Computer Vision: Table of Contents

Table of Contents

Preface
Origina Table of Contents
1 - Computer vision issues

1.1 - Achieving simple vision goals (pg 1)

1.2 - High-level and low-level capabilities (pg 2)

1.3 - A range of representations (pg 6)

1.4 - Therole of computers (pg 9)

1.5 - Computer vision research and applications (pg 12)

2 - Image Formation
2.1 - Images (pg 4)
2.2 - Image Model (pg 1)
2.2.1 - Image Functions (pg 1)

2.2.2 - Imaging Geometry (pg 2)
2.2.3 - Reflectance (pg 5)
2.2.4 - Spatial Properties (pg 7)
2.2.5- Color (pg 14)
2.2.6 - Digital Images (pg 18)
2.3 - Imaging Devices for Computer Vision (pg 1)

2.3.1 - Photographic Imaging (pg 3)
2.3.2 - Sensing Range (pg 11)
2.3.3 - Reconstruction Imaging (pg 15)

3 - Early Processing

3.1 - Recovering Intrinsic Structure (pg 1)

3.2 - Filtering the Image (pg 3)

3.2.1 - Template Matching (pg 3)

3.2.2 - Histogram Transformations (pg 8)

3.2.3 - Background Subtraction (pg 10)

3.2.4 - Filtering and Reflectance Models (pg 11)
3.3 - Finding L ocal Edges (pg 1)

3.3.1 - Types of Edge Operators (pg 2)

3.3.2 - Edge Thresholding Strategies (pg 6)

http://www.dai.ed.ac.uk/homes/rbf/ BANDB/toc.htm (1 of 9) [21-10-2003 15:52:20]

Computer Vision: Table of Contents
3.3.3 - Three-Dimensiona Edge Operators (pg 7)
3.3.4 - How Good Are Edge Operators? (pg 9)
3.3.5 - Edge Relaxation (pg 11)
3.4 - Range Information from Geometry (pg 1)
3.4.1 - Stereo Vision and Triangulation (pg 1)
3.4.2 - A Relaxation Algorithm for Stereo (pg 2)
3.5 - Surface Orientation from Reflectance Models (pg 6)
3.5.1 - Reflectivity Functions (pg 6)
3.5.2 - Surface Gradient (pg 8)
3.5.3 - Photometric Stereo (pg 11)
3.5.4 - Shape from Shading by Relaxation (pg 12)
3.6 - Optical Flow (pg 1)
3.6.1 - The Fundamental Flow Constraint (pg 1)
3.6.2 - Calculating Optical Flow by Relaxation (pg 2)
3.7 - Resolution Pyramids (pg 5)
3.7.1 - Gray-Level Consolidation (pg 5)
3.7.2 - Pyramidal Structuresin Correlation (pg 6)
3.7.3 - Pyramidal Structures in Edge Detection (pg 8)
4 - Boundary Detection
4.1 - On Associating Edge Elements (pg 4)
4.2 - Searching Near an Approximate L ocation (pg 6)
4.2.1 - Adjusting A Priori Boundaries (pg 6)
4.2.2 - Non-Linear Correlation in Edge Space (pg 6)
4.2.3 - Divide-and-Conquer Boundary Detection (pg 7)
4.3 - The Hough Method for Curve Detection (pg 1)
4.3.1 - Use of the Gradient (pg 2)
4.3.2 - Some Examples (pg 3)
4.3.3 - Trading Off Work in Parameter Space for Work in Image Space (pg 4)
4.3.4 - Generalizing the Hough Transform (pg 6)
4.4 - Edge Following as Graph Searching (pg 1)
4.4.1 - Good Evaluation Functions (pg 3)
4.4.2 - Finding All the Boundaries (pg 3)
4.4.3 - Alteratives to the A Algorithm (pg 6)

http://www.dai.ed.ac.uk/homes/rbf/ BANDB/toc.htm (2 of 9) [21-10-2003 15:52:20]

Computer Vision: Table of Contents

4.5 - Edge Following as Dynamic Programming (pg 1)
4.5.1 - Dynamic Programming (pg 1)

4.5.2 - Dynamic Programming for Images (pg 3)

4.5.3 - Lower Resolution Evaluation Functions (pg 5)
4.5.4 - Theoretical Questions about Dynamic Programming (pg 7)

4.6 - Contour Following (pg 7)
4.6.1 - Extension to Gray-Level Images (pg 8)
4.6.2 - Generalization to Higher-Dimensional Image Data (pg 10)

5 - Region Growing

5.1 - Regions(pg 1)

5.2 - A Loca Technique: Blob Coloring (pg 3)

5.3 - Global Techniques. Region Growing via Thresholding (pg 4)
5.3.1 - Thresholding in Multidimensiona Space (pg 5)
5.3.2 - Hierarchical Refinement (pg 7)

5.4 - Splitting and Merging (pg 7)
5.4.1 - State-Space Approach to Region Growing (pg 9)
5.4.2 - Low-Level Boundary Data Structures (pg 10)
5.4.3 - Graph-Oriented Region Structures (pg 11)

5.5 - Incorporation of Semantics (pg 12)

6 - Texture
6.1 - What is Texture? (pg 1)
6.2 - Texture Primitives (pg 4)
6.3 - Structural Models of Texel Placement (pg 5)
6.3.1 - Grammatical Models (pg 7)
6.3.2 - Shape Grammars (pg 8)
6.3.3 - Tree Grammars (pg 10)

6.3.4 - Array Grammars (pg 13)
6.4 - Texture as a Pattern Recognition Problem (pg 1)
6.4.1 - Texture Energy (pg 4)
6.4.2 - Spatial Gray-Level Dependence (pg 6)
6.4.3 - Region Texels (pg 8)
6.5 - The Texture Gradient (pg 9)
7-Motion

http://www.dai.ed.ac.uk/homes/rbf/ BANDB/toc.htm (3 of 9) [21-10-2003 15:52:20]

http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf

Computer Vision: Table of Contents

7.1 - Motion Understanding (pg 1)
7.1.1 - Domain-Independent Understanding (pg 2)

7.1.2 - Domain-Dependent Understanding (pg 2)
7.2 - Understanding Optical Flow (pg 5)
7.2.1 - Focus of Expansion (pg 5)

7.2.2 - Adjacency, Depth, and Collision (pg 7)
7.2.3 - Surface Orientation and Edge Detection (pg 8)
7.2.4 - Egomotion (pg 12)
7.3 - Understanding Image Sequences (pg 1)
7.3.1 - Calculating Flow from Discrete Images (pg 1)
7.3.2 - Rigid Bodies from Motion (pg 4)
7.3.3 - Interpretation of Moving Light Displays - A Domain-Independent Approach (pg 8)
7.3.4 - Human Motion Understanding - A Model-Directed Approach (pg 11)
7.3.5 - Segmented Images (pg 14)
8 - Representation of Two-Dimensional Geometric Structures

8.1 - Two-Dimensional Geometric Structures (pg 4)

8.2 - Boundary Representations (pg 5)
8.2.1 - Palylines (pg 5)
8.2.2 - Chain Codes (pg 8)
8.2.3 - The Ψ-s Curve (pg 10)
8.2.4 - Fourier Descriptors (pg 11)
8.2.5 - Conic Sections (pg 12)
8.2.6 - B-Splines (pg 12)
8.2.7 - Strip Trees (pg 17)

8.3 - Region Representations (pg 1)
8.3.1 - Spatial Occupancy Array (pg 1)
8.3.2-yAxis(pg 2)

8.3.3 - Quad Trees (pg 3)
8.3.4 - Medial Axis Transform (pg 6)

8.3.5 - Decomposing Complex Areas (pg 7)

8.4 - Simple Shape Properties (pg 8)
8.4.1- Area(pg 8)

8.4.2 - Eccentricity (pg 9)

http://www.dai.ed.ac.uk/homes/rbf/BANDB/toc.htm (4 of 9) [21-10-2003 15:52:20]

http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb7_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf

Computer Vision: Table of Contents

8.4.3 - Euler Number (pg 9)
8.4.4 - Compactness (pg 10)

8.4.5 - Slope Density Function (pg 10)
8.4.6 - Signatures (pg 11)
8.4.7 - Concavity Trees (pg 12)
8.4.8 - Shape Numbers (pg 12)
9 - Representations of Three-Dimensional Structures
9.1 - Solids and their Representation (pg 1)
9.2 - Surface Representations (pg 2)
9.2.1 - Surface with Faces (pg 2)
9.2.2 - Surfaces Based on Splines (pg 5)
9.2.3 - Surfaces That Are Functions on the Sphere (pg 7)
9.3 - Generalized Cylinder Representations (pg 1)
9.3.1 - Generalized Cylinder Coordinate Systems and Properties (pg 2)
9.3.2 - Extracting Generalized Cylinders (pg 5)
9.3.3 - A Discrete Volumetric Version of the Skeleton (pg 7)
9.4 - Volumetric Representations (pg 7)
9.4.1 - Spatial Occupancy (pg 7)
9.4.2 - Cell Decomposition (pg 8)
9.4.3 - Constructive Solid Geometry (pg 9)
9.4.4 - Algorithms for Solid Representations (pg 11)
9.5 - Understanding Line Drawings (pg 1)
9.5.1 - Matching Line Drawingsto Three-Dimensional Primitives (pg 3)
9.5.2 - Grouping Regions Into Bodies (pg 4)
9.5.3- Labeling Lines (pg 6)
9.5.4 - Reasoning About Planes (pg 11)

10 - Knowledge Representation and Use
10.1 - Representations (pg 4)
10.1.1 - The Knowledge Base - Models and Processes (pg 5)
10.1.2 - Analogica and Propositional Representations (pg 6)
10.1.3 - Procedural Knowledge (pg 8)
10.1.4 - Computer Implementations (pg 9)
10.2 - Semantic Nets (pg 1)

http://www.dai.ed.ac.uk/homes/rbf/ BANDB/toc.htm (5 of 9) [21-10-2003 15:52:20]

http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb8_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_123.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_5.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb9_34.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_2.pdf

Computer Vision: Table of Contents

10.2.1 - Semantic Net Basics (pg 1)
10.2.2 - Semantic Nets for Inference (pg 5)
10.3 - Semantic Net Examples (pg 1)
10.3.1 - Frame Implementations (pg 1)
10.3.2 - Location Networks (pg 2)
10.4 - Control Issuesin Complex Vision Systems (pg 1)
10.4.1 - Parallel and Serial Computation (pg 2)
10.4.2 - Hierarchical and Heterarchical Control (pg 2)
10.4.3 - Belief Maintenance and Goal Achievement (pg 7)
11 - Matching
11.1 - Aspects of Matching (pg 1)
11.1.1 - Interpretation: Construction, Matching, and Labeling (pg 1)
11.1.2 - Matching Iconic, Geometric, and Relational Structures (pg 2)
11.2 - Graph-Theoretical Algorithms (pg 4)
11.2.1 - The Algorithms (pg 6)
11.2.2 - Complexity (pg 8)
11.3 - Implementing Graph-Theoretical Algorithms (pg 1)
11.3.1 - Matching Metrics (pg 1)
11.3.2 - Backtrack Search (pg 4)
11.3.3 - Association Graph Techniques (pg 5)
11.4 - Matching in Practice (pg 1)
11.4.1 - Decision Trees (pg 2)

11.4.2 - Decision Tree and Subgraph |somorphism (pg 7)
11.4.3 - Informal Feature Classification (pg 8)
11.4.4 - A Complex Matcher (pg 10)
12 - Inference

12.1 - First Order Predicate Calculus (pg 2)
12.1.1 - Clause-Form Syntax (Informal) (pg 2)
12.1.2 - Nonclausal Syntax and Logic Semantics (Informal) (pg 3)
12.1.3 - Converting Nonclausal Form to Clauses (pg 5)

12.1.4 - Theorem Proving (pg 6)
12.1.5 - Predicate Calculus and Semantic Networks (pg 8)
12.1.6 - Predicate Calculus and Knowledge Representation (pg 10)

http://www.dai.ed.ac.uk/homes/rbf/ BANDB/toc.htm (6 of 9) [21-10-2003 15:52:20]

http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb10_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_12.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_3.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb11_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_1.pdf

Computer Vision: Table of Contents
12.2 - Computer Reasoning (pg 1)
12.3 - Production Systems (pg 2)
12.3.1 - Production System Details (pg 4)
12.3.2 - Pattern Matching (pg 5)
12.3.3 - An Example (pg 7)
12.3.4 - Production System Pros and Cons (pg 12)
12.4 - Scene Labeling and Constraint Relaxation (pg 1)
12.4.1 - Consistent and Optimal Labelings (pg 1)
12.4.2 - Discrete Labeling Algorithms (pg 3)
12.4.3 - A Linear Relaxation Operator and a Line-Labeling Example (pg 8)
12.4.4 - A Nonlinear Operator (pg 12)
12.4.5 - Relaxation as Linear Programming (pg 13)
12.5 - Active Knowledge (pg 1)
12.5.1 - Hypotheses (pg 2)
12.5.2 - HOW-TO and SO-WHAT Processes (pg 2)
12.5.3 - Control Primitives (pg 2)
12.5.4 - Aspects of Active Knowledge (pg 4)
13 - Goal Achievement
13.1 - Symbolic Planning (pg 2)
13.1.1 - Representing the World (pg 2)
13.1.2 - Representing Actions (pg 4)
13.1.3 - Stacking Blocks (pg 5)
13.1.4 - The Frame Problem (pg 7)
13.2 - Planning with Costs (pg 1)
13.2.1 - Planning, Scoring, and Their Interaction (pg 2)
13.2.2 - Scoring Simple Plans (pg 2)
13.2.3 - Scoring Enhanced Plans (pg 7)
13.2.4 - Practical Simplifications (pg 8)
13.2.5 - A Vision System Based on Planning (pg 9)
A1l - Some Mathematical Tools
Al.1 - Coordinate Systems (pg 1)
Al1.1.1- Cartesian (pg 1)
A1.1.2 - Polar and Polar Space (pg 1)

http://www.dai.ed.ac.uk/homes/rbf/ BANDB/toc.htm (7 of 9) [21-10-2003 15:52:20]

http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_23.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_23.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_23.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_23.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_23.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_23.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_4.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_5.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_5.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_5.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_5.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb12_5.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb13_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf

Computer Vision: Table of Contents

A1.1.3 - Spherical and Cylindrical (pg 2)
A1.1.4 - Homogeneous Coordinates (pg 3)
A1.2 - Trigonometry (pg 4)
A1.2.1 - Plane Trigonometry (pg 4)
A1.2.2 - Spherical Trigonometry (pg 5)
A1.3 - Vectors (pg 5)
Al.4 - Matrices (pg 7)
A15- Lines(pg 10)
A1.5.1 - Two Paints (pg 10)
A1.5.2 - Point and Direction (pg 10)
A1.5.3 - Slope and Intercept (pg 10)
Al1.5.4 - Ratios (pg 10)
A1.5.5 - Normal and Distance from Origin (Line Equation) (pg 11)
A1.5.6 - Parametric (pg 12)
A1.6 - Planes (pg 12)
Al.7 - Geometric Transformations (pg 13)
A1.7.1 - Rotation (pg 13)
Al1.7.2 - Scaling (pg 14)

A1.7.3 - Skewing (pg 15)
A1.7.4 - Trandation (pg 15)

A1.7.5 - Perspective (pg 15)
A1.7.6 - Transforming Lines and Planes (pg 16)

A1.7.7 - Summary (pg 16)
A1.8 - Camera Calibration and Inverse Perspective (pg 1)
A1.8.1 - Camera Cdlibration (pg 2)
A1.8.2 - Inverse Perspective (pg 3)
A1.9 - Least-Squared-Error Fitting (pg 4)
A1.9.1 - Pseudo-Inverse Method (pg 5)
A1.9.2 - Principal Axis Method (pg 6)
A1.9.3 - Fitting Curves by the Pseudo-Inverse Method (pg 7)
A1.10 - Conics (pg 8)
A1.11 - Interpolation (pg 9)
Al1.11.1 - One-Dimensional (pg 9)

http://www.dai.ed.ac.uk/homes/rbf/ BANDB/toc.htm (8 of 9) [21-10-2003 15:52:20]

http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_1.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf

Computer Vision: Table of Contents

A1.11.2 - Two-Dimensional (pg 10)
A1.12 - The Fast Fourier Transform (pg 10)
A1.13 - The lcosahedron (pg 12)
A1.14 - Root Finding (pg 13)
A2 - Advanced Control Mechanisms
A2.1 - Standard Control Structures (pg 1)
A2.1.1 - Recursion (pg 2)
A2.1.2 - Co-Routining (pg 2)
A2.2 - Inherently Sequential Mechanisms (pg 3)
A2.2.1 - Automatic Backtracking (pg 3)
A2.2.2 - Context Switching (pg 4)
A2.3 - Sequentia or Parallel Mechanisms (pg 4)
A2.3.1 - Modules and Messages (pg 4)
A2.3.2 - Priority Job Queue (pg 6)
A2.3.3 - Pattern-Directed Invocation (pg 8)
A2.3.4 - Blackboard Systems (pg 9)
Color Supplement
Author Index (pg 1)
Subject Index (pg 5)

Return to front page

~ HTML
- 4.01

http://www.dai.ed.ac.uk/homes/rbf/ BANDB/toc.htm (9 of 9) [21-10-2003 15:52:20]

http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA1_2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbA2.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbcol.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbind.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbind.pdf
http://www.dai.ed.ac.uk/homes/rbf/BANDB/bandb.htm
http://validator.w3.org/

DANA H.BALLARD = CHRISTOPHER M. BROWN

COMPUTER
VISION

Dana H. Ballard
Christopher M. Brown

Department of Computer Science
University of Rochester
Rochester, New York

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data
BALLARD. DANA HARRY.
Computer vision.

Bibliography: p.
Includes index.
I. Image processing. 1. Brown, Christopher M.

IT. Title.
TA1632.B34 621.38'0414 81-20974
ISBN 0-13-165316-4 AACR2

Cover design by Robin Breite

@© 1982 by Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

1098 7 6 5 43 2

ISBN 0-13-1bk531kL-4

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Preface

The dream of intelligent automata goes back to antiquity; its first major articulation
in the context of digital computers was by Turing around 1950. Since then, this
dream has been pursued primarily by workers in the field of artificial intelligence,
whose goal is to endow computers with information-processing capabilities
comparable to those of biological organisms. From the outset, one of the goals of
artificial intelligence has been to equip machines with the capability of dealing with
sensory inputs.

Computer vision is the construction of explicit, meaningful descriptions of
physical objects from images. Image understanding is very different from image
processing, which studies image-to-image transformations, not explicit description
building. Descriptions are a prerequisite for recognizing, manipulating, and
thinking about objects.

We perceive a world of coherent three-dimensional objects with many
invariant properties. Objectively, the incoming visual data do not exhibit
corresponding coherence or invariance; they contain much irrelevant or even
misleading variation. Somehow our visual system, from the retinal to cognitive
levels, understands, or imposes order on, chaotic visual input. It does so by using
intrinsic information that may reliably be extracted from the input, and also through
assumptions and knowledge that are applied at various levels in visual processing.

The challenge of computer vision is one of explicitness. Exactly what
information about scenes can be extracted from an image using only very basic
assumptions about physics and optics? Explicitly, what computations must be
performed? Then, at what stage must domain-dependent, prior knowledge about
the world be incorporated into the understanding process? How are world models
and knowledge represented and used? This book is about the representations and
mechanisms that allow image information and prior knowledge to interact in image
understanding.

Computer vision is a relatively new and fast-growing field. The first
experiments were conducted in the late 1950s, and many of the essential concepts

xiii

Xiv

have been developed during the last five years. With this rapid growth, crucial ideas
have arisen in disparate areas such as artificial intelligence, psychology, computer
graphics, and image processing. Our intent is to assemble a selection of this material
in a form that will serve both as a senior/graduate-level academic text and as a
useful reference to those building vision systems. This book has a strong artificial
intelligence flavor, and we hope this will provoke thought. We believe that both the
intrinsic image information and the internal model of the world are important in
successful vision systems.

The book is organized into four parts, based on descriptions of objects at four
different levels of abstraction.

1. Generalized images—images and image-like entities.

2. Segmented images—images organized into subimages that are likely to
correspond to “‘interesting objects.”

3. Geometricstructures—quantitative models of image and world structures.

4. Relational structures—complex symbolic descriptions of image and world
structures.

The parts follow a progression of increasing abstractness. Although the four
parts are most naturally studied in succession, they are not tightly interdependent. Part
I is a prerequisite for Part II, but Parts IIT and IV can be read independently.

Parts of the book assume some mathematical and computing background
{calculus, linear algebra, data structures, numerical methods). However, throughout
the book mathematical rigor takes a backseat to concepts. Our intent is to transmit a set
of ideas about a new field to the widest possible audience.

In one book it is impossible to do justice to the scope and depth of prior work in
computer vision. Further, we realize that in a fast-developing field, the rapid influx of
new ideas will continue. We hope that our readers will be challenged to think, criticize,
read further, and quickly go beyond the confines of this volume.

D. H. Ballard
C. M. Brown

Preface

Acknowledgments

Jerry Feldman and Herb Voelcker (and through them the University of Rochester)
provided many resources for this work. One of the most important was a capable
and forgiving staff (secretarial, technical, and administrative). For massive text
editing, valuable advice, and good humor we are especially grateful to Rose Peet.
Peggy Meeker, Jill Orioli, and Beth Zimmerman all helped at various stages.

Several colleagues made suggestions on early drafts; thanks to James Allen,
Norm Badler, Larry Davis, Takeo Kanade, John Kender, Daryl Lawton, Joseph
O’Rourke, Ari Requicha, Ed Riseman, Azriel Rosenfeld, Mike Schneier, Ken
Sloan, Steve Tanimoto, Marty Tenenbaum, and Steve Zucker.

Graduate students helped in many different ways: thanks especially to Michel
Denber, Alan Frisch, Lydia Hrechanyk, Mark Kahrs, Keith Lantz, Joe Maleson,
Lee Moore, Mark Peairs, Don Perlis, Rick Rashid, Dan Russell, Dan Sabbah, Bob
Schudy, Peter Selfridge, Uri Shani, and Bob Tilove. Bernhard Stuth deserves special
mention for much careful and critical reading.

Finally, thanks go to Jane Ballard, mostly for standing steadfast through the
cycles of elation and depression and for numerous engineering-to-English transla-
tions.

As Pat Winston put it: “A willingness to help is not an implied endorsement.”
The aid of others was invaluable, but we alone are responsible for the opinions,
technical details, and faults of this book.

Funding assistance was provided by the Sloan Foundation under Grant 78-4-
15, by the National Institutes of Health under Grant HL21253, and by the Defense
Advanced Research Projects Agency under Grant N00014-78-C-0164.

The authors wish to credit the following sources for figures and tables. For
complete citations given here in abbreviated form (as “from ...” or “‘after ...”),
refer to the appropriate chapter-end references.

Fig. 1.2 from Shani, U.,, “A 3-D model-driven system for the recognition of abdominal
anatomy from CT scans,” TR77, Dept. of Computer Science, University of Rochester, May
1980.

Acknowledgments Xv

xvi

Fig. 1.4 courtesy of Allen Hanson and Ed Riseman, COINS Research Project, University of
Massachusetts, Amherst, MA,

Fig. 2.4 after Horn and Sjoberg, 1978.

Figs. 2.5, 2.9, 2.10, 3.2, 3.6, and 3.7 courtesy of Bill Lampeter.

Fig. 2.7a painting by Louis Condax; courtesy of Eastman Kodak Company and the Optical
Society of America.

Fig. 2.8a courtesy of D. Greenberg and G. Joblove, Cornell Program of Computer Graphics.

Fig. 2.8b courtesy of Tom Check.

Table 2.3 after Gonzalez and Wintz, 1977.

Fig. 2.18 courtesy of EROS Data Center, Sioux Falls, SD.

Figs. 2.19 and 2.20 from Herrick, C.N., Television Theory and Servicing: Black/White and
Color, 2nd Ed. Reston, VA: Reston, 1976.

Figs. 2.21, 2.22, 2.23, and 2.24 courtesy of Michel Denber.

Fig. 2.25 from Popplestone et al., 1975.

Fig. 2.26 courtesy of Production Automation Project, University of Rochester.

Fig. 2.27 from Waag and Gramiak, 1976.

Fig. 3.1 courtesy of Marty Tenenbaum.

Fig. 3.8 after Horn, 1974.

Figs. 3.14 and 3.15 after Frei and Chen, 1977.

Figs. 3.17 and 3.18 from Zucker, S.W. and R.A. Hummel, “An optimal 3-D edge operator,”
IEEE Trans. PAMT 3, May 1981, pp. 324-331.

Fig. 3.19 curves are based on data in Abdou, 1978.

Figs. 3.20, 3.21, and 3.22 from Prager, J.M., “Extracting and labeling boundary segments in
natural scenes,” JEEE Tans. PAMI 12, 1, January 1980. © 1980 IEEE.

Figs. 3.23, 3.28, 3.29, and 3.30 courtesy of Berthold Horn.

Figs. 3.24 and 3.26 from Marr, D. and T. Poggio, “Cooperative computation of stereo dis-
parity,” Science, Vol. 194, 1976, pp. 283-287. ® 1976 by the American Association for the
Advancement of Science.

Fig. 3.31 from Woodham, R.J., “Photometric stereo: A reflectance map technique for deter-
mining surface orientation from image intensity,” Proc. SPIE, Vol. 155, August 1978.

Figs. 3.33 and 3.34 after Horn and Schunck, 1980.

Fig. 3.37 from Tanimoto, S. and T. Pavlidis, “A hierarchical data structure for picture pro-
cessing,” CGIP 4, 2, June 1975, pp. 104-119.

Fig. 4.6 from Kimme et al., 1975.

Figs. 4.7 and 4.16 from Ballard and Sklansky, 1976.

Fig. 4.9 courtesy of Dana Ballard and Ken Sloan.

Figs. 4.12 and 4,13 from Ramer, U., “Extraction of line structures from photgraphs of curved
objects,” CGIP 4, 2, June 1975, pp. 81-103.

Fig. 4.14 courtesy of Jim Lester, Tufts/New England Medical Center.

Fig. 4.17 from Chien, Y.P. and K.S. Fu, “A decision function method for boundary detec-
tion,” CGIP 3, 2, June 1974, pp. 125-140.

Fig. 5.3 from Ohlander, R., K. Price, and D.R. Reddy, “Picture segmentation using a recur-
sive, region splitting method,” CG/P 8, 3, December 1979.

Fig. 5.4 courtesy of Sam Kapilivsky.

Figs. 6.1, 11.16, and Al.13 courtesy of Chris Brown.

Fig. 6.3 courtesy of Joe Maleson and John Kender.

Fig. 6.4 from Connors, 1979. Texture images by Phil Brodatz, in Brodatz, Textures. New
York: Dover, 1966.

Fig. 6.9 texture image by Phil Brodatz, in Brodatz, Textures. New York: Dover, 1966.

Figs. 6.11, 6.12, and 6.13 from Lu, S.Y. and K.S. Fu, “A syntactic approach to texture
analysis,” CGIP 7, 3, June 1978, pp. 303-330.

Acknowledgments

Fig. 6.14 from Jayaramamurthy, S.N., “Multilevel array grammars for generating texture
scenes,” Proc. PRIP, August 1979, pp. 391-398. © 1979 IEEE.

Fig. 6.20 from Laws, 1980.

Figs. 6.21 and 6.22 from Maleson et al., 1977.

Fig. 6.23 courtesy of Joe Maleson.

Figs. 7.1 and 7.3 courtesy of Daryl Lawton.

Fig. 7.2 after Prager, 1979. ’

Figs. 7.4 and 7.5 from Clocksin, W.F., “Computer prediction of visual thresholds for surface
slant and edge detection from optical flow fields,” Ph.D. dissertation, University of Edin-
burgh, 1980.

Fig. 7.7 courtesy of Steve Barnard and Bill Thompson.

Figs. 7.8 and 7.9 from Rashid, 1980.

Fig. 7.10 courtesy of Joseph O’Rourke.

Figs. 7.11 and 7.12 after Aggarwal and Duda, 1975,

Fig. 7.13 courtesy of Hans-Hellmut Nagel.

Fig. 8.1d after Requicha, 1977.

Figs. 8.2, 8.3, 8.21a, 8.22, and 8.26 after Pavlidis, 1977.

Figs. 8.10, 8.11, 9.6, and 9.16 courtesy of Uri Shani.

Figs. 8.12, 8.13, 8.14, 8.15, and 8.16 from Ballard, 1981.

Fig. 8.21 b from Preston, K., Jr.,, M.J.B. Duff; S. Levialdi, P.E. Norgren, and J-i. Toriwaki,
“Basics of cellular logic with some applications in medical image processing,” Proc. IEEE,
Vol. 67, No. 5, May 1979, pp. 826-856.

Figs. 8.25, 9.8, 9.9, 9.10, and 11.3 courtesy of Robert Schudy.

Fig. 8.29 after Bribiesca and Guzman, 1979.

Figs. 9.1, 9.18, 9.19, and 9.27 courtesy of Ari Requicha.

Fig. 9.2 from Requicha, A.A.G., “Representations for rigid solids: theory, methods,
systems,” Computer Surveys 12, 4, December 1980.

Fig. 9.3 courtesy of Lydia Hrechanyk.

Figs. 9.4 and 9.5 after Baumgart, 1972.

Fig. 9.7 courtesy of Peter Selfridge.

Fig. 9.11 after Requicha, 1980.

Figs. 9.14 and 9.15b from Agin, G.J. and T.O. Binford, “Computer description of curved ob-
jects,” IEEE Trans. on Computers 25, 1, April 1976.

Fig. 9.15a courtesy of Gerald Agin.

Fig. 9.17 courtesy of A. Christensen; published as frontispiece of ACM SIGGRAPH 80
Proceedings.

Fig. 9.20 from Marr and Nishihara, 1978.

Fig. 9.21 after Tilove, 1980,

Fig. 9.22b courtesy of Gene Hartquist.

Figs. 9.24, 9.25, and 9.26 from Lee and Requicha, 1980.

Figs. 9.28a, 9.29, 9.30, 9.31, 9.32, 9.35, and 9.37 and Table 9.1 from Brown, C. and R. Pop-
plestone, “Cases in scene analysis,” in Pattern Recognition, ed. B.G. Batchelor. New York:
Plenum, 1978.

Fig. 9.28b from Guzman, A., “‘Decomposition of a visual scene into three-dimensional bodies,”
in Automatic Interpretation and Classification of Images, A. Grasseli, ed., New York:
Academic Press, 1969,

Fig. 9.28¢c from Waltz, D., “Understanding line drawing of scenes with shadows,” in The
Psychology of Computer Vision, ed. P.H. Winston. New York: McGraw-Hill, 1975.

Fig. 9.28d after Turner, 1974.
Figs. 9.33, 9.38, 9.40, 9.42, 9.43, and 9.44 after Mackworth, 1973.

Acknowledgments xvii

xviii

Figs. 9.39, 9.45, 9.46, and 9.47 and Table 9.2 after Kanade, 1978.

Figs. 10.2 and A2.1 courtesy of Dana Ballard.

Figs. 10.16, 10.17, and 10.18 after Russell, 1979.

Fig. 11.5 after Fischler and Elschlager, 1973.

Fig. 11.8 after Ambler et al., 1975.

Fig. 11.10 from Winston, P.H., “Learning structural descriptions from examples,” in The
Psychology of Computer Vision, ed. P.H. Winston. New York: McGraw-Hill, 1975.

Fig. 11,11 from Nevatia, 1974.

Fig. 11.12 after Nevatia, 1974.

Fig. 11.17 after Barrow and Popplestone, 1971.

Fig. 11.18 from Davis, L.S., “Shape matching using relaxation techniques,” JEEE Trans.
PAMI 1, 4, January 1979, pp. 60-72.

Figs. 12.4 and 12.5 from Sloan and Bajcsy, 1979.

Fig. 12.6 after Barrow and Tenenbaum, 1976.

Fig. 12.8 after Freuder. 1978.)

Fig. 12.10 from Rosenfeld, A.R., A. Hummel, and S.W. Zucker, ““‘Scene labeling by relaxation
operations,” JEEE Trans. SMC 6, 6, June 1976, p. 420.

Figs. 12.11, 12.12, 12.13, 12.14, and 12.15 after Hinton, 1979.

Fig. 13.3 courtesy of Aaron Sloman.

Figs. 13.6, 13.7, and 13.8 from Garvey, 1976.

Fig. A1.11 after Duda and Hart, 1973,

Figs. A2.2 and A2.3 from Hanson, A.R. and E.M. Riseman, “VISIONS: A computer system
for interpreting scenes,” in Computer Vision Systems, ed. A.R. Hanson and E.M. Riseman.
New York: Academic Press, 1978.

Acknowledgments

Mnemonics
for Proceedings and Special Collections
Cited in the References

CGIP

Computer Graphics and Image Processing

COMPSAC

CVS§S

IEEE Computer Society’s 3rd International Computer Software and Applica-
tions Conference, Chicago, November 1979.

Hanson, A. R. and E. M. Riseman (Eds.). Computer Vision Systems. New
York: Academic Press, 1978.

DARPA TU

Defense Advanced Research Projects Agency Image Understanding
Workshop, Minneapolis, MN, April 1977.

Defense Advanced Research Projects Agency Image Understanding
Workshop, Palo Alto, CA, October 1977.

Defense Advanced Research Projects Agency Image Understanding
Workshop, Cambridge, MA, May 1978.

Defense Advanced Research Projects Agency Image Understanding
Workshop, Carnegie-Mellon University, Pittsburgh, PA, November 1978.
Defense Advanced Research Projects Agency Image Understanding
Workshop, University of Maryland, College Park, MD, April 1980.

1JCAI

Mnemonics

2nd International Joint Conference on Artificial Intelligence, Imperial
College, London, September 1971.

4th International Joint Conference on Artificial Intelligence, Thilisi, Georgia,
USSR, September 1975.

5th International Joint Conference on Artificial Intelligence, MIT,
Cambridge, MA, August 1977.

6th International Joint Conference on Artificial Intelligence, Tokyo, August
1979,

xix

XX

IJCPR

MI4

MI5

MI6

M17

PCV

2nd International Joint Conference on Pattern Recognition, Copenhagen,
August 1974,

3rd International Joint Conference on Pattern Recognition, Coronado, CA,
November 1976.

4th International Joint Conference on Pattern Recognition, Kyoto, November
1978.

5th International Joint Conference on Pattern Recognition, Miami Beach,
FL, December 1980.

-

Meltzer, B. and D. Michie (Eds.). Machine Intelligence 4. Edinburgh: Edin-
burgh University Press, 1969.

Meltzer, B. and D. Michie (Eds.). Machine Intelligence 5. Edinburgh: Edin-
burgh University Press, 1970.

Meltzer, B. and D. Michie (Eds.). Machine Intelligence 6. Edinburgh: Edin-
burgh University Press, 1971.

Meltzer, B. and D. Michie (Eds.). Machine Intelligence 7. Edinburgh: Edin-
burgh University Press, 1972.

Winston, P, H. (Ed.). The Psychology of Computer Vision. New York:
McGraw-Hill, 1975.

PRIP

IEEE Computer Society Conference on Pattern Recognition and Image
Processing, Chicago, August 1979.

Mnemonics

C'OMPUTE
VISTON

DANA H. BALLARD = CHRISTOPHER M. BROWN

R

What information about scenes can be extracted from an image using only
basic assumptions about physics and optics?

How are images segmented into meaningful parts?

At what stage must domain-dependent, prior knowledge about the world be
incorporated into the understanding process?

How are world models and conceptual knowledge represented and used?

These and many other questions, inherent in this relatively new and fast-
growing field, are explored and answered in by

and The authors assemble crucial
material from many disciplines including artificial intelligence, psychology,
computer graphics, and image processing to form a practical text and
reference for anyone involved in building vision systems.

Ballard and Brown write in their preface, * has a strong
artificial intelligence flavor, and we hope this will provoke thought. The text
shows how both intrinsic image information and internal models of the world
are important in successful vision systems.”

Divided into four parts, offers descriptions of objects at four
levels of abstraction:
Generalized images—images and image-like entities;

Segmented images—images organized into sub-images that are likely to
correspond to “interesting objects”;

Geometrical structures—quantitative models of image and world structures;

Relational structures—complex symbolic descriptions of image and world
structures.

ISBN 0-13-1b531k-Yy

Contents

Preface xiii
Acknowledgments Xv

Mnemonics for Proceedings and Special Collections Cited in the
References xix

1 COMPUTER VISION

1.1 Achieving Simple Vision Goals 1

1.2 High-Level and Low-Level Capabilities 2

1.3 A Range of Representations 6

1.4 The Role of Computers 9

1.5 Computer Vision Research and Applications 12

2

Part |

GENERALIZED IMAGES

13

IMAGE FORMATION

2.1
2.2

2.3

Images 17

Image Model 18

2.2.1 Image Functions, 18

2.2.2 Imaging Geometry, 19
2.2.3 Reflectance, 22

2.2.4 Spatial Properties, 24

2.2.5 Color, 31

2.2.6 Digital Images, 35
Imaging Devices for Computer Vision 42
2.3.1 Photographic Imaging, 44
2.3.2 Sensing Range, 52

2.3.3 Reconstruction Imaging, 56

EARLY PROCESSING

3.1
3.2

33

34

3.5

3.6

3.7

Recovering Intrinsic Structure 63

Filtering the Image 65

3.2.1 Template Matching, 65

3.2.2 Histogram Transformations, 70
3.2.3 Background Subtraction, 72

3.2.4 Filtering and Reflectance Models, 73

Finding Local Edges 75

3.3.1 TFypes of Edge Operators, 76

3.3.2 Edge Thresholding Strategies, 80

3.3.3 Three-Dimensional Edge Operators, 81
3.3.4 How Good Are Edge Operators? 83

3.3.5 Edge Relaxation, 85

Range Information from Geometry 88
3.4.1 Stereo Vision and Triangulation, 88

3.4.2 A Relaxation Algorithm for Stereo, 89
Surface Orientation from Reflectance Models
3.5.1 Reflectivity Functions, 93

3.5.2 Surface Gradient, 95

3.5.3 Photometric Stereo, 98

3.54 Shape from Shading by Relaxation, 99
Optical Flow 102

3.6.1 The Fundamental Flow Constraint, 102

3.6.2 Calculating Optical Flow by Relaxation, 103
Resolution Pyramids 106

3.7.1 Gray-Level Consolidation, 106

3.7.2 Pyramidal Structures in Correlation, 107
3.7.3 Pyramidal Structures in Edge Detection, 109

93

17

63

Contents

Contents

PART 1I
SEGMENTED IMAGES
115

4 BOUNDARY DETECTION 119

4.1
4.2

43

44

4.5

4.6

On Associating Edge Elements 119

Searching Near an Approximate Location 121

4.2.1 Adjusting A Priori Boundaries, 121

4.2.2 Non-Linear Correlation in Edge Space, 121

4.2.3 Divide-and-Conquer Boundary Detection, 122

The Hough Method for Curve Detection 123

4.3.1 Use of the Gradient, 124

4.3.2 Some Examples, 125

4.3.3 Trading Off Work in Parameter Space for Work in
Image Space, 126

4.3.4 Generalizing the Hough Transform, 128

Edge Following as Graph Searching 131

44.1 Good Evaluation Functions, 133

4.4.2 Finding All the Boundaries, 133

4.4.3 Alternatives to the A Algorithm, 136

Edge Following as Dynamic Programming 137

4.5.1 Dynamic Programming, 137

4.5.2 Dynamic Programming for Images, 139

4.5.3 Lower Resolution Evaluation Functions, 141

4.5.4 Theoretical Questions about Dynamic
Programming, 143

Contour Following 143

4.6.1 Extension to Gray-Level Images, 144

4.6.2 Generalization to Higher-Dimensional Image
Data, 146

5 REGION GROWING 149

5.1
52
5.3

5.4

55

Regions 149
A Local Technique: Blob Coloring 151
Global Techniques: Region Growing via Thresholding 152

5.3.1 Thresholding in Multidimensional Space, 153
5.3.2 Hierarchical Refinement, 155

Splitting and Merging 155

5.4.1 State-Space Approach to Region Growing, 157
5.4.2 Low-Level Boundary Data Structures, 158
5.4.3 Graph-Oriented Region Structures, 159

Incorporation of Semantics 160

6 TEXTURE 166

6.1

What Is Texture? 166

6.2 Texture Primitives 169

viii

6.3

6.4

6.5

Structural Models of Texel Placement 170

6.3.1

Grammatical Models, 172

6.3.2 Shape Grammars, 173
6.3.3 Tree Grammars, 175
6.3.4 Array Grammars, 178

Texture as a Pattern Recognition Problem 181

6.4.1

Texture Energy, 184

6.4.2 Spatial Gray-Level Dependence, 186
6.4.3 Region Texels, 188

The Texture Gradient 189

7 MOTION

7.1

7.2

7.3

Motion Understanding 195

7.1.1
712

Domain-Independent Understanding, 196
Domain-Dependent Understanding, 196

Understanding Optical Flow 199

7.2.1
7.2.2
T.233
7.2.4

Focus of Expansion, 199

Adjacency, Depth, and Collision, 201
Surface Orientation and Edge Detection, 202
Egomotion, 206

Understanding Image Sequences 207

7.3.1
7.3.2
7.3.3
734

735

Calculating Flow from Discrete Images, 207
Rigid Bodies from Motion, 210
Interpretation of Moving Light Displays—A
Domain-Independent Approach, 214
Human Motion Understanding—A Model-
Directed Approach, 217

Segmented Images, 220

Part 111
GEOMETRICAL STRUCTURES
227

8 REPRESENTATION OF TWO-DIMENSIONAL
GEOMETRIC STRUCTURES

8.1
8.2

Two-Dimensional Geometric Structures 231
Boundary Representations 232

8.2.1
8.2.2
8.2.3
8.24
8.2.5
8.2.6
8.2.7

Polylines, 232

Chain Codes, 235

The W -5 Curve, 237
Fourier Descriptors, 238
Conic Sections, 239
B-Splines, 239

Strip Trees, 244

195

231

Contents

8.3

8.4

9 REPRESENTATION OF THREE-DIMENSIONAL

Region Representations 247
8.3.1 Spatial Occupancy Array, 247
832 y Axis, 248

8.3.3 Quad Trees, 249

8.3.4 Medial Axis Transform, 252
8.3.5 Decomposing Complex Areas, 253
Simple Shape Properties 254
8.4.1 Area, 254

8.4.2 Eccentricity, 255

8.4.3 Euler Number, 255

8.44 Compactness, 256

8.4.5 Slope Density Function, 256
8.4.6 Signatures, 257

8.4.7 Concavity Tree, 258

8.4.8 Shape Numbers, 258

STRUCTURES

9.1
9.2

9.3

9.4

9.5

Solids and Their Representation 264

Surface Representations 265

9.2.1 Surfaces with Faces, 265

9.2.2 Surfaces Based on Splines, 268

9.2.3 Surfaces That Are Functions on the Sphere, 270

Generalized Cylinder Representations 274

9.3.1 Generalized Cylinder Coordinate Systems and
Properties, 275

9.3.2 Extracting Generalized Cylinders, 278

9.3.3 A Discrete Volumetric Version of the Skeleton, 279

Volumetric Representations 280

9.4.1 Spatial Occupancy, 280

94.2 Cell Decomposition, 281

9.4.3 Constructive Solid Geometry, 282

9.4.4 Algorithms for Solid Representations, 284

Understanding Line Drawings 291

9.5.1 Matching Line Drawings to Three-Dimensional
Primitives, 293

9.5.2 Grouping Regions Into Bodies, 294

9.5.3 Labeling Lines, 296

9.5.4 Reasoning About Planes, 301

Part IV
RELATIONAL STRUCTURES
313

10 KNOWLEDGE REPRESENTATION AND USE

10.1

Contents

Representations 317
10.1.1 The Knowledge Base—Models and Processes, 318

264

317

11

12

10.2

10.3

10.4

10.1.2 Analogical and Propositional Representations,
319

10.1.3 Procedural Knowledge, 321

10.1.4 Computer Implementations, 322

Semantic Nets 323

10.2.1 Semantic Net Basics, 323

10.2.2 Semantic Nets for Inference, 327

Semantic Net Examples 334

10.3.1 Frame Implementations, 334

10.3.2 Location Networks, 335

Control Issues in Complex Vision Systems 340

10.4.1 Parallel and Serial Computation, 341

10.4.2 Hierarchical and Heterarchical Control, 341

10.4.3 Belief Maintenance and Goal Achievement, 346

MATCHING

11.1

11.2

11.3

11.4

Aspects of Matching 352

11.1.1 Interpretation: Construction, Matching, and
Labeling 352

11.1.2 Matching Iconic, Geometric, and Relational
Structures, 353

Graph-Theoretic Algorithms 355

11.2.1 The Algorithms, 357

11.2.2 Complexity, 359

Implementing Graph-Theoretic Algorithms 360

11.3.1 Matching Metrics, 360

11.3.2 Backtrack Search, 363

11.3.3 Association Graph Techniques, 365

Matching in Practice 369

11.4.1 Decision Trees, 370

11.4.2 Decision Tree and Subgraph Isomorphism, 375

11.4.3 Informal Feature Classification, 376

11.4.4 A Complex Matcher, 378

INFERENCE

12.1

12.2
12.3

First-Order Predicate Calculus 384

12.1.1 Clause-Form Syntax (Informal), 384

12.1.2 'Nonclausal Syntax and Logic Semantics
(Informal), 385

12.1.3 Converting Nonclausal Form to Clauses, 387

12.1.4 Theorem Proving, 388

12.1.5 Predicate Calculus and Semantic Networks, 390

12.1.6 Predicate Calculus and Knowledge
Representation, 392

Computer Reasoning 395

Production Systems 396

12.3.1 Production System Details, 398
12.3.2 Pattern Matching, 399

352

383

Contents

1

1

1

Contents

24

2.5

13

341

32

12.3.3 An Example, 401

12.3.4 Production System Pros and Cons, 406

Scene Labeling and Constraint Relaxation 408
12.4.1 Consistent and Optimal Labelings, 408

12.4.2 Discrete Labeling Algorithms, 410

1243 A Linear Relaxation Operator and a Line-

Labeling Example, 415
12.4.4 A Nonlinear Operator, 419
12.4.5 Relaxation as Linear Programming, 420
Active Knowledge 430
12.5.1 Hypotheses, 431
12.5.2 HOW-TO and SO-WHAT Processes, 431
12.5.3 Control Primitives, 431
12.5.4 Aspects of Active Knowledge, 433

GOAL ACHIEVEMENT

Symbolic Planning 439

13.1.1 Representing the World, 439

13.1.2 Representing Actions, 441

13.1.3 Stacking Blocks, 442

13.1.4 The Frame Problem, 444

Planning with Costs 445

13.2.1 Planning, Scoring, and Their Interaction, 446
13.2.2 Scoring Simple Plans, 446

13.2.3 Scoring Enhanced Plans, 451

13.2.4 Practical Simplifications, 452

13.2.5 A Vision System Based on Planning, 453

APPENDICES
465

A1 SOME MATHEMATICAL TOOLS

Al.l

Al2

Al.3
Al.4
Al.5

Coordinate Systems 465

Al.1.1 Cartesian, 465

Al.1.2 Polar and Polar Space, 465
Al1.1.3 Spherical and Cylindrical, 466
Al.1.4 Homogeneous Coordinates, 467
Trigonometry 468

Al.2.1 Plane Trigonometry, 468

A1.2.2 Spherical Trigonometry, 469
Vectors 469

Matrices 471

Lines 474

Al.5.1 Two Points, 474

A1.5.2 Point and Direction, 474
A1.5.3 Slope and Intercept, 474

438

465

Al.54 Ratios, 474
A1.5.5 Normal and Distance from Origin (Line
Equation), 475
Al1.5.6 Parametric, 476
Al.6 Planes 476

A1.7 Geometric Transformations 477
Al1.7.1 Rotation, 477
A1.7.2 Scaling, 478
Al.7.3 Skewing, 479
Al.7.4 Translation, 479
Al1.7.5 Perspective, 479
Al1.7.6 Transforming Lines and Planes, 480
Al1.7.7 Summary, 480

Al1.8 Camera Calibration and Inverse Perspective
A1.8.1 Camera Calibration, 482
A1.8.2 Inverse Perspective, 483

A19 Least-Squared-Error Fitting 484
A1.9.1 Pseudo-Inverse Method, 485
A1.9.2 Principal Axis Method, 486

Al193 Fitting Curves by the Pseudo-Inverse Method,

487
Al.10 Conics 488
Al.1l Interpolation 489

Al.11.1 One-Dimensional, 489
Al.11.2 Two-Dimensional, 490

Al1.12 The Fast Fourier Transform 490
Al.13 The Icosahedron 492
Al.14 Root Finding 493

A2 ADVANCED CONTROL MECHANISMS

A2.1 Standard Control Structures 497
A2.1.1 Recursion, 498
A2.1.2 Co-Routining, 498

A2.2 Inherently Sequential Mechanisms 499
A22.1 Automatic Backtracking, 499
A2.2.2 Context Switching, 500

A2.3 Sequential or Parallel Mechanisms 500
A2.3.1 Modules and Messages, 500
A2.3.2 Priority Job Queue, 502
A2.33 Pattern-Directed Invocation, 504
A2.34 Blackboard Systems, 505

AUTHOR INDEX
SUBJECT INDEX

xii

497

509
513

Contents

Computer
Vision 1

Computer Vision Issues

:1.1 ACHIEVING SIMPLE VISION GOALS

Suppose that you are given an aerial photo such as that of Fig. 1.1a and asked to lo-
cate ships in it. You may never have seen a naval vessel in an aerial photograph be-
fore, but you will have no trouble predicting generally how ships will appear. You
might reason that you will find no ships inland, and so turn your attention to ocean
areas. You might be momentarily distracted by the glare on the water, but realizing
that it comes from reflected sunlight, you perceive the ocean as continuous and
flat. Ships on the open ocean stand out easily (if you have seen ships from the air,
you know to look for their wakes). Near the shore the image is more confusing, but
you know that ships close to shore are either moored or docked. If you have a map
(Fig. 1.1b), it can help locate the docks (Fig. 1.1c); in a low-quality photograph it
can help you identify the shoreline. Thus it might be a good investment of your
time to establish the correspondence between the map and the image. A search
parallel to the shore in the dock areas reveals several ships (Fig. 1.1d).

