[EEE STANDARDS COLLECTION

SOFTWARE
ENGINEERING

INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, INC

PUBLISHED BY THE

®
IEEE

Recognized as an IEEE
American National Standard (ANSI) Std 828-1990

(Revision of IEEE Std 828-1983)

IEEE Standard for Software
Configuration Management Plans

Sponsor

Software Engineering Standards Subcommittee of the
Technical Committee on Software Engineering of the
IEEE Computer Society

Approved September 28,1990
IEEE Standards Board
Approved February 15, 1991

American National Standards Institute

Abstract: IEEE Std 828-1990, IEEE Standard for Software Configuration Management Plans,
establishes the minimum required contents of a Software Configuration Management Plan and
defines the specific activities to be addressed and their requirements for any portion of a software
product’s life cycle.

Keywords: configuration control board, configuration items, software configuration
management, software configuration management activities.

ISBN 1-55937-064-5
Copyright © 1990 by

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

IEEE Standards documents are developed within the Technical
Committees of the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Board. Members of the committees
serve voluntarily and without compensation. They are not necessar-
ily members of the Institute. The standards developed within IEEE
represent a consensus of the broad expertise on the subject within the
Institute as well as those activities outside of IEEE which have
expressed an interest in participating in the development of the
standard.

Use of an IEEE Standard is wholly voluntary. The existence of an
IEEE Standard does not imply that there are no other ways to produce,
test, measure, purchase, market, or provide other goods and services
related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to
change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard
is subjected to review at least once every five years for revision or
reaffirmation. When a document is more than five years old, and has
not been reaffirmed, it is reasonable to conclude that its contents, al-
though still of some value, do not wholly reflect the present state of the
art. Users are cautioned to check to determine that they have the latest
edition of any IEEE Standard. ;

Comments for revision of IEEE Standards are welcome from any
interested party, regardless of membership affiliation with IEEE.
Suggestions for changes in documents should be in the form of a pro-
posed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the
meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the
attention of IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of
all concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of
interests. For this reason IEEE and the members of its technical
committees are not able to provide an instant response to
interpretation requests except in those cases where the matter has
previously received formal consideration.

Comments on standards and requests for interpretations should be
addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331

USA

IEEE Standards documents are adopted by the Institute of Electrical
and Electronics Engineers without regard to whether their adoption
may involve patents on articles, materials, or processes. Such adop-
tion does not assume any liability to any patent owner, nor does it
assume any obligation whatever to parties adopting the standards
documents.

Foreword

(This Foreword is not part of IEEE Std 828-1990, IEEE Standard for Software Configuration Management Plans.)

This standard is concerned with the activity of planning for software configuration
management (SCM). SCM activities, whether planned or not, are performed on all software
development projects; planning makes these activities more effective. Good planning results in a
document that captures the planning information, makes the information the property of the
project, communicates to all who are affected, and provides a basis for ongoing planning.

SCM is a formal engineering discipline that, as part of overall system configuration
management, provides the methods and tools to identify and control the software throughout its
development and use. SCM activities include the identification and establishment of baselines;
the review, approval, and control of changes; the tracking and reporting of such changes; the
audits and reviews of the evolving software product; and the control of interface documentation
and project supplier SCM.

SCM is the means through which the integrity and traceability of the software system are
recorded, communicated, and controlled during both development and maintenance. SCM also
supports reduction of overall software life cycle cost by providing a foundation for product and
project measurement.

SCM constitutes good engineering practice for all software projects, whether phased
development, rapid prototyping, or ongoing mamtenance It enhances the reliability and quality
of software by

¢ Providing a structure for identifying and controlling documentation, code, interfaces, and

databases to support all life cycle phases

¢ Supporting a chosen development/mamtenance methodology that fits the requirements,

standards, policies, organization, and management philosophy

* Producing management and product information concermng the status of baselines, change

control, tests, releases, audits, etc.

IEEE Std 828-1983 was originally prepared by a- Working Group of the Software Engineering
Standards Subcommittee of the Technical Committee on Software Engineering of the IEEE
Computer Society and approved in June, 1983, by the IEEE Standards Board. This current standard
is the first revision and has been completely rewritten to

* Update the standard to recognize current software engineering practices

* Be consistent with IEEE Std 1042-1987, IEEE Guide to Software Configuration Management,

which is anticipated to be reviewed and revised as Std 828.1 to maintain this consistency

* Be more flexible and easier to use for all levels of expertise

The following individuals contributed to IEEE Std 828-1990 by attendance at two or more
working sessions or substantial written commentary or both:

H. R. Berlack, Co-Chair M. Updike-Rumley, Co-Chair
Editorial Committee
R. Frederick D. L. Knirk L. Roy
Working Group
B. Banerjee A. Hartman L. Siwiec
F. J. Buckley R. Horner M. Swain
B. Conger W. M. Osborne L. Tran
M. A. Daniels B. F. Rospide R. L. Van Tilburg
N. P. Ginex D. P. Schwartz A. M. Vaughan

E. Showalter

by
ST

At the time that the IEEE Standards Board approved this revision, the Software Engineering
Standards Subcommittee, which was the balloting committee that approved this document for
submission to the IEEE Standards Board, included the following members:

John W. Horch, Chairman
K. A. Alley N. P. Ginex D. E. Peercy
R. L. Aurbach S. Gloss-Soler W. E. Perry
M. Azuma M. Goldberg D. J. Pfeiffer
B. Banerjee J. Gonzalez-Sanz R. M. Poston
L. Beltracchi J. K. Grau 1. C. Pyle
M. Ben-Menachem D. A. Gustafson J. Rault
H. R. Berlack U. Hartmann M. Razy
W. J. Boll, Jr. C. M. Hay S. T. Redwine, Jr.
G. Bracon C. P. Hollocker B. F. Rospide
K. L. Briggs R. S. Hurst F. A. Ruhlman
W. L. Bryan L. Thlenfeldt D. A. Rutherford
F. J. Buckley F. Jay S. R. Schach
H. Carl D. Johnson III W. A. Schnoege
E. Chikofsky M. S. Karasik R. G. Schueppert
F. A. Chimenti R. H. Karpinski D. J. Schultz
S. V. Chiyyarata A. N. Kasad G. Schumacher
T. S. Chow R. A. Kessler D. P. Schwartz
P. H. Christensen P. P. Klopfenstein L. W. Seagren
W. L. Chung D. M. Knepper, Sr. T. Sgarlatti
R. T. Close D. L. Knirk : G. P. Shabe
F. Coallier S. Koenig R. W. Shillato
P. W. Daggett R. Kosinski E. Showalter
M. A. Danijels J. Krupinski D. M. Siefert
T. Daughtrey T. Kurihara M. W. Smith
P. 1. Davis R: A. Lane R. Staunton
P. A. Denny G. N. Larsen R. N. Sulgrove
B. Derganc F. C. Lim W. G. Sutcliffe
P. R. DeWeese B. Livson C. Swain
H. Dhama L S. Ludin B. J. Taute
K. Diggins A. J. Maher P. U. Thompson
J. H. Dobbins K. C. Majumdar S. Trauth
D. C. Doty H. A. Malec D. L. Ulery
E. Dunaye P. C. Marriott M. Updlke Rumley
R. E. Dwyer R. J. Martin R. L. Van Tilburg
M. L. Eads T. Matsubara A. M. Vaughan
R. S. Euler 1. Mazza H. E. Verne
R. L. Evans J. P. McArdle D. R. Wallace
R. Fairley M. C. McElvany . J. W, Walz
J. Fendrich P. E. McKenney A. H. Weigel
A. M. Foley G. A. Meldrum A. T. Williams
J. J. Forman J. Mersky A. F. Wilson
J. Forster C. H. Modell T. J. Wojcik
M. Galinier R. E. Monahan P. A. T. Wolfgang
A. K. Geraci R. C. Natale D. L. Wood
Y. Gershkovitch G. Neidhart A. W. Yonda
E. L. Gibbs D. E. Nickle N. C. Yopconka
J. A. Gilmore W. M. Osborne P.F. Zoll

When the IEEE Standards Board approved this standard on September 28, 1990, it had the
following membership:

Marco W. Migliaro, Chairman James M. Daly, Vice Chairman
Andrew G. Salem, Secretary

Dennis Bodson Kenneth D. Hendrix Lawrence V. McCall

Paul L. Borrill John W. Horch L. Bruce McClung
Fletcher J. Buckley Joseph L. Koepfinger* Donald T. Michael*
Allen L. Clapp Irving Kolodny Stig Nilsson
Stephen R. Dillon Michael A. Lawler Roy T. Oishi

Donald C. Fleckenstein Donald J. Loughry
Jay Forster* John E. May, Jr.
Thomas L. Hannan

Gary S. Robinson
Terrance R. Whittemore
Donald W. Zipse

*Member Emeritus

Contents

SECTION PAGE

1. Introductiontothe Standardccooiiiiiiiiiiiii i et 6

B B 7oy Y « X - P PP 6

B -3 - -0 o W - e 6

1.3 Definitions and ACTomymS . ..ottt ie et e e erasnaaaenenas 7

2. The Software Configuration Management Plan................. ... iiiiiiiiiiiiiiiiiiinaeiennn. 7

2.1 IntrodUction ..oo ot e e 7

2.2 SCM Managementuuiieiiertiiiiiiittee e ettt eaaaa i aeaeeaeaar e et 8

2.2.1 Organization . ..o . i e e 8

2.2.2 SCM Responsibilities.. ...ttt i e e 8

2.2.3 Applicable Policies, Directives, and Procedures.............ccooiviiiivvninnnne. 8

2.3 S OM A VILIES. ..ottt e e e 8

2.3.1 Configuration Identification.........coooviiiiiiiiii it e eeeens 9

2.3.1.1 Identifying Configuration Items..............ccooiiiiiiiiiiiiiiiiiainn. 9

2.3.1.2 Naming Configuration Items......................iiiiiiiiiiiennaa... 10

2.3.1.3 Acquiring Configuration Items.............. e 10

2.3.2 Configuration Control........ ... i e 10

2.3.2.1 Requesting Changes.........ooiiriiiiiii ittt ittt 10

2.3.2.2 Evaluating Changes........ ...ttt 10

2.3.2.3 Approving or Disapproving Changes..............coiviiiiiiiiiniinnieenenns 1

2.3.2.4 Implementing Changes.............cooviiiiiiiiiiiiiiiiiiii e 1

2.3.3 Configuration Status Accounting...........ovivviiiiiiiiiiriiiiie ittt eiinenss 1

2.3.4 Configuration Audits and Reviews.........c..iiiiiiiiiiiiiiiiiiiiiieeenenaeennns 1

2.3.5 Interface Control........ccviiiiiiiiiiiiiiiiii e i et e e 11

. 2.3.6 Subcontractor/Vendor Control ...ttt 12

2.4 SCM Schedules.. ..ot e e 12

T S 103 B 171101 1 7T S P 12

2.6 SCM Plan Maintenancec..ooiiiuiiiiiiiiie i et eannes 12

3. Tailoring of the Plan..... ... e 13

3.1 Upward Tailoring. ..o ooeiii i e e 13

3.2 Downward Tailoring......................eei e ettt eaee et eiaeeriaaaeaas 13

N B 9 1 B T PP 13

4. Conformance to the Standard.......... ... 13

4.1 Minimum Information.. ... i e 13

4.2 Presentation Format.........ccooviiiiiiiiiiiiiiii it i e, 14

4.3 Consistency Criteria.........cooiiiiiiiii i e 4

4.4 Conformance Declaration............ooiiiiiiiiiiiiiiii i e 14
FIGURE

Fig 1 Configuration Identification Processescooveviriiiiiiiivientiiieeiineeeinennnn, 9
TABLE

Table 1 SCM Classes of INformationc.oiiiiiiiiiiiiii e e eenees 7

APPENDIX
Cross Reference to IEEE Std 1042-1087ottt eeee e 15

IEEE Standard for Software
Configuration Management Plans

1. Introduction to the Standard

1.1 Scope. IEEE Std 828-1990 establishes the
minimum required contents of a Software
Configuration Management (SCM) Plan (the
Plan). It is supplemented by IEEE Std 1042-
1987 {41!, which provides approaches to good
software configuration management
planning. This standard applies to the entire
life cycle of critical software; for example,
where failure could impact safety or cause
large financial or social losses. It also applies
to noncritical software and to software already
developed. The application of this standard is
not restricted to any form, class, or type of
software.

The Plan documents what SCM activities
are to be done, how they are to be done, who is
responsible for doing specific activities, when
they are to happen, and what resources are
required. It can address SCM activities over
any portion of a software product’s life cycle.

The content of the Plan is identified in
Section 2 of this standard. The required in-
formation is indicated by the words “shall”
and “required.” Additional optional informa-
tion is also identified as appropriate. The user
of this standard, however, is expected to ex-
pand and supplement the minimum require-
ments as necessary for the development envi-
ronment, specific industry, organization, and

1The numbers in brackets correspond to those of the
references listed in 1.2.

project. Tailoring of a plan in conformance
with this standard is described in Section 3.

The primary users of this standard are
assumed to be those planning SCM activities
or performing SCM audits.

In considering adoption of this standard,
regulatory bodies should be aware that specific
application of this standard may already be
covered by one or more IEEE Standards
documents relating to quality assurance,
definitions, or other matters (see [2]). It is not
the purpose of IEEE Std 828-1990 to supersede,
revise, or amend existing standards directed
to specific industries or applications.

1.2 References. This standard may be used in
conjunction with the following IEEE Software
Engineering Standards:

[1] IEEE Std 610.12-1990, IEEE Standard
Glossary of Software Engineering Term-
inology.2

(2] IEEE Std 730.1-1989, IEEE Standard for
Software Quality Assurance Plans (ANSI).

[3] IEEE Std 1042-1987, IEEE Guide to Software
Configuration Management (ANSI).

2JEEE publications may be obtained from the IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331.

IEEE

Std 828-1990
Table 1
SCM Classes of Information
Class of Section in Section
Information Description Standard in Plan
Introduction Describes the Plan’s purpose, scope of application, 2.1 1
key terms, and references
SCM Management (Who?) Identifies the responsibilities and authorities 2.2 2
for accomplishing the planned activities
SCM Activities (What?) Identifies all activities to be performed 2.3 3
in applying to the project
SCM Schedules (When?) Identifies the required coordination of 24 4
SCM activities with the other activities in the project
SCM Resources (How?) 1dentifies tools and physical and human 2.5 5
resources required for execution of the Plan
SCM Plan Maintenance Identifies how the Plan will be kept current while in effect 2.6 6
1.3 Definitions and Acronyms. The 2. The Software Configuration
definitions below describe specific terms as Management Plan

used within the context of this standard.

control point (project control point). A project
agreed on point in time or times when speci-
fied agreements or controls are applied to the
software configuration items being developed,
e.g., an approved baseline or release of a
specified document/code.

release. The formal notification and distribu-
tion of an approved version.

Additional terms that are relevant are de-
fined in IEEE Std 610.12-1990 [1], and are as
follows: baseline, component, configuration,
configuration audit, configuration control,
configuration control board, configuration
identification, configuration item, configura-
tion management, configuration status ac-
counting, interface, interface control, soft-
ware, software library, software life cycle,
unit, version.

The following acronyms appear within the
text of this standard:

CCB Configuration Control Board
CI Configuration Item
SCM Software Configuration Management

The term “the Plan” is used throughout this
standard to refer to the Software Configuration
Management Plan.

SCM planning information shall be parti-
tioned into the six classes described in Table
1. The referenced sections of the standard pro-
vide the reader with detailed requirements for
each class of-information.

SCM planning information may be
presented in any format, sequence, or loc-
ation that is meaningful to the intended users
of the Plan with the following restrictions:

(1) * A document with the title “Software
Configuration Management Plan”
shall exist either in stand-alone form
or embedded in another project doc-

: ument.

- 42). .This document shall contain all SCM
planning information either by inclu-
sion or by reference to other locations,
such as other documents or automated
systems.

(3) A format for this document shall be
defined.

The writer of the Plan shall use the sequence
of sections specified in Table 1 unless a
different format has been defined in the
Introduction of the Plan (see 2.1).

2.1 Introduction. Introduction information
provides a simplified overview of the SCM ac-
tivities so that those approving, those perform-
ing, and those interacting with SCM can ob-
tain a clear understanding of the Plan. The

IEEE
Std 828-1990

Introduction shall include four topics: the pur-
pose of the Plan, the scope, the definition of key
terms, and references. .

The purpose shall briefly address why
the Plan exists and who the intended aud-
ience is.

The scope shall address SCM applicability,
limitations, and assumptions on which the
Plan is based. The following items shall be
included: .

(1) Overview description of the software

development project

(2) Identification of the software CI(s) to
which SCM will be applied

(3) Identification of other software to be in-
cluded as part of the Plan (e.g., support
or test software)

(4) Relationship of SCM to the hardware or
system configuration management
activities for the project

(5) The degree of formality, depth of con-
trol, and portion of the software life cy-
cle for applying SCM on this project

(6) Limitations, such as time constraints,
that apply to the Plan

(7) Assumptions that might have an im-
pact on the cost, schedule, or ability to
perform defined SCM activities (e.g.,
assumptions of the degree of customer
participation in SCM activities or the
availability of automated aids)

Key terms shall be defined as they apply to
the Plan in order to establish a common ter-
minology among all users of the Plan.

All references in the Plan to policies, direc-
tives, procedures, standards, terminology,
and related documents shall be uniquely
identified to enable retrieval by users of the
Plan.

2.2 SCM Management. SCM management in-
formation describes the allocation of responsi-
bilities and authorities for SCM activities to
organizations and individuals within the
project structure.

SCM management information shall in-
clude three topics: the project organization(s)
within which SCM is to apply; the SCM respon-
sibilities of these organizations; and refer-
ences to the SCM policies and directives that
apply to this project.

2.2.1 Organization. The organizational
context, both technical and managerial,
within which the planned SCM activities are to

IEEE STANDARD FOR

be implemented shall be described. The Plan
shall identify the following:

(1) Al organizational units that partici-
pate in or are responsible for any SCM
activity on the project

(2) The functional roles of these organ-
izational units within the project
structure

(3) Relationships between organizational
units

Organizational units may consist of a
vendor and customer, a prime contractor and
subcontractors, or different groups within one
organization. Organization charts, supple-
mented by statements of function and rela-
tionships, can be an effective way of present-
ing this information.

2.2.2 SCM Responsibilities. The allocation
of SCM activities to organizational units shall
be specified. For each activity listed within
SCM activities (see 2.3), the name of the orga-
nizational unit or job title to perform this ac-
tivity shall be provided. A matrix that relates
the organizations defined above to the SCM
functions, activities, and tasks can be useful
for documenting the SCM responsibilities.

For any review board or special organiza-
tion established for performing SCM activities
on this project, the Plan shall describe its

(1) Purpose and objectives

(2) Membership and affiliations

(3) Period of effectivity

(4) Scope of authority

(6) Operational procedures

2.2.3 Applicable Policies, Directives, and
Procedures. Any external constraints placed
on the Plan by other policies, directives, and
procedures shall be identified. For each, its
impact and effect on the Plan shall be stated.

2.3 SCM Activities. SCM activities informa-
tion identifies all functions and tasks re-
quired to manage the configuration of the
software system as specified in the scope of the
Plan. Both technical and managerial SCM
activities shall be identified. General project
activities that have SCM implications shall be
described from the SCM perspective.

SCM activities are traditionally grouped
into four functions: configuration identifica-
tion, configuration control, status accounting,
and configuration audits and reviews. The
information requirements for each function
are identified in 2.3.1 through 2.3.4.

SOFTWARE CONFIGURATION MANAGEMENT PLANS

1 CODE, DATA &
1 DOCUMENTATION
: ITEMS

STRUCTURES BASELINES

DENTIFICATION NAMING
SYSTEM METHODS

IEEE
Std 828-1990

SECURE REPRODUCE

UNIQUE NAMING

VERSIONS IDENTIFIERS || CONVENTIONS

RETRIEVE

Fig1
Configuration Identification Processes

Due to their high risk nature, the
requirements for interface control and
subcontractor/vendor control activities are
identified separately in 2.3.5 and 2.3.6.

2.3.1 Configuration Identification.
Configuration identification activities shall
identify, name, and describe the documented
physical and functional characteristics of the
code, specifications, design, and data
elements to be controlled for the project. The
documents are acquired for configuration
control. Controlled items may be intermediate
and final outputs (such as executable code,
source code, user documentation, program
listings, data bases, test cases, test plans,
specifications, and management plans) and
elements of the support environment (such as

compilers, operating systems, programming
tools, and test beds).

The Plan shall identify the project
configuration items (CI) and their structures
at each project control point. The Plan states
how each CI and its versions are to be uniquely
named and describes the activities performed
to define, track, store, and retrieve Cls. The
following sections specify information
required for configuration identification (see
Fig 1).

2.3.1.1 Identifying Configuration Items.
The Plan shall record the items to be con-
trolled, the project Cls, and their definitions as
they evolve or are selécted. The Plan shall
also describe how the list of items and the
structures are to be maintained for the project.

IEEE
Std 828-1990

As a minimum, all Cls that are to be delivered
shall be listed.

Appropriate baselines shall be defined at
control points within the project life cycle in
terms of the following:

(1) The event that creates the baseline

(2) The items that are to be controlled in the
baseline

(3) The procedures used to establish and
change the baseline

(4) The authority required to approve

changes to the approved baselined
documents

A means of identifying changes and
associating them with the affected Cls and the
related baseline shall be specified.

2.3.1.2 Naming Configuration Items. The
Plan shall specify an identification system
for assigning unique identifiers to each item
to be controlled. It shall also specify how dif-
ferent versions of each are to be uniquely
identified. Identification methods could in-
clude naming conventions and version num-
bers and letters.

The Plan shall describe the methods for
naming controlled items for purposes of stor-
age, retrieval, tracking, reproduction, and
distribution. Activities may include version
marking, labeling of documentation and exe-
cutable software, serialization and altered
item marking for executable code or data em-
bedded on a microchip, and identification of
physical packaging.

Subcontracted software, vendor proprietary
software, and support software may require
special identification schemes and labeling.

2.3.1.3 Acquiring Configuration Items.
The Plan shall identify the controlled soft-
ware libraries for the project and describe how
the code, documentation, and data of the iden-
tified baselines are to be physically placed
under control in the appropriate library. For
each library the format, location, documenta-
tion requirements, receiving and inspection
requirements, and access control procedures
shall be specified.

The Plan shall specify procedures for the
actual storage of documents and magnetic
media, including the physical marking and
labeling of items. Data retention periods and
disaster prevention and recovery procedures
may also be described.

Procedures shall describe how to retrieve
and reproduce controlled items from library

10

IEEE STANDARD FOR

storage. These activities include verification
of marking and labeling, tracking of con-
trolled copies, and protection of proprietary
and security information.

2.3.2 Configuration Control. Configuration
control activities request, evaluate, approve or
disapprove, and implement changes to base-
lined CIs. Changes encompass both error cor-
rection and enhancement. The degree of
formality necessary for the change process de-
pends on the project baseline affected and on
the impact of the change within the configura-
tion structure.

For each project software library identified
according to 2.3.1.3, the Plan shall describe
the change controls imposed on the baselined
Cls. The Plan shall define the following
sequence of specific steps:

(1) Identification and documentation of
the need for a change

(2) Analysis and evaluation of a change
request

(3) Approval or disapproval of a request

(4) Verification, implementation, and

release of a change

The Plan shall identify the records to be
used for tracking and documenting this se-
quence of steps for each change. Any differ-
ences in handling changes based on the origin

of the request shall be explicitly documented.
2.3.2.1 Requesting Changes. The Plan
shall specify the procedures for requesting a
change to a baselined CI and the information
to be documented for the request. As a
minimum, the information recorded for a

proposed change shall contain the following:

(1) The name(s) and version(s) of the Cls
where the problem appears

(2) Originator’s name and organization

(3) Date of request

(4) Indication of urgency

(5) The need for the change

(6) Description of the requested change

Additional information, such as priority or
classification, may be included to clarify the
significance of the request and to assist in its
analysis and evaluation. Other information,
such as change request number, status, and
disposition, may be recorded for change
tracking.

2.3.2.2 Evaluating Changes. The Plan
shall specify the analysis required to deter-
mine the impact of the proposed change and the
procedures for reviewing the results of the

IEEE
Std 828-1990

For any CCB established to control
interfaces, the Plan shall identify its
responsibilities and procedures as specified in
2.2.2.

2.3.6 Subcontractor/Vendor Control. Sub-
contractor/vendor control activities incorpo-
rate items developed outside the project envi-
ronment into the project Cls. Included are
software developed by contract and software
acquired in its finished form. Special atten-
tion should be directed to these SCM activities
due to the added organizational and legal
relationships.

For both subcontracted and acquired
software, the Plan shall define the activities to
incorporate the externally developed items
into the project CIs and to coordinate changes
to these items with their development
organizations.

For subcontracted software, the Plan shall
describe the following:

(1) What SCM requirements, including an
SCM Plan, are to be part of the sub-
contractor’s agreement

(2) How the subcontractor will be moni-
tored for compliance

(3) What configuration audits and reviews
of subcontractor items will be held

(4) How external code, documentation,
and data will be tested, verified,
accepted, and merged with the project
software

(6) How proprietary items will be handled
for security of information and trace-
ability of ownership (e.g., copyright
and royalties)

(6) How changes are to be processed, in-
cluding the subcontractor’s partic-
ipation

For acquired software, the Plan shall de-
scribe how the software will be received, tested,
and placed under SCM; how changes to the
supplier’s software are to be processed; and
whether and how the supplier will participate
in the project’s change management process.
Acquired software can come from a vendor, a
subcontractor, a customer, another project, or
other source.

2.4 SCM Schedules. SCM schedule infor-
mation establishes the sequence and coordi-
nation for the identified SCM activities and
for all events affecting the Plan’s implemen-
tation.

IEEE STANDARD FOR

The Plan shall state the sequence and de-
pendencies among all SCM activities and the
relationship of key SCM activities to project
milestones or events. The schedule shall cover
the duration of the Plan and contain all major
milestones of the project related to SCM activi-
ties. SCM milestones shall include establish-
ment of a configuration baseline, implemen-
tation of change control procedures, and the
start and completion dates for a configuration
audit.

Schedule information shall be expressed as
absolute dates, as dates relative to either SCM
or project milestones, or as a simple sequence
of events. Graphic representation can be par-
ticularly appropriate for conveying this
information.

2.5 SCM Resources. SCM resource informa-
tion identifies the software tools, techniques,
equipment, personnel, and training neces-
sary for the implementation of the specified
SCM activities.

SCM can be performed by a combination of
software tools and manual procedures. Tools
can be SCM-specific or embedded in general
project aids; they can be standard organiza-
tional resources or ones specially acquired or
built for this project. Tools can be applied to
library structure and access control; docu-
mentation development and tracking; code
control; baseline system generation; change
processing, communication and authoriza-
tion; change/problem tracking and status
reporting; archiving, retention, and retrieval
of controlled items; or the SCM planning
process itself.

.For each type of SCM activity identified, the
Plan shall specify what tools, techniques,
equipment, personnel, and training are
required and how each resource will be
provided or obtained.

For each software tool, whether developed
within the project or brought in from outside
the project, the Plan shall describe or reference
its functions and shall identify the configura-
tion controls to be placed on the tool.

2.6 SCM Plan Maintenance. SCM plan
maintenance information identifies the ac-
tivities and responsibilities necessary to en-
sure continued SCM planning during the life
cycle of the project. The Plan shall state the
following:

SOFTWARE CONFIGURATION MANAGEMENT PLANS

(1) Who is responsible for monitoring the
Plan

(2) How frequently updates are to be

performed

(3) How changes to the Plan are to be

evaluated and approved

(4) How changes to the Plan are to be made

and communicated

The Plan should be reviewed at the start of
each project software phase, changed accord-
ingly, and approved and distributed to the
project team.

If the Plan has been constructed with
detailed procedures documented elsewhere in
appendixes or references, different mainte-
nance mechanisms for those procedures may
be appropriate.

3. Tailoring of the Plan

This standard permits significant flexibil-
ity in preparing an SCM Plan. A successful
Plan reflects its project environment. It
should be written in terms familiar to its users
and should be consistent with the development
and procurement processes of the project.

To conform to the requirements set forth in
other applicable standards or to accommodate
local practices, a Plan may be tailored up-
ward, to add information, or tailored to use a
specified format. The Plan may also be tai-
lored downward, omitting information re-
quired by this standard, when specific stan-
dard requirements are identified as not appli-
cable to this project.

3.1 Upward Tailoring. Some information re-
quirements applicable to a particular project
may not be stated in this standard due to its
scope of establishing the minimum required
contents of an SCM Plan. If additional re-
quirements are applicable to the project, the
Plan shall so state these additions as part of
the Introduction and indicate the reason for
their insertion. A cost-benefits analysis
should be completed for each additional re-
quirement. Requirements that are additional
should be agreed on by all affected project
functions and the parties responsible for ap-
proval of the plan,

3.2 Downward Tailoring. Some information
requirements stated in this standard may not

IEEE
Std 828-1990

apply to a particular project due to the project’s
limited scope, low complexity, or unusual en-
vironment. If a requirement is not applicable
to the project, the Plan shall so state this dele-
tion as part of the Introduction and indicate the
reason for removal. Requirements that are
inapplicable should be agreed upon by all af-
fected project functions and all parties respon-
sible for approval of the Plan.

The Plan shall omit none of the six major
classes of information. Detailed information
may be omitted as indicated above but within
the limits of the consistency criteria stated in
Section 4.

If certain information has not been decided
on or is unavailable at the time the Plan is
initially approved, the Plan shall mark those
areas or sections as “to be determined” and
shall indicate, as part of Plan maintenance,
information on how and when further infor-
mation will be provided.

3.3 Format. The information may be pre-
sented in the Plan in any sequence or presen-
tation style deemed suitable for the Plan’s
users. To achieve consistency and conve-
nience within a single organization or indus-
try segment, a standard format for SCM plans
is desirable and appropriate. To customize this
standard for a particular group of users, a sup-
plement to the standard specifying Plan
structure and standard terminology may be
used.

4. Conformance to the Standard

An SCM Plan shall satisfy the following
criteria in order to conform with this
standard.

4.1 Minimum Information. The Plan shall
include the six classes of SCM information
identified 1in Section 2: Introduction,
Management, Activities, Schedules,
Resources, and Plan Maintenance. Within
each class, all of the required information
stated in Section 2 of this standard, as indi-
cated by the words “shall” and “required,”
shall be documented within the Plan. If cer-
tain required information is not applicable,
the reasons shall be so stated. If a sequence of
information other than the sequence of this
standard is used, an explicit cross reference

IEEE
Std 828-1990

between the Plan and the standard shall be
provided.

4.2 Presentation Format. One document, sec-
tion title, or such reference shall exist that is
specifically labeled “Software Configuration
Management Plan.” Within this document,
each of the six classes of information shall be
included. While the information may. be
provided in a number of presentation styles,
the requirement is to provide all Plan
information and references in a single
document. '

4.3 Consistency Criteria. The documented
information shall satisfy the following
consistency criteria:

14

IEEE STANDARD FOR
(1)

All activities defined in the Plan (see
2.3.1 to 2.3.6) shall be assigned to an
organizational unit (see 2.2.2).

All activities defined shall have
resources identified to accomplish the
activities (see 2.5).

All Cls identified in the Plan (see
2.3.1) shall have defined processes for
baseline establishment and change

control (see 2.3.2).

(2)

(3)

4.4 Conformance Declaration. If the preceding
criteria are met, then the conformance of any
SCM planning documentation with this
standard may be stated accordingly: “This
SCM Plan conforms with the requirements of
IEEE Std 828-19390.”

SOFTWARE CONFIGURATION MANAGEMENT PLANS

Appendix
Cross Reference to IEEE Std 1042-1987

IEEE
Std 8281990

(This Appendix is not part of IEEE Std 828-1990, IEEE Standard for Software Configuration Management Plans, but is

included for information only.)

Section in IEEE Std 828-1990

Section in IEEE Std 1042-1987

. Introduction to the Standard

. Introduction
. SCM Disciplines in Software Management

. The SCM Plan

. Software Configuration Management

Plans

2.1 Introduction

3.1 Introduction

2.2 SCM Management

3.2 Management

2.3 SCM Activities

3.3 SCM Activities

2.3.1 Configuration Identification

3.3.1 Configuration Identification

2.3.2 Configuration Control

3.3.2 Configuration Control

2.3.3 Configuration Status
Accounting

3.3.3 Configuration Status
Accounting

2.3.4 Configuration Audits and
Reviews

3.3.4 Audits and Reviews

2.3.5 Interface Control

3.2.3 Interface Control

2.3.6 Subcontractor/Vendor Control

3.5 Supplier Control

2.4 Schedules

3.2.4 SCM Plan Implementation

2.5 Resources

3.4 Tools, Techniques and Methodologies

2.6 SCM Plan Maintenance

2.5 The Planning of SCM

. Tailoring of the Plan

2.5 The Planning of SCM

. Conformance to the Standard

2.5 The Planning of SCM

IEEE
Std 828-1990

Acknowledgments

The following organizations supported working group members in the development of this
standard. This support does not constitute or imply approval or endorsement of this standard.

Babcock & Wilcox MACTEC

Battelle Northwest Laboratories McDonnell Douglas

BTG Inc. Mitre Corporation

Compass Corporation Motorola/Computer X

CTA Inc. National Institute of Standards and Technology
DSC Communications Northrop Corporation

Eaton/AIL Programming Environments Inc.

General Electric~-MSD Rockwell Telecommunications

Jet Propulsion Laboratory Texas Instruments

Lockheed Missiles & Space Company Unisys Corporation

Lockheed Sanders Inc.

16

Recognized as an ANSI/IEEE
American National Standard (ANSI) Std 1042-1987

An American National Standard

IEEE Guide to
Software Configuration Management

Sponsor

Software Engineering Standards Subcommittee of the
Technical Committee on Software Engineering of the
IEEE Computer Society

Approved September 10, 1987
Reaffirmed December 2, 1993
IEEE Standards Board

Approved March 10, 1988
American National Standards Institute

© Copyright 1988 by

The Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017, USA

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

IEEE Standards documents are developed within the Technical Com-
mittees of the IEEE Societies and the Standards Coordinating Committees
of the IEEE Standards Board. Members of the committees serve volun-
tarily and without compensation. They are not necessarily members of the
Institute. The standards developed within IEEE represent a consensus of
the broad expertise on the subject within the Institute as well as those
activities outside of IEEE which have expressed an interestin participating
in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE
Standard does not imply that there are no other ways to produce, test,
measure, purchase, market, or provide other goods and services related to
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at
the time a standard is approved and issued is subject to change brought
about through developments in the state of the art and comments received
from users of the standard. Every IEEE Standard is subjected to review at
least once every five years for revision or reaffirmation. When a document
is more than five years old, and has not been reaffirmed, it is reasonable to
conclude that its contents, although still of some value, do not wholly
reflect the present state of the art. Users are cautioned to check to deter-
mine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any inter-
ested party, regardiess of membership affiliation with IEEE. Suggestions
for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning
of portions of standards as they relate to specific applications. When the
need for interpretations is brought to the attention of IEEE, the Institute
will initiate action to prepare appropriate responses. Since IEEE Standards
represent a consensus of all concerned interests, it is important to ensure
that any interpretation has also received the concurrence of a balance of
interests. For this reason IEEE and the members of its technical commit-
tees are not able to provide an instant response to interpretation requests
except in those cases where the matter has previously received formal
consideration.

Comments on standards and requests for interpretations should be
addressed to:

Secretary, IEEE Standards Board
345 East 47th Street

New York, NY 10017

USA

IEEE Standards documents are adopted by the Institute of Elec-
trical and Electronics Engineers without regard to whether their
adoption may involve patents on articles, materials, or processes.
Such adoption does not assume any liability to any patent owner, nor
does it assume any obligation whatever to parties adopting the
standards documents.

Foreword

(This Foreword is not a part of ANSI/IEEE Std 1042-1987, IEEE Guide for Software Configuration Management.)

The purpose of this guide is to provide guidance in planning software configuration management
(SCM) practices that are compatible with ANSI/IEEE Std 828-1983, IEEE Standard for Software Config-
uration Management Plans. Three groups are served by this guide: developers of software, software
management community, and those responsible for preparation of SCM Plans. The developers of software
will be interested in the different ways SCM can be used to support the software engineering process. The
management community will be interested in how the SCM Plan can be tailored to the needs and
resources of a project. Those preparing plans for SCM will be interested in the suggestions and examples
for preparation of a Plan.

The introduction of this guide presents a technical and philosophical overview of the SCM planning
process. Subsequent paragraphs in the body of the guide contain general statements of principles,
commentary on issues to consider, and lessons learned for the corresponding paragraph in the outline of
the ANSI/IEEE Std 828-1983 Plan. Four Appendixes illustrate how the ANSI/IEEE Std 828-1983 can be
used for a variety of different projects. A fifth Appendix lists current references that may be useful in
planning SCM.

This guide was prepared by a working group chartered by the Software Engineering Subcommittee of
the Technical Committee on Software Engineering of the Computer Society of IEEE. This guide represents
a consensus of individual working-group participants with broad expertise in software engineering and
configuration management, staffed with both members within the Institute and from other groups that
have expertise and interest in participating, \

The following individuals contributed to the writing of this guide by attendance to two or more working
sessions, or by substantial written commentary, or both.

