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Abstract
This paper describes the design and implementation of a machine
for servicing a large number of BrainFuck execution instances. The
design includes the BrainFuck manycore processor and the soft-
ware daemon that manages the execution instances on the proces-
sor. The BrainFuck manycore processor is a 256 core processor
implementing a slightly modified version of BrainFuck as its ISA.
Each core is implemented with a two stage pipeline with a carefully
designed ISA encoding operating on disjoint memory spaces. Each
core achieves over 0.8 instructions per cycle. We have implemented
our design with an x86 host server and a Xilix Vertex 7 FPGA, and
achieved an agglomerate performance over 50 billion instructions
per second, which is light years ahead of what any single general
purpose processor is capable of achieving while executing Brain-
Fuck code. The BrainFuck computer is an attractive solution for
servicing high throughput BrainFuck cloud services, both in terms
of performance and cost.

1. Introduction
As single core performance scaling levels out and power consump-
tion of computing systems become a first order concern, the idea of
using many simpler, or ”wimpy”, machines instead of a few power-
ful, or ”brawny”, ones is enjoying popularity. Many modern work-
loads, especially datacenter workloads are deemed fit for such a
cluster of wimpy nodes, either because they are easily parallelized,
or because most of the work is spent waiting for peripherals such as
storage instead of intense computation. A large amount of research
is focusing on what kind of wimpy machines are best fit for impor-
tant workloads. In this paper, we present a rather extreme example
of a wimpy processor, using the BrainFuck [22] esoteric program-
ming language as its ISA.
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BrainFuck [22] is a Turing-complete, minimalistic and esoteric
programming language with only eight commands. Due to its ex-
treme simplicity, it is one of the most popular esoteric program-
ming languages. Despite its simplicity, its Turing completeness as-
sures that it can be used to perform any kind of computation that a
programmable computer can. BrainFuck programs are usually ex-
ecuted using interpreters running on a general purpose computer.
Because of the simplicity of the language, using a general purpose
machine exclusively to run BrainFuck is not the best use of its re-
sources.

In this paper, we describe the design and implementation of a
BrainFuck computer, which includes a 256-core BrainFuck pro-
cessor. We provide a reference design including a carefully de-
signed ISA encoding and a high-performance two-stage pipelined
microarchitecture. We also demonstrate the validity of the design
and its performance using a prototype implementation on a Xilinx
Vertex 7 FPGA coupled with a host x86 server. This work provides
a valuable insight into an extreme instance of a wimpy manycore
computer.

The rest of the paper is organized as follows: In Section 2 we
present some related existing work regards to low-power manycore
architectures and the BrainFuck language. In Section 3 we describe
the detailed architecture of our system. In Section 4 we present
some relevant details regarding our implementation of the architec-
ture. In Section 5 we evaluate the performance of various parts of
the implemented system. We conclude and suggest future work in
Section 6.

2. Related Work
The BrainFuck [22] programming language is a minimalistic pro-
gramming language with only eight commands. It is proven to be
Turing complete, meaning it can be used to perform any kind of
computation a programmable computer can. A BrainFuck program
execution consists of a list of instructions, an instruction pointer,
data memory, and a data pointer. The eight instructions are de-
scribed in Table 1:

A great amount of developer effort was put into making use
of the BrainFuck language, including various kind of interpreters,
including online enviornments [9, 10, 21], IDEs for visual editing
and debugging [4–7], variations of the language with various exten-
sions including procedures, strings and thread forking [2, 12, 23],
languages with syntax using Orangutal words [11] or fish words [3]
or pixels [13], compilers to different languages including C# [18],
and C [16], compilers from high level languages to BrainFuck, such
as a subset of C to BrainFuck compiler [1, 14]. There has been var-
ious attempts to build dedicated computing machines to run Brain-



Fuck [8, 17]. One of the biggest performance limiting features of
a dedicated BrainFuck computer is the structured branch instruc-
tions, [ and ]. Unless the program is pre-processed to discover
matching brackets before execution, the computer must stop ev-
ery time a new branch is encountered to scan the program and find
the matching bracket. This problem can be alleviated by storing the
locations of matching brackets nested in the bracket being scanned
for. But even with such optimizations in place, high performance is
hard to achieve without pre-processing the program.