Again, suppose that you are presented with a set of computer-aided tomo-
graphic (CAT) scans showing “‘slices” of the human abdomen (Fig. 1.2a). These
images are products of high technology, and give us views not normally available
even with x-rays. Your job is to reconstruct from these cross sections the three-
dimensional shape of the kidneys. This job may well seem harder than finding
ships. You first need to know what to look for (Fig. 1.2b), where to find it in CAT
scans, and how it looks in such scans. You need to be able to “‘stack up’’ the scans
mentally and form an internal model of the shape of the kidney as revealed by its
slices (Fig. 1.2cand 1.2d).

This book is about computer vision. These two example tasks are typical com-

1

puter vision tasks; both were solved by computers using the sorts of knowledge
and techniques alluded to in the descriptive paragraphs. Computer vision is the
enterprise of automating and integrating a wide range of processes and representa-
tions used for vision perception. It includes as parts many techniques that are
useful by themselves, such as image processing (transforming, encoding, and
transmitting images) and statistical pattern classification (statistical decision theory
applied to general patterns, visual or otherwise). More importantly for us, it in-
cludes techniques for geometric modeling and cognitive processing.

1.2 HIGH-LEVEL AND LOW-LEVEL CAPABILITIES

The examples of Section 1.1 illustrate vision that uses cognitive processes, geometric
models, goals, and plans. These high-level processes are very important; our exam-
ples only weakly illustrate their power and scope. There surely would be some
overall purpose to finding ships; there might be collateral information that there
were submarines, barges, or small craft in the harbor, and so forth. CAT scans
would be used with several diagnostic goals in mind and an associated medical his-
tory available. Goals and knowledge are high-level capabilities that can guide
visual activities, and a visual system should be able to take advantage of them.

(a) (b}

Fig. 1.1 Finding ships in an aerial photograph. (a) The photograph; (b) a corresponding
map; (c) the dock area of the photograph; (d) registered map and image, with ship location.

2 Ch. 1 Computer Vision

(d)

lc)

Fig. 1.1 (cont.)

Even such elaborated tasks are very special ones and in their way easier to
think about than the commonplace visual perceptions needed to pick up a baby,
cross a busy street, or arrive at a party and quickly ‘“‘see” who you know, your
host’s taste in decor, and how long the festivities have been going on. All these
tasks require judgment and large amounts of knowledge of objects in the world,
how they look, and how they behave. Such high-level powers are so well in-
tegrated into ‘“vision’’ as to be effectively inseparable.

Knowledge and goals are only part of the vision story. Vision requires many
low-level capabilities we often take for granted; for example, our ability to extract
intrinsic images of “‘lightness,”” *“‘color,’” and ‘“‘range.’” We perceive black as black
in a complex scene even when the lighting is such that some black patches are
reflecting more light than some white patches. Similarly, perceived colors are not
related simply to the wavelengths of reflected light; if they were, we would con-
sciously see colors changing with illumination. Stereo fusion (stereopsis) is a low-
level facility basic to short-range three-dimensional perception.

An important low-level capability is object perception: for our purposes it does
not really matter if this talent is innate, (‘‘hard-wired’’), or if it is developmental or
even learned (“‘compiled-in’’). The fact remains that mature biological vision sys-
tems are specialized and tuned to deal with the relevant objects in their environ-

Sec. 1.2 High-Level and Low-Level Capabilities 3

(a) (c)

(d)

Fig. 1.2 Finding a kidney in a computer-aided tomographic scan. (a) One slice of scan data;
(b) prototype kidney model; (c) model fitting; (d) resulting kidney and spinal cord instances.

ments. Further specialization can often be learned, but it is built on basic immut-
able assumptions about the world which underlie the vision system.

A basic sort of object recognition capability is the ‘‘figure/ground’’ discrimi-
nation that separates objects from the ‘“background.”” Other basic organizational
predispositions are revealed by the “‘Gestalt laws’’ of clustering, which demon-
strate rules our vision systems use to form simple arrays of stimuli into more
coherent spatial groups. A dramatic example of specialized object perception for

Ch. 1 Computer Vision

human beings is revealed in our ‘‘face recognition’’ capability, which seems to oc-
cupy a large volume of brain matter. Geometric visual illusions are more surprising
symptoms of nonintuitive processing that is performed by our vision systems, ei-
ther for some direct purpose or as a side effect of its specialized architecture. Some
other illusions clearly reflect the intervention of high-level knowledge. For in-
stance, the familiar ““Necker cube reversal’’ is grounded in our three-dimensional
models for cubes.

Low-level processing capabilities are elusive; they are unconscious, and they
are not well connected to other systems that allow direct introspection. For in-
stance, our visual memory for images is quite impressive, yet our quantitative ver-
bal descriptions of images are relatively primitive. The biological visual
““hardware’’ has been developed, honed, and specialized over a very long period.
However, its organization and functionality is not well understood except at ex-
treme levels of detail and generality —the behavior of small sets of cat or monkey
cortical cells and the behavior of human beings in psychophysical experiments.

Computer vision is thus immediately faced with a very difficult problem,; it
must reinvent, with general digital hardware, the most basic and yet inaccessible
talents of specialized, parallel, and partly analog biological visual systems. Figure
1.3 may give a feeling for the problem; it shows two visual renditions of a familiar
subject. The inset is a normal image, the rest is a plot of the intensities (gray levels)
in the image against the image coordinates. In other words, it displays information

Fig. 1.3 Two representations of an
image. One is directly accessible to our
low-level processes; the other is not:

Sec. 1.2 High-Level and Low-Level Capabilities 5

with ‘““height’” instead of ‘‘light.”” No information is lost, and the display is an
image-like object, but we do not immediately see a face in it. The initial representa-
tion the computer has to work with is no better; it is typically just an array of
numbers from which human beings could extract visual information only very
painfully. Skipping the low-level processing we take for granted turns normally
effortless perception into a very difficult puzzle.

Computer vision is vitally concerned with both low-level or “‘early proc-
essing”’ issues and with the high-level and ‘“‘cognitive’ use of knowledge. Where
does vision leave off and reasoning and motivation begin? We do not know pre-
cisely, but we firmly believe (and hope to show) that powerful, cooperating, rich
representations of the world are needed for any advanced vision system. Without
them, no system can derive relevant and invariant information from input that is
beset with ever-changing lighting and viewpoint, unimportant shape differences,
noise, and other large but irrelevant variations. These representations can remove
some computational load by predicting or assuming structure for the visual world.

Finally, if a system is to be successful in a variety of tasks, it needs some .
““meta-level’’ capabilities: it must be able to model and reason about its own goals
and capabilities, and the success of its approaches. These complex and related
models must be manipulated by cognitive-like techniques, even though introspec-
tively the perceptual process does not always ‘‘feel’’ to us like cognition.

Computer Vision Systems

1.3 A RANGE OF REPRESENTATIONS

Visual perception is the relation of visual input to previously existing models of the
world. There is a large representational gap between the image and the models
(‘‘ideas,” ‘‘concepts’’) which explain, describe, or abstract the image information.
To bridge that gap, computer vision systems usually have a (loosely ordered) range
of representations connecting the input and the “‘output’ (a final description, deci-
sion, or interpretation). Computer vision then involves the design of these inter-
mediate representations and the implementation of algorithms to construct them
and relate them to one another.

We broadly categorize the representations into four parts (Fig. 1.4) which
correspond with the organization of this volume. Within each part there may be
several layers of representation, or several cooperating representations. Although
the sets of representations are loosely ordered from “‘early’” and “‘low-level”’ sig-
nals to “‘late’’ and “‘cognitive’’ symbols, the actual flow of effort and information
between them is not unidirectional. Of course, not all levels need to be used in
each computer vision application; some may be skipped, or the processing may
start partway up the hierarchy or end partway down it.

Generalized images (Part I) are iconic (image-like) and analogical representa-
tions of the input data. Images may initially arise from several technologies.

6 Ch. 1 Computer Vision

s

(P

Y

e

AX

Sec. 1.3 A Range of Representations

(a)

Fig. 1.4 Examples of the four categories of rep-
resentation used in computer vision. (a) Iconic; (b)
segmented; (c) geometric; (d) relational.

(c)

Domain-independent processing can produce other iconic representations more
directly useful to later processing, such as arrays of edge elements (gray-level
discontinuities). Intrinsic images can sometimes be produced at this level—they re-
veal physical properties of the imaged scene (such as surface orientations, range,
or surface reflectance). Often parallel processing can produce generalized images.
More generally, most ‘‘low-level”” processes can be implemented with parallel
computation.

Segmented images (Part 1I) are formed from the generalized image by gather-
ing its elements into sets likely to be associated with meaningful objects in the
scene. For instance, segmenting a scene of planar polyhedra (blocks) might result
in a set of edge segments corresponding to polyhedral edges, or a set of two-

Tree 2

Bushes

Grass

(d)
Fig. 1.4 (cont.)

dimensional regions in the image corresponding to polyhedral faces. In producing
the segmented image, knowledge about the particular domain at issue begins to be
important both to save computation and to overcome problems of noise and inade-
quate data. In the planar polyhedral example, it helps to know beforehand that the
line segments must be straight. Texture and motion are known to be very important
in segmentation, and are currently topics of active research; knowledge in these
areas is developing very fast.

Geometric representations (Part III) are used to capture the all-important idea

Ch. 1 Computer Vision

of two-dimensional and three-dimensional shape. Quantifying shape is as impor-
tant as it is difficult. These geometric representations must be powerful enough to
support complex and general processing, such as ‘‘simulation” of the effects of
lighting and motion. Geometric structures are as useful for encoding previously
acquired knowledge as they are for re-representing current visual input. Computer
vision requires some basic mathematics; Appendix 1 has a brief selection of useful
techniques.

Relational models (Part IV) are complex assemblages of representations used
to support sophisticated high-level processing. An important tool in knowledge
representation is semantic nets, which can be used simply as an organizational con-
venience or as a formalism in their own right. High-level processing often uses
prior knowledge and models acquired prior to a perceptual experience. The basic
mode of processing turns from constructing representations to maiching them. At
high levels, propositional representations become more important. They are made
up of assertions that are true or false with respect to a model, and are manipulated
by rules of inference. Inference-like techniques can also be used for planning,
which models situations and actions through time, and thus must reason about
temporally varying and hypothetical worlds. The higher the level of representa-
tion, the more marked is the flow of control (direction of attention, allocation of
effort) downward to lower levels, and the greater the tendency of algorithms to ex-
hibit serial processing. These issues of control are basic to complex information
processing in general and computer vision in particular; Appendix 2 outlines some
specific control mechanisms.

Figure 1.5 illustrates the loose classification of the four categories into ana-
logical and propositional representations. We consider generalized and segmented
images as well as geometric structures to be analogical models. Analogical models
capture directly the relevant characteristics of the represented objects, and are
manipulated and interrogated by simulation-like processes. Relational models are
generally a mix of analogical and propositional representations. We develop this
distinction in more detail in Chapter 10.

1.4 THE ROLE OF COMPUTERS

The computer is a congenial tool for research into visual perception.

« Computers are versatile and forgiving experimental subjects. They are easily
and ethically reconfigurable, not messy, and their workings can be scrutinized
in the finest detail.

» Computers are demanding critics. Imprecision, vagueness, and oversights are
not tolerated in the computer implementation of a theory.

« Computers offer new metaphors for perceptual psychology (also neurology,
linguistics, and philosophy). Processes and entities from computer science pro-
vide powerful and influential conceptual tools for thinking about perception
and cognition.

« Computers can give precise measurements of the amount of processing they

Sec. 1.4 The Role of Computers 9

$31N10N.118

feuoiiejay

'$911039782 [rUONRIUSSaIdal
J18Bq INOJ FUIMOUS “WIISAS UOISIA Jaindwod Xajdwod e jo oseq agpojmouy oy <1 -Sig

saunianas

abew
21438W09D)

paluawbag

sjapow
|Jeuoiisodoad
f1edibojeuy

s|apow

jesibojeuy

aseq
abpajmouy

abew

pazi|elausn

10

syoel) AJnuspl

sa1sAyd orwoly soponted mau puryg g3 syoeIy 9po1IR] so1sdyd
uonejuaLlo [eneds Ad0os0101tIU01199[g
£11A1122UU0D [RINDN JO uoneuIuwIaag 14317 SUOINAN AUWOIBUBOINAN
S[opow palnnng suonisoduwod
S[apow [BITWAYD) IB[NII[OW JO' SISA[eUyY SaNISuUap uonodg SI[NIIOIA Ansiway)
sawosowoIy))
adeys jo s[epop Surdfjohiey 1ydry sureys urlolg QDTN
£3010140 “‘A30[0Ureg Adoasorruuono9[g S[19D
Juruuerd jeaH
jusuweal) pue saneladQ sadojosy
uoneul10j agewl Jo S[APON sanew punosenn OIOBA
S[opOW [BOIWOIBUY -louqe jo sisougei(g shel-y suedlio Apog [BIIPa I
sofewr paaordwy sjaue[d
sadeys Jo s[opowl [ed1119WO030D) uonisodwos [earwayd Y81y slelg Awouonsy
SIsA[eue [eonoe],
douepIing JISSIN
Buiddg
uonewioj agew! JoO S[OPOA uonoIpald I2YIeap Jepey
sadeys Jo S[OpoW [eI1113W0L) sasA[eue 20IN0SY paleljug "019 ‘s8uip[ing
sdepy soewl psaordwy s8I ulerIa], sagewl [eloy
Y31 parnionng
sy S1ied [edTUBYISN
$193[qo woiy 1Yy3y SYSE] [BLISNPU] S2UD0S 100pUI
JO uo1129[JaJ 3] JO S[OPO U3S ur §103(qO sAel-¥ $9UI2S JoopIno
§193[q0 JO S[9pO 3QLI9Sap 10 AJnuapy W3] [EUOISUSWIP-931Y I, sonoqoy
§221105 ISpajMouy SyspJ Anopopy §122190 uwoq

SASYL SISATYNY IDVWI 40 SI1dWVX3

L'L 3qel

LL

do. A computer implementation places an upper limit on the amount of compu-
tation necessary for a task.

« Computers may be used either to mimic what we understand about human per-
ceptual architecture and processes, or to strike out in different directions to try
to achieve similar ends by different means.

« Computer models may be judged either by their efficacy for applications and
on-the-job performance or by their internal organization, processes, and
structures—the theory they embody.

1.5 COMPUTER VISION RESEARCH AND APPLICATIONS

12

“‘Pure”” computer vision research often deals with relatively domain-independent
considerations. The results are useful in a broad range of contexts. Almost always
such work is demonstrated in one or more applications areas, and more often than
not an initial application problem motivates consideration of the general problem.
Applications of computer vision are exciting, and their number is growing as com-
puter vision becomes better understood. Table 1.1 gives a partial list of “‘classical”
and current applications areas.

Within the organization outlined above, this book presents many specific
ideas and techniques with general applicability. It is meant to provide enough basic
knowledge and tools to support attacks on both applications and research topics.

Ch. 17 Computer Vision

GENERALIZED
IMAGES

Knowledge
base

Analogical/
propositional
models

Analogical
models

Relational
structures

Geometric
structures

Generalized
image

Segmented
image

Early
processing

Image
formation

14

The first step in the vision process is image formation. Images may arise from a
variety of technologies. For example, most television-based systems convert
reflected light intensity into an electronic signal which is then digitized; other sys-
tems use more exotic radiations, such as x-rays, laser light, ultrasound, and heat.
The net result is usually an array of samples of some kind of energy.

The vision system may be entirely passive, taking as input a digitized image
from a microwave or infrared sensor, satellite scanner, or a planetary probe, but
more likely involves some kind of active imaging. Automated active imaging sys-
tems may control the direction and resolution of sensors, or regulate and direct
their own light sources. The light source itself may have special properties and
structure designed to reveal the nature of the three-dimensional world; an example
is to use a plane of light that falls on the scene in a stripe whose structure is closely
related to the structure of opaque objects. Range data for the scene may be pro-
vided by stereo (two images), but also by triangulation using light-stripe tech-
niques or by ‘‘spotranging’’ using laser light. A single hardware device may deliver
range and multispectral reflectivity (‘‘color’’) information. The image-forming
device may also perform various other operations. For example, it may automati-
cally smooth or enhance the image or vary its resolution.

The generalized image is a set of related image-like entities for the scene. This
set may include related images from several modalities, but may also include the
results of significant processing that can extract intrinsic images. An intrinsic image
is an “‘image,”’ or array, of representations of an important physical quantity such
as surface orientation, occluding contours, velocity, or range. Object color, which
is a different entity from sensed red—green—blue wavelengths, is an intrinsic
quality. These intrinsic physical qualities are extremely useful; they can be related
to physical objects far more easily than the original input values, which reveal the
physical parameters only indirectly. An intrinsic image is a major step toward scene
understanding and usually represents significant and interesting computations.

Part I Generalized Images

Part |

The information necessary to compute an intrinsic image is contained in the
input image itself, and is extracted by ‘“‘inverting”’ the transformation wrought by
the imaging process, the reflection of radiation from the scene, and other physical
processes. An example is the fusion of two stereo images to yield an intrinsic range
image. Many algorithms to recover intrinsic images can be realized with parallel
implementations, mirroring computations that may take place in the lower neuro-
logical levels of biological image processing.

All of the computations listed above benefit from the idea of resofution pyra-
mids. A pyramid is a generalized image data structure consisting of the same image
at several successively increasing levels of resolution. As the resolution increases,
more samples are required to represent the increased information and hence the
successive levels are larger, making the entire structure look like a pyramid.
Pyramids allow the introduction of many different coarse-to-fine image-resolution
algorithms which are vastly more efficient than their single-level, high-resolution-
only counterparts.

Ceneralized Images 15

Image
Formation 2

2.1 IMAGES

Image formation occurs when a sensor registers radiation that has interacted with

physical objects. Section 2.2 deals with mathematical models of images and image

formation. Section 2.3 describes several specific image formation technologies.
The mathematical model of imaging has several different components.

1. An image functionis the fundamental abstraction of an image.
2. A geometrical model describes how three dimensions are projected into two.

3. A radiometrical model shows how the imaging geometry, light sources, and
reflectance properties of objects affect the light measurement at the sensor.

4. A spatial frequency model describes how spatial variations of the image may
be characterized in a transform domain.

5. A color model describes how different spectral measurements are related to im-
age colors.

6. A digitizing model describes the process of obtaining discrete samples.

This material forms the basis of much image-processing work and is
developed in much more detail elsewhere, e.g., [Rosenfeld and Kak 1976; Pratt
1978]. Our goals are not those of image processing, so we limit our discussion to a
summary of the essentials.

The wide range of possible sources of samples and the resulting different
implications for later processing motivate our overview of specific imaging tech-
niques. Our goal is not to provide an exhaustive catalog, but rather to give an idea
of the range of techniques available. Very different analysis techniques may be
needed depending on how the image was formed. Two examples illustrate this

17

point. If the image is formed by reflected light intensity, as in a photograph, the im-
age records both light from primary light sources and (more usually) the light
reflected off physical surfaces. We show in Chapter 3 that in certain cases we can
use these kinds of images together with knowledge about physics to derive the
orientation of the surfaces. If, on the other hand, the image is a computed tomo-
gram of the human body (discussed in Section 2.3.4), the image represents tissue
density of internal organs. Here orientation calculations are irrelevant, but general
segmentation techniques of Chapters 4 and 5 (the agglomeration of neighboring
samples of similar density into units representing organs) are appropriate.

2.2 IMAGE MODEL

18

Sophisticated image models of a statistical flavor are useful in image processing
[Jan 1981]. Here we are concerned with more geometrical considerations.

2.2.1 Image Functions

An image function is a mathematical representation of an image. Generally, an im-
age function is a vector-valued function of a small number of arguments. A special
case of the image function is the digital (discrete) image function, where the argu-
ments to and value of the function are all integers. Different image functions may
be used to represent the same image, depending on which of its characteristics are
important. For instance, a camera produces an image on black-and-white film
which is usually thought of as a real-valued function (whose value could be the
density of the photographic negative) of two real-valued arguments, one for each
of two spatial dimensions. However, at a very small scale (the order of the film
grain) the negative basically has only two densities, ‘‘opaque’” and ‘‘transparent.”’

Most images are presented by functions of two spatial variables
f(x) = f(x, y), where f(x, y) is the brightness of the gray level of the image at a
spatial coordinate (x, y). A multispectral image f is a vector-valued function with
components (f} ... f,). One special multispectral image is a color image in which,
for example, the components measure the brightness values of each of three
wavelengths, that is,

f(x) e fre.d(X) ,fblue(x)’fgreen (X)

Time-varying images f(x,¢) have an added temporal argument. For special
three-dimensional images, x = (x, y, z). Usually, both the domain and range of f
are bounded. -

An important part of the formation process is the conversion of the image
representation from a continuous function to a discrete function; we need some
way of describing the images as samples at discrete points. The mathematical tool
we shall use is the delta function.

Formally, the delta function may be defined by

Ch. 2 Image Formation

point. If the image is formed by reflected light intensity, as in a photograph, the im-
age records both light from primary light sources and (more usually) the light
reflected off physical surfaces. We show in Chapter 3 that in certain cases we can
use these kinds of images together with knowledge about physics to derive the
orientation of the surfaces. If, on the other hand, the image is a computed tomo-
gram of the human body (discussed in Section 2.3.4), the image represents tissue
density of internal organs. Here orientation calculations are irrelevant, but general
segmentation techniques of Chapters 4 and 5 (the agglomeration of neighboring
samples of similar density into units representing organs) are appropriate.

2.2 IMAGE MODEL

18

Sophisticated image models of a statistical flavor are useful in image processing
[Jan 1981]. Here we are concerned with more geometrical considerations.

2.2.1 Image Functions

An image function is a mathematical representation of an image. Generally, an im-
age function is a vector-valued function of a small number of arguments. A special
case of the image function is the digital (discrete) image function, where the argu-
ments to and value of the function are all integers. Different image functions may
be used to represent the same image, depending on which of its characteristics are
important. For instance, a camera produces an image on black-and-white film
which is usually thought of as a real-valued function (whose value could be the
density of the photographic negative) of two real-valued arguments, one for each
of two spatial dimensions. However, at a very small scale (the order of the film
grain) the negative basically has only two densities, ‘‘opaque’” and ‘‘transparent.”’

Most images are presented by functions of two spatial variables
f(x) = f(x, y), where f(x, y) is the brightness of the gray level of the image at a
spatial coordinate (x, y). A multispectral image f is a vector-valued function with
components (f} ... f,). One special multispectral image is a color image in which,
for example, the components measure the brightness values of each of three
wavelengths, that is,

f(x) e fre.d(X) ,fblue(x)’fgreen (X)

Time-varying images f(x,¢) have an added temporal argument. For special
three-dimensional images, x = (x, y, z). Usually, both the domain and range of f
are bounded. -

An important part of the formation process is the conversion of the image
representation from a continuous function to a discrete function; we need some
way of describing the images as samples at discrete points. The mathematical tool
we shall use is the delta function.

Formally, the delta function may be defined by

Ch. 2 Image Formation

Sec. 2.2

0Owhenx # 0

co when x =0 2.1

3(x) =

f d(x)dx =1
If some care is exercised, the delta function may be interpreted as the limit of a set

of functions:
8(x) = lim &,(x)

n—tco

where

n if|x}<L

2n
8. =g otherwise (2.2)
A useful property of the delta function is the sifting property:
ff(x)S(x—a)dx=f(a) (2.3)

A continuous image may be multipled by a two-dimensional ‘‘comb,” or array of
delta functions, to extract a finite number of discrete samples (one for each delta
function). This mathematical model of the sampling process will be useful later.

2.2.2 Imaging Geometry

Monocular Imaging

Point projection is the fundamental model for the transformation wrought by
our eye, by cameras, or by numerous other imaging devices. To a first-order ap-
proximation, these devices act like a pinhole camera in that the image results from
projecting scene points through a single point onto an image plane (see Fig. 2.1). In
Fig. 2.1, the image plane is behind the point of projection, and the image is re-
versed. However, it is more intuitive to recompose the geometry so that the point
of projection corresponds to a viewpoint behind the image plane, and the image oc-
curs right side up (Fig. 2.2). The mathematics is the same, but now the viewpoint
is +fon the z axis, with z = 0 plane being the image plane upon which the image is
projected. (f is sometimes called the focal length in this context use of fi
this section should not be co As the
imaged object approaches the viewpoint, its projection gets bigger (try moving
your hand toward your eye). To specify how its imaged size changes, one needs
only the geometry of similar triangles. In Fig. 2.2b y’, the projected height of the
object, is related to its real height y, its position z, and the focal length by

’

L - L 2.4)
P sl

image Model 19

20

4
/ //
// <
/ s
/ 7
/ 7
4 g o
4 / e
s -
Ve ~
// i L
4 ~
/ o
v
17~
= x
P
- /

Fig. 2.1 A geometric camera model.
The case for x’ is treated similarly:

X - X (2.5)
Pz J
The projected image has z = 0 everywhere. However, projecting away the z com-
ponent is best considered a separate transformation; the projective transform is
usually thought to distort the zcomponent just as it does the xand y. Perspective dis-
tortion thus maps (x, y, z) to

e 2.6)
Flemgliof = ziifiz

The perspective transformation yields orthographic projection as a special case
when the viewpoint is the point at infinity in the z direction. Then all objects are pro-
jected onto the viewing plane with no distortion of their x and y coordinates.

The perspective distortion yields a three-dimensional object that has been
“‘pushed out of shape’’; it is more shrunken the farther it is from the viewpoint.
The z component is not available directly from a two-dimensional image, being
identically equal to zero. In our model, however, the distorted z component has
information about the distance of imaged points from the viewpoint. When this
distorted object is projected orthographically onto the image plane, the result is a

(x,y,2) =

_perspective picture. Thus, to achieve the effect of railroad tracks appearing to come

together in the distance, the-perspective distortion transforms-the tracks so that
they do come together (at a point at infinity)! The simple orthographic projection
that projects away the z component unsurprisingly preserves this distortion.
Several properties of the perspective transform are of interest and are investigated
further in Appendix 1.

Binocular Imaging

Basic binocular imaging geometry is shown in Fig. 2.3a. For simplicity, we

Ch. 2 Image Formation

(a)

e, 1,20)

(b}

Fig. 2.2 (a) Camera model equivalent to that of Fig. 2.1; (b) definition of terms.

use a system with two viewpoints. In this model the eyes do not converge, they are
aimed in parallel at the point at infinity in the —z direction. The depth information
about a point is then encoded only by its different positions (disparity) in the two
image planes.

With the stereo arrangement of Fig. 2.3,

. x=a)f
x——~————~f__z
o x+df
s 7

where (x’, y') and (x", y”) are the retinal coordinates for the world point imaged

Sec. 2.2 Image Model

21

22

A o
{/ x=0
x'"=0
f i
Image Fig. 2.3 A nonconvergent binocular
plane imaging system.

through each eye. The baseline of the binocular system is 2d. Thus
(f —2)x' = (x — d)f 2.7
F-2)x"=&x+df (2.8)
Subtracting (2.7) from (2.8) gives
(f — 2)(x" — x") = 2df

or

z=f—x— (2.9)

o x"
Thus if points can be matched to determine the disparity (x” — x’) and the base-
line and focal length are known, the zcoordinate is simple to calculate.

If the system can converge its directions of view to a finite distance, conver-
gence angle may also be used to compute depth. The hardest part of extracting
depth information from stereo is the matching of points for disparity calculations.
““Light striping’’ is a way to maintain geometric simplicity and also simplify match-
ing (Section 2.3.3).

2.2.3 Reflectance

Terminology

A basic aspect of the imaging process is the physics of the reflectance of ob-
jects, which determines how their ‘‘brightness’’ in an image depends on their in-
herent characteristics and the geometry of the imaging situation. A clear presenta-
tion of the mathematics of reflectance is given in [Horn and Sjoberg 1978; Horn
1977]. Light energy flux ® is measured in watts; ‘‘brightness’” is measured with
respect to area and solid angle. The radiant intensity I of a source is the exitant flux
per unit solid angle:

I= . watts/steradian (2.10)
dw

Ch. 2 Image Formation

Sec. 2.2

Here dw is an incremental solid angle. The solid angle of a small area d4 measured
perpendicular to a radius ris given by

do = == (2.11)

in units of steradians. (The total solid angle of a sphere is 47.)
The irradiance is flux incident on a surface element d4:

i 4e 2
E ey watts/meter (2.12)
and the flux exitant from the surface is defined in terms of the radiance L, which is
the flux emitted per unit foreshortened surface area per unit solid angle:
L= ol Y watts/ (meter? steradian) (2.13)
dA cosBdw ’
where # is the angle between the surface normal and the direction of emission.
Image irradiance fis the “‘brightness’ of the image at a point, and is propor-
tional to scene radiance. A “‘gray-level’’ is a quantized measurement of image irra-
diance. Image irradiance depends on the reflective properties of the imaged sur-
faces as well as on the illumination characteristics. How a surface reflects light
depends on its micro-structure and physical properties. Surfaces may be matte
(dull, flat), specular (mirrorlike), or have more complicated reflectivity charac-
teristics (Section 3.5.1). The reflectance r of a surface is given quite generally by its
Bidirectional Reflectance Distribution Function (BRDF) [Nicodemus et al. 1977].
The BRDF is the ratio of reflected radiance in the direction towards the viewer to
the irradiance in the direction towards a small area of the source.

Effects of Geometry on an Imaging System

Let us now analyze a simple image-forming system shown in Fig. 2.4 with the
objective of showing how the gray levels are related to the radiance of imaged ob-
jects. Following [Horn and Sjoberg 1978], assume that the imaging device is prop-
erly focused; rays originating in the infinitesimal area d4, on the object’s surface
are projected into some area dA, in the image plane and no rays from other por-
tions of the object’s surface reach this area of the image. The system is assumed to
be an ideal one, obeying the laws of simple geometrical optics.

. The energy flux/unit area that impinges on the sensor is defined to be E,. To
show how E|, is related to the scene radiance L, first consider the flux arriving at
the lens from a small surface area d4, . From (2.13) this is given as

d® = dd, [Leoshdw (2.14)
This flux is assumed to arrive at an area d4, in the imaging plane. Hence the irradi-
ance is given by [using Eq. (2.12)]

2

= 2.15
A (2.15)

Now relate d4, to dA, by equating the respective solid angles as seen from the
lens; that is [making use of Eq. (2.12)1,

Image Model 23

24

D IMAGE
PLAN
¢ dAp
LENS @

-;14__ tp — | Fig. 2.4 Geometry of an image
forming system.

cosé coso
= dA (2.16)

o ol

Substituting Egs. (2.16) and (2.14) into (2.15) gives

dA

E = cosa

f 2
};] J Ldw .17

The integral is over the solid angle seen by the lens. In most instances we can as-
sume that L is constant over this angle and hence can be removed from the in-

_ tegral. Finally, approximate dw by the area of the lens foreshortened by cos &, that

is, (7/4) D? cos « divided by the distance f,/cos « squared:

3
_ T 2005«
dw = TD f—oz (2.18)
so that finally
2
E= B4 ¥ o) costam L (2.19)
o

The interesting results here are that (1) the image irradiance is proportional to the
scene radiance L, and (2) the factor of proportionality includes the fourth power of
the off-axis angle «. Ideally, an imaging device should be calibrated so that the
variation in sensitivity as a function of « is removed.

2.2.4 Spatial Properties

The Fourier Transform

An image is a spatially varying function. One way to analyze spatial variations
is the decomposition of an image function into a set of orthogonal functions, one
such set being the Fourier (sinusoidal) functions. The Fourier transform may be
used to transform the intensity image into the domain of spatial frequency. For no-

Ch. 2 Image Formation

Sec. 2.2

tational convenience and intuition, we shall generally use as an example the con-
tinuous one-dimensional Fourier transform. The results can readily be extended to
the discrete case and also to higher dimensions [Rosenfeld and Kak 1976]. In two
dimensions we shall denote transform domain coordinates by (u, v). The one-
dimensional Fourier transform, denoted . , is defined by

F Gl = Fu)

where
“+oo
Fu) = [fGexp (—j2mux)dx (2.20)

where j = +/(—1). Intuitively, Fourier analysis expresses a function as a sum of
sine waves of different frequency and phase. The Fourier transform has an inverse
~1[F(u)] = f(x). This inverse is given by

flx) = fF(u)exp (j2mux) du (2.21)

The transform has many useful properties, some of which are summarized in Table
2.1. Common one-dimensional Fourier transform pairs are shown in Table 2.2.

The transform F(u) is simply another representation of the image function.
Its meaning can be understood by interpreting Eq. (2.21) for a specific value of x,
say Xg .

fx) = fF(u)exp (j2muxg) du (2.22)

This equation states that a particular point in the image can be represented by
a weighted sum of complex exponentials (sinusoidal patterns) at different spatial
frequencies w. F(u) is thus a weighting function for the different frequencies. Low-
spatial frequencies account for the “‘slowly’’ varying gray levels in an image, such
as the variation of intensity over a continuous surface. High-frequency com-
ponents are associated with “‘quickly varying’’ information, such as edges. Figure
2.5 shows the Fourier transform of an image of rectangles, together with the effects
of removing low- and high-frequency components.

The Fourier transform is defined above to be a continuous transform.
Although it may be performed instantly by optics, a discrete version of it, the “‘fast
Fourier transform,”’ is almost universally used in image processing and computer
vision. This is because of the relative versatility of manipulating the transform in
the digital domain as compared to the optical domain. Image-processing texts, e.g.,
[Pratt 1978; Gonzalez and Wintz 1977] discuss the FFT in some detail;, we content
ourselves with an algorithm for it (Appendix 1).

The Convolution Theorem

Convolution is a very important image-processing operation, and is a basic
operation of linear systems theory. The convolution of two functions fand gis a
function A of a displacement y defined as

h) = frg= [7)g(y — x)ax (2.23)

Image Model 25

Table 2.1

PROPERTIES OF THE FOURIER TRANSFORM

Spatial Domain Frequency Domain
fix) F(u) =5[f(x)]
g(x) Gu) =5 [g(x)]

(1) Linearity
o1 f (x) + cag (x)
¢1,cz scalars

(2) Scaling
flax)

(3) Shifting
flx — xq)

(4) Symmetry
F(x)

(5) Conjugation
Fr(x)

(6) Convolution

ciF(u) + c2G(u)

1 fu
lal | a
e TFop(y)

f=u)

F*(=u)

hx) = frg = [£ G = x) a' | Fw)G)

(7) Differentiation

d"{(x)

dx"

Qmju)" F(u)

Parseval’s theorem:

J1ropax = [1F@ pae

[re*) ax = [F)6*© as

Fx)

F(&)

Real(R)

Real part even (RE)
Imaginary part odd (10)

Imaginary ()
RE,IO
RE,IE

RE

RO

IE

10
Complex even (CE)

CO

RO,IE

R

I
RE
10
1IE
RO
CE
Cco

26

Ch. 2 Image Formation

Table 2.2

FOURIER TRANSFORM PAIRS

fix) Fg)
Rectangle function Sinc function
1 1
£l rl)
2 Z
Rect (x) i
Sinc (&) = i;‘g’fﬁ
Triangle function
1
i D
7 ; Sinc* (&)
Exponential
2a
PGl /Q‘_ (2.".5)2
|
Gaussian
eA-c:x’ LS L 1152
a o«

Unit impulse 8(x)

Unit step

1
S (oL
St

Sec. 2.2 Image Model

Table2.2 (cont.)

Comb function A z siE-2)
= 8 (x — nxg) S *
n=—oo 1 T
2, X Xo 2xg 2 I S 2
Xg Xp Xo Xo
€os 2Ty X

SUB (E—wp) + 8 (E+ wp)]

\\J I | I

sin 2mew, x 7/ 178 (E=wg) +3 (5 + wg)]

N
TN

Intuitively, one function is ‘‘swept past’’ (in one dimension) or ‘‘rubbed over’’ (in
two dimensions) the other. The value of the convolution at any displacement is the
integral of the product of the (relatively displaced) function values. One common
phenomenon that is well expressed by a convolution is the formation of an image
by an optical system. The system (say a camera) has a ‘‘point-spread function,”
which is the image of a single point. (In linear systems theory, this is the “‘impulse
response,”’ or response to a delta-function input.) The ideal point-spread function
is, of course, a point. A typical point-spread function is a two-dimensional Gaus-
sian spatial distribution of intensities, but may include such phenomena as
diffraction rings. In any event, if the camera is modeled as a linear system (ignor-

Fig. 2.5 (on facing page) (a) An image, f(x, »). (b) A rotated version of (a), filtered to enhance high spatial
frequencies. (c) Similar to (b), but filtered to enhance low spatial frequencies. (d), (e}, and (f) show the loga-
rithm of the power spectrum of {(a), (b), and (c). The power spectrum is the log square modulus of the Fourier
transform F (u, v). Considered in polar coordinates (p, #), points of small p correspond to low spatial frequencies
(“‘slowly-varying™* intensities), large p to high spatial frequencies contributed by “‘fast™ variations such as step
edges. The power at (p, #) is determined by the amount of intensity variation at the frequency p occurring at the
angle 4.

28 Ch. 2 Image Formation

(a) (b)

(c)

(e)

Sec. 2.2 Image Model 29

30

ing the added complexity that the point-spread function usually varies over the
field of view), the image is the convolution of the point-spread function and the in-
put signal. The point-spread function is rubbed over the perfect input image, thus

blurring it.

Convolution is also a good model for the application of many other linear
operators, such as line-detecting templates. It can be used in another guise (called
correlation) to perform matching operations (Chapter 3) which detect instances of
subimages or features in an image.

In the spatial domain, the obvious implementation of the convolution opera-
tion involves a shift-multiply—integrate operation which is hard to do efficiently.
However, multiplication and convolution are “‘transform pairs,’” so that the calcu-
lation of the convolution in one domain (say the spatial) is simplified by first
Fourier transforming to the other (the frequency) domain, performing a multipli-
cation, and then transforming back.

The convolution of fand g in the spatial domain is equivalent to the point-
wise product of Fand G in the frequency domain,

$(f+g) = FG (2.24)

We shall show this in a manner similar to [Duda and Hart 1973]. First we prove
the shift theorem. If the Fourier transform of f (x) is F (1), defined as

F(u) = ff(x) exp [— j2m (ux)ldx (2.25)

then
Flfx —a)l = ff(x-a) exp [— j2m (ux)ldx (2.26)

X

changing variables so that x' = x — gand dx = dx’
= ff(X') exp { — j2wlu(x’ + a)lldx’ (2.27)
&

Now expl — j2wu(x' + a)]l = exp (— j2mua) exp (— j2mux’), where the first
term is a constant. This means that

Sfx — a)l =exp(— j2mua) F(u) (shift theorem)
Now we are ready to show that 5[(x)+g (x)] = F(u) G (u).
5 (f+g) = f f f)gly — x)) exp (— j2muy) dx dy (2.28)

= ff(x) fg(y — x) exp (— j2muy) dy}dx (2.29)

Recognizing that the terms in braces represent § [g (y — x)] and applying the shift
theorem, we obtain

§(f+g) = [fx)exp (= j2mux)G () dx (2.30)

= F(u)G(u) (2.31)

Ch. 2 Image Formation

2.2.5 Color

Not all images are monochromatic; in fact, applications using multispectral images
are becoming increasingly common (Section 2.3.2). Further, human beings intui-
tively feel that color is an important part of their visual experience, and is useful or
even necessary for powerful visual processing in the real world. Color vision pro-
vides a host of research issues, both for psychology and computer vision. We
briefly discuss two aspects of color vision: color spaces and color perception.
Several models of the human visual system not only include color but have proven
useful in applications [Granrath 1981].

Color Spaces

Color spaces are a way of organizing the colors perceived by human beings. It
happens that weighted combinations of stimuli at three principal wavelengths are
sufficient to define almost all the colors we perceive. These wavelengths form a na-
tural basis or coordinate system from which the color measurement process can be
described. Color perception is not related in a simple way to color measurement,
however.

Color is a perceptual phenomenon related to human response to different
wavelengths in the visible electromagnetic spectrum [400 (blue) to 700 nanometers
(red); a nanometer (nm) is 10~° meter]. The sensation of color arises from the
sensitivities of three types of neurochemical sensors in the retina to the visible
spectrum. The relative response of these sensors is shown in Fig. 2.6. Note that
each sensor responds to a range of wavelengths. The illumination source has its
own spectral composition f(A) which is modified by the reflecting surface. Let
r(\) be this reflectance function. Then the measurement R produced by the “‘red”’
sensor is given by

R=[r0)rMn0) ax (2.32)

So the sensor output is actually the integral of three different wavelength-

dependent components: the source f, the surface reflectance r, and the sensor Ay
Surprisingly, only weighted combinations of three delta-function approxima-

tions to the different f£(A) 4 (1), thatis, §(Ag), (X)), and 8 (A z), are necessary to

Relative sensitivity

Sec. 2.2

400 500 600 700

Fig. 2.6 Spectral response of human
Wavelength, nm color sensors.

Image Model 31

produce the sensation of nearly all the colors. This result is displayed on a chromati-
city diagram. Such a diagram is obtained by first normalizing the three sensor meas-

urements:

___ R
R+G+B
PRRCT € 2.33
WL G B 235)
o s B
R+G+B

and then plotting perceived color as a function of any two (usually red and green).
Chromaticity explicitly ignores intensity or brightness; it is a section through the
three-dimensional color space (Fig. 2.7). The choice of (Ag, A5, A g) = (410, 530,
650) nm maximizes the realizable colors, but some colors still cannot be realized
since they would require negative values for some of r, g, and b.

