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Preface

Computational intelligence is a well-established paradigm, where new theo-
ries with a sound biological understanding have been evolving. The current
experimental systems have many of the characteristics of biological comput-
ers (brains in other words) and are beginning to be built to perform a variety
of tasks that are difficult or impossible to do with conventional computers. In
a nutshell, which becomes quite apparent in the light of the current research
pursuits, the area is heterogeneous as being dwelled on such technologies as
neurocomputing, fuzzy inference systems, artificial life, probabilistic reason-
ing, evolutionary computation, swarm intelligence and intelligent agents and
so on.

Research in computational intelligence is directed toward building think-
ing machines and improving our understanding of intelligence. As evident,
the ultimate achievement in this field would be to mimic or exceed human
cognitive capabilities including reasoning, recognition, creativity, emotions,
understanding, learning and so on. Even though we are a long way from
achieving this, some success has been achieved in mimicking specific areas of
human mental activity.

Recent research in computational intelligence together with other branches
of engineering and computer science has resulted in the development of sev-
eral useful intelligent paradigms. The integration of different learning and
adaptation techniques, to overcome individual limitations and achieve syn-
ergetic effects through hybridization or fusion of some of these techniques,
has in recent years contributed to a large number of new hybrid intelligent
system designs.

Learning methods and approximation algorithms are fundamental tools
that deal with computationally hard problems, in which the input is grad-
ually disclosed over time. Both kinds of problems have a large number of
applications arising from a variety of fields, such as function approximation
and classification, algorithmic game theory, coloring and partitioning, geo-
metric problems, mechanism design, network design, scheduling, packing and
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covering and real-world applications such as medicine, computational finance,
and so on.

In this book, we illustrate Hybrid Computational Intelligence (HCI) frame-
work and it applications for various problem solving tasks. Based on tree-
structure based encoding and the specific function operators, the models can
be flexibly constructed and evolved by using simple computational intelli-
gence techniques. The main idea behind this model is the flexible neural
tree, which is very adaptive, accurate and efficient. Based on the pre-defined
instruction/operator sets, a flexible neural tree model can be created and
evolved. The flexible neural tree could be evolved by using tree-structure
based evolutionary algorithms with specific instructions. The fine tuning of
the parameters encoded in the structure could be accomplished by using pa-
rameter optimization algorithms. The flexible neural tree method interleaves
both optimizations. Starting with random structures and corresponding pa-
rameters, it first tries to improve the structure and then as soon as an im-
proved structure is found, it fine tunes its parameters. It then goes back
to improving the structure again and, provided it finds a better structure, it
again fine tunes the rules’ parameters. This loop continues until a satisfactory
solution is found or a time limit is reached.

This volume is organized into 6 Chapters and the main contributions are
detailed below:

Chapter 1 provides a gentle introduction to some of the key paradigms in
computational intelligence namely evolutionary algorithms and its variants,
swarm intelligence, artificial neural networks, fuzzy expert systems, proba-
bilistic computing and hybrid intelligent systems.

Chapter 2 exhibits the flexible neural tree algorithm development and is
first illustrated in some function approximation problems and also in some
real world problems like intrusion detection, exchange rate forecasting, face
recognition, cancer detection and protein fold recognition. Further the multi-
input multi-output flexible neural tree algorithm is introduced and is illus-
trated for some problem solving. Finally an ensemble of flexible neural trees
is demonstrated for stock market prediction problem.

Chapter 3 depicts three different types of hierarchical architectures. First
the design and implementation of hierarchical radial basis function networks
are illustrated for breast cancer detection and face recognition. Further, the
development of hierarchical B-spline networks is demonstrated for breast can-
cer detection and time series prediction. Finally, hierarchical wavelet neural
networks are presented for several function approximation problems.

Building a hierarchical fuzzy system is a difficult task. This is because the
user has to define the architecture of the system (the modules, the input
variables of each module, and the interactions between modules), as well as
the rules of each modules. Chapter 4 demonstrates a new encoding and an
automatic design method for the hierarchical Takagi-Sugeno fuzzy inference
system with some simulation results related to system identification and time-
series prediction problems.
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Can we evolve a symbolic expression that can be represented as a mean-
ingful expression, i.e., a differential equation or a transfer function and it can
be easily addressed by using traditional techniques? Chapter 5 exhibits a
new representation scheme of the additive models, by which the linear and
nonlinear system identification problems are addressed by using automatic
evolutionary design procedure. First a gentle introduction to tree structural
representation and calculation of the additive tree models is provided. Fur-
ther an hybrid algorithm for evolving the additive tree models and some
simulation results for the prediction of chaotic time series, the reconstruc-
tion of polynomials and the identification of the linear/nonlinear system is
demonstrated.

Chapter 6 summarizes the concept of hierarchical hybrid computational
intelligence framework introduced in this book and also provides some future
research directions.

We are very much grateful to Dr. Thomas Ditzinger (Springer Engineer-
ing Inhouse Editor, Professor Janusz Kacprzyk (Editor- in-Chief, Springer
Intelligent Systems Reference Library Series) and Ms. Heather King (Edito-
rial Assistant, Springer Verlag, Heidelberg) for the editorial assistance and
excellent cooperative collaboration to produce this important scientific work.
We hope that the reader will share our joy and will find it useful!

Yuehui Chen and Ajith Abraham*
School of Information Science and Engineering,

University of Jinan, Jiwei Road 106, Jinan 250022,
Peoples Republic of China

http://cilab.ujn.edu.cn
Email: yhchen@ujn.edu.cn

*Machine Intelligence Research Labs (MIR Labs)
Scientific Network for Innovation and Research Excellence

P.O. Box 2259, Auburn, Washington 98071, USA
http://www.mirlabs.org

http://www.softcomputing.net
email: ajith.abraham@ieee.org
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1

Foundations of Computational
Intelligence

1.1 Introduction

The field of computational intelligence has evolved with the objective of de-
veloping machines that can think like humans. Computational intelligence
is a well-established paradigm, where new theories with a sound biological
understanding have been evolving. The current experimental systems have
many of the characteristics of biological computers (brains in other words)
and are beginning to be built to perform a variety of tasks that are difficult
or impossible to do with conventional computers. To name a few, we have
microwave ovens, washing machines and digital camera that can figure out on
their own what settings to use to perform their tasks optimally with reason-
ing capability, make intelligent decisions and learn from experience. As usual,
defining computational intelligence is not an easy task. In a nutshell, which
becomes quite apparent in light of the current research pursuits, the area
is heterogeneous as being dwelled on such technologies as neural networks,
fuzzy systems, evolutionary computation, artificial life, multi-agent systems
and probabilistic reasoning. The recent trend is to integrate different compo-
nents to take advantage of complementary features and to develop a synergis-
tic system. Hybrid architectures like neuro-fuzzy systems, evolutionary-fuzzy
systems, evolutionary-neural networks, evolutionary neuro-fuzzy systems etc.
are widely applied for real world problem solving.

This Chapter provides a gentle introduction to some of the key paradigms
in computational intelligence namely evolutionary algorithms and its vari-
ants, swarm intelligence, artificial neural networks, fuzzy expert systems,
probabilistic computing and hybrid intelligent systems.

1.2 Evolutionary Algorithms

Evolution can be viewed as a search process capable of locating solutions to
problems offered by an environment. Therefore, it is quite natural to look for

Y. Chen, A. Abraham.: Tree-Struc. Based Hybrid Com. Intelligence, ISRL 2, pp. 3–36.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



4 1 Foundations of Computational Intelligence

an algorithmic description of evolution that can be used for problem solving.
Such an algorithmic view has been discussed even in philosophy. Those iter-
ative (search and optimization) algorithms developed with the inspiration of
the biological process of evolution are termed evolutionary algorithms (EAs).
They are aimed basically at problem solving and can be applied to a wide
range of domains, from planning to control. Evolutionary computation (EC)
is the name used to describe the field of research that embraces all evolu-
tionary algorithms. The basic idea of the field of evolutionary computation,
which came onto the scene about the 1950s/1960s, has been to make use
of the powerful process of natural evolution as a problem-solving paradigm,
usually by simulating it on a computer. The original three mainstreams of
EC are genetic algorithms (GAs), evolution strategies (ES), and evolutionary
programming (EP) [1][2]. Despite some differences among these approaches,
all of them present the basic features of an evolutionary process as proposed
by the Darwinian theory of evolution.

A standard evolutionary algorithm is illustrated as follows:

• A population of individuals that reproduce with inheritance. Each individ-
ual represents or encodes a point in a search space of potential solutions to
a problem. These individuals are allowed to reproduce (sexually or asexu-
ally), generating offspring that carry some resemblance with their parents;

• Genetic variation. Offspring are prone to genetic variation through muta-
tion, which alters their genetic makeup;

• Natural selection. The evaluation of individuals in their environment re-
sults in a measure of adaptability, quality, or fitness value to be assigned
to them. A comparison of individual fitnesses will lead to a competition for
survival and reproduction in the environment, and there will be a selective
advantage for those individuals of higher fitness [306].

The standard evolutionary algorithm is a generic, iterative and probabilistic
algorithm that maintains a population P of N individuals, P = x1, x2, , xN ,
at each iteration t (for simplicity of notation the iteration index t was sup-
pressed). Each individual corresponds to (represents or encodes) a potential
solution to a problem that has to be solved. An individual is represented
using a data structure. The individuals xi, i = 1, , N , are evaluated to give
their measures of adaptability to the environment, or fitness. Then, a new
population, at iteration t + 1, is generated by selecting some (usually the
most fit) individuals from the current population and reproducing them, sex-
ually or asexually. If employing sexual reproduction, a genetic recombination
(crossover) operator may be used. Genetic variations through mutation may
also affect some individuals of the population, and the process iterates. The
completion of all these steps: reproduction, genetic variation, and selection,
constitutes what is called a generation. An initialization procedure is used
to generate the initial population of individuals. Two parameters pc and pm

correspond to the genetic recombination and variation probabilities, and will
be further discussed.
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Note that all evolutionary algorithms involve the basic concepts common
to every algorithmic approach to problem solving:

• representation (data structures);
• definition of an objective; and
• specification of an evaluation function (fitness function).

START

n = 0

SELECTION

CROSSOVER

MUTATION

END

n < Loop

n = n+1

Fig. 1.1 A flowchart of simple genetic algorithm

Genetic algorithms (GAs) are globally stochastic search technique that em-
ulates the laws of evolution and genetics to try to find optimal solutions to
complex optimization problems. GAs are theoretically and empirically proven
to provide to robust search in complex spaces, and they are widely applied
in engineering, business and scientific circles. The general flowchart of GA is
presented in Figure 1.1.

GAs are different from more normal optimization and search procedures
in different ways:

• GAs work with a coding of the parameter set, not the parameter them-
selves.

• GAs search from a population of points, not a single point.
• GAs use objective function information, not derivatives or other auxiliary

knowledge, but with modifications they can exploit analytical gradient
information if it is available.

• GAs use probabilistic transition rules, not deterministic rules.
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Coding and Decoding

Coding refers to the representation of the parameter used in the optimization
problem. The usually used coding methods in GAs are base-2, base-10 and
floating-point coding methods. In a base-2 representation, alleles (values in
the position, genes on the chromosome) are 0 and 1. In base-10, the alleles
take on integer values between 0 and 9. In floating-point representation, the
alleles are real-valued number. In base-2 and base-10 representations, the re-
lationship between the real value of a parameter and its integer representation
can be expressed by:

x = a+ x̄
range

resolution
(1.1)

where x is the real value of the parameter, x̄ is the integer value corresponding
to the x, a is the lowest value assumed by x̄, range is the interval of definition
of the parameters, and resolution is the number that take in account the
number of bits used, i.e., 2number of bits − 1.

Genetic Operators

A simple genetic algorithm that yields good results in many practical prob-
lems consists of three genetic operators:

• Reproduction is a process in which individual strings are copied according to
their objective or fitness function values. Fitness function can be imagined
as some measure of profit, utility, or goodness to be optimized. For example,
in curve fitting problem, the fitness function can be mean square error:

Fitness =
1
n

n∑

i=1

(yi − f(yi, ai))2 (1.2)

where yi is the experimental data, f(yi, ai) is the function chosen as model
and ai are the model parameters to be optimized by GA. When GA is
used to optimize an adaptive controller, the error and change in error
information can be taken account for the designing of a proper fitness
function. In general, reproduction operator guarantee survival of the better
individual to the next generation with a higher probability, which is an
artificial version of natural selection.

• Crossover is a partial exchange of the genetic content between couples
of members of the population. This task can be done in several different
ways and it also depends on the representation scheme chosen. In integer
representation, the simple way to do it, is to choose a random value with
a uniform distribution as [1, length of chromosome]. This number repre-
sents a marker inside the two strings of bits representing the couple of
chromosomes. It cuts both the chromosomes into two parts. Then, the left
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or the right parts of the two chromosomes are swapped. This occurs in such
a way that both the two new chromosomes will contain a part of the ge-
netic information of both the parents. In the floating-point representation,
the crossover should be realized by:

new1 = a · old1 + (1 − a) · old2, (1.3)
new2 = (1 − a) · old1 + a · old2, (1.4)

where new1 and new2 are the chromosomes after the crossover, old1 and
old2 are the chromosomes before the crossover, a is a random number with
uniform distribution in [0,1].

• Mutation is needed because, even through reproduction and crossover effec-
tively search and recombine extant notions, occasionally they may become
overzealous and lose some potentially useful genetic materials. In GA, the
mutation operator protects against such an irrecoverable loss. In other
words, mutation tries to escape from a local maximum or minimum of the
fitness function, and it seeks to explore other areas of the search space in
order to find a global maximum or minimum of the fitness function. In in-
teger representation, the mutation of gene in a position of the chromosome
is randomly changed form one integer to another. In floating-point repre-
sentation, mutation will randomly change the value of the chromosome
within a range of definition.

1.2.1 Genetic Programming

Genetic Programming (GP) technique provides a framework for automatically
creating a working computer program from a high-level problem statement of
the problem [30]. Genetic programming achieves this goal of automatic pro-
gramming by genetically breeding a population of computer programsusing the
principles of Darwinian natural selection and biologically inspired operations.
The main difference between genetic programming and genetic algorithms is
the representation of the solution. Genetic programming creates computer pro-
grams in the LISP or scheme computer languages as the solution. LISP is an
acronym for LISt Processor and was developed by John McCarthy in the late
1950s. Unlike most languages, LISP is usually used as an interpreted language.
This means that, unlike compiled languages, an interpreter can process and
respond directly to programs written in LISP. The main reason for choosing
LISP to implement GP is due to the advantage of having the programs and data
have the same structure, which could provide easy means for manipulation and
evaluation.

GP is the extension of evolutionary learning into the space of computer
programs. In GP the individual population members are not fixed length
character strings that encode possible solutions to the problem at hand, they
are programs that, when executed, are the candidate solutions to the prob-
lem. These programs are expressed in genetic programming as parse trees,
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A 

   B        C 

Fig. 1.2 A simple tree structure of GP

rather than as lines of code. Example, the simple program a+ b ∗ c would be
represented as shown in Figure 1.2. The terminal and function sets are also
important components of genetic programming. The terminal and function
sets are the alphabet of the programs to be made. The terminal set con-
sists of the variables and constants of the programs (example, A,B and C in
Figure 1.2).

The most common way of writing down a function with two arguments is
the infix notation. That is, the two arguments are connected with the oper-
ation symbol between them as follows:

A+B

A different method is the prefix notation. Here the operation symbol is writ-
ten down first, followed by its required arguments.

+AB

While this may be a bit more difficult or just unusual for human eyes, it opens
some advantages for computational uses. The computer language LISP uses
symbolic expressions (or S-expressions) composed in prefix notation. Then a
simple S-expression could be

(operator, argument)

where operator is the name of a function and argument can be either a
constant or a variable or either another symbolic expression as shown below:

(operator, argument(operator, argument)(operator, argument))

A parse tree (Figure 1.3) is a structure that develops the interpretation of
a computer program. Functions are written down as nodes, their arguments
as leaves. A subtree is the part of a tree that is under an inner node of this
tree. If this tree is cut out from its parent, the inner node becomes a root
node and the subtree is a valid tree of its own.
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5 

   3 1 

subtree

(+5(-31)) 

Fig. 1.3 Illustration of a parse tree and a subtree

There is a close relationship between these parse trees and S-expression;
in fact these trees are just another way of writing down expressions. While
functions will be the nodes of the trees (or the operators in the S-expressions)
and can have other functions as their arguments, the leaves will be formed
by terminals, that is symbols that may not be further expanded. Terminals
can be variables, constants or specific actions that are to be performed. The
process of selecting the functions and terminals that are needed or useful for
finding a solution to a given problem is one of the key steps in GP.

Evaluation of these structures is straightforward. Beginning at the root
node, the values of all sub-expressions (or subtrees) are computed, descending
the tree down to the leaves. GP procedure could be summarized as follows:

• Generate an initial population of random compositions of the functions
and terminals of the problem;

• Compute the fitness values of each individual in the population;
• Using some selection strategy and suitable reproduction operators produce

offsprings;
• Procedure is iterated until the required solution is found or the termination

conditions have reached (specified number of generations).

The creation of an offspring from the crossover operation is accomplished
by deleting the crossover fragment of the first parent and then inserting the
crossover fragment of the second parent. The second offspring is produced in
a symmetric manner. A simple crossover operation is illustrated in Figure 1.4.
In GP the crossover operation is implemented by taking randomly selected
sub trees in the individuals and exchanging them.

Mutation is another important feature of genetic programming. Two types
of mutations are commonly used. The simplest type is to replace a function
or a terminal by a function or a terminal respectively. In the second kind an
entire subtree can replace another subtree. Figure 1.5 explains the concept
of mutation:

GP requires data structures that are easy to handle and evaluate and robust
to structural manipulations. These are among the reasons why the class of S-
expressions was chosen to implement GP. The set of functions and terminals
that will be used in a specific problem has to be chosen carefully. If the set of
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Fig. 1.4 Illustration of crossover operator

functions is not powerful enough, a solution may be very complex or not to be
found at all. Like in any evolutionary computation technique, the generation
of first population of individuals is important for successful implementation
of GP. Some of the other factors that influence the performance of the algo-
rithm are the size of the population, percentage of individuals that participate
in the crossover/mutation, maximum depth for the initial individuals and the
maximum allowed depth for the generated offspring etc. Some specific ad-
vantages of genetic programming are that no analytical knowledge is needed
and still could get accurate results. GP approach does scale with the problem
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size. GP does impose restrictions on how the structure of solutions should be
formulated.

1.2.2 Estimation of Distribution Algorithm

Estimation of distribution algorithms (EDAs) are a novel class of evolution-
ary optimization algorithms that were developed as a natural alternative to
genetic algorithms [15][16][17][18][19][20]. The principal advantages of EDAs
over genetic algorithms are the absence of multiple parameters to be tuned
(e.g. crossover and mutation probabilities) and the expressiveness and trans-
parency of the probabilistic model that guides the search process. In addition,
EDAs have been proven to be better suited to some applications than GAs,
while achieving competitive and robust results in the majority of tackled
problems.
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EDA directly extracts the global statistical information about the search
space from the search so far and builds a probabilistic model of promis-
ing solutions. New solutions are sampled from the model thus built. Several
EDAs [17][18][19][20] have been proposed for the global continuous optimiza-
tion problem. These algorithms are very promising, but much work needs to
be done to improve their performances. An efficient evolutionary algorithm
should make use of both the local information of solutions found so far and
the global information about the search space. The local information of solu-
tions found so far can be helpful for exploitation, while the global information
can guide the search for exploring promising areas.

One of the major issues in EDAs is how to select parents. A widely-used
selection method in EDA is the truncation selection. In the truncation selec-
tion, individuals are sorted according to their objective function values. Only
the best individuals are selected as parents.

Another major issue in EDAs is how to build a probability distribution
model p(x). In EDAs for the global continuous optimization problem, the
probabilistic model p(x) can be a Gaussian distribution, a Gaussian mix-
ture, a histogram, or a Gaussian model with diagonal covariance matrix
(GM/DCM) [15][16][17][18][19][20].

In GM/DCM, the joint density function of the k-th generation is as follows:

pk(x) =
n∏

i=1

N(xi;μk
i , σ

k
i ) (1.5)

where

N(xi;μk
i , σ

k
i ) =

1√
2πσi

exp(−1
2
(
xi − μi

σi
)2) (1.6)

In the above equation, the n-dimensional joint probability distribution is
factorized as a product of n univariate and independent normal distributions.
There are two parameters for each variable required to be estimated in the
k-th generation: the mean, μk

i , and the standard deviation, σk
i . They can be

estimated as follows:

μ̂k
i = x̄k

i =
1
M

M∑

j=1

xk
ji (1.7)

σ̂k
i =

√√√√ 1
M

M∑

j=1

(xk
ji − x̄k

i )2 (1.8)
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1.2.3 Population-Based Incremental Learning

Population-based incremental learning (PBIL) combines elements from evo-
lutionary computation (EC) and reinforcement learning (RL) [24][25]. PBIL
is a population-based stochastic search where the population is essentially a
random sample based on an estimated probability distribution for each vari-
able. So, in reality the population does not exist as it does in traditional EC.
After a sample is generated, the best is retained and the probability model
for each variable is updated to reflect the belief regarding the structure of
the best solution. This is accomplished according to a similar update rule as
used in RL. The result is a statistical approach to evolutionary computation.

An evolutionary algorithm’s population can be thought of as representing
an estimated probability distribution over the possible values for each gene.
In PBIL the population is replaced by a d× c dimensional probability matrix
M := (mij)d×c which corresponds to a probability distribution over possi-
ble values for each element (d is the problem dimensionality each having c
variables). For example, if a binary problem is under consideration then a
solution B := (bij)d×c where bi,j ∈ 0, 1 and so each mij ∈ [0, 1] corresponds
to the probability of bij = 1.

Learning in PBIL consists of utilizing the current M to generate a set G1

of k samples. These samples are evaluated according to the fitness function
for the given problem and the best sample B∗ = (bij)d×c ∈ 0, 1 is maintained.
Then, the probability distributions represented in M are updated by increas-
ing the probability of generating solutions similar to B∗. The update rule to
accomplish this is similar to that found in learning vector quantization,

Mt = (1 − α)Mt−1 + αB∗ (1.9)

where 0 < α < 1 represents a user-defined learning rate and the subscript
t ≥ 1 corresponds to the current iteration of PBIL. Without prior information
(mij) = 0.5.

Another contrast to evolutionary computation is the lack of a crossover
operator or selection mechanism, instead the values in M are mutated once
per iteration. During this phase a small random value is added or subtracted
from a random subset of the values in M . Furthermore, since at each iteration
a new subset of samples is generated and only the best is maintained then
no selection mechanism is required.

The pseudocode for PBIL is presented in Algorithm 1. It assumes con-
stants to control the maximum number of iterations and samples, x and k,
respectively.

Initially, in line 2 we let M = (mij) = 0.5 to reflect the lack of a priori
information regarding the probability distribution of each variable. In line 5
we generate the k samples using the current probability matrix and select
the best sample (w.r.t. some user-defined criteria) in line 7. Matrix M is
updated in line 9 using the best sample to guide the direction of probability
update. Finally, lines 11-15 probabilistically perform the mutation rule. It
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Algorithm 1 Population-Based Incremental Learning [24][25]
01. Initialize probabilities
02. M0 = (mij) = 0.5
03. for t = 1 to ω
04. Generate samples
05. G1 = generate samples(k,Mt−1)
06. Find best sample
07. B∗ = slectbest(B

∗ ∪ G1)
08. Update M
09. Mt = (1 − α)Mt−1 + αB∗

10. Mutate probability vector
10. for i = 0, . . . , d and j = 0, . . . , c do
12. if random(0,1)<β then
13. mij = (1 − γ)mij + γ · random(0or1)
14. end if
15. end for
16. end for

has been shown that for a given discrete search space PBIL will converge to
a local optima [26][27]. PBIL algorithms for continuous spaces have also been
explored (for examples see [28][29]).

1.2.4 Probabilistic Incremental Program Evolution

Probabilistic Incremental Program Evolution (PIPE) combines probability
vector coding of program instructions, population based incremental learn-
ing [222][223], and tree-coded programs [219][220][221][226]. PIPE iteratively
generates successive populations of functional programs according to an adap-
tive probability distribution, represented as a Probabilistic Prototype Tree
(PPT), over all possible programs. Each iteration uses the best program
to refine the distribution. Thus, the structures of promising individuals are
learned and encoded in PPT.

Instructions and Programs

In PIPE, programs are made of instructions from an instruction set S =
{I1, I2, . . . , In} with n instructions. Instructions are user-defined and problem
dependent. Each instruction is either a function or a terminal. Instruction set
S therefore consists of a function set F = {f1, f2, . . . , fk} with k functions
and a terminal set T = {t1, t2, . . . , tl} with l terminals, where n = k+ l holds.

Programs are encoded in n-ary trees, with n being the maximal number
of function arguments. Each non-leaf node encodes a function from F and
each leaf node a terminal from T . The number of subtrees each node has
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corresponds to the number of arguments of its function. Each argument is
calculated by a subtree. The trees are parsed depth first from left to right.

Probabilistic Prototype Tree (PPT)

The PPT stores the knowledge gained from experiences with programs and
guides the evolutionary search. It holds random constants and the probabil-
ity distribution over all possible programs that can be constructed from a
predefined instruction set. The PPT is generally a complete n-ary tree with
infinitely many nodes, where n is the maximal number of function arguments.

Each node Nj in PPT, with j > 0 contains a random constant Rj and
a variable probability vector

−→
Pj . Each

−→
Pj has n components, where n is the

number of instructions in instruction set S. Each component Pj(I) of
−→
Pj

denotes the probability of choosing instruction I ∈ S at node Nj . Each vector−→
Pj is initialized as follows:

Pj(I) =
PT

l
, ∀I : I ∈ T (1.10)

Pj(I) =
1 − PT

k
, ∀I : I ∈ F, (1.11)

where l is the total number of terminals in T , k is the total number of func-
tions in F , and PT is initially user-defined constant probability for selecting
an instruction from T .

1.2.4.1 Program Generation, Growing and Pruning

Programs are generated according to the probability distribution stored in
the PPT. To generate a program PROG from PPT, an instruction I ∈ S is
selected with probability Pj(I) for each accessed node Nj of PPT. Nodes are
accessed in a depth-first way, starting at the root node and traversing PPT
from left to right.

A complete PPT is infinite, and each PPT node holds a probability for each
instruction, a random constant, and n pointers to following nodes, where n is
PPT’s arity. Therefore, A large PPT is memory intensive. To reduce memory
requirements, it is thus possible to incrementally grow and prune the PPT.

On one hand, it is useful to grow the PPT on demand in order to cre-
ate a variety of programs. Initially the PPT contains only the root node.
Additional nodes are created with each program that accesses non-existing
nodes during its generation. On the other hand, apart from reducing mem-
ory requirements, pruning also helps to discard the elements of probabil-
ity distribution that have become irrelevant over time. PPT subtrees at-
tached to nodes that contain at least one probability vector component
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above a threshold TP can be pruned. If TP is set to a sufficiently high value
(e.g., TP = 0.99999) only parts of the PPT will be pruned that have a very
low probability of being accessed. In case of functions, only those subtrees
should be pruned that are not required as function arguments. Figure 1.6
illustrates the relation between the prototype tree and a possible program
tree.
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Fig. 1.6 Example of node N1,0’s instruction probability vector P1,0 (left). Proba-
bilistic prototype tree PPT (middle). Possible extracted program PROG, at the time
of creation of instruction I1,0, the dashed part of PROG did not exist yet (right).

Fitness Functions

Similar to the other evolutionary algorithms, PIPE uses a problem-dependent
and user-defied fitness function. A fitness function maps programs to scalar,
real-valued fitness values that reflect the programs’ performances on a given
task. Firstly PIPE’s fitness functions should be seen as error measures, i.e.,
MeanSquaredError(MSE)E or Root Mean Squared Error (RMSE). A sec-
ondary non-user-defined objective for which PIPE always optimizes programs
is the program size as measured by number of nodes. Among programs with
equal fitness smaller ones are always preferred. This objective constitutes
PIPE’s built-in Occam’s razor.

Learning Algorithm

PIPE combines two forms of learning: Generation-Based Learning (GBL) and
Elitist Learning (EL). GBL is PIPE’s main learning algorithm. EL’s purpose
is to make the best program found so far as an attractor. PIPE executes:
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GBL
REPEAT

with probability Pel DO EL
otherwise DO GBL

UNTIL termination criterion is reached

Here Pel is a user-defined constant in the interval [0,1].

Generation-Based Learning
Step 1. Creation of Program Population. A population of programs

PROGj (0 < j ≤ PS; PS is population size) is generated using the prototype
tree PPT, as described above. The PPT is grown on demand.

Step 2. Population Evaluation. Each program PROGj of the current
population is evaluated on the given task and assigned a fitness value
FIT (PROGj ) according to the predefined fitness function. The best program
of the current population (the one with the smallest fitness value) is denoted
PROGb

. The best program found so far (elitist) is preserved in PROG
el.

Step 3. Learning from Population. Prototype tree probabilities are
modified such that the probability P (PROGb

) of creating PROGb
increases.

This procedure is called adapt PPT towards(Progb). This is implemented as
follows. First P (PROGb

) is computed by looking at all PPT nodes Nj used
to generate PROGb

:

P (PROGb
) =

∏

j:Nj used to generate PROGb

Pj (Ij(PROGb
)) (1.12)

where Ij(PROGb
) denotes the instruction of program PROGb

at node position
j. Then a target probability PTARGET for PROGb

is calculated:

PTARGET = P (PROGb
) + (1 − P (PROGb

)) · lr · ε+ FIT (PROG
el)

ε+ FIT (PROGb
)

(1.13)

Here lr is a constant learning rate and ε a positive user-defined constant.
Given PTARGET , all single node probabilities Pj(Ij(PROGb

)) are increased
iteratively:

REPEAT:

Pj (Ij(PROGb
)) = Pj (Ij(PROGb

)) + clr · lr · (1 − Pj (Ij(PROGb
))) (1.14)

UNTIL P (PROGb
) ≥ PTARGET

where clr is a constant influencing the number of iterations. The smaller clr the
higher the approximation precision of PTARGET and the number of required
iterations. Setting clr = 0.1 turned out to be a good compromise between pre-
cision and speed. And then all adapted vectors

−→
Pj are renormalized.
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Step 4. Mutation of Prototype Tree. All probabilities Pj(I) stored in
nodes Nj that were accessed to generate program PROGb

are mutated with
a probability PMp :

PMp =
PM

n · √|PROGb
| (1.15)

where the user-defined parameter PM defines the overall mutation probabil-
ity, n is the number of instructions in instruction set S and |PROGb

| denotes
the number of nodes in program PROGb

. Selected probability vector compo-
nents are then mutated as follows:

Pj (I) = Pj (I) +mr · (1 − Pj (I)) (1.16)

where mr is the mutation rate, another user-defined parameter. Also all mu-
tated vectors

−→
Pj are renormalized.

Step 5. Prototype Tree Pruning. At the end of each generation the
prototype tree is pruned, as described in Section III.B.

Step 6. Termination Criteria. Repeat above procedure until a fixed
number of program evaluations is reached or a satisfactory solution is found.

Elitist Learning
Elitist learning focuses search on previously discovered promising parts of the
search space. The PPT is adapted towards the elitist program PROG

el. This
is realized by replacing the PROGb

with PROG
el in learning from population

in Step 3. It is particularly useful with small population sizes and works
efficiently in the case of noise-free problems.

1.3 Swarm Intelligence

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for
solving optimization problems that originally took its inspiration from the
biological examples by swarming, flocking and herding phenomena in ver-
tebrates. Swarm intelligence is aimed at collective behaviour of intelligent
agents in decentralized systems. Although there is typically no centralized
control dictating the behaviour of the agents, local interactions among the
agents often cause a global pattern to emerge. Ant Colony Optimization
(ACO), have already been applied successfully to solve several engineering
optimization problems. Swarm models are population-based and the popula-
tion is initialised with a population of potential solutions. These individuals
are then manipulated (optimised) over many several iterations using several
heuristics inspired from the social behaviour of insects in an effort to find
the optimal solution. Ant colony algorithms are inspired by the behavior
of natural ant colonies, in the sense that they solve their problems by multi
agent cooperation using indirect communication through modifications in the
environment. Ants release a certain amount of pheromone (hormone) while
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walking, and each ant prefers (probabilistically) to follow a direction, which is
rich of pheromone. This simple behavior explains why ants are able to adjust
to changes in the environment, such as optimizing shortest path to a food
source or a nest. In ACO, ants use information collected during past simu-
lations to direct their search and this information is available and modified
through the environment. Recently ACO algorithms have also been used for
clustering data sets.

1.3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) incorporates swarming behaviors ob-
served in flocks of birds, schools of fish, or swarms of bees, and even human
social behavior, from which the idea is emerged [3, 7, 13]. PSO is a population-
based optimization tool, which could be implemented and applied easily to
solve various function optimization problems, or the problems that can be
transformed to function optimization problems. As an algorithm, the main
strength of PSO is its fast convergence, which compares favorably with many
global optimization algorithms like Genetic Algorithms (GA) [6], Simulated
Annealing (SA) [12, 14] and other global optimization algorithms. For ap-
plying PSO successfully, one of the key issues is finding how to map the
problem solution into the PSO particle, which directly affects its feasibility
and performance [312].

Canonical Particle Swarm Optimization

The canonical PSO model consists of a swarm of particles, which are initial-
ized with a population of random candidate solutions. They move iteratively
through the d-dimension problem space to search the new solutions, where
the fitness, f , can be calculated as the certain qualities measure. Each par-
ticle has a position represented by a position-vector xi (i is the index of the
particle), and a velocity represented by a velocity-vector vi. Each particle re-
members its own best position so far in a vector x#

i , and its j-th dimensional
value is x#

ij . The best position-vector among the swarm so far is then stored
in a vector x∗, and its j-th dimensional value is x∗j . During the iteration time
t, the update of the velocity from the previous velocity to the new velocity
is determined by Eq.(1.17). The new position is then determined by the sum
of the previous position and the new velocity by Eq.(1.18).

vij(t+ 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x∗j (t) − xij(t)). (1.17)

xij(t+ 1) = xij(t) + vij(t+ 1). (1.18)

where w is called as the inertia factor, r1 and r2 are the random numbers,
which are used to maintain the diversity of the population, and are uniformly



20 1 Foundations of Computational Intelligence

distributed in the interval [0,1] for the j-th dimension of the i-th particle. c1
is a positive constant, called as coefficient of the self-recognition component,
c2 is a positive constant, called as coefficient of the social component. From
Eq.(1.17), a particle decides where to move next, considering its own expe-
rience, which is the memory of its best past position, and the experience
of its most successful particle in the swarm. In the particle swarm model,
the particle searches the solutions in the problem space with a range [−s, s]
(If the range is not symmetrical, it can be translated to the corresponding
symmetrical range.) In order to guide the particles effectively in the search
space, the maximum moving distance during one iteration must be clamped
in between the maximum velocity [−vmax, vmax] given in Eq.(1.19):

vij = sign(vij)min(|vij | , vmax). (1.19)

The value of vmax is p × s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be
s, i.e. p = 1. The pseudo-code for particle swarm optimization algorithm is
illustrated in Algorithm 2.