Due to the proliferation of massively scalable distributed pro-
cessing platforms such as Hadoop [24], there has been an in-
creased interest in using multiple weak, or ”wimpy”, computing
nodes instead of fewer powerful, or ”brawny” nodes [15]. For easily
parallelizable workloads, a machine with numerous simpler com-
pute nodes often have power/performance benefits compared to a
smaller set of fast and complicated cores. As Moore’s law contin-
ues to scale and provide more silicon resources in a chip, while
the power law prohibits much faster and bigger cores to be built,
devices such as General Purpose Graphic Processing Units (GPG-
PUs) which implement an immense number of very simple process-
ing units on a single die are becoming an integral processing com-
ponent. Implementing numerous simple cores on a reconfigurable
fabric also has academic benefits, as they can be used to research
processor infrastructure of future manycore processors [20].

3. Architecture
3.1 Architecture Overview
Figure 1 describes the overall architecture of the BrainFuck com-
puter. The system consists of 256 cores coupled with an on-chip
network access point, networked into a ring topology. All but one
of these cores are BrainFuck cores, and node 0 is an virtual core
implemented as a software daemon running on a host machine.
Node 0 is a special core, as it can manage the execution of the other
cores, including loading software, and routing input and output to
and from the outside world. Each BrainFuck core has access to its
private instruction and data memory space. Instruction memory is
a list of 4-bit instructions, while the data memory is a list of 8-bit
memory cells.

Ideally, the daemon should also be running on one of the Brain-
Fuck cores, removing the need for a host machine and effectively
becoming an Operating System for the machine. For now, we are
using a x86 server to run the software daemon. Until an OS can be
implemented in BrainFuck, the software daemon can also run on a
simpler processor such as an ARM or a Microblaze to further lower
operation cost.

3.2 Instruction Encoding
Our implementation of BrainFuck includes a carefully designed
ISA encoding for the BrainFuck language, in order to simplify

Command Description

〉 Increment data pointer by one
〈 Decrement data pointer by one
+ Increment data at the data pointer by one
- Decrement data at the data pointer by one
[ If data at the data pointer is zero, jump to the matching ].

Continue to the next instruction otherwise
] If data at the data pointer is nonzero, jump to the matching [.

Continue to the next instruction otherwise
. Output data at the data pointer
, Take input and store data at the data pointer

Table 1. List of BrainFuck instructions
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Figure 1. Architecture overview

processor design and achieve high performance. Each instruction
is encoded as a 4-bit word. Three of the four bits (bit 0, bit 2, bit
3) of a instruction word acts as flags, and one bit (bit 1) acts as the
argument. The ISA encoding is described in Figure 2.

Data out

Writebackn

argument

Data in

Figure 2. Instruction encoding

Each of the flags have the following meaning

• DataOut : Sends the data value under the data pointer to the
data output queue.
• WriteBackn : Instruction does not involve writing back to

memory.
• DataIn : Reads a byte of data from the data input queue.

Data bytes pushed into the data output queue is sent over the on-
chip network to core 0, which can tag the data with its source node
route the data to the outside world. Data input queue is populated by
the on-chip network, with data received by node 0 from the outside
world.

The argument bit determines the direction of each type of in-
struction. For example whether the data pointer is moved up(〉)
or down(〈), or if the data under the pointer is increased(+) or
decreased(-), or whether the conditional branch instruction is a
open bracket([) or closed bracket(]).

We had to make a slight modification to the conditional branch
instructions in BrainFuck in order to achieve high performance.
The conditional branch instructions [ and ] were changed to BZ
and BNZ, which have the semantics of Branch if Zero and Branch
if Not Zero, respectively. Because each instruction was encoded
using only 4 bits, BZ and BNZ instructions were trailed by 4 more
4-bit cells encoding the 16 bits of address to jump to. This can be
seen in Figure 3.

Cond /
CondZ

A1 A2 A3 A4

Figure 3. Branch instruction encoding



Using this design, each of the eight BrainFuck instructions were
encoded into the following forms:

+ = 4’b0001
- = 4’b0011
, = 4’b0010
. = 4’b1100
< = 4’b0100
> = 4’b0110
[ = 4’b0101
] = 4’b0111

There is also one more command, ”Stop”, which is encoded
as 4’b1111, which indicates that program execution should stop
there.

3.3 Microarchitecture
Figure 4 describes the details of the microarchitecture. A Brain-
Fuck core is a 2-stage pipelined Harvard architecture, with separate
instruction and data memories. There are only two stages, fetch and
execute. Because data access in BrainFuck can only happen where
the data pointer is pointing to, the fetch stage fetches both instruc-
tion and data memories.