Another more intuitive way of visualizing the possible colors from the RGB
space is to view these measurements as Euclidean coordinates. Here any color can
be visualized as a point in the unit cube. Other coordinate systems are useful for
different applications; computer graphics has proved a strong stimulus for investi-
gation of different color space bases.

Color Perception

Color perception is complex, but the essential step is a transformation of
three input intensity measurements into another basis. The coordinates of the new

—_

(a) (b)

Fig. 2.7 (a) An artist’s conception of the chromaticity diagram—see color insert; (b) a
more useful depiction. Spectral colors range along the curved boundary; the straight boun-
dary is the line of purples.

32 Ch. 2 Image Formation

Sec. 2.2

basis are more directly related to human color judgments.

Although the RGB basis is good for the acquisition or display of color infor-
mation, it is not a particularly good basis to explain the perception of colors. Hu-
man vision systems can make good judgments about the relative surface reflec-
tance r (\) despite different illuminating wavelengths; this reflectance seems to be
what we mean by surface color.

Another important feature of the color basis is revealed by an ability to per-
ceive in ‘“‘black and white,” effectively deriving intensity information from the
color measurements. From an evolutionary point of view, we might expect that
color perception in animals would be compatible with preexisting noncolor percep-
tual mechanisms.

These two needs—the need to make good color judgments and the need to
retain and use intensity information—imply that we use a transformed, non-RGB
basis for color space. Of the different bases in use for color vision, all are variations
on this theme: Intensity forms one dimension and color is a two-dimensional sub-
space. The differences arise in how the color subspace is described. We categorize
such bases into two groups.

1. Intensity/Saturation/Hue (IHS). In this basis, we compute intensity as

intensity: = R + G + B (2.34)

The saturation measures the lack of whiteness in the color. Colors such as ‘‘fire
engine”’ red and ‘‘grass’’ green are saturated; pastels (e.g., pinks and pale blues)
are desaturated. Saturation can be computed from RGB coordinates by the formula
[Tenenbaum and Weyl 1975]

_ 3 min (R, G, B)
intensity

Hue is roughly proportional to the average wavelength of the color. It can be
defined using RGB by the following program fragment:

1 AR — G) + (R — B}
VR - G2+ (R — B)(G— B)"

If B > Gthenhue: = 2pi — hue

The IHS basis transforms the RGB basis in the following way. Thinking of the
color cube, the diagonal from the origin to (1, 1, 1) becomes the intensity axis.
Saturation is the distance of a point from that axis and hue is the angle with regard
to the point about that axis from some reference (Fig. 2.8).

This basis is essentially that used by artists [Munsell 1939], who term sat-
uration chroma. Also, this basis has been used in graphics [Smith 1978; Joblove
and Greenberg 1978].

One problem with the IHS basis, particularly as defined by (2.34) through
(2.36), is that it contains essential singularities where it is impossible to define the
color in a consistent manner [Kender 1976]. For example, hue has an essential
singularity for all values of (R, G, B), where R = G = B. This means that special
care must be taken in algorithms that use hue.

2. Opponent processes. The opponent process basis uses Cartesian rather than

(2.35)

saturation: = 1

(2.36)

hue: = cos~

Image Model 33

(b)

Fig. 2.8 AnIHS Color Space. (a) Cross section at one intensity; (b) cross section at one hue— see color inserts.

34

cylindrical coordinates for the color subspace, and was first proposed by Hering
[Teevan and Birney 1961]. The simplest form of basis is a linear transformation
from R, G, B coordinates. The new coordinates are termed “R — G,
“Bl— Y”,and “W — Bk’

R~ G 1 =2 1z
Beyl=l-1 =1 1llc
W — Bk 1 et 1@

The advocates of this representation, such as [Hurvich and Jameson 1957], theor-
ize that this basis has neurological correlates and is in fact the way human beings
represent (‘‘name’’) colors. For example, in this basis it makes sense to talk about
a “‘reddish blue’ but not a ‘‘reddish green.’’ Practical opponent process models
usually have more complex weights in the transform matrix to account for psycho-
physical data. Some startling experiments [Land 1977] show our ability to make
correct color judgments even when the illumination consists of only two principal
wavelengths. The opponent process, at the level at which we have developed it,
does not demonstrate how such judgments are made, but does show how stimulus
at only two wavelengths will project into the color subspace. Readers interested in
the details of the theory should consult the references.

Commercial television transmission needs an intensity, or ““W — Bk’’ com-
ponent for black-and-white television sets while still spanning the color space. The
National Television Systems Committee (NTSC) uses a “‘YIQ”’ basis extracted
from RGB via

Ch. 2 Image Formation

Sec. 2.2

0.60 -—-0.28 -0.32

1 R
Q|=1021 —-0.52 0.31 G
Y] B

030 059 0.11
This basis is a weighted form of

(I, 0, Y)= (“R—cyan, ” “magenta—green, ” “W—Bk ")

2.2.6 Digital Images

The digital images with which computer vision deals are represented by m-vector
discrete-valued image functions f(x), usually of one, two, three, or four dimen-
sions.

Usually m = 1, and both the domain and range of f(x) are discrete. The
domain of f is finite, usually a rectangle, and the range of f is positive and
bounded: 0 < f(x) < M for some integer M. For all practical purposes, the image
is a continuous function which is represented by measurements or samples at regu-
larly spaced intervals. At the time the image is sampled, the intensity is usually
guantized into a number of different gray levels. For a discrete image, f (x) is an in-
teger gray level, and x = (x, y) is a pair of integer coordinates representing a sam-
ple point in a two-dimensional image plane. Sampling involves two important
choices: (1) the sampling interval, which determines in a basic way whether all the
information in the image is represented, and (2) the fesselation or spatial pattern of
sample points, which affects important notions of connectivity and distance. In our
presentation, we first show qualitatively the effects of sampling and gray-level
quantization. Second, we discuss the simplest kinds of tesselations of the plane. Fi-
nally, and most important, we describe the sampling theorem, which specifies how
close the image samples must be to represent the image unambiguously.

The choice of integers to represent the gray levels and coordinates is dictated
by limitations in sensing. Also, of course, there are hardware limitations in
representing images arising from their sheer size. Table 2.3 shows the storage re-
quired for an image in 8-bit bytes as a function of m, the number of bits per sam-
ple, and N, the linear dimension of a square image.

For reasons of economy (and others discussed in Chapter 3) we often use im-
ages of considerably less spatial resolution than that required to preserve fidelity to
the human viewer. Figure 2.9 provides a qualitative idea of image degradation with
decreasing spatial resolution.

As shown in Table 2.3, another way to save space besides using less spatial
resolution is to use fewer bits per gray level sample. Figure 2.10 shows an image
represented with different numbers of bits per sample. One striking effect is the
“‘contouring’’ introduced with small numbers of gray levels. This is, in general, a
problem for computer vision algorithms, which cannot easily discount the false
contours. The choice of spatial and gray-level resolution for any particular com-
puter vision task is an important one which depends on many factors. It is typical in

image Model 35

36

(a)

(b)

Fig. 2.9 Using different numbers of samples. (a) N = 16; (b) N = 32; (c) N =
64; (d) N = 128; (e) N = 256; (f) N = 512.

Ch. 2 Image Formation

Sec. 2.2

Table 2.3

NUMBER OF 8-BIT BYTES OF STORAGE FOR
VARIOUS VALUES OF N AND M

N 32 64 128 256 512
m

1 128 512 2,048 8,192 32,768
2 256 1,024 4,096 16,384 65,536
3 512 2,048 8,192 32,768 131,072
4 512 2,048 8,192 32,768 131,072
= 1,024 4,096 16,384 65,536 262,144
6 1,024 4,096 16,384 65,536 262,144
7 1,024 4,096 16,384 65,536 262,144
8 1,024 4,096 16,384 65,536 262,144

computer vision to have to balance the desire for increased resolution (both gray
scale and spatial) against its cost. Better data can often make algorithms easier to
write, but a small amount of data can make processing more efficient. Of course,
the image domain, choice of algorithms, and image characteristics all heavily
influence the choice of resolutions.

Tesselations and Distance Metrics

Although the spatial samples for f(x) can be represented as points, it is more
satisfying to the intuition and a closer approximation to the acquisition process to
think of these samples as finite-sized cells of constant gray-level partitioning the
image. These cells are termed pixels, an acronym for picture elements. The pattern
into which the plane is divided is called its tesselation. The most common regular
tesselations of the plane are shown in Fig. 2.11.

Although rectangular tesselations are almost universally used in computer
vision, they have a structural problem known as the ‘‘connectivity paradox.”
Given a pixel in a rectangular tesselation, how should we define the pixels to which
it is connected? Two common ways are four-connectivity and eight-connectivity,
shown in Fig. 2.12.

However, each of these schemes has complications. Consider Fig. 2.12c, con-
sisting of a black object with a hole on a white background. If we use four-
connectedness, the figure consists of four disconnected pieces, yet the hole is
separated from the ‘‘outside’” background. Alternatively, if we use eight-
connectedness, the figure is one connected piece, yet the hole is now connected to
the outside. This paradox poses complications for many geometric algorithms. Tri-
angular and hexagonal tesselations do not suffer from connectivity difficulties (if
we use three-connectedness for triangles); however, distance can be more difficult
to compute on these arrays than for rectangular arrays.

The distance between two pixels in an image is an important measure that is
fundamental to many algorithms. In general, a distance dis a metric. That is,

Image Model 37

38

Fig. 2.10 Using different numbers of bits per sample. (a) m = 1; (b) m = 2; (c)
m=4; (d) m=38.

() dix, y)=0iffx=y

(2) dix, y) =d(y, x)

3) dix, y) +dy, z) =2 d(x, z)

For square arrays with unit spacing between pixels, we can use any of the following
common distance metrics (Fig. 2.13) for two pixels x = (x,y) and y = (x3,5,).
Euclidean:

d(x, ¥) =/ Gr1=x)2 + (y; — yy)? (2.37)
City block:
dyp (X, ¥) = |x1=x2] + |y1—y3]

(2.38)

Ch. 2 Image Formation

Sec. 2.2

VAN

>

INLNINS
NANAN
N/ NA.

-

03

X

Fig. 2.11 Different tesselations of the
image plane. (a) Rectangular; (b)
(c) triangular; (c) hexagonal.

Chessboard:

00X

doy (x,¥) = max{lxl—xz[,lyl—yzll (2.39)

Other definitions are possible, and all such measures extend to multiple dimen-
sions. The tesselation of higher-dimensional space into pixels usually is confined to
(n-dimensional) cubical pixels.

The Sampling Theorem

Consider the one-dimensional ‘‘image’’ shown in Fig. 2.14. To digitize this
image one must sample the image function. These samples will usually be separat-
ed at regular intervals as shown. How far apart should these samples be to allow
reconstruction (to a given accuracy) of the underlying continuous image from its
samples? This question is answered by the Shannon sampling theorem. An excel-
lent rigorous presentation of the sampling theorem may be found in [Rosenfeld
and Kak 1976]. Here we shall present a shorter graphical interpretation using the
results of Table 2.2. For simplicity we consider the image to be periodic in order to
avoid small edge effects introduced by the finite image domain. A more rigorous

Image Model 39

40

%

%

(a) (b) {c)

Fig. 2.12 Connectivity paradox for rectangular tesselations. (a) A central pixel
and its 4-connected neighbors; (b) a pixel and its 8-connected neighbors; (c) a
figure with ambiguous connectivity.

232 3 3333333
32223 323 3222223
2211122 32123 3211123
3210123 3210123 3210123
2211122 32123 3211123
32223 323 3222223
232 3 3333333
(a) {b) (c)

Fig. 2.13 Equidistant contours for dif-
ferent metrics.

om0 R o 1 S)

Fig. 2.14 One-dimensional image and its samples.

treatment, which considers these effects, is given in [Andrews and Hunt
19771.

Suppose that the image is sampled with a *‘comb’” function of spacing x, (see
Table 2.2). Then the sampled image can be modeled by

fi(x) = f(x) X8 (x — nxg) (2.40)

where the image function modulates the comb function. Equivalently, this can be
written as

£ x) =3 fnxg) 8(x — nxo) (2.41)
n
The right-hand side of Eq. (2.40) is the product of two functions, so that property

Ch. 2 Image formation

Sec. 2.2

(6) in Table 2.1 is appropriate. The Fourier transform of f; (x) is equal to the con-
volution of the transforms of each of the two functions. Using this result yields

= ol _n
F(u) = F(u) = 2,,’8(“ xo) (2.42)
But from Eq. (2.3),
Fu)=s(u—2)=Fu--L) (2.43)
X0 X0
so that
i Il s
F(u) = XO);F(u XO) (2.44)

Therefore, sampling the image function f(x) at intervals of x; is equivalent

in the frequency domain to replicating the transform of f at intervals of L This
X0

limits the recovery of f(x) from its sampled representation, f,(x). There are two
basic situations to consider. If the transform of f(x) is bandlimited such that F(u)
= 0 for| u|> 1/(2xy), then there is no overlap between successive replications of
F(u) in the frequency domain. This is shown for the case of Fig. 2.15a, where we
have arbitrarily used a triangular-shaped image transform to illustrate the effects of
sampling. Incidentally, note that for this transform F(u) = F(—u) and that it has
no imaginary part; from Table 2.2, the one-dimensional image must also be real
and even. Now if F(u) is not bandlimited, i.e., there are u > r{lx— for which F(u)
0

0, then components of different replications of F (u) will interact to produce the
composite function F,(u), as shown in Fig. 2.15b. In the first case f(x) can be
recovered from F,(u) by multiplying F,(«) by a suitable G (u):

1
GGy A L Dy
0 otherwise (2.45)
Then
F&) =5"F,(u)Gw)] (2.46)

However, in the second case, F, (#) G (1) is very different from the original F ().
This is shown in Fig. 2.15¢. Sampling a F () that is not bandlimited allows infor-
mation at high spatial frequencies to interfere with that at low frequencies, a
phenomenon known as aliasing.

Thus the sampling theorem has this very important result: As long as the im-
age contains no spatial frequencies greater than one-half the sampling frequency,
the underlying continuous image is unambiguously represented by its samples.
However, lest one be tempted to insist on images that have been so sampled, note
that it may be useful to sample at lower frequencies than would be required for to-
tal reconstruction. Such sampling is usually preceded by some form of blurring of

Image Model 41

Pu) }\
| I I I L | 1/\ I I
0 A

L S AR § o 2 N
Xg 2xq 2xy X Xq Xp Xg
(a)
Pl) ;s(u}
s N N s N7 N
LN N LI
I] | | | | | !
L5050, it u ik 0 i i u
2x, 2xg Xo X 2x
(b)
P, (a)Glu) P,)G (o)
u u

(c)

Fig. 2.15 (a) F(u) bandlimited so that F{u) = 0 for |u| > 1/2xy. (b) F(u) not band-
limited as in (a). (c) reconstructed transform.

the image, or can be incorporated with such blurring (by integrating the image in-
tensity over a finite area for each sample). Image blurring can bury irrelevant de-
tails, reduce certain forms of noise, and also reduce the effects of aliasing.

2.3 IMAGING DEVICES FOR COMPUTER VISION

There is a vast array of methods for obtaining a digital image in a computer. In this
section we have in mind only “‘traditional’’ images produced by various forms of
radiation impinging on a sensor after having been affected by physical objects.
Many sensors are best modeled as an arnalog device whose response must be
digitized for computer representation. The types of imaging devices possible are
limited only by the technical ingenuity of their developers; attempting a definitive

42 Ch. 2 Image Formation

Pu) }\
| I I I L | 1/\ I I
0 A

L S AR § o 2 N
Xg 2xq 2xy X Xq Xp Xg
(a)
Pl) ;s(u}
s N N s N7 N
LN N LI
I] | | | | | !
L5050, it u ik 0 i i u
2x, 2xg Xo X 2x
(b)
P, (a)Glu) P,)G (o)
u u

(c)

Fig. 2.15 (a) F(u) bandlimited so that F{u) = 0 for |u| > 1/2xy. (b) F(u) not band-
limited as in (a). (c) reconstructed transform.

the image, or can be incorporated with such blurring (by integrating the image in-
tensity over a finite area for each sample). Image blurring can bury irrelevant de-
tails, reduce certain forms of noise, and also reduce the effects of aliasing.

2.3 IMAGING DEVICES FOR COMPUTER VISION

There is a vast array of methods for obtaining a digital image in a computer. In this
section we have in mind only “‘traditional’’ images produced by various forms of
radiation impinging on a sensor after having been affected by physical objects.
Many sensors are best modeled as an arnalog device whose response must be
digitized for computer representation. The types of imaging devices possible are
limited only by the technical ingenuity of their developers; attempting a definitive

42 Ch. 2 Image Formation

3-D world
of objects

CAT

recanstruction

Sec. 2.3

X-Ray v Multispectral BT Ultrasound still Spot
scanner camera scanner 19 transducer camera ranger
device
D/A Image
converter digitizer
[
1-D 2-D 2-D
digital digital digital
intensity intensity depth
images images I image
/ \ Chapter 2

Inverse
perspective

Stereo
triangulation

3-D
information

Shape from
shading

Chapter 3

Part 11

Interpretation

Depth map
interpretation

2-D
digital
segmented
image

Fig. 2.16 Imaging devices (boxes), information structures (rectangles), and processes (circles).

taxonomy is probably unwise. Figure 2.16 is a flowchart of devices, information

structures, and processes addressed in this and succeeding sections.

When the image already exists in some form, or physical considerations limit
choice of imaging technology, the choice of digitizing technology may still be open.
Most images are carried on a permanent medium, such as film, or at least are avail-
able in (essentially) analog form to a digitizing device. Generally, the relevant
technical characteristics of imaging or digitizing devices should be foremost in
mind when a technique is being selected. Such considerations as the signal-to-
noise ratio of the device, its resolution, the speed at which it works, and its ex-
pense are important issues.

Imaging Devices for Computer Vision

43

44

2.3.1 Photographic Imaging

The camera is the most familiar producer of optical images on a permanent
medium. We shall not address here the multitudes of still- and movie-camera op-
tions; rather, we briefly treat the characteristics of the photographic film and of the
digitizing devices that convert the image to machine-readable form. More on these
topics is well presented in the References.

Photographic (black-and-white) film consists of an emulsion of silver halide
crystals on a film base. (Several other layers are identifiable, but are not essential to
an understanding of the relevant properties of film.) Upon exposure to light, the
silver halide crystals form development centers, which are small grains of metallic
silver. The photographic development process extends the formation of metallic
silver to the entire silver halide crystal, which thus becomes a binary (*‘light” or
“no light’’) detector. Subsequent processing removes undeveloped silver halide.
The resulting film regative is dark where many crystals were developed and light
where few were. The resolution of the film is determined by the grain size, which
depends on the original halide crystals and on development techniques. Gen-
erally, the faster the film (the less light needed to expose it), the coarser the grain.
Film exists that is sensitive to infrared radiation; x-ray film typically has two emul-
sion layers, giving it more gray-level range than that of normal film.

A repetition of the negative-forming process is used to obtain a photographic
print. The negative is projected onto photographic paper, which responds roughly
in the same way as the negative. Most photographic print paper cannot capture in
one print the range of densities that can be present in a negative. Positive films do
exist that do not require printing; the most common example is color slide film.

The response of film to light is not completely linear. The photographic den-
sity obtained by a negative is defined as the logarithm (base 10) of the ratio of in-
cident light to transmitted light.

1;
The exposure of a negative dictates (approximately) its response. Exposure is
defined as the energy per unit area that exposed the film (in its sensitive spectral
range). Thus exposure is the product of the intensity and the time of exposure. This
mathematical model of the behavior of the photographic exposure process is
correct for a wide operating range of the film, but reciprocity failure effects in the
film keep one from being able always to trade light level for exposure time. At very
low light levels, longer exposure times are needed than are predicted by the prod-
uct rule.

The response of film to light is usually plotted in an “H&D curve’” (named
for Hurter and Driffield), which plots density versus exposure. The H&D curve of
film displays many of its important characteristics. Figure 2.17 exhibits a typical
H&D curve for a black and white film.

The toe of the curve is the lower region of low slope. It expresses reciprocity
failure and the fact that the film has a certain bias, or fog response, which dom-
inates its behavior at the lowest exposure levels. As one would expect, there is an
upper limit to the density of the film, attained when a maximum number of silver

D= loglo

Ch. 2 Image Formation

Sec. 2.3

20
Shoulder
=
g 10
@
o
Toe
0.0
Log (exposure) Fig. 2.17 Typical H & D curve.

halide crystals are rendered developable. Increasing exposure beyond this max-
imum level has little effect, accounting for the shoulder in the H&D curve, or its
flattened upper end.

In between the toe and shoulder, there is typically a linear operating region of
the curve. High-contrast films are those with high slope (traditionally called
gamma);, they respond dramatically to small changes in exposure. A high-contrast
film may have a gamma between about 1.5 and 10. Films with gammas of approxi-
mately 10 are used in graphics arts to copy line drawings. General-purpose films

have gammas of about 0.5 to 1.0.
The resolution of a general film is about 40 lines/mm, which means that a

1400 x 1400 image may be digitized from a 35mm slide. At any greater sampling
frequency, the individual film grains will occupy more than a pixel, and the resolu-
tion will thus be grain-limited.

Image Digitizers (Scanners)

Accuracy and speed are the main considerations in converting an image on
film into digital form. Accuracy has two aspects: spatial resolution, loosely the level
of image spatial detail to which the digitizer can respond, and gray-level resolution,
defined generally as the range of densities or reflectances to which the digitizer
responds and how finely it divides the range. Speed is also important because usu-
ally many data are involved; images of 1 million samples are commonplace.

Digitizers broadly take two forms: mechanical and “flying spot.”” In a
mechanical digitizer, the film and a sensing assembly are mechanically transported
past one another while readings are made. In a flying-spot digitizer, the film and
sensor are static. What moves is the “flying spot,”” which is a point of light on the
face of a cathode-ray tube, or a laser beam directed by mirrors. In all digitizers a
very narrow beam of light is directed through the film or onto the print at a known
coordinate point. The light transmittance or reflectance is measured, transformed
from analog to digital form, and made available to the computer through interfac-
ing electronics. The location on the medium where density is being measured may
also be transmitted with each reading, but it is usually determined by relative offset
from positions transmitted less frequently. For example, a ‘‘new scan line’’ im-
pulse is transmitted for TV output; the position along the current scan line yields
an x position, and the number of scan lines yields a y position.

Imaging Devices for Computer Vision 45

46

The mechanical scanners are mostly of two types, flat-bed and drum. In a flat-
bed digitizer, the film is laid flat on a surface over which the light source and the
sensor (usually a very accurate photoelectric cell) are transported in a raster
fashion. In a drum digitizer, the film is fastened to a circular drum which revolves
as the sensor and light source are transported down the drum parallel to its axis of
rotation.

Color mechanical digitizers also exist; they work by using colored filters,
effectively extracting in three scans three ‘‘color overlays’” which when superim-
posed would yield the original color image. Extracting some ‘‘composite’” color
signal with one reading presents technical problems and would be difficult to do as
accurately.

Satellite Imagery

LANDSAT and ERTS (Earth Resources Technology Satellites) have similar
scanners which produce images of 2340 x 3380 7-bit pixels in four spectral bands,
covering an area of 100 x 100 nautical miles. The scanner is mechanical, scanning
six horizontal scan lines at a time; the rotation of the earth accounts for the
advancement of the scan in the vertical direction.

A set of four images is shown in Fig. 2.18. The four spectral bands are num-
bered 4, 5, 6, and 7. Band 4 [0.5 to 0.6 um (green)] accentuates sediment-laden
water and shallow water, band 5 [0.6 to 0.7 wm (red)] emphasizes cultural features
such as roads and cities, band 6 [0.7 to 0.8 wm (near infrared)] emphasizes vegeta-
tion and accentuates the contrast between land and water, band 7 [0.8 to 1.1 um
(near infrared)] is like band 6 except that it is better at penetrating atmospheric
haze.

The LANDSAT images are available at nominal cost from the U.S. govern-
ment (The EROS Data Center, Sioux Falls, South Dakota 57198). They are fur-
nished on tape, and cover the entire surface of the earth (often the buyer has a
choice of the amount of cloud cover). These images form a huge data base of mul-
tispectral imagery, useful for land-use and geological studies; they furnish some-
thing of an image analysis challenge, since one satellite can produce some 6 billion
bits of image data per day.

Television Imaging

Television cameras are appealing devices for computer vision applications for
several reasons. For one thing, the image is immediate; the camera can show
events as they happen. For another, the image is already in electrical, if not digital
form. “Television camera’ is basically a nontechnical term, because many
different technologies produce video signals conforming to the standards set by the
FCC and NTSC. Cameras exist with a wide variety of technical specifications.

Usually, TV cameras have associated electronics which scan an entire ‘“pic-
ture’’ at a time. This operation is closely related to broadcast and receiver stand-
ards, and is more oriented to human viewing than to computer vision. An entire
image (of some 525 scan lines in the United States) is called a frame, and consists
of two fields, each made up of alternate scan lines from the frame. These fields are
generated and transmitted sequentially by the camera electronics. The transmitted
image is thus interlaced, with all odd-numbered scan lines being ‘‘painted’’ on the

Ch. 2 Image Formation

Sec. 2.3

Fig. 2.18 The straits of Juan de Fuca as seen by the LANDSAT multispectral scanner. (a)
Band 4; (b) band 5; (c) band 6; (d) band 7.

screen alternating with all even-numbered scan lines. In the United States, each
field takes ko sec to scan, so a whole frame is scanned every }3 sec. The interlacing
is largely to prevent flickering of the image, which would become noticeable if the
frame were painted from top to bottom only once in /30 sec. These automatic scan-
ning electronics may be replaced or overridden in many cameras, allowing ‘‘ran-
dom access’ to the image. In some technologies, such as the image dissector, the
longer the signal is collected from any location, the better the signal-to-noise per-
formance.

There are a number of different systems used to generate television images.
We discuss five main methods below.

Image orthicon tube. This is one of the two main methods in use today (in
addition to the vidicon). It offers very stable performance at all incident light levels

Imaging Devices for Computer Vision 47

48

and is widely used in commercial television. It is a storage-type tube, since it
depends on the neutralization of positive charges by a scanning electron beam.

The image orthicon (Fig. 2.19) is divided into an imaging and readout sec-
tion. In the imaging section, light from the scene is focused onto a semitransparent
photocathode. This photocathode operates the same way as the cathode in a photo-
tube. It emits electrons which are magnetically focused by a coil and are
accelerated toward a positively charged target. The target is a thin glass disk with a
fine-wire-mesh screen facing the photocathode. When electrons strike it, secon-
dary emission from the glass takes place. As electrons are emitted from the photo-
cathode side of the disk, positive charges build up on the scanning side. These
charges correspond to the pattern of light intensity in the scene being viewed.

In the readout section, the back of the target is scanned by a low velocity elec-
tron beam from an electron gun at the rear of the tube. Electrons in this beam are
absorbed by the target in varying amounts, depending on the charge on the target.
The image is represented by the amplitude-modulated intensity of the returned
beam.

Vidicon tube. The vidicon is smaller, lighter, and more rugged than the
image orthicon, making it ideal for portable use. Here the target (the inner surface
of the face plate) is coated with a transparent conducting film which forms a video
signal electrode (Fig. 2.20). A thin photosensitive layer is deposited on the film,
consisting of a large number of tiny resistive globules whose resistance decreases
on illumination. This layer is scanned in raster fashion by a low velocity electron
beam from the electron gun at the rear of the tube. The beam deposits electrons on
the layer, thus reducing its surface potential. The two surfaces of the target essen-
tially form a capacitor, and the scanning action of the beam produces a capacitive
current at the video signal electrode which represents the video signal.

The plumbicon is essentially a vidicon with a lead oxide photosensitive layer.
It offers the following advantages over the vidicon: higher sensitivity, lower dark
current, and negligible persistence or lag.

Grid 6

Accelerator Grid § Horizontal and vertical i :
i i gnment coi
Focusing coil Target Decelerator deflection coils

Aperture disk Electron multiplier
rid 3 Electron gun

Grid 4\ I

1
: Internal conductive coating :
Field mesh |Envelope terminal

: Target screen

!
1
I
I
!
1
1
I
1
|
1

l 1

1 |

| 1 |

I | |

| - 3 '}
. . "

|) Multiplier section

Image section Scanning section

Fig. 2.19 The image orthicon.

Ch. 2 Image Formatjon

Sec. 2.3

. ; Photo sensitive
Focusing coil conductive target

Horizontal and vertical deflection coil coating

Alignment magnet Camera lens

- Televised
image

Glass faceplate

Video signal electrode or target ring

Fig. 2.20 The vidicon.

Iconoscope tube. The iconoscope is now largely of historical interest. In it,
an electron beam scans a target consisting of a thin mica sheet or mosaic coated
with a photosensitive layer. In contrast to the vidicon and orthicon, the electron
beam and the light both strike the same side of the target surface. The back of the
mosaic is covered with a conductive film connected to an output load. The arrange-
ment is equivalent to a matrix of small capacitors which discharge through a com-
mon lead.

Image dissector tube. The image dissector tube operates on instantaneous
scanning rather than by neutralizing positive charges. Light from the scene is
focused on a cathode coated with a photosensitive layer (Fig. 2.21). The cathode
emits electrons in proportion to the amount of light striking it. These electrons are
accelerated toward a target by the anode. The target is an electron multiplier
covered by a small aperture which allows only a small part of the ‘‘electron image”’
emitted by the cathode to reach the target. The electron image is focused by a
focusing coil that produces an axial magnetic field. The deflection coils then scan
the electron image past the target aperture, where the electron multiplier produces
a varying voltage representing the video signal. The image is thus ‘‘dissected’’ as it
is scanned past the target, in an electronic version of a flat-bed digitizing process.

Charge transfer devices. A more recent development in image formation
is that of solid-state image sensors, known as charge transfer devices (CTDs).
There are two main classes of CTDs: charge-coupled devices (CCDs) and charge-
injection devices (CIDs).

CCDs resemble MOSFETs (metal-oxide semiconductor field-effect transis-
tor) in that they contain a ‘‘source’ region and a ‘‘drain’’ region coupled by a
depletion-region channel (Fig. 2.22). For imaging purposes, they can be con-
sidered as a monolithic array of closely spaced MOS capacitors forming a shift
register (Fig. 2.23). Charges in the depletion region are transferred to the output
by applying a series of clocking pulses to a row of electrodes between the source
and the drain.

Photons incident on the semiconductor generate a series of charges on the
CCD array. They are transferred to an output register either directly one line at a
time (line transfer) or via a temporary storage area (frame transfer). The storage

Imaging Devices for Computer Vision 49

Signal W Deflection CO'/':?///%

LW‘ / / Focussing Coil / %

Anode Layer
«——— Electron Multiplier
———— Aperture

Anode Layer

N \
v 7 Focussing Coll)
V Deflectiog7CoiIs %

Fig. 2.21 Image dissector,

Photosensitive
Cathode

area is needed in frame transfer because the CCD array is scanned more rapidly
than the output can be directly accommodated.

Charge injection devices (CIDs) resemble CCDs except that during sensing
the charge is confined to the image site where it was generated (Fig. 2.24). The
charges are read using an X-Y addressing technique similar to that used in com-
puter memories. Basically, the stored charge is ‘‘injected’’ into the substrate and
the resulting displacement current is detected to create the video signal.

CTD technology offers a number of advantages over conventional-tube-type
cameras: light weight, small size, low power consumption, resistance to burn-in,
low blooming, low dark current, high sensitivity, wide spectral and dynamic range,
and lack of persistence. CIDs have the further advantages over CCDs of tolerance
to processing defects, simple mechanization, avoidance of charge transfer losses,
and minimized blooming. CTD cameras are now available commercially.

Analog-to-Digital Conversion

With current technology, the representation of an image as an analog electri-
cal waveform is usually an unavoidable precursor to further processing. Thus the
operation of deriving a digital representation of an analog voltage is basic to com-
puter vision input devices.

Fig. 2.22 Charge coupled device.

50 Ch. 2 Image Formation

Ry Output
gy e i B P
2 8 2 g Video out amplifier
@ I
1 -1 —— — g 3|
[E T R . — — S T T
- P P -
= w 5
= T = P P &
e = —
2 4 B | 2
-] [
S 1 5 b 32 X 44-Element b &
g 4l .8 1, bucket brigade s
S £ photosensitive array =
® e 2 P b 2
L @ =
'&' -1 |‘_~~~l- _,_O:;
> b b ~
4 .
R R .
T 1]
Horiz.
clock

Fig. 2.23 A CCD array (line transfer).

The function of an analog-to-digital (A/D) converter is to take as input a vol-
tage such as a video signal and to produce as output a representation of the voltage
in digital memory, suitable for reading by an interface to a digital computer. The
quality of an A/D converter is measured by its temporal resolution (the speed at
which it can perform conversions) and the accuracy of its digital output. Analog-

ol
jé _ ~ D
c Photosensitive
g element
£
Q
> @
Charging transfer
holding elements
. , ——> Video
Horizontal register out

Fig. 2.24 A CID array.

Sec. 2.3 Imaging Devices for Computer Vision 51

52

to-digital converters are being produced as integrated circuit chips, but high-
quality models are still expensive. The output precision is usually in the 8- to 12-bit
range.

It is quite possible to digitize an entire frame of a TV camera (i.e., approxi-
mately 525 scan lines by 300 or so samples along a scan line) in a single frame time
(1/30 sec in the United States). Several commercial systems can provide such fast
digitization into a ‘‘frame buffer’” memory, along with raster graphics display capa-
bilities from the same frame buffer, and ‘‘video rate processing”’ of the digital data.
The latter term refers to any of various low-level operations (such as averaging,
convolution with small templates, image subtraction) which may be performed as
fast as the images are acquired.

One inexpensive alternative to digitizing entire TV frames at once is to use an
interface that acquires the TV signal for a particular point when the scan passes the
requested location. With efficient programming, this point-by-point digitization
can acquire an entire frame in a few seconds.

2.3.2 Sensing Range

The third dimension may be derived from binocular images by triangulation, as we
saw earlier, or inferred from single monocular visual input by a variety of ““depth
cues,”’ such as size and occlusion. Specialized technology exists to acquire ‘‘depth
images’’ directly and reliably. Here we outline two such techniques: “‘light strip-
ing,”” which is based on triangulation, and ‘‘spot ranging,’”’ which is based on
different principles.

Light Striping

Light striping is a particularly simple case of the use of structured light [Will
and Pennington 1971]. The basic idea is to use geometric information in the illumi-
nation to help extract geometric information from the scene. The spatial frequen-
cies and angles of bars of light falling on a scene may be clustered to find faces; ran-
domly structured light may allow blank, featureless surfaces to be matched in
stereo views; and so forth.

Many researchers [Popplestone et al. 1975; Agin 1972; Sugihara 1977] have
used striping to derive three dimensions. In light striping, a single plane of light is
projected onto a scene, which causes a stripe of light to appear on the scene (Fig.
2.25). Only the part of the scene illuminated by the plane is sensed by the vision
system. This restricts the ‘‘image’’ to be an essentially one-dimensional entity, and
simplifies matching corresponding points. The plane itself has a known position
(equation in world coordinates), determinable by any number of methods involv-
ing either the measurement of the projecting device or the measurement of the
final resulting plane of light. Every image point determines a single ‘‘line of sight™’
in three-space upon which the world point that produces the image point must lie.
This line is determined by the focal point of the imaging system and the image
point upon which the world point projects. In a light-striping system, any point
that is sensed in the image is also guaranteed to lie on the light plane in three-
space. But the light plane and the line of sight intersect in just one point (as long as

Ch. 2 Image Formation

Sec. 2.3

PROJECTOR

TV IMAGE
/ WITH STRIPE

S
I "

STRIPE TIMESHARING
ANALYSIS MINICOMPUTERL—N SYSTEM

HARDWARE

(a) \

Fig. 2.25 Light striping. (a) A typical arrangement; (b) raw data; (c) data segmented into
strips; (d) strips segmented into two surfaces.

the camera’s focal point is not in the light plane). Thus by computation of the in-
tersection of the line of sight with the plane of light, we derive the three-
dimensional point that corresponds to any image point visible as part of a stripe.

The plane of light may result from a laser or from the projection of a slit. Only
the light stripe should be visible to the imaging device; unless a laser is used, this
implies a darkened room. If a camera is fitted with the proper filter, a laser-based
system can be operated in normal light. Another advantage of the laser is that it can
be focused into a narrower plane than can a slit image.

The only points whose three-dimensional coordinates can be computed are
those that can be ‘‘seen’’ by both the light-stripe source and the camera at once.
Since there must be a nonzero baseline if triangulation is to derive three-
dimensional information, the camera cannot be too close to the projector, and thus
concavities in the scene are potential trouble spots, since both the striper and the

Imaging Devices for Computer Vision 53

(b}

(d)

54

camera may not be able to “‘see’’ into them. Surfaces in the scene that are nearly
parallel with the light plane will have a relatively small number of stripes projected
onto them by any uniform stripe placement strategy. This problem is ameliorated
by striping with two sets of parallel planes at right angles to each other [Agin 1972].
A major advantage of light striping over spot ranging is that (barring shadows) its
continuity and discontinuity indicate similar conditions on the surface. It is easy to
“‘segment’’ stripe images (Part II): Stripes falling on the same surface may easily
be gathered together. This set of related stripes may be used in a number of ways to
derive further information on the characteristics of the surface (Fig. 2.25b).

Spot Ranging

Civil engineers have used laser-based ‘‘spot range finders”’ for some time. In
laboratory-size environments, they are a relatively new development. There are
two basic techniques. First, one can emit a very sharp pulse and time its return
(““lidar,” the light equivalent of radar). This requires a sophisticated laser and
electronics, since light moves 1 ft every billionth of a second, approximately. The
second technique is to modulate the laser light in amplitude and upon its return
compare the phase of the returning light with that of the modulator. The phase
differences are related to the distance traveled [Nitzan et al. 1977]. A representa-
tive image is shown in Fig. 2.26.

Both these techniques produce results that are accurate to within about 1% of
the range. Both of them allow the laser to be placed close to a camera, and thus
“intensity maps’’ (images) and range maps may be produced from single
viewpoints. The laser beam can easily poke into holes, and the return beam may be
sensed close to the emitted one, so concavities do not present a serious problem.
Since the laser beam is attenuated by absorption, it can yield intensity information
as well. If the laser produces light of several wavelengths, it is possible to use filters
and obtain multispectral reflectance information as well as depth information from
the same device [Garvey 1976; Nitzan et al. 1977].

The usual mode of use of a spot ranging device is to produce a range map that
corresponds to an intensity map. This has its advantages in that the correspon-
dence may be close. The structural properties of light stripes are lost: It can be hard
to “‘segment’’ the image into surfaces (to tell which ‘‘range pixels’’ are associated
with the same surface). Range maps are amenable to the same sorts of segmenta-
tion techniques that are used for intensity images: Hough techniques, region grow-
ing, or differentiation-based methods of edge finding (Part II).

Ultrasonic Ranging

Just as light can be pulsed to determine range, so can sound and ultrasound
(frequencies much higher than the audible range). Ultrasound has been used ex-
tensively in medicine to produce images of human organs (e.g., [Waag and
Gramiak 1976]). The time between the transmitted and received signal determines
range; the sound signal travels much slower than light, making the problem of tim-
ing the returning signal rather easier than it is in pulsed laser devices. However,
the signal is severely attenuated as it travels through biological tissue, so that the
detection apparatus must be very sensitive.

Ch. 2 Image Formation

(a)

{b)

Fig. 2.26 Intensity and range images. (a) A (synthesized) intensity image of a
street scene with potholes. The roofs all have the same intensity, which is different
from the walls; (b) a corresponding range image. The wall and roof of each house
have similar ranges, but the ranges differ from house to house.

One basic difference between sound and visible light ranging is that a light
beam is usually reflected off just one surface, but that a sound beam is generally
partially transmitted and partially reflected by ‘‘surfaces.” The returning sound
pulse has structure determined by the discontinuities in impedence to sound found
in the medium through which it has passed. Roughly, a light beam returns infor-
mation about a spot, whereas a sound beam can return information about the
medium in the entire column of material. Thus, although sound itself travels rela-
tively slowly, the data rate implicit in the returning structured sound pulse is quite
high. Figure 2.27 shows an image made using the range data from ultrasound. The

Sec. 2.3 Imaging Devices for Computer Vision 55

URAYVY

Fig. 2.27 Image made from
ultrasound ranging.

sound pulses emanate from the top of the image and proceed toward the bottom,
being partially reflected and transmitted along the way. In the figure, it is as if we
were looking perpendicular to the beams, which are being displayed as brighter
where strong reflectance is taking place. A single ““scan line’” of sound thus pro-
duces an image of an entire planar slice of medium.

2.3.3 Reconstruction Imaging

Two-dimensional reconstruction has been the focus of much research attention
because of its important medical applications. High-quality images such as that
shown in Fig. 1.2b can be formed by multiple images of x-ray projection data. This
section contains the principles behind the most important reconstruction algo-
rithms. These techniques are discussed in more detail with an expanded list of
references in [Gordon and Herman 1974]. For a view of the many applications of
two-dimensional reconstruction other than transmission scanning, the reader is re-
ferred to [Gordon et al. 1975].

Figure 2.28 shows the basic geometry to collect one-dimensional projections
of two-dimensional data. (Most systems construct the image in a plane and repeat
this technique for other planes; there are few true three-dimensional reconstruc-
tion systems that use planes of projection data simultaneously to construct
volumes.)

In many applications sensors can measure the one-dimensional projection of
two-dimensional image data. The projection g (x’) of an ideal image f(x, y) in the
direction @ is given by ff(x’, ») dy’where x' = Ryx. If enough different projec-
tions are obtained, a good approximation to the image can be obtained with two-
dimensional reconstruction techniques.

From Fig. 2.28, with the source at the first position along line 44, we can ob-
tain the first projection datum from the detector at the first position along BB". The
line AB is termed a ray and the measurement at B a ray sum. Moving the source

Ch. 2 Image Formation

Object

Fig. 2.28 Projection geometry.

and detector along lines 44" and BB’in synchrony allows us to obtain the entire
data for projection 1. Now the lines 44’ and BB’ are rotated by a small angle 4@
about 0 and the process is repeated. In the original x-ray systems 46 was 1° of an-
gle, and 180 projections were taken. Each projection comprised 160 transmission
measurements. The reconstruction problem is simply this: Given the projection
datag,(x'), k=0, ..., N — 1, construct the original image f(x).

Systems in use today use a fan beam rather than the parallel rays shown.
However, the mathematics is simpler for parallel rays and illustrates the funda-
mental ideas. We describe three related techniques: summation, Fourier interpola-
tion, and convolution.

The Summation Method
The summation method is simple: Distribute every ray sum g, (x") over the
image cells along the ray. Where there are N cells along a ray, each such cell is in-

cremented by %g (x). This step is termed back projection. Repeating this process

for every ray results in an approximate version of the original [DeRosier 1971].
This technique is equivalent (within a scale factor) to blurring the image, or con-
volving it with a certain point-spread function. In the continuous case of infinitely
many projections, this function is simply the radically symmetric 4 (r) = 1/r.

Sec. 2.3 Imaging Devices for Computer Vision 57

58

x

Yy
\ D
Lines of
ntegration\\\ 7 g

Slice

Projection
axis

(b)
{a)

Fig. 2.29 Basis of Fourier techniques. (a) Projection axis x'; (b) corresponding
axis in Fourier Space.

Fourier Algorithms

If a projection is Fourier-transformed, it defines a line through the origin in
frequency space (Fig. 2.29). To show this formally, consider the expression for the
two-dimensional transform

F(u) = fff(x, y)exp [j2m (ux + wy)l dx dy (2.47)
Now consider y = 0 (projection onto the xaxis): x’' = xand
gox) = ff(x, y) dy (2.48)
The Fourier transform of this equation is
Flgox)] = ff [F(x, y) dylexpi2mux dx (2.49)

- fff(x, y) expj2mux dy dx
which, by comparison with (2.47), is
Slgo(x)] = F(u,0) (2.50)

Generalizing to any 0, the transform of an arbitrary g (x’) defines a line in the
Fourier space representation of the cross section. Where S, (w) is the cross section
of the Fourier transform along this line,

S (@) = F(ucos@, usind) (2.51)
= fgk (x") exp [—j2mu (x)]dx’

Thus one way of reconstructing the original image is to use the Fourier transform
of the projections to define points in the transform of f(x), interpolate the
undefined points of the transform from the known points, and finally take the in-
verse transform to obtain the reconstructed image.

Ch. 2 Image Formation

Exercises

\,
s

hy ha

Fig. 2.30 Convolution method.

This technique can be applied with transforms other than the Fourier
transform, and such methods are discussed in [DeRosier 1971; Crowther and Klug
1971].

The Convolution Method

The convolution method is the natural extension of the summation method.
Since the summation method produces an image degraded from its convolution
with some function A, one can remove the degradation by a ‘‘deconvolution.”’ The
straightforward way to accomplish this is to Fourier-transform the degraded image,
multiply the result by an estimate of the transformed #~' , and inverse-Fourier-
transform the result. However, since all the operations are linear, a faster approach
is to deconvolve the projections before performing the back projection. To show
this formally, we use the inverse transform

fx) = ff F(u, v)exp [j2m (ux + vy)ldu dv (2.52)

Changing to cylindrical coordinates (w, 6) yields
flx) = ff Fo(w)exp [j2mo(x cos® + ysin 0)]|w|dw d8 (2.53)

Since x'= xcosé + y sin#f, rewrite Eq. (2.53) as
& = [T UF (@) Hw))do (2.54)

Since the image is bandlimited at some interval (—w,,, »,,) one can define H (w)
arbitrarily outside of this interval. Therefore, H (w) can be defined as a constant
minus a triangular peak as shown in Fig. 2.30. Finally, the operation inside the in-
tegral in Eq. (2.54) is a convolution. Using the transforms shown in Fig. 2.30,

700 = [1/,6) = o) usinc(@,,x)] d6 (2.55)

Owing to its speed and the fact that the deconvolutions can be performed
while the data are being acquired, the convolution method is the method employed
in the majority of systems.