Algorithm 2 Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
09. For j = 1 to Dimension
10. Update the j-th dimension value of xi and vi

10. according to Eqs.(1.17), (1.18), (1.19);
12. Next j
13. Next i
14. End While.

The end criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated
after a fixed number of iterations, for example, 1000 iterations.

• Number of iterations without improvement: the optimization process is ter-
minated after some fixed number of iterations without any improvement.

• Minimum objective function error: the error between the obtained ob-
jective function value and the best fitness value is less than a pre-fixed
anticipated threshold.
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The Parameters of PSO

The role of inertia weight w, in Eq.(1.17), is considered critical for the conver-
gence behavior of PSO. The inertia weight is employed to control the impact
of the previous history of velocities on the current one. Accordingly, the pa-
rameter w regulates the trade-off between the global (wide-ranging) and local
(nearby) exploration abilities of the swarm. A large inertia weight facilitates
global exploration (searching new areas), while a small one tends to facilitate
local exploration, i.e. fine-tuning the current search area. A suitable value
for the inertia weight w usually provides balance between global and local
exploration abilities and consequently results in a reduction of the number
of iterations required to locate the optimum solution. Initially, the inertia
weight is set as a constant. However, some experiment results indicates that
it is better to initially set the inertia to a large value, in order to promote
global exploration of the search space, and gradually decrease it to get more
refined solutions [11]. Thus, an initial value around 1.2 and gradually reduc-
ing towards 0 can be considered as a good choice for w. A better method is
to use some adaptive approaches (example: fuzzy controller), in which the
parameters can be adaptively fine tuned according to the problems under
consideration [9], [10].

The parameters c1 and c2, in Eq.(1.17), are not critical for the convergence
of PSO. However, proper fine-tuning may result in faster convergence and
alleviation of local minima. As default values, usually, c1 = c2 = 2 are used,
but some experiment results indicate that c1 = c2 = 1.49 might provide
even better results. Recent work reports that it might be even better to
choose a larger cognitive parameter, c1, than a social parameter, c2, but with
c1 + c2 ≤ 4 [3].

1.3.2 Ant Colony Optimization

Ant Colony Optimization (ACO) deals with artificial systems that is inspired
from the foraging behavior of real ants, which are used to solve discrete
optimization problems [4]. The main idea is the indirect communication
between the ants by means of chemical pheromone trials, which enables them
to find short paths between their nest and food.

In nature, ants usually wander randomly, and upon finding food return to
their nest while laying down pheromone trails. If other ants find such a path
(pheromone trail), they are likely not to keep travelling at random, but to
instead follow the trail, returning and reinforcing it if they eventually find
food. However, as time passes, the pheromone starts to evaporate. The more
time it takes for an ant to travel down the path and back again, the more time
the pheromone has to evaporate (and the path to become less prominent). A
shorter path, in comparison will be visited by more ants (can be described
as a loop of positive feedback) and thus the pheromone density remains high
for a longer time.
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ACO is implemented as a team of intelligent agents, which simulate the
ants behavior, walking around the graph representing the problem to solve
using mechanisms of cooperation and adaptation. ACO algorithm requires to
define the following: [31, 32]:

• The problem needs to be represented appropriately, which would allow the
ants to incrementally update the solutions through the use of a probabilis-
tic transition rules, based on the amount of pheromone in the trail and
other problem specific knowledge. It is also important to enforce a strategy
to construct only valid solutions corresponding to the problem definition.

• A problem-dependent heuristic function η that measures the quality of
components that can be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the
pheromone value τ .

• A probabilistic transition rule based on the value of the heuristic function η
and the pheromone value τ that is used to iteratively construct a solution.

ACO was first introduced using the Travelling Salesman Problem (TSP).
Starting from its start node, an ant iteratively moves from one node to an-
other. When being at a node, an ant chooses to go to a unvisited node at
time t with a probability given by

pk
i,j(t) =

[τi,j(t)]α[ηi,j(t)]β∑
l∈Nk

i
[τi,j(t)]α[ηi,j(t)]β

j ∈ Nk
i (1.20)

where Nk
i is the feasible neighborhood of the antk, that is, the set of cities

which antk has not yet visited; τi,j(t) is the pheromone value on the edge (i, j)
at the time t, α is the weight of pheromone; ηi,j(t) is a priori available heuristic
information on the edge (i, j) at the time t, β is the weight of heuristic
information. Two parameters α and β determine the relative influence of
pheromone trail and heuristic information. τi,j(t) is determined by

τi,j(t) = ρτi,j(t− 1) +
n∑

k=1

Δτk
i,j(t) ∀(i, j) (1.21)

Δτk
i,j(t) =

{
Q

Lk(t) if the edge (i, j) chosen by the antk
0 otherwise

(1.22)

where ρ is the pheromone trail evaporation rate (0 < ρ < 1), n is the number
of ants, Q is a constant for pheromone updating.

More recent work has seen the application of ACO to other problems
[33, 34]. A generalized version of the pseudo-code for the ACO algorithm
with reference to the TSP is illustrated in Algorithm 3.
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Algorithm 3 Ant Colony Optimization Algorithm
01. Initialize the number of ants n, and other parameters.
02. While (the end criterion is not met) do
03. t = t + 1;
04. For k= 1 to n
05. antk is positioned on a starting node;
06. For m= 2 to problem size
07. Choose the state to move into
08. according to the probabilistic transition rules;
09. Append the chosen move into tabuk(t) for the antk;
10. Next m
11. Compute the length Lk(t) of the tour Tk(t) chosen by the antk;
12. Compute Δτi,j(t) for every edge (i, j) in Tk(t) according to Eq.(1.22);
13. Next k
14. Update the trail pheromone intensity for every edge (i, j) according to
Eq.(1.21);
15. Compare and update the best solution;
16. End While.

1.4 Artificial Neural Networks

How does the brain process information? How is it organized? What are the
biological mechanisms involved in brain functioning? These form just a sam-
ple of some of the most challenging questions in science. Brains are especially
good at performing functions like pattern recognition, motor control, per-
ception, flexible inference, intuition, and guessing. But brains are also slow,
imprecise, make erroneous generalizations, are prejudiced, and are usually in-
capable of explaining their own actions. Neurocomputing, sometimes called
brain-like computation or neurocomputation but most often referred to as
artificial neural networks (ANN), can be defined as information processing
systems (computing devices) designed with inspiration taken from the ner-
vous system, more specifically the brain, and with particular emphasis in
problem solving.

Neurocomputing systems are distinct from what is now known as com-
putational neuroscience, which is mainly concerned with the development
of biologically-based computational models of the nervous system. Artificial
neural networks on the other hand, take a loose inspiration from the nervous
system and emphasize the problem solving capability of the systems devel-
oped. However, most books on computational neuroscience not only acknowl-
edge the existence of artificial neural networks, but also use several ideas from
them in the proposal of more biologically plausible models. They also discuss
the artificial neural network suitability as models of real biological nervous
systems. Neurons are believed to be the basic units used for computation
in the brain, and their simplified abstract models are the basic processing
units of neurocomputing devices or artificial neural networks. Neurons are
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connected to other neurons by a small junction called synapse, whose capa-
bility of being modulated is believed to be the basis for most of our cognitive
abilities, such as perception, thinking and inferring. Therefore, some essen-
tial information about neurons, synapses, and their structural anatomy are
relevant for the understanding of how artificial neural networks are designed
taking inspiration from biological neural networks. The discussion to be pre-
sented here briefly introduces the main aspects of the nervous system used
to devise neurocomputing systems, and then focuses on some of the most
commonly used artificial neural networks, namely, single- and multi-layer
perceptrons, self-organizing networks, and Hopfield networks. The descrip-
tion of the many algorithms uses a matrix notation particularly suitable for
their software implementation of the algorithms. The biological plausibility
of each model is also assessed. Although neurocomputing can be viewed as
a field of research dedicated to the design of intelligent brain-like computers,
this report uses the word neurocomputing as a synonym to artificial neural
networks [304].

1.4.1 Architecture and Learning Algorithm

Artificial neural networks are computer programs or mathematical represen-
tation loosely inspired by the massively connected set of neurons that form
the biological neural networks in brain.

The earlier experimental research works about artificial neural networks
include:

• McCulloch and Pitts studied the potential and capabilities of the inter-
connection of several basic components based on the model of a neuron in
1943 [35];

• The name of Perceptron was proposed by Rosenblatt in 1958 [36] ;
• The Perceptron was analyzed, its properties and limitations were given by

Minsky and Papert in 1969 [37];
• A number of neural processing models were proposed including the learn

matrix in 1960’s [38], associative content addressable memory (ACAM)
networks [39], and cooperative-competitive neural network models in
1970’s [40];

• A particular dynamic network structure was proposed by Hopfield in 1982
[28].

Artificial neural networks are the alternative computing technologies that
have been proven useful in a variety of function approximation, pattern recog-
nition, signal processing, system identification and control problems.

The properties and functions of artificial neural networks depend on:

• The properties of single neuron model.
The most common single neuron model is illustrated in Figure 1.7, in
which the output of the neuron is the weighted sum of its input xi,
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ui =
∑

j ωijxj , biased by a threshold value θi and passed through an
activation function f .

f y

x1

x2

xi

xn

Fig. 1.7 The processing unit of an ANN- a neuron

yi = f(
∑

j

ωijxj − θi) (1.23)

The activation function is selected differently in different applications.
Some common choices of selecting activation function in function approx-
imation, system identification and control are shown in Table 1.1.

Table 1.1 The Activation functions

Name Formula

Sigmoid Function f(x) = 1
1+e−x

Gaussian Function f(x) = exp(− x2

σ2 )

Symmetric Sigmoid Function f(x) = 1−e−x

1+e−x

Hyperbolic Tangent Function f(x) = ex−e−x

ex+e−x

Augmented Ratio of Squares f(x) = x2

1+x2 sgn(x)

Flexible Unipolar Sigmoid Function f(x, a) = 2|a|
1+e−2|a|x

Flexible Bipolar Sigmoid Function f(x, a) = 1−e−2xa

a(1+e−2xa)

• The topologies of the neural nets are referred to the number of layers and
the ways of the connections of the neurons. Different topologies or ar-
chitectures of neural nets should have different performance and different
computational structure.

• Parameter tuning techniques are referred to update the adjustable pa-
rameters including the weights, bias, and the parameters used in flexible
activation functions. In general, the performance of a certain algorithm
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for adaptively tuning the parameters in neural network training stage can
be evaluated by its convergence speed, stable properties, robustness and
generalization ability. Recently, more and more research works are focused
on the stable training problem of artificial neural networks . To some ex-
tend, neural network learning problem can be posed as a control problem,
therefore, some adaptive control strategies can be introduced directly into
the training of artificial neural networks.

Up to date, several kinds of neural network architectures have been devel-
oped. Among of them, the multilayer perceptron (MLP), the recurrent neural
network (RNN), the fuzzy neural network (FNN), the radial basis function
network (RBF) and the wavelet neural network (WNN) are most used neu-
ral networks in function approximation, system identification and controller
design.

1.4.2 Multilayer Perceptron

Multilayer perceptron is a completely connected feedforward neural network
as shown in Figure 1.8. By properly selecting the number of hidden neurons,
and the activation function in the hidden layer (i.e., hyperbolic tangent, f)
and in the output layer (i.e., flexible sigmoid F ), the output of the MLP can
be calculated as follows:

yk(t|θ) = Fk(
nh∑

j=0

wk,jhj(t)) = Fk(
nh∑

j=1

wk,jfj(
ni∑

l=0

wj,lxl(t)) + wk,0) (1.24)

where yk(t|θ), (k = 1, 2, . . . , no) is the k-th output of neural network, fj

is the j-th activation function for the unit j in the hidden layer and Fk

specifies the activation function for output k. hj(t) is the j-th output of the
hidden layer.wk,j andwj,l are the hidden-to-output and input-to-hidden layer
weights, respectively. In addition, the bias is regarded as additional weights,
i.e., h0(t) = x0(t) = 1.

1.4.3 Back-Propagation Algorithm

Assume that the used activation functions in the hidden and output layers
of the neural network are hyperbolic tangent and flexible bipolar sigmoid
function (see Table 1.1).

The derivatives of F (x, a) with respect to the variable x and the parameter
a can be obtained as:

F
′
(x, a) = 1 − a2F 2(x, a) (1.25)

F ∗(x, a) =
1
a
[F

′
(x, a)x − F (x, a)] (1.26)



1.4 Artificial Neural Networks 27

1 1

x1

x2 y1

y2

wj,l

wk,j

f1

f2

f3

F1

F2

x3

Fig. 1.8 A 3-inputs 2-outputs three-layers perceptron

A batch version of momentum backpropagation algorithm can be easily de-
rived as follows. Given a set of data:

ZN = {[u(t), y(t)], t = 1, . . . , N}

Define the objective function as:

J =
1

2N

N∑

t=1

no∑

k=1

(yk(t) − yk(t|θ))2 =
1

2N

N∑

t=1

no∑

k=1

ε2k(t, θ) (1.27)

The general gradient of the least squares criterion takes the form:

∂J

∂θ
= − 1

N

N∑

t=1

no∑

k=1

∂yk(t|θ)
∂θ

[yk(t) − yk(t|θ)] (1.28)

The partial derivatives of the network output with respect to the weights in
hidden-to-output layer:

∂J

∂wk,j
= − 1

N

N∑

t=1

hj(t)F
′
k(

nh∑

j=0

wk,jhj(t))(yk(t) − yk(t|θ)) = − 1

N

N∑

t=1

hj(t)δk(t) (1.29)

where

δk(t) = F
′
k(

nh∑

j=0

wk,jhj(t))(yk(t) − yk(t|θ)) (1.30)

Similarly, the partial derivatives of the network output with respect to the
weights in input-to-hidden layer cab be obtained as:



28 1 Foundations of Computational Intelligence

∂J

∂wj,l
=− 1

N

N∑

t=1

xl(t)f
′
j(

ni∑

l=0

wj,lxl(t))
no∑

k=1

wk,jδk(t)=− 1
N

N∑

t=1

xl(t)δj(t)(1.31)

where

δj(t) = f
′
j(

ni∑

l=0

wj,lxl(t))
no∑

k=1

wk,jδk(t) (1.32)

The partial derivatives of the network output with respect to the parameter
ak in output layer cab be obtained as:

∂J

∂ak
= − 1

N

N∑

t=1

F ∗
k (

nh∑

j=0

wk,jhj(t))(yk(t) − yk(t|θ)) (1.33)

Therefore, the weights in hidden-to-output layer and in input-to-hidden layer,
and parameters in output layer can be updated by:

wk,j = wk,j + η1
∂J

∂wk,j
+ α1Δwk,j (1.34)

wj,l = wj,l + η2
∂J

∂wj,l
+ α2Δwj,l (1.35)

ak = ak + η3
∂J

∂ak
+ α3Δak (1.36)

1.4.4 Evolutionary Algorithm Based Training

The strong interest in neural networks in the scientific community is fueled
by the many successful and promising applications especially to tasks of opti-
mization, speech recognition, pattern recognition, signal processing, function
approximation, control problems , financial modeling etc.. Even though arti-
ficial neural networks are capable of performing a wide variety of tasks, yet
in practice sometimes they deliver only marginal performance. Inappropri-
ate topology selection and learning algorithm are frequently blamed. There
is little reason to expect that one can find a uniformly best algorithm for
selecting the weights in a feedforward artificial neural network. This is in
accordance with the no free lunch theorem, which explains that for any al-
gorithm, any elevated performance over one class of problems is exactly paid
for in performance over another class [292].

At present, neural network design relies heavily on human experts who
have sufficient knowledge about the different aspects of the network and the
problem domain. As the complexity of the problem domain increases, manual
design becomes more difficult and unmanageable. Some global optimization
techniques like evolutionary programming, simulated annealing and genetic
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algorithms have also been used for the training of ANNs. Reader may consult
[41] for a nice survey of such research.

Evolutionary design of artificial neural networks has been widely explored
[50]. Evolutionary algorithms are used to adapt the connection weights, net-
work architecture and learning rules according to the problem environment.
A distinct feature of evolutionary neural networks is their adaptability to a
dynamic environment. In other words, such neural networks can adapt to an
environment as well as changes in the environment. The two forms of adap-
tation: evolution and learning in evolutionary artificial neural networks make
their adaptation to a dynamic environment much more effective and efficient
than the conventional learning approach [293] [295] [294]. It has been shown
that the binary coding scheme used in genetic algorithm is neither necessary
nor beneficial [43], [44]. In addition, Fogel and Ghozeil [44] illustrated that
under some fairly general assumptions, there are fundamental equivalences
between various representations. Several successful studies using real values
instead of binary coding scheme include Montana and Davis [45] and Sexton
et al., [46] , [49] for GA and Porto et al., [47] and Saravanan et al., [48] for
other evolutionary algorithms.

The performance of evolutionary design is very often described by effec-
tiveness, ease of use and efficiency. Effectiveness refers to the accuracy of
each algorithm to estimate the true functional form. Ease-of-use deals with
the effort needed for optimal algorithm settings for the problems at hand.
Efficiency of an algorithm is computed by comparing the CPU time needed
for converging upon the best found solutions.

1.4.5 Self Organizing Feature Maps

Self Organizing Feature Maps (SOFM) are a data visualization technique
proposed by Professor Teuvo Kohonen [300], which reduce the dimensions of
data through the use of self-organizing neural networks. A SOFM learns the
categorization, topology and distribution of input vectors. SOFM allocate
more neurons to recognize parts of the input space where many input vectors
occur and allocate fewer neurons to parts of the input space where few input
vectors occur. Neurons next to each other in the network learn to respond
to similar vectors. SOFM can learn to detect regularities and correlations in
their input and adapt their future responses to that input accordingly. An
important feature of SOFM learning algorithm is that it allow neurons that
are neighbors to the winning neuron to output values. Thus the transition
of output vectors is much smoother than that obtained with competitive
layers, where only one neuron has an output at a time. The problem that
data visualization attempts to solve is that humans simply cannot visualize
high dimensional data. The way SOFM go about reducing dimensions is by
producing a map of usually 1 or 2 dimensions, which plot the similarities of
the data by grouping similar data items together (data clustering). In this
process SOFM accomplish two things, they reduce dimensions and display
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similarities. It is important to note that while a self-organizing map does
not take long to organize itself so that neighboring neurons recognize similar
inputs, it can take a long time for the map to finally arrange itself according
to the distribution of input vectors.

1.4.6 Radial Basis Function

The Radial Basis Function (RBF) network is a three-layer feed-forward net-
work that uses a linear transfer function for the output units and a nonlinear
transfer function (normally the Gaussian) for the hidden layer neurons [299].
Radial basis networks may require more neurons than standard feed-forward
backpropagation networks, but often they can be designed with lesser time.
They perform well when many training data are available. Much of the inspi-
ration for RBF networks has come from traditional statistical pattern clas-
sification techniques. The input layer is simply a fan-out layer and does no
processing. The second or hidden layer performs a non-linear mapping from
the input space into a (usually) higher dimensional space whose activation
function is selected from a class of functions called basis functions. The fi-
nal layer performs a simple weighted sum with a linear output. Contrary to
backpropagation networks the weights of the hidden layer basis units (input
to hidden layer) are set using some clustering techniques. The idea is that the
patterns in the input space form clusters. If the centers of these clusters are
known, then the Euclidean distance from the cluster center can be measured.
As the input data moves away from the connection weights, the activation
value reduces. This distance measure is made non-linear in such a way that
for input data close to a cluster center gets a value close to 1. Once the hidden
layer weights are set, a second phase of training (usually backpropagation) is
used to adjust the output weights.

1.4.7 Recurrent Neural Networks

Recurrent networks are the state-of-the-art in nonlinear time series predic-
tion, system identification, and temporal pattern classification. As the output
of the network at time t is used along with a new input to compute the out-
put of the network at time t+1, the response of the network is dynamic
[296]. Time Lag Recurrent Networks (TLRN) are multi-layered perceptrons
extended with short-term memory structures that have local recurrent con-
nections. The recurrent neural network is a very appropriate model for pro-
cessing temporal (time-varying) information. Examples of temporal problems
include time series prediction, system identification and temporal pattern
recognition. A simple recurrent neural network could be constructed by a
modification of the multi-layered feed-forward network with the addition of
a context layer. The context layer is added to the structure, which retains in-
formation between observations. At each time step, new inputs are fed to the
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network. The previous contents of the hidden layer are passed into the context
layer. These then feed back into the hidden layer in the next time step. Ini-
tially, the context layer contains nothing, so the output from the hidden layer
after the first input to the network will be the same as if there is no context
layer. Weights are calculated in the same way for the new connections from
and to the context layer from the hidden layer. The training algorithm used
in TLRN (backpropagation through time) is more advanced than standard
backpropagation algorithm. Very often TLRN requires a smaller network to
learn temporal problems when compared to MLP that use extra inputs to
represent the past samples. TLRN is biologically more plausible and com-
putationally more powerful than other adaptive models such as the hidden
Markov model. Some popular recurrent network architectures are the Elman
recurrent network in which the hidden unit activation values are fed back to
an extra set of input units and the Jordan recurrent network in which output
values are fed back into hidden units.

1.4.8 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) was initially introduced by Professor
Stephen Grossberg [301] as a theory of human information processing. ART
neural networks are extensively used for supervised and unsupervised classifi-
cation tasks and function approximation. There are many different variations
of ART networks available today [297]. For example, ART1 performs unsu-
pervised learning for binary input patterns, ART2 is modified to handle both
analog and binary input patterns, and ART3 performs parallel searches of dis-
tributed recognition codes in a multilevel network hierarchy. Fuzzy ARTMAP
represents a synthesis of elements from neural networks, expert systems, and
fuzzy logic.

1.5 Fuzzy Systems

Fuzzy sets were introduced by Professor Lotfi Zadeh [302] with a view to
reconcile mathematical modeling and human knowledge in the engineering
sciences. Since then, a considerable body of literature has blossomed around
the concept of fuzzy sets in an incredibly wide range of areas, from mathe-
matics and logics to traditional and advanced engineering methodologies.

1.5.1 The Definition of Fuzzy Sets

To introduce fuzzy sets consider the X = {x1, x2, x3, x4, x5} crisp set that
will be called universe, or universal set and let Y ⊂ x = {x1, x2, x3} is its
crisp subset.
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By using the characteristic function defined as:

μY (x) =
{

1, if x ∈ Y
0, otherwise (1.37)

The subset Y can be uniquely represented by ordered pairs:

Y = {(x1, 1), (x2, 1), (x3, 0), (x4, 0), (x5, 1)} (1.38)

Zadeh proposed that the second member of an ordered pair (which is called
the membership grade of the appropriate element) can take its value not only
from the set {0, 1} but from the closed interval [0, 1] as well. By using this
idea fuzzy sets are defined as follows:

Definition. Let X a universal crisp set. The set of ordered pairs

Y = {(x, μY (x))|x ∈ X,μY : X → [0, 1]} (1.39)

is said to be the fuzzy subset of X . The μY : X → [0, 1] function is called as
membership function and its vlaue is said to be the membership grade of x.

1.6 Takagi-Sugeno Fuzzy Model

The world of information is surrounded by uncertainty and imprecision. The
human reasoning process can handle inexact, uncertain and vague concepts
in an appropriate manner. Usually, the human thinking, reasoning and per-
ception process cannot be expressed precisely. These types of experiences can
rarely be expressed or measured using statistical or probability theory. Fuzzy
logic provides a framework to model uncertainty, human way of thinking,
reasoning and the perception process [305]. A fuzzy expert system is simply
an expert system that uses a collection of fuzzy membership functions and
rules, instead of Boolean logic, to reason about data. The rules in a fuzzy
expert system are usually of a form similar to the following: If A is low and B
is high then X = medium where A and B are input variables, X is an output
variable. Here low, high, medium are fuzzy sets defined on A, B and X re-
spectively. The antecedent (the rule’s premise) describes to what degree the
rule applies, while the the rule’s consequent assigns a membership function
to each of one or more output variables.

A fuzzy model proposed by Takagi and Sugeno [51] is described by fuzzy
if-then rules whose consequent parts are represented by linear equations. This
fuzzy model is of the following form:

Ri : If x1 is Ai1 . . . , xn is Ain then yi = ci0 + ci1x1 + · · · + cinxn(1.40)
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where i = 1, 2, . . . , N , N is the number of if-then rules, cik(k = 0, 1, . . . , n)
are the consequent parameters, yi is the output from the ith if-then rule, and
Aik is a fuzzy set.

Given an input (x1, x2, . . . , xn), the final output of the fuzzy model is
referred as follows:

y=

∑N
i=1 ωiyi∑N
i=1 ωi

=

∑N
i=1 ωi(ci0 + ci1x1 + · · · + cinxn)

∑N
i=1 ωi

=

∑n
k=0

∑N
i=1 ωicikxk∑N

i=1 ωi

(1.41)

where x0 = 1, ωi is the weight of the ith IF-THEN rule for the input and is
calculated as:

ωi =
n∏

k=1

Aik(xk), (1.42)

where Aik(xk) is the grad of membership of xk in Aik.

1.6.1 Universal Approximation Property

To Takagi-Sugeno approach, the universal approximation property was proved
in [52, 53]. In addition, a natural further generalization of this approach was
proposed in [54, 55], in which in the conclusion of each rule, the desired out-
put y is given not by an explicit formula, but by a (crisp) dynamical systems,
i.e., by a system of differential equations that determine the time derivative
of the output variable (i.e., its change in time) as a function of the inputs
and of the previous values of output. This generalization also has universal
approximation property.

A simplified Takagi-Sugeno fuzzy model proposed by Hao [57] has the
following rule base:

Ri :If x1 is Ai1 . . . , xn is Ain then yi =ki(c0+c1x1 + · · · + cnxn)(1.43)

where i = 1, 2, . . . , N , N is the number of if-then rules. From this it can
be seen that the free parameters in the consequent part of the IF-THEN
rules are reduced significantly. The universal approximation property of this
simplified T-S fuzzy model has also been proved, and successfully applied to
the identification and control of nonlinear systems.

1.6.2 Fuzzy Expert Systems - Design Challenges

Fuzzy logic systems have been successfully applied to a vast number of scien-
tific and engineering problems in recent years. The advantage of solving the
complex nonlinear problems by utilizing fuzzy logic methodologies is that
the experience or expert’s knowledge described as a fuzzy rule base can be
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directly embedded into the systems for dealing with the problems. A number
of improvements have been made in the aspects of enhancing the systematic
design method of fuzzy logic systems.

Expert knowledge is often the main source to design the fuzzy expert sys-
tems. According to the performance measure of the problem environment,
the membership functions, rule bases and the inference mechanism are to be
adapted [307]. Neural network learning, self-organizing maps and clustering
methods could be used to generate rules. Gradient descent and its variants
could be applied to fine-tune the parameters of parameterized input/output
membership functions and fuzzy operators [308], [310]. Adaptation of fuzzy
inference systems using evolutionary computation techniques has been widely
explored. Automatic adaptation of membership functions is popularly known
as self tuning and the chromosome encodes parameters of trapezoidal, trian-
gle, logistic, hyperbolic-tangent, Gaussian membership functions etc. Evolu-
tionary search of fuzzy rules can be carried out using three approaches. In
the first method (Michigan approach) the fuzzy knowledge base is adapted as
a result of antagonistic roles of competition and cooperation of fuzzy rules.
The second method (Pittsburgh approach) evolves a population of knowl-
edge bases rather than individual fuzzy rules. Reproduction operators serve
to provide a new combination of rules and new rules. The third method (it-
erative rule learning approach) is very much similar to the first method with
each chromosome representing a single rule, but contrary to the Michigan
approach, only the best individual is considered to form part of the solution,
discarding the remaining chromosomes in the population. The evolutionary
learning process builds up the complete rule base through a iterative learning
process [311].

There are lots of challenges and remaining problems to be solved. For ex-
ample, how to automatically partition the input space for each input-output
variables, how many fuzzy rules are really needed for properly approximating
the unknown nonlinear systems, and how to determine it automatically and
so on. As is well known, the curse-of-dimensionality is an unsolved problem
in the field.

1.7 Probabilistic Computing

Probabilistic models are viewed as similar to that of a game, actions are
based on expected outcomes. The center of interest moves from the deter-
ministic to probabilistic models using statistical estimations and predictions.
In the probabilistic modeling process, risk means uncertainty for which the
probability distribution is known. Therefore risk assessment means a study to
determine the outcomes of decisions along with their probabilities. Decision-
makers often face a severe lack of information. Probability assessment quan-
tifies the information gap between what is known, and what needs to be
known for an optimal decision. The probabilistic models are used for protec-
tion against adverse uncertainty, and exploitation of propitious uncertainty
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[313]. A good example is the probabilistic neural network (Bayesian learning)
in which probability is used to represent uncertainty about the relationship
being learned. Before we have seen any data, our prior opinions about what
the true relationship might be can be expressed in a probability distribu-
tion over the network weights that define this relationship. After we look at
the data, our revised opinions are captured by a posterior distribution over
network weights. Network weights that seemed plausible before, but which
don’t match the data very well, will now be seen as being much less likely,
while the probability for values of the weights that do fit the data well will
have increased. Typically, the purpose of training is to make predictions for
future cases in which only the inputs to the network are known. The result
of conventional network training is a single set of weights that can be used
to make such predictions.

1.8 Hybrid Intelligent Systems

Several adaptive hybrid intelligent systems have in recent years been devel-
oped for model expertise, image and video segmentation techniques, process
control, mechatronics, robotics and complicated automation tasks etc. Many
of these approaches use the combination of different knowledge representation
schemes, decision making models and learning strategies to solve a compu-
tational task. This integration aims at overcoming limitations of individual
techniques through hybridization or fusion of various techniques. These ideas
have led to the emergence of several different kinds of intelligent system ar-
chitectures. It is well known that the intelligent systems, which can provide
human like expertise such as domain knowledge, uncertain reasoning, and
adaptation to a noisy and time varying environment, are important in tack-
ling practical computing problems. Most of the current Hybrid Intelligent
Systems (HIS) consists of 3 essential paradigms: artificial neural networks,
fuzzy inference systems and global optimization algorithms (example, evo-
lutionary algorithms). Nevertheless, HIS is an open instead of conservative
concept. That is, it is evolving those relevant techniques together with the
important advances in other new computing methods. To realize a highly in-
telligent system, a synthesis of various techniques is required. Each technique
plays a very important role in the development of HIS. Experience has shown
that it is crucial for the design of HIS to primarily focus on the integration
and interaction of different techniques rather than merge different methods
to create ever-new techniques. Techniques already well understood, should be
applied to solve specific domain problems within the system. Their weakness
must be addressed by combining them with complementary methods. Due
to the complementary features and strengths of different systems, the trend
in the design of hybrid system is to merge both of them into a more power-
ful integrated system, to overcome their individual weakness (example: global
optimization algorithms could be useful to formulate an optimal combination
of neural networks and fuzzy inference systems) .
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1.9 Models of Hybrid Intelligent Systems

The various HIS architectures could be broadly classified into 3 different
categories based on the systems overall architecture: (1) Transformational
Architectures (2) Hierarchical Hybrid Architectures and (3) Integrated Hy-
brid Architectures. The following sections discuss each of these strategies and
expected uses of the model, and benefits and limitations of the approach.

In a transformational hybrid model the system begins as one type of system
and end up as the other. Determining which technique is used for develop-
ment and which is used for delivery is based on the desirable features that
the technique offers. Expert Systems and ANNs have proven to be useful
transformational models. Variously, either the expert system is incapable of
adequately solving the problem, or the speed, adaptability, and robustness
of neural network is required. Knowledge from the expert system is used to
set the initial conditions and training set for ANN. Transformational hybrid
models are often quick to develop and ultimately require maintenance on only
one system. Most of the developed models are just application oriented.

The architecture is built in a hierarchical fashion, associating a different
functionality with each layer. The overall functioning of the model will depend
on the correct functioning of all the layers. Possible error in one of the layers
will directly affect the desired output.

Fused architectures are the first true form of integrated intelligent sys-
tems. These models include systems, which combine different techniques into
one single computational model. They share data structures and knowledge
representations. Another approach is to put the various techniques on a side-
by-side basis and focus on their interaction in the problem-solving task. This
method might allow integrating alternative techniques and exploiting their
mutuality. The benefits of fused architecture include robustness, improved
performance and increased problem-solving capabilities. Finally, fully inte-
grated models can provide a full range of capabilities such as adaptation,
generalization, noise tolerance and justification. Fused systems have limita-
tions caused by the increased complexity of the inter module interactions and
specifying, designing, and building fully integrated models is complex.
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Flexible Neural Tree: Foundations and
Applications

2.1 Introduction to Flexible Neural Tree

Artificial neural networks (ANNs) have been successfully applied to a number
of scientific and engineering fields in recent years, i.e., function approximation,
system identification and control, image processing, time series prediction [58].
A neural network’s performance is highly dependent on its structure. The in-
teraction allowed between the various nodes of the network is specified using
the structure only. An artificial neural network structure is not unique for a
given problem, and there may exist different ways to define a structure corre-
sponding to the problem. Depending on the problem, it may be appropriate to
have more than one hidden layer, feedforward or feedback connections, or in
some cases, direct connections between input and output layer.

There has been a number of attempts for designing ANN architectures au-
tomatically. The early methods include constructive and pruning algorithms
[59–61]. The main problem of these methods is that the topological subsets
rather than the complete class of artificial neural network architecture is
searched in the search space by structural hill climbing methods [62]. Re-
cent tendencies to optimize artificial neural network architecture and weights
include EPNet [63][64] and the NeuroEvolution of Augmenting Topologies
(NEAT) [65]. Utilizing a tree to represent a NN-like model is motivated by
the work of Zhang, where a method of evolutionary induction of the sparse
neural trees was proposed [66]. Based on the representation of neural tree, ar-
chitecture and weights of higher order sigma-pi neural networks were evolved
by using genetic programming and breeder genetic algorithm, respectively.

In this Chapter, we illustrate a general and enhanced flexible neural
tree (FNT) models for problem solving. Based on the pre-defined instruc-
tion/operator sets, a flexible neural tree model can be created and evolved.
In this approach, over-layer connections, different activation functions for dif-
ferent nodes and input variables selection are allowed. The hierarchical struc-
ture could be evolved by using tree-structure based evolutionary algorithms
with specific instructions. The fine tuning of the parameters encoded in the

Y. Chen, A. Abraham.: Tree-Struc. Based Hybrid Com. Intelligence, ISRL 2, pp. 39–96.
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structure could be accomplished by using parameter optimization algorithms.
The flexible neural tree method interleaves both optimizations. Starting with
random structures and corresponding parameters, it first tries to improve the
structure and then as soon as an improved structure is found, it fine tunes its
parameters. It then goes back to improving the structure again and, provided
it finds a better structure, it again fine tunes the rules’ parameters. This loop
continues until a satisfactory solution is found or a time limit is reached.

This chapter provides a detailed introduction to the flexible neural tree
algorithm development and is first illustrated in some function approxima-
tion problems and also in some real world problems like intrusion detection,
exchange rate forecasting, face recognition, cancer detection and protein fold
recognition. Further the multi-input multi-output flexible neural trees algo-
rithm is introduced and is illustrated for some problem solving. Finally an
ensemble of flexible neural tree is introduced and is illustrated for stock mar-
ket prediction problem.

