofunimodalfunctions usually appears in probability theory (to describe the shape of probability
density functions), nonlinear one-dimensional dynamics (to characterize the shapes of return maps) and
in the theory of optimization of one-dimensional functions with donmR&inSince a commonly accepted
definition for unimodal functions ifR¢ does not seem to exist, it comes as no surprise that the definition

of unimodality of function with domairB¢ is not unique in the literature either. Here, the following
definition will be used.

Definition B2.4.2.Let f be a real-valued function with domai®’. A point =* € B is called alocal
solution of f if
fx*) > f(x) forall z e {y e B : |ly — ¥l = 1). (B2.4.78)

If the inequality in (B2.4.78) is strict, them* is termed astrictly local solution The valuef(z*) at a
(strictly) local solution is called gstrictly) local maximumof f. A function f : B¢ — R is said to be
unimodal if there exists exactly one local solution. O

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.423

Local performance measures

Before determining the expected absorption time afla- 1)-EA for this problem, it is useful to
know whether such problems are solvable in polynomial time at all. Johesah (1988, p 86) have
shown that this problem cannot be NP hard unless=Né®d-NP, an event which is commonly considered
very unlikely.

The ladder problemconsists of the task of finding the maximum of the unimodal binary function

fl@) = Zl_[xj

i=1 j=

which is attained if all entries in vectar are set tol. The objective function counts the number of
consecutivets in x from left to right. Note that this function is unimodal: choosec B‘ such that
x # x*. It suffices to show that there exists a pojng B¢ with ||z — y||; = 1 and f(y) > f(x). In fact,
this is true: sincer # x* there exists an indek = min{i : x; = 0} < £. Choosey € B‘ such thaty; = x;
foralli € {1,...,¢}\{k} andy, = 1. By construction one obtainjgc — y||1 = 1 and finally f (y) > f(x)
since the number of consecutive 1syris larger than the number of consecutive 1scinConsequently,

= (1...1) is the only point at whichf attains a local maximum. Thereforgis unimodal.

To derive an upper bound on the expected number of steps to reach the global maximum consider

the following decomposition of the search space: define= {xr € B : f(x) =i} fori =0,1,...,¢.
For example, for = 4 one obtains

So = {000Q 0001,001Q 0011, 0100 0101,011Q0 0111

S; = {100Q 1001 101Q 1011
S, = {110Q 1101

Ss = {1110

S, = {1111

Thus, if x € §; then the firsti bits are set correctly. Note that this grouping of states is not suited to
formulate a Markov chain model with+ 1 states that is equivalent to a model with2ates. But it is
possible to formulate a simplified Markov chain model with- 1 states that has worse performance than
the true model. To this end assuneec So. SubsetSy only can be left if the first entry mutates from
zero to one. If this event occurs the Markov chain is at least in sufaseBut it may also happen that

the Markov chain transitions to any other subSetvith i > 1. In the simplified model these events are

not allowed: all transitions fron§y to S; with i > 1 are considered as transitionsSa SubsetS; can be

left only if the first entry does not mutate and the second entry flips from zero to one. In this case the
Markov chain transitions at least to subset All transitions to subse§; with i > 2 are considered as
transitions toS,. Analogous simplifications apply to the other subsgtsSince all shortcuts on the path

to S, are bent back to a transition of the tySeto S;.; the expected number of trials of the simplified
Markov chain is larger than the expected number of trials of the original Markov chain. The state space of
the simplified Markov chain is = {0, 1, ..., £} where state € S represents subsét. The only possible

path from state O to staté must visit all states in between in ascending order. Thus, the probability
pi.i+1 o transition from staté to i + 1 for i < £ is the probability to flip entryi + 1 multiplied by the
(independent) probability that the firsentries remain unchanged. Thus,

piiv1=p(l—p)

wherep € (0, 1) denotes the probability to flip frord to 1 and vice versa. The expected number of steps
to reach the optimum is

-1 -1 -1 i
14 1-
E[To] =) E[Tia]l=Y —— == () Lra-pt-11 (82479
i—0 i—o Pii+1 P 0 p
Now insist thatp = ¢/¢ with 0 < ¢ < £. Insertion into (B2.4.79) leads to
22 c c\—¢ ,ef—1
E[To.] = (1-7) [(1—) - 1} <0 — (B2.4.80)

where the rightmost expression attains its minimumdet 1.6. In summary, it has been shown that the
expected number of steps of tiie+ 1)-EA can be bounded by @°).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.424

Local performance measures

Let F = {f(x) : = € B*} be the set of function values of a unimodal functipnlf the cardinality of F
is bounded by a polynomial iy then it is guaranteed that tiig+1)-EA will be absorbed at the local/global
solution after polynomially many trials on average, because only polynomially many improvements via
one-bit mutations are possible and sufficient to reach the optimum. Such a problem was considered in
the preceding example. Therefore, these problems can be excluded from further considerations. Rather,
unimodal problems withF| = ©(2%) are the interesting candidates.

By definition, each unimodal problem has at least one path to the optimum with strictly increasing
function values, where consecutive points on the path differ in one bit only. Since the expected time to
change a single specific bit is less thai an upper bound on the absorption time is the length of the path
timesef. Hornet al (1994) succeeded in constructing paths that grow exponentiallyaimd can be used
to build unimodal problems. Consequently, the upper bound derived by the above reasoning either is too
rough or indicates that polynomial bounds do not exist. It is clear that such a ‘long path’ must possess
much structure, because the one-bit path has to be folded several times to fit intd®‘bo®ne might
suspect that there exist many shortcuts, by appropriate two-bit mutations, that decrease the order of the
upper bound considerably. In fact, this is true. Since the analysis is quite involved only the result will
be reported: the exponentially longot2-path is maximized after @%) function evaluations on average
(see Rudolph 1996).

B2.4.2.5 Supermodular functions

Definition B2.4.3.A function f : B — R is said to besupermodularif

flenrny) + f@Vvy = f@)+ f(y) (B2.4.81)

for all z, y € B®. If the inequality in (B2.4.81) is reversed, thghis calledsubmodular O

Evidently, if f(x) is supermodular theg(x) := a+bf (x) with a € R andb € R\ {0} is supermodular
for b > 0 and submodular fob < 0. Thus, maximization of supermodular functions is of the same
difficulty as the minimization of submodular functions. For this problem class there exists a strong result.

Theorem B2.4.1 (@tschel et al 1993, pp 310-11Fach supermodular functiorf : B — Q can be
globally maximized in strongly polynomial time. O

As will be shown, it is impossible to obtain an upper boudhan the expectation of the first hitting
time that is polynomial ir¢.

Theorem B2.4.2There exist supermodular functions that cannot be maximized {y+al)-EA with a
number of mutations that is upper bounded by a polynomidl in

Proof. Consider the objective function

€=zl if) <€ (B2.4.82)

fx) = {
that is easily shown to be supermodular. The state space oflthel)-EA can be represented by
S =1{0,1,..., ¢} where each state € S represents the number a6 in vectorz € B¢. The absorbing
state is staté. It can be reached from states {0, 1, ..., £ — 1} within one step with probability

pie=p"" (1-p).

Let the Markov chain be in some state {0, ..., ¢ — 1}. Only transitions to some stafe< i or to state

¢ are possible. If the Markov chain transitions to state: i, then the probability to transition to state
£ has become smaller. Thus, it would be better to stay at sttan to move to stat¢ < i although
the objective function value of stateis better than the objective function value of stateThis leads to
the simplified Markov chain that has better performance than the original one. g:henl — p;, and
the simplified Markov chain is described completely. Thus, the expected time to transition t6 ftate
statei < £ is

E[T.] = L B—— (i> >
pie p~(L-p) -1

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.425

Local performance measures

Assuming that the initial point is drawn from a uniform distribution oérthe average time to absorption
is larger than

r g (o= R ()= () ZO6) - (%) =

Since the lower bound on the absorption time is exponentiélfor £ > 2 the proof is completed. O

Of course, this result does not imply that a GA must fail to solve this problem in a polynomially bounded
number of generations. It may be that some crossover operator can help. But note that the objective
function (B2.4.82) idully deceptiveas can be easily verified owing to the sufficient conditions presemted:
by Deb and Goldberg (1994). Fully deceptive functions are the standard examples to show (empirically)
that a GA fails.

B2.4.2.6 Almost-positive functions

Theorem B2.4.3 (Hansen and Simeone 1986, p 27Dhe maximum of an almost-positive pseudo-Boolean
function (i.e. the coefficients of all nonlinear terms are nonnegative) can be determined in strongly
polynomial time. O

Theorem B2.4.4. There exist supermodular functions that cannot be maximized @iy+al)-EA with a
number of mutations that is upper bounded by a polynomidl in

Proof. Theorem B2.4.2 has shown that the objective function in equation (B2.4.82) cannot be maximized
by a number of mutations that is upper bounded by a polynomiél Mote that the function in (B2.4.82)
has the alternative representation

4 4
f@=t=Y x+¢+D[]x
i=1 i=1
revealing that this function is also almost positive. This completes the proof. O

References

Abramowitz M and Stegu | A 1984 Pocketbook of Mathematical Functiof$hun: Harri Deutsch)

Back T 1992 The interaction of mutation rate, selection, and self-adaptation within a genetic algedthitel
Problem Solving from Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, 1992)
ed R Manner and B Manderick (Amsterdam: North-Holland) pp 85-94

——1993 Optimal mutation rates in genetic seaRioc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign,
IL, July 1993)ed S Forrest (San Mateo, CA: Morgan Kaufmann) pp 2-8

Beyer H-G 1989Ein Evolutionsverfahren zur mathematischen Modellierung statemZustinde in dynamischen
SystemerDoctoral Dissertation, HAB-Dissertation 16, Hochschule Architektur und Bauwesen, Weimar

——1993 Toward a theory of evolution strategies: some asymptotical results froifl the.)-theory Evolutionary
Comput.1 165-88

——1994a Towards a theory of ‘evolution strategies’: progress rates and quality g&inifar-strategies on (nearly)
arbitrary fitness function®arallel Problem Solving from Nature—PPSN Il (Proc. Int. Conf. on Evolutionary
Computation and 3rd Conf. on Parallel Problem Solving from Nature, Jerusalem, October 1994) (Lecture Notes
in Computer Science 86@&d Yu Davidor, H-P Schwefel and R @iner (Berlin: Springer) pp 58-67

——1994b Towards a Theory of ‘Evolution Strategies: Results from tHedependent(u, 2) and the Multi-
Recombinant(i/u, A) Theory Department of Computer Science Technical Report SYS-5/94, University of
Dortmund

——1995aHow GAs doNOT Work—Understanding GAs without Schemata and Building Blda&partment of
Computer Science Technical Report SYS-2/95, University of Dortmund

——1995b Toward a theory of evolution strategies: the 1)-theory Evolutionary Comput2 381-407

——1995c¢ Toward a theory of evolution strategies: on the benefit of sex-the, A)-theory Evolutionary Comput.
381-111

——1996a Towards a theory of evolution strategies: self-adapt&imtutionary Comput3 311-47

——1996b An alternative explanation for the manner in which genetic algorithms ofRicsgstemst press

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.426

Local performance measures

Bronsten | N and Semendjaje K A 1981 Taschenbuch der Mathemat{keipzig: Teubner)

David H A 19700rder Statistics(New York: Wiley)

Deb K and Goldbeay D E 1994 Sufficient conditions for deceptive and easy binary functhams Math. Artificial
Intell. 10 385-408

Fogé D B 1992 Evolving Artificial IntelligencePhD Thesis, University of California, San Diego

——1994 Asymptotic convergence properties of genetic algorithms and evolutionary programming: analysis and
experimentCybernet. Sys5 389-408

——1995Evolutionary Computation: Toward a New Philosophy of Machine IntelliggRiscataway, NJ: IEEE)

Goldberg D 198%enetic Algorithms in Search, Optimization, and Machine LearifiRgading, MA: Addison-Wesley)

Grotschel M, Lowasz L and Schrijver A 199&eometric Algorithms and Combinatorial Optimizati@nd edn (Berlin:
Springer)

Hansen P and Simeone B 1986 Unimodular functibiscrete Appl. Math14 269-81

Horn J, Goldbey D E and Deb K 1994 Long path problerRarallel Problem Solving from Nature—PPSN 11l (Proc.
Int. Conf. on Evolutionary Computation and 3rd Conf. on Parallel Problem Solving from Nature, Jerusalem,
October 1994) (Lecture Notes in Computer Science &bYu Davidor, H-P Schwefel and R &ainer (Berlin:
Springer) pp 149-58

losifescu M 1980Finite Markov Processes and Their Applicatio(@hichester: Wiley)

Johnson D S, PapadimitioC H and Yannakakis M 1988 How easy is local seardh€omput. Syst. Sc87 79-100

Muhlenbein H 1992 How genetic algorithms really work: mutation and hillclimiagallel Problem Solving from
Nature, 2 (Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, Brussels, 1@92R Manner and
B Manderick (Amsterdam: North-Holland) pp 15-25

Milhlenbein H and Schlierkamp-Voosen D 1993 Predictive models for the breeder genetic algévithrtionary
Comput.1 25-49

Rechenberg | 199&volutionsstrategie '94Stuttgart: Frommann-Holzboog)

Rudolph G 1996 How mutation and selection solve long path problems in polynomial expecteBvatutionary
Comput.4 at press

Schwefel H-P 199%volution and Optimum Seekin@lew York: Wiley)

Further reading
1. Arnold B C, Balakrishnan N and Nagaaaid N 1992A First Course in Order StatisticéNew York: Wiley)

As does the book of David (1970), this course gives a good introduction into order statistics, which builds the
mathematical basis for truncation selection.

2. Beyer H-G 1992ZTowards a Theory of ‘Evolution Strategies’. Some Asymptotical Results fro¢h the)-Theory
Department of Computer Science Technical Report SYS-5/92, University of Dortmund

In this report the derivations for th@ + A) theory on noisy fitness data can be found.

3. Beyer H-G 1994Towards a Theory of ‘Evolution Strategies’: Results from Mealependentiu, A) and the
Multi-Recombinan{u/u,) Theory Department of Computer Science Technical Report SYS-5/94, University
of Dortmund

This report contains the ‘hairy details’ of the progress rate theory(don) and (iu/u, 1) ESs as well as the
derivations for the differential geometry approach.

4. Beyer H-G 1995 0owards a Theory of ‘Evolution Strategies’: thk 1)-Self-AdaptatiorDepartment of Computer
Science Technical Report SYS-1/95, University of Dortmund

This report is devoted to the theory df, 1) o selfadaptation and contains the derivations of the results presented
in the article by Beyer (1996).

5. Michad R E and Leui B R (eds) 1988The Evolution of Sex: an Examination of Current ldg&inderland,
MA: Sinauer)

Concerning the current ideas on the benefits of recombination in biology, this book reflects the different
hypotheses on the evolution of sex. Biological arguments and theories should receive more attention within
the EA theory.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.427

Theoretical Foundations and Properties of Evolutionary Computation

B2.5 Schema processing

Nicholas J Radcliffe

Abstract

From the earliest days, genetic algorithms have been analyzed in terms of their effects
on schemata—groups of individuals with shared values for some genes. This section
presents the basic definitions and results from schema analysis together with a critical
discussion. Topics covered include genes, alleles, schemata, the schema theorem,
building blocks, nonlinearities, cardinality, linkage, and generalizations of the basic
schema-processing framework. Particular emphasis is given to careful interpretation
of the results, including the much-debated issue of so-catgdicit parallelism

B2.5.1 Motivation

Schema analysis was invented by John Holland, and presented to the world in his book of 1975, as a
possible basis for a theory of genetic algorithms. One of Holland’s basic motivations and beliefs was that
complex problems are most easily solved by breaking them down into a set of simpler, more tractable
subproblems, and this belief is visible both in Holland’s writing on genetic algorithms and in his conception
of schema analysis.

Loosely speaking, schema analysis depends on describing a solution to a search problem as a set of
assignments of valuesl(eles) to variables gene3. A schema can then be viewed as a partial solution,
in which only some of the variables have specified values. Various measures of the quality of such a
partial solution are used, mostly based on sampling the different solutions obtained by completing the
schema with different variable assignments. Schefmtitas provide a way of decomposing a complex
search problem into a hierarchy of progressively simpler ones in which the simplest level consists of
single variable assignments. Informally, the idea is that a genetic algorithm tackles the simpler problems
first, and that these partial solutions are then combined (especially threagmbination also known as
crossover) into more complex solutions until eventually the complete problem is solved.

Schema analysis is primarily concerned with the dynamics of schemata over the course of the run
of a genetic algorithm, and its most famous (if limited) result, the schema theorem, provides a partial
description of those dynamics.

B2.5.2 Classical schema analysis
Having described the motivation for the idea of schemata, we now derive the schema theorem. This
requires some careful definitions, which now follow.

B2.5.2.1 Basic definitions

Definition B2.5.1 (representation, chromosome, gene, and allelsgt S be asearch spacd.e. a collection B2.1.2
of objects over which search is to be conducted. Met Ay, ..., A, be arbitrary finite sets, and let

I=A1 x Ay x---x A,.

T ‘Schemata’ has traditionally been the preferred plural form of schema, though ‘schemas’ is fast gaining favor within the research
community.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.51

Schema processing

Finally let
g: 1 — S
be a function mapping vectors ihto solutions in the search space. Themnd g are together said to
form arepresentationof S. I is called arepresentation spacand g is known as agrowth function.
The members of are callecchromosomesr individuals (and less commonlgenome®r genotypek
The setsA; from which I is composed are calledllele setsand their members are calledleles. A
chromosomer € I can, of course, be expanded to be written as

(X1, X2, o Xy) €A X Ao x -+ X A,

or as the stringrix, . .. x,. The componentsy;, of «, when treated as variables, are knowngases,so
that theith gene takes values from the allele sgt The position,i, of a gene on the chromosome is
known as itsocus. O

Example B2.5.1 (representation)Let S = N;g = {0, 1, ..., 9} be a search space. This can be represented
with the two-dimensional representation spdce- N, x Ns, so that chromosomes are ordered pairs of
two integers, the first of which is binary and the second of which is in the range 0—4. A possible growth
function for this case would be

gla,b) =5a +b.
The first gene, which has locus 1, is binary and has alleles 0 and 1. The second gene, which has locus 2,
has cardinality 5, and has alleles 0, 1, 2, 3, and 4. O

In many representations, all the genes have the same cardinality and a common allele set. Historically,
binary representations have been particularly popular, in which all genes have only the alleles 0 and 1.

Definition B2.5.2 (schema).Let I = A; x A, x --- x A, be a representation space. For each allele set
A;, define the extended allele sdf by
Ar = A; U {x}
wherex is known as the ‘don’t care’ symbol. Thensahemais any member of the sel defined by
E=A] x Ay x - x Ay
i.e. a chromosome in which any subset of the alleles may be replaced with the ‘don’t care’ syntbol

schema = (&1, &, ..., &,) describes a set of chromosomes which have the same allelesitaall the
positionsi at whichg; # , i.e.

E={xellVie{l,2,....,n}: (& =x; Or§ = %)}.
The positions at whicl§ is notx are called itsdefining positions.The order, o(¢), of a schemé is the

number of defining positions it contains, and d&fining length§ (€), is the distance between its first and
last defining positions. O

Schemata are also known variouslyrggerplanegusing the geometric analogy) asiiilarity templates.
The members of a schema are generally referred insiances.

Example B2.5.2 (schema)Let I = Ng be the set of vectors of five ternary digits. Then the schexi@2
is given by

2x10x = {2010Q 20101 20102 2110Q 21101 21102 2210Q 22101 22103
and has order three and defining length three. O

Definition B2.5.3 (fithess function).Let S be a search spacg,: S —> R, be an objective function, and
g . I — S be a growth function for the representation spac&hen any function

f[—)R+

with the property that

fx) = mlaxf < F(g(x)) = optF
g
where opt is min if F is to be minimized, and max if" is to be maximized, will be called fitness

function. O

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.52

Schema processing

Example B2.5.3 (fithess function)Let F : [—1, 1] x [—1, 1] — [—2, 0] be an objective function for
minimimization, defined by

F(x,y)=x>4y2-2

with optimum F (0, 0) = —2. Let the representation space¥g x Nji, with growth function

a b
g(a,b) = <§—1,§ —1).

Then a possible fitness function is given by

fla,b) =3—F(g(a,b)).

Notice that, as is commonly the caséhere is a monotonic transformation ffo g. O

B2.5.2.2 The schema theorem

Theorem B2.5.1 (the schema theorem)et & be any schema over a representation sgdoeing searched

by a traditionalgenetic algorithnusingfitness-proportional selectigspecified recombination and mutaticg1.2, c2.2
operators, angenerational updateLet N () denote the number of instances of the schénpeesent in c2.7
the population at generation Then

fe ()

(Ne(t + 1) | Ne(1)) = Ne(t) =—— e [1 Dc(8)][1— Dm(8)]

where:

e (A|B) denotes the conditional expectation valuedofjiven B
. f‘g (1) is theobserved fitnessf the schem#& at generation, defined by

> fw

xeENB(1)

where individuals occurring more than once in the populatson contribute more than once to the
average; that isf; (r) is the mean fitness of all chromosomes in the population that are membgers of

e f (1) is the mean fitness of the entire population at generation

e D¢(&) and Dy (&) are upper bounds on the disruptive effect on schema membership of the chosen
crossover and mutation operators respectively (see below).

Proof. Let B(z) be the population at generationremembering that this is laag, rather than a set (i.e.
repetition is allowed), and l€8; () denote the (bag of) members of the population that are instandes of
Using any recombination operator that produces two children from two parents, the total number of parents
contributing to a generation is clearly the same as the number of children, i.e. the (fixed) population size.
Under proportional selection, the expected number of times an individwdl act as a parent for the next
generatiory + 1 is f(x)/f (¢). Therefore, the expected number of times individuals figny) will act

as parents ié:xegs([) f)/f @) = Ne (l‘)f‘é(l)/.f (r). A child having a parent € & will be guaranteed

to be a member of that schema also provided that neither recombination nor mutation acts in such a way
as to destroy that schema membership. Therefore, dinR¢g) is, by definition, an upper bound on the
probability that crossover will be applied and will cause a pareri o produce a child not ir§, and

Dn(§) is the corresponding bound for mutation, it is clear that

fe ()

(Ne(t + 1) | Ne()) = Ne(t)=—— i [1 De(®)][1 — Dm(®)]

which is the required result. O

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.53

Schema processing

Corollary B2.5.1 (the schema theorem for a simple genetic algorithi@pnsider a traditional genetic
algorithm as above, using chromosomes witlgenes, in which the chosen recombination operator is
one-point crossoverapplied with probabilityp., and the chosen mutation operatompisint mutation in c3.3.1, c3.2.1
which each gene’s value is altered with independent probakility Then D.(§) = p:8(¢)/(n — 1) and

Dn(€) = 1— (1 — pm)°® act as upper bounds for the disruptive effect of recombination and mutation
respectively. For smalpy, the latter bound is well approximated Wy, (£) = pmo(§), and using this
approximation the schema theorem for a traditional genetic algorithm is

f 8
(et +1) | Ne(t)) = Ngm% [1 - pe- (_5)1} [1- pro®)].