Richard L. Van Tilburg, Chairman David Schwartz, Cochairman
Bakul Banerjee David Gelperin Brian F. Rospide
H. Ronald Berlack Curtis F. Jagger Margaret Rumley
Grazyna Bielecka Allen T. L. Jin Edward Showalter
Jack L. Cardiff Dwayne Knirk Jean Stanford
Larry Cummings Nancy Murachanian William S. Turner, III
Michael A. Daniels Sarah H. Nash Albert T. Williams

Wilma Osborne

When the IEEE Standards Board approved this standard on September 10, 1987, it had the following
membership:

Donald C. Fleckenstein, Chairman Marco W. Migliaro, Vice Chairman
Andrew G. Salem, Secretary

James H. Beall Leslie R. Kerr Donald T. Michael*
Dennis Bodson Jack Kinn L. John Rankine
Marshall L. Cain Irving Kolodny John P. Riganati
James M. Daly Joseph L. Koepfinger* Gary S. Robinson
Stephen R. Dillon Edward Lohse Frank L. Rose
Eugene P. Fogarty John May Robert E. Rountree
Jay Forster Lawrence V. McCall William R. Tackaberry
Kenneth D. Hendrix L. Bruce McClung William B. Wilkens
Irvin N. Howell Helen M. Wood

*Member emeritus

A. Frank Ackerman
Richard L. Aurbach
Motoei Azuma

H. Jack Barnard
Roy Bass

James Behm

H. R. Berlack
Michael A. Blackledge
Gilles Bracon
Kathleen L. Briggs
A. Winsor Brown
William L. Bryan
Fletcher Buckley
Lorie J. Call

Harry Carl

John Center

T. S. Chow

J. K. Chung

Won L. Chung
Antonio M. Cicu
Francos Coallier
Peter Cond, Jr
Christopher Cook
Richard Cotter
Arthur N. Damask
Taz Daughtrey
Peter A. Denny
Fred M. Discenzo
William P. Dupras
Robert E. Dwyer
Mary L. Eads

W. D. Ehrenberger
L. G. Egan

Walter J. Ellis
Caroline L. Evans
David W. Favor
Joan Feld

John W. Fendrich
Glenn 8. Fields

A. M. Foley

Joel J. Forman
Julian Foster
Crespo Fuentes

F. K. Gardner
Leonard B. Gardner
David Gelperin
Anne K. Geraci
Shirley Gloss-Soler
J. G. Glynn

Andrej Grebnec
Benjamin W. Green
Victor M. Guarnera
Lawrence M. Gunther
David A. Gustafson
G. B. Hawthorne
John W. Horch

Cheng Hu

Harry Kalmbach
Myron S. Karasik
Dwayne L. Knirk
Shaye Koenig

George Konstantinow
Joseph A. Krupinski
Joan Kundig

T. M. Kurihara

Lak Ming Lam

John B. Lane

Robert A. C. Lane
Gregory N. Larsen
Ming-Kin Leung

F. C. Lim :

Bertil Lindberg
Austin J. Maher
Paulo Cesar Marcondes

‘C. D. Marsh

Roger J. Martin

- John McArdie
. Russell McDowell

W. F. Michell
Manijeh Mogh
Charles S:Mooney
George Morrone
D. D. Morton

G. T. Morum
Hironobu Nagano -
Gerry Neidhart
Dennis Nickle
Wilma M. Osborne
Thomas D. Parish
David E. Peercy
Michael T. Perkins
John Petraglia
Donald J. Pfeiffer
L. C. Pyle.
Thomas S. Radi
Salim Ramji
Jean-Claude Rault

The following person were on the balloting committee that approved this document for submission to
the IEEE Standards Board:

Meir Razy

Donald Reifer

John C. Rowe

Julio Gonzalez Sanz
Stephen R. Schach
Lee O. Schmidt

N. Schneidewind
Wolf A. Schnoege
Robert Schueppert
David J. Schultz
Gregory D. Schumacher
Leonard W. Seagren
Robert W. Shillato
David M. Siefert
Jacob Slonim

Harry M. Sneed

V. Srinivas

Manfred P. Stael
Wayne G. Staley
Franklin M. Sterling
Mary Jane Stoughton
William G. Sutcliffe
Richard H. Thayer
Bob Thibodeau

Paul U. Thompson
Terrence L. Tillmanns
G. R. Treble

Henry J. Trochesset
C. L. Troyanowski
William S. Turner I1I
W. T. Valentin, Jr

R. I. Van Tilburg
Tom Vollman
Dolores R. Wallace
Martha G. Walsh
John P. Walter
Andrew H. Weigel
Peter J. Weyman

G. Allen Whittaker
Patrick J. Wilson
David L. Winningham
W. M. Wong

Dennis L. Wood
Nancy Yavne
William W. Young
Janusz Zalewski
Donald Zeleny

Hugh Zettel

Peter F. Zoll

Acknowledgment

Appreciation is expressed to the following companies and organizations for contributing the time of their employees to make
possible the development of this text:

Boeing MITRE

Burroughs Motorola

General Dynamics Programming Environments, Inc
Hughes Aircraft Co RCA Astro Electronics

Intel Corporation Sperry
IBM Telos
Goodyear Atomic Corporation Texas Instruments

GTE ZTROW Software Inc
National Bureau of Standards

Contents

SECTION PAGE
) O § (1 o 76 10 Lo 1o« U PP 7
0 T 1o o 7= P 7
) B 1 (o) ¢ (T O 8
e B8 (<3 44T 1 LT 8
O = o (4T O D PRt 8
2. SCM Disciplines in Software Managementuiettunetrnetieeeerneneereaneneennns 9
2.1 The Context Of SCMottt ittt it et ettt ettt ettt et iaee e nanannns 9
2.1.1 SCMis a Service FUNCHION ittt i it it ettt e e eiieeeanannans 9
2.1.2 SCM is a Part of the Engineering Processo it iiinna., 9
2.1.3 SCM Manages all Software Entities i, 10

2.2 The Process Of SOMottt i it it ettt et ettt te e ta e ie e eneannns 12
2.2.1 Management Environment of SCM tiiiiiiriiiieniiinnns 12
2.2.2 Dynamics Of SOM .. .ottt it e e e e 12
223 Role of Source Code in SCM ittt et et et nnns 13
2.24 Different Levels of CONtrol.ttt ittt 13

2.3 The Implementation of SCM ittt et it e ittt et inereeaanrennenens 13
2.3.1 Using Software Libraries e e e e et 13
2.3.2 Controlling Changes to Libraries oo i ittt e, 14
2.3.3 Using Configuration Control Boards...........ccoiiiiiiiiiiiiiiiii e, 15

24 The Toolsof SCM e ot et et i e e e 15
2.4.1 Basic ToOl Set ... ittt i ittt e et e e e 15
24.2 Advanced Tool Set.ouuir ittt e it it it e e e e 15
24.3 On-Line Tool Set . ..ottt it et ettt et e it s 16
2.4.4 Integrated Tool Setouuiiitiiirtitee et iiee e iie e itae s eiieeeiineenennn 16

2.5 The Planning of SCM i ettt e e et 16
3. Software Configuration Management Planscoiiiiiiiniiiiieriiieeeeiinaannnns 17
3.1 INErodUcCtion i e e et e e i i et 17
3.1.1 PUrposeccoiiiiiiniiiii ot e e e e i e 17

B 2 oo oY U 17
3.1.3 Definitionsccoviiiirninn... SN 18
304 RefereNCeS ... v ittt it i e e e e e e e e 18

3.2 MaANAGEINENE ...ttt ttie st ttee et taee s e e e s e eneesatneesaaneseesneseeesnesenannanns 19
3.2.1 Organizationcoieiinnnn... G PN 19
3.2.2 SCM Responsibilities e e e e e e e e e e e 20
3.23 Interface Controlccoviivinn..s T e e e ettt et 20
3.24 SCM Plan Implementationcooivveeereernnnnnn. e 21
3.2.56 Applicable Policies, Directives, and Procedures iiiiiiiiiiennn.. 22

3.8 SCM ACIVItIES ...\ttt ettt e e e et e 23
3.3.1 Configuration Identification i ittt iiiieneennnns 23
3.3.2 Configuration CONtIol.ttt ettt tiiiieaeeeeee e 25
3.3.3 Configuration Status ACCOUNELING.ottt ittt ettt 30
334 Audits and Reviewsc.ovviiiiinnnnnn. e e 31
33,5 Release ProCesSttt e it ettt it e e e 32

3.4 Tools, Techniques and Methodologiesciiiiiiiiiririiiiiiineanoenenenes 33
RSN 10 ¢)) 1 1<) G 0703 (19« o) S O U 34
3.5.1 Subcontractor Softwarettt e e e e 34
3.5.2 Vendor SOftWarevtrtii ittt it it ittt it et et e 35

3.6 Records Collection and Retentionuiiiiitnneinnrrerrnnrenernneonnennneenon 36

Contents

FIGURES PAGE
Fig 1 Model of Change Managementiuuiitnneteinneetnererenneennaneeenneennnns 12
Fig 2 Three Types of LIbraries.o oiuuiiirir it i i iee it tiie i itee s nnie e 14
TABLES
Table 1 Characteristics of ApPPendiXes vuttntit ittt ittt tn st e innnenrananenns 7
Table 2 Hierarchy of Controlled Entities ittt iinrneennnnns 11
Table 3 Levels of Controlin Sample Plans ittt i iiiinenenn, V... 16
Table 4 Variable Levels of Control ittt it ittt ieieeaaaneennns 26
APPENDIXES
Appendix A Software Configuration Management Plan for Critical Software for
Embedded Systems.ovve ittt ittt i i ittt e, 37
Fig 1 Program Organization Chartc0viiiin.... 41
Table 1 Responsibility Assignmentsccovieiiiinininrnerenennn. 42
Table 2 Baseline Objectivesciiiiiiiin ittt eennnnnn, 44
Attachment A System/Software Change Request..................c.ccvvvunun. 48
Attachment B Software Change Authorization............................... 49
Attachment C Fig 1 CSES Procedure for Creating Initial Baseline 50
Attachment D Fig 1 CSES Procedures for Changes to Controlled
Software/Documentationcco0o..... 51
Fig2 Program Organization Chart AP 52
Appendix B Software Configuration Management Plan for Experlmental Development
Small Systemiccuiiiiiiie e it e e e e 53
Fig 1 Project Organization Chartc.iiiiiiiiieennen., 57
Attachment A Software Promotion Requestsc.civviiieennnnnann, 61
Table 1 Data for Software Release 61
Attachment B IEEE Guide for Processing System Software Change Requests ... 62
Attachment C System/Software Change Request Formuv.... 63
Table 1 SCRDataElementsciiiiiinnnenannn.. 63
Appendix C Software Configuration Management Plan for a Software Maintenance
Organization iyl it ittt i et e te ettt iae s 64
Fig 1 SPLIT Facility Orgamzatxon 68
Fig 2 Structure of COB .. v et ittt eiaanean, 69
Table 1 Hierarchy of Elementsottt ennnenn. 70
Table 2 Problem Criteriaottt i, 71
Attachment A System/Software Change Request (SPLIT Form C-1049) 75
Table 1 Definitions of Elements in SCR..................... 75
Attachment B Software Change Authorization....................cccvvuunn.. 76
Table 1 Definitions of Elements in SCA 76
Appendix D Software Configuration Management Plan for a Product Line System 77
Fig 1 PLAS Organization Chartooiiiiiiiiiiinnen..., 82
Table 1 Processing Approved Changesc.oiiiiiienennnn... 87
Appendix E References Bibliographycco ittt i it ey 90

An American National Standard

IEEE Guide to
Software Configuration Management

1. Introduction

1.1 Scope. This guide describes the application
of configuration management (CM) disciplines to
the management of software engineering projects.
Software configuration management (SCM) con-
sists of two major aspects: planning and imple-
mentation. For those planning SCM activities, this
guide provides insight into the various factors
that must be considered.

Users implementing SCM disciplines will find
suggestions and detailed examples of plans in this
guide. This guide also presents an interpretation
of how ANSI/IEEE Std 828-1983 [2]! can be used
for planning the management of different kinds of
computer program development and maintenance
activities.

The guide is presented in two parts. The first
part, the main body of the guide, presents issues
to consider when planning software configuration
management for a project or organization. The
second part of the guide presents, for those pre-
paring SCM Plans, a series of sample Plans illus-
trating different concepts discussed in the body of
the guide.

The text of the guide introduces the essential
concepts of SCM, particularly those of special
significance (for example, libraries and tools) to
software engineering. It then presents the plan-

IThe numbers in brackets correspond with those of the
references in 1.2. h

ning for SCM in terms of documenting a Plan fol-
lowing the outline of ANSI/IEEE Std 828-1983 [2]
so that a user who is unfamiliar with the disci-
plines of software configuration management can
gain some insight into the issues. For those pre-
paring SCM Plans, the second part of the guide
provides sample plans for consideration.

The sample SCM Plans include a variety of
software configuration management applications
for different types of projects and organizations.
Appendix A illustrates a software configuration
management plan (SCMP) for a project develop-
ing a complex, critical computer system. It de-
scribes a Plan for managing a typical software
development cycle where the development is con-
tracted to an organization that does not have
responsibility for its maintenance or use. Appen-
dix B illustrates a SCMP for a small software
development project. It describes a Plan for
supporting a prototype development activity
where the goal of the project is to demonstrate
the feasibility of a concept. Appendix C illustrates
a SCMP used by an organization where the
emphasis is on maintaining programs developed
by other activities or organizations. Appendix D
illustrates a SCMP for an organization developing
and maintaining computer programs embedded
in a hardware product line. It describes a Plan for
managing both software development and main-
tenance of a commercial product line. Some of the
different characteristics illustrated are shown in
Table 1.

Table 1
Characteristics of Appendixes*
Appendix Emphasis of Control Type Relative Size SCM Tools Life Span Writing
Number (Life Cycle Phase) of Project (Dollar/Manhour) Available of Plan for Plan
1 Development Critical Medium Advanced Short Highly structured
2 Concept Prototype Small Basic Short Informal
3 Operations Support sw Large On-line Full life cycle Structured
4 All Commercial Small Integrated Full life cycle Organizational

Informal

*NOTE: The purpose of the Appendixes is not to provide an illustration for every possible combination of project characteristics
but rather to show that the ANSI/IEEE Std 828-1983 [2] can be applied to a wide variety of projects.

ANSI/IEEE
Std 1042-1987

1.2 References. This guide shall be used in con-
junction with the following publications:

\
[1] ANSI/IEEE Std 729-1983, IEEE Standard
Glossary of Software Engineering Terminology.2

[2] ANSI/IEEE Std 828-1983, IEEE Standard for
Software Configuration Management Plans.

Additional references useful in understanding
software configuration management are given in
Appendix E.

1.3 Mnemonics. The following acronyms are
used in the text of this guide:

CCB Configuration Control Board

CDR Critical Design Review

ClI Configuration Item

CM Configuration Management

CPC Computer Program Component

CPCI Computer Program Configuration
Item

CSC Computer Software Component

CSCI Computer Software Configuration
Item

[EPJROM ([Electrically Programmable] Read
Only Memory

FCA Functional Configuration Audit

OEM Original Equipment Manufacturer

PCA Physical Configuration Audit

PDR Preliminary Design Review

RAM Random Access Memory

ROM Read Only Memory

SCA System/Software Change Authori-
zation

SCCB Software Configuration Control
Board

SCM Software Configuration Manage-
ment

SCMP Software Configuration Manage-
ment Plan

SCR System/Software Change Request

SQA Software Quality Assurance

vDD Version Description Document

1.4 Terms. Some terms used in SCM circles have

restricted meanings or are not defined in the
~ guide. General statements of the contextual
meanings are given to aid in understanding the
concepts in the guide. These are not formal defi-
nitions, subject to review and approval as in a
standard, but contextual definitions serving to

2 ANSI/IEEE publications are available from IEEE Service
Center, 445 Hoes Lane, Piscataway, NJ 08855-1331 and from
the Sales Department, American National Standards Institute,
1430 Broadway, New York, NY 10018.

IEEE GUIDE TO

augment the understanding of configuration
management activities as described within this
guide.

As used here, the term baseline? represents
the assignment of a documented identifier to
each software product configuration item (CI)
and associated entities, That is, the source code,
relocatable code, executable code, files control-
ling the process of generating executable code
from source code, documentation, and tools used
to support development or maintenance of the
software product should all be captured, labeled
and somehow denoted or recorded as parts of the
same baseline. As computer programs move from
an initial idea to the maintenance phase, it is
common for a series of developmental baselines of
increasing complexity to be established during
the various internal and external reviews con-
ducted by management (and customers) to deter-
mine progress and technical suitability. The
baseline concept is as useful to engineering during
development as it is after release for use and
maintenance,

The various SCM functions are dependent on
the baseline concept. Several valuable uses of the
baseline concept include

(1) To distinguish between different internal
releases for delivery to a customer (that is,
successive variants of the same product
baseline)

(2) To help to ensure complete and up-to-date
technical product documentation

(3) To enforce standards (SQA)

(4) To be used as a means of promoting (that
is, internally releasing) each CI from one
phase of development or test to another

(5) To identify customer involvement in inter-
nal (developmental) baselies

Since SCM disciplines are an integral part of the
engineering process they guide the management
of internal developmental baselines as well as the
more formal functional, allocated, and product
baselines. The SCM disciplines, as applie’dA< to
developmental baselines, are used (implicitly or
explicitly) to coordinate most engineering activi-
ties that occur within the context of each base-
line. Varying levels of formality provide flexibility
and responsiveness to the engineering process,
yet maintain the benefits of recognizing SCM
disciplines.

3A specification or product that has been formally reviewed
and agreed to by responsible management, that thereafter
serves as the basis for further development, and can be
changed only through formal change control procedures.

SOFTWARE CONFIGURATION MANAGEMENT

The term promotion is used here to indicate a

transition in the level of authority needed“”ta,:_j
approve changes to a controlled entity, such as a ™~

baseline CI.

Promotions typically signify a change in a CI's
internal development state. The term release is
used to designate certain promotions of CI that
are distributed outside the development organi-
zation.

In general, as the development process con-
tinues, there are more constraints imposed on the
change process (coordination with interfacing
hardware, user’s adaptations, etc) and corre-
spondingly higher levels of authority are needed
for approving the changes. When an entity is
finally released as a formal baseline, a high level of
authority is needed to approve changes. When
internal or developmental baselines are created
as a part of the engineering process and entitites
are moved or released to another internal activity
for additional work, integration, or testing the
term promotion is used to distinguish this type of
release from the more formal releases to users.

Promotion from one developmental baseline to
another represents the visibility granted to some
organizations for a given baseline. As develop-
mental baselines are promoted within an organi-
zation, they tend to become more stable. The
more stable a baseline is, the higher the level of
visibility it is granted.

The term version is used here to indicate a
software CI having a defined set of functional
capabilities. As functional capabilities are added,
modified, or deleted the CI is given a different
version identifier. It is common and recommended
practice to use a configuration identification
scheme that permits easy and automatic identifi-
cation of particular version labels.

The term revision is commonly associated with
the notion of bug fixring, that is, making changes
to a program that corrects only errors in the
design logic but does not affect documented func-
tional capabilities since none of the requirements
have changed. The configuration identification
scheme must provide for clear identification of
revisions and versions of each specific promotion
and release.

2. SCM Disciplines in
Software Management

2.1 The Context of SCM. This guide discusses
SCM as a set of management disciplines within

ANSI/IEEE
Std 1042-1987

the context of the software engineering process
rather than as a set of specific activities per-
formed, or as functions within an organization.
The reason for this approach is that software CM,
as contrasted with hardware CM, tends to be
more deeply involved in the software engineering
process and, while the same general CM functions
are performed, the disciplines are extended to
include the process of developing a baseline.

Software CM and release processing are per-
formed within the context of several basic CM
functions: configuration identification, baseline
management, change control and library control,
status accounting, reviews and audits, and release
processing. In practice, the ways in which these
functions are performed are different for the dif-
ferent kinds of programs being developed (com-
mercial, embedded, OEM, etc), and may vary in
the degree of formal documentation required
within and across different life-cycle management
phases (research phase, product development,
operations, and maintenance).

Software CM also provides a common point of
integration for all planning, oversight and imple-
mentation activities for a project or product line.
These functions are performed within the context
of a project — providing the framework (labeling
and identification) for interfacing different
activities and defining the mechanisms (change
controls) necessary for coordinating parallel
activities of different groups. SCM provides a
framework for controlling computer program
interfaces with their underlying support hard-
ware, coordinating software changes when both
hardware and software may be evolving during
development or maintenance activities.

Finally, SCM is practiced within the context of
management, providing management with the visi-
bility (through status accounting and audits) of
the evolving computer products that it needs to
perform effectively.

2.1.1 SCM is a Service Function. Software CM
is a support activity that makes technical and
managerial activities more effective. Effectiveness
of the SCM processes increases in proportion to
the degree that its disciplines are an explicit part
of the normal day-to-day activities of everyone
involved in the development and maintenance
efforts, (as opposed to a separate SCM organiza-
tion or activity). This holds true whether SCM is
administered by a separate SCM group, distrib-
uted among many projects, or a mixture of both.

2.1.2 SCM is a Part of the Engineering Proc-
ess. The disciplines of SCM apply to the devel-
opment of programmed logic, regardless of the

ANSI/IEEE
Std 1042-1987

form of packaging used for the application. Soft-
ware engineering technology is effectively used in
the generation of stored programmed logic when
the complexity of the function is large. SCM disci-
plines assist in the identification and evolution
of changes during the engineering process, even
though the final package may be ROM, and man-
aged as a hardware configuration item.

Configuration management is practiced in one
form or another as a part of every software engi-
neering activity where several individuals or
organizations have to coordinate their activities.
Although the basic disciplines of configuration
management are common to both hardware and
software engineering activities, there are some
differences in emphasis due to the nature of the
design activity. Software products (as compared
to hardware products) are easy to change* (little
if any lead time is needed for parts procurement
and production setup).

Software CM is a discipline for managing the
evolution of computer program products, both
during the initial stages of development and. dur-
ing all stages of maintenance. The designs of pro-
grams are not easily partitioned into independent
tasks due to their complexity. Therefore, configu-
ration management disciplines are more valuable
during the design (and redesign during mainte-

nance) phases. This is when using techniques of

multiple levels of baselines and internal releases
(or promotions) to a larger degree than is typi-
cally practiced by hardware CM really pays off.
Whether software is released for general use as
programs in RAM or embedded in ROM, it is a
form of logic. Therefore, SCM disciplines can and
should be extended to include development of the
computer programs’ component parts (for exam-
ple, source code and executable code) whereas
hardware CM focuses mainly on the management
of documentation.
The differences between hardware and soft-
ware CM, of importance to software CM, include
(1) Software CM disciplines are used to simul-
taneously coordinate configurations of
many different representations of the soft-

4Even what is traditionally thought of as hard software —
that is, firmware, is becoming easier to modify. An example is
card edge programming where the programs in a ROM are
easily modified, though not under program control during
execution.
NOTE: While the time to changé a design may be the same for
hardware engineering as for software engineering, implemen-
tation and installation time is greater and consequently more
expensive for hardware configuration items.

10

IEEE GUIDE TO

ware product (source code, relocatable
code and executable code) rather than just
their documentation. The nature of com-
puter programs requires this extension and
the SCM disciplines and related SCM sup-
port software adapt readily to this task.
The use of interactive software develop-
ment environments extends the concepts
of software CM to managing evolutionary
changes that occur during the routine
generation of specifications, designs, and
implementation of code, as well as to the
more rigidly documented and controlled
baselines defined during development and
system maintenance.

Software development environments are
rapidly becoming automated with interac-
tive tool sets. This modifies many of the
- traditional methods used in hardware CM
but the fundamental concepts of CM still
apply.

2.1.3 SCM Manages all Software Entities.
Software CM extends the management disciplines
of hardware CM to include all of the entities of the
product as well as their various representations
in documentation. Examples of entities managed
in-the software engineering process mclude

(1) Management plans

(2) Specifications (requirements, design)

(3) User documentation

(4) Test design, case and procedure specifi-

cations

(5)-Test data and test generation procedures

(6) Support software

(7) Data dictionaries and various cross-refer-

(8)

ences
Source code (on machine-readable media)
€)
(10)

Executable code (the run-time system)
(11)

(2)

(3

Libraries

Data bases:

(a) Data which are processed,

(b) Data which are part of a program
Maintenance documentation (listings, detail
design descriptions, etc)

All supporting software used in development,
even though not a part of the product, should also
be controlled by configuration management disci-
plines.

Not all entities are subject to the same SCM
disciplines at the same time. When the software
product is under development, the documenta-
tion entities (baselined specifications and user
requirements) are the most important. When
coding begins, the documentation representing
the design is the most important entity to be

(12)

SOFTWARE CONFIGURATION MANAGEMENT

managed. Finally, when the product is ready for
general use, the source code is the most accurate
representation of the real product and the docu-
mentation is related so that representation is
most important. These transitions of disciplinary
focus over time are common to all SCM disciplines
and need to be recognized in planning systems for
effectively supporting project management.

Firmware® raises some special considerations
for configuration management. While being devel-
oped, the disciplines of software CM apply; but
when made a part of the hardware (burned into
[EP]ROM), the disciplines of hardware CM apply.
Testing may vary but the SCM requirements are
generally the same. The packaging of [EP]ROM
versus RAM code also introduces and necessitates
different identification procedures, which are
noted in 3.3.1.

2.1.3.2 The issue of what entities are to be
managed often arises in the practical context of
what gets captured in each library, and when.
Consideration need also be given to the hierarchy
of entities managed during this process. There are
several different ways of looking at this hierarchy
of entities; one, for example, is-a three-level
hierarchy: ,

(1) Configuration item (CSCI, CPCI, System,
System Segment, Program package, mod-
ule)

(2) Component (CPC, CSC, Subsystem, Unit,
Package, Program function)

(3) Unit (Procedure, function Routine, Mod-
ule)

The configuration control boards (CCB) that
are oriented to business type management deci-
sions usually select one level in this hierarchy as
the level at which they will control changes. Other
CCB may focus on more technical issues and
would each select other levels, the module
for example, as the control level for reviewing
changes. See 2.2.5 for further discussion of control
levels.

5Firmware. Computer programs and data loaded in a
class of memory that cannot by dynamically modified by the
computer during processing. Used here to generically refer to
any programmed code implemented in nonvolatile memory
such as [EP]ROM, regardless of its function; contrasts with
code designed to execute out of volatile memory, such as RAM.
There are differences between software intensive firmware
and hardware intensive firmware. The key is ease of adaptabil-
ity or degree with which programmed instructions are used,
and the size of the program. Software intensive firmware
denotes an activity that has available a set of tools commonly
used in software engineering. Hardware intensive firmware
denotes a development activity that has available a minimum
of tools necessary for creation (burn in) of the firmware.

11

ANSI/IEEE
Std 1042-1987

Another way of looking at entities to be man-
aged is in terms of the interrelationships between
the computer programs being developed and the
other software entities used during development
and testing of that program. This hierarchy is
illustrated in Table 2.

Table 2
Hierarchy of Controlled Entities

Entity Layer

Released entities Product layer

Promoted entities Test layer

Modifiable unique entities and
support software

Invocation layers

Product development
environment

Support software layer

Operating system Run-time software layer

The SCM process should support each of these
layers.
2.1.3.3 Still another way of viewing the enti-
ties is in terms of the intermediate products
generated in the process of building the computer
program product. Each of these intermediate
products may be viewed as:

(1) Modifiable entities. These items are the
individually modifiable units that are re-
quired to produce the deliverable entities.
They are the source code, control files, data
descriptions, test data, documents, etc, that
constitute the focus of SCM. The entities at
this level are referenced as units or com-
ponents in this guide.

(2) The compilation or assembly entities, such
as compilers. These are needed to develop,
test and maintain the program throughout
the life cycle of the product. These entities
are referenced as support software in this
guide.

(3) Application-specific entities. These are
the different representations that are cre-
ated in the process of producing the deliv-
erables. Examples are the results produced
by the compilation and assembly entities,
and link/load entities, such as a link
editor/locator. These culminate in the
product that is released for general use.
These entities are referenced as configura-
tion items (CI) in this guide.

ANSI/IEEE
Std 1042-1987

2.2 The Process of SCM

2.2.1 Management Environment of SCM. Soft-
ware engineering, and therefore SCM, takes place
within an organizational business environment.
To be effective, SCM must blend in with and
reflect the organization. It must take into account
the management style —entrepreneurial, very
disciplined, etc. The technical skills of the imple-
menting organization must be taken into account
as well as available resources when specifying
whether SCM is to be performed by a single organ-
ization or distributed among several. The organ-
ization must also be responsive to the kinds of
controls needed by the organization that will
ultimately be using the product.

SCM management provides support to the
organization by working within it to define imple-
ment policies, techniques, standards, and tools
that facilitate their control of the SCM process.
These processes assist other managers (and cus-
tomers as required) by supporting effective con-
figuration identification, change controls, status
accounting, audits, and reviews.

2.2.2 Dynamics of SCM. The cornerstone ac-
tivity of SCM is managing the change process and
tracking changes to ensure that the configuration
of the computer program product is'accurately
known at any given time. The change manage-
ment is accomplished by completely identifying
each baseline and tracking all subsequent changes

Identify Structure

Identify and Label
Baseline IEntities

IEEE GUIDE TO

made to that baseline. This process is used
whether the baseline represents preliminary doc-
umentation, such as requirements, or a fully
documented program including source and object
code. All entities (specifications, documents, text
data, and source code) are subject to this change
management discipline.

Effectively managing baseline changes requires
that a scheme for identifying the structure of the
software product must be established. This struc-
ture relates to the hierarchical organization of the
computer program and is extended to include
all entities or work-products associated with the
program. This identification scheme must nor-
mally be maintained throughout the full life of the
computer program product. Usually a numbering
scheme or file name scheme is associated with the

- structure, and unique and appropriate labels are

assigned to each entity of the product.

. As new baselines are created in transition by a
promotion or release, the aggregate of entities is
reviewed or audited to verify consistency with the
old baseline, and the identification labeling is
modified to reflect the new baseline. Changes to
the different versions and revisions of each base-
line are maintained. The history of changes to
baselined configurations is maintained and made
available to engineering and management in sta-
tus reports. Figure 1 illustrates a model of the
SCM process.

.. Baseline A

| » Track Changes to Baseline A
| ® Report status of changes

j ® Verify new Baseline

Baseline B

| ® Track Changes to Baseline B
| * Report status of changes

| ¢ Verify new Baseline
|

Baseline C

* Track Changes to Baseline C

¢ Verify configuration

|
: * Report status of changes
|
|

Release Product

Baseline

Fig 1
Model of Change Management

SOFTWARE CONFIGURATION MANAGEMENT

2.2.3 Role of Source Code in SCM. A key
entity to be managed is the source code, since it is
the basic representation in readable form of the
product being controlled. Other forms of docu-
mentation and data are verified by comparison to
this entity. At different phases in a development
cycle, source code may not be available and dif-
ferent baselined entities may be defined as the
basic representation. However, for most of the
software life cycle, the source code provides the
key entity for verification. The creation of exe-
cutable code for the machine is directly derived
(in the majority of computer systems) from the
source code by various mechanized tools, such as
assemblers, compilers, link/loaders, and interpre-
ters. Recreation of source code (and object code)
from design documentation can be costly. There-
fore, to control only design documentation does
not usually fully capture the implementation of
the software. If the source code were to be lost
because of improper, unreliable, or insufficient
controls, the cost of recreating all of the source
code would (in the majority of cases) be very
expensive because of the typically incomplete
state of the documentation.

Design documentation is verified against the
product represented by the source code. The test
entities (test design, text cases and procedures),
test data (including data generation procedures)
and test reports, are used to verify that the
executable code (produced by the source code)
matches the documentation. Documentation
needed for maintenance (programming note-
books, etc) and user documentation are also veri-
fied against the source code.

Depending on the difficulty of rebuilding a
complete set of executable code, the relocatable
code may also be identified and considered an
entity. However, the source code is generally
considered to be the primary, if not sole source in
establishing the product configuration.

Since source code can be interpreted differently
by different compilers, it is necessary to control
the versions of the support software used for a
specific released product so as to have full control
over the computer program product.

2.2.4 Different Levels of Control. Manage-
ment delegates the authority for action downward
to and including the work done by nonmanage-
ment personnel. Management also selectively
delegates aspects of control to nonmanagement
personnel. In this guide, the term levels of control
includes all control exercised by both manage-
ment and nonmanagement. The term authority
refers to control reserved by management for

13

ANSI/IEEE
Std 1042-1987

management decisions relative to allocation of
resources: schedule, production cost, customer
requirements for product cost, performance,
delivery, etc. Nonmanagement provides technical
data to support these evaluations. Since the SCM
Plan must identify all software CI (or classes
thereof) that will be covered by the Plan, it must
also define the level of management needed to
authorize changes to each entity. As the software
product evolves, it may be wise or necessary to
increase the management authorization level
(that is, level of control) needed. This can be
accomplished through the internal part promo-
tion hierarchy.

A general-use facility, which has many released
software CI as well as CI under development, will
often require many separate levels of control, and
possibly different levels of authority for approving
changes. For example, software CI that are used
by several organizations may require change
approval by management that is in charge of all
those organizations. Not only the CI that will be
delivered by the development group but also the
level of authority for all vendor-supplied or inter-
nally developed software tools, utilities, operating
systems, etc, used in the development need to be
identified. Software CI used within any interme-
diate organization may usually require change
approval by that organization’s management.
These intermediate organizations may have
unique design or analysis tools for their own use
on the project and can have change control
authority over these tools.

2.3 The Implementation of SCM

-2.3.1 Using Software Libraries. The tech-
niques and methods used for implementing con-
trol and status reporting in SCM generally center
around the operation of software libraries. Soft-
ware libraries provide the means for identifying
and labeling baselined entities, and for capturing
and tracking the status of changes to those
entities.

Libraries have been historically composed of
documentation on hard copy and software on
machine readable media, but the trend today is
towards all information being created and main-
tained on machine-readable media.8 This trend,
which encourages the increased use of automated
tools, leads to higher productivity. The trend also

8There may still be valid legal needs for maintaining hard
copy versions of all baselined materials. The ability to elimi-
nate hard copy media should not be construed as a necessary
or even wise thing for an organization to do.

ANSI/IEEE
Std 1042-1987

means that the libraries are a part of the software
engineering working environment. The SCM func-
tions associated with the libraries have to become
a part of the software engineering environment,
making the process of configuration management
more transparent to the software developers and
maintainers.

The number and kind of libraries will vary from
project to project according to variations in the
access rights and needs of their users, which are
directly related to levels of control. The entities
maintained in the libraries may vary in physical
form based on the leve] of technology of the soft-
ware tooling. When the libraries are automated,
the libraries that represent different levels of
control may be functionally (logically) different
even though they are physically the same. The
insertion of entities and changes to entities in a
controlled library should produce an auditable
authorization trail.

The names of libraries may vary, but fundamen-
tally three kinds should be considered, as outlined
in Fig 2.

The dynamic library, sometimes called the pro-
grammer’s library, is a library used for holding
newly created or modified software entities (units/
modules or data files and associated documenta-
tion). This is the library used by programmers in
developing code. It is freely accessible to the pro-
grammer responsible for that unit at any time. It
is the programmers’ workspace and controlled by
the programmers.

The controlled library, sometimes called the
master library, is a library used for managing the
current baseline(s) and for controlling changes
made to them. This is the library where the units
and components of a configuration item that have
been promoted for integration are maintained.

IEEE GUIDE TO

Entry is controlled, usually after verification.
Copies may be freely made for use by programmers
and others. Changes to units or components in
this library must be authorized by the responsible
authority (which could be a configuration control
board or other body with delegated authority).

The static library, sometimes called the soft-
ware repository, is a library used to archive
various baselines released for general use. This is
the library where the master copies plus autho-
rized copies of computer program configuration
items that have been released for operational use
are maintained. Copies of these masters may be
made available to requesting organizations.

2.3.2 Controlling Changes to Libraries. Sev-
eral possible methods for controlling access to
libraries are illustrated in the Appendixes. Appen-
dix B prescribes formal change control of several
configuration items at the component level within
established baselines. Another approach is having
rather informal methods for authorizing changes
to configuration items. This method is used for
fast integration of changes in a research type
environment, as in Appendix B. For libraries hav-
ing several configuration items including both
external (third-party software) and internal (in-
house developments) sources of supply, a mixture
of formal methods for authorizing changes is
applicable, as illustrated in Appendix C. Exter-
nally developed computer programs may be con-
trolled at CI levels, whereas internally developed
computer programs may be controlled at more
discrete component levels. The procedures for
authorizing changes may be integrated with the
software tools in an integrated environment, as
illustrated in Appendix D.

In summary, the levels of control described in
each appendix are illustrated in Table 3.

Promote Release
Actions Actions
Dynamic Library Controlled Library
» USER
Controlled by Controlled by
Generation Affected Operations
Activity
Impound
Actions
|
Static Library

Fig 2

Maintained by
Corporate Entity

Three Types of Libraries

14

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

Table 3
Levels of Control in Sample Plans
Appendix A Appendix B Appendix C Appendix D
Number of CI Several CI (internal) 3 CI (internal) Internal CI 2 CI (internal)
External ClI
Components (CSC) All components Internal components Unit
Type of control Formal Informal Formal Formal (automated)

2.3.3 Using Configuration Control Boards.
Another functional concept of SCM is the ex-
tended use of configuration control boards
(CCB). This concept provides for implementing
change controls at optimum levels of authority.
Configuration control boards can exist in a hier-
archical fashion (for example, at the program,
system design, and program product level), or one
such board may be constituted with authority
over all levels of the change process. In most
projects, the CCB is composed of senior level
managers. They include representatives from the
major software, hardware, test, engineering, and
support organizations. The purpose of the CCB is
to control major issues such as schedule, function,
and configuration of the system as a whole.

The more technical issues that do not relate
to performance, cost, schedule, etc, are often
assigned to a software configuration control
board (SCCB). The SCCB discusses issues related
to specific schedules for partial functions, interim
delivery dates, common data structures, design
changes and the like. This is the place for deci-
sion-making concerning the items that must be
coordinated across CI but which do not require
the attention of high level management. The SCCB
members should be technically well-versed in the
details of their area; the CCB members are more
concerned with broad management issues facing
the project as a whole and with customer issues.

2.4 The Tools of SCM. The SCM software tools
selected for use by a project and described in a
Plan need to be tompatible with the software
engineering environment in which the develop-
ment or maintenance is to take place.

SCM tools are beginning to proliferate and
choices have to be made as to the tool set most
useful for supporting engineering and manage-
ment. There are many different ways of examin-
ing available SCM tools. One way is to categorize
them according to characteristics of their prod-

ucts: a filing system, a data-base management
system, and an independent knowledge-based
system.” Another way is to examine the functions
they perform: clerical support, testing and man-
agement support, and transformation support.f A
third way of categorizing the SCM tools is by how
they are integrated into the software engineering
environment on the project. The current set of
available SCM tools is classed in terms of the level
of automation they provide to the programming
environment on a project.
2.4.1 Basic Tool Set. This set includes:
(1) Basic data-base management systems
(2) Report generators
(3) Means for maintaining separate dynamic
and controlled libraries
(4) File system for managing the check-in and
check-out of units, for controlling compila-
tions, and capturing the resulting products
This set is compatible with a programming
environment that is relatively unsophisticated.
The tools control the information on hard copy
regarding a program product. They assume a
capability for maintaining machine processable
libraries that distinguish between controlled and
uncontrolled units or components. The tools sim-
plify and minimize the complexity, time, and
methods needed to generate a given baseline.
Appendix B illustrates a project using such a tool
set.
2.4.2 Advanced Tool Set. This set includes:
(1) Items in the basic tool set
(2) Source code control programs that will
maintain version and revision history
(3) Compare programs for identifying (and
helping verify) changes

7Reference: British Alvey Programme.

8Reference: Life Cycle Support in the Ada® Environment by
Mc Dermid and Ripken.

9Ada is a registered trademark of the US Government,
AJPO.

ANSI/IEEE
Std 1042-1987

(4) Tools for building or generating executable
code

() A documentation system (word process-

ing) to enter and maintain the specifica-

tions and associated user documentation

files

A system/software change request/authori-

zation (SCR/SCA) tracking system that

makes requests for changes machine read-

able

This set provides a capability for a SCM group
to perform more efficiently on larger, more com-
plex software engineering efforts. It assumes a
programming environment that has more com-
puting resources available.

It provides the means of efficiently managing
information about the units or components and
associated data items. It also has rudimentary
capabilities for managing the configurations of
the product (building run-time programs from
source code) and providing for more effective
control of the libraries. Appendix A illustrates use
of such a tool set.

2.4.3 On-Line Tool Set. This set includes:

(1) Generic tools of the advanced tool set inte-
grated so they work from a common-data
base : '

An SCR/SCA tracking and control system
that brings generation, review, and approval
of changes on-line)
Report generators working on-line with the
common data base, and an SCR/SCA track-
ing system that enables the SCM group to
generate responses to on-line queries of a
general nature

This set of tools requires an interactive pro-
gramming environment available to the project. It
also provides an organization with the minimal
state-of-the-art SCM capabilities needed to sup-
port the typical interactive programming environ-
ment currently available in industry. It assumes
on-line access to the programming data base and
the resources necessary for using the tools.
Appendix C illustrates use of such a SCM tool set.

2.4.4 Integrated Tool Set. This set includes:

(1) On-line SCM tools covering all functions

(2) An integrated engineering data base with
SCM commands built into the on-line engi-
neering commands commonly used in de-
signing and developing programs (most
functions of CM are heavily used during
design and development phases)

The integration of the SCM commands with
on-line management commands for build-
ing and promoting units and components

(6)

(2)

3

(3)

16

IEEE GUIDE TO

This set integrates the SCM functions with the
software engineering environment so that the
SCM functions are transparent to the engineer.
The software engineer becomes aware of the SCM
functions only when he/she attempts to perform
a function or operation that has not been autho-
rized (for example, changing a controlled entity
when the engineer does not have the required
level of authority or control). Appendix D illus-
trates a project having such an approach to SCM.

2.5 The Planning of SCM. Planning for SCM is
essential to its success. Most of the routine activi-
ties associates with SCM are repetitious, clerical-
type activities, which can be automated fairly
easily. Effective SCM involves planning for how
activities are to be performed, and performing
these activities in accordance with the Plan. The
more important disciplines of SCM, such as defin-
ing a scheme for identifying the configuration
items, components, and units, or the systematic
review of changes before authorizing their inclu-
sion in a program, are management activities that
require engineering judgment. Relating engineer-
ing judgment-with management decisions, while
also providing the necessary clerical support
without slowing the decision-making process, is
the critical role of SCM personnel and tools, or
both.

SCM defines the interaction between a number
of activities extending throughout the life cycle of
the product. The SCM Plan functions as a central-
ized document for bringing together all these dif-
ferent points of view. The cover sheet of the Plan
is usually approved by all of the persons with
responsibilities identified in the Plan. This makes
the Plan a living document, to be maintained by
approved changes throughout the life of the com-
puter programs.

Maintenance of the Plan throughout the life of
the software is especially important as the dis-
ciplines of identification, status reporting, and
record keeping apply throughout the maintenance
part of the life cycle. Differences may be expected
in how change processing is managed; and these
need to be understood by all participants.

It should be clear from the information given
above, but it is stated explicitly here, that the
application (and thus the planning) of SCM is
very sensitive to the context of the project and
the organization being served. If SCM is applied as
a corporate policy, it must not be done blindly,
but rather it should be done in such a way that
the details of a particular SCM application are
reexamined for each project (or phase for very

SOFTWARE CONFIGURATION MANAGEMENT

large projects). It must take into consideration
the size, complexity, and criticality of the soft-
ware system being managed; and the number of
individuals, amount of personnel turnover, and
organizational form and structure that have to
interface during the life of the software system
being managed.

This guide provides suggestions as to how
ANSI/IEEE Std 828-1983 [2] can be interpreted
for specific projects, and items to be considered in
preparing a plan. The objective of the planner is
to prepare a document that

(1) Clearly states the actions to be performed

by software engineering and supporting
activities that are required to maintain vis-
ibility of the evolving configuration of the
computer program products
Supports management in the process of
evaluating and implementing changes to
~each configuration
(3) Assures that the changes have been prop-
erly and completely incorporated into each
computer program product.