2.2 Flexible Neural Tree Algorithms

2.2.1 Encoding and Evaluation

A tree-structural based encoding method with specific instruction set is se-
lected for representing a flexible neural tree model. The reason for choosing
the representation is that the tree can be created and evolved using the
existing or modified tree-structure-based approaches, i.e., Genetic Program-
ming (GP), Probabilistic Incremental Program Evolution (PIPE) and Ant
Programming (AP).

2.2.2 Flexible Neuron Instructor

The used function set F and terminal instruction set T for generating a
flexible neural tree model are described as follows:

S = F
⋃
T = {+2,+3, . . . ,+N}

⋃
{x1, . . . , xn}, (2.1)

where +i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i
arguments. x1,x2,. . . ,xn are leaf nodes’ instructions and taking no argument
each. The output of a non-leaf node is calculated as a flexible neuron model
(see Figure 2.1). From this point of view, the instruction +i is also called a
flexible neuron operator with i inputs.

In the construction process of a neural tree, if a nonterminal instruction,
i.e., +i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly generated
and used for representing the connection strength between the node +i and
its children. In addition, two adjustable parameters ai and bi are randomly
created as flexible activation function parameters. The flexible activation
function used is given by:



2.2 Flexible Neural Tree Algorithms 41

x1

xn

x2 +n

ω 1

ω n

f(a,b) yω 2

Fig. 2.1 A flexible neuron operator

f(ai, bi, x) = e
−(

x−ai
bi

)2
. (2.2)

The output of a flexible neuron +n is calculated as follows and the total
excitation of +n is given by:

netn =
n∑

j=1

wj ∗ xj (2.3)

where xj(j = 1, 2, . . . , n) are the inputs to node +n. The output of the node
+n is then calculated by:

outn = f(an, bn, netn) = e−( netn−an
bn

)2 . (2.4)

A typical flexible neural tree model is illustrated in Figure 2.2. The overall
output of flexible neural tree can be computed from left to right by depth-first
method, recursively.

+
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x3x2

x1 x2 x3 x3 x2 x1 x3x2
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Output layer

Second hidden 
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+3

+3 +2 +3
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Fig. 2.2 A typical representation of neural tree with function instruction set
F = {+2, +3, +4, +5, +6}, and terminal instruction set T = {x1, x2, x3}
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2.2.3 Fitness Function

A fitness function maps flexible neural tree to scalar, real-valued fitness values
that reflect the flexible neural tree’s performances on a given task. Firstly the
fitness functions should be seen as error measures, i.e., MSE or RMSE. A
secondary non-user-defined objective for which algorithm always optimizes
flexible neural tree is FNT size as measured by number of nodes. Among
flexible neural tree’s with equal fitness smaller ones are always preferred.
The fitness function used for PIPE and Simulated Annealing (SA) is given
by mean square error (MSE):

Fit(i) =
1
P

P∑

j=1

(yj
1 − yj

2)
2 (2.5)

or Root Mean Square Error (RMSE):

Fit(i) =

√√√√ 1
P

P∑

j=1

(yj
1 − yj

2)2 (2.6)

where P is the total number of samples, yj
1 and yj

2 are the actual time-series
and the flexible neural tree model output of j-th sample. Fit(i) denotes the
fitness value of i-th individual.

2.2.4 Structure and Parameter Learning

Finding an optimal or near-optimal neural tree could be accomplished by
using tree-structure based evolutionary algorithms, i.e., genetic programming
(GP), probabilistic incremental program evolution (PIPE), gene expression
programming (GEP), estimation of distribution programming (EDP) and the
parameters optimization algorithms, i.e., genetic algorithms (GA), evolution
strategy (ES), evolutionary programming (EP), particle swarm optimization
(PSO), estimation of distribution algorithm (EDA), and so on.

In order to learn the structure and parameters of a flexible neural tree
simultaneously, a tradeoff between the structure optimization and parame-
ter learning should be taken. In fact, if the structure of the evolved model
is not appropriate, it is not useful to pay much attention to the parame-
ter optimization. On the contrary, if the best structure has been found, the
further structure optimization may destroy the best structure. We illustrate
a technique for balancing the structure optimization and parameter learn-
ing. If a better structure is found then do local search for a number of steps:
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maximum allowed steps or stop in case no better parameter vector is found
for a significantly long time (say 100 to 2000 in our experiments). Where the
criterion of better structure is distinguished as follows: if the fitness value of
the best program is smaller than the fitness value of the elitist program, or
the fitness values of two programs are equal but the nodes of the former is
lower than the later, then we say that the better structure is found.

To find the optimal parameters set (weights and activation function pa-
rameters) of a flexible neural tree model, there are a number of global and
local search algorithms, i.e., genetic algorithm, evolutionary programming,
gradient based learning method etc. A variant of simulated annealing (called
degraded ceiling) is selected due to its straightforward property and fast local
search capability.

Simulated annealing (SA) is one of the most widely studied local search
meta-heuristics. It was proposed as a general stochastic optimization tech-
nique and has been applied to solve a wide range of problems.

The basic ideas of the simulated annealing search are that it accepts worse
solutions with a probability p = e−

δ
T , where δ = f(s∗) − f(s), the s and

s∗ are the old and new solution vectors, f(s) denotes the cost function, the
parameter T denotes the temperature in the process of annealing. Originally
it was suggested to start the search from a high temperature and reduce it to
the end of the process by a formula: Ti+1 = Ti −Ti ∗ β. However, the cooling
rate β and initial value of T should be carefully selected due to it is problem
dependent.

Algorithm 4 Flexible Neural Tree (FNT): General Learning Algorithm
01. Set the initial values of parameters used in the PIPE and SA algorithms. Set
the elitist program as NULL and its fitness value as a biggest positive real number
of the computer at hand. Create the initial population (flexible neural trees and
their corresponding parameters)
02. Structure optimization by PIPE algorithm as described in subsection 3.1, in
which the fitness function is calculated by mean square error (MSE) or root mean
square error(RMSE)
03. If the better structure is found, then go to step 4), otherwise go to step 2)
04.Parameter optimization by degraded ceiling algorithm as described in subsection
3.2. In this stage, the tree structure or architecture of flexible neural tree model
is fixed, and it is the best tree taken from the end of run of the PIPE search.
All of the parameters used in the best tree formulated a parameter vector to be
optimized by local search
05.If the maximum number of local search is reached, or no better parameter vector
is found for a significantly long time (100 steps) then go to step 6); otherwise go
to step 4)
06.If satisfied solution is found, then stop; otherwise go to step 2)
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2.2.5 Flexible Neural Tree Applications

Function Approximation

A non-linear static benchmark modelling problem [68, 95] is considered for
illustration, which is described by:

y = (1 + x−2
1 + x−1.5

2 )2, 1 ≤ x1, x2 ≤ 5. (2.7)

50 training and 200 test samples are randomly generated within the inter-
val [1, 5]. The static nonlinear function is approximated by using the neural
tree model with the pre-defined instruction sets I = {+2,+3, . . . ,+8, x0, x1},
where x0 and x1 denote input variables x1 and x2 of the static nonlinear
function respectively. The initial parameters used in PIPE are depicted in
Table 2.1.

The evolved neural tree model is obtained at generation 15 with MSE value
0.000737 for training data set and 0.00086 for validation data set, respectively.
The optimized neural tree is illustrated in Figure 2.3. The optimal weights
are w1 to w30 are 2.09, -0.01, 3.01, 4.16, 0.72, 4.16, -0.49, 1.15, 1.96, 2.31, 1.58,
2.81, 0.08, 2.12, 1.13, 4.26, 0.65, 0.14, -0.33, -0.86, 0.69, 0.53, 0.28, -0.02, 0.71,
3.13, 0.38, -0.36, -0.97, -0.93, respectively. The optimized activation functions
from f1 to f12 are listed in Table 2.2.

Figures 2.4 and 2.5 present the outputs of actual static nonlinear function
and the evolved neural tree model, and the prediction errors for training data
set and validation data set, respectively. Table 2.3 contains comparison results
of different models for the static function approximation and provides, in

+6

(+, f ) x11 (+, f )2 (+, f )3 (+, f )4 (+, f )5

(+, f )6x1

x0 x0

(+, f )8(+, f )7 (+, f )9 (+, f  )10 (+, f  )11 (+, f  )12x0
x0

x0 x0 x0 x1 x0 x1 x0 x1 x1 x1x1x0

w1 w2
w6

w7
w16

w17 w30

Fig. 2.3 Evolved neural tree for approximating a static nonlinear function
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Table 2.1 Parameters used in the PIPE algorithm for architecture optimization
of the neural tree

Population size PS 100
Elitist learning probability Pel 0.01
Learning rate lr 0.01
Fitness constant ε 0.000001
Overall mutation probability PM 0.4
Mutation rate mr 0.4
Prune threshold TP 0.999
Maximum random search steps 2000
Initial connection weights rand[-1, 1]
Initial parameters ap and bp rand[0,1]

Table 2.2 The optimized flexible activation function parameters for static function
approximation

f1 f2 f3 f4

a b a b a b a b
2.74 2.47 3.18 3.17 4.76 2.48 0.08 2.12

f5 f6 f7 f8

a b a b a b a b
2.26 2.40 1.88 2.59 1.67 2.15 0.74 0.93

f9 f10 f11 f12

a b a b a b a b
0.27 0.46 -0.10 0.58 2.67 2.57 1.70 2.42

addition, results achieved with the neural tree model developed in this paper.
It is obvious that the flexible neural tree model worked well for generating
an approximating model of the static non-linear system.

Nonlinear Systems Identification

A second-order non-minimum phase system with gain 1, time constants 4s
and 10s, a zero at 1/4s, and output feedback with a parabolic nonlinearity is
chosen to be identified [75]. With sampling time T0 = 1s this system follows
the nonlinear difference equation

y(k) = −0.07289[u(k− 1) − 0.2y2(k − 1)] + 0.09394[u(k− 2) − 0.2y2(k − 2)]

+ 1.68364y(k− 1) − 0.70469y(k− 2). (2.8)

where the input lie in the interval [-1,1].
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Fig. 2.4 Outputs of actual system, the neural tree model and the approximation
error: for training data samples

Fig. 2.5 Outputs of actual system, the neural tree model and the approximation
error: for test samples
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Table 2.3 Comparison of models for the non-linear function approximation

Author Learning method MSE

Lin [71] Back-propagation 0.005
Sugeno [69] Fuzzy+WLS 0.01
Delgado [72] Fuzzy Clustering 0.231
Russo [70] GA+NN+fuzzy 0.00078
Kukolj [73] Fuzzy clustering+LS 0.0015
FNT Neural Tree 0.00086

+4

x0 x2 x3 (+ , f  )3 1

(+ , f  )3 2

x0 x3 x3

x0 x0

w1 w2 w3
w4

w5 w6
w7

w8 w9
w10

Fig. 2.6 Evolved neural tree for identification of a second order non-minimum
phase system

A training and a test sequence of 1000 samples each were generated. The
input sequence for training consists of pulses with random amplitude in the
range [-1, 1] and with random duration between 1 and 10 sampling periods
(Figure 2.7(upper)). The input sequence for test consists of specific pulses
shown in Figure 2.7 (lower).

The used instruction sets are I0 ={+2, +3,. . . , +10}, I1 = {+2,+3,
u(k− 1), u(k− 2), y(k− 1), y(k− 2)} and I2 = {x0, x1, x2, x3}. Where x0, x1,
x2 and x3 represents u(k − 1), u(k − 2), y(k − 1) and y(k − 2), respectively.
The output is y(k). The parameters used in PIPE evolution process are also
the same as those described in Table 2.2.

After 5 generations of the evolution, the optimal neural tree model was
obtained with the MSE value 0.000394. The MSE value for test data set is
0.000437. It is clear that Both the training and test error of the neural tree
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time

u

time

u

Fig. 2.7 The input signals for generating the excitation and test data sets of the
dynamic system. The input signal for creating the training data set (upper) and
the for the test data set (lower).
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model are smaller than the errors of the local linear neural-fuzzy model [75].
The evolved optimal weights from w1 to w10 are 0.05, -0.39, -0.77, 1.72, 0.48,
0.86, 0.51, 0.49, -0.18 and -0.74, respectively. A comparison has been made to
show the actual output, the neural tree model output and the identification
error of the dynamic system. (see Figure 2.8).

From above simulation results, it is evident that the proposed neural tree
model works very well for nonlinear function approximation, time series pre-
diction and dynamic system identification problems.

Intrusion Detection

The traditional prevention techniques such as user authentication, data en-
cryption, avoiding programming errors and firewalls are used as the first
line of defense for computer security. Recently, Intrusion Detection Systems
(IDS) have been used in monitoring attempts to break security, which pro-
vides important information for timely countermeasures. Intrusion detection
is classified into two types: misuse intrusion detection and anomaly intrusion
detection. Misuse intrusion detection uses well-defined patterns of the attack
that exploit weaknesses in system and application software to identify the in-
trusions. Anomaly intrusion detection identifies deviations from the normal
usage behavior patterns to identify the intrusion.

Data mining approaches for intrusion detection was first implemented in
Mining Audit Data for Automated Models for Intrusion Detection [79],[78].
Raw data is converted into ASCII network packet information, which in turn
is converted into connection level information. These connection level records
contain within connection features like service, duration etc. Data mining al-
gorithms are applied to this data to create models to detect intrusions. Neural
networks have been used both in anomaly intrusion detection as well as in
misuse intrusion detection. In the first approach of neural networks [80] for
intrusion detection, the system learns to predict the next command based
on a sequence of previous commands by a user. Support Vector Machines
(SVM) have proven to be a good candidate for intrusion detection because of
its training speed and scalability. Besides SVMs are relatively insensitive to
the number of data points and the classification complexity does not depend
on the dimensionality of the feature space, so they can potentially learn a
larger set of patterns and scale better than neural networks [82]. Neuro-fuzzy
computing is a popular framework for solving complex problems. An Adap-
tive neuro-fuzzy IDS is proposed by Shah et al. [85]. Multivariate Adaptive
Regression Splines (MARS) is an innovative approach that automates the
building of accurate predictive models for continuous and binary dependent
variables [81]. It excels at finding optimal variable transformations and inter-
actions, and the complex data structure that often hides in high-dimensional
data. An IDS based on MARS technology is proposed in [84]. Linear Ge-
netic Programming (LGP) is a variant of the conventional Genetic Program-
ming (GP) technique that acts on linear genomes. Its main characteristics in
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Fig. 2.8 Comparison between outputs of dynamic system and simulated neural
tree model and identification error: for training data set (upper) and for validation
data set (lower)
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comparison to tree-based GP lies in fact that computer programs are evolved
at the machine code level, using lower level representations for the individu-
als. This can tremendously hasten up the evolution process as, no matter how
an individual is initially represented, finally it always has to be represented
as a piece of machine code, as fitness evaluation requires physical execution
of the individuals. LGP based IDS is presented in [83].

Since the amount of audit data that an IDS needs to examine is very large
even for a small network, analysis is difficult even with computer assistance
because extraneous features can make it harder to detect suspicious behavior
patterns. IDS must therefore reduce the amount of data to be processed. This
is very important if real-time detection is desired. Reduction can occur in one
of several ways. Data that is not considered useful can be filtered, leaving only
the potentially interesting data. Data can be grouped or clustered to reveal
hidden patterns; by storing the characteristics of the clusters instead of the
data, overhead can be reduced. Finally, some data sources can be eliminated
using feature selection. In the literature there are some related works for
feature reduction in IDS. Support vector machine technique is used to select
the important features [86]. Feature deduction using Markov blanket model
and decision trees are presented in [76].

We illustrate a Flexible Neural Tree (FNT) [189] approach for selecting
the input variables and detection of network intrusions. Based on the pre-
defined instruction/operator sets, a flexible neural tree model can be created
and evolved. FNT allows input variables selection, over-layer connections and
different activation functions for different nodes. The hierarchical structure
is evolved using tree-structure based evolutionary algorithm. The fine tuning
of the parameters encoded in the structure is accomplished using particle
swarm optimization (PSO) [136]. The proposed method interleaves both op-
timizations. Starting with random structures and corresponding parameters,
it first tries to improve the structure and then as soon as an improved struc-
ture is found, it fine tunes its parameters. It then goes back to improving the
structure again and, fine tunes the structure and rules’ parameters. This loop
continues until a satisfactory solution is found or a time limit is reached.

The Data Set

The data for the experiments was prepared by the 1998 DARPA intrusion
detection evaluation program by MIT Lincoln Lab. The data set contains 24
attack types that could be classified into four main categories namely Denial
of Service (DOS), Remote to User (R2L), User to Root (U2R) and Probing.
The original data contains 744 MB data with 4,940,000 records. The data set
has 41 attributes for each connection connection record plus one class label.
Some features are derived features, which are useful in distinguishing normal
from attacks. These features are either nominal or numeric. Some features
examine only the connection in the past two seconds that have the same
destination host as the current connection, and calculate statistics related
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Table 2.4 Network Data Feature Labels

Label Feature Label Feature

x1 duration x2 protocol-type

x3 service x4 flag

x5 src bytes x6 dst bytes

x7 land x8 wrong fragment

x9 urgent x10 hot

x11 num failed logins x12 logged in

x13 num compromised x14 root shell

x15 su atempted x16 num root

x17 num file creations x18 num shells

x19 num acess files x20 num outbound cmds

x21 is host login x22 is guest login

x23 count x24 srv count

x25 serror rate x26 srv serror rate

x27 rerror rate x28 srv rerror rate

x29 smae srv rate x30 diff srv rate

x31 srv diff host rate x32 dst host count

x33 dst host srv count x34 dst host same srv rate

x35 dst host diff srv rate x36 dst host same srv port rate

x37 dst host srv diff host rate x38 dst host serror rate

x39 dst host srv serror rate x40 dst host rerror rate

x41 dst host srv rerror rate

to protocol behavior, service, etc. These are called same host features. Some
features examine only the connections in the past two seconds that have same
service as the current connection and called same service features. Some other
connection records were also stored by destination host, and features were
constructed using a window of 100 connections to the same host instead of
a time window. These are called host-based traffic features. R2L and U2R
attacks don’t have any sequential patterns like DOS and Probe because the
former attacks have the attacks embedded in the data packets whereas the
later attacks have many connections in a short amount of time. So some
features that look for suspicious behavior in the data packets like number
of failed logins are constructed and these are called contents features. The
data used in the experiments reported in this Chapter contains randomly
generated 11982 records having 41 features [87]. The labels of the 41 features
and their corresponding networks data features are shown in Table 2.4.

This data set has five different classes namely Normal DOS, R2L, U2R and
Probe. The training and test comprises of 5092 and 6890 records respectively.
All the IDS models were trained and tested with the same set of data. As the
data set has five different classes we performed a 5-class binary classification.
The normal data belongs to Class 1, Probe belongs to Class 2, DOS belongs
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Table 2.5 Parameters used in the flexible neural tree model

Parameter Initial values

Population Size PS 100

Crossover probability 0.3

Opponent q in tournament selection 30

Maximum local search steps 2000

Terminate steps in local search 100

Initial connection weights rand[-1, 1]

Initial parameters ai and bi rand[0,1]

to Class 3, U2R belongs to Class 4 and R2L belongs to Class 5. The initial
parameter settings used for each experiment are listed in Table 2.5.

Modeling IDS Using Flexible Neural Tree Using 41
Input-Variables

We used all the original 41 input variables for constructing a FNT model. A
FNT classifier was constructed using the training data and then the classifier
was used on the test data set to classify the data as an attack or normal data.
The instruction sets used to create an optimal FNT classifier is S = F

⋃
T=

{+5, . . . , +20}
⋃{x1,x2, . . . , x41}, where xi(i = 1, 2, . . . , 41) denotes the 41

features.
The required number of iterations for structure and parameter optimiza-

tion for each of the flexible neural tree classifiers are listed in Table 2.6.

Table 2.6 Iterations for structure and parameter optimization

Class Structure optimization Parameter optimization

Class 1 95 1789

Class 2 89 1602

Class 3 91 1539

Class 4 48 1892

Class 5 64 1920

The optimal flexible neural tree’s for classes 1-5 are illustrated in
Figures 2.9, 2.10 and 2.11. It should be noted that the important features
for constructing the flexible neural tree model were formulated in accor-
dance with the procedure mentioned in the previous Section. These important
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variables are shown in Table 2.7. Table 2.10 depicts the detection performance
of the flexible neural tree by using the original 41 variable data set.

Modeling IDS Using Input Variables Selected by Decision Tree
Approach

The important variables for intrusion detection were decided by their con-
tribution to the construction of the decision tree [21–23, 76]. Variables
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Table 2.7 The important features selected by the flexible neural tree algorithm

Class Important variables

Class 1 x3, x11, x21, x40

Class 2 x1, x3, x12, x18, x20, x21, x23, x26, x27, x31, x37, x41

Class 3 x1, x8, x10, x11, x16, x17, x20, x12, x23, x28, x29, x31

Class 4 x11, x14, x17, x28, x29, x32, x36, x38

Class 5 x1, x3, x11, x12, x13, x18, x20, x22, x25, x38

rankings were generated in terms of percentages. The variables that had
0.00% rankings and considered only the primary splitters were eliminated
[76]. This resulted in a reduced 12 variable data set with x3, x5, x6, x12, x23,
x24, x25, x28, x31, x32, x33 and x35 as variables. Further the FNT classifier was
constructed using the 12 variable data set (training data) and then the test
data was passed through the save trained model. The instruction sets used
to create an optimal neural tree model is S = F

⋃
T = {+2, . . . ,+10}

⋃{x3,
x5, x6, x12, x23, x24, x25, x28, x31, x32, x33, x35}.

The iterations for structure and parameter optimization for each of the
flexible neural tree classifiers are listed in Table 2.8.

Table 2.8 Number of iterations for structure and parameter optimization

Class Structure optimization Parameter optimization

Class 1 45 1745

Class 2 49 1403

Class 3 31 1547

Class 4 28 1678

Class 5 54 1834

The optimal flexible neural tree’s for classes 1-5 are depicted in
Figures 2.12, 2.13 and 2.14. It should be noted that the important features
for constructing the flexible neural tree model were recognized automatically
one more time. The important variables selected by the flexible neural tree
model are illustrated in Table 2.9. Table 2.10 depicts the performance of the
flexible neural tree by using the reduced 12 variable data set.

Modeling IDS Using Neural Networks without Input Variable
Selection

For comparison purpose, a neural network classifier trained by PSO algorithm
with flexible bipolar sigmoid activation functions were constructed using the
same training data sets and then the neural network classifier was used on the
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Table 2.9 Important features for 12 variable data set

Class Important variables

Class 1 x3, x5, x6, x12, x23, x28, x32, x33, x35

Class 2 x3, x5, x6, x12, x24, x28, x31, x32, x33, x35

Class 3 x5, x6, x12, x23, x24, x28, x31, x32, x33

Class 4 x3, x5, x6, x12, x25, x31, x33, x35

Class 5 x3, x12, x23, x25, x28, x31, x33, x35

Table 2.10 Detection performance using flexible neural tree model using 41 and
12 input variables

Attack Class 41 variable data set 12 variable data set

Normal 99.19% 97.98%

Probe 98.39% 97.46%

DOS 98.75% 94.63%

U2R 99.70% 99.76%

R2L 99.09% 98.99%

test data set to detect the different types of attacks. All the input variables
were used for the experiments.

Before describing details of the algorithm for training neural network clas-
sifier, the issue of coding is presented. Coding concerns the way the weights
and the flexible activation function parameters of neural network are repre-
sented by individuals or particles. A float point coding scheme is adopted
here. For neural network coding, suppose there are M nodes in hidden layer
and one node in output layer and n input variables, then the number of total
weights is n∗M+M ∗1, the number of thresholds is M+1 and the number of
flexible activation function parameters is M + 1, therefore the total number
of free parameters in a neural network to be coded is n ∗M +M + 2(M + 1).
These parameters are coded into an individual or particle orderly.

The simple loop of the proposed training algorithm for neural network is
as follows:

S1 Initialization. Initial population is generated randomly. The learning
parameters c1 and c2 in PSO should be assigned in advance.

S2 Evaluation. The objective function value is calculated for each particle.
S3 Modification of search point.
S4 if maximum number of generations is reached or no better parameter

vector is found for a significantly long time (100 steps), then stop, oth-
erwise goto step S2;

Table 2.11 depicts the performance of the neural network by using original
41 variable data set and the 12 variable reduced data set.
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Table 2.11 Detection performance using neural network classifier with 41 and 12
input variables

Attack Class 41 variable data set 12 variable data set
(original data) (decision tree reduced data)

Normal 95.69% 95.59%

Probe 95.53% 95.08%

DOS 90.41% 100%

U2R 100% 100%

R2L 98.10% 99.25%

Table 2.12 The false positive/negative errors using 41 variable data set by the
FNT algorithm

Attack Class False positive error False negative error

Normal 0.0581% 0.7837%

Probe 1.3943% 0.2160%

DOS 0.6241% 0.6241%

U2R 0.2177% 0.0726%

R2L 0.7547% 0.1597%

The false positive/negative errors using 41 variable data set by the flexible
neural tree algorithm are illustrated in Table 2.12.

Time-Series Forecasting

Time-series forecasting is an important research and application area. Much
effort has been devoted over the past several decades to develop and im-
prove the time series forecasting models. Well established time series models
include: (1)linear models, e.g., moving average, exponential smoothing and
the autoregressive integrated moving average (ARIMA); (2)nonlinear models,
e.g., neural network models and fuzzy system models. Recently a tendency
for combining of linear and nonlinear models for forecasting time series has
been an active research area [67].

The developed flexible neural tree model is illustrated in conjunction with
two time-series prediction problems: Box-Jenkins time series and chaotic
Mackey-Glass time-series. Well-known benchmark examples are used for the
sake of an easy comparison with existing models. The data related to the ex-
amples are available on the web site of the Working Group on Data Modelling
Benchmark-IEEE Neural Network Council [88].

For each benchmark problem, two experimental simulations are carried
out. The first one use the same inputs with other models so as to make a
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meaningful comparison. The second one use a large number of input vari-
ables in order flexible neural tree to select proper input variables or time-lags
automatically. In addition, the parameters used for each experiment is listed
in Table 2.13.

Table 2.13 Parameters used in the flexible neural tree model

Parameter Initial value

Population Size PS 30
Elitist Learning Probability Pel 0.01
Learning rate lr 0.01
Fitness constant ε 0.000001
Overall mutation probability PM 0.4
Mutation rate mr 0.4
Prune threshold TP 0.999999
Maximum local search steps 2000
Initial connection weights rand[-1, 1]
Initial parameters ai and bi rand[0,1]

Jenkins-Box Time-Series

The gas furnace data (series J) of Box and Jenkins (1970) was recorded from a
combustion process of a methane-air mixture. It is well known and frequently
used as a benchmark example for testing identification and prediction algo-
rithms. The data set consists of 296 pairs of input-output measurements. The
input u(t) is the gas flow into the furnace and the output y(t) is the CO2

concentration in outlet gas. The sampling interval is 9s.

Case 1

The inputs for constructing flexible neural tree model are u(t−4) and y(t−1),
and the output is y(t). 200 data samples are used for training and the remaining
data samples are used for testing the performance of evolved model.

The used instruction set for creating a flexible neural tree model is S = F
⋃

T = {+2,+3,. . . , +8}
⋃{x1, x2}. Where x1 and x2 denotes the input variables

u(t− 4) and y(t− 1), respectively.
After 37 generations of evolution, the optimal neural tree model was ob-

tained with the MSE 0.000664. The MSE value for validation data set is
0.000701. The evolved neural tree is depicted in Figure 2.15 (left) and the
actual time-series, the flexible neural tree model output and the prediction
error is shown in Figure 2.15 (right).
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Fig. 2.15 Case 1: The evolved flexible neural tree model for prediction of Jenkins-
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tree model and the prediction error for training and test samples (right)

Case 2

For the second simulation, 10 inputs variables are used for constructing a
FNT model. The proper time-lags for constructing a FNT model are finally
determined by an evolutionary procedure.

The used instruction sets to create an optimal neural tree model is S =
F

⋃
T = {+2, . . . ,+8}

⋃{x1, x2, . . . , x10}. Where xi(i = 1, 2, . . . , 10) denotes
u(t− 6), u(t− 5), u(t− 4), u(t− 3), u(t− 2), u(t− 1) and y(t− 1), y(t− 2),
y(t− 3) and y(t− 4) respectively.

After 17 generations of the evolution, the optimal neural tree model was
obtained with the MSE 0.000291. The MSE value for validation data set is
0.000305. The evolved flexible neural tree is depicted in Figure 2.16 (left)
and the actual time-series, the flexible neural tree model output and the
prediction error is shown in Figure 2.16 (right). From the evolved flexible
neural tree, it can be seen that the optimal inputs variables for constructing
a flexible neural tree model are: u(t− 6), u(t− 5), u(t− 3), y(t− 1), y(t− 2),
y(t−3) and y(t−4). It should be noted that the flexible neural tree model with
proper selected input variables has accurate precision and good generalization
ability. A comparison result of different methods for forecasting Jenkins-Box
data is illustrated in Table 2.14.
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Fig. 2.16 Case 2: The evolved neural tree model for prediction of Jenkins-Box
data (left), and the actual time series data, output of the evolved neural tree model
and the prediction error for training and test samples (right)

Table 2.14 Comparative results of different modelling approaches

Model name and reference Number of inuts MSE

ARMA [89] 5 0.71
Tong’s model [90] 2 0.469
Pedrycz’s model [91] 2 0.320
Xu’s model [92] 2 0.328
Sugeno’s model [93] 2 0.355
Surmann’s model [94] 2 0.160
TS model [95] 6 0.068
Lee’s model [96] 2 0.407
Hauptmann’s model [97] 2 0.134
Lin’s model [98] 5 0.261
Nie’s model [99] 4 0.169
ANFIS model [100] 2 0.0073
FuNN model [101] 2 0.0051
HyFIS model [102] 2 0.0042
FNT model (Case 1) 2 0.00066
FNT model (Case 2) 7 0.00029

Mackey-Glass Time-Series

The chaotic Mackey-Glass differential delay equation is recognized as a bench-
mark problem that has been used and reported by a number of researchers
for comparing the learning and generalization ability of different models. The
mackey-Glass chaotic time series is generated from the following equation:
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dx(t)
dt

=
ax(t− τ)

1 + x10(t− τ)
− bx(t). (2.9)

where τ > 17, the equation shows chaotic behavior.

Case 1

To make a fair comparison with earlier works, we predict the x(t + 6) with
using the inputs variables x(t), x(t− 6), x(t− 12) and x(t− 18). 1000 sample
points were used and the first 500 data pairs of the series were used as training
data, while the remaining 500 were used to validate the model identified.
The used instruction sets to create an optimal flexible neural tree model
is S = F

⋃
T = {+5, . . . , +10}

⋃{x1, x2, x3, x4}. Where xi(i = 1, 2, 3, 4)
denotes x(t), x(t− 6), x(t− 12) and x(t− 18), respectively.

After 135 generations of the evolution, an optimal flexible neural tree
model was obtained with the RMSE 0.006901. The RMSE value for vali-
dation data set is 0.007123. The evolved flexible neural tree is depicted in
Figure 2.17 (left). The actual time-series data, the output of flexible neural
tree model and the prediction error are illustrated in Figure 2.17 (right). A
comparison result of different methods for forecasting Mackey-Glass data is
shown in Table 2.15.

Case 2

For the second simulation, 19 inputs variables are used for constructing a
flexible neural tree model. The proper time-lags for constructing a flexible
neural tree model are finally determined by an evolutionary procedure.
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Table 2.15 Comparison results of the prediction error of different methods for the
Mackey-Glass time-series problem

Method Prediction error(RMSE)

Auto-regressive model 0.19
Cascade correlation NN 0.06
Back-propagation NN 0.02
Sixth-order polynomial 0.04
Linear prediction method 0.55
ANFIS and Fuzzy System [100] 0.007
Wang et al. Product T-norm [104] 0.0907
Classical RBF (with 23 neurons) [103] 0.0114
PG-RBF network [105] 0.0028
Genetic algorithm and fuzzy system [106] 0.049
FNT model (Case 1) 0.0069
FNT model (Case 2) 0.0027

The used instruction sets to create an optimal neural tree model is S =
F

⋃
T = {+2, . . . ,+8}

⋃{x1, x2, . . . , x19}. Where xi(i = 1, 2, . . . , 19) denotes
x(t− 18), x(t− 17), . . . , x(t− 1) and x(t), respectively.

The optimal neural tree model was obtained with the RMSE 0.00271. The
RMSE value for validation data set is 0.00276. The evolved flexible neural tree
is shown in Figure 2.18 (left) and the actual time-series, the flexible neural
tree model output and the prediction error is shown in Figure 2.18 (right).
From the evolved flexible neural tree, it is evident that the optimal inputs
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variables for constructing a flexible neural tree model are: x(t−13), x(t−12),
x(t−11), x(t−10), x(t−9), x(t−2) and x(t). That is, for predicting x(t+6),
among the time-lags from 0 to 18, the automatically evolved time-lags are
13, 12, 11, 10, 9, 2 and 0. It should be noted that the flexible neural tree
model with proper selected time-lags as input variables has better precision
and good generalization ability. A comparison result of different methods for
forecasting Mackey-Glass data is illustrated in Table 2.15.

From above simulation results, it is evident that the proposed flexible
neural tree model works well for generating prediction models of time series.

2.2.6 Exchange Rate Forecasting

Forecasting exchange rates is an important financial problem that is receiving
increasing attention especially because of its difficulty and practical applica-
tions. Exchange rates are affected by many highly correlated economic, polit-
ical and even psychological factors. These factors interact in a very complex
fashion. Exchange rate series exhibit high volatility, complexity and noise
that result from an elusive market mechanism generating daily observations
[107][113][115][173].

Much research effort has been devoted to exploring the nonlinearity of ex-
change rate data and to developing specific nonlinear models to improve ex-
change rate forecasting, i.e., the autoregressive random variance (ARV) model
[108], autoregressive conditional heteroscedasticity (ARCH) [109], self-exciting
threshold autoregressive models [110]. There has been growing interest in the
adoption of neural networks, fuzzy inference systems and statistical approaches
for exchange rate forecasting problem [111][112][120][114][121] [122]. For a re-
cent review of neural networks based exchange rate forecasting, the reader may
consult [115].

The input dimension (i.e. the number of delayed values for prediction) and
the time delay (i.e. the time interval between two time series data) are two
critical factors that affect the performance of neural networks. The selection
of dimension and time delay has great significance in time series prediction.

We illustrate a flexible neural tree model [189][190] for selecting the input
variables and forecasting exchange rates. Based on the pre-defined instruc-
tion/operator sets, a flexible neural tree model can be created and evolved.
Flexible neural tree allows input variables selection, over-layer connections
and different activation functions for different nodes. In this research, the
hierarchical structure of flexible neural tree is evolved using the Extended
Compact Genetic Programming (ECGP), a tree-structure based evolutionary
algorithm. The fine tuning of the parameters encoded in the structure is ac-
complished using particle swarm optimization (PSO). The proposed method
interleaves both optimizations. Starting with random structures and corre-
sponding parameters, it first tries to improve the structure and then as soon
as an improved structure is found, it fine tunes its parameters. It then goes
back to improving the structure again and, fine tunes the structure and rules’
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parameters. This loop continues until a satisfactory solution is found or a time
limit is reached. The novelty of this paper is in the usage of flexible neural
tree model for selecting the important inputs and/or time delays and for
forecasting foreign exchange rates.