Proof. One-point crossover can only disrupt schema membership if the cross point falls within the defining
region of the schema (i.e. between the first and last defining positions). Assuming that the cross point is
chosen uniformly, the probability of this is simply the proportion of possible cross points that lie within
the defining region, which i§(§)/(n — 1). This establishes that an upper bound on the disruptiveness of
one-point crossover is given .(&) = pS(§)/(n — 1), as required.

Point mutation can only disrupt schema membership if it alters at least one defining position. The
probability of none of the defining positions of a schema being affected by point mutation is, by definition,
(1 — pm)°®, so the disruption coefficient i®n(E) = 1 — (1 — pn)°®. For pm < 1, this is well
approximated bypmo(&) as required. O

We will shortly consider the significance of the schema theorem, and some of its interpretations. First,
however, it is worth making a few notes on its status, scope, and form.

Status. The value and significance of the schema theorem is keenly debated. Extreme positions range
from sceptics who view the schema theorem as having little or no valuglévibein 1992) to those who

view it as ‘the fundamental theorem of genetic algorithms’ (Goldberg 1989c). In fact, as the above proof

shows, the schema theorem is a simple, little result that can be proved, in various forms, for a variety of
‘genetic algorithms’.

Selection. In the form shown, the schema theorem only applies to evolutionary algorithms using fithess-
proportionate selection, which is described by the tg?gt(m)/f (t). However, it is easy to substitute terms
describing most of the other selection methods commonly used in genetic algorithms (see e.g. Goldberg
and Deb 1990, Hancock 1994). It is, howeveot straightforward to extend the theorem to selection
methods that depend on the fitness of the offspring produced. A particular consequence of this is that
the (u + A) and (u, A) selection methods typically used @volution strategie¢$Back and Schwefel 1993k2.4.4B1.3
cannot easily be incorporated in the framework of the schema theorem. The observation that substituting
such selection mechanisms appears in practice to alter the behavior of a genetic algorithm relatively little
might be taken as evidence that the schema theorem captures relatively little of the behavior of genetic
algorithms.

Other move operators. The form in which the schema theorem is presented above makes clear that it is
applicable to any move operators, provided that suitable bounds can be derived for their disruptiveness.
Other operators for which bounds have been derived include uniform crossover (Syswerda 1989, Spears
and De Jong 1991) and partially matched crossover (PMX; Goldberg and Lingle 1985).

More precise forms of the theoremThe theorem can be tightened in a number of ways, two of which

are noted here. First, many recombination operators have the propemgpfct(Radcliffe 1991). A
recombination operator is respectful if whenever both parents are members of a schema this is also the
case for both of the children it produces. This observation allows a tighter bour?. ®y to be obtained

if the probability of mating between two members of the same schema can be quantified. For one-point
crossover, and the simple but noisyulette-wheeimplementation of fitness-proportionate selection, ticz2
more precise bound is

N PR {OR IC)
Dc(g)—l’c|:];(t):|n—1

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.54

Schema processing

which is essentially the value used by Holland (1975).

Secondly, if precise values are used instead of bounds for the disruption coeffiRi¢htsand D, (&),
and terms are added to describe the possibility of new creating new instances of schemata from parents
that are not instances, the schema theorem can be turned from an inequality to an equality. The first
attempt at this was that by Bridges and Goldberg (1987). Later, Nix and Vose (1991) took this further by
writing down the exact function describing the expected transformation from one generation to the next.
This formulation has become known as Wese model €33.13

Linkage and disruption. Consider two schemata of order two, one which is defined over adjacent positions,
and the other of which has defining positions at opposite ends of the chromosome. It is clear that the first
schema, having shorter defining length, is much less likely to be disrupted by one-point crossover than
is the second. The degree of compactness of a schema, relative to its order, is referred liokagés
shorter schemata being tightly linked, and longer ones being loosely linked.

One of the reasons for making a distinction between the identity (or meaning) of a gene and its locus
(position) on the chromosome is that, in Holland’s original conception of genetic algorithms, the locus of
a gene was intended to be itself subject to adaptation. The idea here is that a chrom)rBeb) is
replaced by the locus-independent descriptidn 4), (2, 2), (3, 3), (4, 6)), where the first number in each
pair indicates the gene, and the second its value (the allele). Clearly, under this description, the positions of
the genes on the chromosome may be permuted without altering the solution represented by the individual.
Applying the same idea to schemata, a long, loosely linked schema su¢h 45 (2, x), (3, %), (4, 6)) is
equivalent to the tightly linked schen{él, 4), (4, 6), (2, %), (3, %)).

Holland’s intention was that such locus-independent representations be used, and that a third operator,
inversion, be introduced to alter the linkage of chromosomes by randomly reversing segments. (Notice
again that this doemot change the solution described by the chromosome.) Inversion would be applied
relatively infrequently, to ‘mutate’ the linkage of chromosomes. Under this scheme, when two parents
are brought together for recombination, one is temporarily reordered to match the linkage of the other, so
that, denoting crossover by, and marking the cross point with

((4,6), (1,4,
® (23,15,

(3.3),(2,2) ((4,6), (1,4,

(3,3),(2.2)
41,3.3) 7 ® (41),15),

(3.3),(2.3)°

The initial result of this recombination is shown below, followed by the final result, in which the linkage
of the second child is restored to that of the second parent:

((4,6). (1,4,
(41,159,

(3.3),(2,3) ((4,6), (1,4,

(3.3),(2,3)
4.1),3,3)°

(3.3),(2,2) ((2,2),(1,5),

This subtle idea suggested a mechanism whereby the linkage of solutions could itself be subject to
adaptation. Although there is no direct fitness benefit gained by moving together genes with coadapted
values, there is an indirect benefit in that these coadapted values are more likely to be passed on to children
together. The hope was that, over a number of generations, the linkage of genes across the population
would come to reflect the gene interdependencies, allowing more efficient search.

Elegant and persuasive though the idea of selfadaptive linkage is, neither early nor later work
(Cavicchio 1970, Radcliffe 1990) has managed to demonstrate a clear benefit from using inversion and
locus-independent representations. This is widely interpreted as indicating that current practice uses runs
too short (covering too few generations) for a second-order selective pressure, such as is available from
good linkage, to offer a significant performance benefit (Harik and Goldberg 1996). The belief of many
workers that, as problem complexities increase, inversion will experience a renaissance is evidenced by
continuing discussions of and research into relinking mechanisms (Holland 1992, Weinholt 1993, Harik
and Goldberg 1996).

B2.5.3 Interpretations of the schema theorem

As noted above, the schema theorem is a very simple, little theorem, but one that is the source of
much debate. Most of that debate centers not on the theorem itself, but on its interpretations (and
misinterpretations). It is to these interpretations that we now turn our attention.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.55

Schema processing

B2.5.3.1 Building blocks

One of the fundamental beliefs that underpins much interpretation of the schema theorem is that genetic
algorithms process not only individual chromosomes, but also—implicitty—schemata. Indeed, the schema
theorem is pointed to as evidence of that processing, because it (potentially) gives a partial description
of the dynamics of each schema instantiated in the population. (It formally gives a description of all
schemata, even those not instantiated in the population, but its prediction for these is trivial.) We shall
shortly consider a quantitative argument pertaining to schema processing, bringing in the coimpptiof
parallelism. First, however, we will examine the notion oftaiilding block.

As noted earlier, one of Holland’s motivations for genetic algorithms and the formalism of schemata
is the desire to solve complex problems by combining the solutions to simpler subproblems. Suppose
that we have a problem for which a target solution is representé@, 4s1, 7, 8, 2, 3, 4), using a denary
representation, which we will abbreviate to 01178234, following common practice. Suppose further that
this problem contains two subproblems, the solutions to which are represented by nonoverlapping sets
of genes. For example, suppose that the first subproblem is represented by the second and third genes,
so that its solution can be described by the schefrfaxxxx, and that the second uses genes 5, 7, and
8, and is solved by members of the schesax8+x34. Clearly the solutions to these two subproblems
are compatible (ononcompetiny in the sense that a single chromosome can combine both, by being
a member of the higher-order schemBlx8x34. One of the principal functions of crossover is widely
perceived to be to effect exactly such bringing together of partial solutions, by recombining one parent
which is an instance of the first schema, and a second which instantiates the second, to produce a child
that is a member of both schemata. At the simplest levbljiling block can be thought of as a solution
to a subproblem of the type described above that can be expressed as a schema, particularly if that schema
has short defining length.

The idea of building blocks goes to the heart of the motivations for schema analysis, and is worth
careful consideration. The key to being able to exploit a decomposition of a complex problem into simpler
subproblems is that the solutions of those subproblems are to some extent independent. To illustrate this,
consider a familiar attaéhcase, with six ten-digit dials arranged in two blocks of three:

[3][4][5] 9J[5][2]

This arrangement allows the complete problem of finding the correct six digits to open the case to be
decomposed into two subproblems, one of opening the left-hand lock and another of opening the one on
the right. Each subproblem has®18 1000 possible solutions, so that, even using exhaustive search, a
maximum of 2000 combinations needs to be tried to open both locks: the solutions to the two subproblems
are independent.

Consider now an alternative arrangement, in which all six digits control a single lock (or equivalently

both locks):
[3][4][s][9][5][2]

Although the problem can still formally be decomposed into two subproblems, that of finding the first three
digits, and that of finding the second, the decomposition is no longer helpful, because finding the ‘correct’
solution to the first problem is in this case entirely dependent on having the correct solution to the second
problem, so that now fully 0= 1000000 solutions must be considered. (Attacase manufacturers

take note!) Conversely, if all six dials are attached to separate locks, only 60 trials are needed to guarantee
opening the case.

In mathematical terms, the decomposability of a problem into subproblems is referredineas
separability,and models satisfying this condition are knownaaklitive. In biology, the termepistasisis
used to describe a range of nonadditive phenomena (Holland 1975), and this terminology is often used to
describe nonlinearities in fitness functions tackled with genetic algorithms (Davidor 1990).

In the context of genetic algorithms, the potential for crossover to succeed in assembling chromosomes
representing good solutions through recombining solutions containing useful building blocks is thus
critically dependent on the degree of linear separability with respect to groups of genes present in the
chosen representation. A key requirement in constructing a useful representation is thus to have regard
to the degree to which such separability can be achieved. It should, however, be noted that complete
separability is certainlyhot required, and there is abundant evidence that genetic algorithms are able to

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.56

Schema processing

cope with significant degrees of epistasis, from both studies of artificial functions (e.g. Goldberg 1989a, b)
and those of complex, real-world problems (e.g. Hillis 1990, Davis 1991). This is fortunate, as only the
simplest problems exhibit complete linear separability, and in such cases a genetic algorithm is far from
the most efficient approach (see e.g. Schwefel 1995).

The description of building blocks given by Goldberg (1989c), which was for a long period the
only introduction to genetic algorithms accessible to many people, is slightly different. He defines
building blocks as ‘short, low-order, and highly fit schemata’ (p 41). Goldberg refers tbuitding
block hypothesisa term widely used but rarely defined. Goldberg’'s own statement of the building block
hypothesis is:

Short, low-order, and highly fit schemata are sampled, recombined, and resampled to form strings
of potentially higher fitness.

He goes on to suggest that:

Just as a child creates magnificent fortresses through the arrangement of simple blocks of wood,
so does a genetic algorithm seek near optimal performance through the juxtaposition of short,
low-order, high-performance schemata, or building blocks.

While these descriptions accurately reflect the intuitive picture many have of how genetic algorithms tackle
complex problems, it is important to note that the building block hypothesis is exactly that—a hypothesis.
Not only has it not been proved: it is not even precise enough in the form quoted to admit the possibility
of proof. While it is not difficult to produce related, sharper hypotheses that are falsifiable, there are
reasons to doubt that any strong form of the building block hypothesis will ever be proved. Some of this
doubt arises from studies of simple, linearly separable functions, such as one-max (or ‘counting ones’) and
Holland’s royal roads(Mitchell et al 1992), which, though superficially well suited to solution by geneticr s
algorithms, have proved more resistant than many predicted (Forrest and Mitchell 1992).

In considering the building block hypothesis as stated above, it is also important to be careful about
what is meant by the fitness of a schema. This relates directly to the degree of linear separability of the
problem at hand with respect to the chosen representation. Recall that the measure used in the schema
theorem is the)bservedfitnessfg (1), i.e. the average fithess of those individuals in the current population
that are members of. Except in the special case of a random population, this measure is potentially
very different from what is sometimes called thiatic or true fithess of a schema, which we will denote
f,, defined as the average over all of its possible instances. This is quite widely perceived as a problem,
as if the ideal situation would pertain if the observed fitneﬁt{r), formed an unbiased estimator for
/(&) (which is in general only the case during the first generation, assuming this is uniformly generated).
In fact, except for the case of truly linearly separable (additive) functions, it is far from clear that this
would be desirable. It seems more likely that it is the very ability of genetic algorithms to form estimates
biased by the values of other genes found in solutions of above-average performance in the population
that allows very good solutions often to be found in cases where the objective function is significantly
nonlinear.

B2.5.3.2 Implicit parallelism and schema dynamics

Perhaps the most controversial aspect of schema analysis is the notimplmit parallelism, and the
arguments about representation cardinality that derive from it. We now carefully examine this idea.

Consider a representation of dimensieni.e. with n genes. It is easy to see that, regardless
of the cardinality of its genes, every chromosomee [is a member of 2 schemata. This is
because any subset of its alleles can be replaced withsgmbol to yield a schema to which
belongs, and there are® Zuch subsets. (We shall refer to this as tiegreeof implicit parallelism.)
Depending on the similarity between different members of the population, this means that a population
of size A contains instances of betweefi and A 2" different schemata. This leads to the idea that
genetic algorithmprocessschemata as well as individual strings—a phenomenon Holland daliglitit
parallelismi. The schema theorem, in any of its forms, is sometimes produced as evidence for
this proposition, since it gives potentially nontrivial predictions for every schema instantiated in the
population.

1 The original term, intrinsic parallelism, is now disfavored because it may be confused with the amenability of genetic algorithms
to implementation on parallel computers.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.57

Schema processing

The notion of implicit parallelism has been used to argue that representations based on genes with
few alleles are superior to those with genes of higher cardinality, through what Goldberg (1989c) has
termed theprinciple of minimal alphabets.The argument is that since each chromosome is a member
of 2" different schemata, and accepting that genetic algorithms ‘process’ such schemata, the number of
schemata processed is maximized by representations that maximi3amge the number of genes required
for any given size of representation is inversely related to the number of alleles per gene, this argues for
large numbers of low-cardinality genes—ideally all-binary genes.

A number of critiques of this argument have been put forward.

(i) Antonisse (1989) pointed out that Holland’'s definition of schemata was not the only one possible.
Suppose that rather than extending allele sets by a single ‘don’t care’ symbol to obtain schemata, a
‘schema’ is allowed to specify any subset of the available alleles for any position. An example of such
an extended schema for base-5 strings might be

1
1{ 2 ;11=1{11111211 1411%.
4

It is easy to see that the proof of the schema theorem is unaffected by this broadening of the definition of
schemata. However, the degree of implicit parallelism computed with respect to the new schemata is now
much higher for nonbinary representations—indeed higher than for binary representations.

(i) Vose and Liepins (1991b) and Radcliffe (1991) independently went further, and both showed that,
provided the schema theorem is written in terms of general disruption coefficients as above, arbitrary
subsets of the search space (callednae by Radcliffe, andpredicatesby Vose) also obey the schema
theorem. If the notion of implicit parallelism is taken seriously, this suggests that the degree is independent
of the representation, and always equal t6~2, because there each individual is a member 16f 2
subsets off. This is plainly not a helpful notion. While it may be argued that not all of these subsets are
‘usefully processed’, because their level of disruption is high, many plainly have extremely low levels of
disruption.

(iif) Perhaps the most fundamental reason for doubting the claims of inherent superiority of low-cardinality
representations comes from arguments now referred to amtfree-lunch theorer\Wolpert and Macready

1995, Radcliffe and Surry 1995). Broadly speaking, these show that only by exploiting some knowledge
of the function being tackled can any search algorithm have any opportunity to exceed the performance
of enumeration. The number of possible binary representations of any search space is combinatorially
larger than the number of points in that space, specifical§f, where N = |S|, assuming that all points

in S are to be represented. It is easy to show that most of these representations will result in genetic
algorithms that perform worse than enumeration on any reasonable performance measure, so the problem of
choosing a representation is clearly much more strongly dependent on selecting meaningful genes (which
Goldberg (1989c), calls therinciple of meaningful building blockghan on the choice of representation
cardinality.

Although much of the theoretical work concerning genetic algorithms continues to concentrate on binary
representations, applications work is increasingly moving away from them. Readers interested to learn
more about implicit parallelism are referred to the book by Holland (1975), where it is discussed in more

detail, and the work of Goldberg (1989c) and Bertoni and Dorigo (1993), who update and expand upon
Holland’s famousN?® estimate of the number of schemata implicitly processed by a genetic algorithm.

B2.5.4 Thek-armed bandit analogy and proportional selection

A guestion that much concerned Holland in devising genetic algorithms wagptimeal allocation of trials
This is quite natural, because the fundamental question any adaptive search algorithm has to address is:
on the basis of the information collected so far from the points sampled from the searchSspeltieh
point should be sampled next?

Holland tackled this problem by considering an analogy with gambling on machines relateé-to
armed bandits Suppose a bandit machine has two armsM@armed bandit, and that they have different
average payoffs (rates of return), but that it is not known which arm is which. How sthicalsl be
allocated between the arms to minimize expected cumulative losses? This is a well-posed decision problem

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.58

Schema processing

that can be solved with standard probabilistic methods. Clearly both arms need to be sampled initially,
and after a while one arm will typically be seen to be showing a higher observed payoff than the other.
The subtlety in solving the problem arises in trading off the expected benefit of using the arm with higher
observed payoff against the danger that statistical error is responsible for the difference in performance,
and in fact the arm with the lower performance has the higher true average payoff. Roughly speaking,
Holland showed that minimum losses are almost realized by a strategy of biasing further trials in favor of
the arm with better observed payoff as an exponentially increasing function of the observed performance
difference. Extending this analysis to a bandit witarms, and then replacing arms with schemata, Holland
argued that the allocation of trials to schemata should be proportionate to their observed performance, and
this was the original motivation for fitness-proportionate selection mechanisms. However, a few points
should be noted in this connection.

e In most problems tackled with genetic algorithms, the concern is not with maxim@&ingulative
performance, but rather with maximizing either the rate of improvement of solutions or the quality
of the best solution that can be obtained for some fixed amount of computational resource: Holland’'s
analysis of optimal allocation of trials is not directly relevant to this case.

e In most cases, people are relatively unconcerned with monotonic transformations of the objective
function, since these affect neither the location of optima nor the ranking of solutions. This freedom
to apply monotonic transformations is often used in producing a fithess function over the representation
space from the objective function over the search space. Relating selection pressure directly to the
numeric fitness value therefore seems rather arbitrary.

e Holland's analysis treats the payoffs from different schemata as independent, but in fact they are not.

In practice, the most widely used selection methods today either discard actual fithess values completely,
and rely only on the relative rank of solutions to determine teampling ratesor scale fitness valuecz.4

on a time-varying basis designed to maintain selection pressure everfiless ratioshetween differentcz.2
solutions in the population become small.

B2.5.5 Extensions of schema analysis

Schema analysis has been extended in various ways. As noted above, Nix and Vose (1991) developed
an extension based on writing down the exact transition matrix describing the expected next generation.
For more details of this extension, the interested reader is referred to Section C3.3.1.3, and the articles.dy
Vose and Liepins (1991a) and Vose (1992).

Other generalizations start from the observation that schema analysis depends largely on the
assumptions that all vectors in the representation spacerrespond to valid solutions i§, and that
the move operators are defined by exchanging gene values between chromosomes (crossover) and altering
small numbers of gene values (mutation). Many of the ‘genetic algorithms’ in common use satisfy neither
of these assumptions.

Representations in which all allocations of alleles to genes represent valid solutions are said to be
orthogonal. Familiar examples of nonorthogonal representations include permutation-based representations
(such as most of those for theaveling salesman problemand most representations for constraincg'’s
optimization problems. Recombination operators not based simply on exchanging gene values (using a
‘crossover mask’) include partially matched crossover (which Goldberg and Lingle (1985) have analyzed
with o-schemata, a form of generalized schemata), blend crossover (Eshelman and Schaffer 1992), random
respectful recombination (Radcliffe 1991), and line crossover (Michalewicz 1992), to name but a few.
Non-point-based mutation operators include Gaussian (‘creep’) mutatiéck (8nd Schwefel 1993) and
binomial minimal mutation (Radcliffe and Surry 1994), as well as the various hillclimbing operators, which
are sometimes regarded as generalizations of mutation operators.

Schema analysis does not naturally address any of these cases. A more general formalism, known
as forma analysis (see e.g. Radcliffe 1991, Radcliffe and Surry 1994) uses characterizations of move
operators and representations to provide a more general framework, allowing insights to be transferred
between problems and representations of different types.