EXERCISES

2.1 In a binocular animal vision system, assume a focal length fof an eye of 50 mm and a
separation distance d of 5 cm. Make a plot of Ax vs. —z using Eq. (2.9). If the resolu-
tion of each eye is on the order of 50 line pairs/mm, what is the useful range of the bi-
nocular system?

59

2.2 Inan opponent-process color vision system, assume that the following relations hold:

2.3

2.4

2.5

2.6

2.7

60

R-G

Yellow

For example, if the (R—G, B —Y, W—Bk) components of the opponent-process sys-
tem are (0.5, 3, 4), the perceived color will be blue.
Work out the perceived colors for the following (R,G,B) measurements:

(@) - (0:2,0.3,04): -(b):: 0:2,03;0) * “(f " (7,4,1)

Develop an indexing scheme for a hexagonal array and define a Euclidean distance
measure between points in the array.

Assume that a one-dimensional image has the following form:
Fx) = cosQmuyx)

and is sampled with u, = u,. Using the graphical method of Section 2.2.6, find an ex-
pression for f(x) as given by Eq. (2.49). Is this expression equal to the original im-
age? Explain.

A certain image has the following Fourier transform:

0 nonzero inside a hexagonal domain
Fw =1y otherwise

(a) What are the smallest values for v and v so that F(u) can be reconstructed
from F.(u)?

(b) Suppose now that rectangular sampling is not used but that now the u and v
directions subtend an angle of 7/3. Does this change your answer as to the
smallest ¥ and v? Explain.

Extend the binocular imaging model of Fig. 2.3 to include convergence: Let the two
imaging systems pivot in the y = 0 plane about the viewpoint. Let the system have a
baseline of 24 and be converged at some angle @ such that a point (x, y, z) appears at
the origin of each image plane.

(a) Solve for zin terms of rand 6.
(b) Solve for zin this situation for points with nonzero disparity.
Compute the convolution of two Rect functions, where

1 0<x<l1
Rect(x) = 0 otherwise

Show the steps in your calculations.

Ch. 2 Image Formation

2.8

b for|x| < a
Rectlx) =10 otherwise

(a) WhatisRect(x) «3(x—a)?
(b) What is the Fourier transform of f(x) where f(x) = Rect(x+c) +
Rect(x—c) and ¢ > a?

2.9 A digitizer has a sampling interval of Ax = Ay = A. Which of the following images
can be represented unambiguously by their samples? (Assume that effects of a finite
image domain can be neglected.)

(@ (sin(rx/A))/ (wx/A)
(b) cos(w/x/2A)cos3mx/4A)
(c¢) Rect(x) (see Problem 2.8)

(d) e

REFERENCES

AGIN, G. J. “‘Representation and description of curved objects’ (Ph.D. dissertation). AIM-173, Stan-
ford Al Lab, October 1972.

ANDREWS, H. C. and B. R. HunT. Digital Image Restoration. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

CROWTHER, R. A. and A. KLuG. “ART and science, or, conditions for 3-d reconstruction from electron
microscope images.”’ J. Theoretical Biology 32, 1971.

DEROSIER, D. J. ““The reconstruction of three-dimensional images from electron micrographs.” Con-
temporary Physics 12, 1971,

Dupa, R. O. and P. E. HART. Pattern Recognition and Scene Analysis. New York: Wiley, 1973.

GARVEY, T. D. “‘Perceptual strategies for purposive vision.”” Technical Note 117, AI Center, SRI Inter-
national, September 1976.

GonzaLEZ, R. C. and P. WINTZ. Digital Image Processing. Reading, MA: Addison-Wesley, 1977.

GorDON, R. and G. T. HERMAN. *“‘Three-dimensional reconstruction from projections: a review of al-
gorithms.”” International Review of Cytology 38, 1974, 111-151.

GorDON, R., G. T. HERMAN, and S. A. JoHNSON. ‘‘Image reconstruction from projections.”” Scientific
American, October 1975.

HERING, E. “‘Principles of a new theory of color sense.”” fn Color Vision, R.C. Teevan and R.C. Birney
(Eds.). Princeton, NJ: D. Van Nostrand, 1961.

Horn, B. K. P. ““Understanding image intensities.”” Artificial Intelligence 8, 2, April 1977, 201-231.

Horn, B. K. P. and R. W. S10BERG. ‘‘Calculating the reflectance map.”” Proc., DARPA IU Workshop,
November 1978, 115-126.

HurvicH, L. M. and D. JAMESON. *‘An opponent-process theory of color vision.” Psychological Review
64, 1957, 384-390.

Jain, A. K. “‘Advances in mathematical models for image processing.”” Proc. IEEE 69, 5, May 1981,
502-528.

JoBLoVE, G. H. and D. GREENBERG. ‘‘Color spaces for computer graphics.”” Computer Graphics 12, 3,
August 1978, 20-25.

KENDER, J. R. “‘Saturation, hue, and normalized color: calculation, digitization effects, and use.”
Technical Report, Dept. of Computer Science, Carnegie-Mellon Univ., November 1976.

References 61

62

LAND, E. H. “The retinex theory of color vision.”” Scientific American, December 1977, 108-128.
MUNSELL, A. H. A4 Color Notation, 8th ed. Baltimore, MD: Munsell Color Co., 1939.

Nicopemus, F. E., J. C. RicHMOND, J. J. Hsia, I. W. GINSBERG, and T. LiMPERIS. “‘Geometrical con-
siderations and nomenclature for reflectance.”” NBS Monograph 160, National Bureau of Stand-
ards, U.S. Department of Commerce, Washington, DC, October 1977.

NiTzaN, D., A. BRaIN, and R. DupA. “The measurement and use of registered reflectance and range
data in scene analysis.”” Proc. IEEE 65, 2, February 1977,

PopPLESTONE, R. J., C. M. BRowN, A. P. AMBLER, and G. F. CRAWFORD. ‘‘Forming models of plane-
and-cylinder faceted bodies from light stripes.”” Proc., 4th ITJCAI, September 1975, 664-668.

PrATT, W. K. Digital Image Processing. New York: Wiley-Interscience, 1978.
ROSENFIELD A. and A. C. KAK. Digital Picture Processing. New York: Academic Press, 1976.
SMITH, A. R. ““Color gamut transform pairs.”” Computer Graphics 12, 3, August 1978, 12-19.

SuGIHARA, K. ““Dictionary-guided scene analysis based on depth information.” In Progress Report on
3-D Object Recognition. Bionics Research Section, ETL, Tokyo, March 1977.

TENENBAUM, J. M. and S. WEYL. **A region-analysis subsystem for interactive scene analysis.”” Proc.,
4th [JCAI, September 1975, 682-687.

WaAG, R. B. and R. GrRaMIAK. “‘Methods for ultrasonic imaging of the heart.”” Ultrasound in Medicine
and Biology 2, 1976, 163-170.

WiLL, P. M. and K. S. PENNINGTON. **Grid coding: a preprocessing technique for robot and machine vi-
sion.”” Artificial Intelligence 2, 3/4, Winter 1971, 319-329,

Ch. 2 Image Formation

DAI Missing Content

— news £ - resedrc

O School of _ .
informatics

Some Former DAI Web Pages
Temporarily Unavailable

Following amajor fire on our premises at 80 South Bridge Edinburgh on Saturday December 7th, there
has been some disruption to the Department of Al web service. Most of the service has been restored, but
thereis still a problem with the content you have just tried to access.

Further details are available at http://www.informatics.ed.ac.uk/emergency/.

If you wish to inform the web master of the missing content, please email webadmin @ inf.ed.ac.uk.

http://www.dai.ed.ac.uk/error.html [21-10-2003 16:06:46]

http://www.inf.ed.ac.uk/
http://www.inf.ed.ac.uk/events/
http://www.inf.ed.ac.uk/people/
http://www.inf.ed.ac.uk/research/
http://www.inf.ed.ac.uk/prospectus/
http://www.inf.ed.ac.uk/search/
http://www.ed.ac.uk/
http://www.informatics.ed.ac.uk/emergency/

Early Processing 3

3.1 RECOVERING INTRINSIC STRUCTURE

The imaging process confounds much useful physical information into the gray-
level array. In this respect, the imaging process is a collection of degenerate
transformations. However, this information is not irrevocably lost, because there
is much spatial redundancy: Neighboring pixels in the image have the same or
nearly the same physical parameters. A collection of techniques, which we call
early processing, exploits this redundancy in order to undo the degeneracies in the
imaging process. These techniques have the character of transformations for
changing the image into ‘“‘parameter images’’ or intrinsic images [Barrow and
Tenenbaum 1978; 1981] which reflect the spatial properties of the scene. Common
intrinsic parameters are surface discontinuities, range, surface orientation, and
velocity.

In this chapter we neglect high-level internal model information even though
it is important and can affect early processing. Consider the case of the perceived
central edge in Fig. 3.1a. As shown by Fig. 3.1b, which shows portions of the same
image, the central edge of Fig. 3.1a is not present in the data. Nevertheless, the hu-
man perceiver ‘‘sees’’ the edge, and one reasonable explanation is that it is a prod-
uct of an internal block model. Model-directed activity is taken up in later
chapters. These examples show how high level models (e.g., circles) can affect
low-level processors (e.g., edge finders). However, for the purposes of study it is
often helpful to neglect these effects. These simplifications make it easier to derive
the fundamental constraints between the physical parameters and gray levels. Once
these are understood, they can be modified using the more abstract structures of
later chapters.

Most early computer vision processing can be done with parallel computa-
tions whose inputs tend to be spatially localized. When computing intrinsic images

63

64

(a) (b)

Fig. 3.1 (a) A perceived edge. (b) Portions of image in (a) showing the lack of image data.

the parallel computations are iterated until the intrinsic parameter measurements
converge to a set of values. A computation that falls in the parallel-iterative
category is known in computer vision as relaxation [Rosenfeld et al. 1976]. Relaxa-
tion is a very general computational technique that is useful in computer vision.
Specific examples of relaxation computations appear throughout the book; general
observations on relaxation appear in Chapter 12.

This chapter covers six categories of early processing techniques:

1. Filtering is a generic name for techniques of changing image gray levels to
enhance the appearance of objects. Most often this means transformations
that make the intensity discontinuities between regions more prominent.
These transformations are often dependent on gross object characteristics. For
example, if the objects of interest are expected to be relatively large, the image
can be blurred to erase small intensity discontinuities while retaining those of
the object’s boundary. Conversely, if the objects are relatively small, a
transformation that selectively removes large discontinuities may be appropri-
ate. Filtering can also compensate for spatially varying illumination.

2. Edge operators detect and measure very local discontinuities in intensity or its
gradient. The result of an edge operator is usually the magnitude and orienta-
tion of the discontinuity.

3. Range transforms use known geometry about stereo images to infer the dis-
tance of points from the viewer. These transforms make use of the inverse per-
spective transform to'interpret how points in three-dimensional space project
onto stereo pairs. A correspondence between points in two stereo images of
known geometry determines the range of those points. Relative range may
also be derived from local correspondences without knowing the imaging
geometry precisely.

4. Surface orientation can be calculated if the source illumination and reflectance
properties of the surface are known. This calculation is sometimes called

Ch. 3 Early Processing

“‘shape from shading.”” Surface orientation is particularly simple to calculate
when the source illumination can be controlled.

5. Optical flow, or velocity fields of image points, can be calculated from local
temporal and spatial variations in sequences of gray-level images.

6. A pyramid is a general structure for representing copies of the image at multi-
ple resolutions. A pyramid is a “‘utility structure’ which can dramatically im-
prove the speed and effectiveness of many early processing and later segmen-
tation algorithms.

3.2 FILTERING THE IMAGE

Filtering is a very general notion of transforming the image intensities in some way
so as to enhance or deemphasize certain features. We consider only transforms
that leave the image in its original format: a spatial array of gray levels. Spurred on
by the needs of planetary probes and aerial reconnaissance, filtering initially
received more attention than any other area of image processing and there are ex-
cellent detailed reference works (e.g., [Andrews and Hunt 1977; Pratt 1978; Gon-
zalez and Wintz 19771). We cannot afford to examine these techniques in great
detail here; instead, our intent is to describe a set of techniques that conveys the
principal ideas.

Almost without exception, the best time to filter an image is at the image for-
mation stage, before it has been sampled. A good example of this is the way chemi-
cal stains improve the effectiveness of microscopic tissue analysis by changing the
image so that diagnostic features are obvious. In contrast, filtering after sampling
often emphasizes random variations in the image, termed noise, that are undesir-
able effects introduced in the sampling stage. However, for cases where the image
formation process cannot be changed, digital filtering techniques do exist. For ex-
ample, one may want to suppress low spatial frequencies in an image and sharpen
its edges. An image filtered in this way is shown in Fig. 3.2.

Note that in Fig. 3.2 the work of recognizing real-world objects still has to be
done. Yet the edges in the image, which constitute object boundaries, have been
made more prominent by the filtering operation. Good filtering functions are not
easy to define. For example, one hazard with Fourier techniques is that sharp
edges in the filter will produce unwanted "ringing" in the spatial domain, as evi-
denced by Fig. 2.5. Unfortunately, it would be too much of a digression to discuss
techniques of filter design. Instead, the interested reader should refer to the refer-
ences cited earlier.

3.2.1 Template Matching

Template matching is a simple filtering method of detecting a particular feature in
an image. Provided that the appearance of this feature in the image is known accu-

Sec. 3.2 fFiltering the Image 63

66

() (b)

Fig. 3.2 Effects of high frequency filtering. (a) Original image. (b) Filtered image.

rately, one can try to detect it with an operator called a template. This template is, in
effect, a subimage that looks just like the image of the object. A similarity measure
is computed which reflects how well the image data match the template for each
possible template location. The point of maximal match can be selected as the loca-
tion of the feature. Figure 3.3 shows an industrial image and a relevant template.

Correlation
One standard similarity measure between a function f(x) and a template ¢(x) is
the Euclidean distance d (y) squared, given by

dy)?=Y[rx) —tx—y)? (3.1)

X

M N

By) wemean Y, 2. ,forsome M, Nwhich define the size of the template ex-
X x=—My=—N

tent. If the image at point y is an exact match, then d (y) = 0; otherwise, d (y) >0.

Expanding the expression for ¢2, we can see that

d(y) = Y [2x) - 2fx)e(x — y) + 2(x — y)] (3.2)

Notice that ¥, *(x — y) is a constant term and can be neglected. When ¥ /2(x) is
X X
approximately constant it too can be discounted, leaving what is called the cross

correlation between fand .

R,(y) =2 fx)it(x—y) (3.3)

This is maximized when the portion of the image ‘‘under” ¢ is identical to ¢

Ch. 3 Early Processing

Template

Industrial Image

Fig. 3.3 An industrial image and template for a hexagonal nut.

One may visualize the template-matching calculations by imagining the tem-
plate being shifted across the image to different offsets; then the superimposed
values at this offset are multiplied together, and the products are added. The result-
ing sum of products forms an entry in the ‘‘correlation array’’ whose coordinates
are the offsets attained by the source template.

If the template is allowed to take a/l offsets with respect to the image such that
some overlap takes place, the correlation array is larger than either the template or
the image. An n X n image with an m X m template yields an
(n+m—1xn+ m—1) correlation array. If the template is not allowed to
shift off the image, the correlation array is (n —m +1 X n—m + 1); for
m < n. Another form of correlation results from computing the offsets modulo
the size of the image; in other words, the template ““wraps around’’ the image. Be-
ing shifted off to the right, its right portion reappears on the left of the image. This
sort of correlation is called periodic correlation, and those with no such wraparound
properties are called aperiodic. We shall be concerned exclusively with aperiodic
correlation. One can always modify the input to a periodic correlation algorithm by
padding the outside with zeros so that the output is the aperiodic correlation.

Figure 3.4 provides an example of (aperiodic) ‘‘shift, add, multiply”’ tem-
plate matching. This figure illustrates some difficulties with the simple correlation
measure of similarity. Many of the advantages and disadvantages of this measure
stem from the fact that it is linear. The advantages of this simplicity have mainly to
do with the existence of algorithms for performing the calculation efficiently (in a-
transform domain) for the entire set of offsets. The disadvantages have to do with

Template Image Correlation ’) .
Fig. 3.4 (a) A simple template. (b) An image
with noise. (¢) The aperiodic correlation array of
111 11000 T42xx the template and image. Ideally peaks in the

111 11100 532xx correlation indicate positions of good match. Here

111 10100 219xx the correlation is only calculated for offsets that
00000 XXXXX leave the template entirely within the image. The
00008 XXX XX correct peak is the upper left one at 0, 0 offset. The

x = undefined *““false alarm’’ at offset 2, 2 is caused by the bright

“‘noise point’” in the lower right of the image.

Sec. 3.2 fFiltering the Image 67

68

the fact that the metric is sensitive to properties of the image that may vary with
the offset, such as its average brightness. Slight changes in the shape of the object,
its size, orientation, or intensity values can also disturb the match.

Nonetheless, the idea of template matching is important, particularly if Eq.
(3.3) is viewed as a filtering operation instead of an algorithm that does all the work
of object detection. With this viewpoint one chooses one or more templates
(filters) that transform the image so that certain features of an object are more
readily apparent. These templates generally highlight subparts of the objects. One
such class of templates is edge templates (discussed in detail in Section 3.3).

We showed in Section 2.2.4 that convolution and multiplication are Fourier
transform pairs. Now note that the correlation operation in (3.3) is essentially the
same as a convolution with a function ¢#'(x) = t(—x). Thus in a mathematical
sense cross correlation and convolution are equivalent. Consequently, if the size of
the template is sufficiently large, it is cheaper to perform the template matching
operation in the spatial frequency domain, by the same transform techniques as for
filtering.

Normalized Correlation

A crucial assumption in the development of Eq. (3.3) was that the image en-
ergy covered by the matching template at any offset was constant; this leads to a
linear correlation matching technique. This assumption is approximately correct if
the average image intensity varies slowly compared to the template size, but a
bright spot in the image can heavily influence the correlation by affecting the sum
of products violently in a small area (Fig. 3.4). Even if the image is well behaved,
the range of values of the metric can vary with the size of the matching template.
Are there ways of normalizing the correlation metric to make it insensitive to these
variations?

There is a well-known treatment of the normalized correlation operation. It
has been used for a variety of tasks involving registration and stereopsis of images
[Quam and Hannah 1974]. Let us say that two input images are being matched to
find the best offset that aligns them.

Let £, (x) and f,(x) be the images to be matched. g, is the patch of £, (possi-
bly all of it) that is to be matched with a similar-sized patch of f,. ¢, is the patch of
/1 that is covered by ¢, when g, is offset by y.

Let £ () be the expectation operator. Then

olgqy) = [E(g}) — (E(g))3” (3.4)
o(gy) = [E(g}) — (E(gy)4"” (3.5)

give the standard deviations of points in patches ¢; and g,. (For notational con-
venience, we have dropped the spatial arguments of ¢, and g,.) Finally, the nor-
malized correlation is

_ E(Q1Q2) - E(ql)E(qg)
R = eatoke)

(3.6)

and E (q,q,) is the expected value of the product of intensities of points that are
superimposed by the translation by y.

Ch. 3 Early Processing

The normalized correlation metric is less dependent on the local properties of
the reference and input images than is the unnormalized correlation, but it is sensi-
tive to the signal-to-noise content of the images. High uncorrelated noise in the
two images, or the image and the reference, decreases the value of the correlation.
As a result, one should exercise some care in interpreting the metric. If the noise
properties of the image are known, one indication of reliability is given by the
““(signal + noise)-to-noise’’ ratio. For the normalized correlation to be useful, the
standard deviation of the patches of images to be matched (i.e., of the areas of im-
age including noise) should be significantly greater than that of the noise. Then a
correlation value may be considered significant if it is approximately equal to the
theoretically expected one. Consider uncorrelated noise of identical standard devi-
ation, in a patch of true value f(x, y). Let the noise component of the image be
n (x, y). Then the theoretical maximum correlation is

|- o) (3.7)

a? (f +n)
In matching an idealized, noise-free reference pattern, the best expected
value of the cross correlation is
_o() (3.8)
o(f+n)

If the noise and signal characteristics of the data are known, the patch size
may be optimized by using that information and the simple statistical arguments
above. However, such considerations leave out the effects of systematic, nonsta-
tistical error (such as imaging distortions, rotations, and scale differences between

“images). These systematic errors grow with patch size, and may swamp the statisti-
cal advantages of large patches. In the worst case, they may vitiate the advantages
of the correlation process altogether.

Since correlation is expensive, it is advantageous to ensure that there is
enough information in the patches chosen for correlation before the operation is
done. One way to do this is to apply a cheap “‘interest operator’’ before the rela-
tively expensive correlation. The idea here is to make sure that the image varies
enough to give a usable correlation image. If the image is of uniform intensity,
gven its correlation with itself (autocorrelation) is flat everywhere, and no infor-
mation about where the image is registered with itself is derivable. The “‘interest
operator’’ is a way of finding areas of image with high variance. In fact, a common
and useful interest measure is exactly the (directional) variance over small areas of
image. One directional variance algorithm works as follows.

The Moravec interest operator [Moravec 1977] produces candidate match
points by measuring the distinctness of a local piece of the image from its sur-
round. To explain the operator, we first define a variance measure at a pixel (x) as

var (x, y) = [Y) —fx+ky+ 1}]2’% (3.9)

k, lins

5= '(O, a), (0, —a), (a, 0), (—a, 0)]

Sec. 3.2 Filtering the Image 69

70

where a is a parameter. Now the interest operator value is initially the minimum of
itself and surrounding points:

IntOpVal (x) = m<1r11 [var (x + y)] (3.10)
y

Next a check is made to see if the operator is a local maximum by checking neigh-
bors again. Only local maxima are kept.

IntOpVal(x) := 0 if
IntOpVal(x) = IntOpVal(x + y) (3.11)
fory <1

Finally, candidate points are chosen from the IntOpVal array by thresholding.
x is a candidate point iff IntOpVal (x) > T (3.12)

The threshold is chosen empirically to produce some fraction of the total image
points.

3.2.2 Histogram Transformations

A gray-level histogram of an image is a function that gives the frequency of oc-
currence of each gray level in the image. Where the gray levels are quantized from
0 to n, the value of the histogram at a particular gray level p, denoted s (p), is the
number or fraction of pixels in the image with that gray level. Figure 3.5 shows an
image with its histogram.

A histogram is useful in many different ways. In this section we consider the
histogram as a tool to guide gray-level transformation algorithms that are akin to
filtering. A very useful image transform is called histogram equalization. Histogram
equalization defines a mapping of gray levels p into gray levels ¢ such that the dis-
tribution of gray levels g is uniform. This mapping stretches contrast (expands the

(b)

J

(a) Fig. 3.5 (a) Animage. (b) Its intensity histogram.

Ch. 3 Early Processing

range of gray levels) for gray levels near histogram maxima and compresses con-
trast in areas with gray levels near histogram minima. Since contrast is expanded
for most of the image pixels, the transformation usually improves the detectability
of many image features.

The histogram equalization mapping may be defined in terms of the cumula-
tive histogram for the image. To see this, consider Fig. 3.6a. To map a small inter-
val of gray levels dp onto an interval dqg in the general case, it must be true that

glg)dg = h(p)dp (3.13)

where g (g) is the new histogram. If, in the histogram equalization case, g (g) is to
be uniform, then

(3.14)

2
g(flz) - ‘“ﬂ

g hipl

hig) p

(b)

Fig. 3.6 {(a) Basis for a histogram equalization technique. (b) Results of histo-
gram equalization.

Sec. 3.2 Filtering the Image 71

72

where N? is the number of pixels in the image and M is the number of gray levels.
Thus combining Egs. (3.13) and (3.14) and integrating, we have

M
glg) = F_z‘h(p) dp (3.15)

But Eq. (3.15) is simply the equation for the normalized cumulative histogram.
Figure 3.6b shows the histogram-equalized image.

3.2.3 Background Subtraction

Background subtraction can be another important filtering step in early processing.
Many images can have slowly varying background gray levels which are incidental
to the task at hand. Examples of such variations are:

« Solution gradients in cell slides
« Lighting variations on surfaces in office scenes
« Lungimages in a chest radiograph

Note that the last example is only a ‘‘background’” in the context of looking for
some smaller variations such as tumors or pneumoconiosis.

Background subtraction attempts to remove these variations by first approxi-
mating them (perhaps analytically) with a background image f, and then subtract-
ing this approximation from the original image. That is, the new image f,, is

fo(x) = f(x) — f,(x) (3.16)

Various functional forms have been tried for analytic representations of slowly
varying backgrounds. In the simplest cases, f, (x) may be a constant,

f(x) =¢ (3.17)
or linear,
f(x) =mx+c (3.18)

A more sophisticated background model is to use a low-pass filtered variant of the
original image:

£ (x) =57 H @) F(a)] (3.19)

where H (u) is a low-pass filtering function. The problem with this technique is
that it is global; one cannot count on the ‘“‘best’’ effect in any local area since the
filter treats all parts of the image identically. For the same reason, it is difficult to
design a Fourier filter that works for a number of very different images.

A workable alternative is to approximate f,(x), using splines, which are
piecewise polynomial approximation functions. The mathematics of splines is
treated in Chapter 8 since they find more general application as representations of
shape. The filtering application is important but specialized. The attractive feature
of a spline approximation for filtering is that it is variation diminishing and spatially
variant. The spline approximation is guaranteed to be ‘“‘smoother”’ than the origi-

Ch. 3 Early Processing

nal function and will approximate the background differently in different parts of
the image. The latter feature distinguishes the method from Fourier-domain tech-
niques which are spatially invariant. Figure 3.7 shows the results of spline filtering.

3.2.4 Filtering and Reflectance Models

Leaving the effects of imaging geometry implicit (Section 2.2.2), the definitions in
Section 2.2.3 imply that the image irradiance (gray level) at the image point x'is
proportional to the product of the scene irradiance E and the reflectance r at its
corresponding world point x.

f&X) = EX)rx) (3.20)

The irradiance at x is the sum of contributions from all illumination sources, and
the reflectance is that portion of the irradiance which is reflected toward the ob-
server (camera). Usually Echanges slowly over a scene, whereas rchanges quickly
over edges, due to varying face angles, paint, and so forth. In many cases one
would like to detect these changes in r while ignoring changes in £. One way of do-
ing this is to filter the image f(x') to eliminate the slowly varying component.
However, as fis the product of illumination and reflectance, it is difficult to define
an operation that selectively diminishes E while retaining r. Furthermore, such an
operation must retain the positivity of f. One solution is to take the logarithm of
Eq. (3.20). Then

logf = logE + logr (3.21)

Equation (3.21) shows two desirable properties of the logarithmic transformation:
(1) the logarithmic image is positive in sign, and (2) the image is a superposition of
the irradiance component and reflectance component. Since reflectance is an in-

Fig. 3.7 The results of spline filtering to remove background variation.

Sec. 3.2 Filtering the Image 73

74

trinsic characteristic of objects, the obvious goal of image analysis is to recognize
the reflectance component under various conditions of illumination. Since the
separation of two components is preserved under linear transformations and the ir-
radiance component is usually of low spatial frequency compared to the reflectance
component, filtering techniques can suppress the irradiance component of the sig-
nal relative to the reflectance component.

If the changes in r occur over very short distances in the images, r may be iso-
lated by a three-step process [Horn 1974]. First, to enhance reflectance changes,
the image function is differentiated (Section 3.3.1). The second step removes the
low irradiance gradients by thresholding. Finally, the resultant image is integrated
to obtain an image of perceived ‘‘lightness” or reflectance. Figure 3.8 shows these
steps for the one-dimensional case.

A basic film parameter is density, which is proportional to the logarithm of
transmitted intensity; the logarithmically transformed image is effectively a density
image. In addition to facilitating the extraction of lightness, another advantage of
the density image is that it is well matched to our visual experience. The ideas for
many image analysis programs stem from our visual inspection of the image. How-
ever, the human visual system responds logarithmically to light intensity and also
enhances high spatial frequencies [Stockham 1972]. Algorithms derived from

(a)

(b)

—-I_r——— Fig. 3.8 Stepsin processing an image
to detect reflectance. (a) Original image.
(b) Differentiation followed by
X thresholding. (c) Integration of function
{c) in (b).

Ch. 3 Early Processing

introspective reasoning about the perceived image (which has been transformed
by our visual system) will not necessarily be successful when applied to an
unmodified intensity image. Thus one argument for using a density transformation
followed by high spatial frequency emphasis filtering is that the computer is then
‘“‘seeing’’ more like the human image analyzer.

3.3 FINDING LOCAL EDGES

Boundaries of objects tend to show up as intensity discontinuities in an image. Ex-
periments with the human visual system show that boundaries in images are ex-
tremely important; often an object can be recognized from only a crude outline
[Attneave 1954]. This fact provides the principal motivation for representing ob-
jects by their boundaries. Also, the boundary representation is easy to integrate
into a large variety of object recognition algorithms.

One might expect that algorithms could be designed that find the boundaries
of objects directly from the gray-level values in the image. But when the boun-
daries have complicated shapes, this is difficult. Much greater success has been ob-
tained by first transforming the image into an intermediate image of local gray-
level discontinuities, or edges, and then composing these into a more elaborate
boundary. This strategy reflects the principle: When the gap between representa-
tions becomes too large, introduce intermediate representations. In this case,
boundaries that are highly model-dependent may be decomposed into a series of
local edges that are highly model-independent.

A local edge is a small area in the image where the local gray levels are chang-
ing rapidly in a simple (e.g., monotonic) way. An edge operator is a mathematical
operator (or its computational equivalent) with a small spatial extent designed to
detect the presence of a local edge in the image function.

It is difficult to specify a priori which local edges correspond to relevant boun-
daries in the image. Depending on the particular task domain, different local
changes will be regarded as likely edges. Plots of gray level versus distance along
the direction perpendicular to the edge for some hypothetical edges (Fig. 3.9a-¢)
demonstrate some different kinds of ““edge profiles’’ that are commonly encoun-
tered. Of course, in most practical cases, the edge is noisy (Fig. 3.9d) and may ap-
pear as a composite of profile types. The fact that different kinds of edge operators
perform best in different task domains has prompted the development of a variety
of operators. However, the unifying feature of most useful edge operators is that
they compute a direction which is aligned with the direction of maximal gray-level
change, and a magnitude describing the severity of this change. Since edges are a
high-spatial-frequency phenomenon, edge finders are also usually sensitive to
high-frequency noise, such as ““snow’’ on a TV screen or film grain.

Operators fall into three main classes: (1) operators that approximate the
mathematical gradient operator, (2) template matching operators that use multiple
templates at different orientations, and (3) operators that fit local intensities with
parametric edge models. Representative examples from the first two of these
categories appear in this section. The computer vision literature abounds with edge

Sec. 3.3 Ffinding Local Edges 75

introspective reasoning about the perceived image (which has been transformed
by our visual system) will not necessarily be successful when applied to an
unmodified intensity image. Thus one argument for using a density transformation
followed by high spatial frequency emphasis filtering is that the computer is then
‘“‘seeing’’ more like the human image analyzer.

3.3 FINDING LOCAL EDGES

Boundaries of objects tend to show up as intensity discontinuities in an image. Ex-
periments with the human visual system show that boundaries in images are ex-
tremely important; often an object can be recognized from only a crude outline
[Attneave 1954]. This fact provides the principal motivation for representing ob-
jects by their boundaries. Also, the boundary representation is easy to integrate
into a large variety of object recognition algorithms.

One might expect that algorithms could be designed that find the boundaries
of objects directly from the gray-level values in the image. But when the boun-
daries have complicated shapes, this is difficult. Much greater success has been ob-
tained by first transforming the image into an intermediate image of local gray-
level discontinuities, or edges, and then composing these into a more elaborate
boundary. This strategy reflects the principle: When the gap between representa-
tions becomes too large, introduce intermediate representations. In this case,
boundaries that are highly model-dependent may be decomposed into a series of
local edges that are highly model-independent.

A local edge is a small area in the image where the local gray levels are chang-
ing rapidly in a simple (e.g., monotonic) way. An edge operator is a mathematical
operator (or its computational equivalent) with a small spatial extent designed to
detect the presence of a local edge in the image function.

It is difficult to specify a priori which local edges correspond to relevant boun-
daries in the image. Depending on the particular task domain, different local
changes will be regarded as likely edges. Plots of gray level versus distance along
the direction perpendicular to the edge for some hypothetical edges (Fig. 3.9a-¢)
demonstrate some different kinds of ““edge profiles’’ that are commonly encoun-
tered. Of course, in most practical cases, the edge is noisy (Fig. 3.9d) and may ap-
pear as a composite of profile types. The fact that different kinds of edge operators
perform best in different task domains has prompted the development of a variety
of operators. However, the unifying feature of most useful edge operators is that
they compute a direction which is aligned with the direction of maximal gray-level
change, and a magnitude describing the severity of this change. Since edges are a
high-spatial-frequency phenomenon, edge finders are also usually sensitive to
high-frequency noise, such as ““snow’’ on a TV screen or film grain.

Operators fall into three main classes: (1) operators that approximate the
mathematical gradient operator, (2) template matching operators that use multiple
templates at different orientations, and (3) operators that fit local intensities with
parametric edge models. Representative examples from the first two of these
categories appear in this section. The computer vision literature abounds with edge

Sec. 3.3 Ffinding Local Edges 75

76

-l

L e

(a} (b)

A Ve

(c} (d)

Fig. 3.9 Edge profiles.

operators, and we make no attempt to summarize them all here. For a guide to this
literature, see [Rosenfeld and Kak 1976].

Parametric models generally capture more detailed edge structute than the
two-parameter direction and magnitude vector; as a result, they can be more com-
putationally complicated. For this reason and others discussed in Section 3.3.4, we
shall omit a detailed discussion of these kinds of edge operators. One of the best
known parametric models is Hueckel’s [Hueckel 1971, 1973], but several others
have been developed since [Mero and Vassy 1975; Nevatia 1977, Abdou 1978;
Tretiak 19791.

3.3.1 Types of Edge Operators

Gradient and Laplacian

The most common and historically earliest edge operator is the gradient [Roberts
1965]. For an image function f(x), the gradient magnitude s(x) and direction
¢ (x) can be computed as

s(x) = (Af + AD” (3.22)
¢ (x) = atan(A, A;) (3.23)

where
Al=flx+ny)— flxy) (3.24)

Ay=fly+n— flx y)

Ch. 3 rtarly Processing

n is a small integer, usually unity, and atan (x, y) returns tan™' (x/y) adjusted to
the proper quadrant. The parameter n is called the ‘‘span’ of the gradient.
Roughly, n should be small enough so that the gradient is a good approximation to
the local changes in the image function, yet large enough to overcome the effects
of small variations in f.

Equation (3.24) is only one difference operator, or way of measuring gray-
level intensities along orthogonal directions using A; and A, . Figure 3.10 shows
the gradient difference operators compared to other operators [Roberts 1965;
Prewitt 1970]. The reason for the modified operators of Prewitt and Sobel is that
the local averaging tends to reduce the effects of noise. These operators do, in fact,
perform better than the Roberts operator for a step edge model.

One way to study an edge operator’s performance is to use an ideal edge such
as the step edge shown in Fig. 3.11. This edge has two gray levels: zero and h units.
If the edge goes through the finite area associated with a pixel, the pixel is given a
value between zero and h, depending on the proportion of its area covered. Com-
parative edge operator performance has been carried out [Abdou 1978]. In the case
of the Sobel operator (Fig. 3.10¢) the measured orientation ¢’ is given by

A1 AZ
0 1 1 0
-1 0 0 -1
(a)
-1 0 1 1 1 1
-1 0 1 0 0 Q
=1 0 1 -1 -1 =1
(b)
-1 0 1 1 2 1
-2 0 2 0 0 0
=i 0 1 =1 -2 -1
(c) Fig. 3.10 Gradient operators.

Sec. 3.3 Finding Local Edges 77

78

R
RO

N

\X\\\L\l

7

NNNNN

N

/
7

% Fig. 3.11 Edge models for orientation
7

and displacement sensitivity analyses.

3

S0 ¢ <7/4 (3.25)

%

¢ if0 < ¢ < tan!

il
3

tanic] Ttan’¢ + 6tang — 1
—9tan’¢ + 22tan¢ — 1

¢ =] if tan™

Arguments from symmetry show that only the 0 < ¢ < w/4 cases need be exam-
ined. Similar studies could be made using ramp edge models.

A rather specialized kind of gradient is that taken ‘‘between pixels.”” This
scheme is shown in Fig. 3.12. Here a pixel may be thought of as having four crack
edges surrounding it, whose directions of are fixed by the pixel to be multiples of
/2. The magnitude of the edge is determined by |f(x) — f(y)|, where x and y are
the coordinates of the pixels that have the edge in common. One advantage of this
formulation is that it provides an effective way of separating regions and their
boundaries. The disadvantage is that the edge orientation is crude.

The Laplacian is an edge detection operator that is an approximation to the
mathematical Laplacian 82f/8x* + 827/8y” in the same way that the gradient is an
approximation to the first partial derivatives. One version of the discrete Laplacian
is given by

X Y
[,

“Crack” edge Fig. 3.12 “‘Crack’ edge representation.

Ch. 3 Early Processing

Lx,y)=70yp) —UlfC,y+1D+fx,y—1) (3.26)
+fx+1,y)+ flx =1,)]

The Laplacian has two disadvantages as an edge measure: (1) useful directional in-
formation is not available, and (2) the Laplacian, being an approximation to the
second derivative, doubly enhances any noise in the image. Because of these disad-
vantages, the Laplacian has fallen into disuse, although some authors have used it
as an adjunct to the gradient [Wechsler and Sklansky 1977; Akatsuka 1974] in the
following manner: There is an edge at x with magnitude g (x) and direction ¢ (x) if
g(x) > Tyand L (x) > T,.

Edge Templates

The Kirsch operator [Kirsch 1971] is related to the edge gradient and is given
by

S(x) = max [1, mfx%lf(xk)] (3.27)
k=1

where f(x,) are the eight neighboring pixels to x and where subscripts are com-
puted modulo 8. A 3-bit direction can also be extracted from the value of k& that
yields the maximum in (3.27). In practice, ‘“‘pure’’ template matching has replaced
the use of (3.27). Four separate templates are matched with the image and the
operator reports the magnitude and direction associated with the maximum match.
As one might expect, the operator is sensitive to the magnitude of f(x), so that in
practice variants using large templates are generally used. Figure 3.13 shows
Kirsch-motivated templates with different spans.

1
-11 -1

3
[}
[NIES

-1.0 1 T 04 1 1 4 bpeO
n=1 - -10 1 000 -1.0 1 1.0 -1
101 -1 =1 =1 -1-1 0 0 -1-1

-1 -1
-1 -1
n=2 =11
-1-1
-1 -1

111 11 01 1 11
11111 -10 1 11
0 0000 -1-10 1 1
-1 =1 -1-1-1 -1-1-10 1
-1 =1-1 -1-1 -1-1-1-10

o O O o o
- e w a
e e

Fig. 3.13 Kirsch templates.

Sec. 3.3 Ffinding Local Edges 79

80

This brief discussion of edge templates should not be construed as a com-
ment on their appropriateness or popularity. In fact, they are widely used, and the
template-matching concept is the essence of the other approaches. There is also
evidence that the mammalian visual system responds to edges through special
low-level template-matching edge detectors [Hubel and Wiesel 1979].

3.3.2 Edge Thresholding Strategies

For most images there will be but few places where the gradient magnitude is equal
to zero. Furthermore, in the absence of any special context, small magnitudes are
most likely to be due to random fluctuations, or noise in the image function f.
Thus in practical cases one may use the expedient of only reporting an edge ele-
ment at x if g(x) is greater than some threshold, in order to reduce these noise
effects.

This strategy is computationally efficient but may not be the best. An alter-
native thresholding strategy [Frei and Chen 1977] views difference operators as
part of a set of orthogonal basis functions analogous to the Fourier basis of Sec-
tion 2.2.4. Figure 3.14 shows the nine Frei-Chen basis functions. Using this
basis, the image near a point X, can be represented as

8
fx =Y (f, h)h(x— x¢)/ (hy, hy) (3.28)
k=1

where the (f,) is the correlation operation given by

(f, he) = 2 f (xp) i (x — xp) (3.29)
D

and D is the nonzero domain of the basis functions. This operation is also regarded
as the projection of the image into the basis function A,. When the image can be
reconstructed from the basis functions and their coefficients, the basis functions
span the space. In the case of a smaller set of functions, the basis functions span a
subspace.

The value of a projection into any basis function is highest when the image
function is identical to the basis function. Thus one way of measuring the ‘‘edge-
ness’’ of a local area in an image is to measure the relative projection of the image

-1v2 -1 1 1 1 -2 1

-1 1 -1 1 -2 4 -2

11 1 1421 -1 -1 1 -2 1
11 1

Lt 0t -1 1 VZ -1 -1 1 -2 1 -2

V2 2 -1 1 1.4 1

-1 1 142 1 -1 -2 1 -2

Fig. 3.14 Frei-Chen orthogonal basis.

Ch. 3 tarly Processing

into the edge basis functions. The relative projection into the particular ‘‘edge sub-
space’’ is given by

E\y

where
2
E=Y (f, h)?
k=1
and
8
S =Y (f, h)?
k=0

Thus if @ < T, report an edge; otherwise, not. Figure 3.15 shows the potential ad-
vantage of this technique compared to the technique of thresholding the gradient
magnitude, using two hypothetical projections B, and B,. Even though B, has a
small magnitude, its relative projection into edge subspace is large and thus would
be counted as an edge with the Frei-Chen criterion. This is not true for B,.

Under many circumstances it is appropriate to use model information about
the image edges. This information can affect the way the edges are interpreted after
they have been computed or it may affect the computation process itself. As an ex-
ample of the first case, one may still use a gradient operator, but vary the threshold
for reporting an edge. Many versions of the second, more extreme strategies of us-
ing special spatially variant detection methods have been tried [Pingle and Tenen-
baum 1971; Griffith 1973; Shirai 1975]. The basic idea is illustrated in Fig. 3.16.
Knowledge of the orientation of an edge allows a special orientation-sensitive
operator to be brought to bear on it.

3.3.3 Three-Dimensional Edge Operators

In many imaging applications, particularly medicine, the images are three-
dimensional. Consider the examples of the reconstructed planes described in Sec-
tions 1.1 and 2.3.4. The medical scanner that acquires these data follows several
parallel image planes, effectively producing a three-dimensional volume of data.

Z /o
@
52
7, Edge
subspace
g (x)"" . . .
Fig. 3.15 Comparison of thresholding
(a) (b) techniques.

Sec. 3.3 Finding Local Edges 81

82

(a)

Fig. 3.16 Model-directed edge
(b) detection.

In three-dimensional data, boundaries of objects are surfaces. Edge elements
in two dimensions become surface elements in three dimensions. The two-
dimensional image gradient, when generalized to three dimensions, is the local
surface normal. Just as in the two-dimensional case, many different basis operators
can be used [Liu 1977; Zucker and Hummel 1979]. That of Zucker and Hummel
uses an optimal basis assuming an underlying continuous model. We shall just
describe the operator here; the proof of its correctness given the continuous image
model may be found in the reference. The basis functions for the three-
dimensional operator are given by

g1lx y, 2) = % (3.31)
g2(x, y, z) = %

it
g3(xn W Z) 5 ,

where r = (x2 + y2 + z9)%. The discrete form of these operators is shown in Fig.
3.17fora3 x 3 x 3 pixel domain D. Only g, is shown since the others are obvious
by symmetry. To apply the operator at a point xg,)9, z¢ compute projections a, b,
and ¢, where

a = (g, f) = X &g1(x) f(x—x¢)
D

b= (g f) (3.32)
c = (g;, f)

The result of these computations is the surface normal n = (a, b, ¢) at (xq, yo zo).
Surface thresholding is analogous to edge thresholding: Report a surface element

Ch. 3 Early Processing

VI VZ| /3
T3 T2 s
2 ~VZ
14 —_2 =1 2
V3| V2| V3
3| T2 3
X
0 0 0 V3| VZ | V3
3 2 3
2
2 2
0 0 0 V3| V2| VE Fig. 3.17 The 3x 3 x 3 edge basis
3 2 3 function g, (x, y, z).

only if s(x, y, z) = |n|exceeds some threshold. Figure 3.18 shows the results of
applying the operator to a synthetic three-dimensional image of a torus. The

display shows small detected surface patches.
3.3.4 How Good are Edge Operators?

The plethora of edge operators is very difficult to compare and evaluate. For exam-
ple, some operators may find most edges but also respond to noise; others may be

= N

NN

o e

Fig. 3.18 Results of applying the Zucker-Hummel 3-D operator to synthetic im-

age data in the shape of a torus.
83

Sec. 3.3 Finding Local Edges

84

noise-insensitive but miss some crucial edges. The following figure of merit [Pratt
1978] may be used to compare edge operators:

1 g1
P 333
max (NA: Nj) El 1+ (adr'z) ()

where N, and N, represent the number of actual and ideal edge points, respec-
tively, a is a scaling constant, and 4 is the signed separation distance of an actual
edge point normal to a line of ideal edge points. The term ad? penalizes detected
edges which are offset from their true position; the penalty can be adjusted via a.
Using this measure, all operators have surprisingly similar behaviors. Unsurpris-
ingly, the performance of each deteriorates in the presence of noise [Abdou 1978].
(Pratt defines a signal-to-noise ratio as the square of the step edge amplitude di-
vided by the standard deviation of Gaussian white noise.) Figure 3.19 shows some
typical curves for different operators. To make this figure, the threshold for report-
ing an edge was chosen independently for each operator so as to maximize Eq.
(3.33).

These comparisons are important as they provide a gross measure of
differences in performance of operators even though each operator embodies a
specific edge model and may be best in special circumstances. But perhaps the
more important point is that since all real-world images have significant amounts
of noise, all edge operators will generally produce imperfect results. This means
that in considering the overall computer vision problem, that of building descrip-
tions of objects, the efforts are usually best spent in developing methods that can
use or improve the measurements from unreliable edges rather than in a search for
the ideal edge detector.