The Data Set

We used three different datasets in our forecast performance analysis. The
data used are daily forex exchange rates obtained from the Pacific Exchange
Rate Service [119], provided by Professor Werner Antweiler, University of
British Columbia, Vancouver, Canada. The data comprises of the US dollar
exchange rate against Euros, Great Britain Pound (GBP) and Japanese Yen
(JPY). We used the daily data from 1 January 2000 to 31 October 2002 as
training data set, and the data from 1 November 2002 to 31 December 2002
as evaluation test set or out-of-sample datasets (partial data sets excluding
holidays), which are used to evaluate the good or bad performance of the
predictions, based on evaluation measurements.

The forecasting evaluation criteria used is the normalized mean squared
error (NMSE):

NMSE =
∑N

t=1(yt − ŷt)2∑N
t=1(yt − ȳt)2

=
1
σ2

1
N

N∑

t=1

(yt − ŷt)2, (2.10)

where yt and ŷt are the actual and predicted values, σ2 is the estimated
variance of the data and ȳt the mean. The ability to forecast movement
direction or turning points can be measured by a statistic developed by Yao
and Tan [117]. Directional change statistics (Dstat) can be expressed as:

Dstat =
1
N

N∑

t=1

at × 100%, (2.11)

where at = 1 if (yt+1 − yt)(ŷt+1 − ŷt) ≥ 0, and at = 0 otherwise.

Feature/Input Selection Using Flexible Neural Tree

It is often a difficult task to select important variables for a forecasting or
classification problem, especially when the feature space is large. A fully
connected neural network classifier usually cannot do this. In the perspective
of flexible neural tree framework, the nature of model construction procedure
allows the flexible neural tree to identify important input features in building
a forecasting model that is computationally efficient and effective. The mech-
anisms of input selection in the flexible neural tree constructing procedure are
as follows. (1) Initially the input variables are selected to formulate the flex-
ible neural tree model with same probabilities; (2) The variables which have
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more contribution to the objective function will be enhanced and have high
opportunity to survive in the next generation by a evolutionary procedure;
(3) The evolutionary operators i.e., crossover and mutation, provide a input
selection method by which the flexible neural tree should select appropriate
variables automatically.

Exchange Rate Forecasting - Experimental Results

For simulation, the five-day-ahead data sets are prepared for constructing
flexible neural tree models. A flexible neural tree model was constructed
using the training data and then the model was used on the test data set.
The instruction sets used to create an optimal flexible neural tree forecaster
is S = F

⋃
T= {+2, +3}

⋃{x1, x2, x3, x4, x5}, where xi(i = 1, 2, 3, 4, 5)
denotes the 5 input variables of the forecasting model.

The optimal flexible neural tree’s evolved for three major internationally
traded currencies: British Pounds, Euros and Japanese Yen are illustrated in
Figure 2.19. It should be noted that the important features for constructing
the FNT model were formulated in accordance with the procedure mentioned
in the previous Section.

For comparison purpose, the forecast performances of a traditional multi-
layer feed-forward network (MLFN) model and an adaptive smoothing
neural network (ASNN) model are also illustrated in Tables 2.16 and 2.17.
The actual daily exchange rates and the predicted ones for three major in-
ternationally traded currencies are depicted in Figures 2.20, 2.21 and 2.22.
From Tables 2.16 and 2.17, it is observed that the proposed flexible neural tree
forecasting models are better than other neural networks models for the three
major internationally traded currencies.
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Fig. 2.19 The evolved FNT trees for forecasting euros (left), British pounds
(middle) and Japanese yen (right)
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Table 2.16 Forecast performance evaluation for the three exchange rates (NMSE
for testing)

Exchange rate euros British pounds Japanese yen

MLFN [120] 0.5534 0.2137 0.2737

ASNN [120] 0.1254 0.0896 0.1328

FNT (This paper) 0.0180 0.0142 0.0084

Table 2.17 Forecast performance evaluation for the three exchange rates (Dstat

for testing)

Exchange rate euros British pounds Japanese yen

MLFN [120] 57.5% 55.0% 52.5%

ASNN [120] 72.5% 77.5% 67.5%

FNT (This paper) 81.0 84.5% 74.5%
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Fig. 2.20 The actual exchange rate and predicted ones for training and testing
data set (euros)
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Fig. 2.21 The actual exchange rate and predicted ones for training dan testing
data set (British pounds)
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Fig. 2.22 The actual exchange rate and predicted ones for training dan testing
data set (Japanese yen)
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We have illustrated that the flexible neural tree forecasting model may
provide better forecasts than the traditional MLFN and the ASNN forecast-
ing models. The comparative evaluation is based on a variety of statistical
measures such as NMSE and Dstat. Experimental analysis reveal that the
NMSE and Dstat for three currencies using the FNT model are significantly
better than those using the MLFN model and the ASNN model. This implies
that the proposed FNT model can be used as a feasible solution for exchange
rate forecasting.

2.2.7 Face Recognition

Face recognition has become a very active research area in recent years mainly
due to increasing security demands and its potential commercial and law en-
forcement applications [156]. Face recognition is a very challenging problem
and up to date, there is no technique that provides a robust solution to all sit-
uations and different applications that face recognition may encounter. Face
recognition approaches on still images can be broadly grouped into geometric
and template matching techniques. In the first case, geometric characteristics
of faces to be matched, such as distances between different facial features,
are compared. This technique provides limited results although it has been
used extensively in the past. In the second case, face images represented as
a two dimensional array of pixel intensity values are compared with a single
or several templates representing the whole face. More successful template
matching approaches use Principal Components Analysis (PCA) or Linear
Discriminant Analysis (LDA) to perform dimensionality reduction achiev-
ing good performance at a reasonable computational complexity time. Other
template matching methods use neural network classification and deformable
templates, such as Elastic Graph Matching (EGM). Recently, a set of ap-
proaches that use different techniques to correct perspective distortion are
being proposed. These techniques are sometimes referred to as view-tolerant.
For a complete review on the topic of face recognition the reader may consult
[123] and [124].

Neural networks have been widely applied in pattern recognition for the
reason that neural-networks-based classifiers can incorporate both statistical
and structural information and achieve better performance than the sim-
ple minimum distance classifiers [124]. Multilayered networks(MLNs), usu-
ally employing the backpropagation (BP) algorithm, are widely used in face
recognition [129]. Recently, RBF neural networks have been applied in many
engineering and scientific applications including face recognition [125][126].

We illustrate the use of a Flexible Neural Tree (FNT) [155][190][189] ap-
proach for selecting the input variables and face recognition. The hierarchi-
cal structure of the flexible neural tree is evolved using tree-structure based
evolutionary algorithm. The fine tuning of the parameters encoded in the
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structure is accomplished using particle swarm optimization (PSO). The pro-
posed method interleaves both optimizations. Starting with random struc-
tures and corresponding parameters, it first tries to improve the structure
and then as soon as an improved structure is found, it fine tunes its pa-
rameters. It then goes back to improving the structure again and, fine tunes
the structure and rules’ parameters. This loop continues until a satisfactory
solution is found or a time limit is reached.

Discrete Cosine Transform

Like other transforms, the Discrete Cosine Transform (DCT) attempts to
decorrelate the image data [128]. After decorrelation each transform coef-
ficient can be encoded independently without losing compression efficiency.
The 2-D DCT is a direct extension of the 1-D case and is given by:

C(u, v) = α(u)α(v)
N−1∑

x=0

N−1∑

y=0

f(x, y)cos
π(2x + 1)u

2N
cos

π(2y + 1)
2N

(2.12)

for u, v = 0, 1, 2, . . . , N − 1 and α(u) and α(v) are defined as follows, α(u) =√
1/N for u = 0, and α(u) =

√
2/N for u 
= 0.

The inverse transform is defined as:

f(x, y) =
N−1∑

u=0

N−1∑

v=0

α(u)α(v)C(u, v)cos
π(2x + 1)u

2N
cos

π(2y + 1)
2N

(2.13)

for x, y = 0, 1, 2, . . . , N − 1.
The DCT possess some fine properties, i.e., de-correlation, energy com-

paction, separability, symmetry and orthogonality. These attributes of the
DCT have led to its widespread deployment in virtually every image/video
processing standard of the last decade [128].

For an M × N image, we have M × N an DCT coefficient matrix cover-
ing all the spatial frequency components of the image. The DCT coefficients
with large magnitude are mainly located in the upper-left corner of the DCT
matrix. Accordingly, we scan the DCT coefficient matrix in a zig-zag manner
starting from the upper-left corner and subsequently convert it to a one-
dimensional (1-D) vector. Detailed discussions about image reconstruction
errors using only a few significant DCT coefficients can be found in [127]. As
a holistic feature extraction method, the DCT converts high-dimensional face
images into low-dimensional spaces in which more significant facial features
such as outline of hair and face, position of eyes, nose and mouth are main-
tained. These facial features are more stable than the variable high-frequency
facial features. As a matter of fact, the human visual system is more sensitive
to variations in the low-frequency band.
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We also investigated the illumination invariant property of the DCT by
discarding its several low-frequency coefficients. It is well-known that the
first DCT coefficient represents the dc component of an image which is solely
related to the brightness of the image. Therefore, it becomes DC free (i.e., zero
mean) and invariant against uniform brightness change by simply removing
the first DCT coefficient.

The ORL Face Database

The database consists of 400 images acquired from 40 persons with variations
in facial expression (e.g. open / close eyes, smiling / non-smiling), and facial
details (e.g. wearing glasses / not wearing glasses). All images were taken
under a dark background, and the subjects were in an upright frontal position,
with tilting and rotation tolerance up to 20 degree, and tolerance of up to
about 10%. All images are of grey scale with a 92*112 pixels resolution. For
each person, 5 images are generated randomly to form the training data set
and the remaining were chosen as test data set.

Face Recognition Using Flexible Neural Tree with 55
Input-Variables

For this simulation, the DCT is employed to training and testing data sets, re-
spectively. The extracted 55 input features are used for constructing a flexible
neural tree model. A flexible neural tree classifier was constructed using the
training data and then the classifier was used on the test data set to classify
the data as an face ID or not. The instruction sets used to create an optimal
flexible neural tree classifier is S = F

⋃
T= {+5, . . . , +20}

⋃{x1,x2, . . . , x55},
where xi(i = 1, 2, . . . , 55) denotes the 55 features.

A comparison of different feature extraction methods and different face
classification methods is illustrated in Table 2.18. Table 2.19 depicts the face
recognition performance of the flexible neural tree by using the 55 features
for test data set. The flexible neural tree method helps to reduce the features
from 55 to 8-25.

Table 2.18 Comparison of different approaches for ORL face recognition

Method Recognition rate

PCA+RBFN [130] 94.5%

LDA+RBFN [130] 94.0%

FS+RBFN [130] 92.0%

DCT+FNT (FNT) 98.13%
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Table 2.19 The true positive (tp), false positive (fp) rates for flexible neural tree
face recognition

Face ID TP FP Accuracy

S1 80.0% 1.54% 98.0%

S2 80.0% 1.54% 98.0%

S3 80.0% 4.61% 95.0%

S4 100.0% 2.56% 97.5%

S5 80.0% 0.51% 99.0%

S6 100.0% 4.10% 96.0%

S7 40.0% 0.51% 98.0%

S8 80.0% 0.51% 99.0%

S9 80.0% 1.53% 98.0%

S10 100.0% 0.00% 100.0%

S11 60.0% 3.59% 95.5%

S12 80.0% 0.00% 99.5%

S13 80.0% 0.51% 99.0%

S14 80.0% 0.51% 99.0%

S15 80.0% 3.07% 96.5%

S16 80.0% 0.51% 99.0%

S17 100.0% 4.62% 95.5%

S18 100.0% 0.51% 99.5%

S19 100.0% 2.05% 98.0%

S20 60.0% 0.00% 99.0%

S21 100.0% 0.00% 100.0%

S22 80.0% 0.00% 99.5%

S23 80.0% 0.51% 99.0%

S24 80.0% 2.05% 97.5%

S25 100.0% 2.05% 98.0%

S26 80.0% 0.51% 99.0%

S27 60.0% 1.02% 98.0%

S28 60.0% 1.54% 97.5%

S29 100.0% 3.07% 97.0%

S30 60.0% 0.00% 99.0%

S31 100.0% 0.51% 99.5%

S32 80.0% 1.03% 98.5%

S33 100.0% 0.51% 99.5%

S34 100.0% 0.51% 99.5%

S35 60.0% 2.05% 97.0%

S36 60.0% 2.05% 97.0%

S37 80.0% 1.54% 98.0%

S38 80.0% 3.07% 96.5%

S39 100.0% 0.51% 99.5%

S40 80.0% 4.62% 95.0%

Average 82.0% 1.50% 98.13%
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2.2.8 Microarray-Based Cancer Classification

The classification of cancers from gene expression profiles is actively investi-
gated in bioinformatics. It commonly consists of feature selection and pattern
classification. In advance, feature selection selects informative features useful
to categorize a sample into predefined classes from lots of gene expression
profiles. Pattern classification is composed of learning a classifier with those
features and categorizing samples with the classifier.

Much research effort has been devoted to exploring the informative gene se-
lection from microarray data. Typical effective feature reduction methods in-
clude principal components analysis (PCA), class-separability measure, Fisher
ratio and t-test. Evolutionary based feature selection methods are alterna-
tives of the gene selection approaches. A probabilistic model building genetic
algorithm based informative selection method was proposed in [131]. Genetic
programming can be also used to select informative gene and classification of
gene expression profiles [132]. After the gene selection was performed, many
candidate classifiers can be employed for classification of microarray data, in-
cluding Bayessian network, KNN, neural networks, support vector machine
[139], random forest [134] etc. For a recent review, the reader may consult [133].
Classification algorithms that directly providemeasures of variable importance
are of great interest for gene selection, specially if the classification algorithm
itself presents features that make it well suited for the types of problems fre-
quently faced with microarray data. Random forest is one such algorithm [134]
and flexible neural tree method is another alternative.

We illustrate a flexible neural tree model [189][190] is employed for select-
ing the input variables and detecting the cancers. Based on the pre-defined
instruction/operator sets, a flexible neural tree model can be created and
evolved. Flexible neural tree allows input variables selection, over-layer con-
nections and different activation functions for different nodes. The hierarchi-
cal structure is evolved using the Extended Compact Genetic Programming
(ECGP), a tree-structure based evolutionary algorithm [191]. The fine tun-
ing of the parameters encoded in the structure is accomplished using particle
swarm optimization (PSO). The proposed method interleaves both optimiza-
tions. Starting with random structures and corresponding parameters, it first
tries to improve the structure and then as soon as an improved structure is
found, it fine tunes its parameters. It then goes back to improving the struc-
ture again and, fine tunes the structure and rules’ parameters. This loop
continues until a satisfactory solution is found or a time limit is reached. The
novelty of this paper is in the usage of flexible neural tree model for selecting
the informative genes and for classification of microarray data.

Feature/Input Selection Using Flexible Neural Tree

It is often a difficult task to select important variables for a forecasting or
classification problem, especially when the feature space is large. A fully
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connected neural network classifier usually cannot do this. In the perspective
of flexible neural tree framework, the nature of model construction procedure
allows the flexible neural tree to identify important input features in building
a forecasting model that is computationally efficient and effective. The mech-
anisms of input selection in the flexible neural tree construction procedure
are as follows:

• Initially the input variables are selected to formulate the flexible neural
tree model with same probabilities;

• The variables which have more contribution to the objective function will
be enhanced and have high opportunity to survive in the next generation
by a evolutionary procedure;

• The evolutionary operators i.e., crossover and mutation, provide a input
selection method by which the flexible neural tree should select appropriate
variables automatically.

Data Sets

The colon cancer dataset contains gene expression information extracted from
DNA microarrays [135]. The dataset consists of 62 samples in which 22 are
normal samples and 40 are cancer tissue samples, each having 2000 features.
We randomly choose 31 samples for training set and the remaining 31 samples
were used as testing set. (Available at: http://sdmc.lit.org.sg/GEDatasets/
Data/ColonTumor.zip). The leukemia dataset consists of 72 samples divided
into two classes ALL and AML [140]. There are 47 ALL and 25 AML sam-
ples and each contains 7129 features. This dataset was divided into a training
set with 38 samples (27 ALL and 11 AML) and a testing set with 34 sam-
ples (20 ALL and 14 AML) (Available at: http://sdmc.lit.org.sgGEDatasets
DataALL-AML Leukemia.zip).

Colon Cancer

The data was randomly divided into a training set of 30 samples and testing
set of 12 for 50 times, and the final results were averaged over these 30
independent trials. A model was constructed using the training data and then
the model was used on the test data set. The instruction sets used to create
an optimal flexible neural tree model is S = F

⋃
T= {+5, +6, . . . ,+9}

⋃{x0,
x1, . . . , x1999}, where xi(i = 0, 1, . . . , 1999) denotes the 2000 input variables
(genes) of the classification model.

A best flexible neural tree tree obtained for Colon cancer is illustrated in
Figure 2.23. It should be noted that the important features for constructing
the flexible neural tree model were formulated in accordance with the proce-
dure mentioned in the previous section. These informative genes selected by
flexible neural tree algorithm is shown in Table 2.20.
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Fig. 2.23 An evolved best flexible neural tree for colon data classification

x2356

+ 5

+9 + 6
x3251 x84

x1740 x5038 x2642 x2112 x6300 x2418 x2988 x6884 x769 x5957 x4726 x4537 x818 x4168 x6465

Fig. 2.24 An evolved best flexible neural tree for leukemia data classification

Table 2.20 The extracted informative genes in case of Colon dataset

x337, x328, x759, x768, x890, x1048, x349, x1260, x374, x340, x101,
x499, x1007, x36, x854, x92,x504, x1172, x540, x1373, x1323

Table 2.21 The extracted informative genes in case of leukemia dataset

x2356, x3251, x1740, x5038, x2642, x2112, x6300, x2418, x2988, x6884, x769,
x5957, x4726, x4537,x818, x4168, x6465, x84

For comparison purpose, the classification performances of a genetic algo-
rithm trained SVM [137], Bootstrapped GA+SVM [138], Combined kernel
for SVM [139] and the flexible neural tree method are shown in Table 2.22.
It is observed that the proposed flexible neural tree classification models are
better than other models for classification of microarray dataset.

Leukemia Cancer

Leukemia dataset is divided into training and testing set. To setup the 30
independent trials, A flexible neural tree model was constructed using the
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Table 2.22 The best prediction rate of some studies in case of Colon dataset

Classifier Classification rate (%)

GA+SVM [137] 84.7± 9.1

Bootstrapped GA+SVM [138] 80.0

Combined kernel for SVM [139] 75.33±7.0

FNT 97.09±0.018

Table 2.23 The best prediction rate of some studies in case of Colon dataset

Classifier Classification rate (%)

Weighted voting [135] 94.1

Bootstrapped GA+SVM [138] 97.0

Combined kernel for SVM [139] 85.3±3.0

Multi-domain gating network [197] 75.0

FNT 99.6±0.021

training data and then the model was used on the test data set. The instruc-
tion sets used to create an optimal flexible neural tree model is S = F

⋃
T=

{+5, +6, . . . ,+9}
⋃{x0, x1, . . . , x7128}, where xi(i = 0, 1, . . . , 7128) denotes

the 7129 input variables (genes) of the classification model.
A best flexible neural tree tree obtained for leukemia cancer classification

is depicted in Figure 2.24. It should be noted that the important features
for constructing the flexible neural tree model were formulated in accordance
with the procedure mentioned in the previous Section. These informative
genes selected by flexible neural tree algorithm is illustrated in Table 2.21.

For comparison purposes, the classification performances of Weighted vot-
ing method [135], Bootstrapped GA+SVM [138], Combined kernel for sup-
port vector machines (SVM) [139], Multi-domain gating network [197] and
the flexible neural tree method are shown in Table 2.23. It is observed that
the proposed flexible neural tree classification models are better than other
models for classification of microarray dataset.

2.2.9 Protein Fold Recognition

Protein structure classification represents an important process in under-
standing the associations between sequence and structure as well as possible
functional and evolutionary relationships. Recent structural genomics initia-
tives and other high-throughput experiments have populated the biological
databases at a rapid pace. The amount of structural data has made tradi-
tional methods such as manual inspection of the protein structure become
impossible.
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Protein fold recognition is an important approach to structure discovery
without relying on sequence similarity. For the past several decades several
methods have been proposed for predicting protein structural classes. These
methods include discriminant analysis [141], correlation coefficient [142], hy-
drophobicity profiles [143], amino acid index [144], Bayes decisions rule [145],
amino acid distributions [146], functional domain occurrences [147], super-
vised fuzzy clustering approach [154] and amino acid principal component
analysis [149] etc.

On the other hand, alignment profiles are widely used for recognizing pro-
tein folds. Recently, Cheng and Baldi proposed a machine learning algorithm
using secondary structure, solvent accessibility, contact map and strand pair-
ing for fold recognition, which showed the pairwise sensitivity of 27% [150].
For the protein fold prediction problem, it has been reported that the amino
acid properties are the key determinants of protein folding and are used for
discriminating membrane proteins, identification of membrane spanning re-
gions, prediction of protein structural classes, protein folding rates, protein
stability[153] etc. Towards this direction, Ding and Dubchak [148] proposed
a method based on neural networks and support vector machines for fold
recognition using amino acid composition, and reported a cross-validated sen-
sitivity of 45%. Taguchi and Gromiha [151] used the amino acid occurrence
(not composition) of proteins belonging to 30 major folds and four structural
classes based on linear discriminant analysis (LDA) and got an accuracy of
37% for recognizing 1612 proteins from 30 different folds.

We illustrate a flexible neural tree approach for multi-class protein fold
classification problem. The approach includes four parts: feature selection,
ECOC, SVM and compare system. The dataset we used for training was se-
lected from the dataset built for the prediction of 128 folds in an earlier study
[152]. This database was based on the PDB select sets where two proteins
have no more than 35% of the sequence identity for the aligned subsequences
longer than 80 residues. We utilized 27 most populated folds in the database
which have seven or more proteins and represent all major structural classes.
As an independent dataset for testing we used the PDB 40D set developed
by the authors of the SCOP database. This set contains the SCOP sequences
having less than 40% identity with each other. From this set we selected 386
representatives of the same 27 largest folds. All PDB 40D proteins that had
higher than 35% identity with the proteins of the training set were excluded
from the testing set. We get the best prediction accuracy of 62.86% based on
feature selection, ECOC and SVM, a little better than the accuracy of 56.5%
while using support vector machine and neural networks.

Data Set

The data used in the experiment is the SCOP database having 27 classes
proteins with 313 training samples and 385 testing samples. These samples
have six features: amino acid composition, polarity, polarizability, normalized
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van der waals volume, hydrophobicity and predicted secondary structure (see
Table 2.24).

Experimental Illustrations

The result of every SVM is illustrated in Table 2.25 and the final recognition
rate is obtained by using the comparison system (see Table 2.26.). From

Table 2.24 The Description of fold feature

Symbol Feature Name Dimension
C Amino Acid Composition 20
S Predicted Secondary Structure 21
H Hydrophobicity 21
P Polarity 21
V Normalized Van Der Waals Volume 21
Z Polarizability 21

Table 2.25 The results for each support vector machine classifier

Index Feature Name λ Training rate(%) Testing rate (%)
0 CSHPV 1.0 100.0 74.8052
1 C 0.6 100.0 77.4026
2 CS 0.8 100.0 77.4026
3 C 0.6 100.0 80.2597
4 CSHPV 1.0 100.0 77.4026
5 CS 0.8 100.0 78.961
6 C 0.6 100.0 77.9221
7 CSHPV 1.0 100.0 74.2587
8 CSHPV 1.0 100.0 76.3636
9 C 0.6 100.0 76.8831
10 C 0.6 100.0 75.5844
11 CSHPV 1.0 100.0 78.7013
12 CSHPV 1.0 100.0 78.4416
13 CSHPV 1.0 100.0 81.039
14 C 1.0 100.0 79.2208
15 CSHPV 1.0 100.0 76.1039
16 CS 0.8 100.0 80.7792
17 C 0.6 100.0 79.4805
18 CSHPV 1.0 100.0 84.6753
19 CS 0.8 100.0 81.8182
20 CSHPV 1.0 100.0 78.4416
21 CSHPV 1.0 100.0 85.1948
22 C 0.6 100.0 78.1818
23 CSHPV 1.0 100.0 79.2208
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Table 2.26 The comparison of independent test

Index Rate(%)(FNT) Ding’s Rate [148](%)
1 83.3 83.3
3 77.8 77.8
4 60.0 35.0
7 37.5 50.0
9 100.0 100.0
11 55.6 66.7
20 84.1 71.6
23 33.3 16.7
26 76.9 50.0
30 33.3 33.3
31 37.5 50.0
32 31.6 26.3
33 75.0 50.0
35 25.0 25.0
39 85.7 57.1
46 93.8 77.1
47 58.3 58.3
48 61.5 48.7
51 40.7 61.1
54 33.3 36.1
57 62.5 50.0
59 50.0 35.7
62 57.1 71.4
69 25.0 25.0
72 37.5 12.5
87 29.6 37.0
110 96.3. 83.3
Q/% 62.86 56.0

simulation results, it is evident that the best prediction accuracy of 62.86%
can be achieved by using the flexible neural tree method. This result is better
than the methods of support vector machine and neural networks as reported
in [148].

Multi-class protein folds recognition becomes more and more important
in recent years, especially with the rapid development of bioinformation. We
proposed an error-correcting output coding and SVM to recognize the mul-
ticlass protein fold. The experimental results shown that the best prediction
accuracy of 62.86% can be achieved by the proposed method.

2.3 Multi Input Multi Output Flexible Neural Tree

In the past few years, much success has been achieved in the use of Flexible
Neural Trees (FNT) for classification [194], recognition [234], approximation
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[157][158] and control [159]. It has been shown that flexible neural tree is ca-
pable of approximating not only a continuous function but also its derivatives
to an arbitrary degree of accuracy.

We illustrate a multi-input multi-output FNT (MIMO-FNT) model for
the identification of nonlinear systems. Based on pre-defined instruction (op-
erator) sets, the MIMO-FNT model can be created and evolved, in which
over-layer connections, different activation functions for different nodes (neu-
rons) are allowed. Therefore, the MIMO-FNT model can be viewed as a
kind of irregular multi-layer flexible neural network. The MIMO-FNT struc-
ture is developed using the Immune Programming and the free parameters
embedded in the neural tree are optimized by particle swarm optimization
algorithm.

2.4 Representation and Calculation of the MIMO FNT

The commonly used representation (encoding) methods for an artificial neu-
ral networks are direct encoding scheme and indirect encoding scheme. The
former uses a fixed structure (connection matrix or bit-strings) to specify
the architecture of a corresponding neural network. The latter uses rewrite
rules, i.e., cellular encoding and graph generation grammars to specify a set
of construction rules that are recursively applied to yield an artificial neural
network.

In a flexible neural tree representation, there is no additional effort needed
to encode and decode between the genotype and the phenotype of a neural
network. This is due to the fact that a neural tree can be directly calculated
as a flexible neural network. Therefore, the direct neural tree representation
reduces some computational expenses when calculating the object function.
It suffers a possible problem in terms of search space, the search space may
becomes larger if there is no additional technique to limit the architecture
of neural tree. It is illustrated in [66], that based on a simple computation,
the size of the sigma-pi neural tree structure space is 231 ∗ 5125, if 2 function
operators F = {Σ,Π}, 5 terminals T = {x1, x2, x3, x4, x5}, and maximum
width 5 and maximum depth 3 are used. It is clear that any exhaustive search
method for finding an optimal solution is impossible.

To cope with the huge search space problem and make the use of expert’s
knowledge, we illustrate a method in which the instructions of root node,
hidden nodes and input nodes are selected from the following instruction set.

I = {+2,+3, . . . ,+N , x0, x1, . . . , xn} (2.14)

Based on the above instruction set, an example of the flexible neural tree is
depicted in Figure 2.25, which contains input, hidden and output layers. In
this case, the user can freely choose the instruction sets according to a given
problem, i.e., selecting a bigger N0 and a smaller N1 should create a neural
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Fig. 2.25 A typical representation of neural tree for MIMO with three instruction
sets and six input variables x0, x1, . . . , x5

tree with bigger width in the root node (bigger number of hidden neurons)
and smaller width in hidden nodes.

Note that the instructions of output-layer (root node), hidden-layer, and
input-layer are selected from instruction set I0 with the specific probabilities,
respectively.

Where nonterminal instruction +N has N arguments and the terminal
instruction has no arguments. In the construction of a neural tree, if a non-
terminal instruction, i.e., +p(p = 2, 3, 4, . . . ) is selected, p weights are created
randomly and used for representing the connection strength between the node
+p and its children. In addition, two parameters ap and bp are randomly cre-
ated as flexible activation function parameters and attached to node +p. A
candidate flexible activation function used in the experiments is as follows:

f(a, b;x) = exp(−(
x− a

b
)2) (2.15)

Let Id,w denote the instruction of a node with depth d and width w. The
probabilities of selecting instructions for output layer, hidden layer and input
layer in the instruction set I are initialized as follows:

P (Id,w) =
1
l
, ∀Id,w ∈ I (2.16)

where l is the number of instructions in the instruction set I.
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For any nonterminal node, i.e., +p, its input is calculated by:

netp =
p∑

i=1

wi ∗ yi (2.17)

where yi(i = 1, 2, . . . , p) is the output of i-th child of the node +p. Then, the
output of node +p is calculated by:

outp = f(a, b;netp) = exp(−(
netp − ap

bp
)2) (2.18)

The overall output of flexible neural tree can be computed from left to right
by depth-first method recursively. Note that there is no flexible activation
function used for the root node, it returns a weighted sum of a number of
nonlinear terms only.

2.4.1 Hybrid Algorithm for Structure and Parameter Learning

Structure Optimization

To optimize the structure of the flexible neural tree model, the Immune Pro-
gramming (IP) is used. The algorithm of IP is based on the concept of evolv-
ing a repertoire of antibodies that encode candidate solutions to a given
problem. At the start, candidate solutions to the program are randomly gen-
erated providing an initial repertoire of adequate diversity. The evolution of
the repertoire is driven by cloning, mutation, and replacement of the anti-
bodies. These processes maintain the diversity of the repertoire and expand
the space searched for solutions. The algorithm is briefly described as follows.
1. Initialization. An initial repertoire (population), AB, of n antibodies, Abi,
(i = 1, . . . , n) is generated. The generation counter is set to G = 1.

2. Evaluation. An antigen, Ag, representing the problem to be solved, is
presented. Ag is compared to all antibodies Abi ∈ AB and their affinity, fi ,
with respect to the antigen is determined.

3. Replacement. With a certain probability, Pr, a new antibody is gener-
ated and placed into the new repertoire. This way, low affinity antibodies are
implicitly replaced. The parameter Pr is the probability of replacement.

4. Cloning. If a new antibody has not been generated, an antibody, Abi,
is drawn form the current repertoire with a probability directly proportional
to its antigenic affinity. With a probability, Pc, this antibody is cloned and
placed in the new repertoire. The parameter Pc is termed probability of
cloning.

5. Mutation. If the high-affinity antibody selected in the previous step
has not been cloned, it is submitted for mutation with a probability inversely
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proportional to its antigenic affinity. If the antibody is selected for muta-
tion, each component of its attribute string mutated with the probability of
mutation Pm.

6. Iteration-repertoire. Steps 3-5 are replaced until a new repertoire AB
′

of size n is constructed.
7. Iteration-algorithm. The generation counter is incremented, G = G+ 1,

and the new repertoire is submitted to step 2, evaluation. The process contin-
ues iteratively until a stopping criteria is met.

Parameter Optimization

For learning the parameters (weights and activation parameters) of a neural
tree model, there are a number of learning algorithms, such as genetic algo-
rithm, evolutionary programming, gradient descent based learning method
and so on, that can be used for tuning of the parameters. The particle swarm
optimization (PSO) algorithm conducts search using a population of particles
that correspond to individuals in an Evolutionary Algorithm (EA). Initially,
a population of particles is randomly generated. Each particle represents a
potential solution and has a position represented by a position vector xi.
Aswarm of particles moves through the problem space with the moving ve-
locity of each particle represented by a velocity vector vi. At each time step,
a function fi - representing a quality measure - is calculated by using xi as
input. Each particle keeps track of its own best position, which is associated
with the best fitness it has achieved so far in a vector pi. Furthermore, the
best position among all the particles obtained so far in the population is kept
track of as pg. In addition to this global version, another version of PSO keeps
track of the best position among all the topological neighbors of a particle. At
each time step t, by using the individual best position, pi(t), and the global
best position, pg(t), a new velocity for particle i is updated by.

Vi(t+ 1) = vi(t) + c1φ1(pi(t) − xi(t))

+ c2φ2(pg(t) − xi(t)) (2.19)

where c1 and c2 are positive constants and φ1 and φ2 are uniformly distributed
random numbers in [0,1]. The term ci is limited to the range of Vmax (if the
velocity violates this limit, it is set to its proper limit). Changing velocity this
way enables the particle i to search around both its individual best position,
pi, and global best position, pg. Based on the updated velocities, each particle
changes its position according to:

xi(t+ 1) = xi(t) + vi(t+ 1) (2.20)
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2.4.2 Hybrid Algorithm for Flexible Neural Tree Model

To find a good flexible neural tree model, structure and parameters optimiza-
tion is both used in the hybrid algorithm. Combined the given IP and PSO
algorithm, the hybrid algorithm for flexible neural tree model is described
below.

Step 1. Parameters Definition. Before the algorithm, many parameters
should be given first, i.e., size of population, size of agent, and so on.

Step 2. Initialization. Create N flexible neural tree model A(t) randomly
limited by the given parameters. Set t = 0.

Step 3. Weights Optimization by PSO Algorithm. For each flexible neu-
ral tree model (A0(t),A1(t),...,AN (t)), Optimize the weights by the PSO
algorithm.

Step 4. Structure Optimization by IP. Create the new population A(t+ 1)
by IP. Set t = t + 1.

Step 5. Iteration. The new repertoire is submitted to Step 2, the process
continues iteratively until a stopping criteria is met.

2.4.3 Illustrative Examples

Single Input and Single Output (SISO) nonlinear system and Multi Input
and Multi Output (MIMO) nonlinear system [160] are used. For each bench-
mark problem of the following examples, the instruction sets are selected
according to the following ideas: the instruction set I is selected containing
all terminal instructions {x0, x1, . . . , xn} and additional nonterminal instruc-
tions {+2, . . . ,+p}, here p is a user defined integer number. Note that if p
is large than the input number, according to our experiments, the node in
the neural tree may contain redundant input information and create some
difficulties for the training process, therefore we usually select the p within
the interval [1,numberofinputs].