1 It is interesting to note that then-line and off-line performance measures (De Jong 1975) used in much early work on genetic
algorithmsdo relate to cumulative performance.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.59

Schema processing

References

Antonisse J 1989 A new interpretation of schema notation that overturns the binary coding cofstrair@rd Int.
Conf. on Genetic Algorithms (Fairfax, WA, 19883 J D Schaffer (San Mateo,CA: Morgan Kaufmann)

Back T and Schwefel H-P 1993 An overview of evolutionary algorithms for parameter optimisiointionary
Comput.1 1-24

Bertoni A and Dorigo M 1993 Implicit parallelism in genetic algorithésificial Intell. 61 307-14

Bridges C and GoldbgrD E 1987 An analysis of reproduction and crossover in a binary-coded genetic algorithm
Proc. 2nd Int. Conf. on Genetic Algorithms (Pittsburgh, PA, 1983 J Grefenstette (Hillsdale, NJ: Erlbaum)

Cavicchb D J 1970Adaptive Search Using Simulated EvolutiBhD Thesis, University of Michigan

Davidor Y 1990 Epistasis variance: suitability of a representation to genetic algor@omplex Sys¥4 369-83

Davis L 1991Handbook of Genetic Algorithm@New York: Van Nostrand Reinhold)

De Jong K A 1975An Analysis of the Behaviour of a Class of Genetic Adaptive SydDsThesis, University of
Michigan

Eshelma L J and SchaffeD J 1992 Real-coded genetic algorithms and interval schefatadations of Genetic
Algorithms 2ed D Whitley (San Mateo, CA: Morgan Kaufmann)

Forrest S and Mitchell M 1992 Relative building block fitness and the building block hypotResisdations of
Genetic Algorithms 2d D Whitley (San Mateo, CA: Morgan Kaufmann)

Goldbeg D E 1989a Genetic algorithms and Walsh functions: Part I, a gentle introduCtomplex Syst3 129-52

——1989b Genetic algorithms and Walsh functions: Part I, deception and its an@lysiplex Syst3 153-71

——1989cGenetic Algorithms in Search, Optimization and Machine Learr{lRgading, MA: Addison-Wesley)

Goldbeg D E and Deb K 1990 A comparative analysis of selection schemes used in genetic alg&idthmastions
of Genetic Algorithmsd G J ERawlins

Goldbeg D E and Lingle R Jr 1985 Alleles, loci and the traveling salesman prolftema. Int. Conf. on Genetic
Algorithmsed J J Grefenstette (Hillsdale, NJ: Erlbaum)

Hancock P J B 1994 An empirical comparison of selection methods in evolutionary algoritivotutionary
Computing: AISB Workshop (Lecture Notes in Computer Sciences86b)C Fogarty (Berlin: Springer) pp 80-94

Harik G R and Goldbey D E 1996 Learning linkagBoundations of Genetic Algorithms IV (Proc. Prepripp 270-85

Hillis W D 1990 Co-evolving parasites improve simulated evolution as an optimisation pro€&disiea42D 228-34

Holland J H 1975Adaptation in Natural and Artificial Systen{&nn Arbor, MI: University of Michigan Press)

——1992 Genetic algorithmSci. Am.267 66—72

Michalewicz Z 1992Genetic Algorithms + Data Structures = Evolution Prograrf®erlin: Springer)

Mitchell M, Forrest S and Holland J 1992 The royal road for genetic algorithms: fitness landscapes and GA performance
Proc. 1st Eur. Conf. on Atrtificial LifdCambridge, MA: MIT Press—Bradford)

Muhlenbein H 1992 How genetic algorithms really work. Part I: Mutation and hillclimBiagallel Problem Solving
from Nature, 2ed R Manner and B Manderick (Amsterdam: Elsevier—North-Holland)

Nix A and Vose M D 1991 Modeling genetic algorithms with Markov chafm. Math. Artificial Intell.5 79-88

Radcliffe N J 1990Genetic Neural Networks on MIMD ComputePhiD Thesis, University of Edinburgh

——1991 Forma analysis and random respectful recombin&ion. 4th Int. Conf. on Genetic Algorithms (San Diego,
CA, 1991)ed R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 222-9

Radcliffe N J and Sugr P D 1994 Fitness variance of formae and performance predi€mdations of Genetic
Algorithms 11l ed L D Whitley ard M D Vose (San Mateo, CA: Morgan Kaufmann) pp 51-72

——1995 Fundamental limitations on search algorithms: evolutionary computing in perspEctimputer Science
Today: Recent Trends and Developments (Lecture Notes in Computer ScienceedQD@pn Leeuwen (New
York: Springer) pp 275-91

Schwefel H-P 199%volution and Optimum Seekir§lew York: Wiley)

Speas W M and De Jong K A 1991 On the virtues of parameterised uniform crossweer 4th Int. Conf. on Genetic
Algorithms (San Diego, CA, 199&) R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 230-6

Syswerda G 1989 Uniform crossover in genetic algorititnsc. 3rd Int. Conf. on Genetic Algorithms (Fairfax, WA,
1989)ed J D Schaffer (San Mateo, CA: Morgan Kaufmann)

Vose M D 1992 Modelling simple genetic algorithrRsundations of Genetic Algorithmsed D Whitley (San Mateo,
CA: Morgan Kaufmann)

Vose M D and Liepis G E 1991a Punctuated equilibria in genetic se@omplex Syst 31-44

——1991b Schema disruptiodroc. 4th Int. Conf. on Genetic Algorithms (San Diego, CA, 134 R K Belew and
L B Booker (San Mateo, CA: Morgan Kaufmann) pp 237-43

Weinholt W 1993 A refined genetic algorithm for parameter optimization probleros. 5th Int. Conf. on Genetic
Algorithms (Urbana-Champaign, IL, 1998d S Forrest (San Mateo, CA: Morgan Kaufmann) pp 589-96

Wolpeit D H and Macreagd W G 1995 No Free Lunch Theorems for Sear&anta Fe Institute Technical Report
SFI-TR-95-02-010

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.510

Theoretical Foundations and Properties of Evolutionary Computation

B2.6 Transform methods

Sami Khuri

Abstract

Theoretical analysis of fithess functions in genetic algorithms has included the use of
Walsh functions, which form a convenient basis for the expansion of fitness functions.
These orthogonal, rectangular functions, which take valueslgfare more practical as

a basis than the traditional sine/cosine basis. Walsh functions have also been used to
compute the average fitness values of schemata, to decide whether a certain function is
hard or easy for a genetic algorithm, and to design deceptive functions for the genetic
algorithm as described in the first part of this article. This section also explores the use
of Haar functions for the same purposes and highlights the computational advantages
that they have over Walsh functions.

B2.6.1 Walsh analysis and Walsh transforms
B2.6.1.1 Introduction

Traditionally, Fourier series and transforms have been used to represent large classes of functions by
superpositioning sine and cosine functions. More recently, other classes of complete, orthogonal functions
have been used for the same purpose (Harmuth 1968). These new functions are rectangular and are
easier to define and use with digital logic. Walsh functions have been used for analyzing various natural
events. Much of the information pertaining to such events is in the form of signals which are functions of
time (Beauchamp 1984). These signals can be studied, classified and analyzed using orthogonal functions
and transformations. Walsh functions form a set whose members are simple functions that are easy to
generate and define. Discrete and continuous signals can be represented as combinations of members of
Walsh functions. Only orthogonal functions can completely synthesize a given time function accurately.
Orthogonal functions also possess many important mathematical properties which makes them highly
useful as an analysis tool.

Walsh functions form a complete orthogonal set of functions and can thus be used as a basis. These
rectangular functions, which take value4, are more practical, as a basis, than the traditional trigonometric
basis (Bethke 1980). They have been used as theoretical tools to compute the average fithess values of
hyperplanes, to decide whether a certain function is hard or easy for a genetic algorithm, and to design
deceptive functions for the genetic algorithm (Bethke 1980, Goldberg 1989a, b).

In this part, most of which is from Goldberg’s articles (1989a, b), we explore the use of Walsh
functions as bases for fitness functionsgehetic algorithmsIn the second part, B2.6.2, an alternative 81.2
Walsh functions, Haar functions, are investigated, followed by a comparison between the two.

B2.6.1.2 Walsh functions as bases

Any fitness function defined obinary stringsof length ¢ can be represented as a linear combinatci>
of discrete Walsh functions. When working with Walsh functions, it is more convenient to have strings
with £1 rather than 0 and 1. Theuxiliary function(Goldberg 1989a) associates with each binary string

X = XgXg_1...Xx2x1 an auxiliary stringy = y,ye_1...y2y1 Wherey; = 1—2x; fori = 1,2,...,¢ or

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.61

Transform methods

equivalentlyx; = %(1 — ;). Hencey; € {+1, -1} foralli = 1,...,¢. Given a stringx, the auxiliary
string y is defined ayy = aux(x,)auxX(xy_1) . ..aux(xp)aux(x1) where

-1 if X = 1
yi = auxx) :{ 1 if x; = 0.

The Walsh functiongmonomials in Goldberg 1989a) over auxiliary string variables form a set of 2
monomials defined fop = aux(x):

14
;=[]
i=1

. . . ¢ i
wherej = jyje—1...jpandj =Y 4 ji2~L

Example. Let us compute the monomidlz(y) where¢ = 3. Sincej = 3, thenj3 =0, j, = 1 and

j1 = 1. ThereforeWs(y) = yJyiyi = y1y2. In other words,j = 3 signals the presence of positions

one and two, which correspond to the indicesyof¥s(y) = y1y»2). This ease of conversion between the
indices and the Walsh monomials is one of the reasons behind the success of Walsh functions as a basis.
If x =101 then we may write

Y3 (aux(101)) = W3(aux(DauxO)aux(1))
=W3(—-11-1)
= (-
= —1

The set{¥;(y) : j=0,1,2,..., 2¢ — 1) forms a basis for the fitness functions defined or2[0. That is

261
)= w;W;(x) (B2.6.1)
j=0

where thew; are the Walsh coefficientsy;(x) are the Walsh monomials, and by;(x) we mean
W¥;(aux(x)). The Walsh coefficients are given by

26—1

wj = o ZO FOW;(x). (B2.6.2)

The subscripy of the Walsh monomial; denotes the index. The number of ones in the binary expansion
of j is the weight of the index. Thusl/3(x) has three as index and is of weight two.

Since ¥;(x) # 0 for eachj € [0,2%), unlessf(x) is orthogonal to a Walsh functiod;(x), the
expansion off(x) as a linear combination of Walsh monomials hdsn@nzero terms. Thus, at most
2' nonzero terms are required for the expansion of a given function as a linear combination of Walsh
functions. The total number of terms required for the computation of the expansion of the fitness function
at a given point is 2.

V;(x) is defined for discrete values af € [0,2°). The function can be extended to obtain step
functions (Beauchamp 1984) by allowing all values dfi the interval [0 2) and letting¥; (1) = W (x;)
fort € [x;, x; + 1).

Table B2.6.1 gives the Walsh functions on §).

The Walsh monomials presented here are in natural order, also known as Hadamard order. Other
well-known orderings include the sequency order (Walsh 1923), the Rademacher order (Alexits 1961), the
Harmuth order (Harmuth 1972), and the Boolean synthesis order (Gibbs 1970).

The natural order is known as Hadamard because the Walsh coefficients can be obtained using the
Hadamard matrix. The rows and columns of the Hadamard matrix are orthogonal to one another. The
lowest-order Hadamard matrix is

Hy — [1 1]
1 -1

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.62

Transform methods

Table B2.6.1. Walsh functions on [08).

x Wo(x) Wilx) Wox) Ws(x) Walx) Wsx) We(x) W7 (x)
000 1 1 1 1 1 1 1 1
001 1 -1 1 -1 1 -1 1 -1
010 1 1 -1 1 1 -1 -1
011 1 -1 -1 1 R | -1 1
100 1 1 1 1 -1 -1 -1 -1
101 1 -1 1 -1 -1 1 -1 1
110 1 1 -1 -1 -1 1 1
111 1 -1 -1 1 -1 1 1 -1
index j 0 1 2 3 4 5 6 7
Jajon 000 001 010 011 100 101 110 111
monomials ygygy? ySvg¥i D8VayD YSvavT ¥EYOYD vEvYT YT iy
3yt 1 Y1 Yoo v Y3 Y3 YaVa Yivads

The following recursive relation generates higher-order Hadamard matrices ofdrder
Hy =Hy; ® Hz

where ® is the Kronecker or direct product. The Kronecker product in the above equation consists in
replacing each element i, by Hy; that is, 1 elements are replaced Hy and —1 elements by-H,.
This is called the Sylvester construction (MacWilliams and Sloane 1977), and thus

| Hnj2 Hwp2
Hy = [Hyj2 —Hyp2 } '
For instance Hg is the following matrix:

1 1 1 1 1 1 1 1]

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

He — 1 -1 -1 1 1 -1 -1 1

=11 1 1 1 -1 -1 -1 1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1 |

The Walsh coefficients can be obtained by the following equality:

wo f(xo0)
w1 1 Sfx1)
= ?Hzé
Wor_q f(x_1)

The second factor behind Walsh functions’ popularity in genetic algorithms is the relatively small number
of terms required in the expansion of schemata as linear combinations of Walsh coefficients.

B2.6.1.3 Schema average fitness

The average fitness value of a schema can be expressed as a partial signed summation over Walsh
coefficients. Recall that a scherhgor hyperplane in the search space) is of the fag,_1, ..., ho, h1
whereh; € {0,1,x} foralli =1,...,¢, wherex is either O or 1.
The schema average fitness values can be written in terms of Walsh coefficiefits déhotes the
number of elements in schema then the schema average fithnegsh), is given by Bethke (1980) and

Goldberg (1989a):
1
i > fw.

xeh

fh) =

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.63

Transform methods

By substituting the value of (x), given by equation (B2.6.1), and by rearranging the summations, we
obtain

1 261
by = o DD wiw)

xeh j=0

1 2-1
= m ij' Z‘I’](X)
j=0

xeh

where by¥;(x) we mean¥;(aux(x)). Expressing the schema (rather than the individual points of the
search space) as a linear combination of Walsh functions has a very advantageous effect: the lower the
order of the schema, the fewer the number of terms in the summation. As can be seen in table B2.6.2,
in which six schemata of length three are written as linear combinations of the Walsh coefficients, the
schemata with low order, such as 0, need only two terms, while 001 is of higher order and has eight
terms in its expansion.

Table B2.6.2. Fitness averages as partial Walsh sums of some schemata.

Schema Fitness averages

* Kk *k w1y

**0 w0+w1

1xx Wo — Wa

*01 wo — Wy + Wy — w3

11x Wwo — Wy — W4 + We

001 Wo — W1 + Wy — W3 + Wy — W5 + We — W7

B2.6.1.4 Easy and hard problems for genetic algorithms

In his quest to define functions that are suitable for genetic algorithms, Goldberg, using Walsh coefficients,
first designed minimal deceptive functions of two types, and later constructed fully deceptive three-bit
functions. If 111 is the optimal point in the search space, then all order-one schemata lead away from it.
In other words, we havg (x x 1) < f(xx0), f(x1x) < f(x0x), and f (1 xx) < f(Ox%).

Similarly, for order-two schemata, we walrft(x00) > f(*01), f(x00) > f(x10), and f(x00) >
f(x11). By using the methods described in the previous section, the above inequalities are cast in terms
of Walsh coefficients, and the problem reduces to solving a simultaneous set of inequalities. Many such
fully deceptive functions can be designed.

Goldberg (1989b) also used neighborhood arguments and devised ANODE: analysis of deception, an
algorithm for determining whether and to what degree a coding function combination is deceptive. The
algorithm is applied to an instance of a problem, and decides whether or not that particular instance is
deceptive for the genetic algorithm. In other words, the diagnostic is problem instance dependent, unlike
other, more general theories that associate labels with problems (and not instances), such as tractability
issues and the classification of problems into the classes of P- and NP-complete, for instance.

It is also crucial to keep in mind that the above analysis is of static nature, and that simple genetic
algorithms were not designed to be optimization algorithms for static optimization problems in the first
place (DeJong 1992). For a different kind of analysis with a more dynamic flavor, the reader is referred
to the work of Fogel (1992) and Rudolph (1994), for instance, in wMettkov chainsare used to modekz2.2.2
genetic algorithms and to tackle conditions under which global convergence is achieved.

B2.6.1.5 Fast Walsh transforms

By taking advantage of the many repetitive computations performed with orthogonal transformations, the
analysis can be implemented in the order of at mi¥stog, N computations to fornfast transforms

Note thatN = 2°. Modeled after the fast Fourier transform (Cooley and Tukey 1965), several fast
Walsh transforms have been proposed (Shanks 1969). Since memory storage for intermediate-stage

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.64

Transform methods

computations is not needed, these are in-place algorithms. The calculated pair of output values can
replace the corresponding pair of data in the preceding stage.

B2.6.1.6 Conclusion

In summary, Walsh functions form convenient bases. They can thus be used as practical transforms for
discrete objective functions in optimization problems such as fitness functions in genetic algorithms. They
are used to calculate the average fitness value of a schema, to decide whether a certain function is hard or
easy for a genetic algorithm, and to design deceptive functions for the genetic algorithm.

B2.6.2 Haar analysis and Haar transforms
B2.6.2.1 Introduction

Walsh functions, which take valuesl, form a complete orthogonal set of functions and can be used as
a basis, to calculate the average fitness value of a schema, to decide whether a certain function is hard or
easy for a genetic algorithm, and to design deceptive functions for the genetic algorithm (Bethke 1980,
Goldberg 1989a, b). Any fitness function defined on binary strings of lebgihn be represented as a
linear combination of discrete Walsh functions.

If ¥;(x) denotes a Walsh function, thgw;(x) : j =0,1,2,..., 2¢ — 1) forms a basis for the fitness
functions defined on [®%), and

26-1
)= wW(x) (B2.6.3)
j=0
where thew; are the Walsh coefficients given by
26—1
wj = ; @)W (). (B2.6.4)

This part explores the use of another orthogonal, rectangular function: Haar functions (Haar 1910),
that can be used as a convenient basis for the expansion of fitness functions. Haar functions can be
processed more efficiently than Walsh functions? denotes the size of each binary string in the solution
space, at most‘2honzero terms are required for the expansion of a given function as a linear combination
of Walsh functions, while at mogt+ 1 nonzero terms are required with Haar expansion. Similarly, Haar
coefficients require less computation than their Walsh counterparts. The total number of terms required
for the computation of the expansion of the fitness function at a given point using Haar is of brder 2
which is for large¢ substantially less than Walsh’é‘2and the advantage of Haar over Walsh functions is
of order¢ 2¢ when fast transforms are used.

B2.6.2.2 Haar functions

The set of Haar functions also forms a complete set of orthogonal rectangular basis functions. These
functions were proposed by the Hungarian mathematician Haar (1910), approximately 13 years before
Walsh’s work. Haar functions take values of 1, 0, anfl, multiplied by powers of ¥2. The interval
Haar functions are defined on is usually normalized tdl|(Q(see e.g. Kremer 1973).

One could also use the unnormalized Haar functions, taking values of & hfisee e.g. Khuri 1994).
In the following definition, the Haar functions are defined onZQ, and are not normalized,

Ho(x) =1 for0<x < 2°

1 for0< x < 2¢-1
Hi(x) = { -1 for 201 < x < 2¢
212 for0<x < 22
Hy(x) = { —2%2 for 2672 < x < 2¢-1
0 elsewhere in [029)
0 for0<x <21
Hz(x) = { 2¥2 for (2)2¢72 < x < (3)2¢2
—212 for (3)2(2 < x < (4)2t—2

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.65

Transform methods

(2Y/2y4 for @2m)2t-471 < x < (2m + 1)2t—41
Hoyym(x) = 1 —(2Y2) for (2m + 1)20-471 < x < (2m + 2)2t-4-1 (B2.6.5)
0 elsewhere in [02)
(U3t for2@t-1)<x<2'-1
Ho_1(x) = { —(2V?)t-1 for2t —1<x <2
0 elsewhere in [02).
For every value oy =0,1,...,¢—1, we haven =0,1,...,27 — 1.

Table B2.6.3 shows the set of eight Haar functions for 3. The Haar function,Hy, ,,(x), has
degreeg and ordernn. Functions with the same degree are translations of each other.

The set{H;(x) : j =0,1,2 ..., 2" — 1) forms a basis for the fitness functions defined on the
integers in [02). That is

201
f&)=)" hj Hj(x) (B2.6.6)
j=0
where theh;, for j = 27 + m, are the Haar coefficients given by
2-1
hij = X::O f@x) Hj(x). (B2.6.7)

Table B2.6.3.Haar functionsH, ., (x) for £ = 3.

X Ho(x) Hi(x) Ha(x) Hs(x) Ha(x) Hs(x) He(x) H7(x)
000 1 1 2/2 0 2 0 0 0
001 1 1 2/2 0 -2 0 0 0
010 1 1 22 0 0 2 0 0
011 1 1 22 0 0 -2 0 0
100 1 -1 0 272 0 0 2 0
101 1 -1 0 272 0 0 -2 0
110 1 -1 0 —21/2 0 0 0 2
111 1 -1 0 —21/2 0 0 0 -2
index j 0 1 2 3 4 5 6 7
degreeg undefined 0 1 1 2 2 2 2
orderm undefined 0 0 1 0 1 2 3

As equation (B2.6.5) and table B2.6.3 indicate, the higher the degréee smaller the subinterval
with nonzero values foH;(x). Consequently, each Haar coefficient depends only on the local behavior
of f(x).

More precisely, from its definition (see equation (B2.6.5)), we have Hat,, (x) # 0 only for
m2=1 < x < (m + 1)2°~9. Every degreg partitions the interval [02¢) into pairwise disjoint subintervals:

[0, 2t79), [2¢74, (2)2¢79), [(2)2¢74, (3)2L79), ..., [(27 — 1)(2¢79), 24(2¢-1)), each of width 277 and such
that Hy . ,,(x) = 0 on all but one of the subintervals.

The search space contain$ Points and each subinterval will have~2 points x such that
Hym(x) # 0. Thus, by the definition ofi ., (B2.6.7), there are at most2 nonzero terms in
the computation. The following results are equivalent to Beauchamp’s concerning the linear combination
of the Haar coefficient&,,,, wherem < 27 (Beauchamp 1984).

Result B2.6.1. Every Haar coefficient of deggeleas at mosR‘—7 nonzero terms. Each term corresponds
to a point in an interval of the formi(i)2°—¢, (i + 1)2¢=9). Consequently, the linear combination of each
Haar coefficienti;, wherej = 2 + m, has at mos2‘~7 nonzero terms. In additioro has at mosg*
nonzero terms. Il

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.66

Transform methods

A similar result holds for the computation gf(x) in equation (B2.6.6). In the linear combination,
for a givenx, only a few terms have nonzero values. Sifgx) # 0 and Hy(x) # 0 for all x € [0, 2),
Ho(x) and H1(x) appear in the right-hand side of equation (B2.6.7) for any giveWe have already seen
that degreey > 0 partitions [0 2¢) into 2~ pairwise disjoint subintervals: [@¢7), [2¢79, (2)2¢79),
[(2204, (3)2°79), ..., [(27 — 1)(2¢79), 24(2¢~9)), each of width 2-¢ and such thaHy, ., (x) = 0 except
on the subinterval(jn)2=4, (m + 1)2°=9) form = 0,1, ...,27 — 1. Hence, for a givenx € [0, 2°), and
a givengq, Hin,(x) is nonzero form = i, and zero for all other values ofi. Thus, each degreg
contributes at most one nonzero Haar function in the right-hand side of equation (B2.6.6), which can be

rewritten as
-1 29-1

F(x) = hoHo(x) + hiHy(x) + > hauim Hou g (). (B2.6.8)
g=1 m=0

For each degree, 2,2:;01 hoam Hoa oy (x) has at most one nonzero term. From equation (B2.6.8), the total
number of nonzero terms is at most-2¢ — 1) = ¢ + 1. We have shown the following result (Karpovsky
1985).

Result B2.6.2. For any fixed valuec [0, 2°), f(x) has at most + 1 nonzero terms. a

According to result B2.6.1, every Haar coefficient of deggee; > 1, has at most 29 nonzero
terms in its computation (equation (B2.6.7)). Since, however, Walsh functions are never zero, each Walsh
coefficient can be written as a linear combination of at mdsh@zero terms (see equation (B2.6.4)).
According to result B2.6.2, for any fixed value f(x) = Z?:Ol h; H;(x), has at most +1 terms. Again,
since Walsh functions are never zero, at mdsh@nzero terms are required for the Walsh expansion (see
equation (B2.6.3)). These results are illustrated by considering a simple problem instance of the integer
knapsack problem.

Example B2.6.1. The integerknapsack problenconsists of a knapsack of capacity, and of¢ objects co.7
with associated weights1, ..., w,, and profitsp,, ..., p,. The knapsack is to be filled with some of the
objects without exceeding/, and such as to maximize the sum of the profits of the selected objects. In
other words:

Maximize) ", p: WhereS € {1,2,..., ¢} and),_qw; < M.