()

3. Software Configuration
Management Plans

3.1 Introduction. Because SCM extends through-
out the life cycle of the software product, the SCM
Plan is the recommended focal point for inte-
grating and maintaining the necessary details for
software CM. Projects do differ in scope and com-
plexity and a single format may not always be
applicable. ANSI/IEEE Std 828-1983 [2] describes
a minimum format for plans with a maximum
amount of flexibility. If a section of the format is
not applicable, the sentence There is no pertinent
information for this section should be inserted to
indicate that the section has not been overlooked.

It is desirable to provide a synopsis for users of
the Software Configuration Management Plan and
for the managers who must approve it. In each
Appendix to this guide, a synopsis has been pre-
pared to set the context surrounding the genera-
tion of the sample SCM Plan. For purposes of this
guide, the viewpoint of each synopsis in the
Appendixes is directed towards the user of the
guide.

3.1.1 Purpose. The theme here is to inform
the reader of the specific purpose of the SCM
activity(ies) to be defined in the SCM Plan. It is
sufficient to write a brief paragraph identifying

17

ANSI/IEEE
Std 1042-1987

the system to which the particular SCM Plan
applies, noting any dependencies on other SCM or
CM Plans. For example, Appendix A emphasizes
thoroughness of audits and reviews to assure
conformance to contractual requirements for a
computer program product; the theme is rigorous
control of the configuration during development.
Appendix B is directed towards low cost, quick
response to changes, and documentation of the
as-built versions of the computer programs. In
Appendix C the theme is maintaining configura-
tion control of many computer program products
after development and while they are in use. This
is complicated by the necessity to manage third-
party software and subcontracted software along
with internally developed software. Appendix D is
directed towards the complex process of generat-
ing computer programs, and includes third-party
software and subcontracted software in an envi-
ronment where changes to configurations are
driven by marketing, engineering, vendor changes,
and customer demands, as well as the normal
iteration of engineering changes.

3.1.2 Scope. The scope of the Plan encom-
passes the tasks of SCM. The function of the sub-
section is to

(1) Identify the specific SCM concerns

(2) Define what the Plan will and will not

address

(3) Identify the items to be managed.

3.1.2.1 It is also important to identify the
(1) Lowest entity in the hierarchy (the control
element) that will be reviewed by the top
level project or system management CCB
(2) Smallest useful entity that will be reviewed
(a module, a unit, a line of code) by techni-
cal management (SCCB)
(3) Deliverable entities or configuration item(s)
to be released for use as separate entities
The definition and scope of each entity of the
configuration item and the kind.-of control to be
considered for each type of entity is also needed.
A short description of relationships among con-
figuration items may be appropriate. The boun-
dary of the SCM activities may be described here
with the help of graphics (block diagrams, tables,
engineering drawing) as necessary.

Issues to Consider in Planning
Section 1.2 —Scope
(1) What are the characteristics of the
configuration items to be controlled?

ANSI/IEEE
Std 1042-1987

(2)

3

(4)

(%)

(a) Only one application programi0

(b) Many separate small application
programs

{¢) An integrated set of application
and support programs embedded
in a system

(d) Computer programs as an inte-
gral part of a hardware system

What are the different high-level inter-

faces to be managed?

(a) People, organization interfaces

{(b) Subcontractor interfaces

(c) Specification interfaces

(d) Contractor interfaces

(e) Hardware interfaces

(f) Life cycle phase interfaces

(8) Software interface

What are the time frames of the project

(a) Life cycle phases

(b) Calendar time

What resources will be available or

required for the SCM activities?

(a) Machine resources

{b) Space resources

(c) People resources

(d) Schedule dependencies

What are the software engineering

entities to be controlled?

(a) Contractual documents

(b) Specifications

(c) Other documentation

(d) Test procedures, data, verification
reports

(e) Source code

(f) Support software

3.1.3

Definitions. Subsection 1.3 of the

Plan is used to capture all definitions needed
for understanding the Plan or helpful for
communication.

(1)
(2)

3
(4)

Issues to Consider in Planning
Section 1.3 — Definitions

Are the definitions easily understood?

Is there a list of definitions that can be

easily referenced?

Do you really need to define a new

term?

Can a glossary of acronyms be used?

10Throughout the guide, when lists are added to questions
in the issues to consider NOTES, the lists are to be considered
as suggested items, not an exhaustive checklist as in a stan-

dard.

18

IEEE GUIDE TO

It is best to use standard definitions that
are common to the industry. For example,
terms defined in ANSI/IEEE Std 729-1983
{1] have been arrived at by a consensus of
professionals in the industry; it is a good
source to use. Numerous new definitions
tend only to make understanding the Plan
more difficult. Define only those new terms
that have to be defined — usually specific to
the computer program product. Also dupli-
cating definitions used elsewhere leads to
unnecessary work to maintain them current —
another configuration management task.

3.1.4 References. Subsection 1.4 of the Plan
lists the documents cited elsewhere in the Plan.
References made here refer to existing documents
and, when customers are involved, the contrac-
tual standards and directives cited in the Plan.
Having all the references in one place eliminates

" duplication of citing different sources. This makes

a Plan that is more readable and supports general
standardization of work instructions.

Issues to Consider in Planning
Section 1.4 — References
(1) Can policies, practices, and procedures
that already exist within the organiza-
tion be referenced?
(2) Is each reference necessary for the
Plan?
(3) Are some references a part of the
organization’s directive system?
Large, critical software developments, such
as illustrated in Appendix A, tendtorelyona
set of standards that are shared with other
projects. This makes for better communica-
tion among those using the same general sys-
tem but at the cost of some flexibility. Smaller
projects, such as cited in Appendix B do not
need the cross-checks and redundancy of
these generalized standards and tend to rely
on fewer documented standards.
Referencing helps to reduce the bulk of the
document that must be maintained. Care
should be taken to reference only those doc-
uments that are directly applicable to the
Plan. Excessive references will lessen the
effectiveness of the more important refer-
ences. A distinction should be made between
references that are necessary for execution
of the Plan and those documents that are
included as general or supplementary infor-
mation.

SOFTWARE CONFIGURATION MANAGEMENT

3.2 Management. Section 2 of the Plan has the
theme of relating the elements of the SCM disci-
pline to specific activities of the project’s or com-
pany’s management organization. It also provides
an opportunity to specify budgetary, schedule,
and resource requirements necessary to carry out
the Plan.

3.2.1 Organization. In 2.1 of the Plan, func-
tions are allocated to organizational entities.
Interfaces between organizations are handled in a
separate section (2.3). The functions of the SCM
department itself (if it will exist) are defined in
more detail in 2.2. It is not necessary or desirable
in most cases to allocate all SCM functions to an
SCM department; SCM is a part of the entire soft-
ware engineering process and as such may best be
___accomplished by the various organizations actually
Be?forming the systems engineering or integra-
tion. Software Development, Systems Engineering,
Test and Quality Assurance departments all may
assume significant roles in carrying out SCM
functions. The Issues to Consider listed below are
designed to provide a starting point in looking at
the project’s work-flow in relation to the current
management structure and to support considera-
tion of how the SCM activities can be best allo-
cated or coordinated.

Issues to Consider in Planning
Section 2.1 — Organization
(1) What kind of product interfaces have
to be supported within the project

itself?

(a) Software —hardware

(b) Software — software

(c) Software maintained at multiple
sites

(d) Software developed at different
sites .

(e) Dependencies on support software

(f) Maintenance changes generated

(2)

3

4)
(6)

from different sites
What are the capabilities of the staff
available to perform CM specific activ-
ities?
What is the management style of the
organization within which the software
is being developed or maintained?
Who will be responsible for maintain-
ing the support software?
What organizational responsibilities
are likely to change during the life of
the Plan?
(a) Project management organization

19

(6)

(M
®

9

(10)

(1D

(12)

ANSI/IEEE
Std 1042-1987

(b) Organizational interfaces

(c) Configuration management or-
ganization .

Who has the authority to capture data

and information and who has authority

to direct implementation of changes?

What are the plans for maintaining

current organization charts(s)?

What level of management support is

needed forimplementing various por-

tions of the SCM discipline?

Will the project management be con-

fined to a single organization or will it

be distributed among several organi-

zations?

Are responsibilities for processing

changes to baselines clearly indicated,

including who

(a) Originates changes

(b) Reviews changes

(c) Signs-off changes

(d) Approves changes

(e) Administers the process

(f). Validates and checks for comple-
tion?

Who has the authority to release any

software, data, and associated docu-

ments?

Who has the responsibility for various

SCM activities?

(a) Ensuring the integrity of the soft-
ware system
. (b) Maintaining physical custody of
the baselines
(c) Performing product audits (ver-
sus quality audits)
(d) Library management
(e) Developing and maintaining spe-
cialized SCM tools
(13) How is authority vested for handling

exceptional situations and wajvers?

If the plan for maintaining organizational

charts shows a certain organization or man-
agement group (such as the program office
or the business management office) assum-
ing this responsibility, it may be wise to refer-
ence those charts in the Plan rather than
placing the actual chart in the document,
which must then be maintained every time
another group of charts is updated. Alterna-
tively, the organizational chart may be shown
in the initial version of the Plan with a foot-
note directing readers to the proper official
source for updates. It is usually best to
include organizational charts that refer only

ANSI/IEEE
Std 1042-1987

to functional names (such as department
names) rather than to individuals responsi-
ble for managing them. This information is
quite dynamic in most organizations, and it is
probably not worth updating a Plan every
time a department is assigned a new manager.

Consider advantages of alternative forms
of organizing activities. Appendix A illustrates
a complex, critical software development
where there is a strong need for indepen-
dence and centralization of SCM duties in a
functional type organization. Appendix C also
illustrates a functional type organization but
for a different reason: in a software mainte-
nance environment, SCM plays a stronger
role in managing the change processing, even
to the scheduling of work— more so than in a
typical development environment.

Another point to consider is the manage-
ment support for the various SCM disciplines.
Note, for example, in Appendix B the man-
agement supported some concepts of SCM
but wanted the process to be as painless as
possible for the software developers and cus-
tomers. The SCM administrator established a
method of collecting information necessary
to achieve the purpose without interfering
with the flow of changes to the sites. Sim-
ilarly, the other Appendixes illustrate SCM
practices that are tailored to the reality of
the situations in which they are found.

For ease of reading, organize the tasks and
the owners in terms of the classical set of
CM functions: identification, configuration
control, status accounting, and audits and
reviews. The matrix in Appendix A, Table 1
illustrates how this kind of information can
easily be presented.

3.2.2 SCM Responsibilities. If a specific SCM
department or group is identified in the manage-
ment structure, this section provides a specific
description of the role this organization will play
in the overall SCM process.

Issues to Consider in Planning
Section 2.2 —SCM Responsibilities

(1) Are there any special considerations
for this project that require the SCM
department to change its standard
method of doing business?

(2) What explicit assumptions is the SCM
group making in planning their part of

the project?

20

IEEE GUIDE TO

(3) Are there specific expectations on the
part of the customer or client (such as
contractual requirements) for an SCM
group that need to be taken into
account? ,

While the major considerations may center

on responsibilities of the configuration con-
trol boards (CCB), there is the need to con-
sider the responsibilities of other activities
such as software quality assurance (SQA),
users of the system, other system or hard-
ware configuration control boards, and other
management activities.

3.2.3 Interface Control. The theme of subsec-
tion 2.3 of the Plan is how SCM disciplines are
coordinated and how they are used to manage
interfaces throughout the project’s life. This is the
place to define the roles and composition of the
various CCB, SCCB, and other activities and prac-
tices used for interface control. All types of inter-
faces should be considered.

The scope of the SCM Plan (1.2) specifies the
boundaries of the CI and the jurisdiction of the
Plan, but this boundary is often not as clear as it
should be and the control mechanisms are even
fuzzier. The definition of interfaces is one of the
most important planning elements for ensuring a
smooth operation. Every possible effort should be
made to reach a common agreement regarding
each organization’s responsibility regarding the
interface(s), and then document them in this
subsection. The basic types of interfaces to con-
sider here include organization, phase, software,
and hardware.

Organizational interface elements include inter-
faces between various organizations involved with
the product; for example, vendor to buyer, sub-
contractor to contractor, and co-developer to co-
developer. It is typical that different organizations
have different views of a product and will apply
different expectations to it. Effective SCM disci-
plines can help minimize and resolve these differ-
ences whenever and wherever they may arise.

Phase interface elements include transition
interfaces between those life cycle phases of the
product that are included in the Plan. They are
often coincident with a transition in control of
the product between different organizations; for
example, promotion from a development group to
a formal testing group. Effective SCM disciplines
can support these transitions with all the docu-
mentation, code, data, tools, and records that are
needed for management to smoothly continue
SCM on the product.

SOFTWARE CONFIGURATION MANAGEMENT

Software interface elements are the agreements
shared between the computer program product
and other software entities (for example, operat-
Ing system, utilities, communication system).
These agreements involve the structure and
meanings assigned to data passing and opera-
tional coordination of the data and the results.
The other software may already exist or may be
concurrently developed. Effective SCM disciplines
can make these agreements generally known and
assist management in maintaining the integrity of
the product(s).

Hardware interface elements are the agree-
ments shared between the computer program
product and characteristics of any hardware in
the environment with which the program product
interacts. These agreements involve capabilities
provided by the hardware and operations defined
by the computer programs. Effective SCM disci-
plines help make thése agreements known and
support their evaluation for consistency through-
out the evolution of both hardware and software.

Issues to Consider in Planning
Section 2.3 —Interface Control

(1) What are the organizational interfaces?

(2) What are the important interfaces be-
tween adjacent phases of the life cycle?

(3) What are the interfaces between dif-
ferent entities of the computer pro-
grams?

(4) What are the dependent hardware inter-
faces?

(5) Where are the documents defined and

maintained that are used in interface

control?

What are the procedures for making

changes to these interface documents?

Interface control should be extended to
include more than just documentation. If the
hardware configuration and its supporting
software interfaces are complex, then the
Plan must also include or reference controls
for hardware drawings and equipment as
well. The sample Plan in Appendix D illus-
trates the interface between multiple kinds
of computer programs in a variable hard-
ware configuration. In real-time system envi-
ronments, the interface controls may involve
tracking changes to configurations of ex-
ternal sensors, valves, etc. Typically, in
a software modification and maintenance
situation, human operator interface controls
may play a significant role in this section. In

(6)

21

ANSI/IEEE
Std 1042-1987

some organizations, [EP|ROM are considered
hardware, yet the programs residing in them
must be explicitly dealt with in this section of
the Plan. The guiding principle of SCM is that
any proposed changes to the product or to
its expected use be considered and evaluated
in an open, documented, deliberate, and
mutually acceptable fashion.

3.2.4 SCM Plan Implementation. Subsection
2.4 of the Plan has the theme of providing details
concerning the implementation of the key SCM
milestones identified in the Plan. These details
include:

(1) Identification of prerequisites or required
activities that affect the Plan and the
sequencing of events in the Plan

(2) Schedules for accomplishing these items

(3) Resource requirements (for example, ma-
chine time, disk space, specialized tool
availability, and staff support)

The implementation section’s level of detail and
complexity are dependent on the level of com-
plexity of the system being controlled. Small soft-
ware development activities, particularly those
that focus primarily on software and are not
currently tied to hardware systems development,
may need relatively simple implementation sche-
dules. SCM Plans that support more complex
activities, such as software maintenance (Appen-
dix C) or development and maintenance of
product line software (Appendix D), will have
more complex implementation schedules but will
focus more on events such as release for use, new
product baselines, audits, and reviews.

Issues to Consider in Planning
Section 2.4 —SCM Plan Implementation
(1) Are the resources planned for SCM
commensurate with the size and com-
plexity of the system being controlled?
(2) How will the SCM activities be coordi-
nated with other project activities?
(3) How will the different phases (devel-
opment, maintenance) be managed
throughout the software life cycle?

Resource requirements should be carefully

~ considered and included here only when they
are important factors in implementing the
Plan. If there are any separate project doc-
uments that contain the necessary infor-
mation (for example, department budgets,

ANSI/IEEE
Std 1042-1987

development laboratory implementation
Plans), include them here by reference to
avoid unnecessary document maintenance.
Iters to include are:

(1) People resources

(2) Computer and computer-related re-

sources

(3) Library space

(4) Storage space (including electronic

media)

It is usually impractical to put actual dates
in the Plan for events. In general, it is better
from the maintenance perspective to ,put
actual dates in a schedule chart kept in an
appendix or a separate document. In this
section it is more appropriate to refer to sig-
nificant events in terms of their relationships
to other milestones (for example, a controlled
library for source code will be established fol-
lowing the completion of the critical design
review), or in terms of their relationship in
time to other events (for example, the physi-
cal configuration audit will be held 90 days
after the functional qualification test).

Requirements for implementation should
be discussed in the same sequence in this
section as they are discussed in the body of
your Plan (for example, configuration identi-
fication is followed by product baselines).
This should make correlating the Plan with
the implementation considerations easier for
the user.

Keep in mind that this section should be
updated as the project continues. Consider
reviewing this section and making any neces-
sary additions or changes upon the achieve-
ment of each major milestone in the system
development life cycle (for example, comple-
tion of functional design) or on a periodic
basis (for example, once per quarter).

Project managers are often asked to pro-
vide a budget for SCM separate from the
development budget. Little historical data
are reported in the literature, primarily
because every SCM activity has a slightly
different organizational structure. In the
example given in Appendix B, the project
defined 0.5 full time equivalent man-months.
Other types of projects, such as illustrated in

Appendix A, will require a larger portion of

dedicated SCM personnel. In general, how-
ever, as more effective automated tools are
deployed and used, the need for dedicated
personnel will diminish.

22

IEEE GUIDE TO

3.2.5 Applicable Policies, Directives, and Pro-
cedures. Subsection 2.5 of the Plan has the theme
of identifying and defining the degree to which
existing and future SCM policies and procedures
apply to the Plan. The actual identification of ref-
erenced documents, and information on how to
obtain them should be cited in Section 1.4 of the
Plan. Subsection 2.5 provides the opportunity to
interpret the use of reference document(s) and
to describe any new document(s) that may be
planned or are under development (which, obvi-
ously, cannot be cited in Section 1.4 of the Plan).

Issues to Consider in Planning
Section 2.5 — Applicable Policies,
Directives and Procedures
(1) Are any standard identification pro-
cedures available?
(a) Standard labels for products
(b) Identification of the hierarchical
‘ structure of computer programs
(c) Component and unit naming con-
ventions and limitations
Numbering or version level desig-
nations
(e) Media identification methods (in-
cluding [EP]ROM)
{f) Data-base identification methods
(g) Documentation labeling and iden-
tification standards
(2) Are any specific procedures existing
' for interacting with the dynamic li-
braries?
(a) Promoting from one type of library
to another ’
(b) Documentation releases
(c) Releasing computer
products
(d) Releasing firmware products
(3) Are there standard procedures for
managing the change process?
(a) Handling change or enhancement
requests
(b) Provisions for accepting changes
into a controlled library
(c) Processing problem reports
(d) Membership in CCB
(e) Operating CCB
(f) Capturing the audit trail of
changes
(4) Are any status accounting procedures
available?
(a) Reporting procedures for sum-
marizing problem reports

(d)

program

SOFTWARE CONFIGURATION MANAGEMENT

(b) Standard reports and other for-

matted management information

(¢) Distributing status data
(5) Are there procedures for audits?

‘(a) Procedures for functional config-

uration audits

(b) Procedures for physical configu-

ration audits ,
(6) Are there procedures for other general

SCM activities?

(a) Standards for accessing and con-
trolling libraries, including secur-
ity provisions, change processing,
backups and long-term storage
Forms or file definitions for prob-
lem reports, change requests, doc-
umentation change notices, etc

The set of procedures need not be devel-
oped at one time; but effort consistently ap-
plied over a period of time can generate an
adequate set of policies and procedures that
are effective. The kinds of policies, directives,
and procedures that are part of an organiza-
tion’s general practices and procedures might
also be considered a part of the Plan.

(b)

3.3 SCM Activities. The SCM organizational de-
scriptions in Section 2 of the Plan describe who
has what responsibilities for software configura-
tion management. Section 3 of the Plan describes
how these groups accomplish their responsibil-
ities.

3.3.1 Configuration Identification. The theme
of this subsection is to document an identification
scheme that reflects the structure of the product.
This is a critical task of SCM, a most difficult task
but one that is necessary for a smoothly running
SCM operation. It is critical because the flow of
management control must follow the structure of
the software being managed. It is important be-
cause the identification scheme carries forth
through the life of the computer program(s). It is
difficult because at the time the identification
scheme is constructed, the structure of the prod-
uct is rarely known to the level of detail required
during the development process.

Relating the identification scheme to the struc-
ture of the computer programs is complicated
because there are generally two levels of identifi-
cation that SCM has historically kept separate.
The first level, the identification of configuration
 items and components recognized by manage-
ment and users, is identified traditionally by

23

ANSI/IEEE
Std 1042-1987

documentation. This is the level associated with
released programs. The second level, the labeling
of files (parts), is more unique to software and is
constrained by the support software used in
generating code. File nomenclature must support
the structure of the product. Typically, these files
are identified with mnemonics unique to a project
and need to be correlated back to the identifica-
tion scheme. This is the level associated with the
parts of a released program. SCM not only must
set identification schemes for both of these levels,
but also must devise a method for relating the two
different views of the same product.

Project management generally determines the
criteria for identifying CI and subordinate control
level items. SCM then devises the identification
numbering or labeling structure for tracking those
entities.

Other kinds of problems that should be consid-
ered include legal responsibilities. Some contracts
require that all new code added to a program
belongs legally to the owner of the original com-
puter programs. Problems of third-party software
acquisition must also be considered. The legal
status of each program should be accurately
identifiable before the computer programs are
released for use. Usually some controls must be
placed on the number of copies of third-party
software passed through and delivered to custo-
mers as royaity payments might even be required.

Issues to Consider in Planning

Section 3.1 — Configuration Identification

(1) What scheme is to be used to relate
the identification of files to the for-
mal (document based) identification
scheme?
How does one relate the software
identification scheme to the hardware
identification scheme when the com-
puter programs are deeply embedded
in the system (for example, device
controller firmware, code and data
split between ROM firmware and load-
able RAM image code)?
How does one identify computer pro-
grams embedded in [EPJROM?
What specifications and management
plans need to be identified and main-

* tained under configuration manage-
ment?
(5) What timing is involved in naming -
documents as CI?

(2)

3)
4)

ANSI/IEEE
Std 1042-1987

(a) When does a document enter into
controlled status (for example,
when presented by author, when
reviewed, when rework is verified,
or when the document is formally
distributed)?

When and how does a document

get removed from the CI status?

(6) Is a separate identification scheme
needed to track third-party software?

(7) Is a special scheme needed to identify
reusable/reused software as different
from other software parts?

(8) Are there differences in identification
across projects that have different fis-
cal accounting?

(9) How does one identify support soft-

ware such as language translators,

linkers, and cross-support tools?

Is a special identification scheme

needed to identify test data (transac-

tion files, data-bases, etc) that must be
kept for regression testing?

Is there a need to identify tables and

files for data driven systems?

One practice for identification of parts of a
CI (as illustrated in Appendix A) is to use a
version description document to relate the
different files to the component or configu-
ration item scheme. A suggested practice for
embedding computer programs into hard-
ware systems is illustrated in Appendix D
where the system index type of project iden-
tification is used.

The management of firmware changes can
become difficult when the package becomes
a part of the hardware item. The problem re-
mains to relate functional capabilities to
physical part identifiers, especially when
changes to the firmware are closely coupled
to changes in the system or application soft-
ware (for example, boot loaders, device con-
trollers, and high-level ROM-resident system
debuggers).

Third-party software needs to be tracked
even though it is not changed in the same
manner as other software. This is especially
important if you, as a reseller, accept respon-
sibility of collecting and dealing with problem
reports generated by your customers for
these products. It may be necessary too for
compliance with legal restrictions on copies
and distribution accounting. Appendix C
describes this identification situation.

The successful reuse of pieces of software

(b)

(10)

(11)

24

IEEE GUIDE TO

in a (controlled) production library requires
a standardized identification scheme to re-
trieve packages or units and account for
their use in different configurations. Appen-
dix C, 3.1 references identification of reused
software. It should be noted that it is impor-
tant to control the test procedures and test
cases needed for regression testing in an
environment that maintains such software
or has extensive dynamic libraries of reus-
able software.

The identification scheme needs to refer-
ence dependent supporting software. There-
fore, provisions must be made for identifying
the internal documentation, data, and pro-
grams used in the generation of the compu-
ter program product(s).

3.3.1.2 Identify Project Baselines. Base-
lines are an effective mechanism to allow many

-people to work together at the same time. They

are a way of synchronizing people working on the
same project. The SCM discipline, as in all CM,
focuses its activity around the construction and
maintenance of baselines. The modifiable units
need an identifying mechanism, and a way of de-
scribing what is contained in their aggregates is
needed. Even if the program is small, a baseline is
used to let the other, nonprogramming people,
know what is taking place.

Issues to Consider in
Defining Baselines

(1) Are baselines other than, for example,
the traditional three required!! to sup-
port the project?

- (2) Who is needed to authorize the crea-

tion of new baselines?

(3) Who approves a baseline for promo-
tion?

(4) How and where are the baselines cre-
ated and who is responsible for them?

(5) How will the numbering system ac-
count for different baselines?

The traditional baselines used in CM (functional, allo-
cated, product) are defined in ANSI/IEEE Std 828-1983 (2]
along with the minimal requirements for identifying and
establishing those baselines. Additional internal or develop-
mental baselines can be defined and included in the Plan when
necessary. For example, in making multiple builds, it is useful
to define separate baselines for each build to keep the status
of changes straight. The sample SCM Plan in Appendix B illus-
trates the use of multiple builds. These developmental base-
lines are very helpful for integrating and testing large software
systems.

SOFTWARE CONFIGURATION MANAGEMENT

(a) Different versions
changes)
(b) Different revisions (something to
make the existing functions work)
(6) How are baselines verified?
(a) Reviews
(b) Customer approval
(c) Developer test reports
(d) Independent verification and vali-
dation
(7) Are baselines tied to milestones?
(a) Developmental milestones
(b) New versions

Baselines tie documentation, labeling, and
the program together. Developmental base-
lines define a state of the system at a specific
point in time, usually relative to an integra-
tion level, and serve to synchronize the engi-
neering activity and documentation that
occurs at that time,

Promotions are basically a change in the-
informal authority required to effect changes-
in developmental baselines. The new author-
ity commonly represents a higher level of
engineering management. The programmer
cannot change a unit that has been pro-
moted and integrated with other program-
mer’s units without notifying the others
involved, and gaining their (explicit or im-
plicit) approval by way of an SCCB (or CCB).

The more formal baselines (functional, allo-
cated, and product) define a product capa-
bility associated with performance, cost, and
other user interests. These baselines relate
the product to contractual commitments.

(functional

3.3.1.3 Delineate Project Titling, Labeling,
Numbering. This part of the Plan defines the
procedures and labels for identifying the CI,
components, and units. This is important for
identifying and retrieving information, reporting
status and for legal protection of data rights.

Issues to Consider in Labeling
and Numbering

(1) Is there a (corporate) standard for
labeling that must be used?

(2) Does the identification scheme pro-
vide for identification of versions and
revisions for each release?

(3) How can or will the physical media be
identified?

(4) Are specific naming conventions avail-

able for all modifiable entities?

25

ANSI/IEEE
Std 1042-1987

(5) Does the identification scheme need
to identify the hierarchy of links be-
tween modifiable entities?

(6) Are there constraints on unit and file
names?

(a) Compiler and file system limita-
tions on name length and compo-
sition

(b) Mnemonic requirements

(c) Names that cannot be used

It is often useful to have the identification
label indicate the level (that is, release, ver-
sion, and revision) of the product it identi-
fies. Labeling the components or units of
computer programs can be accomplished in
several ways. Numbering schemes can be
devised to identify the components. A hier-
archy of names can be devised that organizes
and identifies parts using mnemonic or Eng-
lish labels. Naming conventions that are
associated with the compilation system and
are significant for a project are most easily
used.)

[EP]ROM labeling has special problems
and will require a different scheme than that
used for -RAM-based packages shipped on
disk or tape. In developing embedded com-
puter programs, there is the additional con-
sideration of labeling the media ([EPJROM)
with the correct version of the programs.
This means that the identification scheme of
some computer program packages must
somehow relate to the hardware identifica-
tion scheme. One possible solution is to use
the version description document (VDD) form
for relating the computer program identifi-
cation documents to the altered item draw-
ings conventionally used for identifying the
[EP]ROM parts.

3.3.2 Configuration Control. Subsection 3.2 of
the Plan describes how the configuration control
process is managed. The theme here deals with
identifying the procedures used to process
changes to known baselines. An appropriate level
of authority for controlling changes must be iden-
tified or delegated for each baseline. The organi-
zations assigned responsibilities for control in
Section 2 of the Plan have to manage changes
made to the entities identified as defined in
Section 3.1 of the Plan. Procedures for processing
the requests for changes and approvals must be
defined.

ANSI/IEEE
Std 1042-1987

3.3.2.1 Levels of Authority. The levels of
authority required to make changes to configura-
tion items under SCM control can vary. The sys-
tem or contract may often dictate the level of
authority needed. For example, internally con-
trolled software tools may require less change
controls than man-rated or critical software devel-
oped under contract. The levels of authority may
vary throughout the life cycle. For example,
changes to code in the development cycle usually
require a lower level of control to be authorized
than changes to the same code after it has been
released for general use. The level of authority
required can also depend on how broadly the
change impacts the system. A change affecting
specifications during the requirements analysis
phase has less ramifications than a change affect-
ing software in operational use. Likewise, changes
to draft versions of documents are less controlled
than changes to final versions. Changes to a prod-
uct distributed to several sites and used by many
different users requires a different level of author-
ity than products with a very restricted or min-
imal user base."

The level of control needed to authorize changes
to developmental baselines depends on the level
of the element in relation to the system as a whole
(for example, a change in logic affecting one or a
few units usually has less impact on the system
than an interface between CI, especially if the CI
are developed by different organizations.

Issues to Consider in Defining
Levels of Authority

(1) Is the level of authority consistent
with the entities identified in subsec-
tion 3.1 of the Plan?

(2) When are levels of control assigned to
the modifiable units (parts) of the
computer programs during top level
and detail design stages (technical
engineering phase) for developmental
baselines?

(3) Do control levels assigned for devel-
opmental baselines (for both compo-
nents and configuration items) need
to be reviewed by management?

(4) Are there significant increases in lev-
els of control for transitions between
developmental baselines?

(a) During design

(b) For promotion from design to
implementation

(c) For unit testing

IEEE GUIDE TO

(d) For integration

(5) Does management need to know spe-
cifically who requested a change?

(6) Do changes originating from outside
the organization, such as customers or
general users, require different author-
ity for approval than changes from a
technical development group?

(7) Do changes that do not impact formal
baselines require coordination and
approval by a CCB or can they be
authorized by a SCCB?

The Plan should clearly define the level of
authority to be applied to the baselined enti-
ties throughout the life cycle of the system,
and should distinguish between controls
applied to processing technical changes that
do not impact formal baselines and the
authority needed to approve changes to for-
mal baselines. For example, during mainte-
nance or in the latter stages of preparing
multiple builds for a project, authority for
making changes to all entities at all levels is
typically restricted. However, when beginning
development of a new version or build, the
controls on the dynamic library and testing
with the controlled library can be relaxed.

Table 4 suggests some ideas for assigning
different levels of change authority to differ-
ent SCM elements during the life cycle.

3.3.2.2 Processing Changes. The theme of these
paragraphs is to describe the methods to be used
for processing change requests. Generally, no sin-
gle procedure can meet the needs of all levels of
change management and approval levels. These
paragraphs must concentrate on

(1) Defining the information needed for ap-

proving a change
(2) Identifying the routing of this information

Table 4
Variable Levels of Control
Internal Developmental Formal
Element Coordination Baselines Baselines
Specifications Supervision CCB CCB
Test data Supervision SCCB CCB
Unit code Supervision SCCB CCB
Configuration SCCB CCB CCB
Item code

SOFTWARE CONFIGURATION MANAGEMENT

(3) Describe the control of the library(ies) used
in processing the changes

(4) Describe or refer to the procedure for
implementing each change in the code, in
the documentation, and in the released
program (for example, field upgrades).

The change initiator should analyze the pro-
posed change to assess its impact on all con-
figuration items (documentation, software, and
hardware) and the CCB should satisfy themselves
that this has been done and interface with the
CCB in the impacted areas (if any).
~Another area that is often overlooked (and not

specifically covered) is that of the maintenance of
design documentation. The documentation hier-
archy should be fully defined and a change to any
level should be analyzed to ensure that the higher
levels of documentation have been considered
and that the change is rippled through the lower
levels to implementation in the code.

Source code changes, and indeed hardware
changes, should first be implemented in the high-
est level of documentation and the change imple-
mented through the subsequent levels. Provisions
for backing up of changes and maintaining their
history need to be considered.

A more critical issue centers on managing con-
trolled libraries. This configuration management
concept grew out of the SCM experience with
managing source code and has been expanded to
include all of the baseline items (including asso-
ciated documentation and reports) that relate to
the computer programs. One can observe that as
the interactive programaming environments con-
tinue to evolve, most of the procedural controls
associated with SCM will probably be integrated
into the programming environment. The proce-
dures for processing changes are the same,
whether for approval by a designated manage-
ment authority or approval by a control activity
(SCCB) delegated by management. The procedure
needs to distinguish the proper channels for mak-
ing the decisions, defining the flow for changes
made to an established formal baseline, and the
flow for changes made to developmental base-
lines. Most of this capability is now available in
SCM and software engineering tools in one form
or another.

Issues to Consider in
Processing Changes
(1) What is the information necessary for
processing a software/system change

27

ANSI/IEEE
Std 1042-1987

request (SCR) or authorizing a change
(SCA)?

(2) What kind of information will a CCB or
SCCB need in order to make a decision?

(3) What is the overall processing cycle of
changes?

(4) What SCM support is provided by
automated tools available in the envi-
ronment?

(5) Will changes in procedures be required
to support different kinds of reviews
during each of the phases of the life
cycle?

(6) When there are multiple CCB in a hier-
archy, what are the procedures for
information exchange and approval
chains?

(7) Is there a need for dynamic libraries

and controlled library interfaces?
(8) Is there a need for controlling all

access to a library or just controlling
changes made to the information in
the libraries?

(9) Does the library system provide an

audit trail, such as change histories?

(10) Are back-up and disaster files taken

. into account?

(11) Are there provisions for archive proce-
dures to provide the static library
support to the full life cycle?

(12) How are source items (source code)
associated with their derived object
(executable code) programs?

(13) What are the provisions for draw down
or check aut to get units from the con-
trolled library? :

(14) What are the provisions for keeping
the data files synchronized with the
program(s) using them?

(156) How does the change process itself
support or accommodate the devel-
opment of new versions or revisions?

Some library tools maintain deltas to base
units of source code. Procedures for main-
taining version histories of units as well as
derived configuration items need to be estab-
lished along with archiving maintenance.

A CCB concerned with project manage-
ment may need information regarding esti-
mated cost and schedules for a change, as
illustrated in Appendix B. Other CCB may be
interested only in the technical interfaces
affected by a change, as illustrated in the
sample Plan in Appendix C. Still others may
need, in addition, information on proprietary

ANSI/IEEE
Std 1042-1987

rights and copyrights affected, as illustrated
in Appendix D.

Some CCB review a proposed change to
validate it (approve it as a necessary change;
to expend time and resources for investigat-
ing feasibility of the change) while others
may simply want completed (programmed
and documented) changes to be approved
prior to inclusion in released computer pro-
grams. There are different functions of SCCB
responsibility, extending from coordinating
engineering technical changes to allocating
the work to a work group. Some organiza-
tions design, code and test all proposed
changes with preliminary CCB approval be-
fore submitting them for final CCB approval.
This technique may reduce total time to pro-
duce a change. The process for granting
change approvals must guarantee that un-
authorized changes do not contaminate
baselined software.

Some advanced tools provide capabilities
for formatting change requests, routing. to
different sets of individuals for approvals,
and authorizing work to be done; reviewing
changes and tests while in a holding area;
and releasing a baseline to a controlled
library for operational use. Others provide
only for the recording of change information

and a history of past versions of source code.,
If secure procedures are not in place or

feasible for controlling a library system, the
library may necessarily be divided into physi-
cal entities that control access.

3.3.2.3 The Configuration Control Board.
The theme of these paragraphs is identifying the
authorities needed for granting change approvals.
Subsection 2.2 of the management section of the
Plan identifies the general role(s) of each CCB.
These paragraphs go into detail on the roles and
authority. It should be remembered that the CCB
has traditionally been concerned with managing
changes to established baselines of documented
configuration items and the components of those
configuration items. There may be other change
control bodies (SCCB) that authorize changes
subordinate to the CCB described here. The CCB
described in these paragraphs of the Plan have
the role of authorizing changes to baselined con-
figuration items and components from the point
of view of entrepreneurial management. They
reflect concerns over the costs, schedules, and
resources available to implement changes in re-
sponse to user desires for change.

28

IEEE GUIDE TO

Issues to Consider in Identifying
Configuration Control Boards
(1) Can the limits of authority be defined?
(a) Limited to contractual baselines
as in Appendix A
(b) Limited to developmental base-
lines (noncontractual) as in Ap-
pendix D
Will the project mix computer pro-
grams that are controlled by other
cCB?
Is there a need to limit the CCB tabling
actions by setting time limits?
Are there contractual requirements
imposed on a CCB that must be re-
flected in the Plan?
How are the different levels of author-
ity determined?
How are different organjzational bodies
phased in when transitioning from one
phase of the life cycle to another?
How are changes to a baselined prod-
uct to be batched together for release?
(a) For a new version
(b) For a revision
Does the CCB membership reflect the
management style of the organization?
(a) For a functional organization
- (b) For a matrixed organization

Large, complex systems require ongoing
configuration control authorities to coor-
dinate the technical work involved in gen-
erating specifications and code, and in
continuing the work of technical coordina-
tion required for maintaining interacting
software systems (such as defined in Appen-
dix C). Such projects use the same principles
of configuration management and perform
the same generic approval and scheduling
functions as the CCB concerned with smaller-
scale entrepreneurial management, particu-
larly where automated SCM tools are used to
support both types of activities.

Large software systems are frequently not
completely new. They are often mixtures of
software in public domain, vendor-supplied
products, vendor supplied but modified by a
contractor, subcontracted software, proprie-
tary software, and software paid for on
another project but reused or adapted. The
procedures of how the CCB handles the spe-
cial nature of proprietary software and re-
usable software are important and need to
be specifically addressed in a Plan.

(2)

3)
4)

(6)
(6)

(7

(8)

SOFTWARE CONFIGURATION MANAGEMENT

It may be noted that the CCB concept is
another one of those functional concepts of
SCM. On a small project, the CCB could be
the chief programmer and the system will
function quite adequately.

Any other change approval activities, such
as the SCCB that supports the CCB, also
needs to be identified and their roles defined.
In some installations, the CCB may need to
have the technical expertise to make the
final decision on whether a requested change
is technically feasible. Other CCB must be
supported by technical experts or be pre-
pared to delegate a level of change authoriza-
tion to qualified subordinate bodies. In
general, decision making that affects the
allocation and scheduling of development or
maintenance resources should be separated
Jrom decision making motivated by various
technical and marketing issues.

3.3.2.4 Interface With Other CCB. Large or
complex systems can have many hardware-soft-
ware interfaces (as documented in the Interface
Control [2.3] subsection of the Plan) that require
continued ongoing change coordination. Some-
times these boards are called program change
review boards (PCRB). The Plan needs to include
a description of how these interfaces are handled
and documented so all of the people on the proj-
ects know how to get the job done (this will
probably involve both formal and informal organ-
izational structures and interfaces).

Issues to Consider in Describing
CCB Interfaces

(1) Are there a number of CCB that have
to work together, as illustrated in
Appendix C, or is there only one that
has total responsibility for the soft-
ware configuration iterms?
Is there a hierarchy of CCB that have
authority for making business-type
management decisions such as illus-
trated in Appendixes A and D?
Who has the responsibility and author-
ity for maintaining communications
with these CCB?
What body or authority has been desig-
nated to arbitrate deadlocks when two
parallel CCB are unable to resolve an
issue?
What are the procedures for resolving
differences of opinion?

(2)

(3)

(4)

(6)

29

ANSI/IEEE
Std 1042-1987

(6) What needs to be done to maintain
responsive communication and time
limits on decision making?

3.3.2.5 Support Software. The theme of
these paragraphs has to do with managing all the
other software needed to build and maintain the
computer program products throughout their life
cycle. Specifically, this focus is on describing the
necessary controls used to manage support soft-
ware. Support software, which may be user-fur-
nished, developed in-house, leased from a vendor
or purchased off-the-shelf, is the class of software
which may or may not be delivered with a prod-
uct, but yet is necessary for designing, enhancing,
or testing the changes made during the life of a
delivered computer program product. The devel-
oper or maintainer needs to ensure that the sup-
port software is available for use for as long as
may be necessary. For example, compilers need to
be archived for use later as s when implementing
enhancements to prevent subtle compiler depen-
dencies from turning simple enhancements into
major upgrades. Host systems, when used, and
utility programs and test drivers are also needed.