The use of Harvard architecture was for design simplicity, es-
pecially since the instruction and data memories had different bit
widths. (4 and 8, respectively) However, there is nothing prohibit-
ing the use of a single memory space for both intruction and data
memories.

An epoch register was used to tag each instruction and data
reads, so that when a branch instruction (changing instruction
pointer, [ and ]), or a data pointer instruction (¡ and ¿) is processed,
the epoch is increased and instructions in the pipeline tagged with
a previous epoch is discarded.

PC

DP

iMem

dMem

epoch

Next 
PC

+1
execute

Data in Data out

Figure 4. Microarchitecture of a BrainFuck core

Data forwarding is also implemented, so that even after data
modification instructions (+ and -) invalidate the data already read
from the same address, the fetched instruction does not have to be
invalidated, causing an epoch change. Each instruction stores the
data pointer address and its value after the instruction operates on
it, to a pair of registers. The forwarding operation is described in
Figure 5. Such a simple forwarding mechanism is very effective
in BrainFuck, because instructions can only operate on the address
pointed to by the data pointer.

3.4 On-Chip Network
Our design of the BrainFuck processor implements a ring topology
for its 256 cores. This decision was made in favor of simplicity
of design, especially since the routing logic of a ring topology is
very simple to implement. Future modification of the BrainFuck

==?

DP

Forwarded addr

Data value

Forwarded value

Figure 5. Data forwarding in the execution stage

processor will most likely include more complex and effective
topologies.

Core

Network Interface

From prev node To next node

Figure 6. On-chip network node

Figure 6 describes the architecture of a network node. Each core
is coupled with a network node to be incorporated into the on-chip
network. The on-chip network is a packet-switched mesh network,
in that each node is responsible of routing packets instead of having
dedicated switches. A packet is 62 bits wide, and is composed of
the following fields:

Field Size(Bits) Description
src 11 Source node idx
dst 11 Destination node idx

ptype 8 Packet type
data 32 Payload

Table 2. On-chip network packet structure

3.5 Core Zero
In our BrainFuck processor, the first core in the on-chip network,
or core zero, is special, as it manages the execution of all other
cores. Core zero is capable of sending special packets onto the on-
chip network, targeted at specific nodes. In BrainFuck, the two
commands . and , are used to communicate with the outside
world. Core zero is responsible for relaying data in and out of
the outside world for these commands. The following is the list
of packet types that core zero can inject into the network.

• Load program word : Load program onto iMem
• Init : Clear program memory, reset instruction and data pointers
• Start : Start execution
• Input Data : Data that can be read with the , command

Core zero also receives all data out packets from all nodes and
relays it into the outside world.

We implemented our core zero using a virtual core implemented
in software of a host machine, in the form of a software daemon.
The software daemon reads compiled programs from files, loads



it into idle cores and starts execution. It also reads input from a
different set of files, or takes interactive input from a user. Output
data is printed onto the screen.

Because our processor’s ISA is different from raw ASCII rep-
resentation of a BrainFuck program, we also implemented a rudi-
mentary compiler that takes an ASCII encoded BrainFuck program
and translates it into our ISA encoding.

4. Implementation
We implemented a prototype of our BrainFuck computer using a
Xilinx VC707 FPGA development board coupled with am x86 host
server. 256 BrainFuck cores were implemented on the FPGA, each
running at 250MHz. The zero core was implemented as a software
daemon. The software daemon and the network node of core zero
communicated with each other over PCIe. The instruction and data
memory were implemented as disjoint BRAM blocks on the FPGA.
Figure 7 shows our development hardware platform.

Figure 7. Development platform

The FPGA code development was done in the Bluespec hard-
ware description language, and the software daemon was imple-
mented in C++. The communication between them over PCIe was
done using an open-source PCIe interface library called Blue-
specpcie [19]. Bluespecpcie implements Gen 2 PCIe 8 lanes on
the VC707 and abstracts it into the form of a FIFO. When high
throughput is required, it also provides a memcpy-like DMA inter-
face.

For example, the software program can send and receive 128-bit
data to and from the hardware using the following syntax in C++.