The solution space can be encoded ‘abifary stringsc,x,_1 . ..x; wherex; = 1 means that object
is placed in the knapsack and= 0 means that objectis not selected. Each string= x, ... x1, where
x; € {0,1}, and 1< i < ¢, has a profit associated with itP(x) = Zle x; pi. Some strings represent
infeasible solutions. The weight of the solution is given Wy(x) = Zle x; w;. Infeasible strings are
those whose weightV (x) is greater than\.

The fitnessf (x) of strings is defined as followsf (x) = P (x) — penaltyx) where penaltyr) = O if
x is feasible. The penalty is a function of the weight and profit of the string, and of the knapsack capacity
(Khuri and Batarekh 1990).

We now consider the following problem instance:

Objects: 4 3 2 1
Weights: 10 5 8 9 and/ = 23.
Profits: 15 8 10 6

Table B2.6.4 gives the fitnesses of the strings= x4x3x,x; after a penalty has been applied to the
infeasible strings (strings 1011, 1101, and 1111). The Walsh and Haar coefficients are given in table
B2.6.5.

Table B2.6.4. Fitness values for problem instance.

x 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fx) 0 6 10 16 8 14 18 24 15 21 25 12 23 10 33 3

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.67

Transform methods

Table B2.6.5. Walsh and Haar coefficients for the problem instance.

j=0 j=1 j=2 j=3 j=4 j=5 j=6 =7

w, 238 26 —a4 36 —28 36 2 -2

J 16 16 16 16 16 16 16 16
n, 238 —46 =312 Aoz 40 —40 -2 -6

J 16 16 16 16 16 16 16 16

j=8 j=9 j=10 j=11 j=12 j=13 j=14 j=15

w, =46 —74 —36 36 —36 36 -2 2

J 16 16 16 16 16 16 16 16

. 125172 =1251/2 125172 =1251/2 125172 2691/2 2691/2 6091/2
hJ 16 2 16 2 16 2 16 2 16 2 162 162 162

Note that the computation ab,3, for instance, has 16 terms (see equation (B2.6.4)) requiring the
values of f(x) at all points in the interval [016).

wis = &[0 —6+10— 16— 8+ 14— 18+ 24— 15+ 21— 25+ 12+ 23— 10+ 3 — 3]
__ 36

=32
On the other hand (see result B2.6.1 where 3 andm = 4 since 13= 23 + 4), k13 requires the values
of f(x) at the two pointst = 1010 andx = 1011 only, sinceH13 = O for all other values of € [0, 16).

his = &[2(2%)(25) — 2(2"%)(12)]
@21/2
16 .

Similarly, £(11) (i.e.x = 1011) will require the computation of sixteen Walsh terms (see equation (B2.6.3))
instead of just five Haar terms (see result 2).

15
£(1011) = Z w; W;(1011
j=0

= wo — w1 — W2 + w3+ wg — W5 — We + W7 — Wg + Wy + wip — W11 — Wiz + w13+ wis — Wis
= 1—16[238—26+44—36—28+36—2—2+46—74—36—36+36+36—2—2]
=12

15
£(101)) = Zhj H;(1011)
j=0

= ho — h1 + 2(2Y%)hz — 2he — 2(2Y%)h13
= :=[238+ 46+ 8+ 4 — 104]
=12

Note that the total number of terms required for the computation of the expansiffLloLl) in the
case of Walsh is 256 (18 16), and for Haar, 46 (16 each fap andh1; eight for is, four for kg, and
two terms forhi3). Thus, the computation of 210 more terms is required with Walsh than with Haar. In
practical cases{ is substantially larger than four. For instance, for= 20 there are about*2~ 10'?
more terms using Walsh expansion. O

No comparison between Walsh and Haar would be complete without considering fithess averages of
schemata (Goldberg 1989a).

A comparison between the maximum number of nonzero terms, and the total number of terms for the
computation of all 81 schemata of length= 4 is tabulated in table B2.6.6. A fixed position is represented
with ‘d’ while *’ stands for a ‘don’t care’.

Consider, for example, the row in table B2.6.6 corresponding to d**d. It represents four schemata,
E = {0**0, 0**1, 1**0, 1**1}. The average fitness of each one can be expressed as a linear combination
of at most four nonzero Walsh coefficients. For instance,

f(1*0) = wo + w1 — wg — we.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.68

Transform methods

Table B2.6.6. Computing schemata faf = 4 with Walsh and Haar functions. (Reproduced from Khuri
1994.)

Total number of
Nonzero terms nonzero terms

Schema Walsh Haar Walsh Haar
Fkkk 1 1 16 16
xR 4 20 64 64
xd 4 10 64 64
*d** 4 6 64 64
dr*=* 4 4 64 64
**dd 16 36 256 160
*d*d 16 28 256 160
d*d 16 24 256 160
dd 16 20 256 160
d*d* 16 16 256 160
dd=** 16 12 256 160
*ddd 64 56 1024 352
d*dd 64 48 1024 352
dd*d 64 40 1024 352
ddd* 64 32 1024 352
dddd 128 80 2048 736
Total 469 433 7952 3376

SinceE has four schemata, the maximum number of nonzero terms for all schemata represented by d**d is
4x 4 =16 and is tabulated in the second column of table B2.6.6. Moreover, each single Walsh coefficient
requires 16 terms for its computation (see equation (B2.6.4)). Thus the total nhumber of terms required
in the computation of the expansion ¢f1**0) is 4 x 16; and that of all schemata represented by d**d,

4 x 64, reported in the fourth column. On the other hand, the average fitness of each schemanite
expressed as a linear combination of at most six nonzero Haar coefficients. For instance,

f(1*¥*0) = ho — hy + 3(h12 + hiz + h1a + h1s). (B2.6.9)

The third column’s entry has therefore the valuex46. It might thus appear easier to use
Walsh functions for this fithness average. Nevertheless, according to result B2.6.1, only two terms in
equation (B2.6.7) are required for the computation of each;gfh13, h14, andhys, while 16 are needed
for hp and 16 fork;. Likewise, it can be shown that 40 terms are required in the computation of the
expansion of the other three schemata&:inbringing the total to 4 40 as reported in the last column of
table B2.6.6. As can be seen in the last row of table B2.6.6, a substantial saving can be achieved by using
Haar instead of Walsh functions.

With respect to fast transforms, they can be implemented with on the order of at Biasimputations
in the case of fast Walsh transforms and on the order‘ofoR the fast Haar transforms (Roeser and
Jernigan 1982). With these implementations, the difference between the total number of terms required
for the computation of the expansions of Walsh and of Haar still remains exponentigbfrorder¢ 2°).

The computation of a single term in fast transforms is built upon the values of previous levels: many
more levels for Walsh than Haar. Thus, many more computations (of the 6&igrare required for

the computation of a single Walsh term. Fast transforms are represented by layered flowcharts where an
intermediate result at a certain stage is obtained by adding (or subtracting) two intermediate results from
the previous layer. Thus, when dealing with fast transforms, it is more appropriate to count the number
of operations (additions or subtractions) which is equivalent to counting the number of terms (Roeser and
Jernigan 1982). It can be shown that exaétBf — 2°+1 4 2 more operations are needed with Walsh than

with Haar functions. For instance, fér= 20, one needs to perform 18875 002 more operations when the
Walsh fast transform is used instead of the Haar transform. We conclude this section by noting that the
Haar transforms ‘are the fastest linear transformations presently available’ (Beauchamp 1984).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.69

Transform methods

B2.6.2.3 Conclusion

This work highlights the computational advantages that Haar functions have over Walsh monomials. The
former can thus be used as practical transforms for discrete objective functions in optimization problems.
More precisely, the total number of terms required for the computation of the expansion of the fitness
function f(x) for a givenx using Haar functions is of order’ 2vhich is substantially less than Walsh’s

22¢, Similarly, we have seen that while; depends on the behavior gf(x) at all Z points,/; depends

only on the local behavior off (x) at a few points which are ‘close together’, and, furthermore, the
advantage of Haar over Walsh functions remains very large (of @r2drif fast transforms are used. One

more advantage Haar functions have over Walsh functions is evident when they are used to approximate
continuous functions. Walsh expansions might diverge at some points, whereas Haar expansions always
converge (Alexits 1961).

References

Alexits G 1961Convergence Problems of Orthogonal Serfigw York: Pergamon)

Beaucham K G 1984 Applications of Walsh and Related Functioiidew York: Academic)

Bethlke A D 1980Genetic Algorithms as Function Optimizeb®ctoral Dissertation, University of Michigan

Cooley J W and Tukey J W 1965 An algorithm for the machine calculation of complex Fourier $éaitts Comput.
19297-301

De Jong K A 1992 Are genetic algorithms function optimizeP®c. 2nd Int. Conf. on Parallel Problem Solving from
Nature (Brussels, 1992)d R Manner and B Manderick (Amsterdam: Elsevier) pp 3-13

Fogé D B 1992 Evolving Artificial IntelligenceDoctoral Dissertation, University of California at San Diego

Gibbs J E 1970 Discrete complex Walsh transforitec. Symp. on Applications of Walsh Functigys 106-22

Goldbeg D E 1989a Genetic algorithms and Walsh functions part I: a gentle introduCtiomplex Syst3 129-52

——1989b Genetic algorithms and Walsh functions part 1l: deception and its an@lgsiplex Syst3 153-71

Haar A 1910 Zur Theorie der orthogonalen Funktionensystistath. Ann.69 33171

Harmuh H F 1968 A generalized concept of frequency and some applicdti#is Trans. Information TheoryT-14
375-82

——1972Transmission of Information by Orthogonal Functiotsd edn (Berlin: Springer)

Karpovsky M G 1985 Spectral Techniques and Fault Detectifvew York: Academic)

Khuri S 1994 Walsh and Haar functions in genetic algoritiPnsc. 1994 ACM Symp. on Applied Computifiew
York: ACM) pp 201-5

Khuri S and Batarekh A 1990 Heuristics for the integer knapsack proBern. 10th Int. Computer Science Conf.
(Santiago)pp 161-72

Kremer H 1973 On theory of fast Walsh transform algorith@wlog. on the Theory and Applications of Walsh and
Other Non-Sinusoidal Functions (Hatfield Polytechnic, UK)

MacWilliams F J and SloamN J A1977 The Theory of Error-Correcting Codddlew York: North-Holland)

Roese P R and JernigaM E 1982 Fast Haar transform algorithti®EE Trans. ComputC-31 175-7

Rudolph G 1994 Convergence analysis of canonical genetic algoritBEE Trans. Neural Networks 96-101

Shanls J L 1969 Computation of the fast Walsh—Fourier transftfeE Trans. ComputC-18 4579

Walsh J L 1923 A closed set of orthogonal functigkizn. J. Math55 5-24

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.610

Theoretical Foundations and Properties of Evolutionary Computation

B2.7 Fitness landscapes

Kalyanmoy DeliB2.7.1) Lee AltenbergB2.7.2) Bernard Manderick
(B2.7.3) Thomas B¢k (B2.7.4) Zbigniew MichalewiczB2.7.4)
Melanie Mitchell(B2.7.5)and Stephanie ForregB2.7.5)

Abstract
See the individual abstracts for sections B2.7.1, B2.7.2, B2.7.3, B2.7.4 and B2.7.5.

B2.7.1 Deceptive landscapes

Kalyanmoy Deb

Abstract

In order to study the efficacy of evolutionary algorithms, a number of fithess landscapes
have been designed and used as test functions. Since the optimal solution(s) of these
fithess landscapes are knovenpriori, controlled experiments can be performed to
investigate the convergence properties of evolutionary algorithms. A number of fithess
landscapes are discussed in this section. These fitness landscapes are designed either to
test some specific properties of the algorithms or to investigate overall working of the
algorithms on difficult fithess landscapes.

B2.7.1.1 Introduction

Deceptive landscapes have been mainly studied in the contegerdtic algorithmyGAs), although 1.2
the concept of deceptive landscapes in creating difficult test functions can also be developed for other
evolutionary algorithms. The development of deceptive functions lies in the proper understanding of the
building block hypothesis. The building block hypothesis suggests that GAs work by combining low-order
building blocks to form higher-order building blocks (see Section B2.5). Therefore, if in a functiomszhe
low-order building blocks do not combine to form higher-order building blocks, GAs may have difficulty
in optimizing the function. Deceptive functions are those functions where the low-order building blocks
do not combine to form higher-order building blocks: instead they form building blocks for a suboptimal
solution. The main motivation behind developing such functions is to create difficult test functions for
comparing different implementations of GAs. It is then argued that if a GA succeeds in solving these
difficult test functions, it can solve other simpler functions.

A deceptive function usually has at least two optimal solutions—one global and one local. A local
optimal solution is the best solution in the neighborhood of the solution, whereas the global optimal
solution is the best solution in the entire search space. Thus, the local solution is inferior to the global
solution and is usually known as the deceptive solution. However, it has been shown elsewhere (Deb and
Goldberg 1992, Whitley 1991) that the deceptive solution can be at most one-bit dissimilar to the local
optimal solution in binary functions. A deceptive fithess function is designed by comparing the schemata
representing the global optimal solution and the deceptive solution. The comparison is usually performed
according to the fitness of the competing schemata. A deceptive function is designed by adjusting the

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.71

Fitness landscapes

string fitness values in such a way that the schemata representing the deceptive solution have better fithess
than any other schemata including that representing the global optimal solution in a schema patrtition. It
is then argued that, because of the superiority of the deceptive schemata, GAs process them favorably in
early generations. Solutions representing these schemata take over the population and GAs may finally
find the deceptive solution, instead of the global optimal solution. Thus, the deceptive functions may
cause GAs to find a suboptimal solution. Since these fithess landscapes are supposedly difficult for GAs,
considerable effort has been spent in designing different deceptive functions and studies have been made
to understand how simple GAs can be modified to solve such difficult landscapes (Deb 1991, Getdberg

al 1989, 1990). In the following, we first define deception and then outline simple procedures for creating
deceptive functions.

B2.7.1.2 Schema deception

Although there exists some lack of agreement among researchers in the evolutionary computation (EC)
community about the procedure of calculating the schema fitness and about the very definition of deception
(Grefenstette 1993), we present here one version of the deception theory. Before we present that definition,
two terminologies—schema fitness and schema partition—must be defined. A schema fitness is defined
as the average fitness of all strings representing the schema. Thus, one schema is worse than another
schema if the fitness of the former schema is inferior to that of the latter schema. A schema partition
is represented by a binary string constructed witand x, where af represents a fixed position having
either a1 or a0 (but not both) and & represents a ‘don’t care’ symbol denoting eithet ar a0. A

schema partition represents &chemata, where is the number of fixed positions in the partition. The
parametek is also known as therder of the schema partition. Thus, an ordeschema partition divides

the entire search space inté @istinct and equal regions. For example, in a three-bit binary function,

the second-order schema partitictt£) represents four schematan0), (01x), (10x), and (1x). Since

each of these schemata represents two distinct strings, the schema patfitipdiyides the entire search

space into four equal regions. It is clear that a higher-order schema partition divides the search space into
exponentially more regions than a lower-order schema partition. In the spirit of the above schema partition
definition, it can be concluded that the highest-order (of ofjlexchema partition divides the search space

into 2 regions and each schema represents exactly one of the strings. Of course, the lowest-order (of
order zero) schema partition has only one schema which represents all strings in the search space.

Definition B2.7.1.A schema partition is said to be deceptive if the schema containing the deceptive optimal
solution is no worse than all other schemata in the partition.

We illustrate a deceptive schema partition in a three-bit function having its global and deceptive
solutions at {11) and ©00), respectively. According to the above definition of schema partition, the
schema partitionf(fx) is deceptive if the fitness of the schem®+£) is no worse than that of the other
three schemata in the schema partition. For maximization problems, this requires the following three
relationships to be true:

F(00x) > F(01%) (B2.7.1)
F(00x) > F(10%) (B2.7.2)
F(00x) > F(11%). (B2.7.3)

Definition B2.7.2.A function is said to be fully deceptive if all’2- 2 (see below) schema partitions are
deceptive.

In an £-bit problem, there are a total of Zchema partitions, of which two of them (one with all
fixed positions and the other with al) cannot be deceptive. Thus, if all othef (22) schema partitions
are deceptive according to the above definition, the function is fully deceptive. Deb and Goldberg (1994)
calculated that about @) floating point operations are required to create a fully deceptive function. A
function can also be partially deceptive to a certain order.

Definition B2.7.3.A function is said to be partially deceptive to ordeif all schema partitions of order
smaller thark are deceptive.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.72

Fitness landscapes

B2.7.1.3 Deceptive functions
Many researchers have created partially and fully deceptive functions from different considerations.
Goldberg (1989a) created a three-bit fully deceptive function by explicitly calculating and comparing
all schema fitness values. Liepins and Vose (1990) and Whitley (1991) have calculated different fully
deceptive functions from intuition. Goldberg (1990) derived a fully deceptive function from low-order
Walsh coefficients. Deb and Goldberg (1994) have created fully and partially deceptive trap functions
(trap functions were originally introduced by Ackley (1987)) and found sufficient conditions to test and
create deceptive functions. Since trap functions are piecewise linear functions and are defined with only a
few independent function values, they are easy to manipulate and analyze to create a deceptive function.
In the following, we present a fully deceptive trap function.
Trap functions are defined in terms wfitation (the number ofis in a string). A function of unitation

has the same function value for all strings of identical unitation. That is, in a three-bit unitation function,
the strings ¢01), (010), and (00) have the same function value (because all the above three strings have
the same unitation of one). Thus, infebit unitation function there are onlg¢ + 1) different function
values. This reduction in number of function values (frofm@ (¢ + 1)) has helped researchers to create
deceptive functions using unitation functions. A trap functjom), as a function of unitation, is defined

as follows (Ackley 1987):

z(Z —u) if u<z
fw) = b (B2.7.4)
(u—12) otherwise
l—z
wherea and b are the function values of the deceptive and global optimal solutions, respectively. The

trap function is a piecewise linear function that divides the search space into two basins in the unitation
space, one leading to the global optimal solution and other leading to the deceptive solution. Figure B2.7.1
shows a trap function as a function of unitation (left) and as a function of the decoded value of the binary
string (right) witha = 0.6, » = 1.0, andz = 3. The parameter is the slope change location ands

1.00 s 1.00 ¢
/ 1
/ H
0] / o !
Z o7s) / Z o075} ;
S / = !
] 5. /I o @ ;
° Seo o 7\
3 o080 . g 050 5 !
§ \.‘\\\ I’ § --.\ /’.\ l'\\ lI
~o \ \ 1 1
= L ~< / = / \]
025 T / 0.2 W ece [e-a g !
~< / \ / s !
~o / \ / \ / \ 1
S.o / N \\ , \\ |
0.00 —4 0.00 : ‘ —— ———o—¢
0 1 2 3 4 0 2 4 6 8 10 12 14
Decoded Value of String

Unitation
Figure B2.7.1. A four-bit trap function ¢ = 0.6, » = 1.0, andz = 3) as a function of unitation (left) and

as a function of binary strings (right).

the unitation of a string. Deb and Goldberg (1994) have found thatlkihtrap function becomes fully
deceptive if the following condition is true (for smdllanda ~ b):
¢ (b—a)l(t -1
= —_— . B2.7.5
T ra 2 ()

The above condition suggests that in a deceptive trap function the slope change ledatidoser to¢.

In other words, there are more strings in the basin of the deceptive solution than that in the basin of the
global optimal solution. Using the above condition, we create a six-bit fully deceptive trap function with
the strings §00000) and (111111) being the deceptive and global optimal solutions<0.92, » = 1.00,

andz = 4):

Handbook of Evolutionary Computationrelease 97/1 B2.73

(© 1997 I0P Publishing Ltd and Oxford University Press

Fitness landscapes

£(000000)=0.920 £(*00000)=0.805 £ (**0000)=0.690 £ (***000)=0.575 £ (****00)=0.460 f (*****0)=0.367
£(000001)=0.690 £(*00001)=0.575 f£(**0001)=0.460 f(***001)=0.345 £ (****x01)=0.275 £ (k***x1)=0.274
£(000011)=0.460 £(*x00011)=0.345 f(**x0011)=0.230 £(***x011)=0.206 f(****x11)=0.273

£(000111)=0.230 £(*00111)=0.115 f£(**0111)=0.182 f(***111)=0.341

£(001111)=0.000 £(*x01111)=0.250 f(**1111)=0.500

£(011111)=0.500 £(*11111)=0.750

£(111111)=1.000

The leftmost column shows seven different function values in a six-bit unitation function and other
columns show the schema fitness values of different schema partitions. In the above function, the deceptive
solution has a function value equal to 0.92 and the global solution has a function value equal to 1.00.
The string (10100) has a function value equal to 0.460, because all strings of unitation 2 have a function
value 0.460. In functions of unitation, all schema of a certain order and unitation also have the same
fitness. That is, the schemaog010) has a fitness value equal to 0.575, because this schema is of order
five and of unitation one, and all schema of order five and unitation one have a fitness equal to 0.575.
The above schema fitness calculations show that the schema containing the deceptive solution is no worse
than any other schemata in each partition. For example, for any schema patrtition of order two, the schema
containing the deceptive solution has a fithess equal to 0.690, which is better than any other schema in that
partition (third column). However, the deceptive stri@@000) is not the true optimal solution. Thus,
the above schema partition is deceptive. Since &l 2 or 62 schema partitions are deceptive, the above
fithess landscape is fully deceptive.

Although in the above deceptive landscape the string ofslls considered to be the globally best
string, any other string can also be the globally best string. In this case, the above function values are
assigned to another set of strings obtained by performing a bitwise exclusive-or operation to the above
strings with the complement af (Goldberg 1990).

B2.7.1.4 Sufficient conditions for deception

Deb and Goldberg (1994) have also found sufficient conditions for any arbitrary function to be fully
deceptive (assuming that the strings of &dland allos are global and deceptive solutions, respectively):

primary optimality condition: f(£) > max[f(0), max f(1)]
primary deception condition: f(0) > max[maxf(2), (f(¢) — (min f(1) — maxf(¢ —1))] (B2.7.6)
secondary deception condition: mfii) > maxf(j) forl<i<|¢/2]andi < j <{L—i

where minf (i) and maxf (i) are the minimum and maximum function values of all strings having a
unitation ;. A fitness function satisfying the above conditions is guaranteed to be a fully deceptive
function; however a function not satisfying any of the above conditions may also be deceptive. However,
Deb and Goldberg (1994) have observed that the above conditions can prove deception in most of the
deceptive functions that exist in the GA literature. These sufficient conditions allow a systematic way of
creating a deceptive function and a quick way to test deception in any arbitrary function. The number of
floating-point operations required to design a fully deceptive function using the above conditions is only
O(£?), whereas @) operations are required to create a deceptive function with the consideration of all
schema partition deception.