Issues to Consider in Planning

SCM of Support Software
What is the total set of support soft-
ware used to design, develop, and test
the software controlled under this
Plan?

Is this set of software archived and
maintained for the full life cycle of the
computer program products?

What procedures are to be followed to
introduce new versions of support soft-
ware that impact the software within
the scope of the Plan?

How are problems resolved and
changes made in the support software
that impact the configurability or
maintainability of the software within
the scope of the Plan?

How is the hardware configuration
used to develop and maintain the soft-
ware product identified and main-
tained for the full life cycle of the
computer program product?

It is necessary to determine the appro-
priate level of software support needed for
maintenance of the product throughout its
full life cycle. What is sufficient and neces-
sary for the job but not prohibitive in terms

(D

(2)

(3)

(4)

(6)

ANSI/IEEE

Std 1042-1987

of support software costs for maintenance?
In some situations, it can be very costly to
actually maintain or enhance some of the
support tools. For example, fixing bugs in a
compiler may trigger unknown changes in
production software after it is simply recom-
piled. Whenever a production baseline is
established, it is very important to archive
all environment and support tools along
with the production code.

3.3.3 Configuration Status Accounting. The
theme of this subsection is identifying what
information is needed for various activities,
obtaining the information and reporting it. The
concern is with the acquisition of the right infor-
mation at the right time so reports may be made
when they are needed. In essence, this is a typical
data management problem. Status accounting
may be literally thought of as an accounting sys-
tem; many of the concepts used to track the flow
of funds through accounts may be used to track
the flow of software through its evolution. Using
this accounting analogy, separate accounts can
be established for each CI. Individual transactions
can then be tracked through each account as they
occur. The configuration status accounting func-
tion, at a minimum, is basically reporting the
transactions occurring between SCM-controlled
entities.

The functional capabilities of the library system
(or the software programming environment), in
conjunction with the SCM tools, determine in a
large way the capabilities of the status accounting
function. As well as providing [ive information
regarding the development process, the configu-
ration of each released baseline needs to be docu-
mented, together with the exact configuration of
the released system (that is, historical records).
The definition of the Build Standard of systems is
an important tool for maintenance teams. Because
of its impact on maintaining operational software,
support software must be addressed in status
accounting.

Status accounting reports need to be addressed
in detail in the Plan. The theme should be able to
answer queries as to What is the status of SCR 21,
37, 38, 39 and 50? when one is not always sure
of the query in advance. More sophisticated SCM
tools that capture transaction data in the library
data base can use data management systems and
report generators to provide flexibility. Other
systems need to anticipate common queries by
capturing information in a form where it is easily
accessible.

30

IEEE GUIDE TO

Issues to Consider in Planning

Section 3.3 — Configuration

Status Accounting
What types of information needs to be
reported?
What is the degree of control required
by the customer (typically manage-
ment)?
Who are the different audiences for
each report?
What is the formality required by the
organization’s standards and proce-
dures for requesting or obtaining re-
ports, or both?
What kind of reports are needed to
support integration of units and the
tracing of error sources?
What information is needed to pro-
duce reports?
(a) Any problem report number in-
cluded in a release or promotion
Units that have been delivered
within a given time to integration
and test activity
Changes made and released as a
result of a particular problem
report
Units that have been through var-
ious types of testing but have not
been promoted or released
Units that have been promoted as
a result of a design change
For large systems, is there a need for
handling rollover of identification se-
quences?

Many different types of reports can and do
prove useful. The project’s managers may, for
example, make use of the status accounting
data to keep track of the project’s progress.
Typically the report requests must evolve
over a period of time. For some projects, sta-
tus reporting can be extended to include the
status of data items and reviews that are
more strictly management scheduling infor-
mation rather than just configuration man-
agement status.

The basic information needed by a CCB
relates to transactions applied to the base-
line(s), particularly the operational (prod-
uct) baselines. The disciplines involved in
controlling computer programs complement
traditional CM for this process. Information
needed for more detailed technical manage-
ment between baseline events should also be

(1)
(2)

3

(4)

(6)

(6)

(b)

()

(d)

(e)
(M

SOFTWARE CONFIGURATION MANAGEMENT

collected somehow. Interfaces with available
software engineering tools can provide much
of this information.

The procedure for tracking the status of CI
should be established early enough in the
software development process to allow data
gathering when it is most easily generated
(that is, at the decision and response points)
rather than after the fact. The desirable
amount of automation depends in large part
on the tools available, the size of the project
and the maturity of the existing procedures.

Status accounting for multiple sites repre-
sents a more complex reporting procedure.
The sample Plan in Appendix B describes
this problem. Other general requirements for
reporting must anticipate management needs
for various combinations of information. An
ad hoc query capability is often most useful.

3.3.4 Audits and Reviews. The theme of sub-
section 3.4 of the Plan involves the procedures
used to verify that the software product (exec-
utable code) matches the configuration item des-
criptions in the specifications and documents,
and that the package being reviewed is complete.
It should be noted that, as a general division
of labor, the organization performing quality
assurance functions also usually performs the
audits that address change processing functions,
operation of the library(ies), and other activities
associated with the processes of software config-
uration management. This constrasts with the
reviews and audits performed within the scope of
a SCM activity or organization that verify that a
software or firmware product is a consistent,
well-defined collection of parts.

Audits are one means by which an organization
can ensure that the developers have done all their
work in a way that will satisfy any external obliga-
tions. Audits vary in formality and rigor, depend-
ing on the legal liability of external obligations.
They are a check on the completeness of a com-
puter program product. Any anomalies found
during audits should not only be corrected but
the root cause of the problem should be identified
and corrected to ensure that the problem does
not resurface.

Generally, there should be a physical configura-
tion audit (PCA) and a functional configuration
audit (FCA) of configuration items prior to the
release of a product baseline or an updated ver-
sion of a product baseline. The PCA portion of the
audit consists of determining that all items iden-

31

ANSI/IEEE
Std 1042-1987

tified as being part of the configuration are pres-
ent in the product baseline. The audit must also
establish that the correct version and revision of
each part are included in the product baseline
and that they correspond to information con-
tained in the baseline’s configuration status
report.

The FCA portion is similar, in that someone
acknowledges having inspected or tested each
item to determine that it satisfies the functions
defined in the specifications or contract(s) for
which it was developed. The objectives of a PCA/
FCA are for the developers to provide notice that
contractual obligations are nearing completion,
and to provide sufficient evidence for the clients
or user organization to accept the product and
initiate the transition into operational usage.

This section of the Plan should define ways to
ensure that established configuration manage-
ment procedures are followed:

(1) Test specifications are maintained current

(2) Test reports are properly prepared

(3) Test procedures explicitly define tests to be

conducted

(4) Test results comply with acceptance crite-

- ria in the test procedure
(5) Test data package contents are complete

and comply with approved.formats

Issues to Consider in Planning

Section 3.4 — Audits and Reviews
(1) Are there needs or provisions for more
than one audit of each product base-
line?

Is there a single, separate audit trail
for each component and for the per-
sonnel working on them?

How are subcontractors involved in an
audit (if part of project)?

Are provisions made for auditing the
SCM process?

Are periodic reviews held to determine
the progress and technical quality of a
computer program product?

Audits of a configuration as it evolves can
prevent massive problems at the time of
release for operational use.

A higher-level audit trail for business-type
management that reflects the real-time rela-
tionships and status of CI changes, compo-
nent changes and individuals responsible for
development is often very useful. When ad-
dressing subcontractor audits, reference

(2)

(3)
(4)
()

Section 5, Supplier Control, in the Plan.

ANSI/IEEE
Std 1042-1987

When addressing internal audits, the Plan
should identify who will be performing these
audits and exactly what is to be audited. For
example, the SQA group may audit the SCM
group’s adherence to change control proce-
dures (assuming an SCM group exists —other-
wise the general use of tools is audited).

Although SCM functions generally do not
initiate or direct reviews, quite often the
mechanisms used by SCM to process changes
are used to organize and process items in a
review conducted by other functions such as
software quality assurance (SQA). The mech-
anisms of status reporting are often useful in
maintaining detailed action items from re-
views of complex systems. SCM supports
reviews in this way as any other support pro-
vided to management.

There should always be an audit of the
configuration items at the time a product is
released. This will vary according to the base-
line being released and the criteria for the
audit stated in the Plan. At a minimum, when
the product baseline is established and when-
ever it is subsequently changed due to the
release of a new version of the computer pro-
gram, the configuration should be audited.
Again, the roles of the SCM organization and
its participation in the audit should be estab-
lished in the Plan.

3.3.5 Release Process. Major releases of soft-
ware must be described so that the recipient
understands what has just been delivered. Often
the recipient will need installation instructions
and other data concerning the use of the new
system. The installation instructions should define
the environment on which the software will run.
This is to cover both hardware (for example,
machine type, peripherals needed, and extra
memory required) and software (for example,
operating system version, and utilities not pro-
vided) environments. SCM verifies that the release
package is complete and ready to be handed over
to the user.

A short outline of the documentation (often

referred to as the version description document,

or VDD) typically associated with the release
package is given in 3.3.5.1. It may be modified to
suit the project. The more critical or the larger the
application, the more complete the documenta-
tion needs to be.

IEEE GUIDE TO

3.3.5.1 Version Description Document. The
version description document describes the tapes,
diskettes, or other media used to provide the
software.

(1) Release Media. List the labels on each tape,
diskette or [EP]JROM and provide some
guidance as to the contents of each volume.
For example, Tape FG301 contains the
executable load unit library required to

run FRED.
When one has a more complex system with

many CI and associated data files, it may be
necessary to describe each file on the tape in this
section.

(2) Functional Description. When the release
contains any functions not previously re-
leased, describe them briefly to inform the
users of new capabilities. This is not in-
tended to be a user’s manual—just the
summation of the new capabilities.

(8) User Constderations. If there are any

‘ special actions the users must take in using
the new release, describe them here. Exam-
ples may be changes in the use of a new
function key, a special procedure needed to
complete a certain action, hardware lim-
itations, etc.

In this section, also list any open problem
reports (SCR) against the system. Typically the
open reports are listed by short title and number
in this section. This is for user reference. It may
prevent users from filing duplicate problem re-
ports and will give them a better understanding of
the system’s status.

(4) Closed Problem Reports. List in this section

all SCR closed out in this release.

(5) Inventory. If necessary, provide in this
section an inventory of the source and
executable load units and data objects
(typically at the file level) that are con-
tained in this release. This inventory is
generally necessary for those systems that
must be tightly controlled. The units are
usually listed in alphabetical order by CI,
with a designation of version, revision, and
date changed. In some cases, the SCR initi-
ating the change is listed against each unit.

(6) Installation Instructions. This section may
be used when the installation is made at a
remote site, at numerous sites or when
there are special actions to be taken. The
instructions should be specific for each
site.

The most important aspect of writing installa-

tion instructions is to walk through each step that

SOFTWARE CONFIGURATION MANAGEMENT

the installer will have to perform and ensure that
he/she will have the information necessary to
perform it. ’

3.4 Tools, Techniques and Methodologies. The
theme of Section 4 of the Plan is making it all
happen —the easy way. A well planned project
typically takes advantage of planning tools such
as PERT charts and Gantt charts.

The audit trail reports should reflect directly
back to milestones and other activities on the
planning charts, thus giving management a tool
for tracking progress on a project. An automated
system for software configuration management
may include some way of integrating these classi-
cal planning tools with the SCM data base to pro-
vide all parties (management, designers, develop-
ers, testers, quality assurance, etc) with an on-line
tool for creating products and observing their
current development status dynamically in real-
time, correlated automatically with a predefined
Plan to yield a quantitative performance-against-
schedule measures. The group that is responsible
for specific tools should be identified.

The tools, techniques, and methods used to
implement SCM are usually discussed in terms of
a (set of) libraries and the methods and tech-
niques used to capture, store, and promote or
release the items of each type of library in a con-
trolled manner. The concept of software library
varies according to the level of technology avail-
able for generating software. The degree to which
all entities of the product are machine accessible
is a rough measure of the level of automation for a
particular project.

Issues to Consider in Planning
Section 4 — Tools, Techniques,
and Methodologies
(1) What are the number and types of
libraries to be established?
(a) A dynamic library (or program-
mer’s library)
(b) A ‘controlled library (or master
library)
(c) Astatic library (or software repos-
itory)
(d) Other libraries
(2) What is the amount of change activity
anticipated for the project?
(3) Can the SCM tools in the library be
used to manage documentation and
source code?

33

ANSI/IEEE
Std 1042-1987

(4) What kinds and amounts of training
(for example, orientation and learning
time) are needed to make the tools
and procedures an effective solution

for the organization?
Definition and use of a minimal set of

libraries are illustrated in Appendix C and in
2.3.1. These libraries can accomplish all of
the necessary functions of baseline control
but usually need to be supplemented with
other kinds of libraries to provide the neces-
sary flexibility for smooth operation on larger
projects. The libraries have to be structured
in such a way that the source code asso-
ciated with a given executable unit is pro-
moted at the same time that the executable
unit is. The source and executable load unit
libraries should always be kept in synchroni-
zation. There are numerous technical meth-
ods for achieving this, depending on the
development environment and the tools
available.

For run-time efficiency, it may be neces-
sary to merge various CI executable units
into an integrated run-time environment.
When this is done, it is also advisable to
maintain the source separately that created
the load units.’

Note that the corresponding data files are
included in the various levels of libraries.
When table driven software is used, it is criti-
cal to maintain that data at the same level as
the corresponding code. This can be handled
by carefully structuring the libraries and
using appropriate naming conventions.

Manual SCM methods may be perfectly
adequate for a small project. However, if the
tools and equipment are already in place,
they may well be cost effective. The character-
istics of the project must guide tool selection.
A small project may not need the detailed
planning and overhead supported by a com-
plex set of integrated SCM tools. Problems in
turnover of software developers may make
automation attractive even though its initial
cost is high.

In the selection of SCM tools, one needs to
consider the cost effectiveness of their use
for the given project, product, or site. New
SCM tools and methods may be good, but if
the engineering staff does not trust them,
understand them, or is unwilling to learn
new ways of working, they may hinder rather
than support the performing organizations
in getting the job done.

ANSI/IEEE
Std 1042-1987

Current commercially available SCM tools
focus primarily on controlling source code.
They are written by programmers and code is
the important element in programming. Due
consideration should be made to bring doc-
umentation under control of the same tools
as the code. Good SCM systems work on files,
and files can consist of paragraphs of a docu-
ment as well as code.

The kinds of SCM tools recommended in a
Plan should also be considered in relation to
the probable availability of the tools for use
within the project’s environment. That is, one
should not make the entire Plan dependent
on a tool set that may never materialize.

3.5 Supplier Control. The theme of Section 5 of
the Plan is how to place effective CM on the com-
puter programs over which you have no direct CM
control. Computer program suppliers are consid-
ered to fall into one of two classes:

(1) Subcontracted software, or those contrac-
tors that develop unique or dedicated
software under contract to a developer
Vendor software, or those contractors that
provide privately developed and existing
software, and bundled application software
such as operating systems, compilers, word
processing tools, software configuration
management tools, and data-base manage-
ment systems.

(2

Issues to Consider in Planning
Section 5 —Supplier Control
(1) Is the product being procured to be
used internally, delivered as part of
your organization’s product, or both?
What post-delivery defect correction re-
quirements and procedures need to be
established?
What changes is the purchaser per-
mitted to make after delivery without
invalidating the warranty or violating
legal constraints?
(4) When should audits be performed?
(a) When subcontractor or vendor
releases parts to the buyer
(b) After successful integration in
buyer's system
Is there a need to pass through SCM
tools to a supplier or a vendor?

()

(3

)

34

IEEE GUIDE TO

(6) Consider the use of software in
escrow'? as a method of enforcing
SCM and quality

(7) What periodic reviews of the subcon-
tractor’s work will be needed?

3.5.1 Subcontractor Software. If a portion of
a software development project is to be subcon-
tracted to another organization, the responsibility
for SCM is generally passed to that organization.
However, the subcontractor can only be responsi-
ble for the portion of the work that his organiza-
tion is tasked to perform, not for the integration
of the subcontracted work with the final product.

Possible methods for integrating subcontractor
SCM include

(1) Specifying or providing a library manage-
ment tool and monitoring its use
Letting the subcontractor(s) promote code
to your software generation system and
controlling it in the same fashion as is done
in-house.

Obtaining the source for all subcontractor
deliveries and recompiling and relinking it
using the buyer’s software generation tools

To ease integration and maintenance, the sub-
contractor should be required to implement a
system of configuration management based on
the buyer’s requirements — one that is compatible
with the buyer’s configuration management sys-
tem or a subset thereof. Identification schemes
should be compatible. A system for effectively
managing interfaces should be developed. The
subcontractor should have an internal configu-
ration control system that is equivalent to the
systems and procedures described by the buyer.
The format and frequency of status reports also
should be agreed upon.

Not all contractor-subcontractor relationships
are easily identifiable. Sometimes, the contractual
relationship does not afford the buyers any con-
trol over the subcontractor SCM processes and
the buyer has to bound the relationship of the
subcontracted software by alternate identifica-
tion and by accepting the configuration as given,
verified by testing the delivered product (as illus-
trated in Appendix C). Generally, it is possible to
tailor the SCM requirements passed on to the sub-
contractor, using specifications or statements of
work.

(2)

3

121f the executable code is the only code obtained, it may be
advisable to have the supplier place the source code in escrow
as a warranty that the source will be available if the supplier
goes out of business.

SOFTWARE CONFIGURATION MANAGEMENT

Issues to Consider in Defining
Subcontractor Relationships

(1) What SCM concerns need to be added
to or removed from the contract?

(2) Who is responsible for auditing versus
enforcing SCM for contractual prod-
ucts?

{3) What audits and procedures need to
be established where the subcontrac-
tor has no documented SCM practices
or procedures?

If the buyer’s organization is developing
the computer programs for a customer, the
contract should be reviewed for any specific
legal requirements that need to be passed on
to the subcontractor, or special actions that
have to be taken by the buyer to ensure the
performance of the subcontractors’ product.

Integration of subcontractor software is
very difficult unless communication is kept
open. One way is to allow subcontractor
representatives to attend SCCB meetings to
ensure that they are aware of all important
technical issues. It may also be useful to
accept incremental versions of the code for
integration and test with the rest of the code,
rather than waiting until the end of the
development cycle.

In specifying delivery, identify all items
that are to be a part of the deliverable. Possi-
bilities include

(1) Source code

(2) Executable code

(3) Load units

(4) Data files

(5) Test cases

(6) Any JCL or other procedures used in
running or creating the software

(7) Compilation listings or link-edit maps

{(for debugging)

(8) Documentation
Another concern for SCM is the sub-
contractor’s actual performance to an
agreed-upon Plan or statement of work. A
preselection or purchase audit of the poten-
tial subcontractor’s configuration manage-
ment policies and procedures can provide an
indication of the potential for the organiza-
tion to perform satisfactorily. If possible, the
buyer’s software configuration management
group should perform an in-process SCM
audit of all project subcontractors to ensure
satisfactory compliance. As part of this audit,
a specific approved change should be traced

36

ANSI/IEEE
Std 1042-1987

through the subcontractor’s system to the
point of verifying the implementation.

" A critical role for SCM is in the inspection
(FCA/PCA) of the product as it is prepared
for delivery to the buyer. This is most impor-
tant as it determines the effort and resources
that may be needed to integrate and main-
tain the product once it has been incorpo-
rated in the buyer’s system. There are still
compatibility problems and problems of error
correction, and updates that have to be pro-
vided for even if the program is a stand-alone
product (as for a compiler). If the program
received is not well identified and docu-
mented, then the task of maintenance is
generally increased.

3.5.2 Vendor Software. Warranties contained
in purchase orders may be difficult to enforce.
The specific criterion is that the vendor should
furnish the computer program media as specified
by a purchase order or as specified by the sup-
plier's documentation referenced in the purchase
order. Test documentation confirming compliance
is desirable but often unavailable.

Issues to Consider in Defining
Vendor Interfaces
(1) How is the vendor software identified?
(2) How are license agreements and data
rights protected and enforced? Are
there limitations on
(a) Duplication of documentation
(b) Your customer making copies of
the program
(3) How will vendor support be provided
over the life cycle of the computer
program product being purchased?

(4) How will copyright interests be pro-

tected?

(56) How will legal copies of leased soft-

ware be controlled?

The handling of vendor software can be
very complex, particularly in a maintenance
environment, such as described in Appendix
C, where the vendor software. is intermixed
with internally developed software. More
importantly, if you release the vendor prod-
uct as a part-of your organization’s product,
your organization may be responsible for
ensuring its maintenance as part of your
released product. An organization embedding
third party software in a product delivered
to a customer can be open to financial and

ANSI/IEEE
Std 1042-1987

legal liabilities if a vendor fails to perform —
that is, making required changes in a timely
manner. One possible consideration is the
use of an escrow account with a vendor
agreement tied to performance of his
product.

3.6 Records Collection and Retention. The
theme of Section 6 of the Plan is to keep the
information necessary only for the time required.
This is another service aspect of configuration
management. Good configuration management
practices include maintaining copies of released
material for backup and disaster protection. Also
the liability and warranty provisions and respon-
sibilities make considering the retention of test
and approval records a necessity. If a master dis-
aster recovery plan exists for the company, the
Plan needs to disclose all information regarding
the location of backups and records that are im-
pounded in relation with that plan.

Records collection can also be a part of risk
management. Part of the trade-off must consider
whether personnel will be available to recover lost
software. Trade-offs can be made concerning the
cost of capturing and maintaining records versus
the potential cost savings for

(1) Recovering programs in the event of a disas-

ter for

(a) Software developed for internal use

(b) Delivered products for which warranty

is still in effect

(c) Support software necessary for main-
taining computer program products
under warranty
Liability for not being able to certify the
reliability of delivered products
Information gathered that may lead to per-
formance or productivity improvements in
development or maintenance activities.

Record keeping begins in planning the capture
of all data that needs to be maintained. In addi-
tion to all other considerations, archiving the
software should be done in a manner acceptable
to any legal contracts that may affect the compu-
ter programs. Static libraries, disaster planning,
and storage should consider the legal status of
the software involved (for example, whether it
has trade secret status) and the impact on the
provisions made for the care and storage of the
software components. Special attention should be
given to the retention of support software asso-
ciated with software on target machines.

(2)
3)

36

IEEE GUIDE TO

Issues to Consider in Planning

Section 6 —Records Collection

and Retention

What type of information needs to be

retained?

What data need to be maintained over

a period of time for trend data analysis?

Is all the information, support software,

and equipment needed to recreate the

product available from archives?

Is media protected from disaster?

Is there a need to maintain copies of

software licensed for use and distribu-

tion?

(6) What activities need to be recorded
(and data captured) for maintaining a
product after the project is completed?
(a) Copyright records
(b) Distribution records
(c) Benchmarks
(d) Change history (CCB activity, SPR,

etc)

(e) Audits, reviews, status reports
For whose use are the records being
‘maintained?

(a) Engineering

(b) Management

{(c) Software Quality Assurance

(d) Legal, cusfomer

How are the records to be kept?

(a) On line versus off line

(b) Media and format (hard copy doc-
ument versus electronic media,
deterioration rate versus time
needed)

Location (preservation conditions,

accessibility both off site and on

site)
(d) Tools used on the project that
affect data capture

(9) How long will the data be kept?

The information collected need not mirror
that collected for hardware bit for bit. For
example, serial information on production
that is kept to identify configurations in
hardware may not be necessary for software.
Plan to keep only the data that will be of use
in maintenance, disaster recovery, or which
has other justification. Is the deterioration
rate of the storage medium sufficient for the
needed time span? Media can deteriorate in
storage; also, work in-progress should be
backed-up at specific intervals to protect the
investment for projects that have long devel-
opment periods or are of high cost.

(1)
(2)
3)

(4
(6)

(D

(8

(c)

ANSI/IEEE
SCFTWARE CONFIGURATION MANAGEMENT Std 1042-1987

Appendixes

(The following Appendixes are not a part of ANSI/IEEE Std 1042-1987, IEEE Guide to Software Configuration Management, but
are included for information only.)

Appendix A

Software Configuration Management Plan for
Critical Software for Embedded Systems

Version 1.0

Approved

Mgr, SCM Dept

Project Mgr

Contracts

Customer

Date: /_/

37

ANSI/IEEE
Std 1042-1987 IEEE GUIDE TO

Synopsis

This example contains a discussion of a hypothetical contract to provide a medium-sized real-time
control system for the management of advanced vehicles. Sensors are used for input of information to the
system; displays are used to support a man-machine interface. The contract for the system consists of
eight software configuration items being developed concurrently with five new and seven off-the-shelf
hardware configuration items. The project is expected to have at most three hundred and fifty-six
personnel, with an average of thirty-four and peak of fifty software development personnel over the
estimated three and a half year development cycle.

Most of the development work is performed in the contractor’s main facility with some work being
performed at a nearby subsidiary. Testing and acceptance is performed at the mock-up in the contrac-
tor’s facility. Some commercial software is procured from a vendor for the support software and the
firmware for the vehicle is subcontracted to the builder of the vehicle. This is a turnkey contract. The
customer takes over all maintenance of the software after delivery of the first system.

The customer’s procurement organization has a large staff for monitoring the contract and is expected
to perform frequent audits. The contractor’s project office wishes to minimize friction with the customer
and is willing to perform most, but not all, of the necessary record keeping and in-process inspections.
The configuration management department of the contractor has a long history of involvement in
projects with the customer and there is a general familiarity and comfortableness in doing.-business in
this manner. The software configuration management activity is relatively new but is strongly supported
by the old line configuration management department.

In this environment, the software configuration management activity will be a very disciplined opera-
tion, logging and maintaining accurate records of all transactions against established baselines.

38

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

Contents

SECTION PAGE
) 61 7o LTt o) PO 41
I o DU o T 4]
L2 SCOPE ..t e e e et e e 41
1.3 Definitions and MNemMONICSttt ittt ettt e et iii e e iiiaaeannnns 41
131 Definitions . ..ot e e e e e 41

L 20 6T 4) 416 E AP 41

) 3 () o) (o S A 42

2. ManaBeIMEntottt ettt e 42
2.1 OrganizZationottt ittt ettt ettt et e e, 42
2.2 SCM Responsibilitiesoiiiie i i e it ettt e e e e 43
2.2.1 Configuration Identification i i i i e e e 43

2.2.2 Configuration Control.ottt i e ittt e 43

2.2.3 Status ACCOUNTING i it i ittt ittt it iie e ciaieeaenannns 43

224 AUAItS ... i e e e e 43

2.2.5 Configuration Control Board (CCB) ..ottt it it eiiin s 43

2.3 Interface Controlttt e ittt ettt et iie e 44
2.4 SCMP ImpIeMentationouunuete e ttieene et et s eraneneeennsosneonsenneeonrenees 44
24.1 Configuration Control Boardttt iieiiiiaian e 44

2:4.2 Configuration Baselinesttt it ititiiiiiiinaee e, 44

24.3 Schedules and Procedures for SCM Reviews and Auditsot 44

2.4.4 Configuration Management of Software Development Tools 44

2.5 Applicable Policies, Directives, and Proceduresiiiiiiiiniiirnrnenennnnnes 44

B 0 B U o A L P 44
3.1 Configuration Identification i i e, 44
3.1.1 DOCUMENEALION . . ottt t ettt ettt e ee sttt it e e e e e 44

3. 1.2 Software Partsttt e et e i 45

3.1.3 Configuration Identification of the Functional Baseline 45

3.14 Configuration Identification of the Allocated Baseline 45

3.1.5 Configuration Identification of the Developmental Baselines......................... 45

3.1.6 Configuration Identification of the Product Baseline................................ 45

3.2 Configuration Control uiiiirniinintet e iiiiiiian e e eeereinanannanenenss 45
3.2.1 Function of the Configuration Control Boardc.cciiiiiiiiiiiiiiennnn 45

3.2.2 The System/Software Change Requestttt iinnenen 45

3.2.3 Software Change Authorization ittt ittt iiianannn 45

3.2.4 Change Control Automated SCM ToOISciiiiiiiiiiiiiiiiiiiiiiereeenns, 46

3.3 Configuration Status ACCOUNLINGttt i iiie e iitie e iiaie e ineeannns 46
34 Audits and ReviewWs i i e e et 46
3.4.1 Functional Configuration Auditci ittt eennnes 46

3.4.2 Physical Configuration Audit ittt ittt iaaanan 46

R B 4T 1= 46

4. Tools, Techniques, and Methodologiesc.iiiiiiiiiir ittt iinriaaenaaennon 47
4.1 Configuration Control Tools ittt i ittt ittt ieiee e eenanaas 47

N 7Y o)) o7 o 07e3 (1 o o) PSP U 47
5.1 Vendor-Provided Softwarettt ittt tete e rennrranananes 47
5.2 Subcontracted Software it i i i e e e e e 47
5.3 Vendor and Subcontractor Software it i i e 47

6. Records Collection and Retentionouiiiiiiiiiiiiien s eererreruninnananeronnes 47

39

ANSI/IEEE
Std 1042-1987

ATTACHMENTS

Attachment A
Attachment B
Attachment C
Attachment D

IEEE GUIDE TO
PAGE
System/Software Change Request it iiiiiinnnnn, 48
Software Change Authorization ittt iiiiiirninnnnnnn, 49
Create Initial Baseline iiiriiniiii ittt eiineeennnenens 50
Change Procedure e e e e e e i e e 51

40

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

Appendix A

Software Configuration Management Plan for
Critical Software for Embedded Systems

1. Introduction

This document is the Software Configuration
Management (SCM) Plan for the Critical Soft-
ware for Embedded Systems (CSES). The CSES
system performs functions critical to the life and
safety of human beings. The configuration man-
agement of this software during development is
essential to the delivery of error-free and reliable
software configuration items.

1.1 Purpose. This plan provides information on
the requirements and procedures necessary for
the_configuration management activities of the
CSES project. It identifies the software configura-
tion management requirements and establishes
the methodology for generating configuration
identifiers, controlling engineering changes, main-
taining status accounting, and performing audits
and reviews during the design and development
of software configuration items.

1.2 Scope. This plan applies to all software and
associated documentation used in the production
of computer programs produced under the crit-
ical software for embedded systems contract
including, but not limited to, source, object, and
executable load images. Software configuration
items referenced in the contract and controlled
by this plan include

CSES Operational System

CSES Training Program

CSES Test Program

CSES Hardware Acceptance Programs

CSES Diagnostic Software

CSES Software Support System

CSES Simulation System

CSES Utilities

The organizations involved in this project are
identified in Fig 1.

This plan applies to all phases of the software
development life cycle, up to and including the
time of delivery to the customer. Maintenance of
the software after delivery is covered by another
contract.

1.3 Definitions and Mnemonics
1.3.1 Definitions. The definitions used in this
plan conform to the company standards as set
forth in Vol II of the company Configuration
Practices Manual. Other definitions will conform
to those found in ANSI/IEEE Std 729-1983, IEEE
Standard Glossary of Software Engineering Ter-
minology. See specifically: baseline, configuration
item, configuration management, configuration
control, configuration control board, configura-
tion audit, configuration identification, configu-
ration status accounting, and software library.
Unique definitions used in this document include:
interface control. The process of
(1) Identifying all functional and physical char-
acteristics relevant to the interfacing of
two or more configuration items provided
by one or more organizations.
(2) Ensuring that proposed changes to these

characteristics are evaluated and approved

prior to implementation.
1.3.2 Mnemonics. The following mnemonics
are referred to within the text of this standard:

Fig 1
Program Organization Chart

Program Manager

| | I I i
Control SQ&C Software Administration Integration
Manager

SQA SCM

41

ANSI/IEEE
Std 1042-1987

CCB Configuration Control Board

CDR Critical Design Review

Cl Configuration Item

CM Configuration Management

CSES Critical Software in Embedded System

ECN Engineering Change Notice

FCA Functional Configuration Audit

1&T Integration and Test

PCA Physical Configuration Audit

SCA Software Change Authorization

SCM Software Configuration Management

SCMP Software Configuration Management
Plan '

SCR Systems/Software Change Request

SQ&C Software Quality and Control

SQA Software Quality Assurance

SQAP Software Quality Assurance Plan

SRR System Requirements Review

SSR Software Specifications Review

1.4 References. The standards listed here will
be considered when applying this plan. The latest
revisions apply:

{1] ANSI/IEEE Std 729-1983, IEEE Standard
Glossary of Software Engineering Terminology.

[2] ANSI/IEEE Std 730-1984, IEEE Standard for
Software Quality Assurange Plans.

[3] ANSI/IEEE Std 828-1983, IEEE Standard for
Software Configuration Management Plans.

[4] ANSI/IEEE Std 829-1983, IEEE Standard for
Software Test Documentation.

[6] Company Standard Configuration Manage-
ment Practices Manual, Vol I1.

IEEE GUIDE TO

[6] CSES Software Development Plan

Reference documents are available for use in
the company library.

2. Management

2.1 Organization. The critical software for em-
bedded systems program organization is designed
to ensure clear lines of authority and to provide
a framework within which administrative and
technical control of software activities can be
cost-effectively integrated into a quality product.

Primary responsibilities for various configura-
tion management tasks are assigned as shown in
Table 1. Within the CSES project organization,
the program manager has total responsibility for
the project. With this project, the program man-
ager will have overall responsibility for configura-
tion management of this project. The program
manager serves as the project configuration con-
trol board (CCB) chairperson. The SCM project

" authority from the SCM organization cochairs the

CCB. The SCM. authority assists the program
manager with planning and tailoring of the soft-
ware configuration management plan (SCMP)
and related CM procedures and is responsible for
overseeing their implementation. The software
configuration management -authority reports
functionally to the critical software for embedded
systems program manager for the implementa-
tion "of this plan. Administratively, the SCM
authority reports to the SCM Department, which
performs the necessary activities for the project.

Table 1
Responsibility Assignments
Program Software SCM

Responsibilities Manager Engineer Authority SQA Drafting
Configuration identification Originate
Approve/release tech documentation Approve Originate Review Review
Change preparation Originate
Change control Approve
Change implementation Approve Review Originate
Documentation maintenance Approve

Status accounting
Formal SCM audits
Baseline definition Approve

Originate Review
Approve Originate Review
Originate Review Review Review

42

SOFTWARE CONFIGURATION MANAGEMENT

2.2 SCM Responsibilities. The software config-
uration management authority has the authority
to require changes in practices and procedures
that do not meet contract requirements. The
general responsibilities of the software config-
uration management authority are outlined in
Table 1. The software configuration management
authority’s functions include, but are not limited
to the following tasks:

(1) Configuration control

(2) Status accounting

(3) Configuration identification

(4) Implementation and maintenance of the

software configuration management plan

(b) Configuration control board cochairperson

(6) Establishment and maintenance of engi-

neering baselines

(7) Cochairperson for formal audits

(8) Participation in reviews

2.2.1 Configuration Identification. Config-
uration identification is applied to all critical
software for embedded software, both code and
associated documentation. Associated documen-
tation (that is, specifications, design documents,
and program/procedure listings) along with the
actual produced software makes up the config-
uration item. The software configuration man-
agement authority originates the identification
scheme, with the approval of program manage-
ment.

Configuration identification of computer pro-
grams and documentation during the develop-
ment effort consists of established baselines and
releases that are time-phased to the development
schedules as described in the CSES software
development plan.

2.2.1.1 Baselines. Baselines are established
for the control of design, product, and engineering

changes and are time-phased to the development

effort. Baselines are established by the authority
of the program manager. The software configura-
tion management authority administers applica-
tion of the baselines. Baselines defined for CSES
include

(1) Functional baseline

(2) Allocated baseline

(3) Developmental baseline

(4) Product baseline

More details on baselines are presented in 2.4.2.

2.2.1.2 Releases. Throughout the develop-

ment life cycle, at the discretion of the program
manager, software manager, and SCM, baseline
releases are performed. The releases fall into one
of three categories

(1) Developer release (engineering release)

43

ANSI/IEEE
Std 1042-1987

(2) Release to SCM (preliminary release)

(3) Final release (formal release to customer).

It is the responsibility of SCM.to establish the
release, version, and update number identifiers.

2.2.1.3 Documentation. All relevant specifi-
cations and documentation are given an identi-
fier by SCM.

2.2.2 Configuration Control. All documenta-
tion and software entities are released to and
maintained by software configuration manage-
ment in a controlled library. SCM administers the
change control process.

2.2.2.1 Systems/Software Change Request
(SCR). The SCR is the mechanism by which |
change requests are presented to the CCB. This
action allows a developer to check out software/
documentation from SCM controlled libraries. The
mechanism for requesting authorization is to
present the SCR to the CCB and request approval
for work to begin. The SCR form shown in Attach-
ment A is used.

2.2.2.2 Software Change Authorization
(SCA). The SCA is used to request SCM to place
a new version of software/documentation into
the controlled libraries. The approvals necessary
are as follows: software manager, software quality
assurance, and SCM. The SCA form shown in
Attachment B is used.

2.2.3 ‘Status Accounting. A software change
authorization data base is used for generating
reports that track changes to all of the controlled
baselines. At project request, SCM generates
reports that track the status of documentation
and the software.

2.2.4 Audits. The SCM authority is responsible
for cochairing, with the customer, all formal
audits: -

-12.2.4.1 SQA Audits. It is the responsibility
of SCM to assist SQA with their audit of the devel-
opment effort. SCM maintains all documentation
and software under strict controls to minimize
the effort required by SQA to perform their
function.

2.2.5 Configuration Control Board (CCB).
The CSES project CCB is established by the pro-
gram manager and SCM authority.

The program manager is the CCB chairperson
and has the final responsibility for CCB actions
relative to program SCM policies, plans, proce-
dures, and interfaces. The software configuration
management authority acts as cochair. In addi-
tion to the chairpersons and the CCB secretary,
the CCB may include: development personnel,
hardware representative; drafting representative;
testing representative; customers; and always will

ANSI/IEEE
Std 1042-1987

include a representative from software quality
assurance. CCB meetings are held on a regular
basis determined by the CSES program manager,
or when required at the call of the CCB chair-
person. The system/software change request that
is generated is reviewed by the CCB and one of the
following actions taken: approved, disapproved,
or tabled.

2.3 Interface Control. Interface control is han-
dled in the same manner as other types of hard-
ware, software, or documentation. Any differences
between the SQAP and the SCMP must be resolved
prior to the establishment of any baselines.

2.4 SCMP Implementation. The SCMP is imple-
mented as soon as it is signed off by the CSES
program manager but prior to holding any formal
reviews with the customer. Any unresolved issues
found once the SCMP is written must be resolved
as soon as possible during the development period
and prior to any baselines being established.
2.4.1 Configuration Control Board. The CCB
is established at the time of SCMP approval but
prior to the establishment of any baselines.
2.4.2 Configuration Baselines. Baselines are

established by the following events:

2.4.2.1 Functional Baseline. The functional
baselines are established by the acceptance, or
customer approval of the CSES system/segment
specification. Normally this occurs at the comple-
tion of the CSES system requirement review (SRR).

2.4.2.2 Allocated Baseline. The allocated
baseline is established with the customer appro-
val of the CSES software requirement specifica-
tion. Normally this corresponds to the completion
of the software specification review (SSR). The
specification(s) and associated documentation
define the allocated configuration identification.

2.4.2.3 Developmental Baseline. The devel-
opmental baseline is established by the approval

IEEE GUIDE TO

of technical documentation that defines the top-
level design and detailed design (including docu-
mentation of interfaces and data bases for the
computer software). Normally, this corresponds
to the time frame spanning the preliminary design
review (PDR) and the critical design review (CDR).

2.4.2.4 Product Baseline. The product base-
line is established upon customer approval of the
product specification following completion of the
last formal audit (FCA). \

2.4.3 Schedules and Procedures for SCM Re-
views and Audits. Reviews and audits are held
as defined by CSES software development plan.

2.4.4 Configuration Management of Software
Development Tools. The configurations of all
support software used in development and test
on the CSES project software is controlled in the
same manner as the critical software. Nondeliver-
able support software baselines do not need cus-
tomer approval.

2.5 Applicable Policies, Directives, and Proce-
dures. The complete SCM policies, directives, and
procedures that apply to this program are in-
cluded as part of the procedures section of this
document or are part of the referenced docu-
ments or one of the appendixes.

3. SCM Activities

3.1 Configuration Identification

3.1.1 Documentation. All supporting docu-
mentation generated for this project is identified
by the use of the following convention: CSES, an
abbreviation for the document nomenclature, a
unique four digit number assigned by the CSES
software configuration manager, and the prod-
uct’s version-revision-update number.
EXAMPLE: CSES-SDP-0024-1.2.1

Table 2
Baseline Objectives

Baseline Purpose Reviews & Audits
Functional Functions established SRR
Allocated Requirement defined SSR
Developmental Top level design complete PDR
Developmental Detailed design complete CDR

Product

Approval of product spec

FCA/PCA

SOFTWARE CONFIGURATION MANAGEMENT

Document Nomenclature Mnemonic

Software Configuration Management Plan SCMP

Software Detailed Design Document SDD
Software Development Plan SDP
Software Test Procedures SPP
Software Product Specification SPS
Software Quality Assurance Plan SQAP
Software Requirements Specification SRS
Software System Specification SSS
Software Top-Level Design Document STD
Software Test Plan STP
Software Test Report STR

3.1.2 Software Parts. The software configura-
tion items, components, and units are identified
by unique identification labels.