Nonlinear System with Single Input Single Output

In this example, a nonlinear system with single input and single output is
considered, the model has the following form:

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (2.21)

where u(k) is the external input for the system and y(k) is the output of the
system.

A training and a test sequence each were generated. The training sequence
consists of 2000 samples in which u(k) is a random input in the interval [-2, 2]
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Fig. 2.26 Training sequence of the single input and single output nonlinear system
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Fig. 2.27 Flexible neural tree model for the single input and single output non-
linear system

(Please see Figure 2.26). The test sequence is made up of 100 samples by the
external input u(k) = sin(2πk/25) + sin(2πk/10). The used instruction set
is I = {+2,+3, x0, x1)}. where x0, x1 represents u(k) and y(k) respectively.
The output is y(k + 1).

Using the hybrid algorithm described in section 3, a flexible neural tree
model model is found (Figure 2.27) and the identification result is illustrated
in Figure 2.28.
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Fig. 2.28 Test sequence of the single input and single output nonlinear system

In this example, the training result of Root Mean Square Error (RMSE) is
0.088 while its test result is 0.067 a little better than the training one. The test
forecast curve is very similar to the real output of the system from Figure 2.28
which showed that the proposed flexible neural tree model is feasibility and
effectiveness for identification the single input and single output nonlinear
dynamic system.

Nonlinear System with Multi Input Multi Output

In this example, it is shown that the flexible neural tree model used to identify
single input and single output nonlinear system can also be used to identify
multi input multi output (MIMO) nonlinear system as well. The system is
described by the following equations:

y1(k + 1) =
y1(k)

1 + y2
2(k)

+ u1(k) (2.22)

y2(k + 1) =
y1(k)y2(k)
1 + y2

2(k)
+ u2(k) (2.23)

where u1(k) and u2(k) is the external input for the system, y1(k) and y1(k)
is the output of the system.

A training and a test sequence each were generated. The training sequence
consists of 5000 samples in which u1(k) and u2(k) are two random inputs in
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Fig. 2.29 Training sequence of y1 of the multi input multi output nonlinear system

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
Target
Forecast
Error

Fig. 2.30 Training sequence of y2 of the multi input multi output nonlinear system

the interval [-1, 1] (Please see Figures 2.29 and 2.30). The test sequence is
made up of 100 samples by the external inputs u1(k) = sin(2πk/25) and
u2(k) = cos(2πk/25). The used instruction sets are I = {+2,+3,. . . ,+5, x0,
x1, x2, x3}, where x0, x1 represents y1(k), y2(k) and x3, x4 represents u1(k),
u2(k) respectively. The two outputs of the system are y1(k+1) and y2(k+1).

In this example, the training results of Root Mean Square Error (RMSE)
are 0.0091 (y1) and 0.0224 (y2) while the test results are 0.2205 (y1) and
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Fig. 2.31 Flexible neural tree model for the multi input multi output nonlinear
system
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Fig. 2.32 Test sequence of y1 of the multi input multi output nonlinear system

0.2580 (y2). The optimized multi input multi output-flexible neural tree
model is shown in Figure 2.31 and the identification results are shown in
Figures 2.32 and 2.33, respectively.

From above simulation results, it can be seen that the proposed neural
tree model works very well for the nonlinear dynamic system identification
problems.
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Fig. 2.33 Test sequence of y2 of the multi input multi output nonlinear system

2.5 Ensemble of Flexible Neural Tree

For most regression and classification problems, combining the outputs of
several predictors improves on the performance of a single generic one [182].
Formal support to this property is provided by the so-called bias/variance
dilemma [169], based on a suitable decomposition of the prediction error.
According to these ideas, good ensemble members must be both accurate
and diverse, which poses the problem of generating a set of predictors with
reasonably good individual performances and independently distributed pre-
dictions for the test points. Diverse individual predictors can be obtained in
several ways. These include:

(i) using different algorithms to learn from the data (classification and re-
gression trees, artificial neural networks, support vector machines, etc.);

(ii) changing the internal structure of a given algorithm (for instance, number
of nodes/depth in trees or architecture in neural networks);

(iii) learning from different adequately- chosen subsets of the data set.

The probability of success in strategy (iii), the most frequently used, is di-
rectly tied to the instability of the learning algorithm [163]. That is, the
method must be very sensitive to small changes in the structure of the data
and/or in the parameters defining the learning process. Again, classical ex-
amples in this sense are classification and regression trees and artificial neural
networks. In particular, in the case of artificial neural networks the instabil-
ity comes naturally from the inherent data and training process randomness,
and also from the intrinsic non-identifiability of the model.
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2.5.1 The Basic Ensemble Method

A simple approach to combining network outputs is to simply average them
together. The basic ensemble method (BEM) output is defined:

fBEM =
1
n

n∑

i=1

fi(x) (2.24)

This approach by itself can lead to improved performance, but doesn’t take
into account the fact that some flexible neural tree model may be more ac-
curate than others. It has the advantage that it is easy to understand and
implement and can be shown not to increase the expected error.

2.5.2 The Generalized Ensemble Method

A generalization to the BEM method is to find weights for each output that
minimize the positive and negative classification rates of the ensemble. The
general ensemble method (GEM) is defined as:

fBEM =
n∑

i=1

αifi(x) (2.25)

where the α′
is are chosen to minimize the root mean square error between the

Flexible neural tree model outputs and the desired values. For comparison
purpose, the optimal weights of the ensemble predictor are optimized by using
PSO algorithm.

2.5.3 The LWPR Method

To investigate more efficient ensemble method, a LWPR approximation ap-
proach is employed in this work[176]. In this framework, the final output of
flexible neural tree ensemble is approximated by a local polynomial model,
given by:

fLWPR =
M∑

i=1

βiti(x) (2.26)

where ti is a function that produces the ith term in the polynomial. For ex-
ample, with two inputs and a quadratic local model we would have t1(x) = 1,
t2(x) = x1, t3(x) = x2, t4(x) = x2

1, t5(x) = x1x2, t6(x) = x2
2. Equation (5)

can be written more compactly as:
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fLWPR = βT t(x) (2.27)

where t(x) is the vector of polynomial terms of the input x and β is the
vector of weight terms. The weight of the ith datapoint is computed as a
decaying function of Euclidean distance between xk and xquery . β is chosen
to minimize:

N∑

i=1

ω2
i (fLWPR − βT t(x)) (2.28)

where ωi is a Gaussian weight function with kernel width K:

ωi = exp(−Distance2(xi, xquery)/2K2). (2.29)

For this problem, an algorithm based on a multiresolution search of a quickly
constructible augmented kdtree without needing to rebuild the tree, has been
proposed for fast predictions with arbitrary local weighting functions [176].

2.5.4 Stock Index Forecasting Problem

We analyzed the seemingly chaotic behavior of two well-known stock in-
dices namely the Nasdaq-100 index of NasdaqSM [177] and the S&P CNX
NIFTY stock index [178]. The Nasdaq-100 index reflects Nasdaq’s largest
companies across major industry groups, including computer hardware and
software, telecommunications, retail/wholesale trade and biotechnology [177].
The Nasdaq-100 index is a modified capitalization-weighted index, which is
designed to limit domination of the Index by a few large stocks while generally
retaining the capitalization ranking of companies. Through an investment in
the Nasdaq-100 index tracking stock, investors can participate in the collec-
tive performance of many of the Nasdaq stocks that are often in the news or
have become household names. Similarly, S&P CNX NIFTY is a welldiversi-
fied 50 stock index accounting for 25 sectors of the economy [178]. It is used
for a variety of purposes such as benchmarking fund portfolios, index-based
derivatives and index funds. The CNX Indices are computed using market
capitalization weighted method, wherein the level of the Index reflects the
total market value of all the stocks in the index relative to a particular base
period. The method also takes into account constituent changes in the index
and importantly corporate actions such as stock splits, rights, etc. without
affecting the index value.

Prediction of stocks is generally believed to be a very difficult taskit be-
haves like a random walk process and time varying. The obvious complexity
of the problem paves the way for the importance of intelligent prediction
paradigms. During the last decade, stocks and futures traders have come
to rely upon various types of intelligent systems to make trading decisions
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[161][162][163][164][168][172][179][171]. Several intelligent systems have in re-
cent years been developed for modeling expertise, decision support and com-
plicated automation tasks [174][180][175][185].

Leigh et al. [172] introduced a method for combining template matching,
using pattern recognition and a feedforward neural network, to forecast stock
market activity. The authors evaluated the effectiveness of the method for
forecasting increases in the New York Stock Exchange Composite Index at
a 5 trading day horizon. Results indicate that the technique is capable of
returning results that are superior to those attained by random choice.

Kim and Chun [170] explored a new architecture for graded forecasting
using an arrayed probabilistic network (APN) and used a ”mistake chart” to
compare the accuracy of learning systems against default performance based
on a constant prediction. Authors also evaluated several backpropagation
models against a recurrent neural network (RNN) as well as probabilistic
neural networks, etc.

Tsaih et al. [183] investigated a hybrid AI (artificial intelligence) approach
to the implementation of trading strategies in the S&P 500 stock index futures
market. The hybrid AI approach integrates the rule-based systems technique
and the neural networks technique to accurately predict the direction of daily
price changes in S&P 500 stock index futures. By highlighting the advantages
and overcoming the limitations of both the neural networks technique and
rule-based systems technique, the hybrid approach can facilitate the devel-
opment of more reliable intelligent systems to model expert thinking and to
support the decision-making processes.

Refenes et al. [181] proposed a simple modification to the backpropaga-
tion procedure, which takes into account gradually changing inputCoutput
relations. The procedure is based on the principle of discounted least squares
whereby learning is biased towards more recent observations with long term
effects experiencing exponential decay through time. This is particularly im-
portant in systems in which the structural relationship between input and
response vectors changes gradually over time but certain elements of long
term memory are still retained. The procedure is implemented by a simple
modification of the least-squares cost function commonly used in error back-
propagation.

Van den Berg et al. [184] proposed a probabilistic fuzzy systems to de-
velop financial models where one can identify different states of the market
for modifying ones actions. Authors developed a Takagi-Sugeno (TS) proba-
bilistic fuzzy systems that combine interpretability of fuzzy systems with the
statistical properties of probabilistic systems. The methodology is applied to
financial time series analysis and demonstrated how a probabilistic TS fuzzy
system can be identified, assuming that a linguistic term set is given.

From the perspective of the agent-based model of stock markets, Chen and
Liao [165] examined the possible explanations for the presence of the causal
relation between stock returns and trading volume. Using the agent-based
approach, the authors found that the explanation for the presence of the stock
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price volume relation may be more fundamental. Conventional devices such
as information asymmetry, reaction asymmetry, noise traders or tax motives
are not explicitly required. Authors claimed that a full understanding of the
price volume relation cannot be accomplished unless the feedback relation
between individual behavior at the bottom and aggregate phenomena at the
top is well understood.

We investigated the performance analysis of flexible neural tree [189][190]
[166] ensemble for modeling the Nasdaq-100 and the NIFTY stock market in-
dices. The hierarchical structure of flexible neural tree is evolved using genetic
programming with specific instructions. The parameters of the flexible neural
tree model are optimized by particle swarm optimization algorithm [136]. The
method interleaves both optimizations. Starting with random structures and
corresponding parameters, it first tries to improve the structure and then as
soon as an improved structure is found, it fine tunes its parameters. It then
goes back to improving the structure again and, fine tunes the structure and
rules parameters. This loop continues until a satisfactory solution is found or
a time limit is reached.

2.6 Stock Index Forecasting Experimental Illustrations

We analyzed the Nasdaq-100 index value from 11 January 1995 to 11 January
2002 [177] and the NIFTY index from 01 January 1998 to 03 December 2001
[178]. For both the indices, we divided the entire data into almost two equal
parts. No special rules were used to select the training set other than ensuring
a reasonable representation of the parameter space of the problem domain
[163].

We considered 7-year stock data for the Nasdaq-100 Index and 4-year
for the NIFTY index. Our target is to develop efficient forecast models that
could predict the index value of the following trade day based on the opening,
closing and maximum values of the same on a given day. The assessment of
the prediction performance of the different ensemble paradigms were done by
quantifying the prediction obtained on an independent data set. The Root
Mean Squared Error (RMSE), Maximum Absolute Percentage Error (MAP)
and Mean Absolute Percentage Error (MAPE) and Correlation Coefficient
(CC) were used to study the performance of the trained forecasting model
for the test data. MAP is defined as follows:

MAP = max(
|Pactual,i − Ppredicted,i|

Ppredicted,i
× 100) (2.30)

where Pactual,i is the actual index value on day i and Ppredicted,iis the forecast
value of the index on that day. Similarly MAPE is given as:
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Table 2.27 Empirical comparison of RMSE results for four learning methods

Best-FNT BEM GEM LWPR

Nasdaq-100 0.01854 0.01824 0.01635 4.41 × 10−5

NIFTY 0.01315 0.01258 0.01222 1.96 × 10−7

Table 2.28 Statistical analysis of four learning methods (test data)

Best-FNT BEM GEM LWPR

Nasdaq-100

CC 0.997542 0.997610 0.997757 0.999999

MAP 98.1298 98.3320 97.3347 0.4709

MAPE 6.1090 6.3370 5.7830 0.0040

NIFTY

CC 0.996908 0.997001 0.0997109 0.999999

MAP 28.0064 34.3687 26.8188 7.65 × 10−4

MAPE 3.2049 2.9303 2.6570 1.92 × 10−5

MAPE =
1
N

N∑

i=1

(
|Pactual,i − Ppredicted,i|

Ppredicted,i
) × 100 (2.31)

where N represents the total number of days.
We used instruction set I = {+2,+3,. . . , +6,x0, x1,x2} for modeling the

Nasdaq-100 index and instruction set I = {+2,+3, . . . , +8, x0, x1,x2, x3,
x4} for modeling the NIFTY index. We have conducted 10 flexible neural
tree models for predicting the Nasdaq-100 index and the NIFTY index, re-
spectively and the three ensemble methods discussed above are employed to
predict both indices.

Table 2.27 summarizes the test results achieved for the two stock indices
using the four different approaches. Performance analysis of the trained fore-
casting models for the test data is illustrated in Table 2.28. Figures 2.34
and 2.35 depict the test results for the one day ahead prediction of the
Nasdaq−100 index and the NIFTY index respectively.

We have demonstrated how the chaotic behavior of stock indices could be
well represented by FNT ensemble learning paradigm. Empirical results on
the two data sets using FNT ensemble models clearly reveal the efficiency
of the proposed techniques. In terms of RMSE values, for the Nasdaq-100
index and the NIFTY index, LWPR performed marginally better than other
models. For both indices (test data), LWPR also has the highest correlation
coefficient and the lowest value of MAPE and MAP values. A low MAP value
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Fig. 2.34 Test results showing the performance of the different methods for mod-
eling the Nasdaq-100 index
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Fig. 2.35 Test results showing the performance of the different methods for mod-
eling the NIFTY index

is a crucial indicator for evaluating the stability of a market under unforeseen
fluctuations. In the present example, the predictability assures the fact that
the decrease in trade off is only a temporary cyclic variation that is perfectly
under control.

Models were built to predict the share price for the following trade day
based on the opening, closing and maximum values of the same on a given
day. The experimental results indicate that the most prominent parameters
that affect share prices are their immediate opening and closing values. The
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fluctuations in the share market are chaotic in the sense that they heavily
depend on the values of their immediate forerunning fluctuations. Long-term
trends exist, but are slow variations and this information is useful for long-
term investment strategies.

Our study focused on short term, on floor trades, in which the risk is
higher. However, the results illustrate that even in the seemingly random
fluctuations, there is an underlying deterministic feature that is directly en-
ciphered in the opening, closing and maximum values of the index of any day
making predictability possible. Empirical results also show that LWPR is a
distinguished candidate for the FNT ensemble or neural networks ensemble.



Part IV

Hierarchical Fuzzy Systems



3

Hierarchical Neural Networks

Summary. Soft Computing (SC), including Neural Computing (NC), Fuzzy
Computing (FC), Evolutionary Computing (EC) etc., provides us with a set
of flexible computing tools to perform approximate reasoning, learning from
data and search tasks. Moreover, it has been observed that the highly increas-
ing computing power and technology, could make possible the use of more
complex intelligent architectures, taking advantage of more than one intel-
ligent techniques, not in a competitive, but rather in a collaborative sense.
Therefore, discovering of more sophisticated and new evolutionary learning
models and its application to new areas and problems still remain as key
questions for the next 10 years.

There are three basic multilevel structures for hierarchical models, namely,
incremental, aggregated and cascaded. Designing of these hierarchical models
faces many difficulties including determination of the hierarchical structure,
parameter identification and input variables selection for each sub-models.

This Chapter provides a gentle introduction to three different hierarchi-
cal architectures. First the design and implementation of hierarchical ra-
dial basis function networks are illustrated for breast cancer detection and
face recognition. Further, the development of hierarchical B-spline networks
is illustrated for breast cancer detection and time series prediction. Fi-
nally, hierarchical wavelet neural networks are presented for several function
approximation problems.

3.1 Hierarchical Radial Basis Function Neural
Networks

Hierarchical radial basis function networks (HRBF) consist of multiple RBF
networks assembled in different levels or cascade architecture in which a prob-
lem was divided and solved in more than one step. Mat Isa et al. used Hi-
erarchical Radial Basis Function (HiRBF) to increase RBF performance in

Y. Chen, A. Abraham.: Tree-Struc. Based Hybrid Com. Intelligence, ISRL 2, pp. 99–125.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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diagnosing cervical cancer [186]. The HiRBF cascaded together two RBF
networks, where both networks have different structure but using the same
learning algorithms. The first network classifies all data and performs a fil-
tering process to ensure that only certain attributes to be fed to the second
network. Their research illustrated that the HiRBF performs better com-
pared to single RBF. Hierarchical RBF network has been proved effective in
the reconstruction of smooth surfaces from sparse noisy data points [187]. In
order to improve the model generalization performance, a selective combina-
tion of multiple neural networks by using Bayesian method was proposed in
[188].

For real engineering andor scientific problems, how to automatically de-
sign a hierarchical RBF network remains unsolved. Based on flexible tree
representation and evolutionary algorithms, we illustrate an optimal design
method for the HRBF automatically.

3.1.1 The Radial Basis Function Network

A radial basis function (RBF) network is a feed-forward neural network with
one hidden layer of RBF units and a linear output layer. By an RBF unit we
mean a neuron with multiple real inputs x = (x1, . . . , xn) and one output y
computed as:

y = ϕ(ξ); ξ =
‖x− c‖C

b
(3.1)

where ϕ : R → R is a suitable activation function, let us consider Gaussian
radial basis function ϕ(z) = e−z2

. The center c ∈ Rn, the width b ∈ R and
an n × n real matrix C are a unit’s parameters, || · ||C denotes a weighted
norm defined as ‖x‖2

C = (Cx)T (Cx) = xTCT Cx.
Thus, the network represents the following real function f : Rn → Rm :

fs(x) =
h∑

j=1

wjse
−(

‖x−c‖C
b )2 , s = 1, . . . ,m, (3.2)

where wjs ∈ R are weights of s-th output unit and fs is the s-th network
output.

The goal of an RBF network learning is to find suitable values of RBF
units’ parameters and the output layer’s weights, so that the RBF network
function approximates a function given by a set of examples of inputs and
desired outputs T = {x(t),d(t); t = 1, . . . , k}, called a training set. The
quality of the learned RBF network is usually measured by the error function:

E =
1
2

k∑

t=1

m∑

j=1

e2j(t), ej(t) = dj(t) − fj(t). (3.3)
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Fig. 3.1 A RBF neural network (left), an example of hierarchical RBF network
(middle), and a tree-structural representation of the HRBF network (right)

3.1.2 Automatic Design of Hierarchical Radial Basis Function
Network

Encoding and Calculation for Hierarchical Radial Basis Function
Network

A function set F and terminal instruction set T used for generating a
HRBF network model are described as S =F

⋃
T = {+2,+3, . . . ,+N}⋃

{x1,. . . , xn}, where +i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions
and taking i arguments. x1,x2,. . . ,xn are leaf nodes’ instructions and taking
no arguments. The output of a non-leaf node is calculated as a HRBF net-
work model (see Figure 3.1). From this point of view, the instruction +i is
also called a basis function operator with i inputs.

Gaussian radial basis function is used and the number of radial basis func-
tions used in hidden layer of the network is the same as the number of inputs,
that is, m = n.

In the construction process of a HRBF network tree, if a nonterminal
instruction, i.e., +i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly
generated and used for representing the connection strength between the node
+i and its children. In addition, 2 × n2 adjustable parameters ai and bi are
randomly created as radial basis function parameters. The output of the node
+i can be calculated by using Eqn. 3.1 and Eqn. 3.2. The overall output of
HRBF network tree can be computed from left to right by depth-first method,
recursively.

Finding an optimal or near-optimal HRBF network structure is formulated
as a product of evolution. Genetic Programming (GP) and Probabilistic In-
cremental Program Evolution (PIPE) have been widely explored for structure
optimization of the FNT [189][190]. We illustrate the usage of Extended Com-
pact Genetic Programming (ECGP) [191] to find an optimal or near-optimal
structure of HRBF networks.
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3.1.3 Tree Structure Optimization by Extended Compact
Genetic Programming (ECGP)

Finding an optimal or near-optimal HRBF is formulated as a product of
evolution. ECGP is a direct extension of ECGA to the tree representation,
which is based on the PIPE prototype tree. In ECGA, Marginal Product
Models (MPMs) are used to model the interaction among genes, represented
as random variables, given a population of genetic algorithm individuals.
MPMs are represented as measures of marginal distributions on partitions
of random variables. ECGP is based on the PIPE prototype tree, and thus
each node in the prototype tree is a random variable. ECGP decomposes
or partitions the prototype tree into sub-trees, and the MPM factorises the
joint probability of all nodes of the prototype tree, to a product of marginal
distributions on a partition of its sub-trees. A greedy search heuristic is used
to find an optimal MPM mode under the framework of minimum encoding
inference. ECGP can represent the probability distribution for more than
one node at a time. Thus, it extends PIPE in that the interactions among
multiple nodes are considered.

3.1.4 Parameter Optimization Using Differential Evolution
Algorithm

Differential Evolution (DE) algorithm was first introduced by Storn and Price
in 1995 [192]. It resembles the structure of an evolutionary algorithm (EA),
but differs from traditional EAs in its generation of new candidate solutions
and by its use of a ’greedy’ selection scheme. DE works as follows: First, all
individuals are randomly initialized and evaluated using the fitness function
provided. Afterwards, the following process will be executed as long as the
termination condition is not fulfilled: For each individual in the population,
an offspring is created using the weighted difference of parent solutions. The
offspring replaces the parent if it is fitter. Otherwise, the parent survives and
is passed on to the next iteration of the algorithm. In generation k, we denote
the population members by xk

1 , xk
2 , . . . , xk

N . The DE algorithm is given as
follows [193]:

S1 Set k = 0, and randomly generate N points x0
1, x

0
2, . . . , x

0
N from search

space to form an initial population;

S2 For each point xk
i (1 ≤ i ≤ N), execute the DE offspring generation

scheme to generate an offspring x(
ik + 1);

S3 If the given stop criteria is not met, set k = k + 1, goto step S2.

The DE offspring generation approach used is given as follows:

S1 Choose one point xd randomly such that f(xd) f(xk
i ), another two points

xb, xc randomly from the current population and a subset
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S = {j1, . . . , jm} of the index set {1, . . . , n}, while m < n and all ji
mutually different;

S2 Generate a trial point u = (u1, u2, . . . , un) as follows:
DE Mutation. Generate a temporary point z as follows,

z = (F + 0.5)xd + (F − 0.5)xi + F (xb − xc); (3.4)

Where F is a give control parameter;
DE Crossover. For j ∈ S, uj is chosen to be zj; otherwise uj is chosen
a to be (xk

i )j ;
S3 If f(u) ≤ f(xk

i ), set xk+1
i = u; otherwise, set xk+1

i = xk
i .

3.1.5 Procedure of The General Learning Algorithm

The general learning procedure for constructing the HRBF network can be
described as follows.

S1 Create an initial population randomly (HRBF network trees and its cor-
responding parameters);

S2 Structure optimization is achieved by using ECGP algorithm;
S3 If a better structure is found, then go to step S4, otherwise go to step S2;
S4 Parameter optimization is achieved by DE algorithm. In this stage, the

architecture of HRBF network model is fixed, and it is the best tree
developed during the end of run of the structure search;

S5 If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step S6; otherwise
go to step S4;

S6 If satisfactory solution is found, then the algorithm is stopped; otherwise
go to step S2.

3.1.6 Variable Selection in the HRBF Network Paradigms

It is often a difficult task to select important variables for a classification or
regression problem, especially when the feature space is large. Conventional
RBF neural network usually cannot do this. In the perspective of HRBF
network framework, the nature of model construction procedure allows the
HRBF network to identify important input features in building a HRBF
network model that is computationally efficient and effective. The mecha-
nisms of input selection in the HRBF network constructing procedure are as
follows:

• Initially the input variables are selected to formulate the HRBF network
model with same probabilities;
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• The variables which have more contribution to the objective function will
be enhanced and have high opportunity to survive in the next generation
by an evolutionary procedure;

• The evolutionary operators i.e., crossover and mutation, provide a input
selection method by which the HRBF network should select appropriate
variables automatically.

3.1.7 Experimental Illustrations

Wisconsin Breast Cancer Detection

We made use of the Wisconsin breast cancer data set from the UCI machine-
learning database repository [196]. This data set has 30 attributes (30 real
valued input features) and 569 instances of which 357 are of benign and
212 are of malignant type. The data set is randomly divided into a training
data set and a test data set. The first 285 data is used for training and the
remaining 284 data is used for testing the performance of the different models.

All the models were trained and tested with the same set of data.
The instruction sets used to create an optimal HRBF network classifier is
S = F

⋃
T= {+2, . . . , +5}

⋃{x0,x1, . . . , x29}, where xi(i = 0, 1, . . . , 29) de-
notes the 30 input features. The optimal hierarchical HRBF network for
breast cancel detection problem is shown in Figure 3.2. The classification
results for testing data set are shown in Table 3.1. For comparison purpose,
the detection performances of the FNT, NN and RBF-NN are also shown in
Table 3.1 (for details, see [167]). The important features for constructing the
HRBF network models are shown in Table 3.2. It should be noted that the
obtained HRBF network classifier has smaller size and reduced features and
with high accuracy for breast cancer detection. Receiver Operating Charac-
teristics (ROC) analysis of the FNT, NN, RBF-NN and the HRBF network
model is shown in Table 3.3.

Table 3.1 Comparative results of the FNT, NN, RBF [194] and the proposed
HRBF network classification methods for the detection of breast cancer

Cancer type FNT(%) NN(%) RBF-NN(%) HRBF(%)

Benign 93.31 94.01 94.12 96.83

Malignant 93.45 95.42 93.21 96.83

Table 3.2 The important features selected by the HRBF network

x0, x1, x2, x3, x6, x7, x9, x18, x20, x25, x27, x29
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Table 3.3 Comparison of false positive rate (fp) and true positive rate (tp) for
FNT, NN, RBF-NN [234] and hierarchical HRBF network

Cancer FNT NN RBF-NN HRBF

Type fp(%) tp(%) fp(%) tp(%) fp(%) tp(%) fp(%) tp(%)

Benign 3.88 91.71 4.85 93.37 6.6 97.14 2.91 96.69

Malignant 2.76 86.41 4.97 96.12 9.2 96.87 3.31 97.09

(b1) (b2) 

(b3) (b4) 

Fig. 3.2 The optimized HRBF network for breast cancer detection

3.1.8 Face Recognition

HRBF network is employed for face recognition and we used Discrete Cosine
Transform (DCT) for feature selection, which is the same as discussed in the
last Chapter.
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Fig. 3.3 Example in ORL face dataset

Fig. 3.4 Example in Yale face dataset

Feature Selection and Face recognition Using HRBF Paradigms

We performed extensive experiments on two benchmark face datasets, namely
the ORL and the Yale face database. In all the experiments, the background
is cut out, and the images are resized to 92 × 112. No other preprocessing
is done. Besides HRBF, the PCA based method, LDA-based method, neural
networks etc. were also tested for comparisons.

The Face Database

For ORL face dateset, 40 persons with variations in facial expression (e.g.
open/close eyes, smiling/non-smiling), and facial details (e.g. wearing glasses/
not wearing glasses). All images were taken under a dark background, and
the subjects were in an upright frontal position, with tilting and rotation
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tolerance up to 20 degree, and tolerance of up to about 10%. For each per-
son, 5 images are generated randomly to form the training data set and the
remaining were chosen as test data set. Figure 3.3 shows 12 images of one
subject from the selected dataset.

The Yale face database contains 165 images of 15 subjects. There are 11
images per subject with different facial expressions or lightings. Figure 3.4
shows the 11 images of one subject. For each person, 5 images are generated
randomly to form the training data set and the remaining were chosen as test
data set.

Experiments Using ORL and Yale Face Database

For this simulation, the DCT is employed to training and test data sets, re-
spectively. The extracted 60 input features are used for constructing a HRBF
model. A HRBF classifier was constructed using the training data and then
the classifier was used on the test data set to classify the data as a face ID
or not. The instruction sets used to create an optimal HRBF classifier is
S = {+2,+3, . . . ,+6, x0, x1, . . . , x59}, where xi(i = 0, 1, . . . , 59) denotes the
60 features extracted by DCT.

A comparison of different feature extraction methods and different face
classification methods for ORL face dataset is shown in Table 3.4. Table 3.5
depicts the face recognition performance of the HRBF by using the 60 features
for Yale data set. The HRBF method helps to reduce the features from 60 to
6-15.

Facial features were first extracted by the DCT, which greatly reduces di-
mensionality of the original face image as well as maintains the main facial
features. Compared with the well-known PCA approach, the DCT has the
advantages of data independency and fast computational speed. The pre-
sented HRBF model for face recognition was focused on improving the face
recognition performance by reducing the input features. Simulation results on
ORL and Yale face database also illustrate that the HRBF method achieves

Table 3.4 Comparison of different approaches for ORL face recognition (test)

Method Recognition rate

PCA+RBF [197] 94.5%

LDA+RBF [197] 94.0%

FS+RBF [197] 92.0%

NN [198] 94.64%

PCA [198] 88.31%

LDA [198] 88.87%

DCT+HRBF 97.89%
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Table 3.5 Comparison of different approaches for Yale face recognition (test)

Method Recognition rate

NN [197] 83.51%

PCA [197] 81.13%

LDA [197] 98.69%

DCT+HRBF 99.25%

high training and recognition speed, as well as high recognition rate. More
importantly, it is insensitive to illumination variations.

3.2 Hierarchical B-Spline Neural Networks

Hierarchical B-spline networks consist of multiple B-spline networks assem-
bled in different level or cascade architecture. We illustrate an automatic
method for constructing hierarchical B-spline network. Based on a pre-defined
instruction/operator set, the hierarchical B-spline networks can be created
and evolved. The hierarchical B-spline network allows input variables selec-
tion. The hierarchical structure is evolved using the Extended Compact Ge-
netic Programming (ECGP), a tree-structure based evolutionary algorithm.
The fine tuning of the parameters encoded in the structure is accomplished
using Particle Swarm Optimization (PSO). The proposed method interleaves
both optimizations.

3.2.1 The B-Spline Network

B-spline basis functions are piecewise polynomials, producing models with
a response of a desired smoothness. The order of these local polynomials is
denoted by the order of the B-spline, denoted by k. A set of univariate basis
functions is denoted on a series of knots, which represent the piecewise poly-
nomial intervals. A knot vector for a set of order k univariate basis functions
is described by, λ = (λ0, λ1, . . . , λk+r−1)T , where r is the number of uni-
variate basis functions denoted on this variable and λj is the jth knot. The
input domain of a set of univariate basis functions is given by X = [λk−1, λk]
giving a total of (r − k) interior knots. The exterior knots are those that lie
outside this domain, not significantly affecting the modeling capabilities of
the model. But they do influence the numerical conditioning of the weight
optimization problem.

Univariate B-spline basis functions are calculated using a numerical stable
computationally efficient recurrence relationship given by:
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N j
k(x) =

x− λj−k

λj−1 − λj−k
N j−1

k−1(x) +
λj − x

λj − λj−k+1
N j

k−1(x) (3.5)

N j
1 (x) =

{
1, x ∈ [λj−1, λj ]
0, otherwise (3.6)

where N j
k(·) is the jth univariate basis function of order k.

To define multivariate B-spline basis functions, the tensor product of the
univariate basis functions is performed. Given a set of B-spline basis functions
defined across each input variable xj of a specified order kj , a multivariate B-
spline basis function is calculated by multiplying the n univariate membership
functions N ji

kj
(xj) giving:

N i
k(x) =

n∏

j=1

N ji

kj
(xj) (3.7)

where ji represents the index to the basis function, defined on xj , which
contributes to the ith multivariate basis function.

A B-spline Neural Network is composed of three layers, which are, a nor-
malized input layer, a basis functions layer and a linear weight layer (see
Figure 3.5). In general, the B-spline basis function network can be repre-
sented as:

y =
m∑

i=1

ωiψi(x; θ) (3.8)

where x ∈ Rn is input vector, ψi(x; θ) is ith B-spline basis function, and ωi is
the corresponding weights of ith basis function and θ is the parameter vector
used in the basis functions.

3.3 Automatic Design of HB-Spline Network

3.3.1 Encode and Calculation for HB-Spline

A function set F and terminal instruction set T used for generating a hierar-
chical B-spline network model are described as S =F

⋃
T = {+2,+3, . . . ,+N}⋃ {x1,. . . , xn}, where +i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions

and taking i arguments. x1,x2,. . . ,xn are leaf nodes’ instructions and taking
no arguments. The output of a non-leaf node is calculated as a B-spline neu-
ral network model (see Figure 3.5). From this point of view, the instruction
+i is also called a basis function operator with i inputs.

The translation and dilation of order 3 B-spline function is used as basis
function, for experimental illustrations,
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Fig. 3.5 A B-spline network (left), a hierarchical B-spline network (middle), and
a tree-structural representation of the B-spline network (right)

N3(a, b, x) =

⎧
⎪⎪⎨

⎪⎪⎩

9
8 + 3

2 (x−b
a ) + 1

2 (x−b
a )2, x ∈ [− 3

2a+ b,− 1
2a+ b)

3
4 − (x−b

a )2, x ∈ [− 1
2a+ b, 1

2a+ b)
9
8 − 3

2 (x−b
a ) + 1

2 (x−b
a )2, x ∈ [ 12a+ b, 3

2a+ b]
0, otherwise

(3.9)

and the number of B-spline basis functions used in hidden layer of the network
is same with the number of inputs, that is, m = n.

In the construction process of hierarchical B-spline network tree, if a non-
terminal instruction, i.e., +i(i = 2, 3, 4, . . . , N) is selected, i real values are
randomly generated and used for representing the connection strength be-
tween the node +i and its children. In addition, 2×n2 adjustable parameters
ai and bi are randomly created as B-spline basis function parameters. The
output of the node +i can be calculated by using Eqn. 3.7 and Eqn. 3.8. The
overall output of hierarchical B-spline network tree can be computed from
left to right by depth-first method, recursively.