B2.7.1.5 Other deceptive functions

Goldberget al (1992) have also defined multimodal deceptive functions and developed a method to create
fully or partially deceptive multimodal functions from low-order Walsh coefficients. Mason (1991) has
developed a method to create deceptive functions for nonbinary functions. Kaefupltg1992) have
also suggested a method to create deceptive problemesrinutation problems cL4

The design of deceptive landscapes and subsequent attempts to solve such functions have provided
better insights into the working of GAs and helped to develop modified GAs to solve such difficult
functions. Themessy GADeb 1991, Goldbergt al 1989, 1990) is a derivative of such considerations:.4
and has been used to solve massively multimodal, deceptive, and highly nonlinear functions in only
O(¢log¢) function evaluations, whergé is the number of binary variables (Goldbezgyal 1993). These
results are remarkable and set up standards for other competitive algorithms to achieve, but what is yet

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.74

Fitness landscapes

more remarkable is the development of such efficient algorithms through proper understanding of the
complex mechanisms of GAs and their extensions for handling difficult fithess landscapes.

B2.7.2 NK landscapes
Lee Altenberg

Abstract

NK fithess landscapes are stochastically generated fitness functions on bit strings,
parameterized (withV genes andk interactions between genes) so as to make them
tunably ‘rugged’. Under the genetic operators of bit-flipping mutation or recombination,
NK landscapes produce multiple domains of attraction for the evolutionary dynamics. NK
landscapes have been used in models of epistatic gene interactions, coevolution, genome
growth, and Wright's shifting balance model of adaptation. Theory for adaptive walks
on NK landscapes has been derived, and generalizations that extend beyond Kauffman’s
original framework have been utilized.

B2.7.2.1 Introduction

A very short time after the first mathematical models of Darwinian evolution were developed, Sewall
Wright (1932) recognized a deep propertypafpulation genetic dynamicsvhen fitness interactions exis2.2
between genes, the genetic composition of a population can evolve into multiple domains of attraction.
The specific fitness interaction épistasis where the effect on fithess from altering one gene depends on
the allelic state of other genes (Lush 1935). Epistasis makes it possible for the population to evolve toward
different combinations of alleles, depending on its initial genetic composition. (Wright's framework also
included the complication of diploid genetics, which augments the fitness interactions that produce multiple
attractors.)

Wright thus found a conceptual link between a microscopic property of organisms—fitness interactions
between genes—and a macroscopic property of evolutionary dynamics—multiple population attractors in
the space of genotypes. To illustrate this situation, Wright invoked the metaphor of a landscape with
multiple peaks, in which a population would evolve by moving uphill until it reached its local fitness
peak. This metaphor of the ‘adaptive landscape’ is the general term used to describe multiple domains of
attraction in evolutionary dynamics.

Wright was specifically interested in how populations could escape from local fithess peaks to higher
ones through stochastic fluctuations in small population subdivisions. His was thus one of the earliest
conceptions of a stochastic process for the optimization of multimodal functions.

Stuart Kauffman devised thiK fithess landscapenodel to explore the way that epistasis controls
the ruggedness of an adaptive landscape (Kauffman and Levin 1987, Kauffman 1989). Kauffman wanted
to specify a family of fitness functions whose ruggedness could be ‘tuned’ by a single parameter. He did
this by building up landscapes from multiple ‘atoms’ of maximal epistasis.

The NK model is a stochastic method for generating fitness functiéng0, 1}V — %+, on binary
strings,x € {0, 1}, where the genotype consists ofN loci, with two possible alleles at each locys
(As such, it is an example of eandom fieldmodel elaborated upon by Stadler and Happel (1995).) It
has two basic components: a structure for gene interactions, and a way this structure is used to generate
a fitness function for all the possible genotypes.

The gene interaction structure is created as follows: the genotype’s fitness is the aver¥afimess
componentsF; contributed by each locus Each gene’s fitness componefitis determined by its own
allele, x;, and also the alleles & other epistatic loci (s& must fall between zero an¥ — 1). Thus,
the fitness function is:

1 X
F(x) = NZFi(xi;xila e Xig) (B2.7.7)
i=1

where{iy, ..., ix} C{1,...,i—1,i+1,..., N}. TheseK other loci could be chosen in any number of
ways from theN loci in the genotype. Kauffman investigated two possibilitiadjacent neighborhoogs

t The author thanks the Maui High Performance Computing Center for generously hosting him as a visiting researcher.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.75

Fitness landscapes

where theK genes nearest to locuson the chromosome are chosen; aaddom neighborhoodsvhere

theseK other loci are chosen randomly on the chromosome. In the adjacent neighborhood model, the
chromosome is taken to have periodic boundaries, so that the neighborhood wraps around the other end
when it is near the terminus.

Epistasis is implemented through a ‘house of cards’ model of fithess effects (Kingman 1978, 1980):
whenever an allele is changed at one locus, all of the fitness components with which the locus interacts
are changed, without any correlation to their previous values. Thus, a mutation in any one of the genes
affecting a particular fithess component is like pulling a card out of a house of cards—it tumbles down
and must be rebuilt from scratch, with no information passed on from the previous value.

Kauffman implemented this by generating, for each fitness component, a tabfe“oh@mbers for
each possible allelic combination for tl#&+ 1 loci determining that fithess component. These numbers
are independently sampled from a uniform distribution on1j0 (See section B2.7.2.4 for alternative
implementations of this scheme.)

The consequence of this independent resampling of fitness components is that the fitness function
develops conflicting constraints: a mutation at one gene may improve its own fithess component but
decrease the fitness component of another gene with which it interacts. Furthermore, if the allele at
another interacting locus changes, an allele that had been optimal, given the alleles at the other loci,
may no longer be optimal. Thus, epistatic interactions produce ‘frustration’ in trying to optimize all genes
simultaneously, a concept borrowed from the field of spin glasses, of which NK landscapes are an example
(Anderson 1985).

B2.7.2.2 Evolution on NK landscapes

The definition given by Kauffman for the NK landscape is simply a fitness function on a data structure.
The genetic operators that manipulate these data structures in creating variants are not explicitly included
in the NK landscape specification. However, nothing can be said about the evolutionary dynamics until
the genetic operators are defined. A change in the genetic operator will effectively define a new adaptive
landscape (Altenberg 1994a, 1995, Jones 1995a, b). The NK structure was defined with the ‘natural’
operators in mind: bit-flipping mutation, and recombination between strings. The magnitude of mutation
and recombination rates also has a fundamental effect on the population dynamics.

One of the main differences between evolutionary algorithms and evolutionary genetics is relative
time spent during transient, as opposed to near-equilibrium, phases of the dynamics. Biological populations
have been running for a long time, and so their genetic compositions are relatively converged (Gillespie
1984); whereas in evolutionary algorithms, it is typical that initial populations are random over the search
space, and so, for much of their dynamics, the populations are far from equilibrium.

The dynamics of nearly converged populations under low mutation rate can be approximatest by
mutant adaptive walkéMaynard Smith 1970, Gillespie 1984). The population is taken as fixed on a single
genotype, and occasionally a fitter genotype is produced which then goes to fixation. The approximation
assumes that the time it takes for the mutant to go to fixation is short compared to the time epochs between
substitutions.

In implementing one-mutant adaptive walks, an initial genotype is chosen, and the fitnesses of all of
the genotypes that can be produced by a single bit flip are sampled. A fitter variant (or the fittest, in the
case ofgreedy or myopic walks) is selected, and the process is reiterated. When all of the one-mutant
neighbors of a genotype are less fit than it, the walk terminates.

Results for one-mutant adaptive walk§he following is a synopsis of the results of Kauffman (1993),
Weinberger (1991), and Fontaefal (1993) for one-mutant adaptive walks on NK landscapes.

For K = 0, the fitness function becomes the classical additive multilocus model.

(i) There is a single, globally attractive genotype.

(i) The adaptive walk from any genotype in the space will proceed by reducing the Hamming distance
to the optimum by one each step, and the number of fitter one-mutant neighbors is equal to this
Hamming distance. Therefore, the expected number of steps to the global optin\y.is

(i) The fitnesses of one-mutant neighbor genotypes are highly correlated, -as of the N fithess
components are unaltered between the neighbors.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.76

Fitness landscapes

For K = N — 1, the fitness function is equivalent to the random assignment of fithesses over the

genotype space.

(i) The probability that a genotype is a local optimum jgX + 1).

(i) The expected total number of local optima i 2N + 1).

(i) The expected fraction of one-mutant neighbors that are fitter decrease® l@ath step of the adaptive
walk.

(iv) The expected length of adaptive walks is approximate{ywla- 1).

(v) The expected number of mutants tested before reaching a local optimEJ;fgéN “D-iai,

(vi) As N increases, the expected fithess of the local optimum reached from a random initial genotype
decreases toward the mean fitness of the entire genotype spacd&affman (1993) calls this the
complexity catastrophe

For intermediateX, it is found that:

(i) For K small, the highest local optima share many of their alleles in commonkK Ascreases, this
allelic correlation among local optima falls away, and more rapidly for random neighborhoods than
adjacent neighborhoods.

(i) For K large, the fitnesses of local optima are distributed with an asymptotically normal distribution

with mean approximately
N 2In(K + 1)\ 2
P i i d
a K+1

and variance approximately

(K +1o?
NIK +1+2(K +2)In(K + 1)]

where i is the expected value of;, ando? its variance. In the case of the uniform distribution,
w=1/2 ando = (1/12)%2.

(i) The average Hamming distance between local optima, which is roughly twice the length of a typical
adaptive walk, is approximately

N log,(K + 1)
2(K +1)
(iv) The fitness correlation between genotypes that diffef kdci is

d
ro=(1-4) (1- 355
N N-1

for the random neighborhood model, and

K+1 1 min(K,N+1—d) N—j _1
Rd)=1——"d+—— (K—j+1)<)
N (1;/) ; d—2

for the adjacent neighborhood model.

Results for full population dynamicsMost studies using NK models have investigated adaptive walks
on the landscape. A notable exception is the study of Wright's shifting balance process using an NK
landscape (Bergmaet al 1995). In this study, the genotypes are distributed on a one-dimensional spatial
array, and mating and dispersal along the array are studied with different length scales. Mutation rates of
10~ per locus per reproduction, and single-point recombination ratesdafd@ Q1 per chromosome per
reproduction are examined. The NK fitness function is extended to diploid genotypes.

This model produced rich interactions of dispersal distance, recombination rat&, aitt the mean
fitness that is attained during evolution. For highly rugged landscapes recombination made little difference
in fitness attained, whereas at lower valueskgfrecombination could either improve or reduce the final
fithess depending in a nonlinear way on the other parameters. The results support Wright's original theory:
the greater the ruggedness of the landscape, the larger is the improvement in evolutionary optimization
that population subdivision provides.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.77

Fitness landscapes

B2.7.2.3 Generalized NK maps

The epistatic interaction structure described by Kauffman can be seen to be special cases of more general
interaction structures. Although Kauffman conceives of each gene as contributing a fithess component,
inspection of equation (B2.7.7) shows, in fact, that a gene and the &theci that interact with it are all
symmetric in their effect on the fithess component. Therefore, one can remove the identification of one
gene with one fithness component, and conceive of a st génes and a set of fithess components and

a map between them. This generalized fithess function is

1
F(x) = 7 Z Fi (X jagys Xy =+ 5 X i)
i=1

wherep(i) is the number of genes affecting fithess compon€its polygeny and{ i, jou) - - -» jp@} C
{1,..., N}. The index set$jii), joq) - - - jpe)} COMprise a gene—fitness map, that can be represented as
a matrix,

M = [m;;] i=1,...,f j=1..N (B2.7.8)

of indicesm;; € {0, 1}, wherem;; = 1 indicates that geng affects fithess component The rows of
M, g; = [m], j =1,..., N, give the genes controlling each fitness comporiernthe columns oM,
p; = [myl, i = 1,..., f, give the fitness components controlled by each genéhese vectorsp;,
represent each gengieiotropy. It is assumed that each gene affects at least one fitness component, and
vice versa.

The fithess component§ can be represented with a single uniform pseudorandom funttion

Fi(x) =U(xog;,g;, i)~ uniform on [Q 1) (B2.7.9)
whereU : {0, 1}" x {0, 1}" x {1,..., N} — [0, 1) ando is the Hadamard product:

X1m;jg

X2m;2
Xogi =

XNMN
A change in any of the three argumeritsg;, or « o g; gives a new value foU (x o g;, g;, i) that is
uncorrelated with the old value. See section B2.7.2.4 for methods of impleménting g;, g;, i).
Some illustrations of this generalization of the NK mold are given in figure B2.7.2. The first two
maps are standard Kauffman NK maps, which require the diagonal to be filled. The third is a map that
produces a ‘block model’ of Perelson and Macken (1995). The fourth is an example of a map grown by

selective gene addition, a process which produces highly nongeneric NK landscapes (see section B2.7.2.7,;
Altenberg 1994b).

A B C D
6 6 6
FITNESS . . A A
COMPONENTS , ,)
0 0 0

0 2 46 8 0 2 4 6 8 0 2 46 8 0 2 4 6 8
GENES

Figure B2.7.2. Four different gene—fitness interaction maps. Dark entries are where the gene affects
the fitness component. (A) Kauffman’s adjacent neighborh@od: 8, K = 2; (B) Kauffman's random
neighborhoodN = 8, K = 2; (C) a Perelson and Macken (1995) ‘block’ map; (D) a map evolved through
genome growth (Altenberg 1994b).

The block model presents an opportunity to study recombination operators, which has not yet been
utilized in the literature. Recombination between blocks is effectively operating on a smooth landscape,

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.78

Fitness landscapes

whereas mutation will still experience frustration, to a degree that depends on the size of the block. One
may conjecture that a relation could be elucidated between the ‘blockiness’ of the gene interaction map, and
the relative effectiveness of recombination as a genetic operator in comparison to mutation. The blockiness
of a generalized NK landscape could serve as another tunable parameter for investigating recombination
as an evolutionary strategy.

B2.7.2.4 Implementation details

Kauffman’s algorithm for generating an NK landscape requires storing the values for all offthg 2

possible allelic combinations of each fithess component. Since therdy dimess components, this

approach requires storage df2YN numbers. For smalK, this poses no problem. But with large

and N, storage and computation become formidable. With 32 geneskard22, a gigabyte of storage

is needed (4 bytes/real 32 x 2??tD). Yet, depending on the evolutionary algorithm used, often many of

these numbers will never be called during the run. So one could instead create fithess component values as

they are needed, and store them for later access (using, for example, a binary tree structure (Wirth 1975)).
A simple method (used by Altenberg (1994b)) which requires more computation but no storage, is to

use a pseudorandom function to compute fithess components as they are called:

v:{0,2% -1}~ {0,2" — 1)
whereW is the bit width of the integer representatioéi. can be used to implement equation (B2.7.9) as:
Fi(@) =2""W{(xog) AW[gA V(i AD])

wheret is the integer seed of the run, is the bitwise exclusive-or operator, and the bit striggand «
are represented as integers.

One must be careful in the choice of algorithms fior Park-Miller random number generators are
unsuitable forl, as there are correlations between input bits and output bits. However, the ‘pseudo data-
encryption-standard’ algorithman4 (Presset al 1992), works well asl for genomes of lengti. < 32,
and can be extended for larger genomes.

B2.7.2.5 Computational complexity of NK landscapes

The computational complexity of finding the optimum genotype in an NK landscape has been analyzed
by Weinberger (1996) and Thompson and Wright (1996). The algorithms they use for the proofs depend
only on the epistatic structure of the gene interaction map, and not the statistical assignment of fitnesses.

Weinberger provides a dynamic programming algorithm that finds the optimum genotype of an NK
landscape with adjacent neighborhoods for aiy He is also able to reduce the NK optimization
problem with randomK > 3 neighborhoods to the well-known 3SAT problem (Garey and Johnson
1979). Thompson and Wright were able to reduce the NK optimization problem with ratem?2
neighborhoods to the 2SAT problem (Garey and Johnson 1979). These techniques prove the following
theorems.

Theorem B2.7.1 (WeinbergerT.he NK optimization problem with adjacent neighborhoods is solvable in
O(2XN) steps, and is thus i®.

Theorem B2.7.2 (Weinbergerfhe NK optimization problem with random neighborhood#i® complete
for K > 3.

Theorem B2.7.3 (Thompson and Wrighthe NK optimization problem with randoiki = 1 neighborhoods
is solvable in polynomial time.

Theorem B2.7.4 (Thompson and Wrighthe NK optimization problem with randotki = 2 neighborhoods
is N'P complete. Moreover, for a generalizéd= 1 map with no requirement that;; = 1 for all i (in
equation (B2.7.8)), the NK optimization problemA§P complete.

The Fourier expansion analysis of NK landscapes by Stadler and Happel (1995) corroborates the
difference between random and adjacent neighborhood models: with adjacent neighborhoods, only the

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.79

Fitness landscapes

first K + 1 Fourier components contribute, while all contribute in the random neighborhood model. Thus,
even though adaptive walks on NK landscapes do not show much difference between adjacent neighborhood
and random neighborhood models, the computational complexity of these two families of landscapes is
quite different.

B2.7.2.6 Application to coevolution

Kauffman (1993) used the NK model to frame a novel hypothesis about coevolving ecosystems: that they
are poised on the ‘edge of chaos’, exhibiting a form of self-organized criticality @ald 1988). In

his model, Kauffman let the genes of other organisms interact with a gene’s fithess component. Hence,
evolution of one organism’s gene alters the fithess landscape of other organisms. Kauffman used adaptive
walks as the dynamics of the coevolving species. He found that smooth landscapes when coupled together
produce chaotic dynamics—the ‘red queen’ hypothesis, that organisms have to evolve as fast as they can
just to stay in the same place (Van Valen 1973), and the average fitness of organisms in the ecosystem
is low. On the other extreme, in very rugged landscapes, the likelihood of the species reaching a local
equilibrium is very high, but these equilibria are of low average fithess for the ecosystem. There is a
threshold level of ruggedness that results in criticality of the dynamics, with a spectrum of ‘avalanches’
of coevolutionary change, the larger the avalanche, the less frequent. This critical value appears to give
the highest average fitness over the ecosystem.

B2.7.2.7 Application to the representation problem

The generalized NK model has been applied to the representation problem in evolutionary computation:
how to represent the objects in the search space so that genetic operators can have a reasonable chance
of producing fitter variants when acting on the representation. One method proposed for producing
good representations is to evolve the representation itself through a process of selective genome growth
(Altenberg 1994b).

In the model, the gene-fitness mipis built up gene by gene: new genes with randomly chosen
connections to the fitness components (i.e. new columm4 with randomly chosen entries {0, 1} were
added to the genome only if they produced a fitness increase. It was found that as more genes were added
and the fitness increased, selection for genes with low pleiotropy (affecting few functions) became more
intense. An example of an evolved NK map is shown in figure B2.7.2(D). The fitness peaks of the resulting
NK maps were several standard deviations above the fitness distribution for generic NK landscapes with
the same interaction maps.

The NK model is thus used as an abstraction for the way representations produce epistatic interactions
between genes. It was suggested that the method of selective genome growth which was able to produce
highly evolvable NK landscapes might be applicable toward more general representation problems.

B2.7.3 Correlation analysis

Bernard Manderick

Abstract

Correlation analysis is a set of techniques that are intended to characterize the difficulty of

a search problem for a genetic algorithm (or any other search technique) by exploiting the
fitnesses between neighboring search points and the correlation of the fithesses between
parents and their offspring. Three measures and their practical uses are discussed based
on correlation analysis: the autocorrelation function of a fithess landscape, the fitness
correlation coefficients of genetic operators and the fithess—distance correlation.

B2.7.3.1 Fitness landscapes

A fitness landscape, Fk ((S, d), f), is the combination of a metric spacg, d) and a fitness functiorf
defined over that space. We assume here fhistdefined for alls € S and thatf takes only nonnegative
real values; that isf (s) > 0. A metric spac€sS, d) is a setS provided with a metric or distancé. A
metricd is a real-valued map defined ¢hx S which fulfills the following conditions for alky, s> € S:

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.710

Fitness landscapes

(i) d(s1,s2) = 0 andd(s1, s2) = 0 if and only if s; = s5;
(i) d(s1,s2) = d(s2,51), i.e.d is symmetric; and
(i) d(s1, s3) < d(s1,s2) +d(s2, s3), i.e. d satisfies the triangle inequality.

Many search problems define a corresponding fitness landscape. We will illustrate this with two
examples: fitness landscapes defined over hypercubes and fitness landscapes defined by combinatorial
optimization problems such as the traveling salesman problem or job shop scheduling problems.

In many genetic algorithm (GA) applications we have a fithess funcfiavhich associates a fitness
f(b) with each bit stringh = by_1by_2...bob1bg Of length N. Moreover, we can define a distance on
the setB of bit strings, for example, the Hamming distange between two bit string®, »' € B which
is defined as the number of bit positions in whietand b’ differ. For instance, the Hamming distance
between the two 5-bit strings 01001 and 11011 is two since these bit strings differ in the first and fourth
positions. Once we have provided the #with the distancely, the resulting metric spaceB, dy) is
called the hypercube of dimensiav since each bit string has N neighborsh’ at a Hamming distance
one. For instance, the neighborhood of the string 00000 consists of the five strings 10000, 01000, 00100,
00010, and 00001. Well-known examples of fitness landscapes definedvedienensional hypercubes
(B, dy) are the NK landscapes (Kauffman 1993) discussed in section B2.7.2.

The traveling salesman probleriTSP), like many other combinatorial problems, defines a fitncas
landscape in a similar way. The TSP is defined as follows. Giveitiescs, ¢z, ..., ¢, and their mutual
distanced(c;, ¢j), i, j = 1,...,n, find a tour which visits all cities just once and brings the traveling
salesman back to his starting point in such a way that the total distance of the tour, also called its cost, is
minimized.

The search spacél consists of all possible permutations of the cities ¢;,i = 1, ...,n,
since a permutation tells us in what order the cities have to be visited. Theccokta solution
7w = (cy...ci,,¢i,¢i, ...c,) is the sum of the distances between every pair of adjacent cities; that is,
c(m) = Z?;il(c,»j,cw) + Il(c;,, c;;). This cost functionc has to be minimized, and it can easily be
transformed to a fitness function which then has to be maximized: 1/c.

We can define a distancg,, on the space of all permutatiori$ using the inversion operation.

Take an arbitrary permutation = (¢, ...¢i, ;Ci,Ciiyy - - - Ciy_1CisCirya - - - Ci,); the result of the inversion
starting atc;, and ending at;, is obtained by inverting the subsequencerdbetween and including these

two: 7' = (Ciy ... Ciy 1 CiyCirq - - - Cirys CiCipr - - - Giy)- SINCE We can choose the starting and ending points

of the inversion freely, there are(n — 1) possible inversions for each permutatienwhich are called

the neighbors ofr. The distanceli,, (1, 72) between any two permutations is defined as the minimal
number of inversions needed to transfarminto . It is easy to verify thatii,, defines a metric on the

search spacél. Finally, since we can associate with each permutatioits fithessf (), the TSP also

defines a fitness landscape. Part of a fithess landscape corresponding to a nine-city problem is shown in
figure B2.7.3.

The long-term goal of correlation analysis is to find out what landscape features make the search easy
or difficult for the GA and how the GA uses information obtained from that landscape to guide its search.