Prewitt/Sobel
L
100
80
Hueckel with
conf=0.,9
60 diff = 100
w
40 Roberts
20
0 1 1 1]]]
1.0 2.0 5.0 10 20 50 100

h2/02

Fig. 3.19 Edge operator performance using Pratt’s measure (Eq. 3.33).

Ch. 3 Early Processing

3.3.5 Edge Relaxation

One way to improve edge operator measurements is to adjust them based on meas-
urements of neighboring edges. This is a natural thing to want to do: If a weak hor-
izontal edge is positioned between two strong horizontal edges, it should gain cred-
ibility. The edges can be adjusted based on local information using parallel-
iterative techniques. This sort of process is related to more global analysis and is
complementary to sequential approaches such as edge tracking (Chapter 4).

Early cooperative edge detection techniques used pairwise measurements
between pixels [Zucker et al. 1977]. A later version [Prager 1980] allows for more
complicated adjustment formulas. In describing the edge relaxation scheme, we
essentially follow Prager’s development and use the crack edges described at the
end of the discussion on gradients (Sec. 3.31). The development can be extended
to the other kinds of edges and the reader is invited to do just this in the Exercises.

The overall strategy is to recognize local edge patterns which cause the
confidence in an edge to be modified. Prager recognizes three groups of patterns:
patterns where the confidence of an edge can be increased, decreased, or left the
same. The overall structure of the algorithm is as follows:

Algorithm 3.1 Edge Relaxation

0. Compute the initial confidence of each edge C°(¢) as the normalized gradient
magnitude normalized by the maximum gradient magnitude in the image.

1. k=1,
Compute each edge type based on the confidence of edge neighbors;

3. Modify the confidence of each edge C*(e) based on its edge type and its pre-
vious confidence C*1(e);

4. Test the C*(e)’s to see if they have all converged to either 0 or 1. If so, stop;
else, increment kand go to 2.

The two important parts of the algorithm are step 2, computing the edge type, and
step 3, modifying the edge confidence.

The edge-type classification relies on the notation for edges (Fig. 3.20). The
edge type is a concatenation of the left and right vertex types. Vertex types are
computed from the strength of edges emanating from a vertex. Vertical edges are
handled in the same way, exploiting the obvious symmetries with the horizontal
case. Besides the central edge e, the left vertex is the end point for three other pos-
sible edges. Classifying these possible edges into ‘‘edge’’ and ‘‘no-edge’’ provides
the underpinnings for the vertex types in Fig. 3.21.

Sec. 3.3 Finding Local Edges 85

86

(a) (b) 5 I ! Fig. 3.20 Edge notation. (a) Edge
— position with no edge. (b) Edge position
" 24 # with edge. (c) Edge to be updated. (d)
Edge of unknown strength. (e)
R ¢ 2 Configuration of edges around a central
{c) (d) (e) edgee.

To compute vertex type, choose the maximum confidence vertex, i.e., the
vertex is type jwhere j maximizes conf ()

and
conf(0) = (m-a)(m-b)(m-c
conf(1) = alm-b)(m-o
conf(2) = ab(m-c)
conf(3) = abc

where

m = max (a, b, ¢, q)

gis a constant (0.1 is about right)
and a, b, and ¢ are the normalized gradient magnitudes for the three edges.
Without loss of generality, a = b = ¢. The parameter m adjusts the vertex
classification so that it is relative to the local maximum. Thus (a, 4, ¢) = (0.25,
0.01, 0.01) is a type 1 vertex. The parameter g forces weak vertices to type zero
[e.g., (0.01, 0.001, 0.001) is type zerol.

Once the vertex type has been computed, the edge type is simple. It is merely
the concatenation of the two vertex types. That is, the edge type is (ij), where iand
jare the vertex types. (From symmetry, only consider i 2 j.)

(0 B3, —— [|

(d)
— Fig. 3.21 Classification of vertex type
of left-hand endpoint of edge e, Fig. 3.20.

Ch. 3 farly Processing

Decisions in the second step of modifying edge confidence based on edge
type appear in Table 3.1. The updating formula is:

increment: C**1(e) = min (1, C*(e) + 8)
decrement: C**1(e) = max (0, C*(e) — &)
leave as is: Cr*l(e) = C¥(e)

where & is a constant (values from 0.1 to 0.3 are appropriate). The result of using
the relaxation scheme is shown in Fig. 3.22. The figures on the left-hand side show

(c) -.,_ﬂ--p—"""—r"‘" - e (d) «

Fig. 3.22 Edge relaxation results. (a) Raw edge data. Edge strengths have been threshold-
ed at 0.25 for display purposes only. (b) Results after five iterations of relaxation applied to
(a). (c) Different version of (a). Edge strengths have been thresholded at 0.25 for display
purposes only. (d) Results after five iterations of relaxation applied to (c).

Sec. 3.3 Finding Local Edges ' 87

the edges with normalized magnitudes greater than 0.25. Weak edges cause many
gaps in the boundaries. The figures on the right side show the results of five itera-
tions of edge relaxation. Here the confidence of the weak edges has been increased
owing to the proximity of other edges, using the rules in Table 3.1.

Table 3.1

Decrement Increment Leave as is

0-0 1-1 0-1
0-2 1-2 2-2
0-3 1-3 2-3

3-3

3.4 RANGE INFORMATION FROM GEOMETRY

88

Neither the perspective or orthogonal projection operations, which take the three-
dimensional world to a two-dimensional image, is invertible in the usual sense.
Since projection maps an infinite line onto a point in the image, information is lost.
For a fixed viewpoint and direction, infinitely many continuous and discontinuous
three-dimensional configurations of points could project on our retina in an image
of, say, our grandmother. Simple cases are grandmothers of various sizes cleverly
placed at varying distances so as to project onto the same area. An astronomer
might imagine millions of points distributed perhaps through light-years of space
which happen to line up into a ‘“‘grandmother constellation.”” All that can be
mathematically guaranteed by imaging geometry is that the image point
corresponds to one of the infinite number of points on that three-dimensional line
of sight. The ‘‘inverse perspective’ transformation (Appendix 1) simply deter-
mines the equation of the infinite line of sight from the parameters of the imaging
process modeled as a point projection.

However, a line and a plane not including it intersect in just one point. Lines
of sight are easy to compute, and so it is possible to tell where any image point pro-
jects on to any known plane (the supporting ground or table plane is a favorite).
Similarly, if two images from different viewpoints can be placed in correspon-
dence, the intersection of the lines of sight from two matching image points deter-
mines a point in three-space. These simple observations are the basis of light-
striping ranging (Section 2.3.3) and are important in stereo imaging.

3.4.1. Stereo Vision and Triangulation

One of the first ideas that occurs to one who wants to do three-dimensional sensing
is the biologically motivated one of stereo vision. Two cameras, or one camera
from two positions, can give relative depth or absolute three-dimensional location,
depending on the elaboration of the processing and measurement. There has been

Ch. 3 Early Processing

the edges with normalized magnitudes greater than 0.25. Weak edges cause many
gaps in the boundaries. The figures on the right side show the results of five itera-
tions of edge relaxation. Here the confidence of the weak edges has been increased
owing to the proximity of other edges, using the rules in Table 3.1.

Table 3.1

Decrement Increment Leave as is

0-0 1-1 0-1
0-2 1-2 2-2
0-3 1-3 2-3

3-3

3.4 RANGE INFORMATION FROM GEOMETRY

88

Neither the perspective or orthogonal projection operations, which take the three-
dimensional world to a two-dimensional image, is invertible in the usual sense.
Since projection maps an infinite line onto a point in the image, information is lost.
For a fixed viewpoint and direction, infinitely many continuous and discontinuous
three-dimensional configurations of points could project on our retina in an image
of, say, our grandmother. Simple cases are grandmothers of various sizes cleverly
placed at varying distances so as to project onto the same area. An astronomer
might imagine millions of points distributed perhaps through light-years of space
which happen to line up into a ‘“‘grandmother constellation.”” All that can be
mathematically guaranteed by imaging geometry is that the image point
corresponds to one of the infinite number of points on that three-dimensional line
of sight. The ‘‘inverse perspective’ transformation (Appendix 1) simply deter-
mines the equation of the infinite line of sight from the parameters of the imaging
process modeled as a point projection.

However, a line and a plane not including it intersect in just one point. Lines
of sight are easy to compute, and so it is possible to tell where any image point pro-
jects on to any known plane (the supporting ground or table plane is a favorite).
Similarly, if two images from different viewpoints can be placed in correspon-
dence, the intersection of the lines of sight from two matching image points deter-
mines a point in three-space. These simple observations are the basis of light-
striping ranging (Section 2.3.3) and are important in stereo imaging.

3.4.1. Stereo Vision and Triangulation

One of the first ideas that occurs to one who wants to do three-dimensional sensing
is the biologically motivated one of stereo vision. Two cameras, or one camera
from two positions, can give relative depth or absolute three-dimensional location,
depending on the elaboration of the processing and measurement. There has been

Ch. 3 Early Processing

considerable effort in this direction [Moravec 1977; Quam and Hannah 1974; Bin-
ford 1971; Turner 1974; Shapira 1974]. The technique is conceptually simple:

1. Take two images separated by a baseline.
2. Identify points between the two images.

3. Use the inverse perspective transform (Appendix 1) or simple tri-
angulation (Section 2.2.2) to derive the two lines on which the world
point lies.

4. Intersect the lines.

The resulting point is in three-dimensional world coordinates.

The hardest part of this method is step 2, that of identifying corresponding
points in the two images. One way of doing this is to use correlation, or template
matching, as described in Section 3.2.1. The idea is to take a patch of one image
and match it against the other image, finding the place of best match in the second
image, and assigning a related “‘disparity”’ (the amount the patch has been dis-
placed) to the patch.

Correlation is a relatively expensive operation, its naive implementation re-
quiring 0(n?m?) multiplications and additions for an m X m patch and n x n image.
This requirement can be drastically improved by capitalizing on the idea of variable
resolution; the improved technique is described in Section 3.7.2.

Efficient correlation is of technological concern, but even if it were free and
instantaneous, it would still be inadequate. The basic problems with correlation in
stereo imaging have to do with the fact that things can look significantly different
from different points of view. It is possible for the two stereo views to be
sufficiently different that corresponding areas may not be matched correctly.
Worse, in scenes with much obscuration, very important features of the scene may
be present in only one view. This problem is alleviated by decreasing the baseline,
but of course then the accuracy of depth determinations suffers; at a baseline
length of zero there is no problem, but no stereo either. One solution is to identify
world features, not image appearance, in the two views, and match those (the nose
of a person, the corner of a cube). However, if three-dimensional information is
sought as a help in perception, it is unreasonable to have to do perception first in
order to do stereo.

3.4.2 A Relaxation Algorithm for Stereo

Human stereopsis, or fusing the inputs from the eyes into a stereo image, does not
necessarily involve being aware of features to match in either view. Most human
beings can fuse quite efficiently stereo pairs which individually consist of randomly
placed dots, and thus can perceive three-dimensional shapes without recognizing
monocular clues in either image. For example, consider the stereo pair of Fig. 3.23.
In either frame by itself, nothing but a randomly speckled rectangle can be per-
ceived. All the stereo information is present in the relative displacement of dots in
the two rectangles. To make the right-hand member of the stereo pair, a patch of

Sec. 3.4 Range Formation from Geometry 89

90

i “"ﬁ«%”*ﬁ%ﬁ

Fig. 3.23 A random-dot stereogram.

the randomly placed dots of the left-hand image is displaced sideways. The dots

which are thus covered are lost, and the space left by displacing the patch is filled in
with random dots.

Interestingly enough, a very simple algorithm [Marr and Poggio 1976] can be
formulated that computes disparity from random dot stereograms. First consider
the simpler problem of matching one-dimensional images of four points as de-
picted in Fig. 3.24. Although only one depth plane allows all four points to be
placed in correspondence, lesser numbers. of points can be matched in other
planes.

The crux of the algorithm is the rules, which help determine, on a local basis,
the appropriateness of a match. Two rules arise from the observation that most im-
ages are of opaque objects with smooth surfaces and depth discontinuities only at
object boundaries:

1. Each point in an image may have only one depth value.
2. A point is almost sure to have a depth value near the values of its neighbors.

F-ig. 3.24 The stereo matching problem.

Ch. 3 Early Processing

Figure 3.24 can be viewed as a binary network where each possible match is
represented by a binary state. Matches have value 1 and nonmatches value 0. Fig-
ure 3.25 shows an expanded version of Fig. 3.24. The connections of alternative
matches for a point inhibit each other and connections between matches of equal
depth reinforce each other. To extend this idea to two dimensions, use parallel ar-
rays for different values of y where equal depth matches have reinforcing connec-
tions. Thus the extended array is modeled as the matrix C(x, y, d) where the
point x, y, d corresponds to a particular match between a point (x;, y,) in the
right image and a point (x,, y,) in the left image. The stereopsis algorithm pro-
duces a series of matrices C, which converges to the correct solution for most
cases. The initial matrix Cy(x, y, d) has values of one where x, y, d correspond to
a match in the original data and has values of zero or otherwise.

Algorithm 3.2 [Marr and Poggio 1976]

Until C satisfies some convergence criterion, do

Coilx,y,dd=] X Cly d)— Y C,x\y,d)+ Colx, y, d)|(3.34)

x\y,d'€S x\y,d'€d
where the term in braces is handled as follows:

1 ift>T

L4 = Yo - otherwise
S = set of points x’, y’, d’ such that |x — x|
|

6 = set of points x/, y’, d' such that [x — x

Disparity

Match between
x and x'

/ Inhibitory
connection

Excitatory
connection

Fig. 3.25 Extension of stereo matching.

Sec. 3.4 Range Formation from Geometry 91

92

One convergence criterion is that the number of points modified on an iteration
must be less than some threshold T. Fig. 3.26 shows the results of this computa-
tion; the disparity is encoded as a gray level and displayed as an image for different

values of n.

A more general version of this algorithm matches image features such as
edges rather than points (in the random-dot stereogram, the only features are

== T
L

EETAEN

5

Fig. 3.26 The results of relaxation computations for stereo.

Ch. 3 Early Processing

points), but the principles are the same. The extraction of features more compli-
cated than edges or points is itself a thorny problem and the subject of Part II. It
should be mentioned that Marr and Poggio have refined their stereopsis algorithm
to agree better with psychological data [Marr and Poggio 1977].

3.5 SURFACE ORIENTATION FROM REFLECTANCE MODELS

The ordinary visual world is mostly composed of opaque three-dimensional ob-
jects. The intensity (gray level) of a pixel in a digital image is produced by the light
reflected by a small area of surface near the corresponding point on the object.

[t is easiest to get consistent shape (orientation) information from an image if
the lighting and surface reflectance do not change from one scene location to
another. Analytically, it is possible to treat such lighting as uniform illumination, a
point sotrce at infinity, or an infinite linear source. Practically, the human shape-
from-shading transform is relatively robust. Of course, the perception of shape
may be manipulated by changing the surface shading in calculated ways. In part,
cosmetics work by changing the reflectivity properties of the skin and misdirecting
our human shape-from-shading algorithms.

The recovery transformation to obtain information about surface orientation
is possible if some information about the light source and the object’s reflectivity is
known. General algorithms to obtain and quantify this information are compli-
cated but practical simplifications can be made [Horn 1975; Woodham 1978; Ikeu-
chi 1980]. The main complicating factor is that even with mathematically tractable
object surface properties, a single image intensity does not uniquely define the sur-
face orientation. We shall study two ways of overcoming this difficulty. The first al-
gorithm uses intensity images as input and determines the surface orientation by
using multiple light source positions to remove ambiguity in surface orientation.
The second algorithm uses a single source but exploits constraints between neigh-
boring surface elements. Such an algorithm assigns initial ranges of orientations to
surface elements (actually to their corresponding image pixels) on the basis of in-
tensity. The neighboring orientations are ‘‘relaxed’’ against each other until each
converges to a unique orientation (Section 3.5.4).

3.5.1 Reflectivity Functions

For all these derivations, consider a distant point source of light impinging on a
small patch of surface; several angles from this situation are important (Fig. 3.27).

A surface’s reflectance is the fraction of a given incident energy flux (irradi-
ance) it reflects in any given direction. Formally, the reflectivity function is defined

as r = j—é, where L is exitant radiance and E is incident flux. In general, for an-

isotropic reflecting surfaces, the reflectivity function (hence L) is a function of all
three angles i, e, and g. The quantity of interest to us is image irradiance, which is
proportional to scene radiance, given by L = | r dE. In general, the evaluation of
this integral can be quite complicated, and the reader is referred to [Horn and

Sec. 3.5 Surface QOrientation from Reflectance Models 93

94

Fig. 3.27 Important reflectance angles:
¥ i, incidence; e, emittance; g, phase.

Sjoberg 1978] for a more detailed study. For our purposes we consider surfaces
with simple reflectivity functions.

Lambertian surfaces, those with an ideal matte finish, have a very simple
reflectivity function which is proportional only to the cosine of the incident angle.
These surfaces have the property that under uniform or collimated illumination
they look equally bright from any direction. This is because the amount of light
reflected from a unit area goes down as the cosine of the viewing angle, but the
amount of area seen in any solid angle goes up as the reciprocal of the cosine of the
viewing angle. Thus the perceived intensity of a surface element is constant with
respect to viewer position. Other surfaces with simple reflectivity functions are
“‘dusty’’ and ‘‘specular” surfaces. An example of a dusty surface is the lunar sur-
face, which reflects in all directions equally. Specular (purely mirror-like) surfaces
such as polished metal reflect only at the angle of reflection = angle of incidence,
and in a direction such that the incidence, normal, and emittance vectors are
coplanar.

Most smooth things have a specular component to their reflection, but in
general some light is reflected at all angles in decreasing amounts from the specular
angle. One way to achieve this effect is to use the cosine of the angle between the
predicted specular angle and the viewing angle, which is given by C where

C = 2cos (i) cos (e) — cos (g)

This quantity is unity in the pure specular direction and falls off to zero at 372—

radians away from it. Convincing specular contributions of greater or less sharp-
ness are produced by taking powers of C. A simple radiance formula that allows the
simulation of both matte and specular effects is

L(ie g)=s(C)"+ (1— 5)cos (i) (3.35)

Ch. 3 Farly Processing

Here s varies between 0 and 1 and determines the fraction of specularly reflected
light; n determines the sharpness of specularity peaks. As » increases, the specular
peak gets sharper and sharper. Computer graphics research is constantly extending
the frontiers of realistic and detailed reflectance, refractance, and illumination cal-
culations [Blinn 1978; Phong 1975; Whitted 1980].

3.5.2 Surface Gradient

The reflectance functions described above are defined in terms of angles measured
with respect to a local coordinate frame. For our development, it is more useful to
relate the reflectivity function to surface gradients measured with respect to a
viewer-oriented coordinate frame.

The concept of gradient space, which is defined in a viewer-oriented frame
[Horn 1975], is extremely useful in understanding the recovery transformation al-
gorithm for the surface normal. This gradient refers to the orientation of a physical
surface, not to local intensities. It must not be confused with the intensity gradients
discussed in Section 3.3 and elsewhere in this book.

Gradient space is a two-dimensional space of slants of scene surfaces. It
measures a basic ‘“intrinsic”’ (three-dimensional) property of surfaces. Consider
the point-projection imaging geometry of Fig. 2.2, with the viewpoint at infinity
(far from the scene relative to the scene dimensions). The image projection is then
orthographic, nor perspective.

The surface gradient is defined for a surface expressed as —z = f(x, y). The
gradient is a vector (p, ¢), where

p= 3Cz) (3.36)
dx
_ 0(—z)
dy
Any plane in the image (such as the face plane of a polyhedral face) may be
expressed in terms of its gradient. The general plane equation is

Ax + By +Cz+ D=0 (3.37)
Thus
A B D
—z== — = 3.38
z="Gx + rald + a (3.38)
and from (3.36) the gradient may be related to the plane equation:
—z=px+gqy + K (3.39)

Gradient space is thus the two-dimensional space of (p, ¢) vectors. The pand
g axes are often considered to be superimposed on the x and y image plane coord-
inate axes. Then the (p, g) vector is ““in the direction” of the surface slant of im-
aged surfaces. Any plane perpendicular to the viewing direction has a (p, ¢) vector
of (0,0). Vectors on the g (or y) axis correspond to planes tilted about the x axis in
an “‘upward”’ or ‘“‘downward” (‘‘yward”’) direction (like the tilt of a dressing table

Sec. 3.5 Surface Orientation from Reflectance Models 95

96

mirror). The direction arctan (g/p) is the direction of fastest change of surface
depth (—2) as xand y change. (p> + ¢%)" is the rate of this change. For instance, a
vertical plane ““‘edge on’’ to the viewer has a (p, g) of (c0, 0).

The reflectance map R (p, q) represents this variation of perceived brightness
with surface orientation. R (p, ¢q) gives scene radiance (Section 2.2.3) as a function
of surface gradient (in our usual viewer-centered coordinate system). (Figure 3.27
showed the situation and defined some important angles.) R (p, ¢) is usually
shown as contours of constant scene radiance (Fig. 3.28). The following are a few
useful cases.

In the case of a Lambertian surface with the source in the direction of the
viewer (i = ¢), the gradient space image looks like Fig. 3.28. Remember that
Lambertian surfaces have constant intensity for constant illumination angle; these
constant angles occur on the concentric circles of Fig. 3.28, since the direction of
tilt does not affect the magnitude of the angle. The brightest surfaces are those
illuminated from a normal direction—they are facing the viewer and so their
gradients are (0, 0).

Working this out from first principles, the incident angle and emittance angle
are the same in this case, since the light is near the viewer. Both are the angle bet-
ween the surface normal and the view vector. Looking at the x—y plane means a
vector to the light source of (0,0,—1), and at a gradient point (p, g), the surface
normal is (p, g, —1). Also,

R =r,cosi (3.40)

0

///

_\6
T 7\\\ X
o

k\\)]

Fig. 3.28 Contours of constant radiance in gradient space for Lambertian sur-
faces; single light source near the viewpoint.

Ch. 3 Early Processing

where r, is a proportionality constant, and we conventionally use R to denote ra-
diance in a viewer-centered frame. Let n; and n be unit vectors in the source and
surface normal directions. Since cos i = ny'n

r'o
(14 p2+ g)* (3.41)
Thus cos (i) determines the image brightness, and so a plot of it is the gradient
space image (Figs. 3.29 and 3.30).
For a more general light position, the mathematics is the same; if the light
source is in the (p,, g, —1) direction, take the dot product of this direction and
the surface normal.

R = r,n'n, (3.42)
Or, in other words,
ropsp + g, 9 + 1)
[+ p2+q) A+ p2+ gD)”

The phase angle g is constant throughout gradient space with orthographic projec-
tion (viewer distant from scene) and light source distant from scene.

Setting R constant to obtain contour lines gives a second-order equation,
producing conic sections. In fact, the contours are produced by a set of cones of
varying angles, whose axis is in the direction of the light source, intersecting a
plane at unit distance from the origin. The resulting contours appear in Fig. 3.29.
Here the dark line is the terminator, and represents all those planes that are edge-

I\ =
\\§\§

Fig. 3.29 Contours of constant radiance in gradient space. Lambertian surfaces;
light not near viewpoint.

T~

7

W
h

Sec. 3.5 Surface Orientation from Reflectance Models 97

98

on to the light source; gradients on the back side of the terminator represent self-
shadowed surfaces (facing away from the light). One intensity determines a con-
tour and so gives a cone whose tangent planes all have that emittance. For a surface
with specularity, contours of constant I (i, e, g) could appear as in Fig. 3.30.

The point of specularity is between the matte component maximum bright-
ness gradient and the origin. The brightest matte surface normal points at the light
source and the origin points at the viewer. Pure specular reflection can occur if the
vector tilts halfway toward the viewer maintaining the direction of tilt. Thus its
gradient is on a line between the origin and the light-source direction gradient po-
int.

3.5.3 Photometric Stereo

The reflectance equation (3.42) constrains the possible surface orientation to a
locus on the reflectance map. Multiple light-source positions can determine the
orientation uniquely [Woodham 1978]. Each separate light position gives a sepa-
rate value for the intensity (proportional to radiance) at each point f(x). If the
surface reflectance r, is unknown, three equations are needed to determine the
reflectance together with the unit normal n. If each source position vector is
denoted by n,, k = 1, ..., 3, the following equations result:

I.(x, y) = r,(ngn), k=000 (3.43)

where [is normalized intensity. In matrix form
I=r,Nn (3.44)

q
\ \ \ W
\\ /=p
_.s /
r (R S
-6

B Temmo
i 4
2’
00 | \
AENANIN
Fig. 3.30 Contours of constant radiance for a specular/matte surface.

Ch. 3 Early Processing

where

I=[1,(x, y),I,(x, y),I5(x, »I7,

and
ny ny LK
N= Ha ha ny3 (3.45)
n31 n3 n33

and / = fcwhere cis the appropriate normalization constant. If ¢ is not known, it
can be regarded as being part of r, without affecting the normal direction calcula-
tion. As long as the three source positions n;, n,, n3 are not coplanar, the matrix
Nwill have an inverse. Then solve for r, and n by using (3.44), first using the fact
that n is a unit vector to derive

ro=N"'1 (3.46)
and then solving for n to obtain
n= LN (3.47)
ra

Examples of a particular solution are shown in Fig. 3.31. Of course, a prerequisite
for using this method is that the surface point not be in shadows for any of the
sources.

Ry, b, p=0723 |

R, lp, g} = 0.942

R; (p, 9) = 0.505

-20 ¢ Fig. 3.31 A particular solution for

photometric stereo.

3.5.4 Shape from Shading by Relaxation

Combining local information allows improved estimates for edges (Section 3.3.5)
and for disparity (Section 3.4.2). In a similar manner local information can help in
computing surface orientation [Ikeuchi 1980]. Basically, the reflectance equation

Sec. 3.5 Surface Orientation from Reflectance Models 929

100

provides one constraint on the surface orientation and another is provided by the
heuristic requirement that the surface be smooth.

Suppose there is an estimate of the surface normal at a point (p(x, y),
g (x,). If the normal is not accurate, the reflectivity equation I (x, y) = R (p, q)
will not hold. Thus it seems reasonable to seek p and g that minimize (I — R)2
The other requirement is that p(x, y) and q(x, y) be smooth, and this can be
measured by their Laplacians V2p and V?4. For a smooth curve both of these
terms should be small. The goal is to minimize the error at a point,

EGx, y)=Uly)— R P +A[(VP) + (V) (3.48)
where the Lagrange multiplier A [Russell 1976] incorporates the smoothness con-

straint. Differentiating E (x, y) with respect to p and ¢ and approximating deriva-
tives numerically gives the following equations for p (x, y) and ¢ (x, y):

p(x,) = pay(x, y) + Tx, 3, p, q)%% (3.49)
g(x, y) = qu(x, y) + T(x, y, p, q)%g- (3.50)
where
T(x, y,p q)=Q/N)I(x y) — R(p, q)]
using

Pav(x, y) = %[.D(x +1,) +plx=1,y)+ply+1 +plxy—1] (3.51)

and a similar expression for g,, . Now Egs. (3.49) and (3.50) lend themselves to
solution by the Gauss-Seidel method: calculate the left-hand sides with an esti-
mate for p and g and use them to derive a new estimate for the right-hand sides.
More formally,

Algorithm 3.3: Shape from Shading [Ikeuchi 1980].

Step 0. k = 0. Pick an initial p°(x, y) and ¢°(x, y) near boundaries.
Stepl. k =k + 1; compute

pr=pkil + T“%R
)4

E oR

gk= gkt + T"@

Step 2. If the sum of all the E’s is sufficiently small, stop. Else, go to step 1.

Ch. 3 Early Processing

A loose end in this algorithm is that boundary conditions must be specified. These
are values of p and g determined a priori that remain constant throughout each ite-
ration. The simplest place to specify a surface gradient is at an occluding contour
(see Fig. 3.32) where the gradient is nearly 90° to the line of sight. Unfortunately, p
and g are infinite at these points. Ikeuchi’s elegant solution to this is to use a
different coordinate system for gradient space, that of a Gaussian sphere
(Appendix 1). In this system, the surface normal is described relative to where it
intersects the sphere if the tail of the normal is at the sphere’s origin. This is the
point at which a plane perpendicular to the normal would touch the sphere if tran-
slated toward it (Fig. 3.32b).

In this system the radiance may be described in terms of the spherical coor-
dinates 8, ¢. For a Lambertian surfdace

R(0,¢6) = cos @ cos @, + sin 6 sin 8, cos(¢p — ¢,) (3.52)

At an occluding contour ¢ = /2 and @ is given by tan~! (8y / 8x), where the
derivatives are calculated at the occluding contour (Fig. 3.32¢).

Occluding
contour

Ay

(b) (c}

Fig. 3.32 (a) Occluding contour. (b) Gaussian sphere. (c) Calculating f from
occluding contour.

Sec. 3.5 Surface Orientation from Reflectance Models 101

To use the (9, ¢) formulation instead of the (p, ¢) formulation is an easy
matter. Simply substitute 0 for pand ¢ for g in all instances of the formula in Algo-
rithm 3.3.

3.6 OPTICAL FLOW

102

Much of the work on computer analysis of visual motion assumes a stationary ob-
server and a stationary background. In contrast, biological systems typically move
relatively continuously through the world, and the image projected on their retinas
varies essentially continuously while they move. Human beings perceive smooth
continuous motion as such.

Although biological visual systems are discrete, this quantization is so fine
that it is capable of producing essentially continuous outputs. These outputs can
mirror the continuous flow of the imaged world across the retina. Such continuous
information is called optical flow. Postulating optical flow as an input to a perceptual
system leads to interesting methods of motion perception.

The optical flow, or instantaneous velocity field, assigns to every point on
the visual field a two-dimensional ‘“‘retinal velocity’” at which it is moving across
the visual field. This section describes how approximations to instantaneous flow
may be computed from the usual input situation in a sequence of discrete images.
Methods of using optical flow to compute the observer’s motion, a relative depth
map, surface normals of his or her surroundings, and other useful information are

given in Chapter 7. ;

3.6.1 The Fundamental Flow Constraint

One of the important features of optical flow is that it can be calculated simply, us-
ing local information. One way of doing this is to model the motion image by a
continuous variation of image intensity as a function of position and time, then
expand the intensity function f (x, y, t) in a Taylor series.

fOc+dx, y+dy, t +dt)= (3.53)
9 g+ 8L g 4 BF 4o+ higher-ordert
fOop, t) + e dx + oy dy + 51 dt + higher-order terms

As usual, the higher-order terms are henceforth ignored. The crucial obser-
vation to be exploited is the following: If indeed the image at some time ¢ + dtis
the result of the original image at time ¢ being moved translationally by dx and dy,
then in fact

SOe+dx, y+dy, t+dt)=f(x, » 1) (3.54)
Consequently, from Egs. (3.53) and (3.54),
L 9f o Qfedx, OF d (3.55)

ot dx dr dy dr

Ch. 3 Early Processing

To use the (9, ¢) formulation instead of the (p, ¢) formulation is an easy
matter. Simply substitute 0 for pand ¢ for g in all instances of the formula in Algo-
rithm 3.3.

3.6 OPTICAL FLOW

102

Much of the work on computer analysis of visual motion assumes a stationary ob-
server and a stationary background. In contrast, biological systems typically move
relatively continuously through the world, and the image projected on their retinas
varies essentially continuously while they move. Human beings perceive smooth
continuous motion as such.

Although biological visual systems are discrete, this quantization is so fine
that it is capable of producing essentially continuous outputs. These outputs can
mirror the continuous flow of the imaged world across the retina. Such continuous
information is called optical flow. Postulating optical flow as an input to a perceptual
system leads to interesting methods of motion perception.

The optical flow, or instantaneous velocity field, assigns to every point on
the visual field a two-dimensional ‘“‘retinal velocity’” at which it is moving across
the visual field. This section describes how approximations to instantaneous flow
may be computed from the usual input situation in a sequence of discrete images.
Methods of using optical flow to compute the observer’s motion, a relative depth
map, surface normals of his or her surroundings, and other useful information are

given in Chapter 7. ;

3.6.1 The Fundamental Flow Constraint

One of the important features of optical flow is that it can be calculated simply, us-
ing local information. One way of doing this is to model the motion image by a
continuous variation of image intensity as a function of position and time, then
expand the intensity function f (x, y, t) in a Taylor series.

fOc+dx, y+dy, t +dt)= (3.53)
9 g+ 8L g 4 BF 4o+ higher-ordert
fOop, t) + e dx + oy dy + 51 dt + higher-order terms

As usual, the higher-order terms are henceforth ignored. The crucial obser-
vation to be exploited is the following: If indeed the image at some time ¢ + dtis
the result of the original image at time ¢ being moved translationally by dx and dy,
then in fact

SOe+dx, y+dy, t+dt)=f(x, » 1) (3.54)
Consequently, from Egs. (3.53) and (3.54),
L 9f o Qfedx, OF d (3.55)

ot dx dr dy dr

Ch. 3 Early Processing

Now 9f 9f ,and af are all measurable quantities, and o and Y are estimates

dt’ ox ay dt dt
of what we are lookmg for—the velocity in the x and y directions. Writing
s A
dt dt
gives
_8f_9of L 8f (3.56)
at ax ady

or equivalently,

_ g,
L=V (3.57)

where V fis the spatial gradient of the image and u = (, v) the velocity.

The implications of (3.57) are interesting. Consider a fixed camera with a
scene moving past it. The equations say that the time rate of change in intensity of a
point in the image is (to first order) explained as the spatial rate of change in the
intensity of the scene multiplied by the velocity that points of the scene move past
the camera.

This equation also indicates that the velocity (u, v) must lie on a line
perpendicular to the vector (f,, fy) where f, and f, are the partial derivatives with
respect to x and y, respectively (Fig. 3.33). In fact, if the partial derivatives are very
accurate the magnitude component of the velocity in the direction (f,, fy) is (from
2.57)

—Ji
672 = 7008

3.6.2 Calculating Optical Flow by Relaxation

Equation (3.57) constrains the velocity but does not determine it uniquely. The
development of Section 3.5.4 motivates the search for a solution that satisfies Eq.

rl

(£,)

xr 'y
futfy+f=0

Fig. 3.33 Relation between (», v) and
(fxl fy)-

Sec. 3.6 Optical Flow 103

104

(3.57) as closely as possible and also is locally smooth [Horn and Schunck 1980].
In this case as well, the Laplacians of the two velocity components, V 2y and ¥V 2y,
can measure local smoothness.

Again using the method of Lagrange multipliers, minimize the flow error

EXNx, p) = (fu + fv +)2+ 22UV + (V)2 (3.58)
Differentiating this equation with respect to & and v provides equations for the

change in error with respect to # and v, which must be zero for a minimum.
Writing V2uasu — u,, and V2vas v — v,,, these equations are

A2+ LDu + fiofyv = Nug, — fof: (3.59)
Lt £ 02+ £y = X2u = £ (3.60)
These equations may be solved for » and v, yielding
P
U= Uy — fx_D_ (361)
P
V= Vay — fy‘i')" (3.62)
where

P=fxuav+fyvav+fr
D=\t ¥ g1+ 1}

To turn this into an iterative equation for solving u (x, y) and v(x, y), again use
the Gauss-Seidel method.

Algorithm 3.4: Optical Flow [Horn and Schunck 1980].

k=0.
Initialize all #* and v* to zero.
Until some error measure is satisfied, do

= P
uk = u{e‘vl _fxB

L P
vk = v§vl _f:vB

As Horn and Schunck demonstrate, this method derives the flow for two time
frames, but it can be improved by using several time frames and using the final sol-
ution after one iteration at one time for the initial solution at the following time
frame. That is:

Ch. 3 Early Processing

Algorithm 3.5: Multiframe Optical Flow.

t=0.
Initialize all u (x, y, 0), v(x, y, 0)
Jor t =1 until maxframes do

ul, y, t) = uulx, y, t—1) —fxg

vy, 1) = v (g, t—1) - fyg

The results of using synthetic data from a rotating checkered sphere are shown in
Fig. 3.34.

(c)

PR e R N A R S S

e A RE I e EF R E,
e o o e
B S A P AT TEINTES T EE ST T,
tewsserpprarpd s NS T S s,
B e bt s
[,p,‘;fggp.roa-a_-vd'iii\}#.ny_:.-"z_.
revermpppEiater e e s llRARDES
Mooy q;q.ma-tf;/(ll’ll‘-%ﬁ_
[i £
re S
e bk
‘

2 .‘WWA‘//
e 5% »
::g:»-
e
s

» o ey

B i o Y gk W B i g o 07 e " Y R g 0
S R e

(b) (d)

Fig. 3.34 Optical flow results. (a}, (b) and (c) are three frames from the rotating
sphere, (d) is the derived three-dimensional flow after 32 such time frames.

Sec. 3.6 Optical Flow 105

3.7 RESOLUTION PYRAMIDS

106

What is the best spatial resolution for an image? The sampling theorem states that
the maximum spatial frequency in the image data must be less than half the sam-
pling frequency in order that the sampled image represent the original unambigu-
ously. However, the sampling theorem is not a good predictor of how easily objects
can be recognized by computer programs. Often objects can be more easily recog-
nized in images that have a very low sampling rate. There are two reasons for this.
First, the computations are fewer because of the reduction in dimensionality. Se-
cond, confusing detail present in the high-resolution versions of the images may
not appear at the reduced resolution. But even though some objects are more easily
found at low resolutions, usually an object description needs detail only revealed at
the higher resolutions. This leads naturally to the notion of a pyramidal image data
structure in which the search for objects is begun at a low resolution, and refined at
ever-increasing resolutions until one reaches the highest resolution of interest.
Figure 3.35 shows the correspondence between pixels for the pyramidal structure.

In the next three sections, pyramids are applied to gray-level images and edge
images. Pyramids, however, are a very general tool and can be used to represent
any image at varying levels of detail.

3.7.1 Gray-level Consolidation

In some applications, redigitizing the image with a different sampling rate is a way
to reduce the number of samples. However, most digitizer parameters are difficult
to change, so that often computational means of reduction are needed. A
straightforward method is to partition the digitized image into nonoverlapping

L

Fig. 3.35 Pyramidal image structure.

Ch. 3 Early Processing

neighborhoods of equal size and shape and to replace each of those neighborhoods
by the average pixel densities in that neighborhood. This operation is consolidation.
For an n X n neighborhood, consolidation is equivalent to averaging the original
image over the neighborhood followed by sampling at intervals n units apart.

Consolidation tends to offset the aliasing that would be introduced by sam-
pling the sensed data at a reduced rate. This is due to the effects of the averaging
step in the consolidation process. For the one-dimensional case where

Flx) = %[f(x) +r(x +)] (3.63)

the corresponding Fourier transform [Steiglitz 1974] is

H(u) = %[1 + eﬁﬂ”"’]F(u) (3.64)

which has magnitude |H («)| = coslw (u/u,)] and phase —7 (u/u,). The sampling
frequency u, = 1/A where A is the spacing between samples. Thus the averaging
step has the effect of attenuating the higher frequencies of F(u) as shown in Fig.
3.36. Since the higher frequencies are involved in aliasing, attenuating these fre-
quencies reduces the aliasing effects.

3.7.2 Pyramidal Structures in Correlation

With correlation matching, the use of multiple resolution techniques can some-
times provide significant functional and computational advantages [Moravec
1977]. Binary search correlation uses pyramids of the input image and reference

Flu) | H{w) |

Uy v

(a) (b}

Uy

(c)

Fig. 3.36 Consolidation effects viewed in the spatial frequency domain. (a) Original
transform. (b) Transform of averaging operator. (c) Transform of averaged image.

Sec. 3.7 Resolution Pyramids 107

S |

108

patterns. The algorithm partakes of the computational efficiency of binary (as op-
posed to linear) search [Knuth 1973]. Further, the low-resolution correlation
operations at high levels in the pyramid ensure that the earlier correlations are on
gross image features rather than details.

In binary search correlation a feature to be located is at some unknown loca-
tion in the input image. The reference version of the feature originates in another
image, the reference image. The feature in the reference image is contained in a
window of n X n pixels. The task of the correlator is to find an n X n window in
the input image that best matches the reference image window containing the
feature. The details of the correlation processes are given in the following algo-
rithm.

Algorithm 3.6: Binary Search Correlation Control Algorithm

Definitions

OrigReference: an N x N image containing a feature centered at (Fea-
tureX, FeatureY).

Origlnput: an M x M array in which an instance of the Feature is
to be located. For simplicity, assume that it is at the
same resolution as OrigReference.

n: a window size; an n X n window in OrigReference is
large enough to contain the Feature.
Window: an n X n array containing a varying-resolution subim-
age of OrigReference centered on the Feature.
Input: a2n X 2narray containing a varying-resolution subim-
age of Origlnput, centered on the best match for the
Feature.

Reference: atemporary array.

Algorithm

1. Input:= Consolidate Origlnput by a factor of 2n/Mto size 2n X 2n.

2. Reference := Consolidate OrigReference by the same factor 2n/M to size
2nN/M x 2nN/M. This consolidation takes the Feature'to a new (FeatureX,
Feature).

3. Window := n X n window from Reference centered on the new (FeatureX,
Feature ¥).

4. Calculate the match metric of the window at the (n + 1)? locations in Input at
which it is wholly contained. Say that the best match occurs at (BestMatchX,

BestMatch ¥) in Input.

Ch. 3 Early Processing

5. Input := n X n window from Input centered at (BestMatchX, BestMatchY),

enlarged by a factor of 2.

6. Reference := Reference enlarged by a factor of 2. This takes Feature to a new
(Feature X, Feature ¥).

7. Gotol.

Through time, the algorithm uses a reference image for matching that is al-
ways centered on the feature to be matched, but that homes in on the feature by
being increased in resolution and thus reduced in linear image coverage by a factor
of 2 each time. In the input image, a similar homing-in is going on, but the search
area is usually twice the linear dimension of the reference window. Further, the
center of the search area varies in the input image as the improved resolution
refines the point of best match.

Binary search correlation is for matching features with context. The template
at low resolution possibly corresponds to much of the area around the feature,
while the feature may be so small in the initial consolidated images as to be invisi-
ble. The coarse-to-fine strategy is perfect for such conditions, since it allows gross
features to be matched first and to guide the later high-resolution search for best
match. Such matching with context is less useful for locating several instances of a
shape dotted at random around an image.

3.7.3 Pyramidal Structures in Edge Detection

As an example of the use of pyramidal structures in processing, consider the use of
such structures in edge detection. This application, after [Tanimoto and Pavlidis
19751, uses two pyramids, one to store the image and another to store the image
edges. The idea of the algorithm is that a neighborhood in the low-resolution im-
age where the gray-level values are the same is taken to imply that in fact there is
no gray-level change (edge) in the neighborhood. Of course, the low-resolution
levels in the pyramid tend to blur the image and thus attenuate the gray-level
changes that denote edges. Thus the starting level in the pyramid must be picked
judiciously to ensure that the important edges are detected.

Algorithm 3.7: Hierarchical Edge Detection

recursive procedure refine (k, x, y)
begin
if k < MaxLevel then
Jordx =0 until1 do
Jordy = 0 untill do
ifEdgeOp (k, x + dx, y + dy) > Threshold(x)
thentefine (k + 1, x + dx,y + d)
end,

Sec. 3.7 Resolution Pyramids 109

110

Fig. 3.37 Pyramidal edge detection.

Ch. 3 Early Processing

procedure FindEdges:
begin
comment apply operator to every pixel in the
starting level s, refining where necessary;
Jorx:= 0 until2° — 1 do
SJory:=0until25— 1do
ifEdgeOp (s, x, y) > Threshold(s)
thenrefine (s. x, y);
end,

Figure 3.37 shows Tanimoto’s results for a chromosome image. The table inset
shows the computational advantage in terms of the calls to the edge operator as a
function of the starting level s.

Similar kinds of edge detection strategies based on pyramids have been
pursued by [Levine 1978; Hanson and Riseman 1978]. The latter effort is a little
different in that processing within the pyramid is bidirectional; information from
edges detected at a high-resolution level is projected to low-resolution levels of the
pyramid.

EXERCISES

3.1 Derive an analytical expression for the response of the Sobel operator to a vertical
step edge as a function of the distance of the edge to the center of the operator.

3.2 Use the formulas of Egs. (3.31) to derive the digital template function for g; in a 5°
pixel domain.

3.3 Specify a version of Algorithm 3.1 that uses the gradient edge operator instead of the
““crack’’ edge operator.

3.4 In photometric stereo, three or more light source positions are used to determine a
surface orientation. The dual of this problem uses surface orientations to determine
light source position. What is the usefulness of the latter formulation? In particular,
how does it relate to Algorithm 3.3?

3.5 Using any one of Algorithms 3.1 through 3.4 as an example, show how it could be
modified to use pyramidal data structures.

3.6 Write a reflectance function to capture the ‘‘grazing incidence” phenomenon—
surfaces become more mirror-like at small angles of incidence (and reflectance).

3.7 Equations 3.49 and 3.50 were derived by minimizing the local error. Show how these

equations are modified when total error [i.e., T E(x, y)]is minimized.
%y

REFERENCES

ABDoU, L. E. ““Quantitative methods of edge detection.”” USCIPI Report 830, Image Processing Instit-
ute, Univ. Southern California, July 1978.

AKATSUKA, T., T. IsoBE, and O. TAKATANI. ‘‘Feature extraction of stomach radiograph.” Proc., 2nd
1JCPR, August 1974, 324-328.

References 111

112

ANDREWS, H. C. and B. R. HUNT. Digital Image Restoration. Englewood Cliffs, NJ: Prentice-Hall, 1977.
ATTNEAVE, F. ““Some informational aspects of visual perception.”” Psychological Review 61, 1954.
Barrow, H. G. and J. M. TENENBAUM. ‘‘Computational Vision.” Proc. IEEE 69, 5, May 1981, 572-595

Barrow, H. G. and J. M. TENENBAUM. ‘‘Recovering intrinsic scene characteristics from images.”
Technical Note 157, Al Center, SRI International, April 1978.