3.3.2 Tree Structure and Parameter Optimization

Finding an optimal or near-optimal hierarchical B-spline network structure
is formulated as a product of evolution. Any kind of tree structure based
evolutionary algorithms, i.e., the Genetic Programming (GP), Probabilis-
tic Incremental Program Evolution (PIPE), Gene Expression Programming
(GEP), Ant Programming (AP), Extended Compact Genetic Programming
(ECGP) etc. can be used to find optimal structure of the HB-Spline network.
Particle swarm optimization (PSO) [136] algorithm is used for parameter
optimization for experimental illustrations.
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3.3.3 Procedure of the General Learning Algorithm

The general learning procedure for constructing the hierarchical B-spline net-
work is summarized as follows:

S1 Create an initial population randomly (hierarchical B-spline trees and its
corresponding parameters);

S2 Structure optimization is achieved by using tree-structure based evolu-
tionary algorithm;

S3 If a better structure is found, then go to step S4, otherwise go to step S2;
S4 Parameter optimization is achieved by PSO algorithm. In this stage, the

architecture of hierarchical B-spline network model is fixed, and it is the
best tree developed during the end of run of the structure search;

S5 If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step S6; otherwise
go to step S4;

S6 If satisfactory solution is found, then the algorithm is stopped; otherwise
go to step S2.

3.3.4 Variable Selection in the Hierarchical B-Spline Network
Paradigms

It is often a difficult task to select important variables for a classification
or regression problem, especially when the feature space is large. Conven-
tional B-spline neural network usually cannot do this. In the perspective of
hierarchical B-spline framework, the nature of model construction procedure
allows the hierarchical B-spline network to identify important input features
in building a hierarchical B-spline network model that is computationally
efficient and effective. The mechanisms of input selection in the hierarchical
B-spline network constructing procedure are as follows.

• Initially the input variables are selected to formulate the hierarchical B-
spline network model with same probabilities;

• The variables which have more contribution to the objective function will
be enhanced and have high opportunity to survive in the next generation
by an evolutionary procedure;

• The evolutionary operators i.e., crossover and mutation, provide a input
selection method by which the hierarchical B-spline network should select
appropriate variables automatically.

3.3.5 Experimental Illustrations

3.3.6 Wisconsin Breast Cancer Detection

We used the Wisconsin breast cancer data set from the UCI machine-learning
database repository [196]. This data set has 30 attributes (30 real valued
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Table 3.6 Comparative results of the FNT, NN, WNN [167] and the proposed hi-
erarchical B-spline network classification methods for the detection of breast cancer

Cancer type FNT(%) NN(%) WNN(%) H-Bspline(%)

Benign 93.31 94.01 94.37 96.77

Malignant 93.45 95.42 92.96 96.77

Table 3.7 The important features selected by the hierarchical B-spline network

x0, x2, x3, x7, x9, x18, x21

(b1) (b2) 

(b3) (b4) 

Fig. 3.6 The optimized hierarchical B-spline network for breast cancel detection

input features) and 569 instances of which 357 are of benign and 212 are of
malignant type. The data set is randomly divided into a training data set
and a test data set. The first 285 data is used for training and the remaining
284 data is used for testing the performance of the different models.
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Table 3.8 Comparison of false positive rate (fp) and true positive rate (tp) for
FNT, NN, WNN [167] and hierarchical B-spline network

Cancer FNT NN WNN H-Bspline

Type fp(%) tp(%) fp(%) tp(%) fp(%) tp(%) fp(%) tp(%)

Benign 3.88 91.71 4.85 93.37 6.8 98.34 4.85 96.13

Malignant 2.76 86.41 4.97 96.12 9.4 97.09 3.87 95.15

All the models were trained and tested with the same set of data. The
instruction sets used to create an optimal hierarchical B-spline network clas-
sifier is:

S = F
⋃
T = {+2,+3, . . . ,+5}

⋃
{x0, x1, . . . , x29}. (3.10)

Where xi(i = 0, 1, . . . , 29) denotes the 30 input features. The optimal hier-
archical B-spline network for breast cancer detection problem is shown in
Figure 3.6. The classification results for testing data set are shown in Ta-
ble 3.6. For comparison purpose, the detection performances of the FNT, NN
and WNN are also depicted in Table 3.6 (for details, see [167]). The impor-
tant features for constructing the hierarchical B-spline models are shown in
Table 3.7. It should be noted that the obtained hierarchical B-spline network
classifier has smaller size, reduced features and with high accuracy for breast
cancer detection. Receiver Operating Characteristics (ROC) analysis of the
FNT, NN, WNN and the hierarchical B-spline network model is illustrated
in Table 3.8.

We illustrated the automatic design of an optimized hierarchical B-spline
network for the detection of breast cancer and compared the results with
some advanced artificial intelligence techniques, i.e., FNT, NN and Wavelet
neural network (WNN). As depicted in Table 3.6, the preliminary results are
very encouraging. The best accuracy was offered by the hierarchical B-spline
network method followed by the wavelet neural network for detecting be-
nign types and PSO trained neural network for detecting the malignant type
of cancer. ROC analysis (Table 3.8) illustrates that wavelet neural network
has the highest false positive rate and the H-Bspline and FNT models have
the lowest false positive rates for detecting benign and malignant cancer,
respectively.

3.3.7 Time-Series Forecasting

Developed hierarchical B-spline network models are applied for two time-
series prediction problems: Wolfer sunspots series and Box-Jenkins time
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Table 3.9 Parameters Used In Hierarchical B-spline Network Model

Parameter Initial value

Population Size PS 30

Elitist Learning Probability Pel 0.01

Learning rate lr 0.01

Fitness constant ε 0.000001

Overall mutation probability PM 0.4

Mutation rate mr 0.4

Prune threshold TP 0.999999

Maximum local search steps 1000

Initial connection weights rand[-1, 1]

Initial parameters ai and bi rand[0,1]

series. Well-known benchmark examples are used for the sake of an easy com-
parison with existing models. For the structure optimization, PIPE algorithm
is used. The parameters used for each experiment are listed in Table 3.9.

Wolfer Sunspots Series Prediction

For the time series prediction task, 100 observations of the Wolfer sunspots
series were used with an embedding dimension of 10 and a delay time of one.
This data is a time series of the annual Wolfer Sunspot average number of
sunspots on the sun during each year. The data is normalized in the range [0
1] for experimentation. 80 data samples were used for training and other 10
for testing.

The used instruction sets to create an optimal hierarchical B-spline net-
work model is S = F

⋃
T = {+2,+3,+4}

⋃{x0, x1, . . . , x9} where xi(i =
0, 1, . . . , 9) denotes x(t), x(t− 1), . . . , x(t− 9), respectively.

After 15 generations of the evolution, the optimal hierarchical B-spline
network model was obtained with MSE 0.0019. The MSE value for validation
data set is 0.0012. The evolved hierarchical B-spline network tree is shown
in Figure 3.7 and the actual time-series, the hierarchical B-spline network
model output is shown in Figure 3.8. From the evolved hierarchical B-spline
network tree, it can be seen that the optimal inputs variables for constructing
a hierarchical B-spline tree model are: x(t), x(t−2), x(t−3), x(t−6), x(t−7)
and x(t− 8). For comparison purpose, a B-spline network and a feedforward
neural network is also trained to predict the Wolfer sunspot time-series. A
comparison result of different methods for forecasting Wolfer sunspot time-
series is shown in Table 3.10. It should be noted that the hierarchical B-spline
network model with proper selected input variables has better precision and
good generalization ability.
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Fig. 3.7 The evolved structure of hierarchical B-spline network model for predic-
tion of Wolfer sunspots series

Table 3.10 Comparison of prediction errors using different methods for the Wolfer
sunspots series

Model name Number of inputs MSE

ANN model 10 0.0071

B-spline network) 10 0.0066

HB-Spline network 7 0.0012

Application to Jenkins-Box Time-Series

The gas furnace data (series J) of Box and Jenkins (1970) was recorded from a
combustion process of a methane-air mixture. It is well known and frequently
used as a benchmark example for testing identification and prediction algo-
rithms. The data set consists of 296 pairs of input-output measurements. The
input u(t) is the gas flow into the furnace and the output y(t) is the CO2

concentration in outlet gas. The sampling interval is 9s. For illustration, 10
inputs variables are used for constructing a hierarchical B-spline network
model. The appropriate time-lags for constructing a hierarchical B-spline
model are finally determined by an evolutionary procedure.
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Fig. 3.8 The actual time series data, output of the evolved hierarchical B-spline
network model and the prediction error for training and test samples

The used instruction sets to create an optimal hierarchical B-spline model
is S = F

⋃
T = {+2,+3}

⋃{x0, x1, . . . , x9}, where xi(i = 0, 1, . . . , 9) denotes
y(t− 1), y(t− 2), y(t− 3), y(t− 4), and u(t− 1), u(t− 2), u(t− 3), u(t− 4),
u(t− 5) and u(t− 6), respectively.

After 21 generations of the evolution, the optimal hierarchical b-spline
network model was obtained with MSE 0.00108. The MSE value for validation
data set is 0.00123. The evolved hierarchical B-spline network tree is shown in
Figure 3.9, and the actual time-series, the hierarchical B-spline network model
output is depicted in Figure 3.10. From the evolved hierarchical B-spline
network tree, it is evident that the optimal inputs variables for constructing
a hierarchical B-spline network model are: u(t−4), u(t−5),u(t−6), y(t−1) and
y(t−3). It should be noted that the hierarchical B-spline network model with
proper selected input variables has better precision and good generalization
ability. A comparison result of different methods for forecasting Jenkins-Box
data is shown in Table 3.11.

It is evident that the hierarchical B-spline network model works well for
generating prediction models of time series. Preliminary research results re-
veal that the evolved hierarchical B-spline network models are effective for
time-series prediction problems.
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Table 3.11 Comparison of Prediction Errors Using Different Methods for The
Jenkins-Box Data

Model name Number of inputs MSE

ANFIS model [100] 2 0.0073

FuNN model [101] 2 0.0051

FNT model (case 1) [190] 2 0.00066

FNT model (case 2) [190] 7 0.00029

HB-Spline network 5 0.0012

3.4 Hierarchical Wavelet Neural Networks

We illustrate an Hierarchical Wavelet Neural Network (HWNN) framework,
which is highly suitable for function approximation problems. Based on the
pre-defined instruction/operator sets, an HWNN network can be created and
evolved, which also allows input variables selection. The proposed method
interleaves both optimizations. Starting with random structures and corre-
sponding parameters, it first tries to improve the structure and then as soon
as an improved structure is found, it fine tunes its parameters. It then goes
back to improving the structure again and, fine tunes the structure and pa-
rameters. This loop continues until a satisfactory solution is found or a time
limit is reached.

3.4.1 Wavelet Neural Network

In terms of wavelet transformation theory, wavelets are usually described in
the following form

Ψ = {Ψi = |ai|− 1
2ψ(

x − bi

ai
) : ai,bi ∈ Rn, i ∈ Z}, (3.11)

where x = (x1, x2, . . . , xn), ai = (ai1, ai2, . . . , ain), bi = (bi1, bi2, . . . , bin) are
a family of functions generated from one single function ψ(x) by the operation
of dilation and translation. ψ(x), which is localized in both the time space
and the frequency space, is called a mother wavelet and the parameters ai

and bi are named the scale and translation parameters, respectively. The x
represents inputs to the WNN model.

In the standard form of wavelet neural network, the output of a WNN is
given by:

f(x) =
M∑

i=1

ωiΨi(x) =
M∑

i=1

ωi|ai|− 1
2ψ(

x− bi
ai

) (3.12)
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where ψi is the wavelet activation function of ith unit of the hidden layer and
ωi is the weight connecting the ith unit of the hidden layer to the output layer
unit. Note that for the n-dimensional input space, the multivariate wavelet
basis function can be calculated by the tensor product of n single wavelet
basis functions as ψ(x) =

∏n
i=1 ψ(xi).

3.5 Automatic Design of Hierarchical Wavelet Neural
Network

In order to generate and optimize a mutilevel HWNN model, a tree-structural
representation is adopted. For generating the tree, a function set F and a
terminal instruction set T are described as S = F

⋃
T = {+2,+3, . . . ,+N}⋃

{x1, . . . , xn}, where +i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions
and taking i arguments. x1,x2,. . . ,xn are leaf nodes’ instructions and taking
no other arguments. The output of a non-leaf node is calculated as a wavelet
neural network model by Eqn. (3.12). From this point of view, the instruction
+i is also called a WNN operator with i inputs.

The WNN operator is depicted in Figure 3.11 (left). The mother wavelet
ψ(x) = −xexp(−x2

2 ) is used for experimental illustrations, and the number
of wavelet basis functions in hidden layer is same with the number of inputs,
that is, m = n.

In the construction process of HWNN tree, if a nonterminal instruction,
i.e., +i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly generated
and used for representing the connection strength between the node +i and
its children. In addition, 2×n2 adjustable parameters ai and bi are randomly
created as dilation and translation parameters of the wavelet basis functions.
The output of the node +i can be calculated by using Eqn. (3.2). The overall
output of HWNN tree can be computed from left to right by depth-first
method, recursively.

3.5.1 Ant Programming for Evolving the Architecture of
HWNN

Finding an optimal or near-optimal HWNN is formulated as a product of evo-
lution [195]. For the structure optimization, any kind of tree structure based
evolutionary algorithms can be employed. We illustrate Ant Programming
(AP) [199] to find an optimal or near-optimal HWNN structure.

Ant programming is a new method, which applies the principle of the ant
systems to automated program synthesis [199]. In the AP algorithm, each
ant will build and modify the trees according to the quantity of pheromone
at each node. The pheromone table appears as a tree. Each node owns a
table which memorize the rate of pheromone to various possible instructions
(Figure 3.12).
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First, a population of programs are generated randomly. The table of
pheromone at each node is initialized at 0.5. This means that the probabil-
ity of choosing each terminal and function is equal initially. The higher the
rate of pheromone, the higher the probability to be chosen. Each program
(individual) is then evaluated using a predefined objective function. The table
of pheromone is update by two mechanisms:

(1) Evaporation decreases the rate of pheromone table for every instruction
on every node according to following formula :

Pg = (1 − α)Pg−1 (3.13)

where Pg denotes the pheromone value at the generation g, α is a constant
(α = 0.15).

(2) For each tree, the components of the tree are reinforced according to the
fitness of the tree. The formula is:

Pi,si = Pi,si +
α

Fit(s)
(3.14)

where s is a solution (tree), Fit(s) its fitness, si the function or the
terminal set at node i in this individual, α is a constant (α = 0.1), Pi,si

is the value of the pheromone for the instruction si in the node i.

A brief description of AP algorithm is as follows:

S1 Every component of the pheromone tree is set to an average value;
S2 Random generation of tree based on the pheromone tree;
S3 Evaluation of ants using fitness function;
S4 Update of the pheromone table according to Eqn. 3.13 and Eqn. 3.14;
S5 Go to step S1 unless some criteria is satisfied.

3.5.2 Parameter Optimization Using Differential Evolution
Algorithm

Parameter optimization is achieved using the differential evolution (DE) algo-
rithm. DE works as follows: First, all individuals are randomly initialized and
evaluated using the fitness function provided.Afterwards, the following process
will be executed as long as the termination condition is not fulfilled: For each in-
dividual in the population, an offspring is created using the weighted difference
of parent solutions. The offspring replaces the parent if it is fitter. Otherwise,
the parent survives and is passed on to the next iteration of the algorithm.

3.5.3 Procedure of the General Learning Algorithm for HWNN

The general learning procedure for constructing the HWNN network can be
described as follows:
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1) Create an initial population randomly (HWNN trees and its correspond-
ing parameters);

2) Structure optimization is achieved by using ant programming algorithm;
3) If a better structure is found, then go to step 4), otherwise go to step 2);
4) Parameter optimization is achieved by the DE algorithm as described in

subsection 2. In this stage, the architecture of HWNN model is fixed, and
it is the best tree developed during the end of run of the structure search.
The parameters (weights and flexible activation function parameters) en-
coded in the best tree formulate a particle.

5) If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step 6); otherwise
go to step 4);

6) If satisfactory solution is found, then the algorithm is stopped; otherwise
go to step 2).

3.5.4 Variable Selection Using HWNN Paradigms

It is often a difficult task to select important variables for a classification or
regression problem, especially when the feature space is large. Conventional
HWNN usually cannot do this. In the perspective of HWNN framework, the
nature of model construction procedure allows the HWNN to identify im-
portant input features in building an HWNN model that is computationally
efficient and effective. The mechanisms of input selection in the HWNN con-
structing procedure are as follows. (1) Initially the input variables are selected
to formulate the HWNN model with same probabilities; (2) The variables
which have more contribution to the objective function will be enhanced and
have high opportunity to survive in the next generation by a evolutionary
procedure; (3) The evolutionary operators i.e., crossover and mutation, pro-
vide a input selection method by which the HWNN should select appropriate
variables automatically.

3.5.5 Experimental Illustrations

Application to Mackey-Glass Time-Series

The chaotic Mackey-Glass differential delay equation is recognized as a bench-
mark problem that has been used and reported by a number of researchers
for comparing the learning and generalization ability of different models. The
mackey-Glass chaotic time series is generated from the following equation:

dx(t)
dt

=
ax(t− τ)

1 + x10(t− τ)
− bx(t). (3.15)

Where τ > 17, the equation shows chaotic behavior.
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Fig. 3.13 The evolved architecture of HWNN model for prediction of the Mackey-
Glass time-series(left), and the actual time series data, output of the evolved HWNN
model and the prediction error(right)

Table 3.12 Comparison of prediction error using different methods for the
Mackey-Glass time-series problem

Model name and reference Number of inuts RMSE

FNT model (Case 1) [190] 4 0.0069
FNT model (Case 2) [190] 7 0.0027
HWNN model 4 0.0043

To make the comparison with earlier work fair, we attempt to predict
x(t+6) by using the input variables x(t), x(t−1), . . . , x(t−18). 1000 sample
points were used and the first 500 data pairs of the series were used as training
data, while the remaining 500 were used to validate the model identified.

The used instruction sets to create an optimal HWNN model is S =
F

⋃
T = {+2, +3, +4}

⋃{x0, x1, . . . , x18}, where xi(i = 0, 1, . . . , 18) denotes
x(t), x(t− 1), . . . x(t− 18).

After 12 generations of the evolution, an optimal HWNN model was ob-
tained with RMSE 0.0045. The RMSE value for validation data set is 0.0043.
The evolved HWNN is depicted in Figure 3.13 (left). The actual time-series
data, the output of HWNN model are illustrated in Figure 3.13 (right). From
the evolved HWNN tree, it is evident that the optimal inputs variables for
constructing a HWNN model are: x(t), x(t − 2), x(t − 15) and x(t − 18). A
comparison result of different methods for forecasting Mackey-Glass data is
illustrated in Table 3.12.
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3.5.6 Application to Jenkins-Box Time-Series

The gas furnace data (series J) of Box and Jenkins (1970) was recorded from a
combustion process of a methane-air mixture. It is well known and frequently
used as a benchmark example for testing identification and prediction algo-
rithms. The data set consists of 296 pairs of input-output measurements.
The input u(t) is the gas flow into the furnace and the output y(t) is the
CO2 concentration in outlet gas. The sampling interval is 9s. For illustra-
tion, 10 inputs variables are used for constructing a HWNN model. The
proper time-lags for constructing a HWNN model are finally determined by
an evolutionary procedure.

The used instruction sets to create an optimal HWNN model is S =
F

⋃
T = {+2, . . . ,+4}

⋃{x0, x1, . . . , x9}, where xi(i = 0, 1, . . . , 9) denotes
y(t− 1), y(t− 2), y(t− 3), y(t− 4), and u(t− 1), u(t− 2), u(t− 3), u(t− 4),
u(t− 5) and u(t− 6), respectively.

After 21 generations of the evolution, the optimal HWNN model was ob-
tained with MSE 0.00021. The MSE value for validation data set is 0.00025.
The evolved HWNN is depicted in Figure 3.14 (left) and the actual time-
series, the HWNN model output and the prediction error is illustrated in
Figure 3.14 (right). From the evolved HWNN tree, it is evident that the op-
timal inputs variables for constructing a HWNN model are: u(t−3), u(t−4),
u(t− 6), y(t− 1), y(t− 2) and y(t− 3). It should be noted that the HWNN
model with proper selected input variables has better precision and good gen-
eralization ability. A comparison result of different methods for forecasting
Jenkins-Box data is illustrated in Table 3.13.
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Fig. 3.14 The evolved structure of HWNN model for prediction of Jenkins-Box
data (left), and the actual time series data, output of the evolved HWNN model
for training and test samples (right)
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Table 3.13 Comparison of prediction errors using different methods for the gas
furnace data

Model name and reference Number of inuts MSE

FNT model (case 1) [190] 2 0.00066
FNT model (case 2) [190] 7 0.00029
HWNN model 6 0.00025

From the above simulation results, it is clear that the proposed HWNN
model works well for function approximation problems.
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Hierarchical Fuzzy Systems

4.1 Introduction

Fuzzy inference systems [200], [201], [225] have been successfully applied to
a number of scientific and engineering problems during recent years. The
advantage of solving complex nonlinear problems by utilizing fuzzy logic
methodologies is that the experience or expert’s knowledge described as the
fuzzy rule base can be directly embedded into the system for dealing with the
problems. Many efforts have been made to enhance systematic design of fuzzy
logic systems [203], [204], [205], [206], [207], [239], [244]. Some research focus
on automatically finding the appropriate structure and parameters of fuzzy
logic systems by using genetic algorithms [204], [207], [239], evolutionary pro-
gramming [206], tabu search [208], and so on. There are many research works
focusing on partitioning of the input space, to determine the fuzzy rules and
parameters evolved in the fuzzy rules for a single fuzzy system [232], [229].
As it is well known, the curse-of-dimensionality is an unsolved problem in the
fields of fuzzy and/or neuro-fuzzy systems [243].

Some of the problems mentioned above are partially solved by several re-
searchers working in the hierarchical fuzzy systems domain [208], [209], [210],
[211], [212], [213], [214], [215], [216], [227]. Torra [202] has summarized all the
related recent research. As a way to overcome the curse-of-dimensionality, it
was suggested by Brown et al. [216] to arrange several low-dimensional rule
base in a hierarchical structure, i.e., a tree, causing the number of possible
rules to grow in a linear way according to the number of inputs. A method
was proposed to determine automatically the fuzzy rules in a hierarchical
fuzzy model [231]. Rainer [214] described a new algorithm which derives the
rules for hierarchical fuzzy associative memories that were structured as a
binary tree. Wang and Wei [210], [211], [217] proposed specific hierarchical
fuzzy systems and its universal approximation property was proved. But the
main problem lies in fact that this is a specific hierarchical fuzzy system
which lacks flexibility in structure adaptation, and it is difficult to arrange
the input variables for each sub-model. Lin and Lee [218] proposed a genetic

Y. Chen, A. Abraham.: Tree-Struc. Based Hybrid Com. Intelligence, ISRL 2, pp. 129–147.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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algorithm based approach to optimize the hierarchical structure and the pa-
rameters of 5-inputs hierarchical fuzzy controller for the low-speed control
problem. Based on the analysis of importance of each input variable and the
coupling between any two input variables, the problem of how to distribute
the input variables to different (levels of) relational modules for incremental
and aggregated hierarchical fuzzy relational systems was addressed [227].

Building a hierarchical fuzzy system is a difficult task. This is because we
need to define the architecture of the system (the modules, the input variables
of each module, and the interactions between modules), as well as the rules
of each modules. Two approaches could be used to tackle this problem. One
approach is that an expert supplies all the required knowledge for building
the system. The other one is to use machine and/or optimization techniques
to construct/adapt the system. Several machine learning and optimization
techniques have been applied to aid the process of building hierarchical fuzzy
systems. For example, Shimojima et al. use genetic algorithm to determine
the hierarchical structure [231]. This is combined with backpropagation and
gradient descent algorithm to fine tune its parameters. A structure identifica-
tion method of sub-models for hierarchical fuzzy modeling using the multiple
objective genetic algorithm was proposed by Tachibana and Furuhashi [233].
Chen et al. [234] have proposed a hybrid method using ant programming and
particle swarm optimization algorithm to optimize the hierarchical TS fuzzy
model.

From now onwards, the hierarchical structure or structure for short means
the way of arrangement of hierarchical TS fuzzy systems and the posi-
tion/selection of each input variable in the sub-fuzzy systems. The free pa-
rameters to be optimized including all the parameters used in the hierarchical
TS fuzzy systems including membership function parameters for each fuzzy
sets, the free parameters in the consequent parts of the fuzzy rule base for
each sub-fuzzy systems.

We illustrate a systematic design method for the hierarchical TS-FS model.
The hierarchical structure is evolved using a Probabilistic Incremental Pro-
gram Evolution (PIPE) [219], [220], [221] with specific instructions, an algo-
rithm originally used for automatic program synthesis. The fine tuning of the
rule’s parameters encoded in the structure is accomplished using Evolution-
ary Programming (EP). The proposed method interleaves both PIPE and EP
optimizations. Starting with random structures and rules’ parameters, it first
tries to improve the hierarchical structure and then as soon as an improved
structure is found, it fine tunes its rules’ parameters. It then goes back to
improve the structure again and, provided it finds a better structure, it again
fine tunes the rules’ parameters. This loop continues until a satisfactory so-
lution (hierarchical TS-FS model) is found or a time limit is reached. The
novelty of this paper is in the usage of evolutionary mechanism for selecting
the important features and for constructing a hierarchical TS fuzzy model
automatically.
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The rest of the Chapter is organized as follows. A new encoding and an
automatic design method for the hierarchical TS-FS is illustrated with some
simulation results related to system identification and time-series prediction
problems.

4.2 Takagi-Sugeno Fuzzy Inference System (TS-FS)

Fuzzy inference systems are composed of a set of if-then rules. A Takagi-
Sugeno fuzzy model has the following form of fuzzy rules [1] :

Rj : if x1 is A1j and x2 is A2j and . . . and xn is Anj

Then y = gj(x1, x2, . . . , xn), (j = 1, 2, . . . , N)

where gj(·) is a crisp function of xi. Usually, gj(x1, x2, . . . , xn) = ω0 +ω1x1 +
ω2x2 + · · · + ωnxn. The overall output of the fuzzy model is obtained by:

y =

∑N
j=1 gj(·)Tmj

i=1μij(xi)
∑N

j=1 T
mj

i=1μij(xi)
(4.1)

where 1 ≤ mj ≤ n is the number of input variables that appear in the
rule premise, N is the number of fuzzy rules, n is the number of inputs, μij

is the membership function for fuzzy set, Aij and T is a T-norm for fuzzy
conjunction.

The TS-FS is a single-stage fuzzy system. It is important to partition the
input space using some clustering, grid partitioning etc. [228]. The shapes of
membership functions in the antecedent parts, and the free parameters in the
consequent parts are also to be determined using some adaptive techniques
[229], [230], [244].

4.3 Hierarchical TS-FS: Encoding and Evaluation

An hierarchical fuzzy inference system not only provides a more complex and
flexible architecture for modelling nonlinear systems, but can also reduce
the size of the rule base to some extend. Figure 4.1 depicts some possible
hierarchical TS-FS models for 4 input variables and 3 hierarchical layers. The
problems in designing a hierarchical fuzzy logic system includes the following:

• Selecting an appropriate hierarchical structure;
• Selecting the inputs for each fuzzy TS sub-model;
• Determining the rule base for each fuzzy TS sub-model;
• Optimizing the parameters in the antecedent parts and the linear weights

in the consequent parts.
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There is no direct/systematic method for designing the hierarchical TS-FS.
From the evolution point of view, finding a proper hierarchical TS-FS model
can be posed as a search problem in the structure and parameter space. For
this purpose, a new encoding method for hierarchical TS-FS is developed.
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Fig. 4.1 Example of possible hierarchical fuzzy logic models, number of inputs: 4,
number of layers: 3

4.3.1 Encoding

A tree-structural based encoding method with specific instruction set is se-
lected for representing a hierarchical TS-FS in this research. The reasons for
choosing this representation are that (1) the tree has a natural and typical hi-
erarchical layer; (2) with pre-defined instruction sets, the tree can be created
and evolved using the existing tree-structure-based approaches, i.e., Genetic
Programming (GP) and PIPE algorithms.

Assume that the used instruction set is I = {+2,+3, x1, x2, x3, x4}, where
+2 and +3 denote non-leaf nodes’ instructions taking 2 and 3 arguments,
respectively. x1,x2,x3,x4 are leaf nodes’ instructions taking zero arguments
each. In addition, the output of each non-leaf node is calculated as a single
TS fuzzy sub-model. For this reason the non-leaf node +2 is also called a two-
input TS fuzzy instruction/operator. Figure 2 illustrates the tree structural
representation of the hierarchical TS fuzzy models (as per in Figure 1.)
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It should be noted that in order to calculate the output of each TS fuzzy
sub-model (non-leaf node), parameters in the antecedent parts and conse-
quent parts of the TS fuzzy sub-model should be embedded into the tree.

(b1) (b2) 

(b3) (b4) 

Fig. 4.2 Tree structural representation of the hierarchical T-S fuzzy models as
shown in Figure 1 (a1), (a2), (a3) and (a4), where the used instruction set is I =
{+2, +3, x1, x2, x3, x4}.

4.3.2 Evaluation

The output of a hierarchical TS-FS tree can be calculated from a layer to
layer basis. For simplicity, the calculation process of the tree (Figure 4.2 (b1))
is illustrated below. Assume that each input variable is divided into two fuzzy
sets and the used fuzzy membership function is:

μ(a, b;x) =
1

1 + (x−a
b )2

(4.2)
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First, the output of the TS fuzzy sub-model (node +2) is computed. Assume
that the used fuzzy sets for variables x3 and x4 are A11, A12 and A21, A22,
respectively. Suppose that the parameters in the consequent parts of rule base
are c0ij , c

1
ij , c

2
ij , (i = 1, 2 and j = 1, 2). These free parameters are encoded

in the node +2. Therefore, the corresponding fuzzy rules of node +2 can be
described as:

Ri,j : if x3 is A1i and x4 is A2j then yij = c0ij + c1ijx3 + c2ijx4

for i = 1, 2 and j = 1, 2.

The output of node +2 can be calculated based on the TS fuzzy model:

y =

∑2
i=1

∑2
j=1 σijyij

∑2
i=1

∑2
j=1 σij

(4.3)

where

σij = μA1i(x3)μA2j (x4) for i = 1, 2 and j = 1, 2.

Second, the overall output of the hierarchical TS fuzzy model is computed.
It has three inputs, x1, x2 and y, the output of the TS fuzzy sub-model (node
+2). Assume that the used fuzzy sets for variables x1, x2 and y are: B11,
B12, B21, B22, B31 and B32, respectively. Suppose that the parameters in
the consequent parts of rule base are d0

ijl, d
1
ijl, d

2
ijl, and d3

ijl (i = 1, 2, j =
1, 2, l = 1, 2). These free parameters are encoded in node +3. The complete
fuzzy rules of node +3 can be described as follows:
Ri,j,l : if x1 is B1i, x2 is B2j , y is B3l then zijl = d0

ijl + d1
ijlx1 + d2

ijlx2+
d3

ijly for i = 1, 2, and j = 1, 2 and l = 1, 2.
Thus, the overall output of the tree is

z =

∑2
i=1

∑2
j=1

∑2
l=1 μijlzijl

∑2
i=1

∑2
j=1

∑2
l=1 μijl

(4.4)

where

μijl(x1, x2, y) = μB1i(x1)μB2j (x2)μB3l
(y).

It should be noted that all the parameters encoded in the tree are randomly
generated along with the creation of the tree initially, which will be further
optimized using evolutionary programming.

4.3.3 Objective Function

The fitness function used for the PIPE and EP is given by mean square error
(MSE):

Fit(i) =
1
P

P∑

j=1

(yj
1 − yj

2)
2 (4.5)
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or Root Mean Square Error (RMSE):

Fit(i) =

√√√√ 1
P

P∑

j=1

(yj
1 − yj

2)2 (4.6)

where P is the total number of samples, yj
1 and yj

2 are the actual and hierar-
chical TS-FS model outputs of j-th sample. Fit(i) denotes the fitness value
of the i-th individual.

4.4 Evolutionary Design of Hierarchical TS-FS

The hierarchical structure is created and optimized using PIPE with specific
instructions and the fine turning of the rule’s parameters encoded in the
structure is accomplished using EP algorithm.

4.4.1 Algorithm for Designing Hierarchical TS-FS Model

Combining the self-organizing and structure learning characteristics of PIPE
and the parameter optimization ability of EP, we propose the following hybrid
algorithm for designing the hierarchical TS-FS model (Figure 4.3).

1) Set the initial values of parameters used in the PIPE and EP algorithms.
Set the elitist program as NULL and its fitness value as a biggest positive
real number of the computer at hand. Create the initial population (tree)
and corresponding parameters used in hierarchical TS-FS model.

2) Do structure optimization using PIPE algorithm, in which the fitness
function is calculated by Eqn. (4.5) or Eqn. (4.6).

3) If a better structure is found, then go to step 4), otherwise go to step
2). The criterion concerning with better structure found is distinguished
as follows: if the fitness value of the best program is smaller than the
fitness value of the elitist program, or the fitness values of two programs
are equal but the nodes of the former is lower than the later, then we say
that the better structure is found.

4) Parameter optimization using EP search. In this step, the tree structure
or architecture of hierarchical TS-FS model is fixed, and it is the best tree
taken from the end of run of PIPE search. All of the rules’ parameters
encoded in the best tree will be optimized by EP search in order to
decrease the fitness value of best program.

5) If the maximum number of EP search is reached, or no better parameter
vector is found for a significantly long time (100 steps) then go to step
6); otherwise go to step 4).

6) If satisfactory solution is found, then stop; otherwise go to step 2).
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Solution Found 

Stop
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Reached 
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Fig. 4.3 The flow chart of the proposed algorithm for designing the hierarchical
TS-FS model

4.4.2 Feature/Input Selection with Hierarchical TS-FS

It is often a difficult task to select important variables for prediction and clas-
sification problems, especially when the feature space is large. A predefined
single/multi level fuzzy model usually cannot do this. In the perspective of
evolution-driven hierarchical TS-FS framework, the nature of model construc-
tion procedure allows the H-TS-FS to identify important input features in
building an prediction or classification model that is computationally efficient
and effective. The mechanisms of input selection in the H-TS-FS constructing
procedure are as follows.

• Initially the input variables are selected to formulate the Hierarchical
TS-FS model with same probabilities;
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• The variables that has more contribution to the objective function will
be enhanced and have high opportunity to survive in the next generation
by a evolutionary procedure;

• The evolutionary operators i.e., crossover and mutation, provide a in-
put selection method by which the Hierarchical TS-FS would select the
appropriate variables automatically.

4.5 Experimental Illustrations

The proposed approach has been evaluated for nonlinear system identifica-
tion problems, Mackey-Glass chaotic time-series prediction problem, and the
Iris and Wine classification problems. The next subsections discuss these
applications and the results obtained by the evolutionary design of hierarchi-
cal TS-FS model and the performance is compared with other fuzzy/neural
learning approaches.