Several measures based on fitness correlations have been defined and their relation to problem difficulty
and GA performance has been studied. In the next sections, we discuss the autocorrelation function, the
correlation length, the correlation coefficient of genetic operators, and the fithess—distance correlation.

B2.7.3.2 The autocorrelation function

A first idea to analyze GA performance consists of calculating the autocorrelation function of a random
walk in the landscape. Given a fitness landsceed), f), where(S, d) is a metric space and is a
fitness function, select a random start paigtand select a random neighbar, i.e. d(sg, s1) = 1, repeat

this processV times, and collect the fitnessg4s;) of the encountered search pointsi = 0, ..., N.
This way, a seried = (f(so), f(s1), ..., f(si—1), f(s), f(siz1), ..., f(sy)) is obtained in which the
pairss;_1, s; ands;, s;+1, fori =1,..., N — 1, are neighboring search points.

The autocorrelation functiop of the random walk is defined as

p(h) = = R(h) (B2.7.10)
SF

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.711

Fitness landscapes

(127654389)

~
~§

-~
~
NN
~

jnvert 37

~§

.o

~ Pid

-~

(123456789)

-7 invert12

-~
PrAR N

~N

invert 29"

.

invert 24,.-~

~

(143256789)

~
S

(213456789 (198765342)

Figure B2.7.3. Part of a fitness landscape defined by a nine-city TSP when the inversion digtance

is used. Dotted lines represent neighborhood relations; labels of these lines give the inversion which
transforms neighboring points into each other. Solid lines represent the fithesses of the corresponding
search points; lengths are proportional to the fitnesses.

wheres§ = (1/N) Zf\’zo(f(si) — mp)? is the variance and(k) is the autocovariance function of the

seriesF. For all h, R(h) can be estimated by
1 N—h
me=ﬁggu0»—mnumﬁm—mm (B2.7.11)
1 N
mE= N1 IZ:; S (si) (B2.7.12)

whereN > 0 and 0< i < N. It can be shown that1l < p(h) < 1 andp(0) = 1. The autocorrelation
function p(h) expresses for each distankehow correlated search points are which are at a distance
from each other.

It can be shown that the autocorrelation function for many optimization problems is an exponentially
decreasing function; that ig,(h) = € %" whereaq is a constant. For example, this is the case for the NK
landscapes (Weinberger 1990), for TSPs where the cities are randomly distributed over a square (Stadler
and Schnabl 1992), and for random graph bipatrtition problems (Stadler and Happel 1992).

In this case, one can define the correlation lengts the distancé wherep(h) = 1/2. The larger
the correlation length the more correlated and smoother the fithess landscape is. Sralfespond to
rugged fitness landscapes. It has been shown empirically (Mandt@ti 991) that on the NK landscapes
there is a strong relation between the correlation lengénd the GA performance on these landscapes:
the smallerz, the harder the corresponding landscape is for the GA. The autocorrelation fupcéiod
the correlation length therefore provide a rough indication of how difficult a landscape is.

B2.7.3.3 The fitness correlation coefficient

A second way to analyze GA performance consists of calculating the fitness correlation coefficient of a
genetic operator. Suppose we havegaary genetic operator OP. This means that OP takgmrents

p1, P2, ..., pg and produces one offspring for example,mutationis an unary operator since it takecs.z
one parent to produce one offspring whil®ssovelis a binary operator since it usually takes two parents.1
to produce one offspring. The correlation coefficiggb of a genetic operator OP measures the fitness
correlation between parents and the offspring that they produce.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.712

Fitness landscapes

Formally, if the operator OP ig-ary then takeV sets,i = 1,..., N, of g parents{p;,, pi,, .- ., pi,}
with fitnesses{(f(pi,). f(pi,), ..., f(pi,)} and mean fitnesmfpi = (1/9) Zizlf(p,»_,.), and generate
the corresponding offspring with fitness f(¢;) using OP. The correlation coefficieppp measures the

correlation between the serid$ = (mg, ,....,mg,) and F. = (f(c1), ..., f(cy)) and is calculated as
follows:
CF,F.
pop = —2fe. (B2.7.13)
SFpSE

wherecy, r, is the covariance between the serigsand F,, andsg, andsg, are the standard deviations
of F, and F.. The correlation coefficienbop measures how correlated the landscape appears for the
corresponding operator OP.

One might expect that the larger the coefficiggb of an operator the more correlated a landscape
for this operator and the more useful it will be in genetic search. This hypothesis has been confirmed
on two combinatorial optimization problems, the TSP goful flow schedulingoroblems (Mandericlet al F1.5
1991). Moreover, calculating theop for each operator provides an easy way to find the combination of
mutation and crossover operators which gives the best GA performance. We illustrate this on a standard
TSP problem (see Olivest al 1987). In table B2.7.1 three mutation operators are shown together with
their correlation coefficient for this TSP. Manderiekal (1991) have shown that the correlation coefficient
ranks the mutation operators according to their usefulness for the GA. So, for the TSP the Reverse mutation
is the best operator. Similar results exist for the crossover operators. So, the correlation coefficient provides
an easy way to select the operators for a given problem without trying all possible combinations for the
problem at hand.

B2.7.3.4 Fitness—distance correlation

A last way to analyze GA performance consists of calculating the fithess—distance correlation (FDC) (Jones
and Forrest 1995). In order to calculate this measure the global optimum of the optimization problem has
to be known. The FDC measures the correlation between the fithesses of search points and the distances
of these points to the (nearest) global optimum.

Suppose we hav&y search pointgss, so, ..., sy} sampled at random together with their distances
{d1,d>, ..., dy} to the global optimum, then the FDC coefficiespc is defined as

CFD

PFDC = (82714)
SFSD
where
1 N
erp =% ;(f(si) — mp)(d; —mp) (B2.7.15)
is the covariance of the serigs = (f(s1),..., f(sy)) andD = (dy, ..., dy), andsg, sp, mp, andmp

are the standard deviations and the meang afnd D, respectively.

It can be shown that1 < prpc < 1. Note that maximal correlation correspondstgc = —1 since
then search points at short distances are highly correlated in fithess. Using the FDC coeffigiettiree
classes of problem difficulty can be defined:

e easy:prpc < —0.15
° difficult: —0.15 < PEDC < 0.15
misleading: prpc > 0.15.

Table B2.7.1. The Swap, Reverse and Remove-and-Reinsert mutations of th¢lt@u8 456 7 8 9 1p
when the fourth and eighth cities are selected. The cities in the mutant tour that differ from the parent one
are shown in bold.

Swap Reverse Remove-and-Reinsert
Mutant (12385674910) (12387654910) (123567 84910)
Poperator 0.77 0.86 0.80

(© 1997 I0OP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.7:13

Fitness landscapes

So far, FDC has only been applied to fithess landscapes defined on hypercubes. Jones and Forrest
(1995) show that when a problem is easy, difficult, or misleading according gdtsthen this is also
the case for the GA. The FDC coefficiepipc is thus able to correctly classify problem difficulty for the
GA. Moreover, it could ‘explain’ unexpected results with the royal road functions and correctly classify
some deceptive problems as quite easy while according tsdhema theorerthese problems should be2s.2
hard.

B2.7.4 Test landscapes

Thomas B¢k and Zbigniew Michalewicz

Abstract

The availability of appropriate, standardized sets of test functions is of high importance
for assessing evolutionary algorithms with respect to their effectiveness and efficiency.
This section summarizes the properties of test functions and test suites which are
desirable to investigate the behavior of evolutionary algorithms for continuous parameter
optimization problems. A test suite should contain some simple unimodal function and
multimodal functions with a large number of local optima, which are high dimensional
and scalable, and incorporate constraints in some cases. A regular arrangement of
local optima, separability of the objective function, decreasing difficulty of the problem
with increasing dimensionality, and a potential bias introduced by locating the global
optimum at the origin of the coordinate system are identified as properties of multimodal
objective functions which are neither representative of arbitrary problems nor well suited
for assessing the global optimization qualities of evolutionary algorithms. The section
concludes by a presentation and discussion of some of the most prominent test functions
used by the evolutionary computation community.

B2.7.4.1 Properties of test functions

Just as for any optimization algorithms, evolutionary algorithms need to be assessed concerning their
efficiency and effectiveness for optimization purposes. Following Schwefel (1995), we use the term
efficiencyin the sense of convergence velocity (speed of approach to the objective), effbibtiveness
characterizes the reliability of the algorithm working under varying conditions (sometimes, the term
robustnesss also used). To facilitate a reasonably fair comparison of optimization algorithms in general
and evolutionary algorithms in particular, a number of artificial test functions are typically used for an
experimental comparison. Surprisingly, not only the experimental tessadfitionary programmingnd B1.4
evolution strategiesbut also those ofjenetic algorithmsare often performed on a set of continuogrs Bi1.2
parameter optimization problems with functions of the fofin: M <€ R" — R. Consequently, it

is possible to identify some of the most widely used continuous parameter optimization problems, but
almost no standard set of typical pseudo-Boolean objective funciionB’ — R can be encountered in

the literature. TheNK landscapesand royal road functionsare notable exceptions which have recenily 7.2 82.7.5
received some attention, but there is still a lack of a standardized set of test functions especially in the
pseudo-Boolean case. Recently, Jones (1995a) presented a study that involved the comparison of 22
pseudo-Boolean functions based on measuring the correlation of fithess function values with distance to a
global optimum. His study covers the complete range of functions, including NK landscapes, royal road
functions, functions of unitation, and deceptive functions, and provides the most complete collection of
pseudo-Boolean test cases used by researchers in the field of evolutionary algorithms.

Some prominent test suites of parameter optimization problems are those of De Jong (1975) and
Schwefel (1977, 1995). De Jong presented five functions, which are all still used by the genetic algorithm
community, while Schwefel’s problem catalogue contains 68 objective functions covering a wide range of
different topological characteristics.

While these test suites serve well as a repository for experimental comparisons, such comparisons are
often restricted to a selection of a few out of the available functions. If such a selection is made, however,
one should have in mind that it is important to cover various topological characteristics of landscapes in
order to test the algorithms concerning efficierand effectiveness. The following list summarizes some

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.714

Fitness landscapes

of the properties of test suites and test functions that are reasonable in order to investigate the behavior of
evolutionary algorithms.

(i) The test suite should include a few unimodal functions for comparisons of convergence velocity
(efficiency).

(i) The test suite should include several multimodal functions witarge number of local optima (e.g.
a number growing exponentially with, the search space dimension). These functions are intended
to be representatives of the characteristics which are typical for real-world problems, where the best
out of a number of optima is sought. When choosing multimodal functions for inclusion in a test
suite, one should be careful because of the following facts:

(@)
(b)

(©)

(d)

Some test functions exhibit an extremely regular arrangement of local optima, which might favor
particular operators of the evolutionary algorithm that exploit the regularity.

Some test functions obtained from a superposition of a ‘global shape’ (e.g. a quadratic bowl) and
a finer structure of local optima might becoreasier for an algorithm to optimize when is
increased, which is counterintuitive because the dimension normally serves as the complexity
parameter. As pointed out by Whitlegt al (1995), the test function of Griewank (from
Torn andZilinskas 1989, p 186:f(x) = Y.1_, x?/d — [/, cosx;//i) + 1, with d = 4000

and —600 < x; < 600) has this property, because the local optima decrease in number and
complexity as the dimensionis increased, and already fer= 10 the quadratic bowl dominates
completely (notice that the parametér= 4000 is specialized to dimension= 10 and must

grow exponentially for larger values af.

The still prevalent choice to locate the global optimum at the origin of the coordinate system
might implicitly bias the search in case of binary encoded object variables (Davis 1991). The
bias might become even stronger when, in the case of canonical genetic algorithms, the interval
[u;, v;] of real values for the object variable is symmetric around zero, that is, = —v;. Also

by means ofintermediary recombinatigna bias towards the origin of the coordinate systencss.2
introduced when all variables are initialized in the intervab], v;] (Fogel and Beyer 1995). To
circumvent this problem in the case of a global optimum at the origin, it is useful to check the
evolutionary algorithm also for the problepixz) = f(x — a) for somea € R" with a # 0.
Multimodal test functions which areeparable that is, composed of a sum of one-dimensional
subfunctions

f@ =Y fix) (B2.7.16)
i=1

are well suited for optimization by so-calledordinate strategiege.g. see Schwefel 1995, pp 41—

4), which change only one variable at each step. The test suite might contain such functions,
but one should be aware of the fact that they are neither representatives of real-world problems
nor difficult to optimize. Whitleyet al (1995) go one step further and propose not to use
separable functions at all. Again, the particular structure’ ahight favor certain operators of
evolutionary algorithms, such as a mutation operator used in some variants of genetic algorithms
which changes only the binary representation of a single, randomly selected object variatble

a time. It is known that an evolutionary algorithm using such an operator can optimize separable
functions with QnInr) function evaluations (Mhlenbein and Schlierkamp-Voosen 1993), but
line search achieves this in(@® function evaluations simply by omitting the random choice of

the dimensiork € {1, ..., n} to be mutated next.

Provided that a rotated and scaled version of the problem is tested as well, separable functions
may be part of a testbed for evolutionary algorithms. For a separable fungtiey ann x n
orthogonal matrixT, and a diagonal matri$ = diag(sy, ..., s,) with pairwise differents; > 0,
the problemg(x) = f(TSx) is not separable, provided thatis not the unit matrix. Moreover,
it is also possible to control the degree of non-separability: For exampleisia bandmatrix of
width three, then; is correlated withy;_; andx; 4 for all i € {2,...,n — 1}. A larger width
introduces more correlation and thereby more nonseparability.

Therefore, one should be aware of the possible bias introduced when using test functions having one
or more of the properties listed above.

(iii) A test function with randomly perturbed objective function values models a typical characteristic of
numerous real-world applications and helps to investigate the robustness of algorithms with respect

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.715

Fitness landscapes

to noise. Ordinarily, the perturbation follows a normal distribution with an expectation of zero and a
scalable variance af?.

Other types of noise might be of interest as well, such as additive noise according to a Cauchy
distribution (such that the central limit theorem is not valid) or even multiplicative noise.

(iv) Real-world problems are typically constrained, such that the incorporaticcomdtraint handling cs
techniquesnto evolutionary algorithms is a topic of active research. Therefore, a test suite should
also contain constrained problems with inequality constraintg) > 0 and/or equality constraints
hy(x) = 0 (notice that canonical genetic algorithmejuire the existence of inequality constraints
u; < x; < v; for all object variablesx; for the purpose of encoding the object variables as a
binary string—because these constraints are inherent to canonical genetic algorithms, they are called
domains of variables in the remainder of this section). When experimenting with constrained objective
functions, a number of additional criteria are also worth considering:

(&) The number and type of constraints (e.g. linear or nonlinear ones) should vary for the test suite
members.

(b) Some constraints should be active at the optimum. This is an important criterion to determine
whether or not a constraint-handling technique is able to locate an optimal solution even if it is
located at the boundary between feasible and infeasible regions.

(c) The test suite should contain constrained functions with various ratios between the sizes of the
feasible search space and the whole search space. Typically, an estimate for this ratio can be
obtained by a random sampling technique (see Chapter C5 for details). Obviously, a function
with a small feasible region is more difficult to handle than a function where almost all points
of the search space are feasible.

(v) The test suite should contain high-dimensional objective functions, because these are more
representative of real-world applications. Furthermore, most low-dimensional functions (e.g. with
n = 2) are not suitable as representatives of application problems where an evolutionary algorithm
would be applied, because they can be solved to optimality with traditional methods. Most useful are
test functions which arscalablewith respect tos, i.e., which can be used for arbitrary dimensions.

These five basic properties correspond well with the requirements recently formulated by Whitley
et al (1995), who proposed that test suites should contain nonlinear, nonseparable problems resistant to
hillclimbing methods, they should contain scalable functions, and the test problems should have a canonical
form. The canonical form requirement focuses on representational issues raised by using genetic algorithms
for continuous parameter optimization purposes, where the coding scheme has to be specified exactly by
giving the number of bits used to encode a single object variable, the type of decoding function (Gray code,
standard binary-coded decimals), and the interval boundarijes (Vi € {1,...,n}). A standardization
of these parameters is of course mandatory for experimental comparisons, but it has nothing to do with
the test problems themselves.

Whitley et al (1995) propose to build better test functions than those existing by constructing high-
dimensional functions from lower-dimensional ones usixgansionand composition Starting with a
nonlinear, two-dimensionaft (x1, x2), expansion yield§‘(x1, X2, x3) = f(x1,x2) + f(x2, x3) + f(x3, x1),
while function composition with a separablg(xi, x2, x3) = g(x1) + g(x2) + g(x3) and a function
h i R?2 - R would yield f(x1, xo, x3) = g(h(x1, x2)) + g(h(x2, x3)) + g(h(x3, x1)). Though these are
certainly interesting techniques for the constructiomeiv test functions, our focus is on the presentation
and critical discussion of a few test problems out of those that have already been used to evaluate
evolutionary algorithms.

In the following sections, this choice of test functions is presented and described in some detail.

B2.7.4.2 Unimodal functions
Sphere model (De Jong 1975, Schwefel 1977).

f(x) = Xn:xl?. (B2.7.17)
i=1

Minimum: f(0) = 0. Domains of variables for genetic algorithms5.12 < x; < 5.12. For convergence
velocity evaluation, this is the most widely used objective function.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.716

Fitness landscapes

Scaled sphere model (Schwefel 1988).
f@)=>"ix?. (B2.7.18)
i=1

Minimum: f(0) = 0. This function has been used by Schwefel to demonstrate the self-adaptation principle
of strategy parameters in evolution strategies in case differently scaled axes.

Double sum (Schwefel 1977).

. 2
f@ =) (x,) . (B2.7.19)
j=1

i=1

Minimum: f(0) = 0. This function was introduced by Schwefel to demonstrate the self-adaptation of
strategy parameters in evolution strategies, when variances and covariances:afiniensional normal
distribution are learned.

Rosenbrock function (Rosenbrock 1960, De Jong 1975).
f(x1, x2) = 100x2 — x2)% + (1 — x1)2. (B2.7.20)

Minimum: f(1) = 0. Domains of variables for genetic algorithms:5.12 < x; < 5.12. This
function is two-dimensional; that is, it does not satisfy the condition of scalability (see point (v) in
the earlier discussion on test suites and test functions). One might propose a generalized version
flx) = Y1 1000x? — x;41)? + (1 — x;)?) (Hoffmeister and Bck 1991), but it is not clear whether

the topological characteristics of the optimum location at the bottom of a long, bent ‘valley’ remains
unchanged.

B2.7.4.3 Multimodal functions
Step function (De Jong 1975).

f@ =Y lxl. (B2.7.21)
i=1

Domains of variables for genetic algorithms:5.12 < x; < 5.12. Minimum under these constraints:

x’ € [-5.12 -5), f(x*) = —6n. The step function introduces plateaus to the topology, which make
the search harder because slight variations ofithéo not cause any change in objective function value.
Back (1996) proposed to use a step function version of the sphere modef,(ieg.= Y _; [x; + 0.5)2,
wherex} € [-0.5,0.5), f(x*) = 0, because this function does not require the existence of finite domains
of variables to have an optimum different from minus infinity. As another alternative, one might use the
absolute valuesy;| in equation (B2.7.21).

Shekel’s foxholes (De Jong 1975).

1 1 25 1
Loiiy ; o (B2.7.22)
f(w) K j=1 Cj + Zi:l(xi - aij)

The constants are defined according to

@y (32 -1 0 16 32-32 .. 0 16 32
4=\ _32 —32 -32 -32 -32 —16 ... 32 32 32

K = 500, andc; = j. Minimum: f(-32 —32) ~ 1. Domains of variables for genetic algorithms:
—65.536 < x; < 65.536. Although often used in the genetic algorithm community, this function has some
serious disadvantages: it is just two-dimensional (v), and the landscape consists of a flat plateau with 25
steep and narrow minima, arranged on a regular grid (ii.a) at the positions defined by theAnatiik
f(alj,azj) ~cjp = J

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.717

Fitness landscapes

Generalized Rastrigin function g8k and Hoffmeister 1991 offi and Zilinskas 1989).
f(x) =nA+ fo — Acodwx;). (B2.7.23)
i=1

The constants are given by = 10 andw = 27. Minimum: f(0) = 0. Domains of variables for
genetic algorithms:—5.12 < x; < 5.12. This function was presented byaék and Hoffmeister (1991)

as a generalization of Rastrigin’s original definition, reprinted arrirandZilinskas (1989). It is not a
particularly good test problem because the function is separable (ii.d) and the local minima are arranged
on a regular grid (ii.a).

Generalized Ackley function @8k et al 1993, Ackley 1987).

1/2
l n l n
f(x) = —aexp| —b (; lZ;ﬁ) - exp(; ; cos(cx,-)> + a + exp(1) exp(l). (B2.7.24)

Constantsia = 20,b = 0.2, ¢ = 2zr. Minimum: f(0) = 0. Domains of variables for genetic algorithms:
—32768 < x; < 32768. Originally defined by Ackley as a two-dimensional test function, the general
extension was proposed for example bicB et al (1993). The function is not separable, and there are
no other disadvantages either except a regular arrangement of the minima (ii.a).

Fletcher and Powell function (Fletcher and Powell 1963).

f(a:) — Z(Ai — Bi)z (52.7.25)
i=1

A= Z(aij SinO{j + b;j cOSw) (B2.7.26)
=1

B; = Y (aj; Sinx; + by COSx)). (B2.7.27)
=1

The constants;;, b;; € [-100, 100] as well asy; € [—n,] are randomly chosen and specify the position

of the local minima (there are”2ocal minima in the range-n < x; < z). Minimum: f(«) = O.
Domains of variables for genetic algorithms:z < x; < w. This function has the advantage that local
minima are randomly arranged and the function is scalable; for30, the matriceé\ andB are tabulated

by Back (1996). Alternatively, one could also define a simple pseudo-random number generator together
with a certain seed to use.

B2.7.4.4 Constrained problems

Here, we present just four representative problems for the cases of having linear as well as nonlinear
inequality constraints. Notice that the constrained problems are geneoalégalable with respect to their
dimensionality, because this would also require scalable constraints (which is certainly not an unsolvable
problem, but was not considered in the known test problems). For further sources of constrained test
problems, the reader is referred to the work of Hock and Schittkowski (1981), Michalewvalz1994),
Michalewicz (1995), and Floudas and Pardalos (1990).

Problem B2.7.1 (Colville 1968).
f@) = 100(x2 — x2)% + (1 — x1)® + 90(x4 — x5)* + (1 — x3)°
+102((x2 — D%+ (x4 — 1)?) +19.8(x2 — 1) (xs — 1) (B2.7.28)
subject to
—100 < x; <100 i=1234
Minimum: f(1,1,1,1) = 0.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.718

Fitness landscapes

Problem B2.7.2 (Hock and Schittkowski 1981, Michalewicz 1995).
f(@) =x1+x2+ x3 (B2.7.29)
subject to

1—0.0025x4 + x6) > 0

1—-0.0025x5 + x7 —x4) > 0

1-0.0l(xg —x5) >0

x1x¢ — 83333252, — 10Qx; + 83333333> 0

xox7 — 12505 — xox4 + 1250¢4 > 0

x3xg — 1250 000— x3x5 + 25005 > O

100< x; < 10000

1000< x; < 10000 i=273

10 < x; <1000 i=4,...,8
Minimum: £(5793167 1359943 5110071, 1820174 2955985 217.9799 2864162 3955979 =
7049330923. The problem has three linear and three nonlinear constraints; all six constraints are ac-

tive at the global optimum. The ratio between the size of the feasible search space and the whole search
space is approximately 0.001%.