3.1.3 Configuration Identification of the
Functional Baseline. The functional baseline is
identified by the approval of the CSES system
segment specification.

3.1.4 Configuration Identification of the
Allocated Baseline. The allocated baseline is
identified by the approval of the software require-
ment specification.

3.1.5 Configuration Identification of the

Developmental Baselines. The developmental

baselines are identified by the approved technical
documentation that defines the top level design
and detailed designs. The process by which the
initial developmental baselines are established is
shown in Attachment C, Create Initial Baseline.
3.1.6 Configuration Identification of the
Product Baseline. The product baseline is identi-
fied by the approval of the CSES software product
specification. This baseline specification is made
up of the top level specification, detailed design
specification, and the computer listings.

3.2 Configuration Control, Software configura-
tion management and change control is applied
to all documents and code, including CSES criti-
cal operational software and support software.
Control is effected through the implementation of
configuration identification, the CCB, change con-
trol, and status accounting functions.

3.2.1 Function of the Configuration Control
Board. The configuration control board reviews
proposed changes for assuring compliance with
approved specifications and designs, and evalu-
ates impacts on existing software. Each engineer-
ing change or problem report that is initiated
against a formally identified configuration item is
evaluated by the CCB to determine its necessity
and impact. The CCB members electronically sign

45

ANSI/IEEE
Std 1042-1987

the document to indicate that they have reviewed
the changes and provided their recommendations
to the chairperson. The CCB approves, disap-
proves, or tables all changes. The mechanism for
submitting changes to the software or documen-
tation is the systems/software change request.

3.2.2 The System/Software Change Request.
The SCR system is one of the major tools for
identifying and coordinating changes to software
and documentation. The SCR system is a mini-
computer based tool used to track the status of
a change from its proposal to its eventual dis-
position and assist in documenting important
information about the change. The SCR form
(Attachment A) contains a narrative description
of the change or problem, information to identify
the source of the report and some basic infor-
mation to aid in evaluating the report. SCR is
submitted only against baselined software or
documentation. SCR may be submitted by anyone
associated with the project effort or its products,
but usually is submitted by a member of the soft-
ware development team. SCM provides the single
point for receiving and processing SCR. SCM,
using the report writer feature of the SCR system,
is capable of producing reports that provide
change control tracking. A SCR is closed when

(1) Integration testing has shown that the

changes have been correctly made

(2) No unexpected side-effects have resulted

from making the change

(3) Documentation has been updated and re-

viewed

3.2.3 Software Change Authorization. The
software change authorization form (Attachment
B) is used to control changes to all documents
and software under SCM control and for docu-
ments and software that have been released to
SCM. The SCA is an on-line form that the software
developers use to submit changes to software and
documents to SCM for updating the master library.
Approvals required for baselining or updating
baselined software are as follows. The devel-
oper(s) first obtain the manager’s signature, I&T
signature, and an SCM signature. These approvals
can either be written or added electronically. SCM
signature testifies that the action has occurred.
SQA signature signifies that they have verified
that the change has been incorparated. SCM noti-
fies the software developer through the electronic
mail system that the change has occurred so the
developer can delete extra copies of the changed
parts. The SCA data base, along with the SCR data
base, is used for status accounting needs.

ANSI/IEEE
Std 1042-1987

The process by which changes are made is
shown in Attachment D, change procedure.

3.2.4 Change Control Automated SCM Tools.
The libraries of the CSES system are used to con-
trol all textual files containing the specifications,
documentation, test plans and procedures, and
source code. The support software (listed below)
is also under configuration management by SCM.
The library structure that is used is as follows:

(1) The CSES master library

(2) The program library

(3) The development library

3.2.4.1 For this mini-computer based devel-
opment effort, the change control tools are as
follows:

(1) The Source Management System The mech-
anism for creating and maintaining delta
files (changes only) for the CSES master
library. Only SCM has access to the CSES
master libraries. The CSES master library
data base is accessible by the SCM status
accounting system.

The Package Management System .is. used
to automate the build process and is used
to assist SCM with the generatxon ‘of soft-
ware.

SCM Get is the function mvoked by ‘soft-
ware developers to acquire software mod-
ules, or parts from the program libraries.
SCM Send is the function invoked by soft-
ware developers to impound a software
module into the SCM program libraries.
The use of this function implicitly and
automatically generates an SCA.

(2)

3

(4)

3.3 Configuration Status Accounting. The sta-
tus accounting system is capable of gerierating
the following reports:

(1) Report 1. A list of all SCR with a status of
not closed (that is, the same as open)
Report 2. A cross-reference of SCA, engi-
neering change notices (ECN), and draw-
ings, per SCA
Report 3. A monthly summary of the SCR
and SCA data bases
Report 4. A total of all SCR submitted per
unit within a user-selected range of sub-
mittal dates
Report 5. A list of all SCR which are open,
closed, or all (selected by the user)

(6) Report 6. A summary of all SCR submitted
by unit
(7) Report 7. A summary of the current ap-

" proval status of all SCR with a status of not

closed

(2)

3
(4)

()

46

IEEE GUIDE TO

(8) Report 8 A short summary of all SCR
within a particular software component
with a status of either open, closed, or all

(9) Report 9. A version description document

(10) Report 10. A report that gives the status of

all documentation under SCM control
(11) General Report. Allows the user to define
his/her own reports. The user must first
specify which fields to include in the report.
On-Line Inquiry. Allows the user to inter-
actively view fields within the SCM data
bases. The user specifies the fields that
he/she wishes displayed and conditions for
searching the data base

(12)

3.4 Audits and Reviews. The SCM authority co-
chairs, with the customer, the formal CM audits:
the functional configuration audit (FCA) and the

physical configuration audit (PCA).

.3.4.1 Functional Configuration Audit. The
functional configuration audit is performed on
the software configuration items when the accept-
ance‘tests have been completed. Both the func-

tional baseline and the allocated baselines have

previously been approved by the customer.

“The audit is made on the formal test plans, de-
scriptions, and procedures and compared against
the official test data. The results are checked for
completeness and accuracy. Deficiencies are docu-
mented and made a part of the FCA minutes.

Completion dates for all discrepancies are

‘clearly established and documented. An audit of

both:draft and final test reports is performed to
validate that the reports are accurate and com-
pletely describe the development tests.

_ Preliminary and critical design review minutes

are examined to assure that all findings have

been incorporated and completed.

3.4.2 Physical Configuration Audit. A physi-
cal examination is made of the CI to verify that
the first article conforms as-built to its technical
documentation. The SCM authority assembles and
makes available to the PCA team at the time of
the audit all data describing the item configura-
tion. This includes a current set of listings and the
final draft of the product baseline specifications.
Customer acceptance or rejection of the CI and
the CI product specification presented for the
PCA is furnished to the project manager in writ-
ing by the responsible customer representative
after completion of the PCA.

3.4.3 Reviews. The SCM authority participates
in all formal reviews with the customer.

In addition, the SCM activity conducts two
informal audits of the developing CI during the

SOFTWARE CONFIGURATION MANAGEMENT

development cycle. The first informal audit is just
prior to CDR. The second informal audit is per-
formed at the discretion of the SCM authority
midpoint between the CDR and final acceptance
test.

4. Tools, Techniques, and Methodologies

4.1 Configuration Control Tools. An integrated
set of SCM tools is used for configuration control
and status accounting for this project. The par-
ticular tools are as follows:

(1) Source Management System (SMS). This
tool is a file system for checking out vendor-
supplied and internal software. A license
agreement has been purchased from the
vendor of this tool for use on this project.
Package Management System (PMS). This
tool is a vendor supplied data management
tool used to automatically generate soft-
ware. A license agreement has been secured
from the vendor for use on this project.
Systems/Software Change Request Tool.
This is a proprietary piece of CSES soft-
ware. This tool has two parts: the input
form and its data base.

Software Change Authorization (SCA) Tool.
The SCA is a proprietary piece of CSES
software. This tool has two parts: the input
form and its data base.

Status Accounting Report Generator Tool.
This is a proprietary piece of CSES soft-
ware, This is a report generation tool that
gathers input from the following subsys-
tems:

(a) Source management system

(b) Package management system

(c¢) System/software change request

(d) Software change authorization

(2)

3)

4)

(5)

47

ANSI/IEEE
Std 1042-1987

5. Supplier Control

5.1 Vendor-Provided Software. Vendor-provided
software that is to be used by this project must
conform to good business practice SCM. The
vendor provides to this project a copy of its SCM
Plan for evaluation. This project must ensure that
the vendor SCM system is adequate. If the vendor
system is found to be inadequate, or if no vendor
SCM Plan is available, then at the program man-
ager’s discretion, the vendor can be disqualified
from providing software for this project.

5.2 Subcontracted Software. Any subcontractor
wishing to do business with this project must pro-
vide a copy of its SCMP for evaluation by project
SCM or agree to follow and abide by this SCMP. If
the subcontractor SCMP is found inadequate, all
other provisions of this SCMP apply. Any subcon-
tractor not willing to abide by the above provision
may be disqualified at the program manager’s
discretion.

5.3 Vendor and Subcontractor Software. All
vendors and subcontractors are audited for com-
pliance with good business practice SCM. The
frequency and methods of audits are determined
by the size, dollar value, and critical nature of the
software.

6. Records Collection and Retention

All formal documentation produced for and by
this project is retained and safeguarded for
20 years. A second copy of all software and docu-
mentation is stored in an off-site facility. This off-
site facility is 21 mi from primary storage.

ANSI/IEEE
Std 1042-1987

10.

11.

12.

13.

14.

Submitted by:

Attachment A
System/Software Change Request

SCR NUM.:

IEEE GUIDE TO

DATE:

Project Name:

Software Program/Document Name:

Version/Revision

SCR Type: (1-Development, 2-Problem, 3-Enhancement)

Short Task Description:

Detail Description:

Submitter’s Priority []

CCB Action:

1 =Critical

2=Very Important

Assigned to:

Solution Comments:

Software Programs affected:

3=Important

CCB Priority [|

Target Rel

Date.

4=Inconvenient

B=Interesting

1&T Approval Date: /. /.
SCM Approval Date: /. /-
Actual Release Date: /. /
Closed by: Date: /- /.
SCA Reference No:

SQA Approval: Date: /- /-

48

SOFTWARE CONFIGURATION MANAGEMENT

Submitter:

ANSI/IEEE
Std 1042-1987

Attachment B

Software Change Authorization

Product Version ID:

System:

Date:

SCA Number: XXXXXX
Sheet Number: 1
/. /. Time: /. /. 00:00:00

Computer Name

Input Release Module L A

Names Names Types N C System/Software Change Request Numbers
Comments:
Approvals I&T SCM SQA
Signature
Date

49

ANSI/IEEE

Std 1042-1987 IEEE GUIDE TO

Attachment C

Start

Y

SW Developer

Coding and
Doc Complete

Y

SW Developer

Unit Test

SW Developer

Team Leader
Approval

No

]

SW Developer

Complete SCA*
Submit to CCB

Y

[&T

Release Approval

SCM

Recompile
Source Code

1

SCM

SCM

Y

Object, Documents

Log as Disapproved
Notify Developer

Compare Captured
Object Code to
Recompiled Object

Y

SCM
SCM
Review Input, "
Capture Source, File SCA Copy

Return Signed SCA

Stop

*NOTE: Developer’s work files are retained until an approved SCA is received from SCM.

Fig 1l

CSES Procedure for Creating Initial Baseline

50

SOFTWARE CONFIGURATION MANAGEMENT

Attachment D
Start
Unspecified*
Change Identified
to Controlled
SW Document
1
SW Developer A
SCR Filled Out T
SCM
Y Review I
Project Leader Ca;?lf:z Sr(;ﬁl:&
Review for Object, Doc’s
Accuracy
/
Y SCM
CCB Compile Code
Approval
\ i
A SCM
Team Leader
- Compare Captured
Assign SW Object Code to
Engineer Recompiled Object
Y Y
SW Developer SCM
Text Edit, Compile File SCA Copy,
Link Edit from Return SCA Copy,
Working Libraries Update SCR
* |
SW Developer Stop
Unit Test Passed
A
Project Leader
Approval
A
SW Developer
Complete SCA,
Attach SCR
1&T
Approval
A

NOTE: If type of change is unspecified, submit SCR to SW Development.

Fig 1
CSES Procedures for Changes to Controlled Software/Documentation

51

ANSI/IEEE
Std 1042-1987

ANSI/IEEE
Std 1042-1987

Program Manager

IEEE GUIDE TO

Control

|
| | |

SQ&C Software Administration
l Manager
SQA SCM
Fig 2
Program Organization Chart

52

|

Integration

ANSI/IEEE
SOFTWARE CONFIGURATION MANAGEMENT Std 1042-1987
Appendix B

Software Configuration Management Plan for
Experimental Development Small System

Version 1.0

Approved

Project Manager

SCM Manager

Customer

Date: __/__ /__

53

ANSI/IEEE
Std 1042-1987 IEEE GUIDE TO

Synopsis

This example contains a hypothetical contract to provide a prototype minicomputer-based system for
a research-oriented customer. The system consists of three software programs, to be developed by a
project team of twenty persons (of which ten are programmers) and is considered a prototype for
installation in one field site. The software is written in COBOL. If the system is considered successful at
that site, it will be expanded to an additional two sites for further evaluation. These sites may be
supported by different hardware (for example, a transition may have to be made from hardware configu-
ration A to hardware configuration B) or by different versions of the code (for example, one site may be a
data input-processing installation and another a centralized data-gathering installation; each may use
slightly different logic or data elements). The development time frame for the prototype system is two
years. The expected life of the system is not known as the production system becomes part of a major
procurement sometime in the future when the management of the first three sites agree on the
requirements.

The contracting company and the customer are very end-user oriented, willing to sacrifice rigor in
configuration management ang specifications in the interest of speedy delivery of software to the sites
and rapid response to changes. Because of this orientation, the configuration control board functions are
administered by the project manager alone. All change requests are reviewed by the manager and an
immediate ruling is made as to whether and when to implement them. The project manager meets with
the customer technical representative regularly to review change requests that require consultation,
making disposition of the requests quite rapid.

In this environment, the software configuration management (SCM) activity must be very supportive of
the customer and manager or all SCM records will be lost. The SCM coordinator attends meetings between
users and the project staff and prepares change requests on the spot. These are provided to the project
manager and customer technical representative for resolution. The project emphasis is on intensive
support to management in performing SCM —it is literally transparent to management since the SCM
organization completes all of the required paperwork. The managers’ and customers’ responsibility is to
review and authorize the resulting documentation.

54

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

Contents

SECTION PAGE
O 0 39 oo Yo L0 T4 T ¢ T P 56
1.1 Purpose of the Plan i i i i et e e e 56
L o o1 S, 56
1.3 Definitions and MNemoniCsttt it ettt tin i tie it tanaaeennns 56
1.3.1 Standard Definitions. it ir ittt i ittt ittt i, 56

1.3.2 Other Definitionso i it i i it it et e e ettt ieaniiiaenaeannnas 56

2§ (=3 11T o T 56

T O) (o) (T (U 1= O P 57

P\) B T) (=) (L R 57
2.1 Organizationsttt ittt tie et tiee et ttee e ae et etae e ranaeereaananans 57
2.2 SCM Responsibilitiest i i it et et e 57
22,1 Identificationiiniiiniin it i e i e e e i e e, 57

2.2.2 CONtIOl ..ottt e e e e e e 58

2.2.3 Status ACCOUNTINGttt it i tie e ae e eae e eaerenennnnans 58

224 Audits and Reviews i i i e e e e 58

P22 T 1173 g 2T 7) (14 o) AP 58
2.4 SCMP Implementationiiiiniiienis ittt iaae e iiaarereinaeenenns 58
2.5 Applicable Policies, Directives, and Proceduresoviiiiereriinerernnnnnennn. 58

3. SCM Activitiescoviinnnon. e e P 59
3.1 Configuration Identification i i it it 59
3.1.1 EDSS Project Baselines........... e e et e e e e, 59

3.1.2 EDSS Project Labeling it 59

3.2 Configuration Control0........ et e b e a e raeiaaa, 59
3.2.1 Configuration Control Board i 59

3.2.2 Processing SCR i e 59

323 CCBInterfacecoovenn.t. o e 59

3.3 Configuration Status Accounting............. e e e 59
3.4 Audits and Reviews P e e e e 59

4. Tools, Techniques, and Methodologies it e ien i ianaenennn 60
S 11§00 3 1 C=) g 00} 17 o o) P 60
6. Records Collection and Retention ot iitin ettt ie it renoneraasnsas 60

55

ANSI/IEEE
Std 1042-1987

IEEE GUIDE TO

Appendix B

Software Configuration Management Plan for
Experimental Development Small System

1. Introduction

This document describes the software configu-
ration management activities to be performed in
support of the Experimental Development Small
System (EDSS) Project. The EDSS project is
charged with developing and demonstrating an
advanced data processing concept, which, at a
later date, may be converted to a fully functional
system for processing special data. The project is
considered to be a research/development pro-
gram. ‘

1.1 Purpose of the Plan. The software configu-
ration management plan (SCMP) for the EDSS
system describes how the software development
activity supports EDSS management in the rapid
iteration of software builds necessary for efficient
development of the prototype demonstration
software at site A. It also describes how this
demonstration baseline is to be captured to pro-
vide for adaptation of the operational program to
sites B and C and for subsequent up-grade of the
software to full production quality for support of
operational sites.

1.2 Scope. Three software configuration. items
(CI) are being developed as part of this contract:

(1) The Operational Program

(2) The Data Reduction Program

(3) The Test Generator Program

The development of these three CI is the
responsibility of the contractor’s software engi-
neering organization. The internal build testing,
the conduct of integration testing and demonstra-
tion of the prototype at site A is the responsibility
of the contractor’s test and control organization.
The test and control organization is also respon-
sible for demonstrations at sites B and C under
this contract and possible subsequent upgrade
testing of the software during later contracts.

The configuration of the operational program
is managed at the unit level with all changes
reviewed and approved as each unit comes under
configuration management in the master library.
The configuration of the data reduction program

56

and test generator program is managed at the
component level after being released for use with
the operational program.

This SCMP specifically covers the configuration
management support provided by the software
configuration management department to the
EDSS project office for

(1) The development of software used for dif-

ferent builds in test

(2) The prototype demonstration at site A

(3) The demonstrations at sites B and C.

1.3 Definitions and Mnemonics

1.3.1 Standard Definitions. Definitions used
are found in ANSI/IEEE Std 729-1983, IEEE
Standard Glossary of Software Engineering Termi-
nology. Specifically, attention is called to defini-
tions of ~
configuration item
configuration identification
configuration status accounting
master library
software library

1.3.2 Other Definitions
prototype system. The software developed for
demonstrating the feasibility of the system con-
cept.

1.3.3 Mnemonics. The following mnemonics
are used within this document:

AXCESS Vendor Software Company

CCB Configuration Control Board

CI Configuration Item

CM Configuration Management

DRP Data Reduction Program

EDSS Experimental Development Software

System
)3 Operational Program
SCA Software Change Authorization
SCI Software Configuration Item
SCM Software Configuration Management
SCMP Software Configuration Management
Plan
SCR System/Software Change Request
SDG Software Development Group
SPR Software Promotion Request
T & CG Test and Control Group
TGP Test Generation Program

SOFTWARE CONFIGURATION MANAGEMENT

1.4 References

[1] ANSI/IEEE Std 729-1983, IEEE Standard
Glossary of Software Fngineering Terminology.!3

[2] ANSI/IEEE Std 828-1983, IEEE Standard for
Software Configuration Management Plans.

[3] Contractor Software Engineering Organiza-
tion Labeling Standards for EDSS System.

[4] Contractor Test and Control Malfunction Re-
ports, 14

[6] EDSS Software Development Plan

2. Management

2.1 Organizations. All authority for managing
the EDSS system is vested in the EDSS project
office. The software engineering organization and
the test and control organization provide per-
sonnel on loan to the EDSS project office for the
duration of the project. The configuration man-
agement department provides qualified personnel
to the EDSS project office to perform the neces-
sary SCM coordination. Figure 1 illustrates the
major organizations. ;

The working organization is divided into two
main groups

(1) EDSS software development group (SDG)

(2) EDSS test and control group (T & CG)

131EEE publications are available in the company technical
library. .

14Organizational standards are available from the EDSS
project office secretary.

ANSI/IEEE
Std 1042-1987

Both groups report to the EDSS project man-
ager. The SCM coordinator is provided by the CM
department to the EDSS project office to help
support both the software development group
and the test and control group.

The EDSS project office has full responsibility
for program management functions, including
configuration management, until the demonstra-
tions at all three sites are concluded. The SDG
has responsibility for preparing and maintaining
requirements specifications, designing the soft-
ware, and performing the unit testing needed for
all builds. The T & CG is responsible for inte-
gration tests, field installations, and all demon-
strations. The SCM coordinator is responsible for
processing all changes affecting the documenta-
tion (including test data and test procedures)
and programs after their release to the T & CG.

The EDSS project manager is responsible for
approving/denying all changes to the program,
whether originating from the T & CG or from the
customer. The project manager functions as the
configuration control board (CCB).

2.2 SCM Responsibilities. The general respon-
sibilities of the SCM coordinator are to process
the information needed to control changes in the
prototype software as it develops and to capture
the as-built documentation, test data and reports,
and code that represent each successful site
demonstration. The emphasis is placed on sup-
porting the project change activities by indepen-
dently handling all of the required paperwork
—making the CM process transparent to man-
agement.

Specific organizational responsibilities of the
SCM coordinator are as follows:

2.2.1 Identification. Naming conventions are
established for

Fig 1

Project Organization Chart

SCM Coordinator

CM Department ~ — = ———————————c————

EDSS Customer
Project Office

Software
Development
Group

Test
and Control
Group

ANSI/IEEE
Std 1042-1987

(1) Unit Names. These are designed so that
unique identification of each item is possi-
ble. In addition, the unit naming conven-
tions are structured so that it is possible to
determine which SCI each unit belongs to
by simply looking at the unit name,

(2) File Names. These are designed with the
same mnemonic capability as the units.

(3) Component Names. These are given
unique names so the source code can be
matched to the supporting documentation.

(4) Configuration Item Names. These are
defined in the same manner as in the con-
tract statement of work.

2.2.2 Control. Control of all changes is main-

tained by

(1) Preparing and tracking approved system/
software change requests (SCR), including
all problem reports originatingfrom the
customer, throughout implementation and
testing

(2) Acting as software librarian, controllmg
the release of code to

(a) The integration library for mtegratlon :

and testing by the T & CG at the con-
tractor’s development facility

(b) The master library for installation and

demonstrations at the site(s) .

2.2.3 Status Accounting. The SCM ‘coordina-
tor provides the necessary status reports: to the
groups and project management. Typically, the
reports cover

(1) SCR opened during period XXXX-XXXX15

(2) SCR closed for period XXXX

(3) Major SCR remaining open for three or

more weeks .

(4) SPR made during period XXXX

(5) SCR included in SPR, by date of promotxon'

2.2.4 Audits and Reviews. There is no perti-
nent information for this section.!6

2.3 Interface Control. The EDSS system inter-
faces with the AXCESS software being developed
by the AXCESS Company. The interface with this
software is defined in an interface specification
developed jointly by representatives from the

15The period XXXX is left to the discretion of the program
manager but is no less frequent than three-week intervals.

16Ny audits are performed as there is no contractual
requirements. All reviews are informally conducted. Since
there is no formal delivery, the software quality assurance
activity is not involved in the configuration management of
the software.

58

IEEE GUIDE TO

software development activities of each company.
The specification is approved by the responsible
project managers of each company.

The EDSS interfaces with the hardware configu-
rations found at customer sites are defined in a
memorandum of agreement between the customer
and EDSS project manager. Where agreement is
not mutual, resolution is reached by contract
negotiations. For changes to the EDSS system, the
EDSS project manager initiates all change re-
quests. For necessary changes to the AXCESS
system, the AXCESS project manager initiates the
change requests.

2.4 SCMP Implementation. The CM Department
supports the EDSS project office with the services
of a qualified SCM coordinator on the basis of 50%
of one person’s services per month.

One four-drawer file cabinet in the library is
used for storage for the period of time specified in
Section 6.

~One workstation for execution of the data
management system is used for the duration of
the project,

Key eventsin the SCM planning phase are

(1) Establishing the integration library upon

release of the first unit to T & CG for.inte-
gration -

(2) Establishing the EDSS master library upon

" release of the first software system config-
) uration for demonstration at site A
(3) Impounding the master libraries from the
-~ three sites, along with the associated doc-
umentation and test data and reports, at
the end of the final site demonstrations

2.5 Applicable Policies, Directives, and Proce-
dures. The following standards and procedures
apply for the duration of the contract:

(1) Labeling standards used for documenta-
tion, test data, and software media are in
accordance with the standards in the soft-
ware engineering organization’s standards
and procedures manual, modified as neces-
sary in the EDSS software development
plan.

(2) Version level designations are sequential
numbers following a dash, appended to the
documentation/media label.

(3) Problem report (SCR) processing is done
according to the flow diagram in Attach-
ment B.

(4) Procedures for operating the integration
library and the EDSS master library are
documented and distributed as a part of

SOFTWARE CONFIGURATION MANAGEMENT

the EDSS software development plan prior
to establishing the integration library

3. SCM Activities

3.1 Configuration Identification

3.1.1 EDSS Project Baselines. The require-
ments baseline (functional baseline) is established
as the list of functional capabilities set forth in
Addendum 2 of the statement of work in the
contract.

The design baseline (allocated baseline) is
established as the source code and associated
design documentation, and all test procedures of
the as built configuration items are successfully
demonstrated to the customer at site A.

The prototype system baseline (product base-
line) is established by the current design baseline
of site A and versions of the configuration items
for sites B and C at the end of the final demon-
stration. o

Integration baselines are used to maintain suc-
cessive builds during the development of the
prototype demonstration at site A. A significant
number of software builds at site A can be ex-
pected.

'3.1.2 EDSS Project Labeling. The basis for
labeling is by mnemonic labels assigned to each
unit. In addition, each source unit shall have a
prologue embedded in it. This prologue shall con-
tain the following elements:

(1) Unit name

(2) Component name or identifier

(3) CI identifier

(4) Programmer name

(5) Brief description of the function of the

module

(6) Change history

(a) Date of each change
(b) Reason for change (see SCR)
(¢) Change level (version being changed)

For example, the initial version of a unit is A-0,
the second is A-1, etc. The change level is incre-
mented each time the code is revised. The change
level and the unit name are used to uniquely iden-
tify the version of the source code that incorpo-
rated a given problem correction, for example,
ABC (3) for revision 3 of the unit ABC.

3.2 Configuration Control
3.2.1 Configuration Control Board. The EDSS
project manager performs the functions of the

59

ANSI/IEEE
Std 1042-1987

change control board. The SCM coordinator sup-
ports the project manager by preparing SCR for
the manager’'s review and processing the SCR
subsequent to the manager’s decision.

3.2.2 Processing SCR. The procedure for han-
dling SCR is described in Attachment B.

3.2.3 CCB Interfaces. The EDSS project man-
ager performs all of the coordination necessary
with the customer in reviewing and in accepting,
rejecting and negotiating changes. The manager
also performs the liaison with the AXCESS ven-
dor. Changes originating from the EDSS project
are processed by the SCM coordinator. The two
project managers provide coordination between
projects and mutually resolve differences.

Changes to a system that result from these
agreements are initiated by the responsible proj-
ect manager.

3.3 Configuration Status Accounting. Status
accounting is accomplished by tracking the
changes to units through the use of the SCR form.
This manually generated form (reference Attach-
ment C) is updated (upon release) with the ver-
sion number of each release.

Status of each CI is reported periodically to
the project manager or at the manager’s re-
quest. The status of the revisions to the units
and components is reported weekly to the man-
agers of the SDG and T & CG. When a software
system is released to a site, the release and ver-
sion are recorded and the units contained in the
system are listed, along with their current change
level.

3.4 Audits and Reviews. No audits are scheduled
to be held for the EDSS system. Instead, the sys-
tem is verified through the customer’s functional
testing. Parallel operation using the site’s pre-
vious manual system and the new system is
maintained until the users are confident that
the system is producing accurate reports and
displays. The SCM coordinator attends perform-
ance/functional reviews to record action items
and change status.

Functional reviews are held periodically during
the software development cycle. The principle
document used is the User Interface Guide. This
document contains the layouts of each of the dis-
plays and reports the users have available from
the system. Each data element in each display or
report is defined there, along with the method by
which the element is derived (if any).

ANSI/IEEE
Std 1042-1987

4. Tools, Techniques, and Methodologies

The primary technique for SCM is the manual
processing of SCR, SCA, and SPR. The SCR form
(see Attachment C) is used to record all customer
requests for changes, their disposition, and even-
tual implementation. The same form is used to
record enhancements or changes requested by
the SDG. These forms later become the basis for
updating the requirements specifications and for
resolving questions concerning the origin of a
change or the status of a requirement that arise
during implementation, during integration, instal-
lation and checkout at site(s) and during the
demonstrations.

A set of basic SCM tools is available for use. A
data management system is used for recording
and reporting status of the units, components,
and CL

The integration library uses a file system to
check in and check out units for revision and test.
The project master library uses the same system
to impound master copies of the tunits and
components. ,

Release of code to the integration library is
made through software promotion requests (SPR)
shown in Attachment A. The software is compiled
and built into a protected integration backage
owned by the T & CG. Software successfully
demonstrated at the sites is placed in the EDSS

60

IEEE GUIDE TO

master library for future demonstrations and
upgrades.

5. Supplier Control

There is no pertinent information for this
section.

6. Records Collection and Retention

Copies of each status report are maintained as
a historical record for the EDSS project until the
project is terminated or the prototype demonstra-
tion system is replaced by the production system.
These records are transferred to microfiche as
they age over six months.

‘The prototype system baseline code, test data
and reports, and documentation shall be main-
tained at the termination of the project for a
period of two years or until replaced by a produc-
tion system. The software media for retention of
this baseline code is magnetic tape. The documen-
tation for this is retained on microfiche.

Test procedures and test data resulting from
the successful demonstrations shall be retained
as a part of the data for use in defining the
production system.

ANSI/IEEE

SOFTWARE CONFIGURATION MANAGEMENT Std 1042-1987

Attachment A

Software Promotion Requests

Table 1 defines the list of data elements included in the Transaction file for release of each unit.

Table 1
Data for Software Release

Element Name

Definition

CI number
Sub-application
Release request
Action requested
Members
Change level
Justification
From library
Member type
Load module

Time tag

Number assigned for CI identification

The name or number assigned to the unit or portion of the CI being released

Data release was requested

The control action requested by the development activity (builds, move to test library)
Names of modules, units to be included in the release

The change level or version number of the units being released

The number or tﬁe 'statement of jusfification concerning the reason for release

The library loce/xtion of the units before the release

The type of the unit being released (procedures, macfos, test drivers)

The load module with which the units are linked

The time tag for the version of the unit being promoted

61

ANSI/IEEE
Std 1042-1987

Attachment B

IEEE Guide for

IEEE GUIDE TO

Processing System Software Change Requests

System/Software Change Request (SCR) forms (2)
are used to document three types of situations:
(1) Requests for changes to the software by the
customer (whether these requests result
from tests, demonstrations, or from expe-
rience at the sites).
(2) Requests for changes by the designers or
coders (generated within the company)

When an SCR results in a software change
(whether a correction or a new function),
the software manager annotates the SCR
form at the time of release of the new soft-
ware to the sites and forwards the SCR to
the SCM coordinator who then updates the
master file.

that affect code already in use at the sites. 1.2 SCM Coordinator. The SCM coordinator

(3) Problems or errors in the code in test or at attends all customer/designer meetings and acts
the sites that were clearly not requests for as the recorder of change requests. Signature
new or different functions —documented approvals are obtained at that time.

i bugs in the released code

When a release of software to sites is being

prepared, the SCM coordinator meets with the

1.1 Processing steps are

project manager and review all outstanding SCR

(1) All SCR are logged in by the SCM coordi- against the released software.

nator and assigned a number on receipt. The

SCR closed at that time are documented by

After logging, the SCR is forwarded to the SCM coordinator.

appropriate manager for action or reso-
lution.

62

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

Attachment C

System/Software Change Request Form

The following data elements are included on the SCR form.

Table 1
SCR Data Elements

Element

Values

CI

Environment

Change type
Date requested

Narrative description

Disposition

Requester

Requester site

Release and version
Implementation data
Implementation release and version
Implementation ship date
Responsible manager signature

Customer approval signature

The name of the configuration item involved

The hardware site involved (may be more than one as project uses three different
types of minicomputers)

Legal values: new function, error correction, design change
DD/MM/YR

Description of the change desired in language as explicit as possible; description of
the problem in the case of error reports

Final disposition: fixed, accepted but delayed, rejected.

If fixed, description of changes made are included here

Person making the request for the cl{ange

Location of the person making the request

The release and version number in which the problem existed

List of modules involved in the change on system/software change request form
Release and version number in which change appears

Date on which the change is shipped to the sites

(Used only for changes to software already released for field use)

63

ANSI/IEEE
Std 1042-1987

Appendix C

Software Configuration Management Plan for a
Software Maintenance Organization

Version 1.0

Approved

Mgr SPLIT Facility

Mgr SCM .vDept .

~Date:__/__/

IEEE GUIDE TO

ANSI/IEEE
SOFTWARE CONFIGURATION MANAGEMENT Std 1042-1987

Synopsis

This example contains a discussion of a hypothetical programming facility that manages the support
software systems used in the design, development, test and maintenance of the software systems for a
large software engineering company. The company has approximately twenty-seven hundred employees
of whom nine hundred are professional software engineers with degrees in computer science, computer
systems or electrical engineering. The average experience of the professional engineers is five and one-
half years. The software products they build and maintain are primarily real-time systems for many
applications, some critical and some not. The company has an extensive investment in software engineer-
ing facilities. There are software engineering work stations for a third of the professional programming
staff and terminals available for the support staff. The work stations are attached to a local area network
that is integrated with a large number of mini-computers and two mainframes.

The programming facility, SPLIT, is staffed with one hundred and thirty-five people. Fifty are systems
and maintenance programmers. There is a software configuration management department within the
company that performs all of the configuration management activities for the facility and the software
engineering groups. Special emphasis is placed on the management of the products in the SPLIT facility
since the productivity and reputation of the company directly depends on the efficiency and reliability of
the support software used by the engineering groups. A special software configuration management
group is permanently assigned to the SPLIT facility with the responsibility for controlling the company’s
support software. The company management supports'this focus — as long as the software engineering
activities do not complain too loudly about the service they receive.

In this environment, the software configuration management group in the facility has a direct role in
the control of the support software. This group processes all changes made to the support software by the
system programmers, builds the run-time systems and performs all the other normal configuration
management activities. The role of configuration management in maintenance makes this group a major
part of the facility’s management team.

Since the company has a considerable investment in the support software and data records, the
disaster control practice requires that the support software in the production library have copies in the
software archival repository. The company maintains the software repository in a protected shelter
thirty-five miles from the main facility.

65

ANSI/IEEE

Std 1042-1987 IEEE GUIDE TO
Contents

SECTION PAGE
) IR 0007 oo Yo L0 Uex 70 « MU PP 67
1.1 Purpose of the Plano ottt ittt ittt e e tae ettt neaaaaanns 67
|2 T« 1< 67
1.3 Definitions and MNEIMONICSttt it ettt ireneneroeneneseensoasnenesasoeroeneenas 67
S 30 T T 34 1 o) ¢ - U 67
1.3.2 MIleIMOMECS . o vttt ot e tee et ceee e e e aneeaseataaassaeseaesaeeneesnesnseeneanssanns 67
1.4 References e e e e e 67
P2 B N ¥ V1 1 =) (1 O 68
2.1 Organizationiiuuuiiiinin ittt iant st ennee s eeannseennns 68
2.1.1 OPerations GIOUDvueniunetntaneeueeensoaneeestneeneeeaeeneeaneeneeaneansan 68
2.1.2 Systems Software Programmers.viitttiinreanreiennrernereranneeenanoeenns 68
2.1.3 Test and Evaluation Groupoitiiitiiin ittt it ti i teenanararnanns e 68
2.1.4 User ConsSultantsvuittitntintneeeeneuernerseesneneseueoesnesneoesaensnaans 68
2.1.5 SPLIT Software Quality Assurance Group............ e ettt 68
2.1.6 Multiple Configuration Control Boards i iiiiiiiniiineinnnnnnn. 69
2.2 SCM Responsibilitiesvuvririin ittt ieirereenreeenonenerononsneoasasosennaaens 69
2.2.1 TdentifiCationovtit ittt it i et e e e e et 69
2.2.2 Configuration Control....................... ettt e e et e e 69
2.2.3 Configuration Status ACCOUNLINE.vv ittt ittt ittt iiitr et rroanessanns 69
224 Audits and ReVIEWS . .. vvtir it ittt ettt e e i e i ey 69
2.3 Interface Comntrolottt ittt ittt ite e iterneraeneeasnenenesnsonsnenesannnens 69
2.4 SCMP ImPlementations . ..o vu et ettt s tnerseseaeeaeenasenesaneoeenesnossnesnnsens 70
2.5 Applicable Policies, Directives, and Procedures S 70
251 Policiescoiiiiiiiiiiinnnn. Mt ettt ettt e e e 70
2. 8.2 DI CEIVES . v vttt ittt ittt ene e saeeeeneaoeneasaasnsaneneneonsansnsonnasnnans 70
P25 0 T o0 (0 Y =10 L1 - J PPN 70
B T] Q- et 1\ 1 2 =Y J U 70
3.1 Configuration Identification i i i i e 70
3.1.1 Baseline Identification it i i i ittt e 71
3.1.2 Product Baseline Catalogingouuiiiiitiiinieiin it einrnerrnennrneanenns 71
3.2 Inspection and ReCeIVINGotiiitntriientineittieenreneneneenenenaansoeenenennsons 71
3.3 Configuration CONLrolttt ittt it et e iie e eaa s 71
3.3.1 Levels of Authority for Approvalsciiiiiiiii ittt it rinrnannnannns 71
3.3.2 Change Proposal Processingottt iateneeanaennanns 71
3.3.3 COB ROIES ...ttt ittt ettt e ettt e e e et e 72
3.3.4 Control of INterfacesoii i i i e et et et et e e 72
3.4 Configuration Status ACCOUNLINGttt i i e et et e eeas 73
3.5 Audits and ReVIEWSttt i it i i i i e e e e e e e 73
4. Tools, Techniques, and Methodologiesc. it ittt iieananannes 73
4.1 Use of the COM SysteImottt ittt ettt e e te e tne e eneanneanenaneanns 73
4.2 INSPECEION ...ttt ittt e it ittt enr et ae e te et e et e e e 73
4.3 Library Managementottt ittt e iineneneneenrasaasoraesnsoesasaasnenenans 73
4.3.1 Development Library.ttt et ea e, 73
4.3.2 Integration Library i i it ittt ittt e 73
4.3.3 Production Library ... it e e e 73
4.3.4 Software Repositoryttt i i et e et et 73
B, Supplier Control. it i it i it e it e e i et ettt e e 74
6. Records Collection and Retentionttt ittt it itir it rineenarrneennens 74

66

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

Appendix C

Software Configuration Management Plan for a
Software Maintenance Organization

1. Introduction

This plan describes the standard operating
procedures for managing the configuration of all
the support software available to the users of the
SPLIT facility. The SPLIT facility provides the
supporting software used in the design, devel-
opment and maintenance of software products
produced by the company. All of the support
software products available to the users of the
SPLIT facility are maintained under configuration
management to ensure that users have continual
and reliable service from the software products in
the run-time environment, and that errors in the
support software and requests for enhancements
are handled accurately, completely, and in a
timely manner.

1.1 Purpose of the Plan. This operating plan
specifies procedures whereby software config-
uration management supports the entire software
change/enhancement process.

1.2 Scope. This plan defines the SCM activities
necessary for maintaining all support software
items being procured, tested, sustained and kept
in the production environment in the facility. The
list of the software configuration items will vary
over time. The consolidated list of configuration
items and their status is maintained by the SCM
group within the SPLIT facility and published
monthly in the SPLIT configuration summary.

1.3 Definitions and Mnemonics

1.3.1 Definitions. The terms used in this plan
conform to the definitions found in ANSI/IEEE
Std 729-1983, IEEE Standard Glossary of Software
Engineering Terminology.