BinrForD, T. O. ‘“Visual perception by computer.”” Proc., IEEE Conf. on Systems and Control, Miami,
December 1971,

BLinN, J. E. ““Computer display of curved surfaces.” Ph.D. dissertation, Computer Science Dept.,
Univ. Utah, 1978.

Frel, W. and C. C. CHEN. “‘Fast boundary detection: a generalization and a new algorithm.” JEEE
Trans. Computers 26, 2, October 1977, 988-998.

GONzZALEZ, R. C. and P. WiNTZ. Digital Image Processing. Reading, MA: Addison-Wesley, 1977.

GRIFFITH, A. K. *“Edge detection in simple scenes using a priori information.”” IEEE Trans. Computers
22,4, April 1973.

HANSON, A. R. and E. M. RiseMaN (Eds.). Computer Vision Systems (CVS). New York: Academic Press,
1978.

Horn, B. K. P. “Determining lightness from an image.” CGIP 3, 4, December 1974, 277-299.
Horn, B. K. P. *“Shape from shading.”” In PCV, 1975.

Horn, B. K. P. and B. G. SCHUNCK. “‘Determining optical flow.”” Al Memo 572, AI Lab, MIT, April
1980.

Horn, B. K. P. and R. W. SJ0BERG. “‘Calculating the reflectance map.”” Proc., DARPA TU Workshop,
November 1978, 115-126.

HuseL, D. H. and T. N. WIESEL. “‘Brain mechanisms of vision.”” Scientific American, September 1979,
150-162.

HUECKEL, M. “‘An operator which locates edges in digitized pictures.”” J. ACM 18, 1, January 1971,
113-125.

HUECKEL, M. “*A local visual operator which recognizes edges and lines.” J. ACM 20, 4, October 1973,
634-647.

IkeucHl, K. ‘“‘Numerical shape from shading and occluding contours in a single view.”” Al Memo 566,
Al Lab, MIT, revised February 1980.

KirscH, R. A. “Computer determination of the constituent structure of biological images.” Computers
and Biomedical Research 4, 3, June 1971, 315-328.

KNUTH, D. E. The Art of Computer Programming. Reading, MA: Addison-Wesley, 1973.

LEVINE, M. D. **A knowledge-based computer vision system.”’ In CVS, 1978.

Liu, H. K. ““Two- and three-dimensional boundary detection.”” CGIP 6, 2, 1977, 123-134.

MARR, D. and T. Pocalo. ‘‘Cooperative computation of stereo disparity.” Science 194, 1976, 283-287.

MARR, D. and T. PocGlo. ‘A theory of human stereo vision.”” Al Memo 451, Al Lab, MIT, No-
vember 1977.

MERO, L. and Z. Vassy. “*A simplified and fast version of the Hueckel operator for finding optimal
edges in pictures.” Proc., 4th IICAI, September 1975, 650-655.

MoRAVEC, H. P. ““Towards automatic visual obstacle avoidance.” Proc., Sth IJCAI, August 1977, 584.

NEvaTIA, R. “Evaluation of a simplified Hueckel edge-line detector.”” Note, CGIP 6, 6, December
1977, 582-588.

PHONG, B-T. “Illumination for computer generated pictures.” Commun. ACM 18, 6, June 1975, 311-
317.

PinGLE, K. K. and J. M. TENENBAUM. “‘An accommodating edge follower.” Proc., 2nd LIJCAI,
September 1971, 1-7.

Ch. 3 Early Processing

PRAGER, J. M. “Extracting and labeling boundary segments in natural scenes.”” JEEE Trans. PAMI 2,
1, January 1980, 16-27.

PraTT, W. K. Digital Image Processing. New York: Wiley-Interscience, 1978.

PREWITT, J. M. 8. ““Object enhancement and extraction.”” In Picture Processing and Psychopictorics, B. S.
Lipkin and A. Rosenfeld (Eds.). New York: Academic Press, 1970.

QuaMm, L. and M. J. HaNNAH. ““Stanford automated photogrammetry research.”” AIM-254, Stanford
Al Lab, November 1974,

RoBERTS, L. G. *“Machine perception of three-dimensional solids.”” In Optical and Electro-optical Infor-
mation Processing, J. P. Tippett et #1. (Eds.). Cambridge, MA: MIT Press, 1965.

ROSENFELD, A. and A. C. KAK. Digital Picture Processing. New York: Academic Press, 1976.

ROSENFELD, A., R. A. HUMMEL, and S. W. ZuckER. ‘‘Scene labelling by relaxation operations.”” IEEE
Trans. SMC 6, 1976, 430.

RusseLL, D. L. (Ed.). Calculus of Variations and Control Theory. New York: Academic Press, 1976.

SHAPIRA, R. **A technique for the reconstruction of a straight-edge, wire-frame object from two or
more central projections.”” CGIP 3, 4, December 1974, 318-326.

SHIRAL, V. ““Analyzing intensity arrays using knowledge about scenes.”” In PCV¥, 1975.
STEIGLITZ, K. An Introduction to Discrete Systems. New York: Wiley, 1974.

StockHaM, T. J., Jr. “Image processing in the context of a visual model.” Proc. IEEE 60, 7, July 1972,
828-842.

TaniMOTO, S. and T. PAVLIDIS. ““A hierarchical data structure for picture processing.”” CGIP 4, 2, June
1975, 104-119.

TRrRETIAK, O..J. ““A parameteric model for edge detection.” Proc., 3rd COMPSAC, November 1979,
884-887.

TURNER, K. J. “Computer perception of curved objects using a television camera.’’ Ph.D. dissertation,
Univ. Edinburgh, 1974.

WECHSLER, H. and J. SKLANsKY. ““Finding the rib cage in chest radiographs.” Pattern Recognition 9,
1977, 21-30.

WHITTED, T. ““An improved illumination model for shaded display.”” Comm. ACM 23, 6, June 1980,
343-349.

WoobpHaM, R: J. “Photometric stereo: A reflectance map technique for determining surface orienta-
tion from image intensity.”” Proc., 22nd International Symp., Society of Photo-optical Instru-
mentation Engineers, San Diego, CA, August 1978, 136-143.

ZUCKER, S. W. and R. A. HUMMEL. “‘An optimal three-dimensional edge operator.”” Report 79-10,
McGill Univ., April 1979.

ZUCKER, S. W., R. A, HUMMEL, and A. ROSENFELD. ‘‘An application of relaxation labeling to line and
curve enhancement.”” JEEE Trans. Computers 26, 1977.

References 113

SEGMENTED
IMAGES

Knowledge
base

Analogical/
propositional
models

Analogical

models

Segmented Geometric Relational
image structures structures

Generalized
image

Edge
following

Region
growing

116

The idea of segmentation has its roots in work by the Gestalt psychologists (e.g.,
Kohler), who studied the preferences exhibited by human beings in grouping or
organizing sets of shapes arranged in the visual field. Gestalt principles dictate cer-
tain grouping preferences based on features such as proximity, similarity, and con-
tinuity. Other results had to do with figure/ground discrimination and optical illu-
sions. The latter have provided a fertile ground for vision theories to post-
Gestaltists such as Gibson and Gregory, who emphasize that these grouping
mechanisms organize the scene into meaningful units that are a significant step
toward image understanding.

In computer vision, grouping parts of a generalized image into units that are
homogeneous with respect to one or more characteristics (or features) results in a
segmented image. The segmented image extends the generalized image in a crucial
respect: it contains the beginnings of domain-dependent interpretation. At this
descriptive level the internal domain-dependent models of objects begin to
influence the grouping of generalized image structures into units meaningful in the
domain. For instance, the model may supply crucial parameters to segmentation
procedures.

In the segmentation process there are two important aspects to consider: one
is the data structure used to keep track of homogeneous groups of features; the
other is the transformation involved in computing the features.

Two basic sorts of segments are natural: boundaries and regions. These can
be used combined into a single descriptive structure, a set of nodes (one per
region), connected by arcs representing the ‘‘adjacency’’ relation. The *‘dual’’ of
this structure has arcs corresponding to boundaries connecting nodes representing
points where several regions meet. Chapters 4 and 5 describe segmentation with
respect to boundaries and regions respectively, emphasizing gray levels and gray-
level differences as indicators of segments. Of course, from the standpoint of the

Part Il Segmented Images

algorithms involved, it is irrelevant whether the features are intensity gray levels
or intrinsic image values perhaps representing motion, color, or range.

Texture and motion images are addressed in Chapters 6 and 7. Each has
several computationally difficult aspects, and neither has received the attention
given static, nontextured images. However, each is very important in the segmen-
tation enterprise .

Part Il Segmented Images 17

Boundary |
Detection 4

4.1 ON ASSOCIATING EDGE ELEMENTS

Boundaries of objects are perhaps the most important part of the hierarchy of struc-
tures that links raw image data with their interpretation [Marr 1975]. Chapter 3
described how various operators applied to raw image data can yield primitive edge
elements. However, an image of only disconnected edge elements is relatively
featureless; additional processing must be done to group edge elements into struc-
tures better suited to the process of interpretation. The goal of the techniques in
this chapter is to perform a level of segmentation, that is, to make a coherent one-
dimensional (edge) feature from many individual local edge elements. The feature
could correspond to an object boundary or to any meaningful boundary between
scene entities. The problems that edge-based segmentation algorithms have to
contend with are shown by Fig. 4.1, which is an image of the local edge elements
yielded by one common edge operator applied to a chest radiograph. As can be
seen, the edge elements often exist where no meaningful scene boundary does,
and conversely often are absent where a boundary is. For example, consider the
boundaries of ribs as revealed by the edge elements. Missing edge elements and
extra edge elements both tend to frustrate the segmentation process.

The methods in this chapter are ordered according to the amount of
knowledge incorporated into the grouping operation that maps edge elements into
boundaries. ‘‘Knowledge’” means implicit or explicit constraints on the likelihood
of a given grouping. Such constraints may arise from general physical arguments
or (more often) from stronger restrictions placed on the image arising from
domain-dependent considerations. If there is much knowledge, this implies that
the global form of the boundary and its relation to other image structures is very
constrained. Little prior knowledge means that the segmentation must proceed
more on the basis of local clues and evidence and general (domain-dependent) as-
sumptions with fewer expectations and constraints on the final resulting boundary.

119

120

Fig. 4.1 Edge elements in a chest
radiograph.

These constraints take many forms. Knowledge of where to expect a boun-
dary allows very restricted searches to verify the edge. In many such cases, the
domain knowledge determines the type of curve (its parameterization or func-
tional form) as well as the relevant ‘‘noise processes.”” In images of polyhedra,
only straight-edged boundaries are meaningful, and they will come together at
various sorts of vertices arising from corners, shadows of corners, and occlusions.
Human rib boundaries appear approximately like conic sections in chest radio-
graphs, and radiographs have complex edge structures that can compete with rib
edges. All this specific knowledge can and should guide our choice of grouping
method.

If less is known about the specific image content, one may have to fall back
on general world knowledge or heuristics that are true for most domains. For in-
stance, in the absence of evidence to the contrary, the shorter line between two
points might be selected over a longer line. This sort of general principle is easily
built into evaluation functions for boundaries, and used in segmentation algo-
rithms that proceed by methodically searching for such groupings. If there are no a
priori restrictions on boundary shapes, a general contour-extraction method is
called for, such as edge following or linking of edge elements.

The methods we shall examine are the following:

1. Searching near an approximate location. These are methods for refining a boun-
dary given an initial estimate.

2. The Hough transform. This elegant and versatile technique appears in various
guises throughout computer vision. In this chapter it is used to detect boun-
daries whose shape can be described in an analytical or tabular form.

3. Graph searching. This method represents the image of edge elements as a
graph. Thus a boundary is a path through a graph. Like the Hough transform,
these techniques are quite generally applicable.

Ch. 4 Boundary Detection

4. Dynamic programming. This method is also very general. It uses a mathemati-
cal formulation of the globally best boundary and can find boundaries in noisy
images.

5. Contour following. This hill-climbing technique works best with good image
data.

4.2 SEARCHING NEAR AN APPROXIMATE LOCATION

If the approximate or a priori likely location of a boundary has been determined
somehow, it may be used to guide the effort to refine that boundary [Kelly 1971].
The approximate location may have been found by one of the techniques below ap-
plied to a lower resolution image, or it may have been determined using high-level
knowledge.

4.2.1 Adjusting A Priori Boundaries

This idea was described by [Bolles 1977] (see Fig. 4.2). Local searches are carried
out at regular intervals along directions perpendicular to the approximate (a priori)
boundary. An edge operator is applied to each of the discrete points along each of
these perpendicular directions. For each such direction, the edge with the highest
magnitude is selected from among those whose orientations are nearly parallel to
the tangent at the point on the nearby a priori boundary. If sufficiently many ele-
ments are found, their locations are fit with an analytic curve such as a low-degree
polynomial, and this curve becomes the representation of the boundary.

Fig. 4.2 Search orientations from an
approximate boundary location.

4.2.2 Non-linear Correlation in Edge Space

In this correlation-like technique, the a priori boundary is treated as a rigid tem-
plate, or piece of rigid wire along which edge operators are attached like beads. The
a priori representation thus also contains relative locations at which the existence
of edges will be tested (Fig. 4.3). An edge element returned by the edge-operator
application ‘‘matches’’ the a priori boundary if its contour is tangent to the tem-
plate and its magnitude exceeds some threshold. The template is to be moved
around the image, and for each location, the number of matches is computed. If
the number of matches exceeds a threshold, the boundary location is declared to

Sec. 4.2 Searching near an Approximate Location 121

122

Fig. 4.3 A template for edge-operator
application.

be the current template location. If not, the template is moved to a different image
point and the process is repeated. Either the boundary will be located or there will
eventually be no more image points to try.

4.2.3 Divide-and-Conquer Boundary Detection

This is a technique that is useful in the case that a low-curvature boundary is
known to exist between two edge elements and the noise levels in the image are
low (Algorithm 8.1). In this case, to find a boundary point in between the two
known points, search along the perpendiculars of the line joining the two points.
The point of maximum magnitude (if it is over some threshold) becomes a break
point on the boundary and the technique is applied recursively to the two line seg-
ments formed between the three known boundary points. (Some fix must be ap-
plied if the maximum is not unique.) Figure 4.4 shows one step in this process.
Divide-and-conquer boundary detection has been used to outline kidney boun-
daries on computed tomograms (these images were described in Section 2.3.4)
[Selfridge et al. 1979].

) \ . ' / 4
\ \ ““:3“(
\ W ‘ 5
-\\\\\ﬁ}‘“

\
N,
(Y N

\{
oy

\ Fig. 4.4 Divide and conquer technique.

Ch. 4 Boundary Detection

(x", y")

(x', ¥")

(a)

(b}

Fig. 4.5 A line (a) in image space; (b) in parameter space.

4.3 THEHOUGH METHOD FOR CURVE DETECTION

The classical Hough technique for curve detection is applicable if little is known
about the location of a boundary, but its shape can be described as a parametric
curve (e.g., a straight line or conic). Its main advantages are that it is relatively
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem of
detecting straight lines in images. Assume that by some process image points have
been selected that have a high likelihood of being on linear boundaries. The Hough
technique organizes these points into straight lines, basically by considering all
possible straight lines at once and rating each on how well it explains the data.

Consider the point x' in Fig. 4.5a, and the equation for a line y = mx + ¢
What are the lines that could pass through x'? The answer is simply all the lines
with mand csatisfying y'= mx’+ c¢. Regarding (x/, ') as fixed, the last equation is
that of a line in m—c space, or parameter space. Repeating this reasoning, a second
point (x”, y") will also have an associated line in parameter space and, further-
more, these lines will intersect at the point (m’, ¢”) which corresponds to the line
AB connecting these points. In fact, all points on the line AB will yield lines in
parameter space which interSéct at the point (m’, ¢’), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the follow-
ing algorithm for detecting lines:

Algorithm 4.1: Line Detection with the Hough Algorithm
1. Quantize parameter space between appropriate maximum and minimum

values for cand m.
2. Form an accumulator array 4 (¢, m) whose elements are initially zero.
3. For each point (x,y) in a gradient image such that the strength of the gradient

Sec. 43 The Hough Method for Curve Detection 123

(x", y")

(x', ¥")

(a)

(b}

Fig. 4.5 A line (a) in image space; (b) in parameter space.

4.3 THEHOUGH METHOD FOR CURVE DETECTION

The classical Hough technique for curve detection is applicable if little is known
about the location of a boundary, but its shape can be described as a parametric
curve (e.g., a straight line or conic). Its main advantages are that it is relatively
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem of
detecting straight lines in images. Assume that by some process image points have
been selected that have a high likelihood of being on linear boundaries. The Hough
technique organizes these points into straight lines, basically by considering all
possible straight lines at once and rating each on how well it explains the data.

Consider the point x' in Fig. 4.5a, and the equation for a line y = mx + ¢
What are the lines that could pass through x'? The answer is simply all the lines
with mand csatisfying y'= mx’+ c¢. Regarding (x/, ') as fixed, the last equation is
that of a line in m—c space, or parameter space. Repeating this reasoning, a second
point (x”, y") will also have an associated line in parameter space and, further-
more, these lines will intersect at the point (m’, ¢”) which corresponds to the line
AB connecting these points. In fact, all points on the line AB will yield lines in
parameter space which interSéct at the point (m’, ¢’), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the follow-
ing algorithm for detecting lines:

Algorithm 4.1: Line Detection with the Hough Algorithm
1. Quantize parameter space between appropriate maximum and minimum

values for cand m.
2. Form an accumulator array 4 (¢, m) whose elements are initially zero.
3. For each point (x,y) in a gradient image such that the strength of the gradient

Sec. 43 The Hough Method for Curve Detection 123

124

exceeds some threshold, increment all points in the accumulator array along
the appropriate line, i.e.,

Ale,m)=A(c,m) +1

for mand ¢ satisfying ¢ = —mx + y within the limits of the digitization.

4, Local maxima in the accumulator array now correspond to collinear points in
the image array. The values of the accumulator array provide a measure of the
number of points on the line.

This technique is generally known as the Hough technique [Hough 1962].

Since m may be infinite in the slope-intercept equation, a better parameteri-
zation of the line is xsin@ + ycosé = r. This produces a sinusoidal curve in (7, 8)
space for fixed x, y, but otherwise the procedure is unchanged.

The generalization of this technique to other curves is straightforward and
this method works for any curve f(x, a) = 0, where a is a parameter vector. (In
this chapter we often use the symbol fas various general functions unrelated to the
image gray-level function.) In the case of a circle parameterized by

(x—a)+ (y—0b)2=r2 4.1)

for fixed x, the modified algorithm 4.1 increments values of a, b, rlying on the sur-
face of a cone. Unfortunately, the computation and the size of the accumulator ar-
ray increase exponentially as the number of parameters, making this technique
practical only for curves with a small number of parameters.

The Hough method is an efficient implementation of a generalized matched
filtering strategy (i.e., a template-matching paradigm). For instance, in the case of
a circle, imagine a template composed of a circle of 1’s (at a fixed radius R) and 0’s
everywhere else. If this template is convolved with the gradient image, the result is
the portion of the accumulator array 4 (a, b, R).

In its usual form, the technique yields a set of parameters for a curve that best
explains the data. The parameters may specify an infinite curve (e.g., a line or para-
bola). Thus, if a finite curve segment is desired, some further processing is neces-
sary to establish end points.

4.3.1 Use of the Gradient

Dramatic reductions in the amount of computation can be achieved if the gradient
direction is integrated into the algorithm [Kimme et al. 1975]. For example, con-
sider the problem of detecting a circle of fixed radius R.

Without gradient information, all values a, b lying on the circle given by
(4.1) are incremented. With the gradient direction, only the points near (g,6) in
Fig. 4.6 need be incremented. From geometrical considerations, the point (a,b) is
given by

Ch. 4 Boundary Detection

SRLEEEIANAY SR RN Contents of accumulator tray
T s !
Lhiakiata bl addds s .
(Tl S R R O QO By g Sy Gradient direction information for artifact A¢ = 45
R T LT
1 1 [} 1
"J',E'L'I*J' a-lepdde b g O Denotes a pixel in P(x) superimposed on
L'_TJTEI-,_._L,JJ_;_,_TT l_l_._: otes a pixel 1n P(x) superimp
1 ' !
I‘f“‘lﬁ. ."r-:-:-:-r"i'-l-l-'—'—'— | accumulator tray
'__|_:_|_|_lL|J._Iﬁ|g|..LTJ_J_:_L.:.JI_: !
! ' (LAY | I A 3 .
:--,L-l,l-’va f‘l-*_ -.J"tj“r{"{—,'. 1 Denotes the gradient direction
B o il TR T R G Tk T
o3 PoE sty b blale o as b
e e e e e e I o
I N, S L S O L LI
I [(YT T
ko gt P bty il b =
ok e s bt ol e
r | g | apTTy T
I] |
R
RISt L S R B TR
N A A :..,ﬂ:. whdgy
TP W o | O RN 0o TR O T

Fig 4.6 Reduction in computation with gradient information
a=x—rsing (4.2)
b=y +rcos¢

where ¢ (x) is the gradient angle returned by an edge operator. Implicit in these
equations is the assumption thai the circle is the boundary of a disk that has gray
levels greater than its surroundings. These equations may also be derived by
differentiating (4.2), recognizing that dy/dx = tan¢, and solving for a and b
between the resultant equation and (4.2). Similar methods can be applied to other
conics. In each case, the use of the gradient saves one dimension in the accumula-
tor array.

The gradient magnitude can also be used as a heuristic in the incrementing
procedure. Instead of incrementing by unity, the accumulator array location may
be incremented by a function of the gradient magnitude. This heuristic can balance
the magnitude of brightness change across a boundary with the boundary length,
but it can lead to detection of phantom lines indicated by a few bright points, or to
missing dim but coherent boundaries.

4.3.2 Some Examples

The Hough technique has been used successfully in a variety of domains. Some ex-
amples include the detection of human hemoglobin fingerprints [Ballard et al.
1975], the detection of tumors in chest films [Kimme et al. 1975], the detection of
storage tanks in aerial images [Lantz et al. 1978], and the detection of ribs in chest
radiographs [Wechsler and Sklansky 1977]. Figure 4.7 shows the tumor-detection
application. A section of the chest film (Fig. 4.7b) is searched for disks of radius 3
units. In Fig. 4.7c, the resultant accumulator array A [a, b, 3] is shown in a pictoral
fashion, by interpreting the array values as gray levels. This process is repeated for
various radii and then a set of likely circles is chosen by setting a radius-dependent
threshold for the accumulator array contents. This result is shown in Fig. 4.7d. The

Sec. 4.3 The Hough Method for Curve Detection 125

126

(d)

Fig. 4.7 Using the Hough technique for circular shapes. (a) Radiograph. (b) Window. (c)
Accumulator array for r = 3. (d) Results of maxima detection.

circular boundaries detected by the Hough technique are overlaid on the original
image.

4.3.3 Trading Off Work in Parameter Space for Work in Image Space

Consider the example of detecting ellipses that are known to be oriented so that a
principal axis is parallel to the x axis. These can be specified by four parameters.
Using the equation for the ellipse together with its derivative, and substituting for
the known gradient as before, one can solve for two parameters. In the equation

Ch. 4 Boundary Detection

(x - XD)Z + (y —yu)z
a’ Ik
x is an edge point and xg, yg, @, and b are parameters. The equation for its deriva-
tive is

=1 (4.3)

(x— _ 2
x — xp) N OG-y @y _ 0
a b2 dx

(4.4)

where dy/dx = tan ¢ (x). The Hough algorithm becomes:

Algorithm 4.2: Hough technique applied to ellipses

For each discrete value of xand y, increment the point in parameter space given by
a, b, xy, vy, where

= xp%+ g 4.5)
T Y b ante)” (
Yy =)yox L (4.6)

T (14 gttan?o/pD)"
that is,
Ala, b, xq, yo) == Ala, b, xg, yg) + 1

For a and b each having m values the computational cost is proportional to m?2.

Now suppose that we consider all pairwise combinations of edge elements.
This introduces two additional equations like (4.3) and (4.4), and now the four-
parameter point can be determined exactly. That is, the following equations can be
solved for a unique x, yo, a, b.

", ¥ =1 (4.7a)
(x; — xo) (o, - }’0)2

p 5 =1 (4.7v)
X1~ Xo Vi~ Yo dy _

az + bz E = (47(3)
X2~ X Y2~ Vo dy

+ =0 4,
- e (4.7d)
dy

Sec. 43 The Hough Method for Curve Detection 127

128

Their solution is left as an exercise. The amount of effort in the former case
was proportional to the product of the number of discrete values of a and b,
whereas this case involves effort proportional to the square of the number of edge
elements.

4.3.4 Generalizing the Hough Transform

Consider the case where the object being sought has no simple analytic form, but
has a particular silhouette. Since the Hough technique is so closely related to tem-
plate matching, and template matching can handle this case, it is not surprising that
the Hough technique can be generalized to handle this case also. Suppose for the
moment that the object appears in the image with known shape, orientation, and
scale. (If orientation and scale are unknown, they can be handled in the same way
that additional parameters were handled earlier.) Now pick a reference point in the
silhouette and draw a line to the boundary. At the boundary point compute the gra-
dient direction and store the reference point as a function of this direction. Thus it
is possible to precompute the location of the reference point from boundary points
given the gradient angle. The set of all such locations, indexed by gradient angle,
comprises a table termed the R-table [Ballard 1981]. Remember that the basic stra-
tegy of the Hough technique is to compute the possible loci of reference points in
parameter space from edge point data in image space and increment the parameter
points in an accumulator array. Figure 4.8 shows the relevant geometry and Table
4.1 shows the form of the R-table. For the moment, the reference point coordi-
nates (x,, y.) are the only parameters (assuming that rotation and scaling have
been fixed). Thus an edge point (x, y) with gradient orientation ¢ constrains the
possible reference points to be at {x + r; (¢) cos [a; (®)], y +r,(¢) sin [e; (¢)]}
and so on.

Fig. 4.8 Geometry used to form the
R-Table.

Ch. 4 Boundary Detection

Table 4.1
INCREMENTATION IN THE GENERALIZED HOUGH CASE

Angle measured
from figure boundary Set of radii {r¥} where

to reference point r=(a)
QS] rlli r%: ---:rﬂll
#2 2B RN L

(‘bm r{n‘ rzm, vy r:!

m

The generalized Hough algorithm may be described as follows:

Algorithm 4.3: Generalized Hough

Step 0. Make atable (like Table 4.1) for the shape to be located.

Step 1. Form an accumulator array of possible reference points
A O min * Xemaxs Yemin : Yemax) iNitialized to zero.

Step 2. For each edge point do the following:
Step 2.1. Compute ¢ (x)

Step 2.2a. Calculate the possible centers; that is, for each table entry for
¢, compute

x.:=x+r ¢ cosla(p)]

Ye =y+r ¢ sinla(g)]

Step 2.2b. Increment the accumulator array
Alx, y) = A, y) +1

Step 3. Possible locations for the shape are given by maxima in array 4.

The results of using this transform to detect a shape are shown in Fig. 4.9.
Figure 4.9a shows an image of shapes. The R-table has been made for the middle
shape. Figure 4.9b shows the Hough transform for the shape, that is, 4 (x., y.)
displayed as an image. Figure 4.9c shows the shape given by the maxima of

Sec. 4.3 The Hough Method for Curve Detection 129

130

(c) (d)

Fig. 4.9 Applying the Generalized Hough technique. (a) Synthetic image. (b) Hough
Transform A (x,, y.) for middle shape. (c) Detected shape. (d) Same shape in an aerial

image setting.

A (x,, y.) overlaid on top of the image. Finally, Fig. 4.9d shows the Hough
transform used to detect a pond of the same shape in an aerial image.

What about the parameters of scale and rotation, S and 8 ? These are readily
accommodated by expanding the accumulator array and doing more work in the in-
crementation step. Thus in step 1 the accumulator array is changed to

(xcmin ‘ Xemaxs Yemin - Yemaxs Smin : Smaxr 6min :emux)

and step 2.2ais changed to

Ch. 4 Boundary Detection

for each table entry for ¢ do
foreach S and 6
x, = x+r(p)Scos [al(p) + 6]
Yo =y +r(¢)Ssin [a(p) + 6]
Finally, step 2.2b is now
Alx, 9,8 08) =A(x, y., S 0) +1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a set of nodes {n;} and arcs between
nodes <n;, n;>. In this section we consider graphs whose arcs may have numeri-
cal weights or costs associated with them. The search for the boundary of an object
is cast as a search for the lowest-cost path between two nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image s (x) and direction image ¢ (x). Now interpret the elements
of the direction image ¢ (x) as nodes in a graph, each with a weighting factor s (x).
Nodes x;, x; have arcs between them if the contour directions ¢ (x,), ¢ (x,) are ap-
propriately aligned with the arc directed in the same sense as the contour direction.
Figure 4.10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x; to x;, X; must be one of the three possi-
ble eight-neighbors in front of the contour direction ¢ (x,) and, furthermore, g (x;)

/
o

AIRrdesvd
:

v

=N

N ! 0

Fig. 4.10 Interpreting a gradient image as a graph (see text).

Sec. 44 Edge Following as Graph Searching 131

for each table entry for ¢ do
foreach S and 6
x, = x+r(p)Scos [al(p) + 6]
Yo =y +r(¢)Ssin [a(p) + 6]
Finally, step 2.2b is now
Alx, 9,8 08) =A(x, y., S 0) +1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a set of nodes {n;} and arcs between
nodes <n;, n;>. In this section we consider graphs whose arcs may have numeri-
cal weights or costs associated with them. The search for the boundary of an object
is cast as a search for the lowest-cost path between two nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image s (x) and direction image ¢ (x). Now interpret the elements
of the direction image ¢ (x) as nodes in a graph, each with a weighting factor s (x).
Nodes x;, x; have arcs between them if the contour directions ¢ (x,), ¢ (x,) are ap-
propriately aligned with the arc directed in the same sense as the contour direction.
Figure 4.10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x; to x;, X; must be one of the three possi-
ble eight-neighbors in front of the contour direction ¢ (x,) and, furthermore, g (x;)

/
o

AIRrdesvd
:

v

=N

N ! 0

Fig. 4.10 Interpreting a gradient image as a graph (see text).

Sec. 44 Edge Following as Graph Searching 131

132

> T g(x)) > T, where T'is a chosen constant, and |{ [¢ (x;) — ¢ (x;)] mod 27}| <
/2. (Any or all of these restrictions may be modified to suit the requirements of a

particular problem.)
To generate a path in a graph from x4 to Xz one can apply the well-known

technique of heuristic search [Nilsson 1971, 1980]. The specific use of heuristic
search to follow edges in images was first proposed by [Martelli 1972]. Suppose:

1. That the path should follow contours that are directed from x4 to xg

2. That we have a method for generating the successor nodes of a given node
(such as the heuristic described above)

3. That we have an evaluation function f (x j) which is an estimate of the optimal
cost path from x 4 to x5 constrained to go through x;

Nilsson expresses f (x;) as the sum of two components: g (x,), the estimated cost
of journeying from the start node x4 to x;, and k (x;), the estimated cost of the path

from x; to x, the goal node.

With the foregoing preliminaries, the heuristic search algorithm (called the A
algorithm by Nilsson) can be stated as:

Algorithm 4.4: Heuristic Search (the A Algorithm)

1. ““Expand” the start node (put the successors on a list called OPEN with
pointers back to the start node).

2. Remove the node x; of minimum ffrom OPEN. If x; = xp, then stop. Trace
back through pointers to find optimal path. If OPEN is empty, fail.

3. Else expand node x;, putting successors on OPEN with pointers back to x;. Go
to step 2.

The component 4 (x;) plays an important role in the performance of the algorithm;
if 1 (x;) = O for all i, the algorithm is a minimum-cost search as opposed to a heuristic
search. If h(x;) > h*(x;) (the actual optimal cost), the algorithm may run faster,
but may miss the minimum-cost path. If #(x;) < A*(x,), the search will always
produce a minimum-cost path, provided that 4 also satisfies the following con-
sistency condition:

If for any two nodes X; and X, k (X;, X;) is the minimum cost of getting from
X, to x; (if possible), then

k(x;, Xj) = h*(x;) T h*(x_f)

With our edge elements, there is no guarantee that a path can be found since
there may be insurmountable gaps between x, and x. If finding the edge is cru-
cial, steps should be taken to interpolate edge elements prior to the search, or gaps
may be crossed by using the edge element definition of [Martelli 1972]. He defines

Ch. 4 Boundary Detection

edges on the image grid structure so that an edge can have a direction even though
there is no local gray-level change. This definition is depicted in Fig. 4.11a.

4.4.1 Good Evaluation Functions

A good evaluation function has components specific to the particular task as well as
components that are relatively task-independent. The latter components are dis-
cussed here.

1. Edge strength. If edge strength is a factor, the cost of adding a particular edge
element at x can be included as

M - s(x) where M = max s(x)

2. Curvature. If low-curvature boundaries are desirable, curvature can be meas-
ured as some monotonically increasing function of
difflg (x) — ¢(x))]
where diff measures the angle between the edge elements at x, and x;.
3. Proximity to ar approximation. If an approximate boundary is known, boun-
daries near this approximation can be favored by adding:
d = dist (x;,B)
to the cost measure. The dist operator measures the minimum distance of the
new point x; to the approximate boundary B.

4. Estimates of the distance to the goal. If the curve is reasonably linear, points near
the goal may be favored by estimating / as d (x;, Xg,), Where d is a distance
measure.

Specific implementations of these measures appear in [Ashkar and Modestino
1978; Lester et al. 1978].

4.4.2 Finding All the Boundaries

What if the objective is to find a// boundaries in the image using heuristic search?
In one system [Ramer 1975] Hueckel’s operator (Chapter 3) is used to obtain

. .

(a} (b} (c)

Fig. 4.11 Successor conventions in heuristic search (see text).

Sec. 44 Edge Following as Graph Searching 133

134

strokes, another name for the magnitude and direction of the local gray-level
changes. Then these strokes are combined by heuristic search to form sequences
of edge elements called streaks. Streaks are an intermediate organization which are
used to assure a slightly broader coherence than is provided by the individual
Hueckel edges. A bidirectional search is used with four eight-neighbors defined in
front of the edge and four eight-neighbors behind the edge, as shown in Fig. 4.11b.
The search algorithm is as follows:

1. Scan the stroke (edge) array for the most prominent edge.

2. Search in front of the edge until no more successors exist (i.e., a gap is encoun-
tered).

3. Search behind the edge until no more predecessors exist.

4. If the bidirectional search generates a path of 3 or more strokes, the path is a
streak. Store it in a streak list and go to step 1.

Strokes that are part of a streak cannot be reused; they are marked when used
and subsequently skipped.

There are other heuristic procedures for pruning the streaks to retain only
prime streaks. These are shown in Fig. 4.12. They are essentially similar to the re-

){/‘frf
’)/f//
e i
7
,;///
Z%
’_’_—V"".—-‘— A 11”4‘#\
\ \
o T {

Fig.' 4,12 Operations in the creation of prime streaks.

Ch. 4 Boundary Detection

(a) (b)

(c) (d)

(e) (f)
Fig. 4.13 Ramer’s results.

laxation operations described in Section 3.3.5. The resultant streaks must still be
analyzed to determine the objects they represent. Nevertheless, this method
represents a cogent attempt to organize bottom-up edge following in an image. Fig.
4.13 shows an example of Ramer’s technique.

Sec. 4.4 Edge Following as Graph Searching 135

136

4.4.3 Alternatives to the A Algorithm

The primary disadvantage with the heuristic search method is that the algorithm
must keep track of a set of current best paths (nodes), and this set may become
very large. These nodes represent tip nodes for the portion of the tree of possible
paths that has been already examined. Also, since all the costs are nonnegative, a
good path may eventually look expensive compared to tip nodes near the start
node. Thus, paths from these newer nodes will be extended by the algorithm even
though, from a practical standpoint, they are unlikely. Because of these disadvan-
tages, other less rigorous search procedures have proven to be more practical, five
of which are described below.

Pruning the Tree of Alternatives

At various points in the algorithm the tip nodes on the OPEN list can be
pruned in some way. For example, paths that are short or have a high cost per unit
length can be discriminated against. This pruning operation can be carried out
whenever the number of alternative tip nodes exceeds some bound.

Modified Depth-First Search

Depth-first search is a meaningful concept if the search space is structured as
a tree. Depth-first search means always evaluating the most recent expanded son.
This type of search is performed if the OPEN list is structured as a stack in the A
algorithm and the top node is always evaluated next. Modifications to this method
use an evaluation function f to rate the successor nodes and expand the best of
these. Practical examples can be seen in [Ballard and Sklansky 1976; Wechsler and
Sklansky 1977; Persoon 1976].

Least Maximum Cost

In this elegant idea [Lester 1978], only the maximume-cost arc of each path is
kept as an estimate of g. This is like finding a mountain pass at minimum altitude.
The advantage is that g does not build up continuously with depth in the search
tree, so that good paths may be followed for a long time. This technique has been
applied to finding the boundaries of blood cells in optical microscope images. Some
results are shown in Fig. 4.14.

Branch and Bound

The crux of this method is to have some upper bound on the cost of the path
[Chien and Fu 1974]. This may be known beforehand or may be computed by actu-
ally generating a path between the desired end points. Also, the evaluation func-
tion must be monotonically increasing with the length of the path. With these con-
ditions we start generating paths, excluding partial paths when they exceed the
current bound.

Modified Heuristic Search

Sometimes an evaluation function that assigns negative costs leads to good
results. Thus good paths keep getting better with respect to the evaluation func-
tion, avoiding the problem of having to look at all paths near the starting point.

Ch. 4 Boundary Detection

) R 5

Fig. 4.14 Using least maximum cost in heuristic search to find cell boundaries in micro-
scope images. (a) A stage in the search process. (b) The completed boundary.

However, the price paid is the sacrifice of the mathematical guarantee of finding
the least-cost path. This could be reflected in unsatisfactory boundaries. This
method has been used in cineangiograms with satisfactory results [Ashkar and
Modestino 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 1962] is a technique for solving op-
timization problems when not all variables in the evaluation function are interre-
lated simultaneously. Consider the problem

max A (xq, x3, X3, x4) (4.8)

X

If nothing is known about A, the only technique that guarantees a global maximum
is exhaustive enumeration of all combinations of discrete values of xi,.. ., xa.
Suppose that

h() = h] (xl, xz) + hz (XQ, X3) + h3 (X3, X4) (49)

x1 only depends on x; in 4;. Maximize over x; in A; and tabulate the best value of
hy (x), x7) for each x:

S1 Gey) = max h; (xq, x,) (4.10)
X1

Since the values of #; and /3 do not depend on x;, they need not be considered at

Sec. 4.5 Edge following as Dynamic Programming 137

) R 5

Fig. 4.14 Using least maximum cost in heuristic search to find cell boundaries in micro-
scope images. (a) A stage in the search process. (b) The completed boundary.

However, the price paid is the sacrifice of the mathematical guarantee of finding
the least-cost path. This could be reflected in unsatisfactory boundaries. This
method has been used in cineangiograms with satisfactory results [Ashkar and
Modestino 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 1962] is a technique for solving op-
timization problems when not all variables in the evaluation function are interre-
lated simultaneously. Consider the problem

max A (xq, x3, X3, x4) (4.8)

X

If nothing is known about A, the only technique that guarantees a global maximum
is exhaustive enumeration of all combinations of discrete values of xi,.. ., xa.
Suppose that

h() = h] (xl, xz) + hz (XQ, X3) + h3 (X3, X4) (49)

x1 only depends on x; in 4;. Maximize over x; in A; and tabulate the best value of
hy (x), x7) for each x:

S1 Gey) = max h; (xq, x,) (4.10)
X1

Since the values of #; and /3 do not depend on x;, they need not be considered at

Sec. 4.5 Edge following as Dynamic Programming 137

this point. Continue in this manner and eliminate x, by computing f5 (x3) as

fz (X3) = maX[f] (xz) + Ay ()Cz, X3)] (4.11)
X2
and
f3(xg) = max [f (x3) + A3(x3, x4)] (4.12)
x3
so that finally
max 4 = max f3 (x,) (4.13)
X; Xy

Generalizing the example to N variables, where f; (x;) = 0,
.fn-'l ('xn) = max [.fn*‘? (xn"-l) + hn—](xnglj xn)] (414)

n—1

X

max A(x;, ..., xy) = max fiy- Gxey)

N
If each x; took on 20 discrete values, then to compute fy (xy;) one must evaluate
the maximand for 20 different combinations of xy and xy.;, so that the resultant
computational effort involves (N — 1)20? + 20 such evaluations. This is a striking
improvement over exhaustive evaluation, which would involve 20" evaluations of
h!

Consider the artificial example summarized in Table 4.2. In this example,
each x can take on one of three discrete values. The #; are completely described by
their respective tables. For example, the value of 4,(0, 1) = 5. The solution steps
are summarized in Table 4.3. In step 1, for each x, the value of x, that maximizes
#1(x,, x,) is computed. This is the largest entry in each of the columns of 4. Store
the function value as f; (x,) and the optimizing value of x; also as a function of x,.
In step 2, add f;(x,) to h,(x,, x3). This is done by adding f; to each row of #,,
thus computing the quantity inside the braces of (4.11). Now to complete step 2,
for each x3, compute the x, that maximizes s, + f by selecting the largest entry
in each row of the appropriate table. The rest of the steps are straightforward once
these are understood. The solution is found by tracing back through the tables. For
example, for x4 = 2 we see that the best x; is —1, and therefore the best x, is 3 and
x1 is 1. This step is denoted by arrows.

Table 4.2
DEFINITION OF h

138

Xy X5 X4
1 2 3 -1 0 1 1 2 3
X1 X2 X3
0 5 7 3 1 1 7 1 =1 7 9 8
1 2 1 8 2 1 1 3 0 2 3 6
2 6 3 3 3 5 6 2 1 5 4 1
hy hy hg

Ch. 4 Boundary Detection

Table 4.3
METHOD OF SOLUTION USING DYNAMIC PROGRAMMING

X2 fi X4
1 6 2
Step 1
2 7 0
9| = |
-
i
\
__‘
et
~
<
\\
X5 \
X =1 0 1 X3 fs Xy }
/
1 |7 |13] 2 ,@ 13 @/
Step 2 F/
2 8 8 \ 0 14 3
\
\
O|® SIEE
N
N
~
B
~
~
~
~
~
~
~
N
X4 \
1 2 3 X4 fs Xz N\
Xq \
\
\
ol 1IDEN
Step 3 /f
IREE O
1 15 14 11 3 21 -1

Step 4: Optimal x;s are found by examing tables
(dashed line shows the order in which they
are recovered).

Solution: h* =22
x{=1,x3=3,x=-1,x;=2
4.5.2 Dynamic Programming for Images
To formulate the boundary-following procedure as dynamic programming, one

must define an evaluation function that embodies a notion of the **best boundary”
[Montanari 1971; Ballard 1976]. Suppose that a local edge detection operator is ap-

Sec. 4.5 Edge Following as Dynamic Programming 139

140

plied to a gray-level picture to produce edge magnitude and direction information.
Then one possible criterion for a ‘‘good boundary’’ is a weighted sum of high cu-
mulative edge strength and low cumulative curvature; that is, for an r-segment
curve,

n n—1 ;
hxy,....x,) = 2 s(x) +a) q(x;, Xeq) (4.16)
k=1 k=1
where the implicit constraint is that consecutive x,’s must be grid neighbors:
Ik = xaI<V2 4.17)
g (xXy, Xp11) = diff [(x;), & (x;41)] (4.18)

where « is negative. The function g we take to be edge strength, i.e., g(x) = s(x).
Notice that this evaluation function is in the form of (4.9) and can be optimized in
stages:

fo (x)=0 (4.19)

f] (Xz) = max [S(X]) e aq(xl, Xz) + fo(Xl)] (4.20)
Xg

fk (X;H_]) = max [S (Xk) + ag (Xk, Xk+l) + fk—l(xk)] (421)
Xk

These equations can be put into the following steps:

Algorithm 4.5: Dynamic Programming for Edge Finding

1. Setk =1
Consider only x such that s (x) > T, For each of these x, define low-curvature
pixels ‘““in front of * the contour direction.

3. Each of these pixels may have a curve emanating from it. For k=1, the curve
is one pixel in length. Join the curve to x that optimizes the left-hand side of
the recursion equation.

4. If k=N, pick the best fy_ and stop. Otherwise, set k = k + 1 and go to step
2.

This algorithm can be generalized to the case of picking a curve emanating from x
(that we have already generated): Find the end of that curve, and join the best of
three curves emanating from the end of that curve. Figure 4.15 shows this process.
The equations for the general case are

Ch. 4 Boundary Detection

=

=

e X

~
N
~

et

Fig. 4.15 DP optimization for boundary tracing.

f[)(xl) E0

Ji X)) = max[s(x;) + aq (x4, 1(x441))
Xk

 EEAEY S

+ fi-1 (x)] (4.22)

where the curve length n is related to « by a building sequence 7 (/) such that » (1)
=1,n(L) = N,and n(I) — n(I—1) is a member of {n(k)|k =1, ..., | — 1}.
Also, #(x;) is a function that extracts the tail pixel of the curve headed by x,.
Further details may be found in [Ballard 1976].

Results from the area of tumor detection in radiographs give a sense of this
method’s performance. Here it is known that the boundary inscribes an approxi-
mately circular tumor, so that circular cues can be used to assist the search. In Fig.
4.16, (a) shows the image containing the tumor, (b) shows the cues, and (c) shows
the boundary found by dynamic programming overlaid on the image.

Another application of dynamic programming may be found in the pseudo-
parallel road finder of Barrow [Barrow 1976].