Problem B2.7.3 (Hock and Schittkowski 1981, Michalewicz 1995).
f(@®) = x2 + x2 + x1xp — 14x; — 16x2 4 (x3 — 10)? + 4(x4 — 5)°
+ (x5 — 3)2 + 2(xg — 1)? + 5x2 + 7(xg — 11)? + 2(xg — 10)2
+ (x10— 7)? +45 (B2.7.30)
subject to
105— 4x3 — 5xp + 3x7 — 9xg > 0
—10x; +8x2 + 17x7 — 2xg > 0
8x1 — 2x3 — 5x9 4+ 2x10+ 12> 0
—3(x1 — 2% —4(x2 — 3% — 2x5 + Txs + 120> 0
—5x2 — 8xy — (x3—6)2+2x,+40>0
—xf — 2(xp — 2)2 + 2x1x2 — 14x5 + 6x6 > 0
—0.5(x1 — 82— 2(xp — 42— 3x2 4+ x+30> 0
3x1 — 6xp — 12(xg — 8)2 + Tx10> 0
—100 < x; <100 i=1,...,10
Minimum: £(2.171996 2.363 683 8.773 926 5.095 984 0.990 654 8 1.430 574 1.321 644 9.828 726

8.2800928.375927 = 24.3062091. Six (out of eight) constraints are active at the global optimum
(all except the last two).

Problem B2.7.4 (Keane's function).

Y cost(x;) — 2], coS(x;)

f(x) =) (B2.7.31)
i=1°""%i
subject to

[]x>075

i=1

in < 7.5n

i=1

O<x; <10 i=1...,n.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.719

Fitness landscapes

The global maximum of this problem is unknown. The ratio between the size of the feasible search space
and the whole search space is approximately 99.97%.

B2.7.4.5 Randomly perturbed functions

In principle, any of the test problems presented here can easily be transformed into a noisy function by
adding a normally distributed perturbation accordingfte= f + N(0, 02). Hammel and Bck (1994) did
so for the sphere model and Rastrigin’s function. De Jong (1975) defined a noisy function according to

f@ = ix}+N©O 1 (B2.7.32)
i=1

where the variance of the noise term was fixed to a value of one. Minink[ri(0)] = 0. Domains of
variables for genetic algorithms:=1.28 < x; < 1.28.

B2.7.5 Royal road functiong

Melanie Mitchell and Stephanie Forrest

Abstract

We describe a class of fitness landscapes cabigel road functionsthat isolate some

of the features of fitness landscapes thought to be most relevant to the performance of
genetic algorithms (GAs). We review experimental results comparing the performance
of a GA on an instance of this class with that of three different hill-climbing methods,
and we explain why one of the hill climbers, random mutation hill climbing (RMHC),
significantly outperforms the GA on this fithess function. We then define an idealized
genetic algorithm (IGA) that does explicitly what the GA is thought to do implicitly,
and explain why the IGA is significantly faster than RMHC. Our analyses are relevant
to understanding how the GA works, on what kinds of landscapes it will work well, and
how it may be improved.

An important goal of research on genetic algorithms (GASs) is to understand the class of problems for
which GAs are most suited, and, in particular, the class of problems on which they will outperform other
search algorithms such as gradient methods. We have developed a class of fithess landscapgal—the
road functions (Mitchellet al 1992, Forrest and Mitchell 1993)—that isolate some of the features of
fitness landscapes thought to be most relevant to the performance of GAs. Our goal in constructing these
landscapes is to understand in detail how such features affect the search behavior of GAs and to carry out
systematic comparisons between GAs and other search methods.

It has been hypothesized that GAs work by discovering, emphasizing, and recombining high-quality
building blocksof solutions in a highly parallel manner (Holland 1975, Goldberg 1989b). These ideas are
formalized by theschema theorenand building-block hypothesigsee Section B2.5). The GA evaluat®2.s
populations of strings explicitly, and at the same time, it is argued, it implicitly estimates, reinforces,
and recombines short, high-fitnesshemata—building blocks encoded as templates, such as 11****** (g
template representing all eight-bit strings beginning with two ones).

A simple royal road functionR;, is shown in figure B2.7.4R; consists of a list of partially specified
bit strings échematas; in which ‘' denotes a wild card (i.e. it is allowed to be either zero or one). A
bit string x is said to be arinstanceof a schema, x € s, if x matchess in the defined (i.e. nonx’)
positions. The fitnes®;(x) of a bit stringx is defined as follows:

8 .
1 if i
Ri(x) =) 8;(x)o(s) 5,(x>={ 0 othormise
i=1

where o(s;), the order of s;, is the number of defined bits i5p. For example, ifx is an instance of
exactly two of the order-8 schematR; (x) = 16. Likewise,R;(111...1) = 64. R; is meant to capture

1 This work has been supported by the Santa Fe Institute’s Adaptive Computation Program, the Alfred P Sloan Foundation (grant
B1992-46), and the National Science Foundation (grants IRI-9157644 and IRI-9224912).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.720

Fitness landscapes

one landscape feature of particular relevance to GAs: the presence of fit low-order building blocks that
recombine to produce fitter, higher-order building blocks. (A different class of functions, also kaikd
road functions was developed by Holland and is described by Jones (1995c).)

s1 = 11111111
5o = wrRRexxx]111711111
53 = Fekmekkx 11111111

e 11111111

55 = 11111111 :
56 = llllllll****************;
s7= 1111111 beews;
58 = 11111111;

Figure B2.7.4. Royal road functionk;.

The building-block hypothesis implies that such a landscape should lay myabroad for the GA
to reach strings of increasingly higher fitnesses. One might also expect that simple hill climbing schemes
would perform poorly because a large number of bit positions must be optimized simultaneously in order
to move from an instance of a low-order schema (e.g. 11111111%*to an instance of a higher-order
intermediate schema (e.g. 1111111 1*******]17711111** *). However, the results of our experiments
ran counter to both these expectations (Forrest and Mitchell 1993). In these experiments, a simple GA
(using fitness-proportionate selection with sigma scaling, single-point crossover, and point mutation—see
Chapters C2 and C3) optimizeRh quite slowly, at least in part becausehofchhiking once an instancecz c3
of a higher-order schema was discovered, its high fitness allowed the schema to spread quickly in the
population, with zeros in other positions in the string hitchhiking along with the ones in the schema’s
defined positions. This slowed down the discovery of schemata in the other positions, especially those that
are close to the highly fit schema’s defined positions. Hitchhiking can in general be a serious bottleneck
for the GA, and we observed similar effects in several variations of our original GA.

The other hypothesis—that the GA would outperform simple hill climbing on these functions—was
also proved wrong. We compared the GA’s performanceRer(and variants of it) with three different
hill-climbing methods: steepest-ascent hill climbing (SAHC), next-ascent hill climbing (NAHC), and
random mutation hill climbing (RMHC) (Forrest and Mitchell 1993). These work as follows (assuming
that maxevaluations is the maximum number of fitness function evaluations allowed).

Steepest-ascent hill climbing (SAHC):

(i) Choose a string at random. Call this string currhititop.

(ii) If the optimum has been found, stop and return it. If n@saluations has been equaled or exceeded,
stop and return the highest hilltop that was found. Otherwise continue to step (iii).

(i) Systematically mutate each bit in the string from left to right, recording the fithesses of the resulting
strings.

(iv) If any of the resulting strings give a fitness increase, then set cuniltalp to the resulting string
giving the highest fitness increase, and go to step (ii).

(v) If there is no fitness increase, then save curhglttbp in a list of all hilltops found and go to step

0)

Next-ascent hill climbing (NAHC):

(i) Choose a string at random. Call this string currhititop.

(i) If the optimum has been found, stop and return it. If mewaluations has been equaled or exceeded,
stop and return the highest hilltop that was found. Otherwise continue to step (iii).

(iif) Mutate single bits in the string from left to right, recording the fithesses of the resulting strings. If any
increase in fitness is found, then set currkititop to that increased-fithess string, without evaluating
any more single-bit mutations of the original string. Go to step (ii) with the new cuhiétdp, but
continue mutating the new string starting after the bit position at which the previous fithess increase
was found.

(iv) If no increases in fitness are found, save curitg@titop and go to step (i).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.721

Fitness landscapes

Notice that this method is similar to Davis’s (199i)-climbing scheme, in which the bits are mutated in
a random order, and currehtlltop is reset to any string having fithess equal to or better than the previous
best evaluation.

Random-mutation hillclimbing (RMHC):

(i) Choose a string at random. Call this string hegaluated.

(i) If the optimum has been found, stop and return it. If mesaluations has been equaled or exceeded,
stop and return the current value of hestluated. Otherwise go to step (iii).

(iii) Choose a locus at random to mutate. If the mutation leads to an equal or higher fitness, then set
bestevaluated to the resulting string, and go to step (ii).

Note that in SAHC and NAHC the current string is replaced only ifraprovemenin fitness is found,
whereas in RMHC the current string is replaced whenever a strirgfoél or greater fitness is found.

This difference allows RMHC to explonglateaus which, as will be seen, produces a large difference in
performance.

The results of SAHC and NAHC oR; were as expected—while the GA found the optimumRn
in an average of+60 000 function evaluations, neither SAHC nor NAHC ever found the optimum within
the maximum of 256 000 function evaluations. However, RMHC found the optimum in an average of
~6000 function evaluations—approximately a factor of ten faster than the GA. This striking difference on
landscapes originally designed to be royal roads for the GA underscores the need for a rigorous answer to
the question posed earlier: ‘Under what conditions will a GA outperform other search algorithms, such as
hill climbing?'.

To answer this, we first performed a mathematical analysis of RMHC, which showed that the expected
number of function evaluations to reach the optimum onRadike function with N blocks of K ones
is ~2KN(logN + y) (wherey is Euler's constant) (Mitchelet al 1994; our analysis is similar to that
given for a similar problem by Feller (1960, p 210).) We then described and analyzieidaized GA
(IGA), a very simple procedure that significantly outperforms RMHCRan The IGA works as follows.

On each iteration, a new string is chosen at random, with each bit independently being set to zero or one
with equal probability. If a string is found that contains one or more of the desired schemata, that string
is saved. When a string containing one or more not-yet-discovered schemata is found, it is crossed over
with the saved string in such a way so that the saved string contains all the desired schemata that have
been found so far. (Note that the probability of finding a given eight-bit schema in a randomly chosen
string is 1/256.)

This procedure is unusable in practice, because it requires knowing precisely what the desired schemata
are. However, the idea behind the IGA is that it does explicitly what the GA is thought to do implicitly,
namely identify and sequester desired schemata via reproduction and crossmleitdtion) and sample
the search space via the initial random population, random mutation, and crossgplerdtior). We
showed that the expected number of function evaluations for the IGA to reach the optimumRaeHilee
function with N blocks of K ones is~2X(log N + y), approximately a factor oV faster than RMHC
(Mitchell et al 1994).

What makes the IGA so much faster than the simple GA and RMHMQRgh A primary reason
is that the IGA perfectly implements the notion iafiplicit parallelism (Holland 1975): each new string
is completely independent of the previous one, so new samples are given independently to each schema
region. In contrast, RMHC moves in the space of strings by single-bit mutations from an original string,
so each new sample has all but one of the same bits as the previous sample. Thus each new string gives
a new sample to only one schema region. We ignore the construction time to construct new samples
and compare only the number of function evaluations to find particular fithess values. This is because in
most interesting GA applications, the time to perform a function evaluation dominates the time required
to execute the other parts of the algorithm. For this reason, we assume that the remaining parts of the
algorithm take a constant time per function evaluation.

The IGA gives a lower bound on the expected number of function evaluations that the GA will need
to solve this problem. It is a lower bound because the IGA is given perfect information about the desired
schemata, which is not available to the simple GA. (If it were, there would be no need to run the GA
because the problem solution would already be known.)

Independent sampling allows for a speedup in the IGA in two ways: it allows for the possibility of
more than one desired schema appearing simultaneously on a given sample, and it also means that there

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.722

Fitness landscapes

are no wasted samples, as there are in RMHC. Although the comparison we have made is with RMHC,
the IGA will also be significantly faster oR; (and similar landscapes) than any hill-climbing method that
works by mutating single bits (or a small number of bits) to obtain new samples.

The hitchhiking effects described earlier also result in a loss of independent samples for the real GA.
The goal is to have the real GA, as much as possible, approximate the IGA. Of course, the IGA works
because it explicitly knows what the desired schemata are; the real GA does not have this information
and can only estimate what the desired schemata are by an implicit sampling procedure. However, it is
possible for the real GA to approximate a number of the features of the IGA:

e Independent sample§ihe population size has to be sufficiently large, the selection process has to be
sufficiently slow, and the mutation rate has to be sufficiently great to ensure that no single locus is
fixed at a single value in every string (or even a large majority of strings) in the population.

e Sequestering desired schematgelection has to be strong enough to preserve desired schemata that
have been discovered, but it also has to be slow enough (or, equivalently, the relative fitness of the
non-overlapping desirable schemata has to be small enough) to prevent significant hitchhiking on
some highly fit schemata, which can crowd out desired schemata in other parts of the string.

e Instantaneous crossoveihe crossover rate has to be such that the time until a crossover combines
two desired schemata is small with respect to the discovery time for the desired schemata.

e Speedup over RMHCThe string length (a function oN) has to be large enough to make the
speedup factor significant.

These mechanisms are not all mutually compatible (e.g. high mutation works against sequestering
schemata), and thus must be carefully balanced against one another. A discussion of how such a balance
might be achieved is given by Holland (1993); some experimental results are given by Méatlall
(1994).

In conclusion, our investigations of a simple GA, RMHC, and the IGARgmmnd related landscapes are
one step towards our original goals—to design the simplest class of fitness landscapes that will distinguish
the GA from other search methods, and to characterize rigorously the general features of a fitness landscape
that make it suitable for a GA. Our results have shown that it is not enough to invoke the building-block
hypothesis for this purpose. Royal road landscapes suck, awe not meant to be realistic examples
of problems to which one might apply a GA. Rather, they are meant to be idealized problems in which
certain features most relevant to GAs are explicit, so that the GA’s performance can be studied in detail.
Our claim is that, in order to understand how the GA works in general and where it will be most useful,
we must first understand how it works and where it will be most useful on simple yet carefully designed
landscapes such as these.

References

Ackley D H 1987 A Connectionist Machine for Genetic Hillclimbir{@oston, MA: Kluwer)

Altenberg L 1994a The evolution of evolvability in genetic programmikdvances in Genetic Programmiregd
K E Kinnear (Cambridge, MA: MIT Press) pp 47-74

——1994b Evolving better representations through selective genome gRath 1st IEEE Conf. on Evolutionary
Computation (Orlando, FL, 19947art 1 (Piscataway, NJ: IEEE) pp 182-7

——1995 The schema theorem and Price’s theoFemndations of Genetic Algorithms 3 (San Francisco, @4)D
Whitley ard M D Vose (San Mateo, CA: Morgan Kaufmann) pp 23-49

Andersm P W 1985 Spin glass Hamiltonians: a bridge between biology, statistical mechanics, and computer science
Emerging Synthesis in Science: Proc. Founding Workshops Santa Fe InstitdePines (Santa Fe, NM: Santa
Fe Institute)

Back T 1996Evolutionary Algorithms in Theory and Practi¢Blew York: Oxford University Press)

Back T and Hoffmeister F 1991 Extended selection mechanisms in genetic algoRtbm&ith Int. Conf. on Genetic
Algorithmsed R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 92-9

Back T, Rudolph G and Schwefel H-P 1993 Evolutionary programming and evolution strategies: similarities and
differencesProc. 2nd Ann. Conf. on Evolutionary Programmiad D B Fogel and W Atmar (San Diego, CA:
Evolutionary Programming Society) pp 11-22

Bak P, Tang C and Wiesenfeld K 1988 Self-organized criticabiys. RevA 38 364—-74

Bergman A, Goldstein D B, Holsing& E and Feldma M W 1995 Population structure, fithess surfaces, and linkage
in the shifting balance procesenet. Res66 85-92

Colville A R 1968A Comparative Study on Nonlinear Programming Codles! Scientific Center Technical Report
320-2949

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.723

Fitness landscapes

Davis L D 1991 Bit-climbing, representational bias, and test suite dg8ign. 4th Int. Conf. on Genetic Algorithms
ed R K Belew ad L B Booker (San Mateo, CA: Morgan Kaufmann) pp 18-23

Deb K 1991Binary and Floating-point Function Optimization using Messy Genetic Algoritbmstoral Dissertation,
University of Alabama,; IlliGAL Report 91004Dissertation Abstracts Int52 2658B

Deb K and Goldbay D E 1992 Analyzing deception in trap functioRsundations of Genetic Algorithms 2 (Vail, CO)
ed D Whitley (San Mateo, CA: Morgan Kaufmann) pp 93-108

——1994 Sufficient conditions for arbitrary binary functioAan. Math. Artificial Intell.10 385-408

De Jong K A 1975An Analysis of the Behaviour of a Class of Genetic Adaptive SydemsThesis, University of
Michigan

Feller W 1960An Introduction to Probability Theory and its Applicatio@ad edn (New York: Wiley)

Fletcher R and PoweM J D 1963 A rapidly convergent descent method for minimizaf@mput. J.6 163-8

Floudas C A and Parda® P M 1990A Collection of Test Problems for Constrained Global OptimizatiBerlin:
Springer)

Fogel D and Beyer H-G 1995 A note on the empirical evaluation of intermediate recombiEatiutionary Comput.
3491-5

Fontana W, Stadler P F, Bornberg-Bauer E G, Griesmacher T, Hofacker | L, Tacker M, Tarazona P, Weinberger E D
and Schuster P 1993 RNA folding and combinatory landsc&bgs. RevE 47 2083-99

Forrest S and Mitchell M 1993 Relative building block fitness and the building block hypotResisdations of
Genetic Algorithms 2d L D Whitley (San Francisco, CA: Morgan Kaufmann) pp 109-26

Gargy M R and Johnso D S 1979Computers and Intractibilit{San Francisco, CA: Freeman)

Gillespie J H 1984 Molecular evolution over the mutational landsdapelution 38 1116-29

Goldbeg D E 1989a Genetic algorithms and Walsh functions: part I, a gentle introductiamplex Syst3 129-52

——1989bGenetic Algorithms in Search, Optimization, and Machine LeariRgading, MA: Addison-Wesley)

——1990Construction of High-order Deceptive Functions using Low-order Walsh Coefficili@aL Report 90002

Goldberg D E, Deb K and Horn J 1992 Massive multimodality, deception, and genetic algoRtmaitel Problem
Solving from Nature Il (Brussel®d R Manner and B Manderick (Amsterdam: North-Holland) pp 37-46

Goldberg D E, Deb K, Kargupta H and Harik G 1993 Rapid, accurate optimization of difficult problems using messy
genetic algorithm®roc. 5th Int. Conf. on Genetic Algorithms (Urbana-Champaign,dd)S Forrest (San Mateo,
CA: Morgan Kaufmann) pp 56—64

Goldberg D E, Deb K and Korb B 1990 Messy genetic algorithms revisited: nonuniform size andCsoaidex Syst.
4415-44

Goldberg D E, Korb B and Deb K 1989 Messy genetic algorithms: motivation, analysis, and first @soifgex
Syst.3 493-530

Grefenstett J J 1993 Deception considered harnffolundations of Genetic Algorithms 2 (Vail, C@)J D Whitley
(San Mateo, CA: Morgan Kaufmann) pp 75-91

Hammel U and Bck T 1994 Evolution strategies on noisy functions: how to improve convergence propentiie!
Problem Solving from Nature—PPSN llI, Int. Conf. on Evolutionary Computation (Lecture Notes in Computer
Science 866§d Y Davidor, H-P Schwefel and R &hner (Berlin: Springer) pp 159-68

Hock W and Schittkowski K 198Test Examples for Nonlinear Programming Codes (Lecture Notes in Economics and
Mathematical Systems 18@Berlin: Springer)
Hoffmeister F and Bck T 1991Genetic Algorithms and Evolution Strategies—Similarities and Differences (Papers
on Economics and Evolution 910@reiburg: The European Study Group on Economics and Evolution)
Holland J H 1975Adaptation in Natural and Artificial Systenf&nn Arbor, MI: University of Michigan Press) (Second
edition: 1992 Cambridge, MA: MIT Press)

——1993 Innovation in Complex Adaptive Systems: Some Mathematical Ske$elmts Fe Institute Working Paper
93-10-062

Jones T 1995&volutionary Algorithms, Fitness Landscapes and Se&ib Thesis, University of New Mexico and
Santa Fe Institute

——1995bOne Operator, One Landscaf@anta Fe Institute Working Papers 95-02-025

——1995c A description of Holland’s royal road functi@volutionary Comput2 409-15

Jones T and Forrest S 1995 Fitness distance correlation as a measure of problem difficulty for genetic algaithms
6th Int. Conf. on Genetic Algorithms (Pittsburgh, R&J L J Eshelman (San Mateo, CA: Morgan Kaufmann)
pp 184-92

Kauffman S A 1989 Adaptation on rugged fitness landscapes ed D Stein (Redwood City, CA: Addison-V&&dley)
Studies in the Sciences of Complexity, Lecture Volumpp 527-618

——1993The Origins of Order: Self-Organization and Selection in Evolut{dlew York: Oxford University Press)

Kauffman S A and Levin S 1987 Towards a general theory of adaptive walks on rugged landdcdpeor. Biol.
12811-45

Kargupta H, Deb K and GoldbgD E 1992 Ordering genetic algorithms and decepBanallel Problem Solving from
Nature Il (Brusselsed R Manner and B Manderick (Amsterdam: North-Holland) pp 47-56

Kingman J F C1978 A simple model for the balance between selection and mutatidppl. Probability15 1-12

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.724

Fitness landscapes

——1980Mathematics of Genetic DiversifyPhiladelphia, PA: Society for Industrial and Applied Mathematics) p 15

Liepins G E and Vose M D 1990 Representational issues in genetic optimizhatiexp. Theor. Artficial Intell2 4-30

Manderick B, de Weger M and Spiessens P 1991 The genetic algorithm and the structure of the fithess |Bnascape
4th Int. Conf. on Genetic Algorithms (San Diego, G&) R Belew ad L B Booker (San Mateo, CA: Morgan
Kaufmann) pp 143-50

Masm A J 1991 Partition coefficients, static deception and deceptive probRnos 4th Int. Conf. on Genetic
Algorithms (San Diego, CA¢d R K Belew and L B Booker (San Mateo, CA: Morgan Kaufmann) pp 210-
4