1.3.2 Mnemonics. The following mnemonics
are used within this document:

CCB Configuration Control Board

CCM Configuration Change Management
[system]

Cl Configuration Item

CM Configuration Management

COMM Communications Software

EWS Engineering Work Stations

67

HW Hardware

LAN Local Area Network

SCA Software Change Authorization

SCM Software Configuration Management

SCMG Software Configuration Management
Group

SCMP Software Configuration Management
Plan

SSQAG SPLIT Software Quality Assurance
Group

SCR System/Software Change Request

SQA Software Quality Assurance

SQAG Software Quality Assurance Group

STEG SPLIT Test and Evaluation. Group

SDT Software Development Tools

TFR Transfer File Request

1.4 References!?

[1] ANSI/IEEE Std 729-1983, IEEE Standard
Glossary of Software Engineering Terminology.

[2] ANSI/IEEE Std 828-1983, IEEE Standard for
Software Configuration Management Plans.

[3] GP:25, Software Configuration Management.
[4] GP:26, Software Change Request Processing.

[6] SF:39, Vendor License Identification and
Accountability.

[6] SF:27, Inspection and Test of Support Soft-
ware Products.

[7] SF:15, Test and Evaluation Group Activities.

(8] CMP:13, Identification and Labeling of Soft-
ware.

[9] CMP:25.3, Unit Naming Conventions.
[10] CMP:254, Version Level Designation.

[11] CMP:37, Computer Program Media Identifi-
cation and Marking.

[12] CMP:12, Software Auditing.
[13] SP:17, Support Software Status Reporting,

17 Referenced documents are available for use in the SPLIT
software reference library.

ANSI/IEEE
Std 1042-1987

[14] SP:12, Operation of SPLIT Configuration
Control Board.

[15] SP:5, User Documentation Maintenance.
(16] SP:7,SPLIT Production Library Maintenance.
[17] SP:95, Work Station Request and Allocation.
[18] SCMG-WP:19, Data Retention — SCR/SCA.
[19] SCMG-WP:1, Software Release Procedures.

2. Management

2.1 Organization. The vice-president managing
the SPLIT facility reports to the company presi-
dent along with the vice-president in charge of
the product effectiveness group and the vice-
president in charge of the operations division
(engineering). The configuration management
(CM) department is part of the product effective-
ness group. The software configuration manage-
ment group (SCMG) is administratively a part of
the CM department and their activities are re-
sponsive to the policies set by the CM department;
but, functionally, they report to the manager of
the SPLIT facility.

The organizational structure of the SPLIT facil-
ity is shown in Fig 1.

2.1.1 Operations Group. The operations group
maintains the processing and communications
systems, installs and reconfigures hardware in-
stallations, and performs the day-to-day opera-
tions of the processing environments.

2.1.2 Systems Software Programmers. The
systems software programmers perform the main-

Fig 1

IEEE GUIDE TO

tenance on the support software developed in-
house (generally by the engineering division) and
subcontracted software acquired by the facility.
Third party software acquired from vendors is
not maintained by the SPLIT facility.

2.1.3 Test and Evaluation Group. The test
and evaluation group performs the acceptance
tests for vendor and subcontracted software and
also all new releases for in-house support soft-
ware maintained by the systems software pro-
grammers.

2.1.4 User Consultants. The user consultants
provide training to that portion of the company
that does not include Section 2.1.3 in the use
of the support software systems, and consulting
services to the software engineers as needed.
They are the primary source of change requests
for support software.

2.1.5 SPLIT Software Quality Assurance
Group. The SSQAG is functionally a part of the
product effectiveness group. They perform evalua-
tions of new software as an incoming QA function,
and periodic audits of the operations of the
facility.

2.1.6 Multiple Configuration Control Boards.
There are multiple configuration control boards
(CCB) within the facility. The senior CCB, called
the SPLIT CCB, has overall responsibility for
managing the hardware and software configura-
tions in the facility. This responsibility includes

(1) Allocating SPLIT resources for use on

company projects)

(2) Setting overall schedules for support soft-

ware updates and new version releases

(3) Allocating resources to update configura-

tions of mainframe processors, the mini-
computer nodes, and the LAN/Hi-Speed -
data bus configurations.

SPLIT Facility Organization

Facility
Manager

SSQAG
Operations Systems Test & User
Group Software Group Evaluation Consultants

Programmers

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

SPLIT Facility
CCB
SW Dev Programming Communications Engineering
CCB CCB CCB Workstations
CCB
Fig 2

Structure of CCB

(4) Providing resources to subordinate CCB

that manage software product lines

The manager of the SPLIT facility chairs the
SPLIT CCB. The head of the SCMG is the alternate
chairman and attends all meetings of the SPLIT
CCB.

The in-house software is grouped by function
into three separate CCB

(a) Software development (SWDEV) tools
(b) Programming environments (PROG)
(¢) Communications (COMM) software

These subordinate CCB have configuration
management responsibility for support software
developed in-house, and managing the changes
approved for software acquired from outside
sources. Individual product line CCB are assigned
to software products developed by the company,
but their operation is independent of the SPLIT
facility CCB. When these company software prod-
ucts are used in the SPLIT facility, they are con-
trolled in the same way any product purchased
from an outside vendor is controlled. The soft-
ware used in the engineering work stations has a
- separate work station CCB for tracking the vola-
tile hardware and software configuration.

Each SPLIT facility CCB is responsible for allo-
cating resources needed for maintaining their
assigned software products. Where changes affect
interfaces with other hardware or software within
the facility, or both, the issue must be brought
before the SPLIT facility CCB. The head of the
SCMG cochairs the SPLIT facility CCB and work
station CCB with their respective managers.

Each project making use of a software product
has representation on the CCB controlling that
product.

2.2 SCM Responsibilities. The primary SCMG
responsibilities involve supporting the change
process as it affects existing software product
baselines; maintaining an accounting of the status

69

of all the software configuration items in the facil-
ity; and auditing physical configurations (CI)
received from subcontractors, vendors of com-
mercial software used in the facility, and support
software from the company engineering division.

2.2.1 Identification. The SCMG is responsible
for maintaining the identification (numbering,
labeling, and integrity of documentation) for all
the support software in the facility. Responsibility
also extends to identifying the configuration items
that are acquired from commercial vendors.

2.2.2 Configuration Control. The SCMG is
responsible for supporting the change process for
all of the support software used in the SPLIT
facility.

2.2.3 Configuration Status Accounting. The
SCMG maintains the data base used to prepare
reports on the status of all support software prod-
ucts and hardware configurations used in the
facility.

2.2.4 Audits and Reviews. Audits are per-
formed by two groups

(1) The SCMG performs physical configuration
audits of all support software acquired by
the facility. Periodic inventory audits of the
support software are also performed as
directed by the SPLIT facility manager
The SCMG supports SSQAG in perform-
ing functional configuration audits of in-
coming subcontracted and vendor-provided
support software. The SCMG also provides
SSQAG with summary data on probable
causes of failure

The SCMG works directly with the STEG in eval-
uating software changes being released to the
production library.

(2)

2.3 Interface Control. One of the most critical
activities is controlling the interfaces between the
different software systems in the facility and
between the software and changing hardware
configurations.

ANSI/IEEE
Std 1042-1987

The SCMG supports the interfaces between the
multiple CCB by recording action items affecting
each interface and following up on them to see
that they are accomplished in a timely manner.

The SCMG maintains configuration control of
the specifications and standards controlling the
interfaces between the software elements of the
workstations. The workstation configuration must
include both hardware and support software for
each installation. This includes accounting for
leased and licensed software used on personal
computers and in workstations.

The SCMG maintains the operating system con-
figuration used in the SPLIT facility as a means
for enforcing control of the interfaces with the
applications programs.

2.4 SCMP Implementation. The staff of the
SCMG is composed of one group head, who acts as
coordinator, and one qualified SCM administra-
tor for each separate SPLIT facility CCB (one per
CCB). One additional person has the function of
tracking the EWS configuration(s).

Computer resources and work space are pro-
vided by the SPLIT facility manager for the SCMG.

Milestones for SCMG activity are set by the
manager of the SPLIT facility and reflect the on-
going continuous support activities required for
managing the various support software config-
urations.

2.5 Applicable Policies, Directives, and Pro-
cedures
2.5.1 Policies
(1) Company Policy
(a) GP:25, Software Configuration Manage-
ment
(b) GP:26, Software Change Request Proc-
essing
(2) SPLIT Policies _
(a) SF:39, Vendor License Identification
and Accountability
(b) SF:27, Inspection and Test of Support
Software Products
(c) SF:15, Test and Evaluation Group
Operations
2.5.2 Directives
(1) Company Bulletin, GB:87, Use of Licensed
Software
(2) Company Directive, CD:34, Copyright Pro-
tection
(3) Company Bulletin(s), GB:(various), CCB
Membership

IEEE GUIDE TO

2.5.3 Procedures
(1) Company Procedures
(a) CMP:13, Identification and Labeling of
Software
(b) CMP:25.3, Unit Naming Conventions
(c) CMP:254, Version Level Designations
(d) CMP:37, Computer Program Media
Identification and Marking
(e) CMP:12, Software Auditing
(2) SPLIT Procedures
(a) SP:17, Support Software Status Reporting
(b) SP:12, Operation of SPLIT Configura-
tion Control Board
(c) SP:5,User Documentation Maintenance
(d) SP:7, SPLIT Production Library Main-
tenance
(e) SP:95, Work Station Request and Allo-
cation
(3) SCMG Procedures
‘ (a) SCMG-WP:19, Data Retention — SCR/SCA
(b) SCMG-WP:1, Software Release Proce-
dure

3. ’ SCM Activities

3.1 Configuration Identification. Each support
software product in the facility is identified by
configuration item title, specifications, user docu-
mentation, and media labels in accordance with
established company procedures.

Since the software being managed has already
had a product baseline established, the identifica-
tion schema is already set. The SCMG uses the

‘identification and labeling standards in the prod-

uct baseline. In-house software identification
follows company procedures CMP-13; 25.3; 25.4;
and 37. Third-party software is labeled with com-
pany-defined labels for record-keeping purposes.
The elements of software (programs, documen-
tation, test data, etc) in the production library
(the library of software released for running on
hardware in the facility) is organized as in Table 1.

Table 1
Hierarchy of Elements

Generic Term Alternate Terms

Configuration item Package, product

Component Segment, program

Unit Module, routine

SOFTWARE CONFIGURATION MANAGEMENT

The level of control applied by the SCMG will
generally be to the component level. Components
are considered to be the controlled item in manag-
ing the operation of the SPLIT facility. A given
programming library used by systems program-
mers may have a system for managing configura-
tions of software units previously used in the
development and maintenance of other programs.
Sometimes the units in these libraries are referred
to as packages, following the concepts of reusable
software being advocated.

3.1.1 Baseline Identification. Support soft-
ware product baselines are established during
incoming inspections of the product at the facil-
ity. New releases to a product baseline are labeled
in accordance with 2.5.3(1)(c). New releases
include changes or updates as necessary to the
product package —specifications, user documen-
tation, design documentation (listings), test proce-
dures, and associated test and inspection reports.
The procedure 2.5.3(1)(a) is followed for each
new release of a support software product.

A new release of a support software product is
made in accordance with 2.5.3(3)(b).

The scheduling of a new release is determined
by the SPLIT CCB.

3.1.2 Product Baseline Cataloging. Labeling
of product CI is in accordance with 2.5.3(1)(a).
The SCMG reviews each request to be released for
conformance to company procedures. The SCMG
then checks the release package against the
transfer file and the CCB authorization for com-
pleteness and STEG/SSQAG approvals.

3.2 Inspection and Receiving. New products
entering into the facility for use are inspected for
conformance to 2.5.3(1)(a) by the SCMG. Vendor

software parts (configuration items) are given’

company CI part numbers in the 7000 series for
maintaining separate accountability within the
status accounting system.

3.3 Configuration Control

3.3.1 Levels of Authority for Approvals. All
software is tested by the STEG prior to its promo-
tion into the integration library or the production

ANSI/IEEE
Std 1042-1987

library. Both STEG approval and SCMG approval
is required before the software is promoted to the
integration library or production library.

The promotion of changes into the integration
library is authorized by the SPLIT facility and
work station CCB and approved by the SCMG
after design checks by the STEG.

The release of changes to the production library
is authorized by the SPLIT CCB. Prior to entering
changes into the production library, each change
is tested and verified as correct by the STEG,
checked for conformance to packaging standards
by SSQAG, and administratively approved by the
head of the SCMG before being placed into the
library.

3.3.2 Change Proposal Processing

3.3.2.1 SCR Processing. Software change
requests are prepared using the form C-1049,
software/system change request, or use of the
SCR ENT command in the interactive configura-
tion change management (CCM) system. Manu-
ally prepared forms (C-1049) are entered into the
CCM system by the SCMG librarian. The same
form used to initiate a problem report is used for
requesting an enhancement to the system. All
changes are concurrently routed to the SCMG
files in the CCM system for administrative checks
and to the appropriate product line manager for
verification. Each SCR is reviewed by technical
personnel and their evaluation is forwarded to
the appropriate SPLIT CCB for action.

The SPLIT CCB can approve, reject, or table
(with an action date) a request pending further
information.

Action in response to a SCR is scheduled by the
CCB in response to the severity of the problem
reported or the need for enhancement. Problem
reports are given priority over change requests
not associated with an operating problem. Prob-
lem reports (as indicated on the SCR form) are
processed on an expedited basis.

Problem reports that are determined to be valid
errors in the performance of the system and given
priority for solution with temporary fixes are
incorporated into the subject system — along with
publication of a bulletin notifying all users of the

Table 2
Problem Criteria
Category Symptom
“c” A software item cannot be executed by a user
“M” Users have problems with a program but can work around with temporary fix
“S” Minor irritation but users can still accomplish work

71

ANSI/IEEE
Std 1042-1987

change in the system. Permanent modifications to
correct the error are incorporated with the next
upgrade released to all users.

Requests for system enhancements that are
valid and within the scope and resources allo-
cated to the software product are scheduled for
incorporation in the next scheduled upgrade to
that product.

Approvals are incfbrporated in the maintenance
schedule and a release date tentatively identified
for a scheduled upgrade or correction to the
affected support software product(s). Status of
these SCR is indicated as approved.

The SCR may be returned to the user when
additional clarification is needed or when the
results of the design review may necessitate addi-.
tional design analysis or even modification to the
change request. The SCR is held with the status
pending until a course of action has been
determined.

Testing for promotion to the integration library
or release to the production library may result in
additional design changes or recoding. In that
event, the status of the SCR reflects approved and
the status of the SCA reflects in-work. The status
of the SCR/SCA action is changed to implemented
only if the change has been completed, verified,
and released into the production library.

3.3.2.2 SCA Processing. Approved SCR are
forwarded by the CCM system to the appropriate
programming activity for implementation. Similar
changes that are grouped together for an upgrade
are worked on at the same time. Emergency
changes (needed to keep the system in operation)
are expedited through the system. The program-
ming activity extracts necessary files for work
from the production library and makes the
changes. When the supervisor is ready to inte-
grate the file, the SCA and the code are completed
and passed to the CCM_HLD/INT area for admin-
istrative checks by SCMG before being released to
the integration library for integration and test.

STEG performs the integration and testing,
requesting modifications from the programming
activity as appropriate. When it has been demon-
strated that the change package is correct and
introduces no additional errors into the system,
the SPLIT CCB is informed of the pending update
whereby STEG initiates a transaction file request
(TFR). Upon approval by the SPLIT CCB, the
SCMG enters the change into the production
library. The status of the SCR/SCA is then changed
to closed.

The SCMG performs the systems generation of
the run-time programs used in the facility, and

72

IEEE GUIDE TO

loads, after verification by the STEG, into the
necessary hardware configurations.

Failure of the users to accept the changes in the
support software system may result in it being
returned to a previous step or cancellation of the
task.

3.3.2.3 Changes to EWS. The processing of
changes to work station support software is the
same as the above procedure except that the
run-time software generation and allocation to
HW configuration is controlled by the EWS CCB
network manager.

3.3.24 Changes to Supplier Software.
Change processing for subcontracted software is
performed in the same manner described above
when the source code is in-house and mainte-
nance is being performed by the SPLIT systems
software programmers. When the software prod-
uct is under subcontractor warranty, the SCR is
passed to the subcontractor and the new version
is accepted into the production library in the
usual manner. In the event where the subcontrac-
tor has a maintenance contract for the product,
the SCR is passed on to them for processing.

3.3.2.5 Licensed Software. Licensed soft-
ware is given a company label with a unique iden-
tifier to indicate limited use. Periodic audits are
conducted by the SCMG to determine adherence
to the license limitations by users.

3.3.2.6 Purchased Commercial Software.
Purchased commercial software is relabeled with
company identifying numbers and released for
use and configuration management in the same
manner as in-house developed software.

3.3.3 CCB Roles. The CCB evaluation takes
into consideration, among other things, the staff
resources available versus the estimated work-
load of the request; the estimated additional
computing resources that are required for the
design, test, debug, and operation of the modified
system, and the time and cost of updating the
documentation.

An essential function of each CCB is to coordi-
nate the flow of information between the users of
the software product and the maintenance organ-
ization supporting the product. This function is
executed when the CCB representatives of the
project use the products and monitor the evalua-
tion of the significance of problem reports and
requests for enhancements. The result of the CCB
review is the assignment of a priority to each
request.

3.3.4 Control of Interfaces. There is no per-
tinent information for this subsection.

SOFTWARE CONFIGURATION MANAGEMENT

3.4 Configuration Status Accounting. The SCMG
supports the following reports:

(1) SPLIT Software Configuration Report. An
accounting of the software and hardware
configurations of all the systems within the
SPLIT facility. This report is kept current at
all times. Weekly reports are made to the
SPLIT facility manager, including changes
Jjust completed and changes scheduled for
the next week.

(2) SPLIT Performance Summary. A monthly
summary of the up-time of all systems and
an analysis of all problems causing un-
scheduled down-time.

(3) SCR/SCA Summary. For each configura-
tion item, a summary of the current status
of SCR/SCA activity is given on a weekly
basis to the SPLIT facility manager. The
SCR summary includes problem type and
severity, priority given by the CCB, activity
or programmer assigned, and target release
date for either the fix or new release.

(4) EWS Configuration Status. This configu-
ration status is maintained in a data base
for general access. Status and configura-
tion summaries are presented to the SPLIT
facility manager on a weekly basis.

3.5 Audits and Reviews. The SCMG performs a
physical configuration audit on all incoming
third-party software.

The SCMG performs functional and physical
configuration audits on each new release of soft-
ware in the system.

The SCMG performs periodic audits of the
software and hardware configurations in the
facility to ascertain that no unauthorized changes
have been made. Particular attention is paid to
licensed software.

4. Tools, Techniques, and Methodologies

4.1 Use of the CCM System. The CCM system is
used to manage and track all changes to the soft-
ware in the SPLIT facility. The system provides
for initiating changes, review and approval by
management, assigning and monitoring work
status, and the testing and releasing of all changes.
Status reporting is provided as an output from
the CCM data base. This configuration manage-
ment tool is one of the set of software tools used

73

ANSI/IEEE
Std 1042-1987

in the SPLIT facility by all of the operating activ-
ities.

4.2 Inspections. Releases to the production
library are inspected to confirm inclusion of
scheduled SCR/SCA.

4.3 Library Management. The SCMG makes dis-
ciplined use of programming libraries to manage
the changes to support software configuration
items. The SCMG and the STEG cooperate in
promoting software modifications from the devel-
opment library into the integration library and
from there releasing them to the production
library.

4.3.1 Development Library. The development
library is used by the systems software program-
mers as they develop their code. The units and
components are controlled by the individual pro-
grammers. Criteria for allowing promotions into
the integration library includes the successful
completion of unit testing and approval by the
group’s supervisor.

4.3.2 Integration Library. The integration
library is used by the SCMG to capture and build
the code that is designated for promotion to the
STEG for integration and test. This library con-
tains the source code and executable load modules
created as a result of a system build. The source
code is placed in a special controlled library in
preparation for a build. Then the code is recom-
piled and link edited before it is placed in the
integration library. Criteria for releasing to the
production library includes

(1) Submission of a software release request by

the SPLIT CCB

(2) Completion of status accounting audits and

resolution of issues by SCMG

(3) Acknowledgment of regression and inte-

gration test completion by the STEG and
SQA

All test data and routines used to verify soft-
ware released for use are also maintained under
configuration control in the integration library.

4.3.3 Production Library. The production
library contains the master copies of all the sup-
port software configuration items used in the
SPLIT facility. Copies are made from the masters
by the SCMG for use on other systems. The pro-
duction library acts as backup for the run-time
configurations used on the systems. Only current
master copies of support software configuration
items are maintained in the production library.

4.3.4 Software Repository. Current copies of
all support software configuration items from the

ANSI/IEEE
Std 1042-1987

production library are maintained in the software
repository. Historical copies of support software
released for use outside the facility are main-
tained in the repository for a period of ten years
after release.

5. Supplier Control

Since the SCMG does not have responsibility for
supporting the development of subcontracted
software, the SCMG has no interface with the
support software developed in this way.

The SCMG does participate with the STEG in
the receiving inspection of commercial software
and subcontracted software to ascertain that

(1) All physical items are available as required

by contract ’

(2) The proper labels are on the media to be

placed in the integration library, and sub-
sequently, in the production library

The SCMG is responsible for the physical con-
figuration audit of subcontracted and vendor-
supplied software. The SQA activity performs the
functional configuration audit.

74

IEEE GUIDE TO

6. Records Collection and Retention

Records of SCR/SCA processing are retained
for a period of five years to support fiscal stan-
dards of records. Status reports of the SPLIT facil-
ity configurations are also maintained for a period
of five years.

Records defining the product baselines of all
support software products released for use out-
side the facility (in conjunction with engineering
division sales) are maintained for a period of
twenty years to protect product warranties. The
product baselines of all other support software
products developed in-house but not released for
use outside the facility are maintained for a
period of ten years.

Records of licensed vendor software integrated,

or otherwise used, with internal configurations

are maintained for a period of five years after
their removal from the system.

Biweekly backups of the systems are archived
for a period of six months to protect the data files
of the ongoing engineering division development
activities. Backups of the systems processing
company financial records are archived for a
period of seven years, as required by law.

ANSI/IEEE

SOFTWARE CONFIGURATION MANAGEMENT Std 1042-1987

Attachment A

System/Software Change Request
(SPLIT Form C-1049)

Table 1
Definitions of Elements in SCR
Element . Values
Originator Name of the person making the request
Product Originator’s subject support software product
Date Date of change request (option: date of anomaly detection for the SCR
SCR number Sequential number assigned for the product in question
SCR title A concise descriptive title of the request
SCR type One of the following types:
AR — Anomaly Report
SCN — Specification Change Notice
ECR — Engineering Change Request
ER — Enhancement Request
IR —Impound Request
Program Identification of the support software product for which the change

System version
Description of change

Disposition

User class
Date needed

is requested
Version identifier of the system for which the change is requested
Originator’s description of the need for a change

CCB indicates one of the following dispositions:

Approved — Date approved and assigned for implementation
Deferred —Date deferred to
Rejected — Date rejected

Indicates organization/activity using the software
Indicates date the change is needed in the production system

For those SCR referencing anomalies detected in a product baseline, the CCB must verify that
the problem exists and the following data should be added:

Optional Data for Anomaly Reports

Item Data |
1 System configuration on which the anomaly was detected.
2 Performance effect —The effect the anomaly has on the performance of the system

[¢] critical; [m] major; or [s] small

75

ANSI/IEEE
Std 1042-1987 IEEE GUIDE TO

Attachment B

Software Change Authorization

Table 1 defines the list of data elements included in the SCA file for releasing each unit. The SPLIT
facility CCB may add to the list of elements. Deletions are made only with explicit approval of the SPLIT

CCB.
Table 1
Definitions of Elements in SCA
Element Name Definition
CI number Number assigned for CI identification
Date (1) Date change was released to the integration library

(2) Date change was released to the production library

SCR number The SCR number of the request/authority for making the change
Subapplication The name or number assigned to the unit or portion of the CI being
released
Release request Date release was requested
Action requested The control action requested by the development activity (builds,
move to integration library, etc)
| Programmer(s) The names of the programmer(s) making the changes
! Members Names of modules, units affected by the change in the release
‘ Change level The change level or version number of the units being released
Justification The number or the statement of justification concerning the reason
for release i
| From library The library location of the units before the release
‘ Member type The type of the unit being released (procedures, macros, test drivers)
Load module The load module with which the unit will be linked
1 Verified by Name of the person approving the verification
‘ Verified system name Identification of system used for testing change
Time tag The time tag for the version of the unit being released

| 76

SOFTWARE CONFIGURATION MANAGEMENT

Appendix D

Software Configuration Management Plan for a
Product Line System

Version 1.0

Approved

Director, Engineering

PLAS Program Manager

Date: __/___/_

77

ANSI/IEEE
Std 1042-1987

ANSI/IEEE
Std 1042-1987 IEEE GUIDE TO

Synopsis

This example Plan contains a discussion of a hypothetical project in a microelectronics company that
makes microprocessors and microprocessor-based systems that are later embedded within other hi-tech
electronic systems. The company has approximately nineteen hundred employees, of which one hundred
and thirty-four are in the engineering division and the remainder are in the production division, market-
ing, and administration group. There is an extensive investment in hardware CAD/CAM to make the
operation productive and a lesser investment in computer-aided engineering (CAE). Office automation is
used to minimize the costly handling of paper; therefore, most of the communication within the company
uses electronic media. Customers buy hardware or systems — receiving software products only as part of
a system.

There is no independent software development activity. Software technology is considered a basic skill
that electronic engineers and system designers use in their day-to-day work. The engineers design soft-
ware for execution within their system’s RAM or ROM with the same ease as they use the silicon compilers
to design chips. There are two focal points where the different engineering design technologies interact
with the configuration management discipline. The first focal point is in the system’s computer aided
engineering system where the engineering libraries (where functional logic and piece/part information is
maintained) or data bases and VLSI design systems are maintained. The second focal point is in the
production computer aided manufacturing system where the programmed logic is transformed from
compiled into deliverable products. The two focal points are separate as the mode of implementation
demands different interfaces —the production system interfaces directly with the hardware CAD/CAM
systems in production; the engineering system with the software/firmware development stations and
prototype-testing stations. The configuration management software to support management of these
data bases is largely embedded within the program management system, which schedules work and
manages the changes to baselines.

In this environment, the software configuration management disciplines are just another one of the
tools used by engineering and production management for performing their daily tasks. The software
configuration management plan focuses primarily on establishing unique project data base structures in
the engineering systems, routing the change management materials to named organizational positions for
approvals, and defining data-base baselines. Software configuration management is a service provided by
the engineering, production, and management systems to help management more effectively perform
their tasks.

78

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

Contents

SECTION PAGE
R 8 o o L o] () ¢ S A P 80
L O S P o Y0 T AP 80
B T« LU O 80
1.3 Definitions and MNeMONICS uutittt ittt iie ettt tte e tiereasetesanneenaennaseneens 80
LS 30 77 1 01 180 OO 80

IS JZ L b 113 1170 4Dt S PP 81

) 2 (3) U - AP 81

P N (T L (U= 0 /PP 81
P 0 =3 (14 110 (LR A 81
2.2 SCM Responsibilitiesouuvriit ittt i it it et e e e e e s 83
2.3 Interface ComErolottt ittt ittt ie e e ie e tte e taseineeeeesnneennnenns 83
2.4 SCMP Implementations.ottt it i e et iaae e eenannseones 84
24.1 PLAS Configuration Baseline ittt iaieinrennne 84

2.4.2 The Configuration Control Board o it 84

2.4.3 The SUPPOIrt EnVironmentttt i i e it it te et e aneinenannns 84

244 SCM Resource Requirementsiueieiiieineieenennereeneeneeeenananenenaas 84

2.5 Applicable Policies, Directives, and Proceduresiiiiiiiiiininennnannnns 85
2.5.1 Existing Policies and Proceduresccooiiiiiniiiiniiieiia it inneennnennnen 85

2.5.2 New Policies and Procedures To Be Writtenc.oiiuiiiiii i nneennnn 85
BT\ 7N 1\ 1 5 LU 85
3.1 Configuration Identification iimiiiiit ittt it 85
3.1.1 Naming Conventionsvuvuerurtuunerereereeeronuunisaereceensestotosannnnns 85

R 2 § 113 03 1173 (- 7 T ¢ O 856

3.1.3 Ownership Notification Procedures.vuuiitiniiin et reeneecnaannneensens 86

3.2 Configuration Controlttt ittt i tieetitnaeeenunaeeannnaaessons 86
3.2.1 Change Processingvuuut it uriiine ettt inenniisaetereeeereearnnnns 86

3.2.2 Production Baseline Changesouuiiiiiinirtrenintieinnerenunereannnnsen 86

3.23 PLAS Module Releaseo ittt iee ittt itaaienaennenearannenas 87

3.3 Configuration Status ACCOUNLINEttt it iiiieetiee e nranerennanseoonsnesennns 87
34 Audits and RevIeWS ... o it i i i e e i e et 88

B O O N o 88

4. Tools, Techniques, and Methodologiesottt ittt 88
T 1Y 0 011 123 o 0e3 1L) P 89
6. Records Collection and Retentionco ittt iintnir it iiernrerennsasonsensnonnns 89
6.1 Backup Data Basettt i e it it e et s 89
6.2 Archive Data Base ittt ittt it raa e i ittt e s 89

79

ANSI/IEEE
Std 1042-1987

IEEE GUIDE TO

Appendix D

Software Configuration Management Plan for a
Product Line System

1. Introduction

This guide describes the plan for managing the
configurations of stored program logic used in
manufacturing the product line analysis system
(PLAS) module. This module performs the compu-
tational, communications, and device-controller
functions of a larger system — The Quick Stretch,
which performs stress analysis for mechanical
structures. This system is sold as a proprietary
company product to customers and is maintained
by field representatives of the company. The
company intends that the PLAS module have
functional flexibility through its use of computer
programs to make the module adaptable to other
company proprietary systems and possibly for
sale to other systems manufacturers.

1.1 Purpose. This plan identifies the procedures
for managing the configurations of the PLAS
computer programs during their development
and for maintenance of the programs throughout
the time period the company sells and has war-
ranty responsibility for the products that incor-
porate the PLAS as an embedded system,

1.2 Scope. This plan is applicable to the develop-
ment and maintenance of all the computer pro-
grams embedded in ROM, loaded into EPROMS,
or loaded into RAM for use in the PLAS module.
Configuration management of the hardware asso-
ciated with the PLAS module is covered in a PLAS
hardware configuration management plan—
PLAS-CMP. These computer programs, packaged
in different media, are collectively managed under
the single configuration item PLAS software con-
Sitguration item regardless of their function. The
computer programs packaged for ROM or EPROM
are managed as hardware components;identified
under their prime hardware configuration item
identification. The support software used in pro-
duction and test of the PLAS module components
(both hardware and computer programs) is also
controlled by this plan.

80

1.3 Definitions and Mnemonics

1.3.1 Definitions. The terms used in this plan
conform to the definitions found in ANSI/IEEE
Std 729-1983, IEEE Standard Glossary of Soft-
ware Engineering Terminology.

hard logic. Programmed logic that is embedded
as circuit logic in a chip. The logic is developed
using the general software engineering tools and
disciplines. Packaging of the logic uses silicon
compilers for generating the geometry of the chip.

P-CAMS. The product computer aided manu-
facturing system (P-CAMS) environment that
contains
(1) The engineering data bases of hard logic
and stored-programmed logic defining the
products in the production environment
(the controlled libraries)
(2) The support software used in converting
the controlled engineering data bases into
instructions and data for
(a) Production of chips, software and firm-
ware

(b) Test programs and data for verifying
that the produced entities have been
correctly implemented

User documentation is also produced using

P-CAMS. Configuration management disciplines
relating to product serialization, change labeling
and tracking, and verification tests are a part of
this environment.

project-management system (PMS). The PMS
provides the capability for management to
(1) Define an identification schema for proj-
ects at start-up time and to make changes
to the different schemes
(2) Authorize and control the release of proj-
ect drawings and engineering data bases
from the dynamic libraries in systems com-
puter-aided engineering system (SCAES)
to the controlled project libraries in
P-CAMS

SOFTWARE CONFIGURATION MANAGEMENT

(3) Schedule the production and release of
product changes, and coordinate the pro-
duction schedules within the production
division

In general, this system supports the configura-

tion management change control board (CCB)
and production scheduling activities.

stored program logic. Computer program in-
structions and data that are executed out of
RAM, ROM, and EPROM in the PLAS module. The
instructions and data are developed using general
software engineering tools and disciplines. Pack-
aging of the instructions and data uses technol-
ogy appropriate for the media.

systems computer aided engineering system
(SCAES). The SCAES environment is composed
of

(1) A variety of engineering support software

including different simulators, prototyping
tools, modeling programs, engineering de-
sign aids, documentation tools, test genera-
tors, test simulators, utilities and compilers

(2) Engineering libraries (the dynamic librar-

ies) that contain general algorithms that
have widespread utility, reusable stored-
programmed logic, reusable hard-logic
functions, and access to selected product
designs

(3) Design data bases representing the dynamic

working libraries for product developments
that are currently in progress (such as the
PLAS module development)

The commands that are used in SCM disciplines
for supporting identification of entities relating to
a specific project and for tracking current ver-
sions of those entities are an integral part of
SCAES.

1.3.2 Mnemonics. The following mnemonics
are used within this document:

APM Associate Program Manager

CAD/CAM Computer-Aided Design/Comput-

er-Aided Manufacturing

CAE Computer-Aided Engineering

CAES Computer-Aided Engineering Sys-
tems

CCB Configuration Control Board

ClI Configuration Item

CM Configuration Management

CMP Configuration Management Plan

CMS Change Management System

CSCI Computer Software Configuration
Item

DP&S Data Processing and Support

81

ANSI/IEEE
Std 1042-1987

EPROM Erasable Programmable Read Only
Memory

EWS Engineering Work Stations

EWSW Engineering Work Stations Envi-
ronment

LSI Large Scale Integration

MSI Medium Scale Integration

P-CAM Product Computer-Aided Manufac-
turing System

PLAS Product Line Analysis System

PMS Project Management System

QC Quality Control

ROM Read Only Memory

SCA System Change Authorization

SCR System Change Request

SCAES Systems Computer-Aided Engi-
neering System

TD Technical Director

VDD Version Description Document

VLSI Very Large Scale Integration

1.4 References
(1] PLAS Functional Requirements.'8

[2] Engineering Work Station and Environment
User’s Manual.

[3] Programming Standards Manual.

[4] Product Line Identification Numbering Stan-
dard.

[5] Software Quality Assurance Policy.
(6] Production Test Standards.

2. Management

2.1 Organization. The PLAS program manager of
the product line has financial and administrative
responsibility for all PLAS module engineering
and production. He is part of the administration
and reports directly to the general manager of the
company. The company uses a matrix organiza-
tion for managing projects.

The PLAS program manager has final responsi-
bility for the business success of the program. The
project staff consists of the financial staff, the
technical director (TD), an associate program
manager (APM), and a quality representative
from the quality control (QC) department. The
PLAS APM is functionally a part of the production
division and attends all PLAS project meetings.

18 Al referenced documentation is available from the SCAES
library.

ANSI/IEEE
Std 1042-1987

IEEE GUIDE TO

PLAS
Program
Manager
QL - ————- ——=—~—~ — — — Finance
TD APM Marketing
Engineering Production
Design [Prod Test
Support
Fig1
PLAS Organization Chart

The major elements in the administration, engi-
neering division, and production division that
support the PLAS product line include

(1) Marketing (administration) provides the

sales and marketing support to
(a) Perform market analyses and prepare
functional requirements for the Quick
Stretch System that indirectly deter-
mine the functional requirements for
engineering the PLAS module
(b) Maintain customer liaison for product
maintenance and improvement and
{c¢) Sell the Quick Stretch Systems
The PLAS engineering design group (engi-
neering division) is an ad hoc organization
under the direction of the PLAS technical
director, which provides engineering exper-
tise to
(a) Manage the overall system design activ-
ity
(b) Develop the hard logic, the stored pro-
gram logic, and drawings for PLAS
assemblies
(c) Review all proposed changes for feasi-
bility, cost, and design integrity
{(d) Perform all necessary engineering de-
sign and logic changes
(3) The PLAS engineering support group (engi-
neering division) provides the technicians
and technical resources to
(a) Maintain the SCAES_PLAS engineer-
ing data base
(b) Perform product engineering based on
design prototypes to be released for pro-
duction

(2)

82

(¢) Support TD and PLAS program man-
ager in verifying design changes prior to
release to P-CAMS.

The PLAS production group (production
division) activity, under direction of the
PLAS APM, provides the capability to

(a) Manufacture hardware in accordance
with PLAS drawings released for pro-
duction

Compile, verify, and package pro-
grammed logic released as software
for PLAS RAM

Compile, verify, and burn-in pro-
grammed logic released as firmware
for PLAS EPROM

Compile, verify, and coordinate mask
production or programmed logic re-
leased as firmware for PLAS ROM
Compile, verify, and coordinate pro-
duction of hard logic released as VLSI
chips

Test complete assemblies of PLAS
modules

Maintain inventories

Ship PLAS modules to customers as
directed by the PLAS program man-
ager

(4)

(b)

(©)

(d)

(e)

()

(8
(h)

The functions that are generally performed by
a separate SCM activity and not supported by
SCAES and PMS are shared between the quality
control representative and the APM. This is possi-
ble because most of the detailed SCM processing
activities and library interface management are
accomplished by the PMS.

SOFTWARE CONFIGURATION MANAGEMENT

The PLAS technical director is the chairperson
of the configuration control board (CCB). The
PLAS identification scheme implemented in the
SCAES control system is approved by the chair-
person of the CCB. The responsibility for reviewing
and approving all changes to established base-
lines and scheduling releases belongs to the CCB
chairperson. Release of PLAS engineering data
base(s) to P-CAMS and all changes to the P-CAMS
data base for PLAS is authorized by the CCB
chairperson.

2.2 SCM Responsibilities

(1) The PLAS program manager provides gen-
eral direction to the TD for establishing the
identification scheme, to the APM for pro-
duction scheduling, and authorizes the
establishment of baselines. The PLAS pro-
gram manager also provides general direc-
tion to the TD for CCB actions and issues
requests for QC to audit and review the
integrity of the SCAES_PLAS engineering
data base and the P-CAMS_PLAS produc-
tion data base.
The PLAS TD establishes the contract iden-
tification schema used by the PLAS project
engineers and performs (or delegates to
engineering support group) the duties of
updating the P-CAMS_PLAS production
data base when authorized by CCB actions.
All changes to the P-CAMS_PLAS produc-
tion data base are approved by the TD.
The PLAS associate program manager (or
a delegated assistant, such as a librarian)
has overall responsibility for maintaining
the P-CAM PLAS data base, PLAS unit and
module tests, and production schedules.
The production test group is responsible
for testing the hardware assemblies, includ-
ing the units containing the packages of
programmed logic (ROM and EPROM), and
verifying that the correct version of the
logic is embedded in the device. The group
also verifies that the diskettes containing
the dynamically loadable software for the
PLAS module is the correct version for
shipment. Final assembly tests of these
units along with VLSI chips are also con-
ducted by this group.
The PLAS quality control representative is
responsible for reviewing the production
test group’s verification activities, and au-
diting the integrity and use of SCAES_PLAS
engineering data base and P-CAMS_PLAS
production data base. The QC representa-

(2)

(3)

4)

(%)

83

ANSI/IEEE
Std 1042-1987

tive verifies the physical configuration of
the PLAS module, its associated user doc-
umentation, and its functional capabilities
(review of module acceptance testing) as a
part of the quality review prior to shipment.
The engineering support group provides
special extractions from the SCAES,
P-CAMS and PMS systems data bases show-
ing status of the various baselines when
information other than that provided by
general project status commands is re-
quired.

The marketing organization provides the
functional requirements for the system and
is the major source of high-level system
changes and improvements. In effect, this
organization defines the functional base-
line. Customers purchasing a PLAS module
for their own use or for the PLAS module
integration in the Quick Stretch System
have no direct interface or review author-
ity over PLAS baseline activities or product
capabilities.

(6)

(7

2.3 Interface Control. The data bases for the
PLAS module are maintained in two different
library systems: the SCAES_PLAS engineering
data base and the P-CAMS_PLAS production
data base. The interface between these two data
bases is controlled by PLAS CCB authorizations.
The SCAES_PLAS engineering data base is
made up of several parts representing
(1) Top-level drawing of the PLAS module
(2) Detail design representations of the pro-
grammed logic as it is to be packaged for
implementation in ROM, EPROM, and RAM
based software
(3) Detail designs for implementation in chips
(LSI and VLSI designs)
(4) Electrical engineering drawings for cards
and assemblies and
(b) Mechanical drawings for the module
assemblies
The interfaces between these subdata bases are
managed as developmental baselines during the
engineering development phase of a PLAS module.
The interface with the Quick Stretch System, or
with customer defined systems using the PLAS
module, is defined by the top-drawing design data
base. Changes in this interface are made only with
the authority of the TD. In case of conflict, the
PLAS program manager negotiates the changes
with the appropriate system representative.