4.5.3 Lower Resolution Evaluation Functions

In the dynamic programming formulation just developed, the components g (x;)
and g (x;, x,.1) in the evaluation function are very localized; the variables x for
successive sand g are in fact constrained to be grid neighbors. This need not be the
case: The x can be very distant from each other without altering the basic tech-
nique. Furthermore, the functions g and g need not be local gradient and absolute
curvature, respectively, but can be any functions defined on permissible x. This
general formulation of the problem for images was first described by [Fischler and

Sec. 4.5 FEdge Following as Dynamic Programming 141

142

(a)

Fig. 4.16 Results of DP in boundary
tracing. (a) Image containing tumor. (b)
Contour cues. (¢) Resultant boundary.

(c)

Elschlager 1973]. The Fischler and Elschlager formulation models an object as a
set of parts and relations between parts, represented as a graph. Template func-
tions, denoted by g (x), measure how well a part of the model matches a part of the
image at the point x. (These local functions may be defined in any manner whatso-
ever.) “Relational functions,” denoted by g, (x, y), measure how well the posi-
tion of the match of the kth part at (x) agrees with the position of the match of the
Jjth part at (y).

The basic notions are shown by a technique simplified from [Chien and Fu
1974] to find the boundaries of lungs in chest films. The lung boundaries are
modeled with a polygonal approximation defined by the five key points. These
points are the top of the lung, the two clavicle-lung junctions, and the two lower
corners. To locate these points, local functions g (x,) are defined which should be
maximized when the corresponding point x, is correctly determined. Similarly,
q (x, xj-) is a function relating points x; and x;. In their case, Chien and Fu used
the following functions:

Ch. 4 Boundary Detection

T(x) = template centered at x computed as
an aggregate of a set of chest radiographs
T(x — x,)f(x)
8 () = 2 =777

and
0 (x4, x;) = expected angular orientation of x; from x;

g (x, x;) = |6 (x,, x;) —arctan oL
X — xj-
With this formulation no further modifications are necessary and the solution may
be obtained by solving Egs. (4.19) through (4.21), as before. For purposes of com-
parison, this method was formalized using a lower-resolution objective function.
Figure 4.17 shows Chien and Fu’s results using this method with five template
functions.

4.5.4 Theoretical Questions about Dynamic Programming

The Interaction Graph

This graph describes the interdependence of variables in the objective func-
tion. In the examples the interaction graph was simple: Each variable depended on
only two others, resulting in the graph of Fig. 4.18a. A more complicated case is
the one in 4.18b, which describes an objective function of the following form:

h() = hl (x1- XQ) + hz (X2, X3, Xq) + h3 (X_}, X4, Xs, Xﬁ)
For these cases the dynamic programming technique still applies, but the computa-
tional effort increases exponentially with the number of interdependencies. For
example, to eliminate x, in A5, all possible combinations of x; and x4 must be con-
sidered. To eliminate x; in k3, all possible combinations of x4, x5, and x4, and so
forth.
Dynamic Programming versus Heuristic Search

It has been shown [Martelli 1976] that for finding a path in a graph between
two points, which is an abstraction of the work we are doing here, heuristic search
methods can be more efficient than dynamic programming methods. However, the
point to remember about dynamic programming is that it efficiently builds paths
from multiple starting points. If this is required by a particular task, then dynamic
programming would be the method of choice, unless a very powerful heuristic
were available.

4,6 CONTOUR FOLLOWING
If nothing is known about the boundary shape, but regions have been found in the
image, the boundary is recovered by one of the simplest edge-following opera-
tions: “‘blob finding’’ in images. The ideas are easiest to present for binary images:

Sec. 4.6 Contour Following 143

144

T

Pixels S =
(a) (b)

Fig. 4.17 Results of using local templates and global relations. (a) Model. (b) Results.

Given a binary image, the goal is find the boundaries of all distinct regions in the
image.

This can be done simply by a procedure that functions like Papert’s turtle
[Papert 1973; Duda and Hart 1973]:

1. Scan the image until a region pixel is encountered.
2. Ifitis aregion pixel, turn left and step; else, turn right and step.
3. Terminate upon return to the starting pixel.

Figure 4.19 shows the path traced out by the procedure. This procedure requires
the region to be four-connected for a consistent boundary. Parts of an eight-
connected region can be missed. Also, some bookkeeping is necessary to generate
an exact sequence of boundary pixels without duplications.

A slightly more elaborate algorithm due to [Rosenfeld 1968] generates the
boundary pixels exactly. It works by first finding a four-connected background
pixel from a known boundary pixel. The next boundary pixel is the first pixel en-
countered when the eight neighbors are examined in a counter clockwise order
from the background pixel. Many details have to be introduced into algorithms
that follow contours of irregular eight-connected figures. A good exposition of
these is given in [Rosenfeld and Kak 1976].

4.6.1 Extension to Gray-Level Images

The main idea behind contour following is to start with a point that is believed to
be on the boundary and to keep extending the boundary by adding points in the
contour directions. The details of these operations vary from task to task. The gen-

Ch. 4 Boundary Detection

X, Xp X3 X4
X5 X3
X1
Xg Xg

X5 Xg

Xa

Fig. 4.18 Interaction graphs for DP (see text).

eralization of the contour follower to gray-level images uses local gradients with a
magnitude s(x) and direction ¢ (x) associated with each point x. ¢ points in the
direction of maximum change. If x is on the boundary of an image object, neigh-
boring points on the boundary should be in the general direction of the contour
directions, ¢(x) + @/2, as shown by Fig. 4.20. A representative procedure is

adapted from [Martelli 1976]:

1. Assume that an edge has been detected up to a point x;. Move to the point x;
adjacent to x; in the direction perpendicular to the gradient of x;. Apply the
gradient operator to x ; if its magnitude is greater than (some) threshold, this

point is added to the edge.

2. Otherwise, compute the average gray level of the 3 X 3 array centered on x;,
compare it with a suitably chosen threshold, and determine whether x; is in-

side or outside the object.

3. Make another attempt with a point x, adjacent to x; in the direction perpendic-
ular to the gradient at x; plus or minus (7/4), according to the outcome of the

previous test.

Sec. 46 Contour Following

Fig. 4.19 Finding the boundary in a

binary image.

145

146

\

NN

N

Local edge

~y Search Fig. 4.20 Angular orientations for
\\\ space contour following.

4.6.2 Generalization to Higher-Dimensional Image Data

The generalization of contour following to higher-dimensional spaces is straight-
forward [Liu 1977; Herman and Liu 1978]. The search involved is, in fact, slightly
more complex than contour following and is more like the graph searching
methods described in Section 4.4. Higher-dimensional image spaces arise when the
image has more than two spatial dimensions, is time-varying, or both. In these im-
ages the notion of a gradient is the same (a vector describing the maximum gray-
level change and its corresponding direction), but the intuitive interpretation of
the corresponding edge element may be difficult. In three dimensions, edge ele-
ments are primitive surface elements, separating volumes of differing gray level.
The objective of contour following is to link together neighboring surface elements
with high gradient modulus values and similar orientations into larger boundaries.
In four dimensions, ‘‘edge elements’ are primitive volumes; contour following
links neighboring volumes with similar gradients.

The contour following approach works well when there is little noise present
and no “‘spurious’’ boundaries. Unfortunately, if either of these conditions is
present, the contour-following algorithms are generally unsatisfactory; they are
easily thwarted by gaps in the data produced by noise, and readily follow spurious
boundaries. The methods described earlier in this chapter attempt to overcome
these difficulties through more elaborate models of the boundary structure.

EXERCISES

4.1 Specify a heuristic search algorithm that will work with “‘crack’’ edges such as those in
Fig. 3.12.

4.2 Describe a modification of Algorithm 4.2 to detect parabolae in gray-level images.

4.3 Suppose that a relation 4 (x), x¢) is added to the model described by Fig. 4.18a so
that now the interaction graph is cyclical. Show formally how this changes the optimi-
zation steps described by Egs. (4.11) through (4.13).

4.4 Show formally that the Hough technique without gradient direction information is
equivalent to template matching (Chapter 3).

Ch. 4 Boundary Detection

4.5 Extend the Hough technique for ellipses described by Egs. (4.7a) through (4.7d) to
ellipses oriented at an arbitrary angle @ to the x axis.

4.6 Show how to use the generalized Hough technique to detect hexagons.

REFERENCES

ASHKAR, G. P.and J. W. MoDESTINO. ‘‘The contour extraction problem with biomedical applications.”
CGIP 7,1978, 331-355.

BALLARD, D. H. Hierarchic detection of tumors in chest radiographs. Basel: Birkhauser-Verlag (ISR-16),
January 1976.

BALLARD, D. H. “Generalizing the Hough transform to detect arbitrary shapes.”” Pattern Recognition
13,2,1981,111-122.

BALLARD, D. H. and J. SKLaNSKY. ““A ladder-structured decision tree for recognizing tumors in chest
radiographs.”’ IEEE Trans. Computers 25,1976, 503-513.

BALLARD, D. H., M. MaRrINUCCI, F. PROIETTI-ORLANDI, A. RossI-MaRI, and L. TENTARIL “‘Automatic
analysis of human haemoglobin fingerprints.” Proc., 3rd Meeting, International Society of Hae-
motology, London, August 1975,

Barrow, H. G. “‘Interactive aids for cartography and photo interpretation.”” Semi-Annual Technical
Report, Al Center, SRI International, December 1976.

BELLMAN, R. and S. DREYFUS. Applied Dynamic Programming. Princeton, NJ: Princeton University
Press, 1962.

BoLLEs, R. ““Verification vision for programmable assembly.” Proc., 5th IICAI, August 1977, 569-575.

CHIEN, Y. P. and K. S. Fu. “*A decision function method for boundary detection.”” CGIP 3, 2, June
1974, 125-140.

Dupa, R. O. and P. E. HART. ““Use of the Hough transformation to detect lines and curves in pic-
tures.”” Commun. ACM 15, 1, January 1972, 11-15.

Dupa, R. O. and P. E. HART. Pattern Recognition and Scene Analysis. New York: Wiley, 1973.
FISCHLER, M. A. and R. A. ELSCHLAGER. “‘The representation and matching of pictoral patterns.”” IEEE
Trans. Computers 22, January 1973,

HerMAN, G. T. and H. K. Liv. ““‘Dynamic boundary surface detection.”” CGIP 7, 1978, 130-138.
HougH, P. V. C. ““Method and means for recognizing complex patterns.”” U.S. Patent 3,069,654; 1962.
KELLY, M.D. ‘‘Edge detection by computer using planning.” In M/6, 1971.

KIMME, C., D. BALLARD, and J. SKLANsKY. “‘Finding circles by an array of accumulators.”” Commun.
ACM 18,2,1975,120-122.

Lantz, K. A., C. M. BRowN and D. H. BALLARD. ‘“Model-driven vision using procedure decription:
motivation and application to photointerpretation and medical diagnosis.” Proc., 22nd Interna-
tional Symp., Society of Photo-optical Instrumentation Engineers, San Diego, CA, August
1978.

LESTER, J. M., H. A. WiLLiams, B. A. WEINTRAUB, and J. F. BRENNER, ““Two graph searching tech-
niques for boundary finding in white blood cell images.”” Computers in Biology and Medicine 8,
1978, 293-308.

Liu, H. K. ““Two- and three-dimensional boundary detection.”” CGIP 6, 2, April 1977, 123-134.

MARR, D. “*Analyzing natural images; a computational theory of texture vision.”” Technical Report
334, Al Lab, MIT, June 1975.

MARTELLI, A. “‘Edge detection using heuristic search methods.”” CGIP 1, 2, August 1972, 169-182.

MARTELLI, A. **An application of heuristic search methods to edge and contour detection.”” Commun.
ACM 19, 2, February 1976, 73-83.

References 147

148

MOoNTANARI, U. ““On the optimal detection of curves in noisy pictures.”” Commun. ACM 14, 5, May
1971, 335-345.

NILSSON, N. J. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971.
NILssoN, N. . Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.
PAPERT, S. “‘Uses of technology to enhance education.”” Technical Report 298, AI Lab, MIT, 1973.

PERSOON, E. **A new edge detection algorithm and its applications in picture processing.”” CGIP 5, 4,
December 1976, 425-446.

RAMER, U. ““Extraction of line structures from photographs of curved objects.”” CGIP 4, 2, June 1975,
81-103.

ROSENFELD, A. Picture Processing by Computer. New York: Academic Press, 1968.
ROSENFELD, A. and A. C. KAK. Digital Picture Processing. New York: Academic Press, 1976.

SELFRIDGE, P. G., J. M. S. PREwITT, C. R. DYER, and S. RANADE. ‘‘Segmentation algorithms for ab-
dominal computerized tomography scans.”’ Proc., 3rd COMPSAC, November 1979, 571-577,

WECHSLER, H. and J. SKLANsKY. ‘‘Finding the rib cage in chest radiographs.”” Pattern Recognition 9,
1977, 21-30.

Ch. 4 Boundary Detection

Region
Growing | 5

5.1 REGIONS

Chapter 4 concentrated on the linear features (discontinuities of image gray level)
that often correspond to object boundaries, interesting surface detail, and so on.
The ““‘dual” problem to finding edges around regions of differing gray level is to
find the regions themselves. The goal of region growing is to use image characteris-
tics to map individual pixels in an input image to sets of pixels called regions. An
image region might correspond to a world object or a meaningful part of one.

Of course, very simple procedures will derive a boundary from a connected
region of pixels, and conversely can fill a boundary to obtain a region. There are
several reasons why both region growing and line finding survive as basic segmen-
tation techniques despite their redundant-seeming nature. Although perfect re-
gions and boundaries are interconvertible, the processing to find them initially
differs in character and applicability; besides, perfect edges or regions are not al-
ways required for an application. Region-finding and line-finding techniques can
cooperate to produce a more reliable segmentation.

The geometric characteristics of regions depend on the domain. Usually, they
are considered to be connected two-dimensional areas. Whether regions can be
disconnected, non-simply connected (have holes), should have smooth boun-
daries, and so forth depends on the region-growing technique and the goals of the
work. Ultimately, it is often the segmentation goal to partition the entire image
into quasi-disjoint regions. That is, regions have no two-dimensional overlaps, and
no pixel belongs to the interior of more than one region. However, there is no sin-
gle definition of region —they may be allowed to overlap, the whole image may not
be partitioned, and so forth.

Our discussion of region growers will begin with the most simple kinds and
progress to the more complex. The most primitive region growers use only aggre-
gates of properties of local groups of pixels to determine regions. More sophisti-

149

150

cated techniques ‘‘grow’’ regions by merging more primitive regions. To do this in
a structured way requires sophisticated representations of the regions and boun-
daries. Also, the merging decisions can be complex, and can depend on descriptions
of the boundary structure separating regions in addition to the region semantics. A
good survey of early techniques is [Zucker 1976].

The techniques we consider are:

1. Local techniques. Pixels are placed in a region on the basis of their properties or
the properties of their close neighbors.

2. Global technigues. Pixels are grouped into regions on the basis of the properties
of large numbers of pixels distributed throughout the image.

3. Splitting and merging techniques. The foregoing techniques are related to indivi-
dual pixels or sets of pixels. State space techniques merge or split regions using
graph structures to represent the regions and boundaries. Both local and global
merging and splitting criteria can be used.

The effectiveness of region growing algorithms depends heavily on the appli-
cation area and input image. If the image is sufficiently simple, say a dark blob on a
light background, simple local techniques can be surprisingly effective. However,
on very difficult scenes, such as outdoor scenes, even the most sophisticated tech-
niques still may not produce a satisfactory segmentation. In this event, region
growing is sometimes used conservatively to preprocess the image for more
knowledgeable processes [Hanson and Riseman 1978].

In discussing the specific algorithms, the following definitions will be helpful.
Regions R, are considered to be sets of points with the following properties:

x, in aregion R is connected to x; iff there
is a sequence {x;, ..., x;} such that x, and x,, (5.1)
are connected and all the points are in R.

R is a connected region if the set of points x in R has the (5.2)
property that every pair of points is connected.

m
I, the entire image = |J R, (5.3)
k=1

RNAR=¢, i#=j (5.4)

A set of regions satisfying (5.2) through (5.4) is known as a partition. In seg-
mentation algorithms, each region often is a unique, homogeneous area. That is,
for some Boolean function H (R) that measures region homogeneity,

H(R,) = trueforall k (5.5)
H(R;\J R;) = false for i= (5.6)

Note that R, does not have to be connected. A weaker but still useful criterion is
that neighboring regions not be homogeneous.

Ch. 5 Region Growing

5.2 ALOCAL TECHNIQUE: BLOB COLORING

The counterpart to the edge tracker for binary images is the blob-coloring algo-
rithm. Given a binary image containing four-connected blobs of 1’s on a back-
ground of 0’s, the objective is to ‘‘color each blob’”; that is, assign each blob a
different label. To do this, scan the image from left to right and top to bottom with
a special L-shaped template shown in Fig. 5.1. The coloring algorithm is as follows.

Algorithm 5.1: Blob Coloring
Let the initial color, k = 1. Scan the image from left to right and top to bottom.
If £ (x¢) = 0 then continue

else
begin

if (f(xy) =1and f(x;) =0)
then color (x) := color (xy)

if (f(x,) =1and f(xy) =0)
then color (x¢) := color (x;)

if (f(x,) =1land f(xy) =1)

then begin
color (x¢) := color (x;)
color (x;) is equivalent to color (x)
end

comment: two colors are equivalent.

lf(f(xL) o Oandf(xu) =0)
thencolor (x;) :=k; k:=k+1

comment: new color

end

After one complete scan of the image the color equivalences can be used to assure
that each object has only one color. This binary image algorithm can be used as a
simple region-grower for gray-level images with the following modifications. If in a

.

X, X, Fig. 5.1 L-shaped template for blob
coloring.

Sec. 5.2 A Local Technique: Blob Coloring 151

gray-level image f (x.) is approximately equal to f(x,), assign x to the same re-
gion (blob) as x . This is equivalent to the condition f(x¢) = f(xy) = 1in Al-
gorithm 5.1. The modifications to the steps in the algorithm are straightforward.

5.3 GLOBAL TECHNIQUES: REGION GROWING VIA THRESHOLDING

Number
of
pixels

152

This approach assumes an object-background image and picks a threshold that
divides the image pixels into either object or background:

x is part of the Object iff f(x) > T
Otherwise it is part of the Background

The best way to pick the threshold T'is to search the histogram of gray levels,
assuming it is bimodal, and find the minimum separating the two peaks, as in Fig.
5.2. Finding the right valley between the peaks of a histogram can be difficult when
the histogram is not a smooth function. Smoothing the histogram can help but
does not guarantee that the correct minimum can be found. An elegant method for
treating bimodal images assumes that the histogram is the sum of two composite
normal functions and determines the valley location from the normal parameters
[Chow and Kaneko 1972].

The single-threshold method is useful in simple situations, but primitive. For
example, the region pixels may not be connected, and further processing such as
that described in Chapter 2 may be necessary to smooth region boundaries and re-
move noise. A common problem with this technique occurs when the image has a
background of varying gray level, or when collections we would like to call regions
vary smoothly in gray level by more than the threshold. Two modifications of the
threshold approach to ameliorate the difficulty are: (1) high-pass filter the image to
deemphasize the low-frequency background variation and then try the original
technique; and (2) use a spatially varying threshold method such as that of [Chow
and Kaneko 1972].

The Chow-Kaneko technique divides the image up into rectangular subim-
ages and computes a threshold for each subimage. A subimage can fail to have a
threshold if its gray-level histogram is not bimodal. Such subimages receive inter-

Gray level
Fig. 5.2 Threshold determination
Threshold from gray-level histogram.

Ch. 5 Region Growing

polated thresholds from neighboring subimages that are bimodal, and finally the
entire picture is thresholded by using the separate thresholds for each subimage.

5.3.1 Thresholding in Multidimensional Space

An interesting variation to the basic thresholding paradigm uses color images; the
basic digital picture function is vector-valued with red, blue, and green com-
ponents. This vector is augmented with possibly nonlinear combinations of these
values so that the augmented picture vector has a number of components. The
idea is to re-represent the color solid redundantly and hope to find color parame-
ters for which thresholding does the desired segmentation. One implementation of
this idea used the red, green, and blue color components; the intensity, saturation,
and hue components; and the N.T.S.C. Y, I, Q components (Chapter 2) [Ohlander
etal. 1979].

The idea of thresholding the components of a picture vector is used in a prim-
itive form for multispectral LANDSAT imagery [Robertson et al. 1973]. The novel
extension in this algorithm is the recursive application of this technique to nonrec-
tangular subregions.

The region partitioning is then as follows:

Algorithm 5.2: Region Growing via Recursive Splitting

1. Consider the entire image as a region and compute histograms for each of the
picture vector components.

2. Apply a peak-finding test to each histogram. If at least one component passes
the test, pick the component with the most significant peak and determine two
thresholds, one either side of the peak (Fig. 5.3). Use these thresholds to
divide the region into subregions.

3. Each subregion may have a ““noisy’’ boundary, so the binary representation of
the image achieved by thresholding is smoothed so that only a single con-
nected subregion remains. For binary smoothing see ch. 8 and [Rosenfeld and
Kak 1976].

4. Repeat steps 1 through 3 for each subregion until no new subregions are
created (no histograms have significant peaks).

A refinement of step 2 of this scheme is to create histograms in higher-
dimensional space [Hanson and Riseman 1978]. Multiple regions are often in the
same histogram peak when a single measurement is used. The advantage of the
multimeasurement histograms is that these different regions are often separated
into individual peaks, and hence the segmentation is improved. Figure 5.4 shows
some results using a three-dimensional RGB color space.

The figure shows the clear separation of peaks in the three-dimensional histo-
gram that is not evident in either of the one-dimensional histograms. How many

Sec. 5.3 Global Techniques: Region Growing via Thresholding 153

(a)

100
140y 200
100] 8o 160

120
60 40 80
20 40)
20
° 0 0
80 160 240 O 80 160 240 = 80 160 240
27 <RED < 231 0 <GREEN £ 222 44 £ BLUE < 231
120 120 140,
100 100] E
80) 80 o0
60 60 ™
40 40
20 20 20
0 o
80 o 2a0 © 50 150250 350 50 150 250
2T<INTENSITY <228 0 < HUE £ 359 4 < SATURATION< 255
WHITE = 0
220 w60
180} 120
140
100] 80
60) 40

o] o
60 120 180 240 250 300 350 200 240 280 320 360
15€Y <226 243 < 12 358 219 Q< 340

(b)

154

(c)

Fig. 5.3 Peak detection and threshold determination. (a) Original image. (b) Histograms. (c) Image segments
resulting from first histogram peak.

Ch. 5 Region Growing

Fig. 5.3 (d) Final segments.

(d)

dimensions should be used? Obviously, there is a trade-off here: As the dimen-
sionality becomes larger, the discrimination improves, but the histograms are
more expensive to compute and noise effects may be more pronounced.

5.3.2 Hierarchical Refinement

This technique uses a pyramidal image representation (Section 3.7) [Harlow and
Eisenbeis 1973]. Region growing is applied to a coarse resolution image. When the
algorithm has terminated at one resolution level, the pixels near the boundaries of
regions are disassociated with their regions. The region-growing process is then re-
peated for just these pixels at a higher-resolution level. Figure 5.5 shows this struc-
ture.

5.4 SPLITTING AND MERGING

Given a set of regions R, k = 1,...,m, a low-level segmentation might require the
basic properties described in Section 5.1 to hold. The important properties from
the standpoint of segmentation are Egs. (5.5) and (5.6).

If Eq. (5.5) is not satisfied for some k, it means that that region is inhomo-
geneous and should be split into subregions. If Eq. (5.6) is not satisfied for some i
and j, then regions iand jare collectively homogeneous and should be merged into
a single region. .

In our previous discussions we used

true if all neighboring pairs of points
H(R) = in R aresuch that f(x) — f(y) < T (5.7
false otherwise

and

true if the pointsin R passa
H(R) = bimodality or peak test (5.8)
false otherwise

Sec. 5.4 Splitting and Merging 155

156

ot b

mé-ﬂh
ET R

Fig. 5.4 Multi-dimensional
histograms in segmentation. (a) Image.
(b) RGB histogram showing successive
planes through a 16 x 16 x 16 color
space. (c) Segments. (See color inserts.)

Ch. 5 Region Growing

7
00
U
; %
7 f/ //
/% % i _
7 V™

Fig. 5.5 Hierarchical region refinement.

A way of working toward the satisfaction of these homogeneity criteria is the
split-and-merge algorithm [Horowitz and Pavlidis 1974]. To use the algorithm it is
necessary to organize the image pixels into a pyramidal grid structure of regions. In
this grid structure, regions are organized into groups of four. Any region can be
split into four subregions (except a region consisting of only one pixel), and the ap-
propriate groups of four can be merged into a single larger region. This structure is
incorporated into the following region-growing algorithm.

Algorithm 5.3: Region Growing via Split and Merge [Horowitz and Pavlidis
1974]

1. Pick any grid structure, and homogeneity property H. If for any region R in
that structure, H (R) = false, split that region into four subregions. If for any
four appropriate regions Ry ,..., Rya, H(Rpy U Ria U Ris U Rys) = true,
merge them into a single region. When no regions can be further split or
merged, stop.

2. If there are any neighboring regions R; and R; (perhaps of different sizes) such
that H (R;|J R;) = true, merge these regions.

5.4.1 State-Space Approach to Region Growing

The ““classical’® state-space approach of artificial intelligence [Nilsson 1971, 1980]
was first applied to region growing in [Brice and Fennema 1970] and significantly
extended in [Feldman and Yakimovsky 1974]. This approach regards the initial
two-dimensional image as a discrete state, where every sample point is a separate
region. Changes of state occur when a boundary between regions is either removed
or inserted. The problem then becomes one of searching allowable changes in state
to find the best partition.

Sec. 5.4 Splitting and Merging 157

158

T R I SR

rOE 0+ O 00T + Unassigned

+ g N 3 " S " g N + Edge data Fig. 5.6 Grid structure for region
o GNP N G O Grey level data representation [Brice and Fennema
+0 +0 +0 +0 + 1970].

An important part of the state-space approach is the use of data structures to
allow regions and boundaries to be manipulated as units. This moves away from
earlier techniques, which labeled each individual pixel according to its region. The
high-level data structures do away with this expensive practice by representing re-
gions with their boundaries and then keeping track of what happens to these boun-
daries during split-and merge-operations.

5.4.2 Low-level Boundary Data Structures

A useful representation for boundaries allows the splitting and merging of regions
to proceed in a simple manner [Brice and Fennema 1970]. This representation in-
troduces the notion of a supergrid S to the image grid G. These grids are shown in
Fig. 5.6, where - and + correspond to supergrid and O to the subgrid. The
representation is assumed to be four-connected (i.¢., x1 is a neighbor of x2 if||x1 —
x2[[< 1.

With this notation boundaries of regions are directed crack edges (see Sec.
3.1) at the points marked +. That is, if point x, is a neighbor of x ;and x; isina
different region than x;, insert two edges for the boundaries of the regions contain-
ing x; and x, at the point + separating them, such that each edge traverses its as-
sociated region in a counterclockwise sense. This makes merge operations very
simple: To merge regions R, and R,, remove edges of the opposite sense from the
boundary as shown in Fig. 5.7a. Similarly, to split a region along a line, insert edges
of the opposite sense in nearby points, as shown in Fig. 5.7b.

The method of [Brice and Fennema 1970] uses three criteria for merging re-
gions, reflecting a transition from local measurements to global measurements.
These criteria use measures of boundary strength s; and w;; defined as

s =17 (x) — Fx))| (5:9)

s S

ChEm.S Ok

i e Al b sl
ik e

(a}
Fig. 5.7 Region operations on the grid structure of Fig. 5.6.

Ch. 5 Region Growing

L (b)

Fig. 5.7 (cont.)

where x; and x; are assumed to be on either side of a crack edge (Chapter 3). The
three criteria are applied sequentially in the following algorithm:

Algorithm 5.4: Region Growing via Boundary Melting (T,, k = 1, 2, 3 are
preset thresholds)

1. For all neighboring pairs of points, remove the boundary between x; and x; if
i#jand w; = 1. When no more boundaries can be removed, go to step 2:

2. Remove the boundary between R; and R; if

W

. S | (5.11)
min [p;, p;]

where Wis the sum of the w;; on the common boundary between R; and R,
that have perimeters p; and p; respectively. When no more boundaries can be
removed, go to step 3.

3. Remove the boundary between R; and R; if
W > T; (5.12)

5.4.3 Graph-Oriented Region Structures

The Brice-Fennema data structure stores boundaries explicitly but does not pro-
vide for explicit representation of regions. This is a drawback when regions must
be referred to as units. An adjunct scheme of region representation can be
developed using graph theory. This scheme represents both regions and their
boundaries explicitly, and this facilitates the storing and indexing of their semantic
properties.

The scheme is based on a special graph called the region adjacency graph, and
its “*dual graph.” In the region adjacency graph, nodes are regions and arcs exist
between neighboring regions. This scheme is useful as a way of keeping track of re-
gions, even when they are inscribed on arbitrary nonplanar surfaces (Chapter 9).

Sec. 5.4 Splitting and Merging 159

Consider the regions of an image shown in Fig. 5.8a. The region adjacency
graph has a node in each region and an arc crossing each separate boundary seg-
ment. To allow a uniform treatment of these structures, define an artificial region
that surrounds the image. This node is shown in Fig. 5.8b. For regions on a plane,
the region adjacency graph is planar (can lie in a plane with no arcs intersecting)
and its edges are undirected. The ‘‘dual” of this graph is also of interest. To con-
stuct the dual of the adjacency graph, simply place nodes in each separate region
and connect them with arcs wherever the regions are separated by an arc in the ad-
jacency graph. Figure 5.8c shows that the dual of the region adjacency graph is like
the original region boundary map; in Fig. 5.8b each arc may be associated with a
specific boundary segment and each node with a junction between three or more
boundary segments. By maintaining both the region adjacency graph and its dual,
one can merge regions using the following algorithm:

Algorithm 5.5: Merging Using the Region-Adjacency Graph and Its Dual
Task: Merge neighboring regions R; and R;.
Phase 1. Update the region-adjacency graph.

1. Place edges between R; and all neighboring regions of R; (excluding, of
course, R;) that do not already have edges between themselves and R;.

2. Delete R; and all its associated edges.
Phase 2. Take care of the dual.

1. Delete the edges in the dual corresponding to the borders between R, and R ;.
2. Foreach of the nodes associated with these edges:

(a) if the resultant degree of the node is less than or equal to 2, delete the
node and join the two dangling edges into a single edge.

(b) otherwise, update the labels of the edges that were associated with j
to reflect the new region label /.

Figure 5.9 shows these operations.

5.5 INCORPORATION OF SEMANTICS

160

Up to this point in our treatment of region growers, domain-dependent “‘seman-
tics’’ has not explicitly appeared. In other words, region-merging decisions were
based on raw image data and rather weak heuristics of general applicability about
the likely shape of boundaries. As in early processing, the use of domain-
dependent knowledge can affect region finding. Possible interpretations of regions
can affect the splitting and merging process. For example, in an outdoor scene pos-
sible region interpretations might be sky, grass, or car. This kind of knowledge is
quite separate from but related to measurable region properties such as intensity

Ch. 5 Region Growing

(a)

(b}

Fig. 5.8 (a) Animage partition. (b)
The region adjacency graph (solid lines).
(c) The dual of the adjacency graph
(solid lines).

and hue. An example shows how semantic labels for regions can guide the merging
process. This approach was originally developed in [Feldman and Yakimovsky
1974]. it has found application in several complex vision systems [Barrow and
Tenenbaum 1977; Hanson and Riseman 1978].

Early steps in the Feldman-Yakimovsky region grower used essentially the
same steps as Brice-Fennema. Once regions attain significant size, semantic cri-

(a) (b)

Fig. 5.9 Merging operations using the region adjacency graph and its dual. (a) Before
merging regions separated by dark boundary line. (b) After merging.

Sec. 5.5 Incorporation of Semantics 161

162

teria are used. The region growing consists of four steps, as summed up in the fol-
lowing algorithm:

Algorithm 5.6 Semantic Region Growing

Nonsemantic Criteria
T, and T, are preset thresholds

1. Merge regions j, ;j as long as they have one weak separating edge until no two
regions pass this test.

2. Mergeregions i, jwhere S(i, j) < T,where

where ¢; and ¢, are constants,
(area;)” + (area;)”
perimeter; - perimeter;

aij =

until no two regions pass this test. (This is a similar criterion to Algorithm 5.4,
step 2.)

Semantic Criteria

3. Let B;; be the boundary between R, and R;. Evaluate each B; with a Bayesian
decision function that measures the (conditional) probability that Bj; separates
two regions R, and R; of the same interpretation. Merge R, and R, if this condi-
tional probability is less than some threshold. Repeat step 3 until no regions
pass the threshold test.

4. Evaluate the interpretation of each region R; with a Bayesian decision function
that measures the (conditional) probability that an interpretation is the correct
one for that region. Assign the interpretation to the region with the highest
confidence of correct interpretation. Update the conditional probabilities for
different interpretations of neighbors. Repeat the entire process until all re-
gions have interpretation assignments.

The semantic portion of algorithm 5.6 had the goal of maximizing an evalua-
tion function measuring the probability of a correct interpretation (labeled parti-
tion), given the measurements on the boundaries and regions of the partition. An
expression for the evaluation function is (for a given partition and interpretations X
and 1):

max I1 {P[B isaboundary between X and Y | measurementson B,]}
, LS ' !

x I1 {P[R; isan X | measurements on R,]}

x I1 {P[R; isan Y | measurements on R,]}

Ch. 5 Region Growing

where P stands for probability and I is the product operator.

How are these terms to be computed? Ideally, each conditional probability
function should be known to a reasonable degree of accuracy; then the terms can
be obtained by lookup.

However, the straightforward computation and representation of the condi-
tional probability functions requires a massive amount of work and storage. An
approximation used in [Feldman and Yakimovsky 1974] is to quantize the mea-
surements and represent them in terms of a classification tree. The conditional
probabilities can then be computed from data at the leaves of the tree. Figure 5.10
shows a hypothetical tree for the region measurements of intensity and hue, and
interpretations ROAD, SKY, and CAR. Figure 5.11 shows the equivalent tree for
two boundary measurements m and n and the same interpretations. These two
figures indicate that P[R;isa CAR|0 < i< L,0 < 2 < H|l =, and P[B; divides
two car regions | M, < m < My41, N, < n < N = . These trees were created
by laborious trials with correct segmentations of test images.

Now, finally, consider again step 3 of Algorithm 5.6. The probability that a
boundary B;; between regions R; and R; is false is given by

Piarse P, J_?P/ (5.13)
where
P, = X {P[B, is between two subregions X | B;’s measurements]} (5.14a)
x{P[R; is X | measl}x{P[R; is X | meas]}
P, =Y, {P[B; isbetween X and Y | meas]} (5.14b)
Xy
x {P[R; is X | meas I}x{P[R; is ¥ | meas]) .

Fig. 5.10 Hypothetical classification tree for region measurements showing a
particular branch for specific ranges of intensity and hue.

Sec. 5.5 Incorporation of Semantics 163

164

4 Road/sky
1 Road/car
3 Sky/car

2 Road/road
2 Car/car
1 Sky/sky

Fig. 5.11 Hypothetical classification
tree for boundary measurements
showing a specific branch for specific
ranges of two measurements mand n.

And for step 4 of the algorithm,

PIR; is X1 | meas]
PIR; is X2 | meas]

Confidence; = (5.15)

where X1, X2 are the first and second most likely interpretations, respectively.
After the region is assigned interpretation X 1, the neighbors are updated using

51

5.2

53

5.4

5.5

5.6

5.7

PR, is X | meas]:=Prob [R/ is X | meas] (5.16)

x P[B; is between X and X1 | meas]

EXERCISES

In Algorithm 5.1, show how one can handle the case where colors are equivalent. Do
you need more than one pass over the image?

Show for the heuristic of Eq. (5.11) that

(@) IT, =2 WT, > P;

® P, <P +I1(1/T,—2)
where P, is the perimeter of R;|J R j» I is the perimeter common to both jand j
and P,, = min (P; P;). What does part (b) imply about the relation between T’ and
P,?
Write a ‘‘histogram-peak” finder; that is, detect satisfying valleys in histograms
separating intuitive hills or peaks.
Suppose that regions are represented by a neighbor list structure. Each region has an
associated list of neighboring regions. Design a region-merging algorithm based on
this structure.
Why do junctions of regions in segmented images tend to be trihedral?
Regions, boundaries, and junctions are the structures behind the region-adjacency
graph and its dual. Generalize these structures to three dimensions. Is another struc-
ture needed?
Generalize the graph of Figure 5.8 to three dimensions and develop the merging algo-
rithm analogous to Algorithm 5.5. (Hint: see Exercise 5.6.)

Ch. 5 Region Growing

REFERENCES

Barrow, H. G. and J. M. TENENBAUM. “‘Experiments in model-driven scene segmentation.’” Artificial
Intelligence 8, 3, June 1977, 241-274.

BrICE, C. and C. FENNEMA. ““Scene analysis using regions.” Artificial Intelligence 1, 3, Fall 1970,
205-226.

CHow, C. K. and T. KANEKO. ‘‘Automatic boundary detection of the left ventricle from cinean-
giograms.”” Computers and Biomedical Research 5, 4, August 1972, 388-410.

FELDMAN, J. A. and Y. YaKIMOVsKY. ‘‘Decision theory and artificial intelligence: I. A semantics-based
region analyzer.” Artificial Intelligence 5, 4, 1974, 349-371.

HANsON, A. R. and E. M. RISEMAN. *‘Segmentation of natural scenes.”” In C¥S, 1978.

HarLow, C. A.and S. A. EIsenseis. ‘‘The analysis of radiographic images.”” J[EEE Trans. Computers 22,
1973, 678-688.

Horowitz, S. L. and T. PavLiDis. ‘‘Picture segmentation by a directed split-and-merge procedure.”
Proc., 2nd IJCPR, August 1974, 424-433.

NiLssoN, N. J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.
NILsSON, N. J. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971.

OHLANDER, R., K. PrICE, and D. R. REDDY. ‘‘Picture segmentation using a recursive region splitting
method.” CGIP &, 3, December 1979.

RoBerTsoN, T. V., P. H. SwaIn, and K. S. Fu. ‘“‘Multispectral image partitioning.”” TR-EE 73-26
(LARS Information Note 071373), School of Electrical Engineering, Purdue Univ., August
1973.

ROSENFELD, A. and A. C. KaK. Digital Picture Processing. New York: Academic Press, 1976.
ZUCKER, S. W. ““Region growing: Childhood and adolescence.”” CGIP 5, 3, September 1976, 382-399.

165

References

Texture 6

6.1 WHAT IS TEXTURE?

166

The notion of texture admits to no rigid description, but a dictionary definition of
texture as ‘‘something composed of closely interwoven elements’ is fairly apt.
The description of interwoven elements is intimately tied to the idea of texture
resolution, which one might think of as the average amount of pixels for each dis-
cernable texture element. If this number is large, we can attempt to describe the
individual elements in some detail. However, as this number nears unity it be-
comes increasingly difficult to characterize these elements individually and they
merge into less distinct spatial patterns. To see this variability, we examine some
textures.

Figure 6.1 shows ‘‘cane,”” “‘paper,’” “‘coffee beans,”” “‘brickwall,’’ “‘coins,”’
and “‘wire braid’ after Brodatz’s well-known book [Brodatz 1966]. Five of these
examples are high-resolution textures: they show repeated primitive elements that
exhibit some kind of variation. ‘‘Coffee beans,”” ‘“brick wall’’ and ‘‘coins’’ all have
obvious primitives (even if it is not so obvious how to extract these from image
data). Two more examples further illustrate that one sometimes has to be creative
in defining primitives. In ‘“‘cane”’ the easiest primitives to deal with seem to be the
physical holes in the texture, whereas in “‘wire braid’’ it might be better to model
the physical relations of a loose weave of metallic wires. However, the paper tex-
ture does not fit nicely into this mold. This is not to say that there are not possibili-
ties for primitive elements. One is regions of lightness and darkness formed by the
ridges in the paper. A second possibility is to use the reflectance models described
in Section 3.5 to compute “‘pits”” and ““bumps.”” However, the elements seem to
be ““just beyond our perceptual resolving power’’ [Laws 19801, or in our terms, the
elements are very close in size to individual pixels.

LN

r
.
1
]
L
L]
[]
[]
L]
]
v
']

’
L]
L]
(]
.
.
L}
[]
v
[}

@

(]
@
')

P @aav @ass m b G0 uus
L
]

" Sy &> @p» 48P 98-
@
[]

P AP @aas> 1P gEav wane
|]
[]

]

L]

v

»

v

L]

’

L]

y

t]
®.
|]

» @ avr

&
@
&
&
o

r
b
r
[]
»
1
[
]
{]
L]
’
L]

L] []
- [
[] v
» a
L] -
v v
] -
- -
" 0.0.0
. .
- [
] ’
a L]
- -
L L 2
]]

T o
il &tﬁl%ﬁ i o
i Ht% o

iy

) %
g

_.LL ‘L L‘ HL]_L!_L
i M_F‘%‘Hl

=

oy
2480
B

Fig. 6.1 Six examples of texture. (a) Cane. (b) Paper. (c) Coffee beans. (d)

Brick wall. (e) Coins. (f) Wire braid.

The exposition of texture takes place under four main headings:

Texture primitives
Structural models
Statistical models

il

Texture gradients

Sec. 6.1 What is Texture

167

168

We have already described texture as being composed of elements of texture primi-
tives. The main point of additional discussion on texture primitives is to refine the
idea of a primitive and its relation to image resolution.

The main work that is unique to texture is that which describes how primi-
tives are related to the aim of recognizing or classifying the texture. Two broad
classes of techniques have emerged and we shall study each in turn. The structural
model regards the primitives as forming a repeating pattern and describes such pat-
terns in terms of rules for generating them. Formally, these rules can be termed a
grammar. This model is best for describing textures where there is much regularity
in the placement of primitive elements and the texture is imaged at high resolu-
tion. The “‘reptile” texture in Fig. 6.9 is an example that can be handled by the
structured approach. The statistical model usually describes texture by statistical
rules governing the distribution and relation of gray levels. This works well for
many natural textures which have barely discernible primitives. The ““paper” tex-
ture is such an example. As we shall see, we cannot be too rigid about this division
since statistical models can describe pattern-like textures and vice versa, but in
general the dichotomy is helpful.

The examples suggest that texture is almost always a property of surfaces.
Indeed, as the example of Fig. 6.2 shows, human beings tend to relate texture ele-
ments of varying size to a plausible surface in three dimensions [Gibson 1950;
Stevens 1979]. Techniques for determining surface orientation in this fashion are
termed texture gradient techniques. The gradient is given both in terms of the
direction of greatest change in size of primitives and in terms of the spatial place-
ment of primitives. The notion of a gradient is very useful. For example, if the tex-
ture is embedded on a flat surface, the gradient points toward a vanishing point in
the image. The chapter concludes with algorithms for computing this gradient.
The gradient may be computed directly or indirectly via the computation of the
vanishing point.

=
e
§><‘:_“_> —_— %
e i o
. Sl C:DC
— =

/ﬂ Fig. 6.2 Texture as a surface property.

Ch. 6 Texture

6.2 TEXTURE PRIMITIVES

The notion of a primitive is central to texture. To highlight its importance, we shall
use the appelation texe! (for texture element) [Kender 1978]. A texel is (loosely)
a visual primitive with certain invariant properties which occurs repeatedly in
different positions, deformations, and orientations inside a given area. One basic
invariant property of such a unit might be that its pixels have a constant gray level,
but more elaborate properties related to shape are possible. (A detailed discussion
of planar shapes is deferred until Chapter 8.) Figure 6.3 shows examples of two
kinds of texels: (a) ellipses of approximately constant gray level and (b) linear edge
segments. Interestingly, these are nearly the two features selected as texture prim-
itives by [Julesz, 1981], who has performed extensive studies of human texture
perception.

For textures that can be described in two dimensions, image-based descrip-
tions are sufficient. Texture primitives may be pixels, or aggregates of pixels such
as curve segments or regions. The ‘‘coffee beans’ texture can be described by an
image-based model: repeated dark ellipses on a lighter background. These models
describe equally well an image of texture or an image of a picture of texture. The
methods for creating these aggregates were discussed in Chapters 4 and 5. As with
all image-based models, three-dimensional phenomena such as occlusion must be
handled indirectly. In contrast, structural approaches to texture sometimes require
knowledge of the three-dimensional world producing the texture image. One ex-
ample of this is Brodatz’s ‘“‘coins’’ shown in Fig. 6.1. A three-dimensional model of
the way coins can be stacked is needed to understand this texture fully.

An important part of the texel definition is that primitives must occur repeat-
edly inside a given area. The question is: How many times? This can be answered
qualitatively by imagining a window that corresponds approximately to our field of
view superimposed on a very large textured area. As this window is made smaller,
corresponding to moving the viewpoint closer to the texture, fewer and fewer tex-
els are contained in it. At some distance, the image in the window no longer

(a)

Fig. 6.3 Examples of texels. (a) Ellipses. (b) Linear segments.

Sec. 6.2 Texture Primitives 169

appears textured, or if it does, translation of the window changes the perceived tex-
ture drastically. At this point we no longer have a texture. A similar effect occurs if
the window is made increasingly larger, corresponding to moving the field of view
farther away from the image. At some distance textural details are blurred into
continuous tones and repeated elements are no longer visible as the window is
translated. (This is the basis for halftone images, which are highly textured pat-
terns meant to be viewed from enough distance to blur the texture.) Thus the idea
of an appropriate resolution, or the number of texels in a subimage, is an implicit
part of our qualitative definition of texture. If the resolution is appropriate, the tex-
ture will be apparent and will “‘look the same’’ as the field of view is translated
across the textured area. Most often the appropriate resolution is not known but
must be computed. Often this computation is simpler to carry out than detailed
computations characterizing the primitives and hence has been used as a precursor
to the latter computations. Figure 6.4 shows such a resolution-like computation,
which examines the image for repeating peaks [Connors 1979].