Mathias K and Whitley D 1992 Genetic operators, the fithess landscape and the traveling salesman Racdlem
Problem Solving from Nature (Brusseis)l 2, ed R Manner and B Manderick (Amsterdam: Elsevier) pp 219-28

Maynard Smith J 1970 Natural selection and the concept of a protein d{zoes 225 563-4

Michalewicz Z 1995 Genetic algorithms, nonlinear optimization, and constr&irds. 6th Int. Conf. on Genetic
Algorithmsed L Eshelman (San Francisco, CA: Morgan Kaufmann) pp 151-8

Michalewicz Z, Loga T D and Swaminathan S 1994 Evolutionary operators for continuous convex parameter spaces
Proc. 3rd Ann. Conf. on Evolutionary Programmied A V Sebald ad L J Fogel (Singapore: World Scientific)
pp 84-97

Mitchell M, Forrest S and Hollash J H 1992 The royal road for genetic algorithms: fitness landscapes and GA
performanceloward a Practice of Autonomous Systems: Proc. 1st Eur. Conf. on Artificial Life (Paris, #891)

F J Varela and P Bourgine (Cambridge, MA: MIT Press) pp 245-54

Mitchell M, Holland J H and Forrest S 1994 When will a genetic algorithm outperform hill climbiAg?ances in
Neural Information Processing SystemedJ D Cowan, G Tesauro and J Alspector (San Francisco, CA: Morgan
Kaufmann) pp 51-8

Mihlenbein H and Schlierkamp-Voosen D 1993 Predictive models for the breeder genetic aldévithrtionary
Comput.1 25-49

Oliver I M, Smith D J and Hollad J R C1987 A study of permutation crossover operators on the traveling salesman
problemGenetic Algorithms and their Applications: Proc. 2nd Int. Conf. on Genetic Algorithms (Pittsburgh, PA)
ed J J Grefenstette (Hillsdale, NJ: Erlbaum) pp 224-30

Perelso A S and Macka C A 1995 Protein evolution on partially correlated landscapes. Natl Acad. Sci. USA
92 9657-61

Press W H, Teukolsky S A, VetterinW T and Flanner B P 1992 Numerical Recipes in C: the Art of Scientific
Computing2nd edn (Cambridge: Cambridge University Press) pp 178-80, 300-4

Rosenbrok H H 1960 An automatic method for finding the greatest or least value of a funCgomput. J.3 175-84

Schwefel H-P 197Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie (Interdisciplinary
Systems Research 2@asel: Birkhauser)

——1988 Evolutionary learning optimum—seeking on parallel computer architecRrees Int. Symp. on Systems
Analysis and Simulation 1988, I: Theory and Foundati@ss A Sydow, S G Tzafestas and R Vichnevetsky
(Berlin: Academic) pp 217-25

——1995 Evolution and Optimum Seeking (Sixth-Generation Computer Technology S&kee)York: Wiley)

Stadle P F and Happel R 1992 Correlation structure of the landscape of the graph-bipartition prblidys. A.:
Math. Gen.25 3103-10

——1995Random Field Models for Fithess Landscajganta Fe Institute Working Papers 95-07-069

Stadle P F and Schnabl W 1992 The landscape of the traveling salesman prBblgsnLett.161A 337-44

Thompse R K and Wrigh A H 1996 Additively decomposable fitness functions, at press

Torn A andZilinskas A 1989Global Optimization (Lecture Notes in Computer Science §B@Ylin: Springer)

Van Valen L 1973 A new evolutionary theoBvolutionary Theonl 1

Weinberge E D 1990 Correlated and uncorrelated fithess landscapes and how to tell the diffBreinézybernet63
325-36

——1991 Local properties of Kauffman’s N-k model, a tuneably rugged energy landBtgpeRevA 44 6399-413

——1996 NP Completeness of Kauffman’s N—k Model, a Tuneable Rugged Fitness Land&aafze Fe Institute
Working Papers 96-02-003, first circulated in 1991

Whitley D and Mathias K and Rana S and Dzubera J 1995 Building better test fun&ions 6th Int. Conf. on
Genetic Algorithmsd L Eshelman (San Francisco, CA: Morgan Kaufmann) pp 239-46

Whitley D 1991 Fundamental principles of deception in genetic sed&chndations of Genetic Algorithms
(Bloomington, IN)ed G J ERawlins (San Mateo, CA: Morgan Kaufmann) pp 221-41

Wirth N 1975 Algorithms + Data Structures = Program@&nglewood Cliffs, NJ: Prentice-Hall)

Wright S 1932 The roles of mutation, inbreeding, crossbreeding, and selection in evéution6th Int. Congr. on
Genetics (Ithaca, NY, 1932pl 1, ed D F Jones (Menasha, WI: Brooklyn Botanical Gardens) pp 356-66

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.725

Theoretical Foundations and Properties of Evolutionary Computation

B2.8 Probably approximately correct (PAC) learning
analysis

Johannes P Ros

Abstract

A class of genetic algorithms (GAs) for learning bounded Boolean conjuncts and disjuncts
is presented and analyzed in the context of computational learning theory. Given any
reasonable recombination operator, and any confidence and accuracy level, the results in
this article provide the number of generations and the size of the population sufficient for
the genetic algorithm to become a polynomial-tiprebably approximately corredPAC)

learner for the target class@sCNF (conjunctive normal form) ank-DNF (disjunctive

normal form) Boolean formulas of variables.

B2.8.1 Introduction

In this article, a class of genetic algorithms (GAs) for learning bounded Boolean conjuncts and disjuncts
is presented and analyzed in the context of computational learning theory. Given any reasonable
recombination operatgrand any confidence and accuracy level, the results in this article providesie
number of generations and the size of the population sufficient for the GA to become a polynomial-time
probably approximately corredPAC) learner for the target classe<CNF (conjunctive normal form) and
k-DNF (disjunctive normal form) Boolean formulas ofvariables. The set of-CNF formulas comprises

all Boolean functions that can be expressed as the conjunctiolaages where each clause is a disjunct

of at mostk literals. Similarly, the set ok-DNF formulas is all Boolean functions that can be expressed

as the disjunction oferms where each term is a conjunct of at méditerals.

The results in this article are based on the work on PAC learning analysis by Ros (1992), where
further details can be found. To enhance the presentation of these results, we have ignored the constants
(which can be obtained from lemmas A.16 and A.17 of Ros (1992)), and have uséib&ation to
denote asymptotic upper bounds, fenotation to denote asymptotic lower bounds, and @aotation
to denote asymptotic tight bounds (Cormetral 1991).

B2.8.2 Computational learning theory

Computational learning theory deals with theoretical issues in machine learning from a quantitative point
of view. The goal is to produce practical learning algorithms in non-trivial situations based on assumptions
that capture the essential aspects of the learning process. In this context, the learning model consists of a
world W of concepts, a learning machirdé, and an oracle that presents with a sequence of labeled
examples (e.g. strings of bits) from worldf. For any concept from W, it is M’s task, after having
received a sufficiently large sample from the oracle, to produce a hypothesis that adequately describes
assuming such a hypothesis exists.

The PAC model of computational learning theory was founded by Valiant in 1984 when he introduced
a new formal definition of concept learning, thiéstribution-free learnability mode(Valiant 1984). In
this model, the learning algorithm produces with high probability an accurate description of the target
concept within polynomial time in the number of training examples and the size of the smallest possible
representation for the target concept. The training examples are independently selected at random from

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.81

Probably approximately correct (PAC) learning analysis

unknown (but fixed) probability distributions. The lack of prior knowledge about these distributions
justifies the terndistribution free The hypotheses produced under such a model are PAC, since with high
probability (1— 8) they represent-close approximations to the target concepts (whesee R©CD).

There are a number of aspects of the PAC model that are notably different from other formal learning
paradigms. First, the learner is allowed approximatethe target concept rather than to identify it
exactly. For example, the inductive inference of classes of recursive functions typically requires exact
identification. Second, the model insists on polynomial-time learning algorithms, which is necessary for
practical learning systems. Third, the probability distribution over the training exampies asparameter
of the model: there is no prior knowledge about this distribution available to the learner. This contrasts
with certain statistical pattern recognition techniques where the input distributions are sometimes restricted
to certain classes. Finally, the PAC model is not restricted to certain knowledge representations: it treats
the representation of hypothesis spaces as a parameter.

The performance of a PAC learner is measured by its sample complexity (i.e. number of training
examples) and its computational complexity (i.e. running time). Clearly, the computational complexity is
bounded from below by the sample complexity. While for some classes the computational complexity is
close to the sample complexity, the complexity of computing a hypothesis from a sample often dominates
the total running time. Indeed, for certain hypothesis spaces the computational complexity is believed to
be exponential irl, the maximum size of an example.

For finite hypothesis spaces, a simple counting argument provides an upper bound for the sample
complexity: [(1/¢) In(|H;|/8)1, wheree is the desired accuracy levéljs the desired confidence level and
| H;| denotes the number of possible hypotheses. For all those concept classes where the counting method
does not yield optimal results or does not apply (e.g. infinite classes), the sample complexity may be
obtained via the Vapnik—Chervonenkis (VC) dimension of the hypothesis space (Vapnik and Chervonenkis
1971, Blumeret al 1989).

B2.8.3 The genetic probably approximately correct learner

This section describes the population, the fitness function, and the genetic plan of the genetic PAC learner
for the classes ok-CNF andk-DNF Boolean formulas. These formulas are the largest Boolean classes
known to be PAC learnable in polynomial time in(number of Boolean variables),/4, and ¥§. In
particular, Valiant (1984) showed th&tCNF is PAC learnable in polynomial time using only positive
examples, and-DNF using only negative examples. Hence, our GA will use positive examples for
learningk-CNF, and negative examples fotDNF.

B2.8.3.1 The population

The GA maintains a population dfit strings of length! that represent the sets &DNF andk-CNF ci.2
Boolean formulas ovev Boolean variables. More specifically, the setkeDNF formulas is represented

by D,; = {0,1}/, wherel = O(v*) is the number of terms, and every bit represents the presence or
absence of a term. For exampl®; ; needs 18 bits to represent all its possible terms:

X1, X2, X3, X1, X2, X3, X1X2, X1X3, X2X3, X1X2, X1X3, X2X3, X1X2, X1X3, X2X3, X1X2, X1X3, X2X3.

Similarly, the set ofk-CNF formulas is represented Iy, ; = {0, 1}/, wherel = 0 (v¥) is the number of
clauses. Since the main result in the next section applies to®gtrand D, ; (by the duality principle),
we definel" = {0, 1}, and usel™ to denote either class, withbeing the number oéttributes (clauses or
terms).

The size of the population is denoted hy and is fixed during the entire learning process.

B2.8.3.2 The fitness function

The fitness functionF takes three arguments: representatioa I', training examplee € {0, 1}”, and

the classification of this example®) € {+, —}. The total credit is the sum of the credit values that are
generated by each individual attribute in the formula. These credit values are positive integers and take
the following values:

e Gqp, if attribute is absent fromr, ande shows that it must be absent

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.82

Probably approximately correct (PAC) learning analysis

Goy, if attribute is absent from, bute shows that it may have to be present
Gy, if attribute is present im, bute shows that it must be absent
G11, if attribute is present im, ande shows that it may have to be present.

For example, suppose that out of five attributes (i.e. 5), a; andaz are present in representation
r, and all others are absent (i-e= 10100). Suppose further thatand (© show that attributegs and
as must be absent and that, a,, andas may have to be present. Then,receives a total credit of
F(r,e, ©) = G11+ Go1 + G1o+ Go1 + Goo, for ay, . . ., as, respectively.

We say thatF (r, e, ©) is a productive fitness functioif the following credit relations are satisfied:
1 < G1o < Go1 < G11 = Goo.

B2.8.3.3 The crossover operator

For anyp > 2, thecrossover operatol is a (possibly randomized) function froai’)? to I'’ that maps c3.3.1
p parental structuresy, ..., w, into one offspring structure (i.e. w < x (w1, ..., w,)), by having the
parents donate their symbols to the offspring structure. sthéfle factorof x, SH), is defined as the
smallest probability of the event that any two positions in the offspring structure receive their symbols from
two different parental structures. The shuffle factor of a crossover operator characteridieglfgiveness

a larger shuffle factor corresponds to a more disruptive operator. For two parents=(.2) the uniform
crossover operator has a shuffle factor of 0.5, since for any two positions in the offspring structure the
probability that they receive their symbol from two different parents is 0.5. Similarly, the one-point
crossover operator has a shuffle factor of o@lgl/) (wherel is the length of the structure), since for any

two positions in the structure the probability that the cut will be made between these two positions can be
as small as A (or of that magnitude, depending on the implementation). A shuffle factor with the value
of unity can be obtained with deterministic crossover operatdhat, on input of/ parental structures,
produces an offspring structure of lendtin which each bit is copied from a different parent. Therefore,
this operator is the most disruptive crossover within our framework, and produces the most efficient GA
in terms of the population size and the number of generations, as is shown by the corollary in the next
section.

B2.8.3.4 The genetic plan

The main result is based on the genetic plan at the top of the next page. Bok alIX*, let I' denote
the hypothesis classCNF (k-DNF) such that > 2. Then, for all target functiong € k-CNF (k-DNF),
all accuracy parametetse R©V, and all confidence parameters %Y, the genetic plan at the top of
the next page computes the functionGF, r . (v, 1, ¢, §), wherem is the number of generations.

The population is initialized by selecting uniformly at random elements from thE’gstatement 1).
Then, form generations, a positive or negative training example is obtained from the oracle (statement 2),
and a new population is formed by assigning credit and applgingortional selectiorand the crossovercz.2
operator to the current population (statement 3). Aftegenerations, the final hypothesis is selected at
random from the last population (statements 4, 5).

The probability distribution function (pdfpg, € Dy provides the probability that formula € T
occurs in populatiorB,. In other wordsDg, (r) = Pr [RAND(DB,) = r]. For each offspring structure, the
genetic plan randomly drawg > 2 parents under the proportional selection scheme before applying the
crossover operator. Proportional selection implies that the probability of each individutie population
is weighted based on the amount of credit it receives from fitness fungtiare, (©) relative to the total
amount of credit as collected by the entire population, which is characterized by pgf, .(r). On top
of that, the probability of producing offspring structures also determined by the crossover operator,
which is characterized by pdDg, 7. o5 (7):

D, Frecy(r) = Pr{x(RAND1(Dg, , reo) - ... RAND,(Dg, , reo)) =r]. (B2.8.1)

B2.8.4 Main result

This section contains the main result, which provides an upper bound on the size of the population and
the number of generations for the GA to be a polynomial-time PAC learner for the target dlaSsds
andk-DNF.

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.83

Probably approximately correct (PAC) learning analysis

function GFr . 7.
Input: v,l,¢,6
Output: r: an individual (representation) selected at random from final population
{B, denotes the-th population
{B;(j) denotes thej-th member of the-th populatior}
{ Dunitorm € D is the uniform distribution over elements it}
{D3, € Dy is a pdf over elements ifi’ based on populatiorB; }
begin
{initialize the first populatiof
for j <« 1tou do
1 Bo(j) < RAND(Dyniform);
od
{apply genetic operators te: populationg
for t < 1tom do
{obtain a v-bit positive exampl@® = ‘+) if I'! representsk-CNF formulag
{obtain a v-bit negative examplgd = ‘—’) if I'! representsk-DNF formulag
2 e < ORACLFE’;
for j < 1 to 1 do {obtainB, by applying credit, selection, and crossofier
3 B;(j) <~ RAND(D3, ,,..,): {See equation (B2.8.11)
od
od
{select final hypothesis at random from final population
4 r < RAND(Dg,)
5 output(r);
end.

Theorem. For all v, k € ", let T/ represent the hypothesis space #6€NF (k-DNF) formulas where
[, the number of attributes, is polynomial in the number of Boolean varialbleFhen, for all target
functions f € k-CNF (k-DNF), all accuracy parameters € ROV (such thate/I < 0.25), and all
confidence parametesse ROV, let G be a GA that computes the function §F, r . (v, 1, ¢, §), where
x is the crossover operator such thak(BHx) < 1, m is the number of generationsg; is a productive
fitness function with fitness ratias= G11/ (G11 — Go1) andb = Goo/ (Goo — G10), andu is the size of
the population. Define =1 — SHy).

() If o> ¢/[I?In(4l/8)] (such that (1 — w) is polynomial inv, 1/¢, and ¥§), and if
4 5 2 3 2
g (1 ;uln(l/(S) (In I wln(l/a))) —6 (z w(n(m/8)) > (628.2)
e2(1— w) 28(1 — w) e2(1—w)
2 11 .2 5
b—® (l wln(lm/S)) L= Q (l w=(In(lm/§))) (82.8.3)

e(1—w) £453(1 — w)?

thenG is a (polynomial-time) PAC learner for the clasge€NF andk-DNF.
(i) If0 <w < ¢&/[1?In(41/8)] (such that e is polynomial inv, 1/, and ¥6), and if

2 2
_q < 1 (m !)) “=0 (M> (B2.8.4)
oin(/5) \ " soIn(/s) lo(n(1/5))?
~(In(m/5) o [Bnm/8))®
v=o () o= (i) (8289

thenG is a (polynomial-time) PAC learner for the clasge€NF andk-DNF.
(iii) For all rational numbers > 1, if

< 1°b%In(1/8) 13b%In(1/8)) (1b2In(Im/8)
nm = Q In a = @ _—
eb—1+1/1) e5(b—-1+1/]) eb—1+1/1)

> (B2.8.6)

T Mutation is not considered here, since a fixed mutation rate is not expected to significantly affect the main result (Ros 1992,
Chapter 10).

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.84

Probably approximately correct (PAC) learning analysis

b(b—1) I"'b*(In(lm /8))3(b/ (b — 1))30+D/!
0 _ =Q B2.8.7
SCS 0 —D+4a (253(b — 1+ 1/1)2 ()
thenG is a (polynomial-time) PAC learner for the classe€NF andk-DNF.
Proof. The proof of this theorem can be found in the dissertation of Ros (1992).
Corollary. If ® =0 and
2In(1/8)y , 2In/s IIn(Im /8
m:Q(na/o) , £ind/)) a:@(M> (B2.8.8)
£ &l &
1"(In(lm /8))3
b=1+4+01) =9 (%) (B2.8.9)
&

thenG is a (polynomial-time) PAC learner for the clasge€NF andk-DNF.

B2.8.5 Discussion

The main problem for any GA is to prevent its population froonverging prematurelyo a small set of
genotypically identical individuals. Training examples that will point out the fallacy of these dominating
individuals may arrive too late due to their low but yet significant probability (i.e. greatersthan

One way to limit premature convergence is to reduce the amount of credit given to well performing
individuals relative to the amount given to weaker ones (which is obtained by increasing the fitness ratios
a andb). However, this slows down the overall rate of growth, which means that more generations are
necessary to accomplish the same amount of total growth. In addition, by leveling the relative credit
values, selection noise may become more significant unless the population size increases.

It turns out that a better way to avoid premature convergence is to improve the effectiveness of the
crossover operator, which can be accomplished by increasing the operator’s shuffle factor. By definition,
a larger shuffle factor increases the chances for every bit of being exchanged. This makes it more difficult
for any structure to dominate the population prematurely, because it will be more likely that the crossover
operator will quickly break the dominating structures up and redistribute their (well performing) parts
among other members of the population.

Parts (i) and (iii) of the theorem show the effect of the various crossover operators. According to (i),
the fitness ratios, the number of generations, and the population size decrease if the crossover operator is
made more disruptive, all other things being equal. We see a similar behavior in (iii), except for the fact
thatw does not appear explicitly in the expressions. Instead, one is able to manipulate the upper bound of
w with fitness ratiob: if b — oo, w’'s upper bound increases (weakening the crossover operator), as does
the fitness ratiaz, the number of generations, and the population size. On the other hand: i, w's
upper bound decreases (strengthening the crossover operator), and so do the other variables. Part (i) of
the theorem covers the case where (i) and (iii) do not apply.

As mentioned in section B2.8.3.3, the corollary shows that/tparental deterministic crossover
operator obtains the best results within our framework in terms of the number of generations and the size
of the population.

Finally, the analytical tools that were developed to obtain the above results should also carry over to
other applications of GAs (e.g. function optimization).

References

Blumer A, Ehrenfeucht A, Haussler D and Warimi K 1989 Learnability and the Vapnik—Chervonenkis dimension
J. ACM 36 929-65

Cormen T H, Leiserso C E and RivesR L 1991 Introduction to Algorithmg(New York: McGraw-Hill)

Ros J P 1992 earning Boolean Functions with Genetic Algorithms: a PAC AnaliXistoral Dissertation, University
of Pittsburgh

Valiant L G 1984 A theory of the learnabléommun. ACM27 1134-42

Vapnk V N and Chervonenki A Y 1971 On the uniform convergence of relative frequencies of events to their
probabilitiesTheor. Prob. Appl16 264—80

(© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Evolutionary Computationrelease 97/1 B2.85

Theoretical Foundations and Properties of Evolutionary Computations

B2.9 Limitations of evolutionary computation methods
Kalyanmoy Deb

Abstract

Evolutionary computation (EC) algorithms are new vyet intriguing. Over the years,
EC methods have enjoyed widespread application in various problems of science,
engineering, and commerce. Because of their diverse applications, they may seem to
be a panacea to every problem, but, as for other search and optimization methods, there
are limitations to these methods. In this section, we mention some of these limitations.

In the recent past, evolutionary computation (EC) algorithms have been applied to various search and
optimization problems with much success. However, like other traditional search and optimization methods
they also have some limitations. The limitations mainly come from the improper choice of EC parameters
such as theopulation sizecrossoverand mutationprobabilities, and selection pressure. These mether'sca.3 c3.2
are not expected to work on arbitrary problems with an arbitrary parameter setting. Thus, to solve a
problem efficiently, the users must be aware of the studies related to appropriate parameter choice such as
parent and children population sizes, operator probabilities, and representational isstlest @ 1993,
Goldberget al 1993a, Rudolph 1994). Some of these guidelines are outlined in various chapters of this
handbook. Unless these guidelines are properly understood, EC methods may not be used efficiently. To
illustrate, let us choose genetic algorithm(GA) application to a simple, bitwise linear, one-max probles1.2

of counting 1s (Goldberget al 1993b). With a reasonable population size of 160, string length of 30,
crossover probability of 0.3, mutation probability of zero, aadrnament selectiowith s = 5, the simple c23
tripartite GAs (with selection, crossover, and mutation) could not find the optimal solution in 100 different
simulations in a reasonable number of function evaluations. This example is cited not to discourage the
readers from using GAs or any other EC methods, but to highlight the fact that, like traditional methods,
these methods are also not expected to work successfully with any arbitrary parameter setting. According
to the analysis outlined elsewhere (Rudolph 1994), GAs with a small mutation probability would be able to
solve the above problem. Thus, the users either choose the parameters according to the guidelines suggested
in the literature or perform multiple simulations each beginning with a different initial populations to justify

the working of the algorithm.

Since most EC operators are stochastic in nature, their performance largely depends on the chosen
random number generatoiThe user must ensure the randomness of the numbers generated by the random
number generator using