Word d;
// Send
pcie->sendWord(d);

// Receive
pcie->recvWord(&d);

The hardware side can send and receive data to and from the
C++ software using the following Bluespec syntax:

// Send
pcie.enq(d);

// Receive
let d <- pcie.first;
pcie.deq;

Using these features, the software daemon implements the fol-
lowing functions to manage the BrainFuck cores:

• loadProgram( node, data, length ) : Loads a program string in
data onto node.
• init( node ) : Initializes node.

• start( node ) : Start execution at node.
• sendData( node, data ) : Send data to be read at node.

4.1 Resource Utilization
Table 3 shows the resource utilization of the BrainFuck processor
on the Vertex 7 FPGA. It can be seen that we are already reaching
the resource limitations of the FPGA, and 512 BrainFuck cores will
probably not fit on the FPGA.

Slice LUTs as logic BRAM
Available 75900 303600 1030
Used 55726 166654 391.5

(73.42%) (54.89%) (38.01%)

Table 3. Vertex 7 Resource Utilization

5. Evaluation
We evaluated the performance of the BrainFuck cores using various
microbenchmarks such as hello world, fibonacci and sqare number
generation. We also benchmarked various iterations of the core
design to show the benefits of different microarchitectural design
modifications. We tested three different designs: (1) Naive, with
no pipelining, (2) 2 Stage Pipeline, and (3) Data Forwarding, 2
Stage Pipeline with data forwarding. We observed the following
Instructions per Second (IPC) with various designs of the Core:

Design IPC
Naive 0.5
2 Stage Pipeline 0.6
Data Forwarding 0.84

Table 4. IPCs of various core designs

Figure 8 shows the same data put in a graph format with the
bars going up in the right. 2Pipe plots the performance of a 2
stage pipeline processor, and Forwarding plots the performance of
a processor with data forwarding.
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Figure 8. IPCs of varioud core designs

0.84 instructions per second on a core running at 250MHz, each
core is capable of processing over 200M instructions per second.
With 256 cores on the processor, the entire processor is capable of
processing over 50,000M instructions per second.



5.1 Comparison Against General Purpose Hardware
The most high performance way of executing BrainFuck programs
on a general purpose computing machine would be to translate it
into native machine code. Considering each BrainFuck command
on average takes 5 or more assembly instructions to implement,
even assuming a perfect 1 instructions per second on a 3GHz
processor, it would require almost one hundred cores to compete
with this performance.

Figure 9 shows the performance of a BrainFuck core against
a core of a 3GHz processor, assuming a perfect 1 instruction per
second on the general purpose processor.
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Figure 9. Performance of a BrainFuck core against a 3GHz pro-
cessor

Figure 10 shows the total performance of the BrainFuck pro-
cessor, compared against a 16-core 3GHz processor, assuming a
perfect 1 instruction per second on the general purpose processor.
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Figure 10. Performance of the BrainFuck processor against a 16-
core processor

5.2 Power Consumption
A VC707 board is designed to consume an upwards of 30W under
load. A modern Core i7 processor with 6 cores consume 80W of
power under high load. Assuming a perfect 1 instruction per cycle
on the i7, it would take 83 cores to achieve 50 billion instructions

per second. 83 cores would consume over 1,000W of power. Com-
pared to an FPGA coupled with a low-power host server, this is an
immense amount of power consumption.

Figure 11 shows this difference. It should be noted that for the
general purpose case, we have only considered the power consump-
tion of the processor itself, and no other components of the com-
puter. Whereas for the BrainFuck processor, we have done an end-
to-end power measurement, which would include the hard disk,
motherboard, fan and leds on the chassis.
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Figure 11. Power consumption of 50 billion instructions per sec-
ond.

6. Conclusion and Future Work
In this paper, we described our design and implementation of a
256-core BrainFuck computer and demonstrated its performance.
We think this work provides valuable insight into high-speed phys-
ical implementation of BrainFuck processors, and its future appli-
cations in the datacenter.

There are three areas of future work that we have under consid-
eration:

• Shared memory architecture between cores, allowing us to
explore cache coherence protocols and other memory system
techniques optimized for the BrainFuck architecture
• Alternate network topologies, to improve the I/O latency of

BrainFuck programs
• Physical Core Zero, implementing core Zero in the FPGA,

so that the host server is no longer necessary. Core zero will
connect to the internet by itself to communicate with users.
Core Zero can be implemented using simple architecture such
as Microblaze, or ideally, be just another BrainFuck core with
specially mapped memory regions.
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