Textures can be hierarchical, the hierarchies corresponding to different reso-
lutions. The “‘brick wall’’ texture shows such a hierarchy. At one resolution, the
highly structured pattern made by collections of bricks is in evidence; at higher
resolution, the variations of the texture of each brick are visible.

6.3 STRUCTURAL MODELS OF TEXEL PLACEMENT

Highly patterned textures tesselate the plane in an ordered way, and thus we must
understand the different ways in which this can be done. In a regular tesselation the

IWmrw s =T wrwINITHIEE?

masai%!amm fefadsfaiaiafaiap
raiazmaaawﬂ, EEEEEEEECTERLIETE
miagﬂmaai_am, jarEiede{eiada(aj!
ETEEESREEFEH T I;ﬂ{lll OO0l
1a§ai_amamiu; TEUOOOEE
FREFETEEETEFE] A R (e (s)
imamymindmesam l!tlllllllllm:uu
(a) (b)
PR S
_{4 -
5 ’
+ . Fig. 6.4 Computing texture
1 kg * resolutions. (a) French canvas. (b)
= Resolution grid for canvas. (c) Raffia.
(d) (d) Grid for raffia.

170

Ch. 6 Texture

polygons surrounding a vertex all have the same number of sides. Semiregular
tesselations have two kinds of polygons (differing in number of sides) surrounding
a vertex. Figure 2.11 depicts the regular tesselations of the plane. There are eight
semiregular tesselations of the plane, as shown in Fig. 6.5. These tesselations are
conveniently described by listing in order the number of sides of the polygons sur-

X
X

X
veiee

(3, 6, 3, 6)

(3, 4, 6, 4)

ST
DoAREan
A AV AT AV ATAVAN

/\W\]/\ ‘

(3, 3, 3,4, 4) (3, 3, 4, 3, 4}

Fig. 6.5 Semiregular tesselations.

Sec. 6.3 Structural Models of Texel Placement 171

172

rounding each vertex. Thus a hexagonal tesselation is described by (6,6,6) and
every vertex in the tesselation of Fig. 6.5 can be denoted by the list (3,12,12). It is
important to note that the tesselations of interest are those which describe the
placement of primitives rather than the primitives themselves. When the primitives
define a tesselation, the tesselation describing the primitive placement will be the
dual of this graph in the sense of Section 5.4. Figure 6.6 shows these relationships.

Texel Placement
tesselation Fig. 6.6 The primitive placement

tesselation as the dual of the primitive
tesselation.

6.3.1 Grammatical Models

A powerful way of describing the rules that govern textural structure is through a
grammar. A grammar describes how to generate patterns by applying rewriting rules
to a small number of symbols. Through a small number of rules and symbols, the
grammar can generate complex textural patterns. Of course, the symbols turn out
to be related to texels. The mapping between the stored model prototype texture
and an image of texture with real-world variations may be incorporated into the
grammar by attaching probabilities to different rules. Grammars with such rules
are termed stochastic [Fu 1974].

There is no unique grammar for a given texture, in fact, there are usually
infinitely ‘many choices for rules and symbols. Thus texture grammars are
described as syntactically ambiguous. Figure 6.7 shows a syntactically ambiguous
texture and two of the possible choices for primitives. This texture is also semanti-
cally ambiguous [Zucker 1976] in that alternate ridges may be thought of in three
dimensions as coming out of or going into the page.

There are many variants of the basic idea of formal grammars and we shall
examine three of them: shape grammars, tree grammars, and array grammars. For
a basic reference, see [Hopcroft and Ullman 1979]. Shape grammars are dis-
tinguished from the other two by having high-level primitives that closely
correspond to the shapes in the texture. In the examples of tree grammars and ar-
ray grammars that we examine, texels are defined as pixels and this makes the

Ch. 6 Texture

v
P
b
v
v
L~

ffd T

2]
e
L]
el
L
e

™S
s
[
N
™
N

(L

ra
vd
e
L2
b
|~

(L0

Two choices for primitives:

or

<
0

Fig. 6.7 Ambiguous texture.

grammars correspondingly more complicated. A particular texture that can be
described in eight rules in a shape grammar requires 85 rules in a tree grammar [Lu
and Fu 1978]. The compensating trade-off is that pixels are gratis with the image;
considerable processing must be done to derive the more complex primitives used
by the shape grammar.

6.3.2 Shape Grammars

A shape grammar [Stiny and Gips 1972] is defined as a four-tuple <V, ¥,,, R, §>
where:

1. V,isafinite set of shapes
2. Vpisafinite set of shapessuchthat V, () ¥, = ¢

3. Ris a finite set of ordered pairs (#, v) such that u is a shape consisting of ele-
ments of ¥," and vis a shape consisting of an element of ¥, combined with an
element of ¥,

4, Sisashape consisting of an element of ¥, combined with an element of V.

Elements of the set V, are called terminal shape elements (or terminals). Elements
of the set ¥, are called nonterminal shape elements (or markers). The sets ¥, and
V,, must be disjoint. Elements of the set ¥, are formed by the finite arrangement
of one or more elements of ¥V, in which any elements and/or their mirror images
may be used a multiple number of times in any location, orientation, or scale. The
set ¥, = V;" |J (A}, where A is the empty shape. The sets V,f and V,, are
defined similarly. Elements (u, v) of R are called shape rules and are written u v.
uis called the left side of the rule; v the right side of the rule. w and v usually are en-
closed in identical dashed rectangles to show the correspondence between the two
shapes. S is called the initial shape and normally contains a u such that there is a
(u, v) which is an element of R.

Sec. 6.3 Structural Models of Texel Placement 173

174

A texture is generated from a shape grammar by beginning with the initial
shape and repeatedly applying the shape rules. The result of applying a shape rule
R to a given shape s is another shape, consisting of s with the right side of R substi-
tuted in S for an occurrence of the left side of R. Rule application to a shape
proceeds as follows:

1. Find part of the shape that is geometrically similar to the left side of a rule in
terms of both terminal elements and nonterminal elements (markers). There
must be a one-to-one correspondence between the terminals and markers in
the left side of the rule and the terminals and markers in the part of the shape
to which the rule is to be applied.

2. Find the geometric transformations (scale, translation, rotation, mirror im-
age) which make the left side of the rule identical to the corresponding part in
the shape.

3. Apply those transformations to the right side of the rule.

4. Substitute the transformed right side of the rule for the part of the shape that
corresponds to the left side of the rule.

The generation process is terminated when no rule in the grammar can be applied.
As a simple example, one of the many ways of specifying a hexagonal texture

[V,, Vs R, S}is
v, ={()

RO =000 e

s={(}
Hexagonal textures can be generated by the repeated application of the single rule
in R. They can be recognized by the application of the rule in the opposite direction
to a given texture until the initial shape, I, is produced. Of course, the rule will

generate only hexagonal textures. Similarly, the hexagonal texture in Fig. 6.8a will
be recognized but the variants in Fig. 6.8b will not.

D oL

(b}

Fig. 6.8 Textures to be recognized (see text).

Ch. 6 Texture

A more difficult example is given by the “‘reptile’’ texture. Except for the oc-
casional new rows, a (3, 6, 3, 6) tesselation of primitives would model this texture
exactly. As shown in Fig. 6.9, the new row is introduced when a seven-sided pol-
ygon splits into a six-sided polygon and a five-sided polygon. To capture this with a
shape grammar, we examine the dual of this graph, which is the primitive place-
ment graph, Fig. 6.9b. This graph provides a simple explanation of how the extra
row is created; that is, the diamond pattern splits into two. Notice that the dual
graph is composed solely of four-sided polygons but that some vertices are (4, 4, 4)
and some are (4,4,4,4,4,4). A shape grammar for the dual is shown in Fig. 6.10.
The image texture can be obtained by forming the dual of this graph. One further
refinement should be added to rules (6) and (7); so that rule (7) is used less often,
the appropriate probabilities should be associated with each rule. This would make
the grammar stochastic.

(a) (b)

Fig. 6.9 (a) The reptile texture. (b) The reptile texture as a (3, 6, 3, 6) semireg-
ular tesselation with local deformations.

6.3.3 Tree Grammars

The symbolic form of a tree grammar is very similar to that of a shape grammar. A
grammar

Gf = (I/U Vm: r, -R, S)
is a tree grammar if

¥, is a set of terminal symbols
V.. is a set of symbols such that
Vm n Vi=¢
r: ¥V,— N (where Nis the set of nonnegative integers)
is the rank associated with symbolsin ¥,
Sis the start symbol
R is the set of rules of the form
X 7)Jc or Xo—x
X0 Xr(o)
with xin V, and Xg ... X,y in ¥},

For a tree grammar to generate arrays of pixels, it is necessary to choose some way
of embedding the tree in the array. Figure 6.11 shows two such embeddings.

Sec. 6.3 Structural Models of Texel Placement 175

176

&
XS =

Fig. 6.10 Shape grammar for the reptile texture.

In the application to texture [Lu and Fu 1978], the notion of pyramids or
hierarchical levels of resolution in texture is used. One level describes the place-
ment of repeating patterns in texture windows—a rectangular texel placement
tesselation—and another level describes texels in terms of pixels. We shall illus-

Ch. 6 Texture

starting

point
. - ™ - —t P e e i--—-'--%-.
R '
. - . . _I._...s_._-.. -—.—-—-—--~—0—--o-J-o
| | Il Il L I i 8 L
! L L 5 L I T i 7
il o (oo s e ey i e e S ks s i
T T 11 IRRREEE 1
AHEHEEHE
Starting
5 —4 —_— o e & L e P —_— e " = £+
point o I e s e e il e]] 0 o
1 T I T ! 1 ' 1 !
A I A I I e i 7 Rl o O I P
T | I 1 T 1 T T 1
ol Bl N] Al e 8 P e i ol i e B
I 1 T T I I T]
. PP ERPE B SR R b o B i R
1 l 1 ! i 1 Il M =1 1
T 11 T IR 1
. . . . - PR NP P B O s it sl aiie el
(a) Structure A (b) Structure B

Fig. 6.11 Two ways of embedding a tree structure in an array.

trate these ideas with Lu and Fu’s grammar for ““wire braid.’” The texture windows
are shown in Fig. 6.12a. Each of these can be described by a ‘‘sentence’” in a
second tree grammar. The grammar is given by:

G,= WV, V,rRS)
where
Ve =1{4,, C1)
Ve=1{X Y, Z} (6.2)
r=1{0,1,2)

R:X—f/h or A;
N\ |
X Y

Y

Y—C or C,
z

Z — A or A,
v

and the first embedding in Fig. 6.11 is used. The pattern inside each of these win-
dows is specified by another grammatical level:

G=W,V,rnRS)

Sec. 6.3 Structural Models of Texel Placement 177

178

where
v, = {1, 0}
V, = (A1, A3,A3, A4, As, Ag, A7, C1, Ca, C3, Cyq, Cs, Cg, C1,
No, N1, Na, N3, Ng}

r=-{0, 1,2}
S ={4,, C}
R:
1 . 0
A'l - | C - | \ o -+] H 0
No/ l"2\"0 "t./ G Ny Mo
1 0 1
At A &= o \ N> ; 1
No/ AB\D NI'/C3 Nl. Nu
1 0 0

C, +

A /) 3 |
N/A“\ ":{ C:.\“x. N

A, -+ ’ C.o=» o o
) /[\ S EAN 3t
Ny A W Wy B N,

0 0

/[\ £ /|\ Ny |

Ny Ag Ky Ny G Ny Ny

0 [}

/IN VAN

N3 A7 N Nl C;r Nl
0 1 1
Ay~ i [H

A S A2
Nfo A H“ HJ’ "l. ND CF N0 NO No
The application of these rules generates the two different patterns of pixels

shown in Fig. 6.13.

6.3.4 Array Grammars

Like tree grammars, array grammars use hierarchical levels of resolution [Milgram
and Rosenfeld 1971; Rosenfeld 1971]. Array grammars are different from tree
grammars in that they do not use the tree-array embedding. Instead, prodigious
use of a blank or null symbol is used to make sure the rules are applied in appropri-
ate contexts. A simple array grammar for generating a checkerboard pattern is

G=1{V,V, R)

Ch. 6 Texture

Ay 1€ 4 A 1€
X e —
A == 5% T N

Fig. 6.12 Texture window and grammar (see text).

where

¥, = {0, 1} (corresponding to black and white pixels, respectively)
v, ={b S}

b is a “‘blank” symbol used to provide context for the application of the rules.
Another notational convenience is to use a subscript to denote the orientation of
symbols. For example, when describing the rules R we use

0Uh 0,1 where x is one of {U, D, L, R}
to summarize the four rules
0_,0 b_, 1 rais 25
it 070 06 —01, b0—10
Thus the checkerboard rule set is given by
R:S—0orl
0,6 —0,1 xin{U D, L, R}
1. — 1,0
A compact encoding of textural patterns [Jayaramamurthy 1979] uses levels of ar-
ray grammars defined on a pyramid. The terminal symbols of one layer are the start
symbols of the next grammatical layer defined lower down in the pyramid. This
corresponds nicely to the idea of having one grammar to generate primitives and
another to generate the primitive placement tesselations.
As another example, consider the herringbone pattern in Fig. 6.14a, which is

composed of 4x3 arrays of a particular placement pattern as shown in Fig. 6.14b.
The following grammar is sufficient to generate the placement pattern.

G,=1{V, V,, R, S}

Sec. 6.3 Structural Models of Texel Placement 179

180

!‘W‘ﬂ : l“f_.‘-l L .'w‘s i -ﬂ"w"‘s e x”ﬂ
« ' W % : ") a ol
" W o — P
.,) o 'u. »! s o .,
i I :“ .!e_l_ l;. 4 *n) "S. g lux_' v*u
0 » ", " -'- S .
M - % e X e " e,
‘M i) . ; .m’ o o JE
o b o ", " " » Y u®
! ar— A R e
e e M W % o *w o *
et L S k b i i
= o o . L]
o~ -~ . & " o S
- ‘.._ » e ’.m‘, “Im-.‘! ‘_‘w“
W L L e whas 3 . o 3 -
.'h CTwed’ wen! Cwen -
- N o M, - " > ', o
pe v - i)
. FEmel a S st AT
e G i S e R
:‘- " 'n.‘lll Ia-) s I_‘ o o . '.-‘W
o o :——“ o :—-as: S v :m:
N e - ",
3 RRERRE FER L4
) o ™. *® *a W~ ' o
. :n-nn;‘ S — R e
: ¥ b s e " . ol "
o ,Hl Lo Jne Lo
o N o ", »* " 5 " et
‘l- L Sk T At v, o *a
. e - l' l‘ k] ml{- ’.‘m

V, = {a)}
V,=1{b, S}
R:S—a

ab — aa

Fig. 6.13 Texture generated by tree
grammar.

xin{U D, L, R)

We have not been precise in specifying how the terminal symbol is projected onto
the lower level. Assume without loss of generality that it is placed in the upper
left-hand corner, the rest of the subarray being initially blank symbols. Thus a sim-

ple grammar for the primitive is

G, =1V, V,, R S}

#*

#
S
#
#

* % |*
% %1%

INITIAL ARRAY AT LEVEL 1

aja|d|a
adladla|a
ul al 1 1
al ul ul ul

FINAL ARRAY

TERMINAL ARRAY AT LEVEL

Fig. 6.14 Stepsin generating a
herringbone texture with an array
grammar.

Ch. 6 Texture

where

V, = {a, b)
a b b b 001 0
Rb bbb — 01 01
b b b b 1 0 0 0

6.4 TEXTURE AS A PATTERN RECOGNITION PROBLEM

Many textures do not have the nice geometrical regularity of “‘reptile’” or ‘“‘wire
braid’’; instead, they exhibit variations that are not satisfactorily described by
shapes, but are best described by statistical models. Statistical pattern recognition is a
paradigm that can classify statistical variations in patterns. (There are other statisti-
cal methods of describing texture [Pratt et al. 1981], but we will focus on statistical
pattern recognition since it is the most widely used for computer vision purposes.)
There is a voluminous literature on pattern recognition, including several excel-
lent texts (e.g., [Fu 1968; Tou and Gonzalez 1974; Fukunaga 1972], and the ideas
have much wider application than their use here, but they seem particularly ap-
propriate for low-resolution textures, such as those seen in aerial images [Weszka
et al. 1976]. The pattern recognition approach to the problem is to classify in-
stances of a texture in an image into a set of classes. For example, given the tex-
tures in Fig. 6.15, the choice might be between the classes ‘‘orchard,”” ‘‘field,”
“‘residential,” ‘‘water.”

The basic notion of pattern recognition is the feature vector. The feature vec-
tor v is a set of measurements [vl -+ v,,} which is supposed to condense the
description of relevant properties of the textured image into a small, Euclidean
Jeature space of m dimensions. Each point in feature space represents a value for
the feature vector applied to a different image (or subimage) of texture. The meas-
urement values for a feature should be correlated with its class membership. Fig-
ure 6.16 shows a two-dimensional space in which the features exhibit the desired
correlation property. Feature vector values cluster according to the texture from
which they were derived. Figure 6.16 shows a bad choice of features (measure-
ments) which does not separate the different classes.

The pattern recognition paradigm divides the problem into two phases: train-
ing and test. Usually, during a training phase, feature vectors from known samples
are used to partition feature space into regions representing the different classes.
However, self teaching can be done; the classifier derives its own partitions.
Feature selection can be based on parametric or nonparametric models of the dis-
tributions of points in feature space. In the former case, analytic solutions are
sometimes available. In the latter, feature vectors are clustered into groups which
are taken to indicate partitions. During a test phase the feature-space partitions are
used to classify feature vectors from unknown samples. Figure 6.17 shows this
process.

Given that the data are reasonably well behaved, there are many methods for
clustering feature vectors [Fukunaga 1972; Tou and Gonzales 1974; Fu 1974].

Sec. 6.4 Texture as a Pattern Recognition Problem 181

where

V, = {a, b)
a b b b 001 0
Rb bbb — 01 01
b b b b 1 0 0 0

6.4 TEXTURE AS A PATTERN RECOGNITION PROBLEM

Many textures do not have the nice geometrical regularity of “‘reptile’” or ‘“‘wire
braid’’; instead, they exhibit variations that are not satisfactorily described by
shapes, but are best described by statistical models. Statistical pattern recognition is a
paradigm that can classify statistical variations in patterns. (There are other statisti-
cal methods of describing texture [Pratt et al. 1981], but we will focus on statistical
pattern recognition since it is the most widely used for computer vision purposes.)
There is a voluminous literature on pattern recognition, including several excel-
lent texts (e.g., [Fu 1968; Tou and Gonzalez 1974; Fukunaga 1972], and the ideas
have much wider application than their use here, but they seem particularly ap-
propriate for low-resolution textures, such as those seen in aerial images [Weszka
et al. 1976]. The pattern recognition approach to the problem is to classify in-
stances of a texture in an image into a set of classes. For example, given the tex-
tures in Fig. 6.15, the choice might be between the classes ‘‘orchard,”” ‘‘field,”
“‘residential,” ‘‘water.”

The basic notion of pattern recognition is the feature vector. The feature vec-
tor v is a set of measurements [vl -+ v,,} which is supposed to condense the
description of relevant properties of the textured image into a small, Euclidean
Jeature space of m dimensions. Each point in feature space represents a value for
the feature vector applied to a different image (or subimage) of texture. The meas-
urement values for a feature should be correlated with its class membership. Fig-
ure 6.16 shows a two-dimensional space in which the features exhibit the desired
correlation property. Feature vector values cluster according to the texture from
which they were derived. Figure 6.16 shows a bad choice of features (measure-
ments) which does not separate the different classes.

The pattern recognition paradigm divides the problem into two phases: train-
ing and test. Usually, during a training phase, feature vectors from known samples
are used to partition feature space into regions representing the different classes.
However, self teaching can be done; the classifier derives its own partitions.
Feature selection can be based on parametric or nonparametric models of the dis-
tributions of points in feature space. In the former case, analytic solutions are
sometimes available. In the latter, feature vectors are clustered into groups which
are taken to indicate partitions. During a test phase the feature-space partitions are
used to classify feature vectors from unknown samples. Figure 6.17 shows this
process.

Given that the data are reasonably well behaved, there are many methods for
clustering feature vectors [Fukunaga 1972; Tou and Gonzales 1974; Fu 1974].

Sec. 6.4 Texture as a Pattern Recognition Problem 181

Fig. 6.15 Aerial image textures for
discrimination.

182 Ch. 6 Texture

Fig. 6.15 (cont.)

One popular way of doing this is to use prototype points for each class and a
nearest-neighbor rule [Cover 1968]:
assign v to class w; if i minimizes
mind (v, v,,)
i 1

where 5 is the prototype point for class w;.
Parametric techniques assume information about the feature vector probabil-

ity distributions to find rules that maximize the likelihood of correct classification:

assign v to class w; if i maximizes

max p (w;|v)
1
vy 2
+ +
++ o o ° o
o © on+0+
+ o D o o
o 8 ‘mBP 4
+
00000 ° o o
o o] 00 +
vy vy

(a) (b)
Fig. 6.16 Feature space for texture discrimination. (a) effective features (b)

ineffective features.
183

Sec. 6.4 Texture as a Pattern Recognition Problem

184

(a) (b)
® Classified as w,

Fig. 6.17 Pattern recognition paradigm.

The distributions may also be used to formulate rules that minimize errors.

Picking good features is the essence of pattern recognition. No elaborate for-
malism will work well for bad features such as those of Fig. 6.15b. On the other
hand, almost any method will work for very good features. For this reason, texture
is a good domain for pattern recognition: it is fairly easy to define features that (1)
cluster in feature space according to different classes, and (2) can separate texture
classes.

The ensuing subsections describe features that have worked well. These sub-
sections are in reverse order from those of Section 6.2 in that we begin with
features defined on pixels—Fourier subspaces, gray-level dependencies—and con-
clude with features defined on higher-level texels such as regions. However, the
lesson is the same as with the grammatical approach: hard work spent in obtaining
high-level primitives can both improve and simplify the texture model. Space does
not permit a discussion of many texture features; instead, we limit ourselves to a
few representative samples. For further reading, see [Haralick 1978].

6.4.1 Texture Energy

Fourier Domain Basis

If a texture is at all spatially periodic or directional, its power spectrum will
tend to have peaks for corresponding spatial frequencies. These peaks can form the
basis of features of a pattern recognition discriminator. One way to define features
is to search Fourier space directly [Bajcsy and Lieberman 1976]. Another is to par-
tition Fourier space into bins. Two kinds of bins, radial and angular, are commonly
used, as shown in Fig. 6.18. These bins, together with the Fourier power spectrum
are used to define features. If Fis the Fourier transform, the Fourier power spec-
trum is given by | F |2

Radial features are given by

Vriry ™ fle(u v)|? du dv (6.5)

Ch. 6 Texture

(a) (b)

Fig. 6.18 Partitioning the Fourier domain into bins.

where the limits of integration are defined by
rE<ut+ v < rf
0<uv<n-l
where [r; r,] is one of the radial bins and v is the vector (not related to v) defined

by different values of r, and r,. Radial features are correlated with texture coarse-
ness. A smooth texture will have high values of ¥, , for small radii, whereas a

coarse, grainy texture will tend to have relatively higher values for larger radii.
Features that measure angular orientation are given by

Vo0, = ff]F(u, v) 2 du dv (6.6)
where the limits of integration are defined by

.

0, < tan”! <8,

O0<uyv<n-1

where [0, 0,) is one of the sectors and v is defined by different values of 8, and ,.
These features exploit the sensitivity of the power spectrum to the directionality of
the texture. If a texture has as many lines or edges in a given direction 8, | F|? will
tend to have high values clustered around the direction in frequency space 6 +
/2.

Texture Energy in the Spatial Domain

From Section 2.2.4 we know that the Fourier approach could also be carried
out in the image domain. This is the approach taken in [Laws 1980]. The advantage
of this approach is that the basis is not the Fourier basis but a variant that is more

Sec. 6.4 Texture as a Pattern Recognition Problem 185

186

matched to intuition about texture features. Figure 6.19 shows the most important
of Laws’ 12 basis functions.

The image is first histogram-equalized (Section 3.2). Then 12 new images are
made by convolving the original image with each of the basis functions (.e., £, =
f * hy for basis functions Ay, ..., h12). Then each of these images is transformed
into an ‘“‘energy’’ image by the following transformation: Each pixel in the con-
volved image is replaced by an average of the absolute values in a local window of
15 x 15 pixels centered over the pixel:

L= X (il D (6.7)
x,y" in window
The transformation f— f,, k = 1, ... 12 is termed a ‘“‘texture energy transform”’
by Laws and is analogous to the Fourier power spectrum. The f;, k = 1, ... 12
form a set of features for each point in the image which are used in a nearest-
neighbor classifier. Classification details may be found in [Laws 1980]. Our in-
terest is in the particular choice of basis functions used.

Figure 6.20 shows a composite of natural textures [Brodatz 1966] used in
Laws’s experiments. Each texture is digitized into a 128 x 128 pixel subimage. The
texture energy transforms were applied to this composite image and each pixel was
classified into one of the eight categories. The average classification accuracy was
about 87% for interior regions of the subimages. This is a very good result for tex-
tures that are similar.

6.4.2 Spatial Gray-Level Dependence

Spatial gray-level dependence (SGLD) matrices are one of the most popular
sources of features [Kruger et al. 1974; Hall et al. 1971; Haralick et al. 1973]. The
SGLD approach computes an intermediate matrix of measures from the digitized
image data, and then defines features as functions on this intermediate matrix.
Given an image f with a set of discrete gray levels I, we define for each of a set of
discrete values of dand @ the intermediate matrix S (d, @) as follows:

s(, Jjld, 8), an entry in the matrix, is the number of times gray level i is
oriented with respect to gray level jsuch that where
f(x) =i and f(y)=, then
y=x+ (dcosd, dsin6)

-1 -4 -6 —4 -1 1 -4 6 -4 1
-2 -8 -12 -8 -2 -4 16 -24 16 -4
0 0 0 O 6-24 36-24 6
2 8 12 8 2 -4 16 -24 16 —4
L 1 4 6 4 1 L 1 -4 6 —4 1-‘
-1 0 2 0 -i 1 0 2 0 -1
-2 0 4 0 -2 -4 0 8 0 -4
0 0 0 0 O =6 0 12 0 -6 Fig. 6.19 Laws’ basis functions (these
2 0 -4 0 2 -4 0 ¢ —4] arethe low-order four of twelve actually
L1 0 -2 0 1 -1 0 2 0 -1 ysed).

Ch. 6 Texture

(b)

Fig. 6.20 (a) Texture composite. (b) Classification.
Note that we the gray-level values appear as indices of the matrix .S, implying that
they are taken from some well-ordered discrete set 0, ..., K. Since
S5(d,0) =S50+ x).

common practice is to restrict to multiples of w/4. Furthermore, information is
not usually retained at both # and 8 + w. The reasoning for the latter step is that
for most texture discrimination tasks, the information is redundant. Thus we
define

S(d0)=1%I[S(d8)+5(d e+)

The intermediate matrices S yield potential features. Commonly used features are:

1. Energy
K K
Ed6)=3Y Y [SG jld 0] (6.8)
i=0 j=0
2. Entropy
K K
H(d,) =YY SG jld 8 log £, j|d &) (6.9)
i=0 j=0

3. Correlation

K K
Y Y G—p)G—p)SG jld 0)

C(d, 9) = =220 (6.10)
0,0,
4. [Inertia
K K
1de)=3% Y (i-7)25G, jld) (6.11)
i=0 j=0

Sec. 6.4 Texture as a Pattern Recognition Problem 187

188

5. Local Homogeneity

L(d, 8) = 2 2 = S, jld, 0) (6.12)
i=0 j=0 14 (
where S (i, j|d, 0) is the (i, j) th element of (d, @), and
By = f i f SG, jld, 6) (6.13a)
i=0 j=0
=)E J)lf S, jla, 8) (6.13b)
i=0 =0
K K
o2=Y (i-uJ)?Y fG jld 6) (6.13c)
i=0 j=0
and
K K
=3 (G-u)?*2 £G jld,6) (6.13d)
i=0 i=0

One important aspect of this approach is that the features chosen do not have
psychological correlates [Tamura et al. 1978]. For example, none of the measures
described would take on specific values corresponding to our notions of ““rough”
or “‘smooth.”” Also, the texture gradient is difficult to define in terms of SGLD
feature values [Bajcsy and Lieberman 1976].

6.4.3 Region Texels

Region texels are an image-based way of defining primitives above the level of pix-
els. Rather than defining features directly as functions of pixels, a region segmen-
tation of the image is created first. Features can then be defined in terms of the
shape of the resultant regions, which are often more intuitive than the pixel-
related features. Naturally, the approach of using edge elements is also possible.
We shall discuss this in the context of texture gradients.

The idea of using regions as texture primitives was pursued in [Maleson et al.
1977]. In that implementation, all regions are ultimately modeled as ellipses and a
corresponding five-parameter shape description is computed for each region.
These parameters only define gross region shape, but the five-parameter primi-
tives seem to work well for many domains. The texture image is segmented into
regions in two steps. Initially, the modified version of Algorithm 5.1 that works for
gray-level images is used. Figure 6.21 shows this example of the segmentation ap-
plied to a sample of ‘‘straw’’ texture. Next, parameters of the region grower are
controlled so as to encourage convex regions which are fit with ellipses. Figure 6.22
shows the resultant ellipses for the ““straw’’ texture. One set of ellipse parameters
is xq, a, b, @ where xg is the origin, a and b are the major and minor axis lengths
and 6 is the orientation of the major axis (Appendix 1). Besides these shape param-
eters, elliptical texels are also described by their average gray level. Figure 6.23
gives a qualitative indication of how ranges on feature values reflect different tex-
els.

Ch. 6 Texture

(a) Image (b) With Region Boundaries
Fig. 6.21 Region segmentation for straw texture.

6.5 THE TEXTURE GRADIENT

The importance of texture in determining surface orientation was described by
Gibson [Gibson 1950]. There are three ways in which this can be done. These
methods are depicted in Fig. 6.24. All these methods assume that the texture is
embedded on a planar surface.

First, if the texture image has been segmented into primitives, the maximum
rate of change of the projected size of these primitives constrains the orientation of

Fig. 6.22 Ellipses for straw texture.

Sec. 6.5 The Texture Gradient 189

Bubbles e ——t—t+ —]
Fiber e L m e e
Grass| +F——tH————
Leather [
Paper = ———
Raffia = t]
Sand F + +—t +H—rt —
Screen HH———
Straw It
Water |i—tt—pmepepm—i
35 90

Average size

Bubbles Pttt
Fiber H—tt—
Grass | -+
Leather ———]
Paper —HH—
Raffia HH—H——
Sand |HHHH—
Screen]
Straw H—H—tH—]
Water : e —t—{
0.1 0.7

Average eccentricity Fig. 6.23 Features defined on ellipses.

the plane in the following manner. The direction of maximum rate of change of
projected primitive size is the direction of the texture gradient. The orientation of
this direction with respect to the image coordinate frame determines how much
the plane is rotated about the camera line of sight. The magnitude of the gradient
can help determine how much the plane is tilted with respect to the camera, but
knowledge about the camera geometry is also required. We have seen these ideas
before in the form of gradient space; the rotation and tilt characterization is a polar
coordinate representation of gradients.

(a) (b} {c)

Fig. 6.24 Methods for calculating surface orientation from texture.

190 Ch. 6 Texture

The second way to measure surface orientation is by knowing the shape of
the texel itself. For example, a texture composed of circles appears as ellipses on
the tilted surface. The orientation of the principal axes defines rotation with respect
to the camera, and the ratio of minor to major axes defines tilt [Stevens 1979].

Finally, if the texture is composed of a regular grid of texels, we can compute
vanishing points. For a perspective image, vanishing points on a plane P are the
projection onto the image plane of the points at infinity in a given direction. In the
examples here, the texels themselves are (conveniently) small line segments on a
plane that are oriented in two orthogonal directions in the physical world. The gen-
eral method applies whenever the placement tesselation defines lines of texels.
Two vanishing points that arise from texels on the same surface can be used to
determine orientation as follows. The line joining the vanishing points provides
the orientation of the surface and the vertical position of the plane with respect to
the z axis (i.e., the intersection of the line joining the vanishing points with x = 0)
determines the tilt of the plane.

Line segment textures indicate vanishing points [Kender 1978]. As shown in
Fig. 6.25, these segments could arise quite naturally from an urban image of the
windows of a building which has been processed with an edge operator.

As discussed in Chapter 4, lines in images can be detected by detecting their
parameters with a Hough algorithm. For example, by using the line parameteriza-
tion

xcosf + ysinf = r

and by knowing the orientation of the line in terms of its gradient g = (Ax, Ay), a
line segment (x, y, Ax, Ay) can be mapped into r, 8 space by using the relations

- Axx + Ay (6.14)
VAx? + Ay’
§ = tan~! Ay (6.13)
Ax

These relationships can be derived by using Fig. 6.26 and some geometry. The
Cartesian coordinates of the r—# space vector are given by

EX (6.16)
lel?]g

Fig. 6.25 Orthogonal line segments comprising a texture.

Sec. 6.5 The Texture Gradient 191

Ay
x, y) \ Ax

N Fig. 6.26 r-0 transform.

Using this transformation, the set of line segments L, shown in Fig. 6.27 are all
mapped into a single point in r—6 space. Furthermore, the set of lines L, which
have the same vanishing point (x, y,) project onto a circle in r—8 space with the
line segment ((0, 0), (x, y,)) as a diameter. This scheme has two drawbacks: (1)
vanishing points at infinity.are projected into infinity, and (2) circles require some
effort to detect. Hence we are motivated to use the transform (x, y, Ax, Ay) —

—'I—C—, @] for some constant k. Now vanishing points at infinity are projected into the
r

origin and the locus of the set of points L, is now a line. This line is perpendicular

to the vector x, and il o units from the origin, as shown in Fig. 6.28. It can be

I,
detected by a second stage of the Hough transform; each point a is mapped into an

r'—8' space. For every a, compute all the r, 8" such that
acos®’ + bsin®' = ¢ (6.17)

and increment that location in the appropriate r’, #' accumulator array. In this
second space a vanishing point is detected as

. (6.18)

(6.19)

(x,.y,)

(a) (b)
Fig. 6.27 Detecting the vanishing point with the Hough transform.

192 Ch. 6 Texture

(5, ,) \)
<

(@) (b}
Fig. 6.28 Vanishing point loci.

In Kender’s application the texels and their placement tesselation are similar in
that the primitives are parallel to arcs in the placement tesselation graph. In a more
general application the tesselation could be computed by connecting the centers of
primitives.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

EXERCISES

Devise a computer algorithm that, given a set of texels from each of a set of different
“windows’’ of the textured image, checks to see of the resolution is appropriate. In
other words, try to formalize the discussion of resolution in Section 6.2.

Are any of the grammars in Section 6.3 suitable for a parallel implementation (i.e.,
parallel application of rules)? Discuss, illustrating your arguments with examples or
counterexamples from each of the three main grammatical types (shape, tree, and ar-
ray grammars).

Are shape, array, and tree grammars context free or context-sensitive as defined?
Can such grammars be translated into “‘traditional’” (string) grammars? If not, how
are they different; and if so, why are they useful?

Show how the generalized Hough transform (Section 4.3) could be applied to texel
detection.

In an outdoors scene, there is the problem of different scales. For example, consider
the grass. Grass that is close to an observer will appear ‘‘sharp’” and composed of
primitive elements, yet grass distant from an observer will be much more ‘“‘fuzzy”’
and homogeneous. Describe how one might handle this problem.

The texture energy transform (Section 6.4.1) is equivalent to a set of Fourier-domain
operations. How do the texture energy features compare with the ring and sector
features?

The texture gradient is presumably a gradient in some aspect of texture. What aspect
is it, and how might it be quantified so that texture descriptions can be made gradient
independent?

Write a texture region grower and apply it to natural scenes.

REFERENCES

Balcsy, R. and L. LiEBERMAN. “Texture gradient as a depth cue.”” CG/IP 5, 1, March 1976, 52-67.
BrODATZ, P. Textures: A Photographic Album for Artists and Designers. Toronto: Dover Publishing Co.,

References

1966.

193

194

CONNORS, R. “Towards a set of statistical features which measure visually perceivable qualities of tex-
tures.”” Proc., PRIP, August 1979, 382-390.

Cover, T. M. “Estimation by the nearest neighbor rule.”” JEEE Trans. Information Theory 14, January
1968, 50-55.

Fu, K. S. Sequential Methods in Pattern Recognition and Machine Learning. New York: Academic Press,
1968.

Fu, K. S. Syntactic Methods in Pattern Recognition. New York: Academic Press, 1974.
FUKUNAGA, K. Introduction to Statistical Pattern Recognition. New York, Academic Press, 1972.
GIBSON, 1. J. The Perception of the Visual World. Cambridge, MA: Riverside Press, 1950.

HaLL, E. L, R. P. KRUGER, S.J. DwYER III, D. L. HALL, R. W. McLAREN, and G. S. LobWICK. ‘A sur-
vey of preprocessing and feature extraction techniques for radiographic images.”” IEEE Trans.
Computers 20, September 1971.

HaRraLICK, R. M. “Statistical and structural approaches to texture.”’ Proc., 4th [JCPR, November
1978, 45-60.

HaRALICK, R. M., R. SHANMUGAM, and I. DINSTEIN. ‘“Textural features for image classification.” IEEE
Trans. SMC 3, November 1973, 610-621.

Horecrort, J. E. and J. D. ULLMAN. [ntroduction to Automata Theory, Languages and Computation. Read-
ing, MA: Addison-Wesley, 1979.

JAYARAMAMURTHY, S. N. ““‘Multilevel array grammars for generating texture scenes.”” Proc., PRIP,
August 1979, 391-398.

JuLEsz, B. “‘Textons, the elements of texture perception, and their interactions.”” Nature 290, March
1981, 91-97.

KenDER, J. R. ““Shape from texture: a brief overview and a new aggregation transform.” Proc.,
DARPA TU Workshop, November 1978, 79-84.

KRUGER, R. P., W. B. THoMPsoN, and A. F. TwWINER. ‘‘Computer diagnosis of pneumoconiosis.”” IEEE
Trans. SMC 45, 1974, 40-49.

Laws, K. I. “Textured image segmentation.” Ph.D. dissertation, Dept. of Engineering, Univ. South-
ern California, 1980.

Lu,S.Y.and K. S. Fu. *“ A syntactic approach to texture analysis.”” CGIP 7, 3, June 1978, 303-330.

MALEsoN, J. T., C. M. BRowN, and J. A. FELDMAN. *“*Understanding natural texture.”” Proc., DARPA
IU Workshop, October 1977, 19-27.

MILGRAM, D. L. and A. ROSENFELD. ‘‘Array automata and array grammars.”” Proc., IFIP Congress 71,
Booklet TA-2. Amsterdam: North-Holland, 1971, 166-173.

PraTT, W. K., O. D. FAUGERAS, and A. GAGALOWICZ. ‘‘Applications of Stochastic Texture Field
Models to Image Processing.”” Proc. of the IEEE. V01.69, No. 5, May 1981

ROSENFELD, A. ‘‘Isotonic grammars, parallel grammars and picture grammars.”’ In M/6, 1971.

STEVENS, K.A. “‘Representing and analyzing surface orientation.”” In Artificial Intelligence: An MIT Per-
spective, Vol. 2, P. H. Winston and R. H. Brown (Eds.). Cambridge, MA: MIT Press, 1979.

STiNy, G. and J. Gips. Algorithmic Aesthetics: Computer Models for Criticism and Design in the Arts. Berke-
ley, CA: University of California Press, 1972.

Tamura, H., S. Morl, and T. Yamawakl. ““Textural features corresponding to visual perception.”
IEEE Trans. SMC 8, 1978, 460-473.

Tou, J. T. and R. C. GONZALEZ. Pattern Recognition Principles. Reading, MA: Addison-Wesley, 1974.

WEszkA, J. S., C. R. DYER, and A. ROSENFELD. ‘‘A comparative study of texture measures for terrain
classification.”” IEEE Trans. SMC 6, 4, April 1976, 269-285.

ZUCKER, S. W. “Toward a model of texture.”” CGIP 5, 2, June 1976, 190-202.

Ch. 6 Texture

	www.dai.ed.ac.uk
	Computer Vision: Table of Contents
	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbpref.pdf
	Computer Vision
	Title Page
	Bibliographical information
	Preface, p.xiii
	Acknowledgments, p.xv
	Mnemonics, p.xix
	Back cover

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandbtoc.pdf
	Contents, p.v

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb1.pdf
	Chapter 1 Computer Vision Issues, p.1
	1.1 Achieving Simple Vision Goals, p.1
	1.2 High-Level and Low-Level Capabilities, p.2
	1.3 A Range of Representations, p.6
	1.4 The Role of Computers, p.9
	1.5 Computer Vision Research and Applications, p.12

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb2_1.pdf
	Part 1 Generalized Images, p.13
	Chapter 2 Image Formation, p.17
	2.1 Images, p.17

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb2_2.pdf
	2.2 Image Model, p.18
	2.2.1 Image Functions, p.18
	2.2.2 Imaging Geometry, p.19
	2.2.3 Reflectance, p.22
	2.2.4 Spatial Properties, p.24
	2.2.5 Color, p.31
	2.2.6 Digital Images, p.35

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb2_3.pdf
	2.3 Imaging Devices for Computer Vision, p.42
	2.3.1 Photographic Imaging, p.44
	2.3.2 Sensing Range, p.52
	2.3.3 Reconstruction Imaging, p.56
	Exercises, p.59
	References, p.61

	DAI Missing Content
	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb3_12.pdf
	Chapter 3 Early Processing, p.63
	3.1 Recovering Intrinsic Structure, p.63
	3.2 Filtering the Image, p.65
	3.2.1 Template Matching, p.65
	3.2.2 Histogram Transformations, p.70
	3.2.3 Background Subtraction, p.72
	3.2.4 Filtering and Reflectance Models, p.73

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb3_3.pdf
	3.3 Finding Local Edges, p.75
	3.3.1 Types of Edge Operators, p.76
	3.3.2 Edge Thresholding Strategies, p.80
	3.3.3 Three-Dimensional Edge Operators, p.81
	3.3.4 How Good are Edge Operators?, p.83
	3.3.5 Edge Relaxation, p.85

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb3_45.pdf
	3.4 Range Information from Geometry, p.88
	3.4.1 Stereo Vision and Triangulation, p.88
	3.4.2 A Relaxation Algorithm for Stereo, p.89
	3.5 Surface Orientation from Reflectance Models, p.93
	3.5.1 Reflectivity Functions, p.93
	3.5.2 Surface Gradient, p.95
	3.5.3 Photometric Stereo, p.98
	3.5.4 Shape from Shading by Relaxation, p.99

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb3_67.pdf
	3.6 Optical Flow, p.102
	3.6.1 The Fundamental Flow Constraint, p.102
	3.6.2 Calculating Optical Flow by Relaxation, p.103
	3.7 Resolution Pyramids, p.106
	3.7.1 Gray-level Consolidation, p.106
	3.7.2 Pyramidal Structures in Correlation, p.107
	3.7.3 Pyramidal Structures in Edge Detection, p.109
	Exercises, p.111
	References, p.111

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb4_12.pdf
	Part 2 Segmented Images, p.115
	Chapter 4 Boundary Detection, p.119
	4.1 On Associating Edge Elements, p.119
	4.2 Searching Near an Approximate Location, p.121
	4.2.1 Adjusting A Priori Boundaries, p.121
	4.2.2 Non-linear Correlation in Edge Space, p.121
	4.2.3 Divide-and-Conquer Boundary Detection, p.122

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb4_3.pdf
	4.3 The Hough Method for Curve Detection, p.123
	4.3.1 Use of the Gradient, p.124
	4.3.2 Some Examples, p.125
	4.3.3 Trading Off Work in Parameter Space for Work in Image Space, p.126
	4.3.4 Generalizing the Hough Transform, p.128

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb4_4.pdf
	4.4 Edge Following as Graph Searching, p.131
	4.4.1 Good Evaluation Functions, p.133
	4.4.2 Finding All the Boundaries, p.133
	4.4.3 Alternatives to the A Algorithm, p.136

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb4_56.pdf
	4.5 Edge Following as Dynamic Programming, p.137
	4.5.1 Dynamic Programming, p.137
	4.5.2 Dynamic Programming for Images, p.139
	4.5.3 Lower Resolution Evaluation Functions, p.141
	4.5.4 Theoretical Questions about Dynamic Programming, p.143
	4.6 Contour Following, p.143
	4.6.1 Extension to Gray-Level Images, p.144
	4.6.2 Generalization to Higher-Dimensional Image Data, p.146
	Exercises, p.146
	References, p.147

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb5.pdf
	Chapter 5 Region Growing, p.149
	5.1 Regions, p.149
	5.2 A Local Technique: Blob Coloring, p.151
	5.3 Global Techniques: Region Growing via Thresholding, p.152
	5.3.1 Thresholding in Multidimensional Space, p.153
	5.3.2 Hierarchical Refinement, p.155
	5.4 Splitting and Merging, p.155
	5.4.1 State-Space Approach to Region Growing, p.157
	5.4.2 Low-level Boundary Data Structures, p.158
	5.4.3 Graph-Oriented Region Structures, p.159
	5.5 Incorporation of Semantics, p.160
	Exercises, p.164
	References, p.165

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb6_123.pdf
	Chapter 6 Texture, p.166
	6.1 What is Texture?, p.166
	6.2 Texture Primitives, p.169
	6.3 Structural Models of Texel Placement, p.170
	6.3.1 Grammatical Models, p.172
	6.3.2 Shape Grammars, p.173
	6.3.3 Tree Grammars, p.175
	6.3.4 Array Grammars, p.178

	http://www.dai.ed.ac.uk/homes/rbf/BANDB/LIB/bandb6_45.pdf
	6.4 Texture as a Pattern Recognition Problem, p.181
	6.4.1 Texture Energy, p.184
	6.4.2 Spatial Gray-Level Dependence, p.186
	6.4.3 Region Texels, p.188
	6.5 The Texture Gradient, p.189
	Exercises, p.193
	References, p.193