Table 4.1 Parameters Used in the PIPE Algorithm

Parameters Values

population size PS 100
elitist learning probability Pel 0.01
learning rate lr 0.01
fitness constant ε 0.000001
overall mutation probability PM 0.4
mutation rate mr 0.4

The used parameters in PIPE are shown in Table 4.1. The parameters used
in EP: population size is 60, opponent number Q = 30, α = 0.3. For all the
simulations, the minimum and maximum number of hierarchical layers are
predefined as 2 and 4 and each input variable is partitioned into 2 fuzzy sets.
The used fuzzy membership function is shown in Eqn.(4.2). The initial fuzzy
rules for each sub-fuzzy systems are randomly generated and all the free pa-
rameters including fuzzy sets membership function parameters and the free
parameters in the consequent parts of fuzzy rules are randomly generated
at [0,1] initially. It should be noted that the selection of the non-leaf’s in-
struction is experimental. Selecting more instructions will increase the struc-
ture/parameter search space and results in a bigger hierarchical TS fuzzy
system. For an identification or classification problem, if the input number is
n, selecting the maximum instruction +N as N = n/3 is enough according
to our experiments. This experimental rule should reduce the search space
significantly.
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4.5.1 Systems Identification

The first plant to be identified is a linear system given by [224],

y(k + 1) = 2.627771y(k)− 2.333261y(k− 1) + 0.697676y(k− 2)

+0.017203u(k)− 0.030862u(k− 1) + 0.014086u(k− 2) (4.7)

400 data points were generated with the randomly selected input signal u(k)
between -1.0 and 1.0. The first 200 points were used as training data set and
the remaining data were used as validation data set. The input vector is set
as x = [y(k), y(k− 1), y(k− 2), u(k), u(k− 1), u(k− 2)]. The used instruction
set is I = {+2,+3, +4, x0, x1, x2, x3, x4, x5}.

x0
x1

x2

x4

x1
x2 y y

x5

Fig. 4.4 The structure of evolved hierarchical TS-FS models, (left) for plant 1,
and (right) for plant 2

10 independent runs were taken. The average training time for 10 runs
is 245 seconds. The best structure of evolved hierarchical TS-FS models is
shown in Figure 4.4(left). The output of the evolved model, the actual output
and the test error for test data set are illustrated in Figure 4.5.

The second plant to be identified is a nonlinear system given by [224]:

y(k + 1) =
y(k)

1.5 + y2(k)
− 0.3y(k − 1) + 0.5u(k) (4.8)

The input and output of system are x(k) = [u(k), u(k−1), y(k), y(k−1)] and
y(k + 1), respectively.

The training samples and the test data set are generated by using the
same sequence of random input signals as mentioned previously. The used
instruction set is I = {+2,+3, +4, x0, x1, x2, x3}.

10 independent runs were run. The average training time of 10 runs is 317
seconds. The best structure of evolved hierarchical TS-FS model is shown in
Figure 4.4(right). The output of the evolved model, the actual output and
the test error for test data set are shown in Figure 4.6.
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Fig. 4.5 The actual and evolved outputs of the plant 1 for the test data set (left),
and the test error (right)

For comparison, the test results obtained by Elman and Jordan neural
networks [224], Wavelet Neural Networks (WNN) [190] and the proposed
Hierarchical TS-FS model (H-TS-FS) are shown in Table 4.2. From the above
simulation results, it is evident that the proposed hierarchical TS-FS model
works very well for identifying the linear/nonlinear systems much better than
the neural network models.

4.5.2 Chaotic Time-Series of Mackey-Glass

The Mackey-Glass chaotic differential delay equation is recognized as a bench-
mark problem that has been used and reported by a number of researchers
for comparing the learning and generalization ability of different models. The
Mackey-Glass chaotic time series is generated using the following differential
equation:
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Fig. 4.6 The actual and evolved outputs of the plant 2 for the test data set (left),
and the test error (right)

Table 4.2 The comparison of the MSE values for modified Elman nets [224], modi-
fied Jordan nets [224], wavelet neural networks (WNN)[190] and hierarchical TS-FS
model for test data set

Plant Elman Jordan WNN H-TS-FS

1 0.0000548 0.0000492 0.000000459 0.0000000432
2 0.0004936 0.0003812 0.000002728 0.0000007065

dx(t)
dt

=
ax(t− τ)

1 + x10(t− τ)
− bx(t). (4.9)

where a = 0.2 and b = 0.1, τ > 17 the equation shows chaotic behavior. In
our simulations, τ = 30 has been adopted. To compare with previous works
[227], we predicted the value of x(t + 6) using the input variables x(t − 30),
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x(t− 24), x(t − 18), x(t− 12), x(t− 6) and x(t), where t = 130 to t = 1129.
It corresponds to a 6-input to 1-output mapping.

1000 sample points were used in our study. The first 500 data pairs were
used as training data, while the remaining 500 were used to validate the model
identified. The used instruction set is I = {+2,+3, x0, x1, x2, x3, x4, x5},
where x0, x1, x2, x3, x4, x5 denote x(t − 30), x(t − 24), x(t − 18), x(t − 12),
x(t− 6) and x(t), respectively.

The results are obtained from training the hierarchical TS-FS models using
10 different experiments. The average training time of 10 runs is 719 seconds.
The average RMSE value for training and test data sets are 0.017 and 0.015,
respectively.

Two evolved structures of hierarchical TS-FS models are shown in
Figure 4.7. A comparison has been made to illustate the actual time-series,
the hierarchical TS-FS model output and the prediction error (Figure 4.8).
Figure 4.8 also depicts the convergence performance of the best hierarchical
TS-FS model. Performance comparison of the different methods for approx-
imating the Mackey-Glass data is shown in Table 4.3.

Table 4.3 Comparison of the incremental type multilevel FRS (IFRS) [227],
the aggregated type mutilevel FRS (AFRS) [227], and the hierarchical TS-FS in
Mackey-Glass time-series prediction (H-TS-FS1 and H-TS-FS2 are corresponding
to the model structures shown in Figure - right and left, respectively)

Model Stage No. of rules No. of parameters RMSE(train) RMSE(Test)

IFRS 4 25 58 0.0240 0.0253
AFRS 5 36 78 0.0267 0.0256

H-TS-FS1 3 28 148 0.0120 0.0129
H-TS-FS2 2 12 46 0.0145 0.0151

x5

x0
x1

x2

x1
x3
x5x4

x1
x0

y y

x2x0

Fig. 4.7 Two possible structures of hierarchical TS-FS models for predicting the
Mackey-Glass time-series: with RMSE = 0.01205 (left) and with RMSE = 0.01417
(right)
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Fig. 4.8 Actual time-series, model output and prediction error for test data set
(left), and fitness curve for training (right)

4.5.3 Iris Data Classification

The Iris data is a common benchmark in classification and pattern recognition
research [235]. It contains 50 measurements of four features from each of the
three species Iris setosa, Iris versicolor, and Iris virginica [237]. We label the
species 1, 2, and 3, respectively, which gives a 5 × 150 pattern matrix of
observation vectors:

ZT
k = [xk

1 , x
k
2 , x

k
3 , x

k
4 , ck], ck ∈ 1, 2, 3, k = 1, 2, . . . , 150 (4.10)

where xk
1 , x

k
2 , x

k
3 , x

k
4 are the sepal length, sepal width, petal length, and petal

width, respectively.
We normalized each attribute value into a real number in the unit in-

terval. Table 4.4 shows the results of some well-known classifier systems.
For the Iris example, we also used 150 patterns to design a hierarchical
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Table 4.4 Comparison of results for Iris data

Term sets Rules Recognition rate on total data set (%)

Wang et al. [238] 11 3 97.5
Wu et al. [239] 9 3 96.2
Shi et al. [204] 12 4 98.0

Russo [240] 18 5 100
Ishibuchi et al. [236] 7 5 98.0

HS-TS - 16 99.6

Table 4.5 Results of ten runs on Iris data

1 2 3 4 5 6 7 8 9 10 Average

Misclassification 1 1 0 0 0 1 1 1 1 0 0.6
Recognition rate (%) 99.3 99.3 100 100 100 99.3 99.3 99.3 99.3 100 99.6

Features 4 4 3 4 4 3 4 4 3 4 3.7
Rules 12 12 16 20 20 12 12 16 20 20 16

Parameters 64 60 84 108 108 60 64 84 104 108 84.4
Training time (minutes) 8 12 21 17 22 9 19 21 25 11 16.7

TS-FS classifier system via the proposed algorithm. The used instruction
set is F = {+2,+3, x1, x2, x3, x4}.

Table 4.5 shows the results of ten runs (i.e. ten different initializations of
parameters). To estimate the performance of the proposed method on unseen
data, the five-fold cross-validation was performed on the iris data. In the five-
fold cross-validation experiment, the normalized iris data were divided into
five disjoint groups containing 30 different patterns each, with ten patterns be-
longing to each class. Then we derived the hierarchical TS-FS models via the
proposed method on all data outside one group and tested the resulting hierar-
chical TS-FS classifier on the data within that group. Finally, five hierarchical
TS-FS were derived. The evolved hierarchical architectures for five-fold cross-
validation are shown in Figure 4.9. The convergence performance of five-fold
cross validation test 3 is shown in Figure 11(left). Table 4.6 reports the results

Table 4.6 Five-Fold cross validation for Iris data

1 2 3 4 5 Average (%)

Rules 12 20 20 24 12 17.6
Training patterns 120 120 120 120 120 120

Misclassification (training) 0 0 0 0 0 0
Recognition rate (training)(%) 100 100 100 100 100 100

Testing patterns 30 30 30 30 30 30
Misclassification (testing) 0 0 0 0 1 0.2

Recognition rate (testing)(%) 100 100 100 100 96.7 99.34
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Fig. 4.9 The evolved optimal H-TS-FS architectures for five-fold cross-validation
(Iris data)

Table 4.7 Comparison of results using Wine data

Features Term sets Rules Recognition rate on total data set (%)

Setnes et al. [241] 9 21 3 98.3
Wang et al. [238] 13 34 3 99.4

Roubos et al. [242] 5 15,11,10 3 98.9, 98.3. 99.4
Ishibuchi et al. [236] - 9 6 100

HS-TS 4.9 - 16.4 99.6

of five-fold cross validation. The average classification result is 100.0% correct
(no misclassifications) on the training data and 99.34% correct (average about
0.2 misclassification) on the test data using 17.6 rules (average).

4.5.4 Wine Data Classification

The wine data set is a 13-dimensional problem with 178 samples from three
classes. We chose this data set because it involves many continuous attributes.
We normalized each attribute value into a real number in the unit interval.

Table 4.7 illustrates the results of some well-known classifier systems.
For the wine data, we also used 178 patterns to design a hierarchical TS-

FS classifier system using the HS-TS algorithm. The used instruction set is
F = {+2,+3,+4, x1, x2, . . . , x13}.
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Fig. 4.10 The convergence performance of five-fold cross validation test 3 for Iris
data (left), and for Wine data (right)

Table 4.8 Results of ten runs on Wine data

1 2 3 4 5 6 7 8 9 10 Average

Misclassification 0 1 1 1 1 0 1 1 0 1 0.7
Recognition rate (%) 100 99.4 99.4 99.4 99.4 100 99.4 99.4 100 99.4 99.6

Features 5 4 4 5 5 6 4 6 6 4 4.9
Rules 16 12 12 20 16 20 12 20 20 16 16.4

Parameters 84 60 64 108 84 108 64 108 108 84 87.2
Training time (minutes) 10 14 23 19 24 13 22 24 28 18 19.5

Table 4.8 illustrates the empirical results of ten runs (i.e. ten different
initializations of parameters). To estimate the performance of the proposed
method on unseen data, the five-fold cross-validation was performed on the
Wine data. In the five-fold cross-validation experiment, the normalized Wine
data were divided into five disjoint groups. Then we derived the hierarchical
TS-FS models using the proposed method on all data outside one group and
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Table 4.9 Five-Fold cross validation for Wine data

1 2 3 4 5 Average (%)

Rules 20 16 24 20 32 22.4
Training patterns 136 144 144 144 144 142.4

Misclassification (training) 0 0 0 0 0 0
Recognition rate (training)(%) 100 100 100 100 100 100

Testing patterns 42 34 34 34 34 35.6
Misclassification (testing) 0 1 0 0 0 0.2

Recognition rate (testing)(%) 100 97.1 100 100 100 99.4
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Fig. 4.11 The evolved optimal H-TS-FS architectures for five-fold cross-validation
(Wine data)

tested the resulting hierarchical TS-FS classifier for the data within that
group.

Finally, five hierarchical TS-FS were derived. The evolved hierarchical ar-
chitectures for five-fold cross-validation are shown in Figure 4.11. The con-
vergence performance of five-fold cross validation test is illustrated in Figure
4.10(right). Table 4.9 reports the results of five-fold cross validation. The
average classification result is 100.0% correct (no misclassifications) on the
training data and 99.4% correct (average about 0.2 misclassification) on the
test data using 22.4 rules (average).

One major advantage of using a hierarchical TS-FS or a mutilevel fuzzy
system other than a single-level system (direct approach) is that the num-
ber of fuzzy rules and fuzzy operations involved in modeling process can
be reduced significantly when compared with those required by the single-
level counterparts. Due to the limitations to solve the hierarchical TS-FS
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analytically, we choose to identify the hierarchical TS-FS using an evolution-
ary optimization approach.

First, the hierarchical structure and the rules’ parameters can be flexibly
encoded into a TS-FS tree. And then, the PIPE and the EP algorithms
are employed to evolve the optimal structure and parameters alternatively.
Other tree-structure based evolutionary algorithms and parameter learning
algorithms can also be used to solve the problem. The methods used by
IFRS and AFRS [227], the hierarchical structure and input selection are
assigned based on: (1) analysis of the importance of each input variables;
(2)analysis of the coupling between input variables. In contrast to the IFRS
and AFRS, the hierarchical structure and input selection in this research are
accomplished using an evolutionary procedure automatically. Furthermore,
compared to the IFRS and AFRS the generated hierarchical TS-FS model
has some advantages in terms of the approximation accuracy, the number of
rules and the number of free parameters.

Simulation results shown that the evolved hierarchical TS-FS models are
effective for the identification of linear/nonlinear systems, for the prediction
of chaotic time-series, and for the classification of Iris and Wine data.

It should be noted that the hierarchical TS-FS has smaller number of rules
than a single level (direct approach) TS-FS. The number of rules and parame-
ters would increase tremendously (even difficult to manage) for large number
of inputs if a direct approach is used. This also results in slow convergent
speed.
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Reverse Engineering of Dynamic
Systems

5.1 Introduction

The general task of system identification problem is to approximate automat-
ically the behavior of an unknown plant using an appropriate model. Identi-
fication of nonlinear system suffers many problems including determination
of the structure and parameters of the system. Many traditional methods of
system identification are based on parameter estimation, and mainly rely on
least mean-squares (LMS) method. Recently soft computing based system
identification approaches, i.e., neural networks and fuzzy systems have been
an active research area.

For the identification and control problem of nonlinear dynamic system,
the evolutionary identification/control has received much attention during
the last few years [245][246][247][248][249][250][251]. These research works
can be classified into two types of methods: the one is to identify the param-
eters of the system and the other is to identify the structure or whole model of
the system. The former is illustrated by the Genetic Algorithms (GA), Evo-
lutionary Programming (EP) and the latter by the Genetic Programming
(GP) approach [245]. Kristinsson et al. provided an excellent account of the
art in the area of parameter identification by using GA [251]. Andrew et.al.
proposed a system identification method by using GP [245]. One of the un-
solved problems of the evolutionary identification is that the structure and
parameter of the system cannot be identified simultaneously. This Chapter
is intended to the Tree-Structure-based Evolutionary Algorithm (TSEA) for
system identification problem.

Tree-structure-based evolutionary algorithm is an ideal candidate for sys-
tem identification and controller design, by the direct matching of individual
structure and system model or control rule. The advantage of the method is
that the evolved model is of symbolic expression and is easier to analyze than
a black box model (e.g., a neural network model). This is a kind of structural
evolution in general. But it is difficult to cope with the dynamic behavior of
evolved system due to:

Y. Chen, A. Abraham.: Tree-Struc. Based Hybrid Com. Intelligence, ISRL 2, pp. 151–182.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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• the evolved symbolic expression is usually redundant and very long in
length;

• there are some differences between the evolved symbolic expression and
the traditional system representations, such as, transfer function, state
space representation and differential equation.

Can we evolve a symbolic expression that can be represented as a meaningful
expression, i.e., a differential equation or a transfer function and it can be
easily addressed by using traditional techniques? Many studies have shown
that the effectiveness of evolutionary algorithms depends sensitively on the
choice of representations, that is, it is important for the problem at hand to
choice a proper map between the search space of knowledge structures (the
phenotype space) and the space of the chromosomes (the genotype space).

We illustrate a new representation scheme of the additive models, by which
the linear and nonlinear system identification problems are addressed by us-
ing automatic evolutionary design procedure. The architecture of nonlinear
systems and the input variables are evolved and selected by a tree-structure
based evolutionary algorithm and the corresponding parameters are opti-
mized by a random search algorithm.

The Chapter is organized as follows. First a gentle introduction to tree
structural representation and calculation of the additive tree models is pro-
vided. Further an hybrid algorithm for evolving the additive tree models and
some simulation results for the prediction of chaotic time series, the recon-
struction of polynomials and the identification of the linear/nonlinear system
is illustrated.

5.2 Calculation and Representation of Additive Models

Many scientific and engineering problems can be finally formulated as a
complex nonlinear mapping problem, in which local linear models and lo-
cal nonlinear models play a key role for analysis of the characteristics of the
system. In order to efficiently analyze the characteristics of nonlinear systems,
a method for evolutionary design of additive models is developed.

The candidate solution for analyzing the nonlinear system is represented
as an additive tree model (Figure. 5.1), in which the root node returns the
weighted sum of a number of linear/nonlinear terms according to the struc-
ture of the subtrees. The structure and weights/parameters of the additive
tree are evolved by tree-structure based evolutionary algorithm and a random
search algorithm, respectively.

Two instruction/operator sets I0 and I1 are used for generating the addi-
tive tree in this approach.

I0 = {+2,+3, . . . ,+N}
I1 = F ∪ T = {∗,%, sin, cos, exp, rlog, x,R}
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Fig. 5.1 Example: Interpretation of an additive tree and its symbolic expression

where F = {∗,%, sin, cos, exp, rlog} and T = {x,R} are function set and ter-
minal set. +N , ∗, %, sin, con, exp, rlog, x, and R denote addition, multipli-
cation, protected division (∀x, y ∈ R, y 
= 0 : x%y = x/y and x%0 = 1), sine,
cosine, exponent, protected logarithm (∀x ∈ R, x 
= 0 : rlog (x) = log (abs (x))
and rlog (0) = 0), system inputs, and random constant number, and taking
N , 2, 2, 1, 1, 1, 1, 0 and -1 arguments respectively.
N is a integer number (the maximum number of linear/nonlinear terms),

I0 is the instruction set of the root node, and the instructions of other nodes
are selected from instruction set I1. Each node of Nd,w of the tree contains
a random constant Rd,w or an instruction Id,w, where d and w denote the
node’s depth and horizontal position of the tree.

Note that if the instruction set I1 is defined as I1 = {∗2, ∗3, . . . , ∗n, x1, x2,
. . . , xn, R}, the additive model becomes a polynomial in which the compo-
nents and input variables of the polynomial can be selected and determined
by using an evolutionary procedure.

5.3 Hybrid Algorithm

5.3.1 Tree-Structure Based Evolutionary Algorithm

Tree-structure based evolutionary algorithms include Genetic Programming
(GP) [252] and Probabilistic Incremental Program Evolution (PIPE)[253][254]
[255][256][257][258].
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It is well known that an expression corresponding to f1(x) = x+x2 +x3 is
usually evolved much fast than one corresponding to f2(x) = 2.71x+ 3.14x2

by GP for function regression due to the fact that it is difficult for GP to
find the proper parameter in the polynomial. But if some real-valued param-
eters are added or attached to the tree or node and provide some appropriate
calculation structure, GP can be fast in finding polynomials with real coeffi-
cients. This fact implies a new research direction to improve the efficiency of
GP and to develop new tree-structure based computational models.

Tree-structure based evolutionary algorithms cannot be used for discover-
ing the structure and the parameters of nonlinear system simultaneously, and
the evolved solution is usually redundant. This fact also motivates the us-
age of additive tree approach. Due to the specific computational structure of
additive tree, the tree-structure based evolutionary algorithm has been mod-
ified so as to make it satisfy few following needs: (1) Different initialization
method; (2) Specific instruction sets are used; (3) Different creation and cal-
culation methods of the additive tree; and finally (4) Different evolutionary
operators are applied to the additive tree.

5.3.2 Evolving an Optimal or Near-Optimal Structure of
Additive Model

Finding an optimal or near-optimal additive tree is an evolutionary process.
A number of additive tree variation operators are developed as follows:

Mutation

Four mutation operators were employed to generate offsprings from the
parents. These mutation operators are as follows:

(1) Change one terminal node: randomly select one terminal node in the
additive tree and replace it with another terminal node;

(2) Change all the terminal nodes: select each and every terminal node in
the additive tree and replace it with another terminal node;

(3) Grow: select a random leaf in hidden layer of the additive tree and replace
it with a newly generated subtree.

(4) Prone: randomly select a function node in the additive tree and replace
it with a terminal node.

Following the work in [259], the additive tree operators were applied to each of
the parents to generate an offspring using the following steps: (a) A Poission
random number N , with mean λ, was generated. (b) N random mutation
operators were uniformly selected with replacement from above four mutation
operator set. (c)These N mutation operator were applied in sequence one
after the other to the parent to get offspring.
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Crossover

Select two additive trees randomly and select one nonterminal node in the
hidden layer for each additive tree randomly, and then swap the selected sub-
tree. The crossover operator is implemented with a pre-defined a probability
0.3 in this study.

Selection

EP-style tournament selection [259] with 12 opponents was applied to select
the parents for the next generation. This was repeated in each generation for
a predefined number of generations or until the best structure is found.

Objective function

Objective function is calculated by the mean square error (MSE) or sum of
absolute error(SAE):

Fit(i) =
1
P

P∑

j=1

(yj
1 − yj

2)
2 (5.1)

Fit(i) =
P∑

j=1

|yj
1 − yj

2| (5.2)

where P is the total number of training samples, yi
1 and yi

2 are the actual
and model outputs of i-th sample. Fit(i) denotes the fitness value of i-th
individual;

In order to learn the structure and parameters of the additive tree model
simultaneously, a tradeoff between the structure optimization and parameter
learning should be taken. In fact, if the structure of the evolved model is not
appropriate, it is not useful to pay much attention to the parameter opti-
mization. On the contrary, if the best structure has been found, the further
structure optimization may destroy the best structure.

We illustrate a approach for balancing the structure optimization and pa-
rameter learning is proposed. If a better structure is found then do random
search for a number of steps: maximum allowed steps or stop at case of that
no better parameter vector is found for a significantly long time (say 100 to
2000 in our experiments). Where the criterion of better structure is distin-
guished as follows: if the fitness value of the best program is smaller than the
fitness value of the elitist program, or the fitness values of two programs are
equal but the nodes of the former is lower than the later, then we say that
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the better structure is found. Where the best and elitist program is the best
program at current generation and the one found so far, respectively.

5.3.3 Parameter Optimization

In the parameter (weights) learning stage, there are a number of learning al-
gorithms (such as GA, EP, gradient based learning) can be used for the tuning
of the weights. A random search algorithm [260] is selected only because its
simplicity and effectiveness in the aspects of local and global search.

Given a parameter vector θ(k) = [λ1(k), λ2(k), . . . , λN (k)], where k is ran-
dom search step. Let x(k) = [x1(k), x2(k), . . . , xN (k)] denotes the small ran-
dom disturbance vector, which is generated according a probability density
function. The random search algorithm can be summarized as follows:

1. Choose an initial value of the parameter vector to be optimized randomly,
θ(0), calculate the objective function, F (θ(0)), and set k = 0.

2. Generate random search vector x(k).

– calculate F (θ(k) + x(k)). If F (θ(k) + x(k)) < F (θ(k)), the current
search is said to be success and then set y(k) = 1 and θ(k + 1) =
θ(k) + x(k). else,

– calculate F (θ(k) − x(k)). If F (θ(k) − x(k)) < F (θ(k)), the current
search is said to be success too and then set y(k) = 1 and θ(k + 1) =
θ(k) − x(k). otherwise,

– the search is said to be failure and then set y(k) = 0, and

θ(k + 1) =

⎧
⎨

⎩

θ(k) If K+
er > Ker and K

−
er > Ker

θ(k) + x(k) If K+
er < K−

er

θ(k) − x(k) If K+
er ≥ K−

er

(5.3)

where Ker ≥ 1 is the maximum error ratio, K+
er and K−

er are defined
by

K+
er =

F (θ(k) + x(k))
F (θ(k))

(5.4)

K−
er =

F (θ(k) − x(k))
F (θ(k))

(5.5)

3. If satisfied solution is found then stop, else set k = k + 1 and go to
step 2.

It can be seen that the effectiveness of the random search depends largely
on the random search vector x(k). Usually for random search the Gaussian
probability density functions (PDFs) are used to generate the random search
vector [261][262]. In RasID, the used PDF is:
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f(xm) =
{

(1 − qm)βeβxm , if xm ≤ 0
qmβe

−βxm , if xm > 0 (5.6)

where adjustable parameters qm ∈ [0, 1] and β are used to control the range
and direction of the intensification and the diversification search. Two exam-
ple graphs of the PDF are shown in Fig. 5.2, from which we can see that the
larger the β is, the smaller the local search range is; the larger the qm is, the
higher the search probability in positive direction is. qm = 0.5 means that
there is same search probability in positive and in negative direction.
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Fig. 5.2 A specific probability distribution function in which the shape of the
function depends on the parameters β and q. (a) The larger the β is, the smaller
the local search range is. (b) The larger the qm is, the higher the search probability
in positive direction is.

By using the above probability distribution function, the random search
vector x(k) can be obtained as follows:

xi(k) =

⎧
⎨

⎩

1
β ln

(
zi(k)

1−qi(k)

)
, if (0 < zi(k) ≤ 1 − qi(k))

− 1
β ln

(
1−zi(k)

qi(k)

)
, if (1 − qi(k) ≤ zi(k) < 1)

(5.7)

where zi(k) is the random real number uniformly distributed at [0,1], qi(k) =
0.5 and i = 1, 2, . . . , N .
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The next problem is how to adaptively tune the parameters β and qi(k) in
order to quickly and efficiently find the global minimum in the search space.
In the illustrated experiments, the parameter qi(k) is fixed as qi(k) = 0.5.
The parameter β is adaptively changed according to the following equation:

β = β0 + (β1 − β0) e−φIsf (5.8)

where φ is designed to realize an intensified search and the index Isf for
diversified search, β0 and β1 are the lower and upper bound of β, respectively.

In addition, the adjustment of the parameters φ, Isf and qi(k) are given
in Eq. 5.9, Eq. 5.10 and Eq. 5.11, respectively.

φ =

⎧
⎪⎪⎨

⎪⎪⎩

ciφ Psf > Psf0

φ Psf = Psf0 or φ ≤ φmin

cdφ Psf < Psf0 and φ > φmin

φ0 k = pre− specified integers

(5.9)

where ci ≥ 1.0, 0 < cd ≤ 1.0 are two coefficients assigned with appropriate
value, φ0 and φmin is the initial and minimum values of φ.

Isf =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ > φmin or
Isf0,

(
y(k) = 1 and Isf > Isfmax

)
or

k = pre− specified integers
Isf −Isf1, y

(k) = 1 and φ ≤ φmin

Isf −Isf2, y
(k) = 0 and φ ≤ φmin

(5.10)

where Isf0 is the initial value of Isf , Isf1 and Isf2 are two appropriate
positive values with Isf1 < Isf2.

qi(k) =

⎧
⎪⎨

⎪⎩

αqi(k), if xi(k) < 0 or ∂+F
∂λi

> 0
qi, if xi(k) = 0 or ∂+F

∂λi
= 0

αqi + (1 + α), if xi(k) > 0 or ∂+F
∂λi

< 0
(5.11)

where α ∈ [0, 1] is an appropriate value and ∂+F
∂λi(k) is the ordered derivative

of F for λi(k).

5.3.4 Summary of General Learning Algorithm

The general learning procedure for the optimal design of additive models can
be described as follows:

1) Create an initial population randomly (additive trees and their corre-
sponding parameters);

2) Structure optimization by the additive tree variation operators as de-
scribed in above
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3) If the better structure is found, then go to step 4), otherwise go to step
2);

4) Parameter optimization by random search algorithm as described above.
In this stage, the tree structure or architecture of additive model is fixed,
and it is the best tree taken from the end of run of the structure search.
All the parameters used in the best tree is formulated as a parameter
vector to be optimized by local random search algorithm;

5) If the maximum number of local search is reached, or no better param-
eter vector is found for a significantly long time (100 steps) then go to
step 6); otherwise go to step 4);

6) If satisfactory solution is found, then stop; otherwise go to step 2).

5.3.5 Experimental Illustrations

Developed additive models are applied to prediction of chaotic time series,
the reconstruction of polynomials and the identification of linear/nonlinear
systems.

For each problem, the instruction sets are determined according to the
flowing rule: the instruction set I0 is selected according the complexity es-
timation of the problem at hard; the instruction set I1 is selected contain-
ing all the terminal instructions and the additional nonterminal instructions
{R, ∗2, . . . , ∗p}, here p should not be larger than the input number. In addi-
tion, the parameters used for structure evolution are listed in Table 5.1 and
the random search algorithm parameters are shown in Table 5.2.

Table 5.1 Parameters used in the flexible neural tree model

Parameter Initial value

Population Size PS 30

Crossover probability 0.3

Maximum local search steps 2000

Initial connection weights rand[-1, 1]

Initial parameters ai and bi rand[0,1]

Table 5.2 Parameters used in random search algorithm

β0 β1 α φ0 φmin Isf0 Psf0

0.1 1000 0.995 0.1 0.001 10 0.3

�Isf1 �Isf2 Ismax Ker ci cd

0.02 0.1 100 1.001 1.01 0.995
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Example 1: Prediction of Chaotic Time Series

Given the Henon map as follows:

x(k + 1) = α− x(k)2 + βx(k − 1) (5.12)

where x(k) ∈ [−2.0, 2.0], α = 1.4 and β = 0.3.
100 training data are randomly generated with randomly selecting the

initial conditions of x(0) and x(1) by using Eqn. 5.12. The structure and
parameters of the system are identified by using the instruction set I0 =
{+2,+3,+4,+5,+6,+7,+8} and I1 = {∗, x, R}.

The evolved Henon map as the best solution is obtained at generation 127
with fitness 0.007911:

x(k + 1) = 1.400015− 1.000050x(k)2 + 0.300007x(k− 1) (5.13)

Figures 5.3 and 5.4 present the outputs of actual system and evolved model
and the prediction errors for training data set and validation data set, respec-
tively. It is obvious that the generalization ability of evolved models is very
well good, because the evolved model is almost same as the original system
model.

In addition, in order to learn about how to select the number of instructions
in the instruction set I0, we varied the instruction set I0 as follows:

case 1: I0 = {+2,+3}
case 2: I0 = {+2,+3, · · · ,+5}
case 3: I0 = {+2,+3, · · · ,+10}
case 4: I0 = {+2,+3, · · · ,+15}

Four independent experiments were done. Simulation results illustrate that
a nonlinear system can be identified with a proper selection of instruction
set I0, in which the number of instructions in the instruction set I0 (the
number of nonlinear terms of a nonlinear system to be approximated) will
affect the convergence speed of the hybrid method. The smaller the number
of instructions is, the faster the convergence speed is. But it is valuable to
note that the nonlinear system may not be identified while the number of
instructions is too small. The bigger the number of instructions is, the slow
the convergence speed is. In our experiments, with the increase of number of
instructions, it required 132 generations to get a solution with fitness value
0.028245 for case 3, and 2217 generations with fitness value 0.016810 for
case 4.

Example 2: Reconstruction of Polynomials

We try to evolve a more complicated polynomial, a plant to be identified as
given by:



5.3 Hybrid Algorithm 161

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

Sampling point

O
ut

pu
ts

 a
nd

 e
rr

or
Real output
Model output
Error

Fig. 5.3 The actual and model outputs for training data set and prediction error
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Fig. 5.4 The actual and model outputs for validation data set and prediction error
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Fig. 5.5 The actual and model outputs for training data set and APPROXIMA-
TION error

y = 0.2 + 0.3x1 + 0.4x2 + 0.5x3 + 0.6x2
1 + 0.7x2

2 + 0.8x2
3 (5.14)

+0.9x1x2 + 0.1x1x3 + 0.2x2x3;

The objective here is to optimally identify the structure and parameters of
the nonlinear system. 400 samples are randomly generated within the interval
[0,1]. The first 200 data points are used for the training and the remaining
data is used for validation.

The used instruction set I0 = {+8,+9,+10,+11,+12} and I1 = {∗, x1, x2,
x3}.

The used fitness function is the sum of absolute error between the actual
and evolved outputs of the plant. The control parameters of the proposed
method are same as those described in Tables 5.1 and 5.2. The identification
results are illustrated in Figures 5.5 and 5.6 for training data set and test
data set, respectively.

It is evident that the robustness of the evolved polynomial is very well
because the evolved symbolic expression is very close to the actual polynomial
in terms of structure and parameter.

Example 3: Linear System Identification

A benchmark ARMAX system often used to test various identification meth-
ods is given by [251]:
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Fig. 5.6 The actual and model outputs for validation data set and approximation
error

y(k) = b0u(k − 5) + b1u(k − 6) + a0y(k − 1) + a1y(k − 2) (5.15)
+c0e(k) + c1e(k − 1) + c2e(k − 2)

where a0 = 1.5, a1 = −0.7, b0 = 1.0, b1 = 0.5, c0 = 1.0, c1 = −1.0, c2 = 0.2.
The objective here is to optimally identify the structure and parameters of
the system in the presence of the noise. The input u(k) is randomly generated
at [-5, 5]. The e(k) is Gaussain-distributed random variable with mean 0 and
deviation 1. 400 samples are generated by using the above input u(k) and
eqn. 5.10, in which 200 data used for training and the other 200 data is used
for validation.

The used instruction set is I0 = {+2, +3, +4, +5, +6, +7, +8, +9, +10}
and I1 = {∗, u(k − 5), u(k − 6), y(k), y(k − 1), y(k − 2), e(k), e(k − 1),
e(k − 2)}.

The used fitness function is the absolute error between the actual and
evolved outputs of the plant. The control parameters of the proposed method
are shown in Table 5.1. The initial values of parameter in random search are
shown in Table 5.2.

The following model is obtained at generation 123 with the fitness 0.669568:
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Fig. 5.7 The actual and model outputs for training data set and identification
error

y(k) = 1.000307u(k− 5) + 0.505093u(k− 6) (5.16)
+1.499481y(k− 1) − 0.699698y(k− 2)
+0.998582e(k)− 1.001312e(k− 1)
+0.198232e(k− 2)

Figure 5.7 presents the outputs of actual system and evolved model and
identification error training data set. The generalization ability of the model
is illustrated in Figure 5.8.