ANSI/IEEE
Std 1042-1987

Interfaces with the P-CAMS_PLAS production
data base and the computer-aided manufactur-
ing software are managed by the APM in produc-
tion division, as long as the changes do not affect
the CAES_PLAS engineering data-base interface.

2.4 SCMP Implementation

2.4.1 PLAS Configuration Baselines. The
functional baseline is established when the
system level description for the PLAS module is
approved by the general manager for prototype
development. Marketing surveys and analyses of
potential customer applications provide a descrip-
tion of the desired functional capabilities of the
proposed system. The functional baseline is docu-
mented with the marketing analysis report, sup-
plemented by a preliminary top-level drawing of
a proposed system. This baseline is considered
obsolete after acceptance of the preproduction
baseline.

The allocated baseline is established upon ap-
proval of the top-level drawing and preliminary
detailed designs, verified by simulation runs, by
the PLAS program manager. This baseline is obso-
leted after acceptance of the preproduction
baseline. '

The developmental baselines are established by
the TD at his/her discretion as needed for coordi-
nating the changing allocated baselines during
development. The developmental baselines repre-
sent incremental software builds needed to devel-
op the prototype system and to verify revisions to
the production baseline or different models of the
production baseline for various customer appli-
cations.

The preproduction baseline is established with
the successful demonstration of a prototype sys-
tem and an absence of any priority 1 (emergency)
error reports or changes outstanding. The PLAS
program manager authorizes development of the
preproduction baseline when given the go-ahead
by Marketing management.

The production baseline is established with the
concurrence of the PLAS APM and PLAS TD that
the design is functionally adequate and that the
production facilities of the production division
can produce the design in an economical way. The
production baseline is a formal agreement be-
tween the PLAS program manager and the pro-
duction division manager.

2.4.2 The Configuration Control Board. The
PLAS technical director is the chairperson of the
PLAS CCB. This review activity is established at
the initiation of preproduction model develop-
ment.

84

IEEE GUIDE TO

2.4.3 The Support Environment. The SCAES
environment consists of a compatible set of engi-
neering and software development tools that can
work with the general engineering data base and
special data bases set up for different projects,
such as PLAS. The configuration of this support
software environment is most carefully controlled
by the company data processing and support
(DP & S) organization. The support software that
interfaces with the data-base management sys-
tem is most rigidly controlled but there is latitude
for engineers to develop special programs re-
stricted to engineering work stations (EWS), that
do not generate data for entry into the dynamic
engineering data bases. Access keys for control-
ling entry to the SCAES_PLAS engineering data
base are assigned to responsible engineers at the
onset of allocated baseline development.

The P-CAMS environment interfaces with a
wide variety of CAM and computer-aided test
(CAT) systems. These interfaces are critical for
the reliable management and administration of
company operations. The company DP & S organ-
ization manages these interfaces. Any changes
must be approved (among other approvals) by
the PLAS APM. This review activity is initiated
with the development of the preproduction base-
line.

Vendor software is used extensively in the
supporting software environments of CAES and
P-CAMS. Vendor software is also used extensively
in the EWS environment supporting SCAES. The
management of the vendor software in the EWS
environment that is not under the control of the
company DP & S organization is initiated by the
PLAS TD after the preproduction baseline is

established.
2.4.4 SCM Resource Requirements. The re-

sources required for providing configuration man-
agement of the PLAS module development and
production are embedded in the requirements for
training, management oversight, computer re-
sources, administrative support from the engi-
neering support group and DP & S maintenance.

(1) Training requirements. Approximately
two days training is needed for a new hire
engineer to become familiar with use of the
data bases and control programs relative
to managing configurations. This time is
allocated as a part of the overall training
program for new hires.

(2) Management oversight. Approximately
two hours a week are spent on CCB reviews
and six hours a week using the PMS control
program to schedule analysis and imple-

SOFTWARE CONFIGURATION MANAGEMENT

mentation of system change requests (SCR).
(3) Computer resources. Storage requirements
for configuration data are a small part of
the engineering and production data bases
for PLAS modules. The requirements for
processor time varies from day to day, but
generally does not exceed three minutes of
CPU time per day for processing each SCR.
(4) Support software maintenance. DP & S is
budgeted three man-years effort per year
for maintaining the software used for PLAS
module configuration management.

2.5 Applicable Policies, Directives, and Pro-
cedures
2.5.1 Existing Policies and Procedures. The
following company policies are used for configu-
ration management on the PLAS subsystem:
(1) Product Line Identification Numbering —
Supplement 2
(2) Corporate Software Protection Policy
(Rev 3)
(3) Quality Control Policy for Engineering
Data Bases
(4) Production Test Standards
(5) Engineering Standards for Detail Design
and Drawings
(6) User’s Manual for SCAES
(7) User’s Manual for EWS
(8) User's Manual for P-CAMS
2.5.2 New Policies and Procedures To Be
Written. The following procedure(s) will be de-
veloped for the PLAS project:
(1) Managing of Third-Party Software: Proprie-
tary Marking
(2) PLAS Project Naming Standards

3. SCM Activities

3.1 Configuration Identification. The identifi-
cation scheme for the PLAS project is developed
by the engineering support group and approved
by the PLAS TD. The numbering and labeling
standards are distributed for project use in the
PLAS Project Naming Standards document.
3.1.1 Naming Conventions. All data in the
SCAES_PLAS engineering data base is arranged
and retrievable under the collective identifier

PLAS-1800000.
All control level items (programmed logic com-

ponents and hardware assemblies) are identified
within a block of numbers beginning with 532000

85

ANSI/IEEE
Std 1042-1987

and ending with 554000. The engineering support
group allocates the numbers for the control level
items.

Programmed-logic components have a version
description document (VDD) associated with their
assigned number. Each assigned number has a
preceeding letter identifying the media in which
the logic is embedded:

ROM =R
EPROM =E
Diskette!® =§
Gate arrays = G
PLA =P
Programmable microcontrollers = M

Hardware drawing numbers are assigned to a
control level drawing. Parts list for the drawing is
made up of part numbers assigned from the
700000 series of numbers.

Reprogrammed logic components keep their
basic 1000 number assigned to them in the general
SCAES engineering data base. Dash numbers,
referencing appropriate VDD, tracks embedded
CI, and associated SCR.

3.1.2 Implementation. Identification is as-
signed to each component and unit defined in the
ton-level drawing. When an engineer defines a
unit, he/she indicates to the program the type of
component he/she is defining and the system
assigns the appropriate number. Programmed
login associated with a defined hardware com-
ponent or unit is linked to that component’s iden-
tifier in a packaging list associated with the
top-level drawing.

Components and units are identified by form,
fit, and function (data flow). The engineer defin-
ing a component or unit is automatically made
owner of that component or unit. Changes in the
form, fit, or function cannot be made without
his/her consent and approval of change. The
CAES design tools automatically flag conflicts and
force resolution before another of the iterative
development baselines can be created.

All system entities associated with the design
(specifications, drawings, detail documentation,
test data, test procedures, etc) are assigned the
appropriate component or unit identifier with
which they are associated.

The identifiers assigned in the SCAES_PLAS
engineering data base are transferred to the
P-CAMS_PLAS production data base at the time

19Used for shipping software that executes out of RAM.
Software media characteristics may vary but the implementa-
tion designator is always S.

ANSI/IEEE
Std 1042-1987

the preproduction baseline definition effort is
initiated.

3.1.3 Ownership Notification Procedures. Fil-
ing of software copyright notices for proprietary
programmed logic developed for the PLAS project
will be performed by Marketing.

Notification to users of the PLAS module copy-
right will be included in the load module of the
software released to the user on the PLAS module
diskette. Visual indication of ownership and copy-
right registration will be displayed at the console
when the system is booted, in accordance with
Revision 3 (current) of the corporate software
protection policy.

All documentation released to customers will

be marked with a proprietary notice, vendor
license number, or both.
3.2 Configuration Control. Authority for ap-
proving changes to baselines varies in accordance
with the baseline being changed and the phase of
the project.

(1) Authority for approving changes to the
Sunctional baseline is vested in the PLAS
program manager. The PLAS program
manager coordinates all changes with the
production department manager and with
the PLAS TD. This baseline is obsoleted
with the initiation of the production base-
line.

(2) Authority for approving changes to the
allocated baseline is vested in the PLAS TD.
The PLAS TD coordinates all changes in
the allocated baseline with the PLAS pro-
gram manager and PLAS APM for produc-
tion. This baseline is shared by SCAES and
P-CAMS during the period after the pre-
production demonstration is accepted and
the production baseline is formally defined.

(3) Authority for approving changes to devel-
opmental baselines is vested in the PLAS
TD. The PLAS TD establishes the develop-
mental baseline criteria, resolves conflicts
in allocation and ownership of components
or units, and sets schedules for iteration of
these baselines.

(4) Authority for approving changes to the pre-
production baseline is vested in the PLAS
TD. The PLAS TD makes changes in alloca-
tion and detail design to fit the production
facilities on the recommendation of the

~ PLAS APM from production division. Con-
flicts are resolved by the PLAS program
manager.

(5) Authority for approving changes to the
PLAS production baseline is vested in the

86

IEEE GUIDE TO

PLAS CCB, chaired by the PLAS TD. The
PLAS APM and PLAS marketing represen-
tative are mermbers of the PLAS CCB.
Technical representation from PLAS engi- -
neering and PLAS production activities are
made when necessary. The PLAS QC repre-
sentative and production test group repre-
sentative are permanent members of the
PLAS CCB.

Technical review of the system change requests
(SCR) is provided by members of the engineering
support group who assemble engineering ana-
lyses as required, and by members of the PLAS
production team who assemble information on
the impact of a proposed SCR as required

3.2.1 Change Processing. Changes to the sys-
tem may originate from the marketing organiza-
tion (in response to customer desires), from the
test group in the production division, or from
within the engineering division. Requests for
changes are submitted by way of electronic mail
using the SCR format provided in the EWS envi-
ronment. Changes originating from outside the
company are entered into the program manage-
ment system (PMS) by marketing representatives.
Internally originated changes are submitted by
way of local engineering work stations.

The PMS control system routes SCR to the
originator’s supervisor for verification when ap-
propriate, and then queues it for review and dis-
position by the appropriate change authority for
the affected baseline. When change requests re-
quire further analysis, the change authority routes
the SCR (electronically) to the appropriate sup-
port group for gathering information. When the
support group has assembled a complete analysis
package, it is again queued to the appropriate
review authority or CCB for disposition. This
authority then disposes of the request by indicat-
ing approval (providing a schedule and effectivity
date of change), deferring it for further analysis
or allocation of resources, or disapproving it with
reason(s) for disapproval noted. '

Approved changes are electronically routed to
the PLAS engineering group for implementation.

The tracking of changes is performed in the
PMS control system, based on the SCR approval
flow status and system change authorizations
(SCA), or by extractions from the PLAS data
bases in SCAES or P-CAMS to which it has access.

3.2.2 Production Baseline Changes. Changes
to the production baseline are made only after
changes have been verified in a test environment
on a test model of the PLAS module, using simu-
lated test drivers or mock-ups to test the system.

SOFTWARE CONFIGURATION MANAGEMENT

ANSI/IEEE
Std 1042-1987

Table 1
Processing Approved Changes
Baseline Entity Implemented By Verified By Scheduled By
Functional Document Engineering Eng check Various
Allocated Document Engineering Eng check Various
Developmental Document Engineering Eng check TD
Design data Engineering Simulation TD
Drawings Engineering Eng check TD
Preproduction Document Eng or prod Eng check TD
Design data Engineering Simulation D
Drawings Engineering Eng check ™D
Production Document Production Test Gp APM
Design data Engineering Test Gp APM
Drawings Engineering Eng check APM

The production test group verifies the éhanges as
operational and authorizes release of the change
data from the SCAES_PLAS engineering data
base to the P-CAMS_PLAS production data base.
The transfer of data is performed by the engineer-
ing support group.

3.2.3 PLAS Module Release. Each PLAS mod-
ule version is released for use in a Quick Stretch
System or to individual customers for incorpora-
tion into their systems, along with a technical
data kit containing the top-level drawings of the
system, associated parts lists, and the VDD for
control level programmed logic components.

Since PLAS software, released on diskettes,
provides the most flexible means of adaptation,
provisions exist to release the software VDD
independently of the rest of the data packages.
This way, revisions to the PLAS functions can be
made to PLAS modules in systems released pre-

viously. This requires that the configuration of all .

released modules be maintained in an archive,
along with an extraction from the P-CAMS con-
figuration environment containing all support
software used in the production and test of that
delivery.

3.3 Configuration Status Accounting. The fol-

lowing PLAS configuration status reports are
regularly available:

(1) PLAS Module Development Status. This is

a listing of all configuration items, control

level items, and units that are being de-

signed or modified by engineering. The

report identifies each unit/control-level-

item/ClI, status of technical work, outstand-

ing SCR, SCA ready for release, and units or

changes released since the last reporting

87

period. This report is generated weekly for
the PLAS management team.

(2) PLAS Module Production Status. This is a
listing of all configuration items, control level
items and units that are in production. The report
identifies all units in production during the
period, SCR/SCA incorporated, scheduled release
date (by contract number), and schedule var-
iance. The report is generated weekly for the
PLAS management team.

(3) SCR Status Summary. This report lists
all outstanding SCR that have not been re-
solved or incorporated into delivered
modules\The report lists, for each SCR:
CCB action date and disposition; group or
department presently responsible for ac-
tion; status of activity; and schedule for
completion. The report is prepared weekly
but is available any time the PLAS man-
agement team requests it.

Special Queries. The report generator of

the PMS program provides a query capabil-

ity that allows anyone to extract the status

of:

(a) Any one SCR

(b) All open SCR

(c) All SCR in engineering

(d) All SCR in production

(e) PLAS modules in production with asso-
ciated SCR number

The general query capability for the data-man-
agement systems allow formulation of special
queries in the PMS control program for interro-
gating the SCAES_PLAS engineering data base
and the P-CAMS_PLAS production data base for
information relative to any changes that are in
process or that have been released to customers.

(4)

ANSI/IEEE
Std 1042-1987

3.4 Audits and Reviews
3.4.1 Audits. The PLAS module configuration
is audited each time a baseline is established.
(1) Functional Baseline. The PLAS program
manager is responsible for ascertaining if
the reports and design descriptions are
complete enough to present to manage-
ment.
(2) Allocated Baselines. The PLAS technical
director is responsible for reviewing the
designs to ascertain if the designs are com-
plete enough to present to the PLAS pro-
gram manager. The engineering support
group assists the TD in this review.
(3) Developmental Baselines. The engineering
support group uses the PMS control pro-
gram to
(a) Generate set/use type analyses of the
detailed designs to uncover outstand-
ing discrepancies and

(b) Establish design activity cut-offs for a
specific iteration.

This group also supports the changes by modi-
fying access codes to the new baseline to restrict
entry of changes. The TD reviews the summaries
of design activities to estimate technical progress
in the design.

(4) Preproduction Baseline. Prior to establish-
ing the preproduction baseline, the config-
uration is again audited by the engineering
support group to ascertain that the design
of the demonstration meets all functional
requirements established by the functional
baseline and that all entities generated in
the developmental baselines are present or
accounted for in the demonstration. The
QC representative assists in the review of
entities for this baseline.

(5) Production Baseline. The QC representa-
tive reviews the entities in the P-CAMS_
PLAS production data base to ascertain
that all functional capabilities demon-
strated for the preproduction model and
all changes stemming from the review of
the demonstration are present in the data
base. The production test group reviews
the entities to verify that all changes and
modifications to the preproduction demon-
stration have been made to the production
data base. The engineering support group
performs a comparison of the engineering
data base with the production data base to
verify that the transfer of data is complete.
The PLAS TD is responsible for preparing
this audit.

88

IEEE GUIDE TO

(6) Shipping Review. The PLAS module and
its associated documentation package is
audited prior to shipment to a customer,
either as a part of the Quick Stretch System
or as an independent line item to a cus-
tomer.

The functional audit is performed by the QC
representative who reviews the PLAS module
against the appropriate extracted data from the
P-CAM_PLAS library for that item. A representa-
tive from the PLAS engineering support group
reviews the product to ascertain that the physical
configuration of the module and its associated
documentation represents

(a) The specified configuration ordered
by the customer
(b) The corresponding configuration in
the P-CAMS_PLAS data base and
(¢) Accurately reflects any changes that
have been made to the data base by
the PLAS CCB
Discrepancies or problems uncovered in reviews
and audits are reported to the PLAS program
manager for resolution.

o

4. Tools, Techniques, and Methodologies

The basic configuration management tool used
for PLAS module is the change management pro-
gram (CMP), which is a part of the PMS. This pro-
gram supports change management by

(1) Providing the means to enter system/soft-

ware change requests (SCR)

(2) Forcing reviews by appropriate supervision

by way of the electronic mail system

(3) Deriving analytical data from each SCR

(4) Providing for supervision or CCB review

and approval, as appropriate

(5) Directing authorized changes to engineer-

ing or production supervision
(6) Providing for authorizing of changes to the
P-CAMS_PLAS data base

(7) Providing for transfering data from the
PLAS engineering data base to the produc-
tion data base

The SCM tool for establishing the identification
scheme for PLAS data bases is resident in the
SCAES system. This information is transferred to
the production data base during the preproduc-
tion phase. It is verified when the production
baseline is established.

SOFTWARE CONFIGURATION MANAGEMENT

Order information from marketing is entered
into the PLAS production schedule by way of the
program management system. The detailed config-
uration is formatted by the configuration manage-

ment program in CMS, passed on to the P-CAMS_

PLAS data base upon approval of the PLAS pro-
gram manager, and reviewed for schedule and
resource consumption by the PLAS APM. Upon
his/her approval, resources are committed to the
production configuration. Extractions of this con-
figuration are released for inspection and audit-
ing at time of shipment.

5. Supplier Control

Subcontracted PLAS support software is placed
under configuration management after inspec-
tion and acceptance by the QC representative.

6. Records Collection and Retention

6.1 Backup Data Base. The engineering data
base from SCAES_PLAS is backed-up on a weekly

89

ANSI/IEEE
Std 1042-1987

basis and stored in Beskin’s storage building dur-
ing the engineering phase (up to the time the
production baseline is established). Following
establishment of the production baseline, the
engineering data base is backed-up on a monthly
basis.

The production data base from P-CAMS_PLAS
is backed-up on a weekly basis.

6.2 Archive Data Base. Archive data is main-
tained for purposes of warranty protection, pro-
prietary data production, and liability insurance.
The following data are maintained in on-line opti-
cal storage media:
(1) Copies of each baseline data base extracted
at the time the baseline is established
(2) Copies of order and configuration data
passed from PMS to the production data
base for each order and
(3) Copies of each configuration of the data
base used for production of customer order
(4) Copies of reviews and audits performed on
each production item

ANSI/IEEE
Std 1042-1987

IEEE GUIDE TO

Appendix E

References Bibliography

Preface

This Appendix contains selected bibliography pertaining to the subject of software configuration man-
agement. The list of publications contains both government and private sector references so users may
find material applicable to their situation. Because of the scarcity of literature pertaining to configura-
tion management, and especially to software configuration management, the fullest possible list of refer-

ences will be useful to the practitioner.

Most of the references contain some information regarding software configuration management. The
topic of software configuration management plans is addressed in a subset of these references.

References Bibliography

El. General Bibliography

[1] BERSOFF, E., HENDERSON, V., and SIEGEL,
S. Software Configuration Management, An In-
vestment in Product Integrity. Englewood, N.J.:
Prentice-Hall, 1980.

[2] BERSOFF, E., HENDERSON, V., and SIEGEL,
S. Software Configuration Management: A Tutor-
tal. Computer, IEEE Computer Society Magazine,
vol 12 no 1, Jan 1979.

[3] Configuration Management Procedures
(CMP), Global Engineering Documents, 1984.

[4) IEEE Transactions on Software Engineering,
IEEE Computer Society, vol SE-10, nr 1, Jan 1984,

(5] BUCKLE, J. K. Software Configuration Man-
agement, New York: The Macmillan Press Ltd,
1982,

[6] DANIELS, M. A. Principles of Configuration
Management, Advanced Applications Consultants,
Inc, 1987.

[7] BABICH, W. A. Software Configuration Man-
agement: Coordination for Team Productivity,
New York: Addison-Wesley, 1986.

90

E2. Military Standards for SCM 20

[8] MIL-STD-481A Configuration Control — Engi-
neering Changes, Deviations, and Waivers (Short
Form).

[9] MIL-STD-482A Configuration Status Ac-
counting Data Elements and Related Features.

[10] MIL-STD-483A Configuration Management
Practices for Systems Equipment, Munitions, and
Computer Programs.

[11] MIL-STD-490A Specification Practices.
[12] MIL-STD-499A Engineering Management.
[13] MIL-STD-881A Work Breakdown Structure.

(14] MIL-STD-962A Outline of Forms and In-
structions for the Preparation of Military Stand-
ards and Military Documents.

(156] MIL-STD-1456 Contractor Configuration
Management Plan.

20Military Standards may be ordered from the Command-
ing Officer (Code 301) Naval Publications and Forms Center,
5801 Tabor Avenue, Philadelphia, PA 19120.

SOFTWARE CONFIGURATION MANAGEMENT

(16] MIL-STD-1521B Technical Reviews and
Audits for Systems, Equipments, and Computer
Programs.

E3. Department of Defense Standards

[17] DoD-STD-480 Configuration Control-Engi-
neering Changes, Deviations and Waivers.

[18] DoD-STD-1467 Software Support Environ-
ment.

[19] DoD-STD-2167 Defense System Software
Development.

[20] DoD-STD-2168 Software Quality Evaluation.

[21] DoD-STD-7935 Automated Data Systems
Documentation.

E4. Military Specification

[22] MIL-D-1000B Drawings, Engineering, and
Associated List.

[23] MIL-S-83490 Specifications, Types and
Forms.

E5. Department of Defense Directives

{24] DoDD 4120.21 Specifications and Standards
Applications.

[{25] DoDD 5000.1 Major Systems Applications.

[26]) DoDD 5000.19L Acquisition Management
Systems and Data Requirements Control List.

[27] DoDD 5000.39 Acquisition and Management
of Integrated Logistic Support for Systems and
Equipment.

(28] DoDD 5010.19 Configuration Management.

[29] DoDD 7920.1 Life Cycle Management of
Automated Information Systems (AIS).

91

ANSI/IEEE
Std 1042-1987

E6. Department of Defense Instructions

[30] DoDI 5000.2 Major Systems Acquisition
Process.

[31] DoDI 5000.38 Production Readiness Re-
views.

(32] DoDI 7045.7 The Planning, Programming
and Budgeting System.

[33] DoDI 7935.1 DoD Automated Data Systems
Documentation Standards.

E7. US Government Publications?!

[34] DoD Configuration Management Standardi-
zation Program, (CMAM) Plan.

[35] DoD Trusted Computer System Evaluation
Criteria, CSC-STD-001-83, 15 Aug 1983.

[36] NASA Handbook 8040.2. System Engineer-
ing Management Guide, Defense System Manage-
ment College, 1983. Configuration Management,
Management Instruction, GMIS8040.1A. NASA
Goddard Space Flight Center.

[37] Federal Information Processing Standards
(FIPS) Publication 106. Guideline on Software
Maintenance, National Bureau of Standards. Insti-
tute for Computer Sciences and Technology, 1984,

(38] MARTIN, R. and OSBORNE, W. Special Pub-
lication 500-106, Guidance on Software Mainte-
nance. National Bureau of Standards, Institute
for Computer Sciences and Technology, 1983.

[39] McCALL, JIM, HERNDON, MARY, and OS-
BORNE, WILMA. Special Publication 500-129,
Software Maintenance Management, National
Bureau of Standards, Institute for Computer
Sciences and Technology, 1985.

21Copies of these publications can be obtained from the
Superintendent of Documents, US Governmental Printing
Office, Washington, DC 20402.

ANSI/IEEE’
Std 1042-1987

ES8. Electronic Industries Association
Publications 22

[40] EIA CMB 4-1a (Sept 1984), Configuration
Management Definitions for Digital Computer
Programs.

[41] EIA CMB 4-2 (June 1981), Configuration
Identification for Digital Computer Programs.

[42] EIA CMB 4-3 (Feb 1981), Computer Software
Libraries.

[43] EIA CMB 4-4 (May 1982), Configuration
Change Control for Digital Computer Programs.

[44] EIA CMB 5 (April 1973), Subcontractor/
Vendor Configuration Management and Techni-
cal Data Requirements.

22p1A publications can be obtained from the Standards
Sales Department, Electronics Industries Association, 2001
Eye Street, NW, Washington DC 20006.

92

E9. American Defense Preparedness
Association Publications?3

[45] Proceedings of the 24th Annual Meeting,
Technical Documentation Division, May 1982,
Denver, Colorado.

[46] Proceedings of the 25th Annual Meeting,
Technical Documentation Division, May 1983, Ft.
Monroe, Virginia.

[47] Proceedings of the 26th Annual Meeting,
Technical Documentation Division, May 1984, San
Antonio, Texas.

23 Copies of these publications can be obtained from the
American Defense Preparedness Association, 1700 N. Monroe
St, Suite 900, Arlington, VA 22209.

Recognized as an ANSI'IEEE

American National Standard (ANSI) Std 1058.1-1987
(Reaffirmed 1993)

An American National Standard

IEEE Standard for
Software Project Management Plans

Sponsor

The Software Engineering Technical Committee
of the
Computer Society of the IEEE

Approved December 10, 1987
Reaffirmed December 2, 1993

IEEE Standards Board

Approved October 6, 1988
American National Standards Institute

© Copyright 1988 by

The Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017, USA

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

Recognized as an ANSI'IEEE

American National Standard (ANSI) Std 1058.1-1987
(Reaffirmed 1993)

An American National Standard

IEEE Standard for
Software Project Management Plans

Sponsor

The Software Engineering Technical Committee
of the
Computer Society of the IEEE

Approved December 10, 1987
Reaffirmed December 2, 1993

IEEE Standards Board

Approved October 6, 1988
American National Standards Institute

© Copyright 1988 by

The Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017, USA

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

IEEE Standards documents are developed within the Technical
Committees of the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Board. Members of the committees
serve voluntarily and without compensation. They are not necessar-
ily members of the Institute. The standards developed within IEEE
represent a consensus of the broad expertise on the subject within the
Institute as well as those activities outside of IEEE which have
expressed an interest in participating in the development of the
standard.

Use of an IEEE Standard is wholly voluntary. The existence of an
IEEE Standard does not imply that there are no other ways to produce,
test, measure, purchase, market, or provide other goods and services
related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to
change brought about through developments in the state of the art and
comments received from users of the standard. Every IEEE Standard
is subjected to review at least every five years for revision or reaffir-
mation. When a document is more than five years old, and has not
been reaffirmed, it is reasonable to conclude that its contents, al-
though still of some value, do not wholly reflect the present state of the
art. Users are cautioned to check to determine that they have the latest
edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any
interested party, regardless of membership affiliation with IEEE.
Suggestions for changes in documents should be in the form of a pro-
posed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the
meaning of portions of standards as they relate to specific applica-
tions. When the need for interpretations is brought to the attention of
IEEE, the Institute will initiate action to prepare appropriate re-
sponses. Since IEEE Standards represent a consensus of all con-
cerned interests, it is important to ensure that any interpretation has
also received the concurrence of a balance of interests. For this reason
IEEE and the members of its technical committees are not able to
provide an instant response to interpretation requests except in those
cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be
addressed to:

Secretary, IEEE Standards Board
345 East 47th Street

New York, NY 10017

USA

IEEE Standards documents are adopted by the Institute of Electrical
and Electronics Engineers without regard to whether their adoption
may involve patents on articles, materials, or processes. Such adop-
tion does not assume any liability to any patent owner, nor does it
assume any obligation whatever to parties adopting the standards
documents.

Foreword

(This Foreword is not a part of IEEE Std 1058.1-1987, IEEE Standard for Software Project Management Plans.)

Purpose

This standard specifies the format and contents of software project management plans. It does
not specify the exact techniques to be used in developing project plans, nor does it provide examples
of project management plans. Each organization that uses this standard should develop a set of
practices and procedures to provide detailed guidance for preparing and updating software project
management plans based on this standard. These detailed practices and procedures should take
into account the environmental, organizational, and political factors that influence application of
the standard. .

Not all software projects are concerned with development of source code for a new software
product. Some software projects consist of a feasibility study and definition of product
requirements. Other projects terminate upon completion of product design, and some projects are
concerned with major modifications to existing software products. This standard is applicable to
all types of software projects; applicability is not limited to projects that develop operational
versions of new products. Application of this standard is not limited by project size. Small projects
may require less formality in planning than large projects, but all components of this standard
should be addressed by every software project.

Software projects are sometimes component parts of larger projects. In these cases, the software
project management plan may be a separate component of a larger plan or it may be merged into
the system level project management plan.

Overview
This standard contains three sections. Section 1 defines the scope of the standard and provides
references to other IEEE standards that should be followed when applying this standard. Section 2
provides definitions of terms that are used throughout the standard. Section 3 contains an overview
and a detailed specification of the standard, including required components that must be included,
and optional components that may be included in project plans based on this standard. The
sequence of project plan elements presented in Section 3 does not imply that project plans should be

developed in the order of presentation. In most instances, project plans based on this standard will
be developed by repeated iteration and refinement of the various elements in the plan.

Audience

This standard is intended for use by software project managers and other personnel who prepare
and update project plans and monitor adherence to those plans.

Evohition of Plans

Developing the initial version of the software project management plan should be one of the first
activities to be completed on a software project. As the project evolves, the nature of the work to be
done and the decomposition of work will be better understood. The project management plan must
be updated periodically to reflect the evolving situation. Thus, each version of the plan should be
placed under change control, and each version should contain a schedule for subsequent updates to
the plan.

Terminology

This standard follows the IEEE Guide to Standards Development. In particular, the words shall,
must, and the imperative form identify mandatory material within the standard. The words
should, might, and may identify optional material.

History
The project authorization request for development of this standard was approved by the IEEE
Standards Board on December 13, 1984. Modification of the authorization request was approved in
September, 1986. Ten meetings were held within the United States and internationally between

September, 1984, and September, 1986. These meetings produced the draft submitted for balloting in
December, 1986.

Contributors

This standard was developed by the Software Project Management Plans Working Group of the
Software Engineering Standards Subcommittee of the Computer Society of the IEEE. The following
individuals contributed to the development of this standard:

Richard H. Thayer, Chairman Richard E. Fairley, Co-Chairman
Gary L. Whitten, Secretary

Steering Committee
Ronald L. Atchley * Hosein Fallah Robert F. Metz
H. Jack Barnard Richard Johansson Patrick A. Rich
Frangois Coallier , Kari Kansala Hans Schaefer
Working Group
Bakul Banerju Galwin Ferwin Robert Poston
George J. Bozoki Cheng Hu David Schultz
V. Churchill John A. King Robert Shillato
Peter Coad Thomas M. Kurihara Daniel Solis
P. I. Davis F. C. Lim George Spidel
Raymond Day Richard W. MacDonald Richard Van Tilburg
T. Debling Roger Martin Delores Wallace
J. Deleo Randy Paddock David Weiss
Ake Dovstram Francoise Perrodeau Lauri Werth
R. Ferreol Janusz Zalweski
Supporting Organizations

The following organizations provided support for development of this standard:

AT&T Bell Laboratories National Bureau of Standards
AT&T Information Systems NCR Corporation

Bell Canada Programming Environments, Inc.
California State University, Sacramento Standard Telecommunications Labs
Center for Industrial Research, Norway System Development Corporation
Compagnie D'Informatique Militaire, France Technical Research Centre of Finland
Computer Sciences Corporation Teleindustrier AB, Sweden
Goodyear Atomic Corporation U.S. Department of Commerce
Hughes Aircraft Company U.S. Department of Transportation
Institute of Atomic Energy, Poland U.S. Naval Research Laboratories
Intercon Systems Corporation University of Nevada, Las Vegas
Lockheed Missiles & Space Co. University of Texas, Austin

Mirror Systems, Inc. Wang Institute of Graduate Studies

The Software Engineering Standards Subcommittee comprised the balloting committee that
approved this document for submission to the IEEE Standards Board, and at the time of balloting
was composed of the following persons:

A. F. Ackerman
Richard L. Aurbach
Motoei Azuma

H. J. Barnard

J. Behm

H. Ronald Berlack
Michael A. Blackledge
Giles Bracon

J. Joseph Brandt
Kathleen L. Briggs
A. Winsor Brown
F. Buckley

L. J. Call

H. Carl

John W, Center
John Chihorek

T. S. Chow

J. K. Chung

Won L. Chung
Antonio M. Cicu
Judith Clapp

Peter Coad, Jr.
Frangois Coallier
Christopher M. Cooke
Richard Cotter

T. Daughtrey
Peter Denny

F. M. Discenzo
David A. Dobraiz
David Doty

Einar Dragstedt
William Dupres
Albert D. DuRee
Mary Eads

L. E. Egan

W. D. Ehrenberger
Steven R. Eisen
Walter Ellis
Caroline Evans
Richard E. Fairley
David W. Favor
Joan Feld

John Fendrich
Glenn S. Fields
Violet Foldes

T. Foote-Lennox
Joel Forman
Julian Forster
Richard C. Fries
F. K. Gardner

L. B. Gardner

David Gilperin
Shirley Gloss-Soler
J. G. Glynn

Andrej Grebenc
Victor Guarnera
Lawrence M. Gunther
David A. Gustafson
J. A. Haksi

Jeffrey Hickey
John W. Horch
Cheng Hu

Laurel V. Kaleda
Harry Kalmbach
Daniel E. Klingler
Shaye Koenig
Joseph A. Krupinski
Joan Kundig

T. Kurihara

Lak Ming Lam
John B. Lane
Robert A. C. Lane
G. Larsen

F. C. Lim

Bertil Lindberg

B. Livson

Austin Maher
Paulo Cesar Marcondes
Nicholas Marselos
Roger Martin

John McArdle

J. A. McCall

R. McDowell
Manijeh Moghis
Charles S. Mooney
Gary D. Moorhead -
D. D. Morton

G. T. Morun
Hiranobu Nagano
Geraldine Neidhart
Dennis Nickle
Wilma M. Osborne
Michael T. Perkins
W. E. Perry

John Petraglia
Donald J. Pfeiffer
1. C. Pyle

Thomas S. Radi
Salim Ramji
Jean-Claude Rault
Meir Razy

Donald Reifer

Patrick A. Rich

R. San Roman

John C. Rowe
Margaret Rumley
Julio G. Sanz

Steven Schach

Wolf A. Schnoege
Norman Schneidewind
David Schultz
Gregory D. Schumacker
Leonard W. Seagren
Gerard P. Shabe
Robert Shillato
David Siefert
William J. Singer
Jacob Slonim

H. M. Sneed

V. Srinivas

G. Wayne Staley
Franklin M. Sterling
Mary Jane Stoughton
W. G. Sutcliffe
Michael H. Taint
Richard H. Thayer
Paul U. Thompson
Terrence L. Tillmans
Valentin Tirman
G. R. Trebble

C. L. Troyanowski
William S. Turner, III
Robert Urling

David Usechak
Thomas E. Vollman
Dolores R. Wallace
John P. Walter

Dale R. Webdale
Charles J. Wertz
Peter J. Weyman
Allan Whitaker
Gary L. Whitten
Andrea S. Williams
Patrick J. Wilson
W. Martin Wong
Dennis L. Wood
Paul R. Work
Nancy Yavne
Natalie C. Yopronka
Leon Young

Donald Zelenu

Hugh Zettel

Peter Zoll

When the IEEE Standards Board approved this standard on December 10, 1987, it had the

following membership:

Donald C. Fleckenstein, Chairman

James H. Beall
Dennis Bodson
Marshall L. Cain
James M. Daly
Stephen R. Dillon
Eugene P. Fogarty
Jay Forster

Kenneth D. Hendrix
Irvin N. Howell

*Member emeritus

Andrew G. Salem, Secretary

Leslie R. Kerr

Jack Kinn

Irving Kolodny
Joseph L. Koepfinger*
Edward Lohse

John May

Lawrence V. McCall
L. Bruce McClung

Marco W. Migliaro, Vice Chairman

Donald T. Michael*

L. John Rankine

John P. Riganati

Gary S. Robinson
Frank L. Rose

Robert E. Rountree
William R. Tackaberry
William B. Wilkens
Helen M. Wood

SECTION PAGE
1. Scope and Referencesooiuiiiiii ittt it it e e 9
0 ¥« Y- A 9

B S0 (- =) o (o1 S 9

b0 D 1T 5§ ¢ 175 U o - 9
3. Software Project Management Plans........ ..ottt riiereiaaraees 10
3.1 Introduction (Section 1 of the SPMP) ... i i et ieee e 12
3.1.1 Project Overview (1.1 of the SPMP).......coiiiiiiiiiiiiiii i eeaeans 12

3.1.2 Project Deliverables (1.2 of the SPMP)ottt aen 12

3.1.3 Evolution of the SPMP (1.3 of the SPMP) ...ttt ciiee e 12

3.1.4 Reference Materials (1.4 of the SPMP)........coiiiiiiiiiiii ittt eeeeeens 12

3.1.5 Definitions and Acronyms (1.5 of the SPMP)............c.ciiiiiiiiiiiiiinenen, 12

3.2 Project Organization (Section 2 of the SPMP)....... ... 12
3.2.1 Process Model (2.1 of the SPMP) ...ttt et 12

3.2 .2 Organizational Structure (2.2 of the SPMP)...... ... 13

3.2.3 Organizational Boundaries and Interfaces (2.3 of the SPMP)..................... 13

3.2.4 Project Responsibilities (2.4 of the SPMP) ...t 13

3.3 Managerial Process (Section 3 of the SPMP)oiiiiiiiiiiiii i 13
3.3.1 Management Objectives and Priorities (3.1 of the SPMP).......................... 13

3.3.2. Assumptions, Dependencies, and Constraints (3.2 of the SPMP).................. 13

3.3.3 Risk Management (3.3 of the SPMP)...... ...t ieee e, 13

3.3.4 Monitoring and Controlling Mechanisms (3.4 of the SPMP) 13

3.3.5 Staffing Plan (3.5 of the SPMP) ..ottt e ciiiiiieie s eenenaans 13

3.4 Technical Process (Section 4 of the SPMP)oiiiiriiiiiiiii it e, 13
3.4.1 Methods, Tools, and Techniques (4.1 of the SPMP).........cccoiiiiiiiiiiiiiin... 13

3.4.2 Software Documentation (4.2 of the SPMP)..........ccoiiiiiiiiiiiiiiiiiiiieen, 14

3.4.3 Project Support Functions (4.3 of the SPMP)...... ..ot 14

3.5 Work Packages, Schedule, and Budget (Section 5 of the SPMP)cccccevvvvinnn.. 14
3.5.1 Work Packages (5.1 of the SPMP)........ e e ettt 14

3.5.2 Dependencies (5.2 of the SPMP).........oiiiiiiiii e 14

3.5.3 Resource Requirements (5.3 of the SPMP)...............oiiiiiiiiiiiiiiii, 14

3.5.4 Budget and Resource Allocation (5.4 of the SPMP), 14

3.5.5 Schedule (5.5 of the SPMP).......iiiiiiiiiiit it eeeaaes 14

3.6 Additional Compoments.oivetiiiiiriiiiiii ettt e e 14
B35 0 D 6+ V' -3 PP 15

3.6.2 Appendices........ooiiiiiiiiiiiii ettt rree e aaaa, 15

Table1 Software Project Management Plan Format..................ooiiiiiiiiiiiiii ..., 1

Contents

IEEE Standard for
Software Project Management Plans

1 Scope and References

1.1 Scope. This standard prescribes the format
and content of software project management
plans. A software project management plan is
the controlling document for managing a
software project; it defines the technical and
managerial processes necessary to satisfy the
project requirements.

This standard may be applied to all types of
software projects. Use of this standard is not
restricted by the size, complexity, or criticality
of the software product. This standard is
applicable to all forms of product delivery
media, including firmware, embedded sys-
tems code, programmable logic arrays, and
software-in-silicon. This standard can be
applied to any and all segments of a software
product lifecycle. \

This standard identifies the minimal set of
elements that shall appear in all software
project management plans. In order to con-
form to this standard, software project man-
agement plans must adhere to the format and
content for project plans specified in -the
standard. However, users of this standard
may incorporate other elements by appending
additional sections or subsections to their pro-
ject management plans. In any case, the
numbering scheme of the required sections
and subsections must adhere to the format
specified in this standard. Various sections
and subsections of a software project man-
agement plan may be included in the plan by
direct incorporation or by reference to other
plans and documents.

This standard for software project man-
agement plans incorporates and subsumes the
software development plans described in
ANSIIEEE Std 729-1983 [1)' and ANSVIEEE
Std 730-1984 [2].

1The numbers in brackets correspond to those of the
references in 1.2.

1.2 References. The standards listed here
should be consulted when applying this
standard. The latest revisions shall apply.