Example 4: Nonlinear System Identification

A second-order non-minimum phase system with gain 1, time constants 4s
and 10s, a zero at 1/4s, and output feedback with a parabolic nonlinearity
is chosen to be identified. With sampling time T0 = 1s, this system follows
the nonlinear difference equation:

y(k) = −0.07289[u(k− 1) − 0.2y2(k − 1)] + 0.09394[u(k− 2) (5.17)
−0.2y2(k − 2)] + 1.68364y(k− 1) − 0.70469y(k− 2).

where the input lie in the interval [-1,1].
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Fig. 5.8 The actual and model outputs for validation data set and identification
error

The training data and test data are generated using the input signals shown
in Figures 5.9 and 5.10. The used instruction sets are I0 = {+3, . . . ,+8},
I1 = {∗, u(k−1), u(k−2), y(k−1), y(k−2)}. The evolved model is almost same
as the original system. The used cost function is the sum of the absolute error
(SAE). The SAE for training data and test data are 1.873652 and 2.349801,
respectively. A comparison between process and simulated model outputs on
training data set is depicted in Figure 5.11. Figure 5.12 presents the model
and system outputs and the identification error for validation data set.

From above simulation results, it can be seen that the proposed method
works very well for generating system models.

5.3.6 Discussions

We illustrated the design of an additive tree model and an optimization algo-
rithm. In the viewpoint of the calculation for structure, the additive tree model
can be seen as a natural computational structure for modeling a class of non-
linear systems, in which the characteristics of nonlinear systems can be recon-
structed and captured by using automatically evolved additive tree model.

Simulation results for the prediction of chaotic time series, the reconstruc-
tion of polynomials and the identification of linear/nonlinear systems show
the feasibility and effectiveness of the proposed method. The evolved addi-
tive tree models have following two advantages: (1) it is robust, and (2) it is
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Fig. 5.9 Excitation input signals for generating the training data set
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Fig. 5.11 Comparison between process and simulated model output for the
training data set
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easy to analysis by using traditional techniques. This is because the evolved
additive tree model is simple in the form and very near to the traditional
representation of the system to be reconstructed.

The key problem for finding an appropriate additive tree to model a non-
linear system is that how to find an effective method to search an optimal
or near-optimal solution in the additive tree structure space and related pa-
rameter space. We illustrated a method, which alternatively search the two
spaces by using a tree-structure based evolutionary algorithm and a local
random search algorithm. Other tree-structure based methods and parame-
ter learning algorithms can also be modified and used to solve problems.

5.4 Inferring a System of Differential Equations

In the fields of physics, chemistry, economics, bioinformatics etc., a lot of prob-
lems can be expressed by the ordinary differential equations(ODEs). The prob-
lems of forecasting, quantum mechanics, wave propagation, stock market dy-
namics and identification of biological systems are some examples [263]. For this
reason various methods have been proposed to infer the ODEs during the last
few years. The researches can be classified into two classes: one is to identify the
ordinary differential equation’s parameters and the other is to identify the ordi-
nary differential equation’s structure. The former is exemplified by the Genetic
Algorithms (GA), and the latter by the Genetic Programming (GP).

Cao et al. used GP to evolve the ordinary differential equations from the
observed time series [264]. The main idea was to embed the genetic algorithm
in genetic programming, where the GP was employed to discover and opti-
mize the model’s structure, and the GA was employed to optimize the model’s
parameters. Authors illustrated that the GP-based approach introduced nu-
merous advantages over the most available modeling methods. Iba proposed
ordinary differential equations identifying method based on the least mean
square(LMS) and the ordinary GP [265][273]. Some individuals were created
by the LMS method at some intervals of generations and they replaced the
worst individuals in the population. Tsoulos and Lagar proposed a novel
method based on the grammatical evolution [263]. This method formed gen-
erations of trial solutions expressed in an analytical closed form. The Bayesian
inferential methodology provides a coherent framework with which to char-
acterize and propagate uncertainty in such mechanistic models and this pro-
vides an introduction to Bayesian methodology as applied to system models
represented as differential equations [274].

We illustrate a new method, in which the particle swarm optimization
(PSO) is used along with Multi Expression Programming (MEP). We infer
the structure of the right-hand sides of the ODEs by MEP and optimize the
parameters of the ordinary differential equations by the PSO algorithm. The
partitioning [284] is used in the process of identifying the system’s structure.
Each ordinary differential equation of the ordinary differential equations can
be inferred separately and the search space rapidly reduces.
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Fig. 5.13 Example of a ordinary differential equations

5.5 Inference of Differential Equation Models by Multi
Expression Programming

5.5.1 Structure Optimization by the MEP

Encoding

Multi Expression Programming (MEP) is a variant of the genetic program-
ming, which is proposed by Oltean in 2002 [266] [267]. The traditional
GP [268] encodes a single expression (computer program). However, the MEP
chromosome encodes several genes. Each gene encodes a terminal or a func-
tion symbol, which is selected from a terminal set T or a function set F. The
two sets for a given problem are pre-defined. A gene that encodes a function
includes some pointers towards the function arguments. The number of the
pointers depends on how many arguments the function has. The best encoded
solution is chosen to represent the chromosome [269].

MEP is used to identify the form of the system’s differential equations.
For this purpose, we encode the right-hand side of each ordinary differen-
tial equation into a MEP chromosome. For example aN ordinary differential
equations model with the form of:

⎧
⎪⎨

⎪⎩

.

X1 = aX1 + bX2
.

X2 = cX1
.

X3 = dX2 + e

(5.18)

can be represented as three MEP chromosomes{E3, E6, E3} illustrated in
Figure 5.13, where the coefficients a, b, c, d, e are derived by the PSO (de-
scribed later in this Section).
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We infer the system of ordinary differential equations using partitioning. A
Partition in which the equations describing each variable of the system can be
inferred separately, and thus significantly reducing the research space. When
using partitioning, a candidate equation for a sigle variable is integratedby sub-
stituting references to other variables with the data from the observed time se-
ries [284].

Fitness Function

The MEP chromosome contains some expressions, so each expression Ei is
calculated by the root mean squared error(RMSE) or the sum of absolute
error(SAM):

f(Ei) =

√√√√ 1
n

n∑

j=1

(xji − x′j) (5.19)

f(Ei) =
n∑

j=1

∣∣xji − x′j
∣∣ (5.20)

where xji is the time series by expression Ei and x′j is the targeted time series.
The fitness of a chromosome is equal to the best fitness of the expressions
encoded.

Genetic Operators

The genetic operators used in the MEP algorithm are crossover and muta-
tion [266].

(1) Crossover. We choose the one-point crossover. Two parents are selected
according to the predefined crossover probability Pc. One crossover point
is randomly chosen and the parents exchange the sequences at this point.

(2) Mutation. One parent is selected according to the predefined mutation
probability Pm. One mutation point is randomly chosen. If the mutation
position encodes a function symbol, it may be mutated into a terminal
symbol or another function with arguments and parameters. And we can
mutate the function arguments and parameters into random arguments
and parameters.

5.5.2 Parameter Optimization by Particle Swarm Optimization
Algorithm

Encoding

At the beginning of this process, we check all the constants contained in each
equation , namely we count their number ni and report their places. The
distribution of parameters in each chromosome is illustrated in Fig. 5.14.
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3 : + 1, 1
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6 : - 2, 5
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Fig. 5.14 Distribution of parameters in each chromosome.

According to ni, the particles are randomly generated initially. Each par-
ticle xi represents a potential solution. A swarm of particles moves through
space, with the moving velocity of each particle represented by a velocity
vector vi. At each step, each particle is evaluated and keeps track of its own
best position, which is associated with the best fitness that has achieved so
far in a vector Pbesti. And the best position among all the particles is kept
as Gbest [270]. A new velocity for particle i is updated by

vi(t+ 1) = vi(t) + c1r1(Pbesti − xi(t)) + c2r2(Gbest(t) − xi(t)) (5.21)

where c1 and c2 are positive constant and r1 and r2 are uniformly dis-
tributed random number in [0,1]. Based on the updated velocities, each par-
ticle changes its position according to the following equation:

xi(t+ 1) = xi(t) + vi(t+ 1) (5.22)

5.5.3 Fitness Definition

The fitness of each variable is defined as the sum of squared error and the
penalty for the degree of the equations:

fitness(i) =
T−1∑

k=0

(x′i(t0 + kΔt) − xi(t0 + kΔt))2 + a (5.23)

where t0 is the starting time, t is the step size, T is the number of the data
point, xi(t0+kt)is the actual outputs of i-th sample, and x′i(t0+kt) is the
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ODEs’ outputs. All outputs are calculated by using the approximate forth-
order Runge-Kutta method. a is the penalty for the degree of the equations.
To reduce the problem search space, the individuals’ degrees are limited to the
stated range according to a. When calculating the outputs, some individuals
may cause overflow. In such cases, the individual’s fitness becomes so large
that it will be removed from the population.

5.5.4 Summary of Algorithm

The MEP for the optimal design of each ordinary differential equation can
be described as follows:

(1) Create an initial population randomly (structures and their correspond-
ing parameters);

(2) Structure optimization is achieved by MEP;
(3) At some interval of generations, select the better structures and optimize

its parameters. Parameter optimization is achieved by the PSO. In this
process, the structure is fixed.

(4) If satisfactory solution is found, then stop; otherwise go to step (2).

If the ordinary differential equations’ parameters have some error, we can
use the standard fourth-order Runge-Kutta method to integrate the ordinary
differential equations to optimize parameters.

5.6 Modeling Chemical Reactions

We have prepared four tasks to test the effectiveness of the method. Experi-
mental parameters are summarized in Table 5.3. Function and terminal sets
F and T are follows:

F = {+,−, ∗}
T = {X1, ..., Xn, 1}. (5.24)

Table 5.3 Parameters for experiments

Exp1 Exp2 Exp3

Population size 20 50 50
Generation 50 100 100
Crossover rate 0.7 0.7 0.7
Mutation rate 0.3 0.3 0.3
Time series 1 1 1
Stepsize 0.01 0.05 0.05
Data point 30 30 48
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5.6.1 Simple Chemical Reaction Model

The reaction equations [264] are described below:

HCHO + (NH2)2CO →k1H2N · CO ·NH · CH2OH (5.25)

H2N · CO ·NH · CH2OH + (NH2)2CO →k2(NH2CONH)2CH2 (5.26)

As a kind of typical consecutive reactions, the concentrations of the three
components in the system satisfy the following system:

⎧
⎪⎨

⎪⎩

.

X1 = −1.4000X1
.

X2 = 1.4000X1 − 4.2X2
.

X3 = 4.2000X2

(5.27)

The time series were generated for the above set of reactions with initial
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Fig. 5.15 Time series of the acquired model for chemical reaction

conditions {0.1, 0, 0} for {X1, X2, X3}. Experimental parameter for this task
are depicted in Table 1. We have acquired the system of eq. (5.28), which gave
the sums of sums of absolute errors as (X1,X2,X3)=(3.6×10−12, 4.01×10−12,
8.79×10−12). The time series generated is depicted in Figure 5.15 along with
that of the target.
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⎧
⎪⎨

⎪⎩

.

X1 = −1.400017X1
.

X2 = 1.400044X1 − 4.199987X2
.

X3 = 4.199939X2

(5.28)

The best kinetic model acquired in [264] was as follows:
⎧
⎪⎨

⎪⎩

.

X1 = −1.400035X1
.

X2 = 1.355543(X1 + t) − 4.482911X2
.

X3 = 4.069420X2 + t− 0.002812

(5.29)

where the sums of squared errors were(X1, X2, X3)=(1.6 × 10−11, 3.24 ×
10−8, 3.025 × 10−9). Note that the terminal set in [264] included the time
variable t.

5.6.2 Two-Species Lotka-Volterra Model

The Lotka-Volterra model describes interactions between two species, i.e.,
predators and preys, in an ecosystem [271]. The following differential equa-
tions represent a two-species Lotka-Volterra model:

{ .

X1 = 3X1 − 2X1X2 −X1
2

.

X2 = 2X2 −X1X2 −X2
2

(5.30)
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Fig. 5.16 Time series of the acquired model for Lotka-Volterra model
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A time series was generated for the above set of reactions with initial con-
ditions {0.04, 0.4} for {X1, X2}. The time series generated is shown in
Figure 5.16. Experimental parameter settings for this task are shown in
Table 5.3. We have acquired the system of eq. (5.31), which gave the sums
of sums of absolute errors as: (X1, X2)=(2.5 × 10−11, 4.45 × 10−10). In all
runs,we have succeeded in getting almost the same differential equations.

{ .

X1 = 2.999998X1 − 2.000081X1X2 − 0.9993X1
2

.

X2 = 2.000005X2 − 1.000064X1X2 − 0.999997X2
2

(5.31)

The best model acquired in [284] was eq.(5.32). When compared to that,
structure is the same and the parameters of obtained using the proposed
model are closer to the target model.

{ .

X1 = 3.0014X1 − 2X1X2 −X1
2

.

X2 = 2.0001X2 −X1X2 −X2
2

(5.32)

5.6.3 Bimolecular Reaction

The bimolecular reaction equations [272] are described below:

X2 +X1 →k1X3 (5.33)

X3 →k2X4 +X2 (5.34)

The corresponding rate equations for all the four species are as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

.

X1 = −2X1X2
.

X2 = −2X1X2 + 1.2X3
.

X3 = 2X1X2 − 1.2X3
.

X4 = 1.2X3

(5.35)

The time series were generated for the above set of reactions with initial
conditions{1, 0.1, 0, 0}for {X1, X2, X3, X4}, which is shown in Figure 5.17
along with the target time series. Experimental parameter for this task are
illustrated in Table 5.3.

We have acquired the system of eq. (5.37), which gave the sums of absolute
errors as (X1, X2, X3, X4)=( 1.6×10−11, 9.0×10−12, 8.8×10−12, 2.5×10−11).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

.

X1 = −1.9920X1X2
.

X2 = −1.1983X1X2 + 1.9920X3
.

X3 = 1.9920X1X2 − 1.1983X3
.

X4 = 1.1983X3

(5.36)
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Fig. 5.17 Time series of the acquired model for bimolecular reaction

Compared with eq. (5.36) [272], the developed model and parameters are
closer to the target system and the model is able to predict the standard
enzyme kinetics scheme with the rate parameters closer to the generative
values. ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

.

X1 = −1.99999X1X2
.

X2 = 1.20000X3 − 1.99999X1X2
.

X3 = −1.20000X3 − 2.00000X1X2
.

X4 t = 1.99999X3

(5.37)

5.7 Inferring Gene Regulatory Networks

Gene expression programs, which produce the living cells involving regulated
transcription of thousands of genes depend on recognition of specific pro-
moter sequences by transcriptional regulatory proteins. The problem is how
a collection of regulatory proteins associates with genes can be described as
a transcriptional regulatory network. The most important step is to identify
the interactions among genes by the modeling of gene regulatory networks.

Many models have been proposed to describe the network including the
Boolean network [276][282], Dynamic Bayesian network [277], the system of
differential equations [278] and so on. A recent review for inferring genetic
regulatory networks based on data integration and dynamical models is avail-
able in [283]. The system of differential equations is powerful and flexible
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model to describe complex relations among components [280], so many meth-
ods are proposed for inferring a system of differential equations for the gene
regulatory network during the last few years. But it is hard to determine the
suitable form of equations, which describe the network. In the previous stud-
ies, the form of the differential equation was being fixed. The only one goal
was to optimize parameters and coefficients. For example, Tominaga used
Genetic Algorithms (GA) to optimize the parameters of the fixed form of
system of differential equations [279]. In recent years some researchers stud-
ied the learning of gene regulatory network by inferring the structures and
parameters of a system of ODEs. Sakamoto proposed an ODEs identifica-
tion method by using the least mean square (LMS) along with the ordinary
genetic programming (GP) to identifying the gene regulatory network [280].
Cho proposed a new representation named S-tree based GP to identify the
structure of a gene regulatory network and to estimate the corresponding
parameter values at the same time [281]. Li proposed GP was applied to
identify the structure of model and Kalman filtering was used to estimate
the parameters in each iteration. Both standard and robust Kalman filtering
were considered [275]. But their inference algorithms can only be applied to
the small-scale networks.

The form of the ODE is usually represented by:
.

Xi = fi(X1, X2, ..., Xn)(i = 1, 2, ...., n) (5.38)

where Xi is the state variable and n is the number of components in the gene
regulatory network. In a network, Xi is the expression level of the ith gene
and n is the number of genes in the network.

MEP is used to identify the form of the system of differential equations.
For this purpose, we encode right-hand side of each ODE into a MEP chro-
mosome. We infer the system of ODEs with partitioning. Partition, in which
equations describing each variable of the system can be inferred separately,
significantly reducing the search space. When using partitioning, a candidate
equation for a signal variable is integrated by substituting references to other
variables with data from the observed time series. This allows us to infer the
structure of systems comprising more variables and higher degree of coupling
than were inferred by other methods [284].

The best ODEs is comprised of the equation obtained in each process. If
the parameters of ODEs have some error, we can use the standard fourth-
order Runge-Kutta method to integrate the ODE to optimize parameters.

We have prepared two tasks to test the effectiveness of the method. Ex-
perimental parameters are summarized in Table 5.4. Function and terminal
sets F and T are described as follows:

F = {+,−, ∗, xa}
T = {X1, ..., Xn, 1}. (5.39)
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Table 5.4 Parameters for experiments

Exp1 Exp2

Population size 5000 1000
Generation 2000 2000
Crossover rate 0.7 0.7
Mutation rate 0.3 0.3
Time series 1 1
Stepsize 0.01 0.05
Data point 15 20
gene size 5 15
PSO Population size 100 100
PSO Generation 100 100

X X X X 1 1 

X X 5 5 
X X 2 2 

X X 3 3 

 

Fig. 5.18 The targeted gene regulator network

5.7.1 The Small Artificial Gene Regulatory Network

Figure 5.18 illustrates an example of gene regulatory network. This type of
network can be modeled as a so-called S-system model [286]. This model is
based on approximating kinetic laws with multivariate power-law functions.
A model consists of n non-linear ODEs and the generic form of equation i is
given as follows:

X
′
i(t) = αi

n∏

j=1

X
gij

j (t) − βi

n∏

j=1

X
hij

j (t) (5.40)



5.7 Inferring Gene Regulatory Networks 179

Table 5.5 Parameters of the genetic network system

i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5

1 5.0 1.0 -1.0 10.0 2.0
2 10.0 2.0 10.0 2.0
3 10.0 -1.0 10.0 -1.0 2.0
4 8.0 2.0 -1.0 10.0 2.0
5 10.0 2.0 10.0 2.0

whereX is a vector of dependent variable, α and β are vectors of non-negative
rate constants and g and h are matric of kinetic orders.

The parameter of the genetic network are given in Table 5.5 and the initial
conditions are {0.7, 0.12, 0.14, 0.16, 0.18} for X1, X2, X3, X4, X5 [285]. Exper-
imental parameter settings for this task are shown in Table 5.4. The search
region of the parameters was [0.0, 15.0]. Five runs are carried out. In each
run, the proposed method produces one candidate solution. Selecting 30 bet-
ter structures to optimize parameters by PSO at every 10 generations. To
handle the powers of the component variable, we used the following terminal
set:

T = {X1, X
−1
1 , X2, X

−1
2 , X3, X

−1
3 , X4, X

−1
4 , X5, X

−1
5 } (5.41)

We created the following ODEs by the method and throughout the simu-
lations, we further confirm that the identified system is quite close to the
original system (Fig. 5.19).
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Fig. 5.19 Time series of the acquired model
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Table 5.6 Obtained Parameters of the ODEs by the proposed method and S-
tree(GP), α′

i, β
′
i:parameters by the proposed method, α′′

i , β′′
i : parameters by S-

tree(GP), αi, βi:true parameters

i α′
i/α′′

i /αi β′
i/β′′

i /βi

1 8.5854/4.9999/5.0 13.7959/9.9999/10.0
2 9.7709/10.0000/10.0 10.0117/10.0000/10.0
3 13.7629/10.0000/10.0 13.9742/10.0000/10.0
4 8.3954/8.0000/5.0 13.7959/10.0000/10.0
5 9.4643/9.9999/5.0 13.7959/10.0000/10.0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

.

X1 = 4.999994X3X
−1
5 − 9.999994X2

1.

X2 = 10.000023X2
1 − 10.000014X2

2.

X3 = 10.000016X−1
2 − 10.000015X2

3X
−1
2.

X4 = 8.000003X2
3X4 − 10.000001X2

3.

X5 = 9.999994X2
4 − 10.000019X2

5

(5.42)

Cho [281] proposed a new representation named S-tree based genetic pro-
gramming(GP) to identify the structure of a gene regulatory network and the
size of population was assumed as 10,000 and the proposed scheme was ter-
minated after 5×105 iterations. Compared to that, for the proposed method,
size of population and number of iterations are far smaller (Table 5.5). We
also obtained the true structure during every experiment. Table 5.6 depicts
the best parameters obtained among all the experiments. Obviously the pa-
rameters are very closer to the target model.

1 1 

Fig. 5.20 The large-scale Artificial Gene Regulatory Network
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Table 5.7 S-system parameters of the large-scale target model of the large artificial
gene regulatory network

αi 1.0

βi 1.0
gi,j g1,14 = −0.1, g3,12 = −0.2, g5,1 = 1.0,

g6,1 = 1.0, g7,2 = 0.5, g7,3 = 0.4, g8,4 = 0.2,
g9,5 = 1.0, g9,6 = −0.1, g10,7 = 0.3, g11,4 = 0.4,
g11,7 = −0.2, g12,13 = 0.5, g13,8 = 0.6, g14,9 = 1.0,
g14,15 = −0.2, g15,10 = 0.2, otherg(i, j) = 0.0

hi,j 1.0 if i = j, 0.0 otherwise

5.7.2 The Large-Scale Artificial Gene Regulatory Network with
Noisy Environment

This test system, which is the same with Experiment 1 is a reduced version of
test system ss30 genes that was introduced by [287]. Figure 5.20 illustrates
the example of gene regulatory network. The system represents a genetic
network with 15 variables. Table 5.7 shows the parameters of S-system for-
malism.

As we have to estimate a relatively large number of parameters and struc-
ture of the system of differential equations with a small data set, there can
be a lot of different possible network structures all of which bring about only
small differences in estimating the given data set. These false candidates can
be decreased by reducing the structural search space based on the available
constraint. The constant is that all the diagonal elements in the matrix h are
not zero (hii for i = 1, ..., n) [281]. Namely the i-th equation must contain
Xi. This is because as the concentration Xi is higher, Xi can participate in
the reaction more actively (i.e. it disappears fast) [281].

The set of time-series data began from randomly generated initial val-
ues and was obtained by solving the set of differential equations of the tar-
geted model. In the past, for large-scale artificial gene regulatory network,
the form of the differential equation was fixed, and the only one goal was
to optimize the parameters and coefficients [288]. We illustrate the Multi
Expression Programming approach to evolve the right hand side of the
equation. Experimental parameters for this task are shown in Table 5.4.
Ten runs were carried out and the search region of the parameters was [-
1.0, 1.0]. During the experiments, we could obtain the best structure and
parameters which were the same with the target model (Figure 5.20 and
Table 5.7) except the 11-th gene. We only obtained the 11-th differential equa-
tion:

.

X11 = X−0.199999
7 X0.018851

11 − X11. So the only interaction X4 → X11

could not be identified.
To test the performance of the proposed method in a real-world setting,

we added 1, 2, 5, 10 and 15% Gaussian noise to the time-series data in order
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to simulate the measurement noise that often corrupts the observed data
obtained from actual measurements of gene expression patterns. Except that
the size of population is fixed at 10000, other settings are same as in the
previous experiment. In the same execution time for each run, we obtained
the same structure by the time-series data, which has added 1, 2, 5 and 10%
Gaussian noise as the data without noise. When the noise ratio is similar up
to the 15%, the X3 → X7 and X4 → X11 are not identified. Hence, we can
conclude that the proposed algorithm is robust within 10% random noise.

Not having the fixed form, the proposed method can automatically identify
the structure and parameters of a network. In general the networks have
sparse structures. Without fixed form many irrelevant parameters need not
be optimized. Thus the computational complexity reduces largely. Time-series
data should be chosen carefully since an improper value can impair the success
rate of attaining good candidates for a true network structure [289].

By several experiments, we succeeded in creating the systems of differen-
tial equations, which are close to the target systems. The results show the
effectiveness and veracity of the proposed method. The method has following
two advantages: (1) a MEP chromosome encodes several expressions, so we
can acquire the best structure of the ordinary differential equations only by
a small population; (2) by partitioning, we can acquire the best system very
fast.
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Concluding Remarks and Further
Research

6.1 Limitations of Conventional Computational
Intelligence

Real-world problems are typically ill-defined systems, difficult to model and
with large-scale solution spaces. In these cases, precise models are impractical,
too expensive, or non-existent. The relevant available information is usually
in the form of empirical prior knowledge and input-output data representing
instances of the system’s behavior [290]. Soft Computing (SC), including
Neural Computing (NC), Fuzzy Computing (FC), Evolutionary Computing
(EC) etc., provides us with a set of flexible intelligent computational tools to
perform approximate reasoning, learning from data, search tasks etc.

NC, FC, EC, among others, have been established and illustrated their
strength and drawbacks. NC can perform ideally in domains of purely nu-
merical nature, as well as in making effective predictions in time series data
and nonlinear function approximations. EC could competitively perform opti-
mization tasks in a very large search space, identifying sub-optimal solutions
of high quality, becoming thus the methods of choice for domains suffering
from combinatorial explosion phenomena such as operations research, manu-
facturing etc. FC has been provide ideal for handling approximate concepts,
human characterizations and domains having unclear boundaries. Moreover,
it has been observed that the highly increasing computing power and tech-
nology, could make possible the use of more complex intelligent architec-
tures, taking advantage of more than one intelligent techniques, not in a
competitive, but rather in a collaborative sense. Therefore, discovering of
more sophisticated and new evolutionary learning models and its applica-
tion to new areas and problems still remain as key questions for the next
10 years.

Y. Chen, A. Abraham.: Tree-Struc. Based Hybrid Com. Intelligence, ISRL 2, pp. 185–190.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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6.2 Towards Tree-Structure Based Hierarchical Hybrid
Computational Intelligence

To investigate the hybrid technique further, an Hierarchical Hybrid Compu-
tational Intelligence (HHCI) framework is illustrated in this book. Based on
tree-structure based encoding and the specific function operators, the new
HHCI models can be flexibly constructed and evolved by using simple com-
putational intelligence techniques.

6.2.1 Tree Structure Based Evolutionary Computation Models

Tree-structure based evolutionary algorithms including Genetic Program-
ming (GP), Probabilistic Incremental Program Evolution (PIPE) and the
recent variants of GP, i.e., Gene Expression Evolution (GEP), Estimation of
Distribution Programming (EDP) and Multi Expression Evolution (MEP),
have been an active are of research in recent years.

Motivated by hierarchical fuzzy systems, a natural extension of traditional
computational intelligence (CI) models is to introduce some intermediate
levels of processing so that the HHCI models can be constructed. In this per-
spective, existing CI components should be employed to formulate different
HHCI models and the architecture of HHCI model could be determined by
the hierarchical nature and its learning ability of tree-structure based evolu-
tionary algorithms.

6.2.2 Hierarchical Hybrid Computational Intelligence
Framework

A tree-structure based HHCI framework is illustrated in Figure 6.1(e). A
function operator set {T2, T3, . . . , Tn} and a terminal set {x1, x2, . . . , xn}
are employed in the construction of the tree. The function operator Ti(i =
2, 3, . . . , n) denotes that the node has i arguments with the operator type of
T . Some possible types of the function operators are described as follows.

Types of Function Operators

Flexible Neuron Operator. The flexible neuron operator is illustrated in
Figure 6.1(a). Assume that the used flexible activation function is:

f(ai, bi, x) = exp(−(
x− ai

bi
)2). (6.1)

where ai, bi are free parameters. The output the operator can be calculated
as:
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Fig. 6.1 Some of the function operators and an HHCI tree. (a)a flexible neuron op-
erator, (b)Takagi Sugeno fuzzy operator, (c)basis function operator, (d)a fuzzy neu-
ral operator, and (e)a general representation (encoding) of HHCI model, where the
used function set is F = {T2, T3, . . . , T6} and the terminal set is T = {x1, x2, x3}.

y = exp(−(

∑n
j=1 ωjxj − ai

bi
)2). (6.2)

where ωj denotes adjustable connection strength of node and sub-node.

TS Fuzzy Operator. The fuzzy operator is shown in Figure 6.1(b). Takagi
and Sugeno developed a hybrid modelling technique designed to combine
conventional and fuzzy modelling. The Takagi Sugeno models are represented
by a series of fuzzy rules of the form:

Ri: IF(x is Ai) THEN (y=fi(xi))

where fi(x) is a local model used to approximate the response of the system
in the region of the input space represented by the antecedent. The overall
model output is calculated as the normalized sum:

y =
∑p

i=1 μAi(x)fi(xi)∑p
k=1 μAk(x)

(6.3)

where normalized fuzzy membership functions determine which local models
are valid given a particular input.

Basis Function Operator. The basis function operator is shown in Figure
6.1(c). In general, the basis function networks can be represented as:
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y =
m∑

i=1

ωiψi(x; θ) (6.4)

where x ∈ Rn is input vector, ψi(x; θ) is ith basis function, and ωi is the
corresponding weights of ith basis function and θ is the parameter vector
used in the basis functions. Examples of typical basis functions include:

(a) Gaussian radial basis function

ψi(x; θ) =
n∏

j=1

exp(−‖ xj − bj ‖2

aj
2

) (6.5)

(b) Order 2 B-Spline basis function

ψi(x; θ) =
n∏

j=1

B2(
xj − bj
aj

) (6.6)

where the translation and dilation of the order 2 B-spline function is given
by:

B2(
t− b

a
) =

⎧
⎪⎪⎨

⎪⎪⎩

9
8 + 3

2 ( t−b
a ) + 1

2 ( t−b
a )2, t ∈ [− 3

2a+ b,− 1
2a+ b)

3
4 − ( t−b

a )2, t ∈ [− 1
2a+ b, 1

2a+ b)
9
8 − 3

2 ( t−b
a ) + 1

2 ( t−b
a )2, t ∈ [ 12a+ b, 3

2a+ b]
0, otherwise

(6.7)

(c) Wavelet basis function

ψi(x; θ) =
n∏

j=1

1√|aj |
φ(
xj − bj
aj

) (6.8)

where φ is a mother wavelet, i.e., a Mexican Hat: φ(t) = 2√
3
π−1/4(1 −

t2)e−t2/2.

Fuzzy Neural Operator. The fuzzy neural operator is illustrated in Fig-
ure 6.1(d). AND neuron is a nonlinear logic processing element with n-inputs
x ∈ [0, 1]n producing an output y1 governed by the expression:

y1 = AND(x;w) (6.9)

where w denotes an n-dimensional vector of adjustable connections (weights).
The composition of x and w is realized by an t-s composition operator based
on t− and s−norms, that is:

y1 = T n
i=1(wiSxi) (6.10)
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with s denoting some s-norm and t standing for a t-norm. By reverting the
order of the t- and s-norms in the aggregation of the inputs, we end up with
a category of OR neurons:

y2 = OR(x;w) (6.11)
y2 = Sn

i=1(wiTxi) (6.12)

Each fuzzy neural operator is uniquely characterized by a number of param-
eters: a number of inputs, number of nodes in the hidden layer (h) and an
array of connections of the AND neurons as well as the OR neuron in the
output layer. The connections of the AND neurons can be systematically
represented in a matrix form V , while the connections of the OR neuron are
collected in a single vector form w. The overall output of the fuzzy neural
operator can be described as:

zj = AND(x, Vj), j = 1, 2, . . . , h, y = OR(z, w). (6.13)

Construction of HHCI Tree

Construction method of the HHCI tree is similar to the one used by GP
or PIPE algorithm. The only difference is that a specified data structure
(parameters) should be embedded into the node of the tree according to the
type of the function operators selected.

Fitness Functions

A fitness function maps program to scalar, real-valued fitness values that
reflect the program’ performances on a given task. Firstly the fitness func-
tions should be seen as error measures, i.e., MSE or RMSE. A secondary
non-user-defined objective for which algorithm always optimizes programs is
program size as measured by the number of nodes. Among programs with
equal fitness smaller ones are always preferred.

Optimal Design

The hierarchical structure is created and optimized by using tree-structure
based learning algorithms. The fine turning of the parameters encoded in the
structure can be accomplished by using a set of algorithms, i.e., genetic al-
gorithm, evolutionary strategy, evolutionary programming, differential evolu-
tion, particle swarm optimization, ant colony optimization, random search etc.

The proposed method interleaves both structure and parameter optimiza-
tions. Starting with random structures and related parameters, it first tries
to improve the hierarchical structure and then as soon as an improved struc-
ture is found, it fine tunes its parameters. It then goes back to improve the
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structure again and, provided it finds a better structure, it again fine tunes
the rules’ parameters. This loop continues until a satisfactory solution (hier-
archical model) is found or a time limit is reached.

The advantages of the general framework lie in that,

• For a given data set, the hierarchical structure of the HHCI models can
be evolved by using tree-structure based evolutionary algorithms auto-
matically. This is really important for the inherent hierarchical complex
systems.

• It is difficult for modeling problem with many input variables, the pro-
posed HHCI models can select the important input variables (features)
automatically.

• The HHCI is a data driven automatic modeling technique, in whole pro-
cess of the modeling, there is no need for prior knowledge about the
plant.

6.3 Static and Dynamical Models

In Chapters 2,3 and 4 we have illustrated several variants of static hybrid
computational intelligence models. These models are more efficient than a
single computational intelligence model, i.e., neural network models, fuzzy
system models etc. because these hybrid computational intelligence models
utilize the advantages of the single models. The limitation of the static models
is that the model cannot be used when the states of the system to be modeled
are changed over time.

Therefore in Chapter 5, we focused on an inverse problem, the inference of a
system of difference equations (DE) or a system of ordinary differential equa-
tions (ODE), from the observed time-series data using tree-structure based evo-
lutionary algorithms. The methods can be named as reverse engineering of dy-
namical systems in general. It has widely applications in scientific computation,
finding Free-Form Natural Laws [291], biochemical modeling and finance engi-
neering. But it is not necessarily easy, because the appropriate form of the ODE
(i.e., the order and terms) is not known in advance. We also illustrated an ad-
ditive tree based evolutionary algorithm for discovery of structure forms and
parameters of the system of ODE or DE. Experimental results on biochemical
systems modeling and gene networks illustrate that the proposed methods are
more efficient and faster than the conventional inference methods.

But there are still many problems to be addressed. The first problem is that
we really need the topology, the equations, or the parameters for modeling
the biochemical networks. How can we know the inferred solutions are correct
or satisfy the actual facts of the biochemical process? The other problem is
that the parameters determine the variables and not the other way round. If
many sets of parameters can fit the same data, we must specify which one is
best. To avoid reinventing the wheel, we would like to know which methods
work best.
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32. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
33. Gambardella, L.M., Dorigo, M.: Ant-Q: A reinforcement learning approach to the

traveling salesman problem. In: Proceedings of the 11th International Conference
on Machine Learning, pp. 252–260 (1995)
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