[1] ANSIIEEE Std 729-1983, IEEE Standard
Glossary of Software Engineering Termi-
nology.?2

[2] ANSVIEEE Std 730-1984, IEEE Standard for
Software Quality Assurance Plans.

[3] ANSIIEEE Std 828-1983, IEEE Standard for
Software Configuration Management Plans.

[4] ANSVIEEE Std 829-1983, IEEE Standard for
Software Test Documentation.

[5] ANSI/IEEE Std 983-1986, IEEE Guide for
Software Quality Assurance Planning.

[6] ANSI/IEEE Std 1012-1986, IEEE Standard
for Software Verification and Validation
Plans.

2. Definitions

The definitions listed here establish mean-
ings within the context of this standard. Defi-
nitions of other terms that may be appropriate
within the context of this standard can be
found in ANSVIEEE Std 729-1983 [11.

—/

activity. A major unit of work to be completed
in achieving the objectives of a software pro-
ject. An activity has precise starting and
ending dates, incorporates a set of tasks to be
completed, consumes resources, and results
in work products. An- activity may contain
other activities in a hierarchical manner.

2ANSIVIEEE publications are available from the Sales
Department, American National Standards Institute, 1430
Broadway, New York, NY 10018; or from the IEEE Service
Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ
08855-1331.

IEEE
Std 1058.1-1987

¢ baseline. A work product that has been

formally reviewed and agreed upon, and that
can be changed only through formal change
control procedures. A baseline work product
may form the basis for further work
activity(s).

customer. The individual or organization
that specifies and accepts the project deliver-
ables. The customer may be internal or exter-
nal to the parent organization of the project,
and may or may not be the end user of the
software product. A financial transaction
between customer and developer is not neces-
sarily implied.

project agreement. A document or set of doc-
uments agreed to by the designated authority
for the project and the customer. Documents in
a project agreement may include some or all
of the following: a contract, a statement of
work, system engineering specifications,
user requirement specifications, functional
specifications, the software project manage-
ment plan, a business plan, or a project
charter. ’ '

< project deliverables. The work product(s) to be
delivered to the customer. The quantities,
delivery dates, and delivery locations are
specified in the project agreement.

project function. An activity that spans
the entire duration of a software project.
Examples of project functions include project
management, configuration management,
quality assurance, and verification and
validation. '

review. A meeting at which a work product or
a set of work products is presented to project
personnel, managers, users, customers, or
other interested parties for comment or
approval.

software project. The set of all project
functions, activities, and tasks, both technical
and managerial, required to satisfy the terms
and conditions of the project agreement. A
software project may be self-contained or may
be part of a larger project. A software project
may span only a portion of the software
product lifecycle.

IEEE STANDARD FOR SOFTWARE

software project management. The process of y(

planning, organizing, staffing, monitoring,
controlling, and leading a software project.

software project management plan. The
controlling document for managing a soft-
ware project. A software project management
plan defines the technical and managerial
project functions, activities, and tasks neces-
sary to satisfy the requirements of a software
project, as defined in the project agreement.

SPMP. Software project management plan.

task. The smallest unit of work subject to
management accountability. A task is a well-
defined work assignment for one or more
project members. The specification of work to
be accomplished in completing a task is
documented in a work package. Related tasks
are usually grouped to form activities.

work kpackage. A specification for the work to)k

be accomplished in completing an activity or
task. A work package defines the work prod-
uct(s), the staffing requirements, the expected
duration, the resources to be used, the accep-
tance criteria for the work products, the name
of the responsible individual, and any special
considerations for the work.

work product. Any tangible item that results,
from a project function, activity, or task. Ex-
amples of work products include customer re-
quirements, project plan, functional specifi-
cations, design documents, source and object
code, users’ manuals, installation instruc-
tions, test plans, maintenance procedures,
meeting minutes, schedules, budgets, and
problem reports. Some subset of the work
products will form the set of project deliver-
ables.

——

3. Software Project Management Plans

The individual or organization responsible
for a software project shall also be responsible
for the software project management plan
(hereafter referred to as the SPMP). This sec-
tion of the standard describes each of the es-
sential elements of a SPMP. These elements
shall be ordered in the sequence of sections
and subsections prescribed in Table 1.

10

PROJECT MANAGEMENT PLANS

Table1

Software Project Management Plan Format

Title Page
Revision Chart
Preface

Table of Contents
List of Figures
List of Tables

Y

Introduction

1.1 Project Overview

1.2 Project Deliverables

1.3 Evolution of the SPMP

1.4 Reference Materials

1.5 Definitions and Acronyms

Project Organization

2.1 Process Model

2.2 Organizational Structure :
2.3 Organizational Boundaries and Interfaces-
2.4 Project Responsibilities

Managerial Process
3.1 Management Objectives and Priorities

3.2 Assumptions, Dependencies, and Constramts \

3.3 Risk Management
3.4 Monitoring and Contro]lmg Mechanisms
3.5 Staffing Plan

Technical Process

4,1 Methods, Tools, and Techniques
4.2 Software Documentation

4.3 Project Support Functions

Work Packages, Schedule, and Budget
5.1 Work Packages

5.2 Dependencies

5.3 Resource Requirements

5.4 Budget and Resource Allocation

\ . 5.5 Schedule

Additional Components

Index

Appendices

1

&

IEEE
Std 1058.1-1987

IEEE
Std 1058.1-1987

The ordering of SPMP elements presented
in Table 1 is not meant to imply that the sec-
tions and subsections must be developed in
that order. The order of presentation is in-
tended for ease of use, not as a guide to the
order of preparing the various elements of a
SPMP. The sections and subsections of a
SPMP may be included by direct incorpora-
tion or by reference to other plans and docu-
ments.

Detailed descriptions of each section and
subsection in a SPMP are presented in sec-
tions 3.1 through 3.5 of this standard. Certain
additional components may be included in a
SPMP. Additional components are described
in section 3.6.

Each version of a SPMP based on this stan-
dard shall contain a title and a revision no-
tice sufficient to uniquely identify the docu-
ment. Revision information may include the
project name, version number of the plan, date
of release, approval signature(s), a list of
pages that have been changed in the current
version of the plan, and a list of version num-
bers and dates of release of all previous ver-
sions of the plan.

The preface of a SPMP based on this stan-
dard shall describe the purpose, indicate the
scope of activities, and identify the intended
audience for the SPMP. A Table of Contents,
and lists of the Figures and Tables in the
SPMP shall be included in every SPMP, as
indicated in Table 1.

3.1 Introduction (Section 1 of the SPMP). This
section of the SPMP shall provide an overview
of the project and the product, a list of project
deliverables, the plan for development and
evolution of the SPMP, reference materials
for the SPMP, and definitions and acronyms
used within the SPMP.

3.1.1 Project Overview (1.1 of the SPMP).
This subsection of the SPMP shall provide a
concise summary of the project objectives, the
product to be delivered, major work activities,
major work products, major milestones,
required resources, and master schedule and
budget. The project overview shall also de-
scribe the relationship of this project to other
projects, as appropriate. This overview shall
not be construed as an official statement of
product requirements. Reference to the offi-
cial statement of product requirements shall
be provided in this subsection of the SPMP.

F

12

IEEE STANDARD FOR SOFTWARE

3.1.2 Project Deliverables (1.2 of the SPMP).
This subsection of the SPMP shall list all of
the items to be delivered to the customer, the
delivery dates, delivery locations, and quan-
tities required to satisfy the terms of the project
agreement. This list of project deliverables
shall not be construed as an official statement
of project requirements.

3.1.3 Evolution of the SPMP (1.3 of the
SPMP). This subsection of thc SPMP shall
specify the plans for producing both scheduled
and unscheduled updates to the SPMP. Meth-
ods of disseminating the updates shall be
specified. This subsection shall also specify
the mechanisms used to place the initial ver-
sion of the SPMP under change control and to
control subsequent changes to the SPMP.

3.1.4 Reference Materials (1.4 of the SPMP).
This subsection of the SPMP shall provide a
complete list of all documents and other
sources of information referenced in the
SPMP. Each document should be identified by
title, report number, date, author, and pub-
lishing organization. Other sources of infor-
mation, .such as electronic files, shall be
identified in an unambiguous manner using
identifiers such as date and version number.
"Any deviations from referenced standards or
policies shall be identified and justifications
shall be provided.

3.1.5 Definitions and Acronyms (1.5 of the
SPMP). This subsection of the SPMP shall
define, or provide references to the definition
of all terms and acronyms required to prop-
erly interpret the SPMP.

3.2 Project Organization (Section 2 of the
SPMP). This section of the SPMP shall spec-
ify the process model for the project, describe
the project organizational structure, identify
organizational boundaries and interfaces,
and define individual responsibilities for the
various project elements.

3.2.1 Process Model (2.1 of the SPMP). This
subsection of the SPMP shall define the
relationships among major project functions
and activities by specifying the timing of
major milestones, baselines, reviews, work
products, project deliverables, and sign-offs
that span the project. The process model may
be described using a combination of graphical
and textual notations. The process model
must include project initiation and project
termination activities.

PROJECT MANAGEMENT PLANS

3.2.2 Organizational Structure (2.2 of the
SPMP). This subsection of the SPMP shall
describe the internal management structure
of the project. Graphical devices such as
hierarchical organization charts or matrix
diagrams may be used to depict the lines of
authority, responsibility, and communication
within the project.

3.2.3 Organizational Boundaries and
Interfaces (2.3 of the SPMP). This subsection
of the SPMP shall describe the administrative
and managerial boundaries between the pro-
ject and each of the following entities: the
parent organization, the customer organiza-
tion, subcontracted organizations, or any
other organizational entities that interact with
the project. In addition, the administrative
and managerial interfaces of the project
support functions, such as configuration
management, quality assurance, and verifi-
cation and validation shall be specified in
this subsection.

3.2.4 Project Responsibilities (2.4 of the
SPMP). This subsection of the SPMP shall
identify and state the nature of each major
project function and activity, and identify the
individuals who are responsible for those
functions and activities. A matrix of func-
tions and activities versus responsible indi-
viduals may be used to depict project respon-
sibilities.

3.3 Managerial Process (Section 3 of the
SPMP). This section of the SPMP shall
specify management objectives and priori-
ties; project assumptions, dependencies, and
constraints; risk management techniques;
monitoring and controlling mechanisms to
be used; and the staffing plan.

3.3.1 Management Objectives and
Priorities (3.1 of the SPMP). This subsection
of the SPMP shall describe the philosophy,
goals, and priorities for management activi-
ties during the project. Topics to be specified
may include, but are not limited to, the
frequency and mechanisms of reporting to be
used; the relative priorities among require-
ments, schedule, and budget for this project;
risk management procedures to be followed;
and a statement of intent to acquire, modify,
or use existing software.

3.3.2 Assumptions, Dependencies, and
Constraints (3.2 of the SPMP). This subsec-
tion of the SPMP shall state the assumptions

13

IEEE
Std 1058.1-1987

on which the project is based, the external
events the project is dependent upon, and the
constraints under which the project is to be
conducted.

3.3.3 Risk Management (3.3 of the SPMP).
This subsection of the SPMP shall identify
and assess the risk factors associated with the
project. This subsection shall also prescribe
mechanisms for tracking the various risk
factors and implementing contingency
plans. Risk factors that should be considered
include contractual risks, technological
risks, risks due to size and complexity of the
product, risks in personnel acquisition and
retention, and risks in achieving customer
acceptance of the product.

3.3.4 Monitoring and Controlling Mecha-
nisms (3.4 of the SPMP). This subsection of
the SPMP shall define the reporting mecha-
nisms, report formats, information flows, re-
view and audit mechanisms, and other tools
and techniques to be used in monitoring and
controlling adherence to the SPMP. Project
monitoring should occur at the level of work
packages. The relationship of monitoring
and controlling mechanisms to the project
support functions shall be delineated in this
subsection of the SPMP (see 3.4.3).

3.3.5 Staffing Plan (3.5 of the SPMP). This
subsection of the SPMP shall specify the
numbers and types of personnel required to
conduct the project. Required skill levels,
start times, duration of need, and methods for
obtaining, training, retaining, and phasing
out of personnel shall be specified.

3.4 Technical Process (Section 4 of the SPMP).
This section of the SPMP shall specify the
technical methods, tools, and techniques to be
used on the project. In addition, the plan for
software documentation shall be specified,
and plans for project support functions such as
quality assurance, configuration manage-
ment, and verification and validation may be
specified.

3.4.1 Methods, Tools, and Techniques (4.1
of the SPMP). This subsection of the SPMP
shall specify the computing system(s), devel-
opment methodology(s), team structure(s),
programming language(s), and other nota-
tions, tools, techniques, and methods to be used
to specify, design, build, test, integrate, docu-
ment, deliver, modify or maintain or both (as
appropriate) the project deliverables. In ad-

IEEE
Std 1058.1-1987

dition, the technical standards, policies, and
procedures governing development or modi-
fication or both of the work products and
project deliverables shall be included, either
directly or by reference to other documents.

3.4.2 Software Documentation (4.2 of the
SPMP). This subsection of the SPMP shall
contain either directly or by reference, the
documentation plan for the software project.
The documentation plan shall specify the
documentation requirements, and the mile-
stones, baselines, reviews, and sign-offs for
software documentation. The documentation
plan may also contain a style guide, naming
conventions and documentation formats. The
documentation plan shall provide a summary
of the schedule and resource requirements for
the documentation effort. ANSI/IEEE Std 829-
1983 [4] provides a standard for software test
documentation.

3.4.3 Project Support Functions (4.3 of the
SPMP). This subsection of the SPMP shall
contain, either directly or by reference, plans
for the supporting functions for the software
project. These functions may include, but are
not limited to, configuration management [3];
software quality assurance [2] and [5]; and
verification and validation {6]. Plans for pro-
ject support functions shall be developed to a
level of detail consistent with the other sec-
tions of the SPMP. In particular, the responsi-
bilities, resource requirements, schedules,
and budgets for each supporting function shall
be specified. The nature and type of support
functions required will vary from project to
project; however, the absence of a software
quality assurance, configuration manage-
ment, or verification and validation plan
shall be explicitly justified in project plans
that do not include them.

3.5 Work Packages, Schedule, and Budget
(Section 5 of the SPMP). This section of the
SPMP shall specify the work packages,
identify the dependency relationships among
them, state the resource requirements, provide
the allocation of budget and resources to work
packages, and establish a project schedule.
3.5.1 Work Packages (5.1 of the SPMP).
This subsection of the SPMP shall specify the
work packages for the activities and tasks that
must be completed in order to satisfy the
project agreement. Each work package shall
be uniquely identified; identification may be

14

IEEE STANDARD FOR SOFTWARE

based on a numbering scheme and descriptive
titles. A diagram depicting the breakdown of
activities into subactivities and tasks (a work
breakdown structure) may be used to depict
hierarchical relationships among work
packages.

3.5.2 Dependencies (5.2 of the SPMP). This
subsection of the SPMP shall specify the
ordering relations among work packages to
account for interdependencies among them
and dependencies on external events. Tech-
niques such as dependency lists, activity net-
works, and the critical path method may be
used to depict dependencies among work
packages.

3.5.3 Resource Requirements (5.3 of the
SPMP). This subsection of the SPMP shall
provide, as a function of time, estimates of the
total resources required to complete the
project. Numbers and types of personnel,
computer time, support software, computer
hardware, office and laboratory facilities,
travel, and maintenance requirements for the
project resources are typical resources that
should be specified.

3.5.4 Budget and Resource Allocation (5.4 of
the SPMP). This subsection of the SPMP shall
specify the allocation of budget and resources
to the various project functions, activities, and
tasks. An earned value scheme may be used to
allocate budget and resources, and to track
expenditures and resource utilization.

3.5.5 Schedule (5.5 of the SPMP). This
subsection of the SPMP shall provide the
schedule for the various project functions,
activities, and tasks, taking into account the
precedence relations and the required mile-
stone dates. Schedules may be expressed in
absolute calendar time or in increments rel-
ative to a key project milestone.

3.6 Additional Components. Certain addi-
tional components may be required. These
may be included by appending additional
sections or subsections to the SPMP. However,
the numbering scheme for the required sec-
tions and subsections must adhere to the for-
mat specified in this standard. Additional
items of importance on any particular project
may include subcontractor management
plans, security plans, independent verifica-
tion and validation plans, training plans,
hardware procurement plans, facilities plans,
installation plans, data conversion plans,

PROJECT MANAGEMENT PLANS

system transition plans, or the product main-
tenance plan. If present, additional compo-
nents must be developed in a format and to a

¢\ level of detail consistent with the required

(

__sections of the SPMP.

3.6.1 Index. An index to the key terms and
acronyms used throughout the SPMP is op-

15

IEEE
Std 1058.1-1987

tional, but recommended to improve usability
of the SPMP.

3.6.2 Appendices. Appendices may be in-
cluded, either directly or by reference, to
provide supporting details that could detract
from the SPMP if included in the body of the
SPMP.

‘Recognized as an IEEE
American National Standard (ANSI) Std 1074-1991

IEEE Standard for Developing Software
Life Cycle Processes

Sponsor

Software Engineering Standards Subcommittee of the
Technical Committee on Software Engineering of the
IEEE Computer Society

Approved September 26, 1991

TEEE Standards Board

Approved April 20, 1992

American National Standards Institute

Abstract: The set of activities that constitute the processes that are mandatory for the development
and maintenance of software, whether stand-alone or part of a system, is set forth. The manage-

ment and support processes that continue throughout the entire life cycle, as well as all aspects of

the software life cycle from concept exploration through retirement, are covered. Associated input
and output information is also provided. Utilization of the processes and their component activities
maximizes the benefits to the user when the use of this standard is initiated early in the software
life cycle. This standard requires definition of a user’s software life cycle and shows its mapping
into typical software life cycles; it is not intended to define or imply a software life cycle of its own.

Keywords: project management process, project monitoring and control process, software devel-
opment process, software implementation process, software installation process, software life cy-
cle, software life cycle model process, software life cycle process, software maintenance process,
software operation and support process, software post-development process, software pre-develop-
ment process, software quality management process, software requirements process, software re-
tirement process, software system allocation process

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1992 by the
Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1992
Printed in the United States of America

Library of Congress Cataloging in Publication
information will be found on the following page.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher,

e ———————n o

T

IEEE Standards documents are developed within the Technical Committees
of the IEEE Societies and the Standards Coordinating Committees of the IEEE
Standards Board. Members of the committees serve voluntarily and without
compensation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the
subject within the Institute as well as those activities outside of IEEE which have
expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE
Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of the
IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments
in the state of the art and comments received from users of the standard. Every
IEEE Standard is subjected to review at least every five years for revision or
reaffirmation. When a document is more than five years old, and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some
value, do not wholly reflect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested
party, regardless of membership affiliation with IEEE. Suggestions for changes
in documents should be in the form of a proposed change of text, together with
appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of
portions of standards as they relate to specific applications. When the need for
interpretations is brought to the attention of IEEE, the Institute will initiate action
to prepare appropriate responses. Since IEEE Standards represent a consensus
of all concerned interests, it is important to ensure that any interpretation has
also received the concurrence of a balance of interests. For this reason IEEE and
the members of its technical committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has
previously received formal consideration.

Comments on standards and requests for interpretations should be addressed
to:

Secretary, I[EEE Standards Board
445 Hoes Lane

P.0.Box 1331

Piscataway, NJ 08555-1331

USA

IEEE Standards documents are adopted by the Institute of Electrical and
Electronics Engineers without regard to whether their adoption may involve
patents on articles, materials, or processes. Such adoption does not assume any
liability to any patent owner, nor does it assume any obligation whatever to
parties adopting the standards documents.

Library of Congress Cataloging in Publication Data

Institute of Electrical and Electronics Engineers, Inc., the.
IEEE standard for developing software life cycle processes / sponsor, Software
Engineering Standards Subcommittee of the Technical Committee on Software
Engineering of the IEEE Computer Society.

p. cm.

“Approved September 26, 1991, IEEE Standards Board.”

“IEEE Std 1074-1991.”

Includes index.

ISBN 1-55937-170-6

1. Computer software—Development—Standards—United States. 2. Software
maintenance—Standards—United States. I. IEEE Computer Society. Software
Engineering Standards Subcommittee. II. IEEE Standards Board. III. Title
QAT76.76 D4TI545 1992
005.1°021873—dc20 9141510

CIp

Foreword
(This Foreword is not a part of IEEE Std 1074-1991, IEEE Standard for Developing Software Life Cycle Processes.)

This Foreword is intended to provide the reader with some background into the rationale used to
develop this standard. This information is being provided to aid in the understanding and usage
of the standard. The Foreword is nonbinding.

Purpose

This is a standard for the Processes of software development and maintenance. This standard
requires definition of a user’s software life cycle and shows mapping into typical software life cy-
cles, but it is not intended to define or imply a software life cycle of its own. This standard applies
to the management and support Processes that continue throughout the entire life cycle, as well as
all aspects of the software life cycle from concept exploration through retirement. Utilization of
these Processes, and their component Activities, maximizes the benefits to the user when the use of
this standard is initiated early in the software life cycle.

Software that has proceeded past the initialization phase when this standard is invoked should
gradually comply with the standard.

This standard was written for any organization responsible for managing and developing
software. It will be useful to project managers, software developers, quality assurance organiza-
tions, purchasers, users, and maintainers. Since it was written to consider both software and its
operating environment, it can be used where software is the total system or where software is em-
bedded in a larger system.

Terminology

The words shall, must, and the imperative form identify the mandatory (essential) material
within this standard. The words should and may identify optional (conditional) material. As with
other IEEE Software Engineering Standards, the terminology in this document is based on IEEE
Std 610.12-1990, IEEE Standard Glossary, of Software Engineering Terminology (ANSI). To avoid
inconsistency when the Glossary is revised, the definitions are not repeated in this document.
New terms and modified definitions are included, however.

History

Work on this standard began in August 1984. A total of 15 meetings produced the draft submitted
for ballot in January 1990. Two additional meetings were held to resolve comments and negative
ballots, and the document was resubmitted for recirculation in February 1991,

Participants

This standard was developed by a working group consisting of the following members who
attended two or more meetings, provided text, or submitted comments on more than two drafts of the

standard:
David J. Schultz John W, Horch Dennis E. Nickle
Chair Vice Chair Secretary
Jean A. Gilmore Art Godin Lynn D. Ihlenfeldt Robert W. Shillato
Group Leader Group Leader Group Leader Group Leader
Joseph J. Guidos,* David W. Burnett Michael Buckley
Configuration Managers Editor
Joe Albano Carolyn Harrison Denis Meredith
Tom Antczak Peter Harvey Manijeh Moghis

Susan Burgess
David Burrows
Dan Chang
Paul Christensen
Raymond Day
Marvin Doran
Mike Ellwood
Arden Forrey
John Graham
Daniel Gray
Rob Harker

*Deceased

Contributors

Eric Hensel
Denise Holmes
George Jackelen
Linell Jones
Laurel Kaleda
Phil Keys

Tom Kurihara
Bill Mar
Darrell Marsh
‘Leroy May

Richard Morton
Gerry Neidhart
Brian Nejmeh
Hans Schaefer
Isaac Shadman
Kelley Stalder
David Taylor
Leonard Tripp
George Tucker
Odo Wang
Richard Werling

The following individuals also contributed to the development of the standard by attending one
meeting or providing comments on one or two drafts:

Scott Allen
Kathleen Alley
Robert Baris
Dwight Bellinger
H. Ronald Berlack
William Blum
Robert Both
Fletcher Buckley
John Chihorek
Geoff Crellin

M. A. Daniels
Geoffrey Darnton
Leonard DeBaets
Ingrid deBuda
Kristin Dittmann
Gary Driver
Susan East

Leo Egan

Violet Foldes
Roger Fujii
Michael Garrard
Yair Gershkovitch
Ole Golubjatnikov
Jim Harkins
James Heil
Cheng Hu

Jim Hughes
Suzana Hutz

Ron Hysom
Phyllis Illyefalvi
Corbin Ingram -
Ramon Izbinsky
Tom Jepson

Jia Yaoliang
Allen Jin

David Johnson
Richard Karcich
E. Klamm

Rick Kuhn
Stephan Lacasse
F. C. Lim

Ben Livson
Theresa Mack
Karen Mackey
Stan Magee

John Marciniak
Richard McClellan
Neal Mengel
Rocco Novak
George O’Connell
John Patchen

Jeff Pattee

Virgil Polinski
P. A. Rhodes
Bill Romstadt
Benson Scheff
Richard Schmidt
David Schwartz
Carl Seddio
Paul Sevcik
Randy Shipley
Kimberly Steele
Karen Steelman
Jim Stoner
Wayne Sue

Ann Sullivan
Daniel Teichroew
Russell Theisen
Donna Thomas
George Tice

R. Van Tilburg
Graham Tritt
Dolores Wallace
Valerie Winkler
Grady Wright
Fred Yonda

Lin Zucconi

Balloting Committee

The following persons were on the balloting committee that approved this document for submis-

Joseph Albano, Jr.
Eleanor Antreassian
Au Man Kit
Emanuel R. Baker
David Barber

H. Jack Barnard
Dwight Bellinger
M. Ben-Menachem
H. Ronald Berlack
Michael Blackledge
William J. Boll
Ronald Braun
Bruce Brocka
Winsor A. Brown
Fletcher Buckley
Susan Burgess
David Burnett
David Burrows
Kay Bydalek

Clyde Camp

James L. Cartwright
John Chihorek

S. V. Chiyyarath
Won L. Chung
Frangois Coallier
Christopher Cooke
Michael A. Daniels
Geoffrey Darnton
Taz Daughtrey
Bostjan K. Derganc
Audrey Dorofee
Carl E. Dragstedt
Mary L. Eads

Vera D. Edelstein
L. G. Egan
Caroline L. Evans
John W. Fendrich
A. L. Fleetwood
Roger G. Fordham
Joel J. Forman
Julian Forster

sion to the IEEE Standards Board:

Kirby Fortenberry
Thomas J. Fouser
Clairmont Fraser
Roger Fujii

Casey K. Fung
Yair Gershkovitch

Jean Gilmore

Shirley A. Gloss-Soler

Arthur Godin
Richard Goldsmith
Ole Golubjatnikov
Steven Grady

J. Kaye Grau
Thomas A. Grobicki
Victor M. Guarnera
Cynthia Hardenbrook
Lina Hardenburg
R. T. Harley
George B. Hawthorne
Clark Hay

William E. Hefley
Manfred Hein
John W. Horch
Richard Horner
Pei Hsia

James R. Hughes
Lynn Ihlenfeldt

S. C. Jain

Debra Jasinski
Shang-Sheng Jeng
J. O. Jenkins

Jia Yaoliang

Todd Jochim

David Johnson
Donna C. Johnson
Laurel V. Kaleda
Eiichi Kaneko
Myron S. Karasik
Peter Klopfenstein
Shaye Koenig
Richard Kuhn

Joan Kundig

Tom Kurihara
Renee Lamb
John B. Lane
Robert A. C. Lane
J. Dennis Lawrence
Cheryl Leventhal
F. C. Lim

Bertil Lindberg
Carlo Lipizzi
William M. Lively
Ben Livson
Dieter Look
Harold Mains
Kartik C. Majumdar
John H. Manley
Philip C. Marriott
Roger J. Martin
Tomoo Matsubara
Ann Miller
Edward Miller
Manijeh Moghis
Richard Morton
Gene T. Morun
Hironobu Nagano
Saied Najafi
Gerry Neidhart
Dennis E. Nickle
James O'Day
Tuncer 1. Oren
Martin F. Owens
Thomas Parrish
Betty Paul
William Perry
Donald J. Pfeiffer
John G. Phippen
John Pope

Salim Ramyji
Jean-Claude Rault
Meir Razy

Larry K. Reed

Donald J. Reifer
James R. Roberts
R. Waldo Roth
Rafael San Roman
Julio Sanz
Stephen R. Schach
Hans Schaefer
Benson H. Scheff
Max J. Schindler
Norman Schneidewind
Wolf A. Schnoege
David J. Schultz
Gregory D. Schumacher
. Leonard Seagren
Carl S. Seddio
Tony Sgarlatti
Isaac Shadman
Lawrence H. Shafer
Robert Shillato
David M. Siefert
Harry M. Sneed
A. R. Sorkowitz
Kelley Stalder
David Szombatfaluy
William Theiford
Russell E. Theisen
Glendon R. Trebble
Leonard Tripp
Mark-Rene Uchida
Margaret Updike
Spyrpos Villios
Thomas E. Vollman
Dolores R. Wallace
John W, Walz
Andrew H. Weigel
Richard Werling
Paul Wolfgang
Paul R. Work
Natalie C. Yopconka
Peter F. Zoll

When the IEEE Standards Board approved this standard on September 26, 1991, it had the
following membership:

Marco W, Migliaro, Chairman Donald C. Loughry, Vice Chairman
Andrew G. Salem, Secretary

Thomas L. Hannan
Donald N. Heirman
Kenneth D. Hendrix
John W. Horch
Ben C. Johnson
Ivor N. Knight

Dennis Bodson

Paul L. Borrill

Clyde Camp

James M. Daly

Donald C. Fleckenstein
Jay Forster*

David F. Franklin
Ingrid Fromm

John E. May, Jr.

Lawrence V. McCall

Donald T. Michael*

Stig L. Nilsson

John L. Rankine

Ronald H. Reimer

Joseph L. Koepfinger* Gary S. Robinson

Irving Kolodny Terrance R. Whittemore i
Michael A. Lawler i

*Member Emeritus ‘

Kristin M. Dittmann
IEEE Standards Project Editor |

Acknowledgments

Participants in the working group were individually supported by their employers with travel
expenses and working days. This support does not constitute or imply approval or endorsement of

this standard. These organizations were:

Abbott Critical Care

ARINC, Inc.

Apollo Computer Inc.

AT&T Bell Laboratories
AT&T Technologies

Bell Canada

Bellcore

Bell Northern Research, Inc.
Boeing Computer Services
Burnett Associates
Computer Sciences Corp.
Digital Switch Corporation
E. 1. Dupont de Nemours & Co.
E-Systems, Inc.

Eastman Kodak Co.

Hewlett Packard
Honeywell, Inc.

IBM

Institute for Defense Analyses
Jet Propulsion Laboratory
Litton Aero Products

Lockheed Aircraft Service Co.
Martin Marietta

MUMPS Development Committee
NCR Corp.

Naval Air Development Center
Northern Telecom Canada Ltd.
Northrop Electronics Div.
Northrop Aircraft Div.
Perkin-Elmer

Quality Assurance Institute
Singer Link

Tandem Telecommunications Systems, Inc.
Tektronix

Teledyne Brown Engineering
Teledyne Controls

Texas Instruments

The Horch Company

U. S. Air Force

U. S. Dept. of Transportation
Unisys

3M

The following organizations hosted working group meetings in their respective cities:

AT&T Bell Laboratories, Columbus, OH
Bellcore, Piscataway, NJ

Boeing Computer Services, Seattle, WA
Computer Sciences Corp., Silver Spring, MD
E-Systems, Inc., Salt Lake City, UT
Eastman Kodak Company, Rochester, NY
Hewlett Packard, San Jose, CA

Honeywell, Inc., Phoenix, AZ

IEEE Computer Society, Dallas, TX

Martin Marietta, Orlando, FL

NCR Corp, San Diego, CA

Northrop Electronics, Hawthorne, CA
Northern Telecom, Ottawa, Ont.

Tektronix, Beaverton, OR '

Teledyne Brown Engineering, Huntsville, AL
Travelers Companies, Hartford, CT ‘
Unisys, Eagan, MN

AT&T Bell Laboratories provided word processing support. Bellcore and Computer Sciences
Corporation assisted with mailings. The X3K1 Logical Flow Project provided technical coordina-

tion.

Suggestions for the improvement of this standard will be welcome. They should be sent to the
Secretary, IEEE Standards Board, Institute of Electrical and Electronics Engineers, P. O. Box

1331, Piscataway, NJ 08855-1331.

Contents

SECTION PAGE
B 4 Yo U Tl 5 1o o 11
B T T T 11
A 1T S =) o V-1 T S O 11
1.3 Definitions and ACIonymsoooiuuiiiiie ittt eteeraaarrrrnreerteeeereeess 1
I B D X% 4 015 3 A 13 o - T Ut 11

IO O~V 0 ¢ 32 ¢+ - P 13

1.4 Organization of This Documentiiiiiiiiiiiiii i i i eanes 13
1.5 Use of This Standardcccooiiiiiiiiiiiiiiiii ittt ittt it e e reereareaanes 14
151 Applicability.....oooiiiiiiiiiiii i e e e 14
1.5.2 ComMPlaance . ..ot e 14
1.5.3 Intended Audience..........coiiiiiiiiiiiiiiiiiiiaiiieiieeeaeeeeeeeeerrriiriaraseneenaes 15
1.5.4 Process and Activity Relationshipscoooiiiiiiiiiii i 15
1.5.,5 Getting Startedccooiiiiiiiiiiii e 18
1.5.6 Additional Considerationsiiiiiiiiiiiiii it 18

2. Software Life Cycle Model Process.........ccoiiiiiiiiiiiiiiiiiiiiiii i e iiraaaneerees 19
D R 0 13 o U 19
2.2 ActIvities Listooiiiiiiiiiii i i e e e 19
2.3 Identify Candidate Software Life Cycle Models..........coooiiiiiiiiiiiiiiiiiiiiiiieneeennnnns 21
2.3.1 Input Information..........cooiiiiiiiiiiiit i i 21
PR30 D 1-:-Yo3 5§51 7 ¥) « DA OO 21
2.3.3 Output Informationccooiiiiiiiiiii i e 21

2.4 Select Project Modelccooiiiiiiiiiiiiii i e eieereceerieees 21
2.4.1 Input Information.........oooiiiiiiiiiii it et e 21
2.4.2 D esCripliom. .o i e e 21
2.4.3 Output Informationoooiiiiiii i i e 21

3. Project Management ProCesSeso.uvuuiineieiiei ittt ettt eaee ittt eaeaness TR, p)
3.1 Project Initiation Processccciiiiiiiiiiiiiiiii i i it et ettt 2
O A 0 13 o1 -3 22
3.1.2 Activities List ..o e 2
3.1.3 Map Activities to Software Life Cycle Model.................ccoiiiiiiiiiiiiiiinnnnn., 22
3.1.4 Allocate Project ReSources.ccvuuuiiiiiiiiiiieiiiiiiii it iiiieeeeiiaaaeeeaaanennnnn 23
3.1.5 Establish Project Environmentc.cccoiiiiiiiiiiiiiiiriiiiiiiiiiiiiireenerens 24
3.1.6 Plan Project Management............iiiiiiiiiiiiiiiiiiiiiaeier et eeenetrieriianrenraaens 25

3.2 Project Monitoring and Control Process...........ccoooiiiiiiiiiiiiiiiiiiii s iieeiieeaans 27
B B0 R € 1 T ¥ 27
3.2.2 Activities Listooiiiiiiiiiiiiiiiiii i e e .27
3.2.3 Analyze Risksiiiiiiiiiiiiiii i e 27
3.2.4 Perform Contingency Planning..............oo i i e 28
3.2.5 Manage the Projectcoiiiiiiiiiii i e e e 29
3.2.6 Retain Records.........cciviiiiiiiiiiiii it it ettt e e 30
3.2.7 Implement Problem Reporting Method..................iiiiiiiiiiiiiiii i, 31

3.3 Software Quality Management Process............ovvvieiiiiiiiiiiiierreeeeeeeeeiiieiiaaiananns 33
B T R 0 1 o T3 O 33
3.3.2 Activities Listooiiiiiiii i e e e, 33
3.3.3 Plan Software Quality Management............ccc.oiiiiiiiiiiiiiiiiiiiieeeeieeaennn. 33
3.3.4 Define Metrics .oovuiiiiiiiit ittt ittt % |
3.3.5 Manage Software Quality.........c.ooiiiiiiiiiiiii i i e e 35

3.3.6 Identify Quality Improvement Needsccoviiiiiiiiiiiiiiiiiierieeinnnianiens, 35

SECTION PAGE

4. Pre-Development Processeso i it e i ittt 37
4.1 Concept Exploration Process.........ccooiiiiiiiiiiiiiiii i i i ittt rie e e aanas 37
O I 0 1 -3 T 13 37
4.1.2 Activities Listoooioiiii i i e e 37
4.1.3 Identify Ideas or Needs.......vuuuiiiieeiiiiiiiiteeteetnetrrieraeereeetennmronseeerannes 37
4.1.4 Formulate Potential Approaches..........ccooiiiiiiiiiiiiiiii i iiie e eiaes 38
4.1.5 Conduct Feasibility Studies.............cceiiiiiiiiiiiiiiiiiii i aeaaanes 39
4.1.6 Plan System Transition (If Applicable)ccoviiiiiiiiiiii i, 39
4.1.7 Refine and Finalize the Idea or Needccovviiiiiiiiiiiiiii i eeens 40
4.2 System Allocation ProCeSS.......uitiiiiiiiiiiieiee ettt iaiiaeiareeeeetaatiaaieeereanens 42
00 T 3 4 - P 42
4.2.2 Activities List ..o e e et 42
4.2.3 Analyze FUNctionsiiiiiiiiiiiiiiiiii i iiiiiiietiiraer et earenreereanees 42
4.2.4 Develop System Architectureiiiiiiieiiiiieiiieiiiiiiiiiienteerareneneaeerens 43
4.2.5 Decompose System Requirementsooooiiiiiiiiiiiiiiiiiiii i iiianeennns 43
B, Development ProcesSes. . oottt ittt ittt et it e e e a e e e e 45
5.1 Requirements Processcooviiiiiiiiriiiiiit it it it sttt teree e aanaaens 45
L7 W B 0 7S o - 45
5.1.2 Activities List ... o i et 45
5.1.3 Define and Develop Software Requirementscoviiviiiiiiinnieinninnnreens 45
5.1.4 Define Interface Requirements............cccoiiiiiiiiiiiiiiiii i iiii i 46
5.1.5 Prioritize and Integrate Software Requirementscccoiviiiiiiiiiinannn. 47
IO D oY F =5 R S o1 48
L3 I 0T ot 1 48
5.2.2 Activities List ..ot e e e e aen 48
5.2.3 Perform Architectural Designoiiiiiiiiiiiiiiii i it eaaes 48
5.2.4 Design Data Base (If Applicable)ccoiiiiiiiiiiii i i eirieiiee s 49
5.2.5 Design Interfacescoiiiiiiiiiiiii i i ae e 50
5.2.6 Select or Develop Algorithms.........cooiiiiiiiiiiiiiiiiii i e e ereeereeeeeaaennn 50
5.2.7 Perform Detailed Designviuiiiiiiiiiieiientitrarirrreeeaeeernanaaereennen 51
5.3 Implementation Processoviiiiiiiiiiiiir ittt ittt ittt it 52
S0 B 077 o7 1S PP 52
5.3.2 Activities Listooiiiiiiiiiiiiiiiii i i e et e e re e raanes 52
5.3.3 Create Test Data.........coiiiiiiiiiiiiit ittt it iiiie i etiiae et aaneenrneannones 52
B.3.4 Create SOUICE ...ooiiitiitiintiineitiiittareeeeteeeeeaeesetensssneentesssseasonnioessonens 53
5.3.5 Generate Object Codecooviiiiiiiii ittt e e 53
5.3.6 Create Operating Documentationcooiiviiiiiiiiiiiiie e iaeererieaaennes 54
5.3.7 Plan Integrationccoviiiiiiiiiiiiiii i i i ittt ettt e aeeaaaans 55
5.3.8 Perform Integration....... ... ittt iere i ren e rraans 55
6. Post-Development ProceSSes...ooviuii ittt ittt et e eir e iia et e 57
6.1 Installation Processccvoiiiiiiiiiiiiii i i it ettt ettt et eans 57
20 T 15 o 2 - P 57
6.1.2 Activities LStoiiiiiiiiiii i e i 57
6.1.3 Plan Installationoiiiiiiiiiiiiiiiiiiiiiiii et rieieraeeereeenanieenens 57
6.1.4 Distribute SoftWarecovviiiiiiiiiiiitire it ra e eaaaaaan 58
6.1.5 Install Softwarecooiiiiiiiiiiiii e e aann 59

6.1.6 Accept Software in Operational Environmentccoiviiiiiiiiiiiaiiiannn... 59

SECTION PAGE

6.2 Operation and SuUP POt Processuviviiiiii it et 60
T R 0 L7 s T3 60
6.2.2 ActIVILIES LISt ...t e 60
6.2.3 Operatethe System.............ooiiiiiiiiiii et irraanns 60
6.2.4 Provide Technical Assistance and Consulting...............coooeiiiiiiiiii i, 61
6.2.5 Maintain Support Request Logcooviiiiiiiiiii i e 61

6.3 Maintenance Processiiiiiiiiiniiiiii i it e et 62
B.3. 1 OVTVIRW .ottt ittt ittt ittt e et e, 62
6.3.2 Activities List ...t e i 62
6.3.3 Reapply Software Life Cycle.........coooviiiiiiiiiiiiiiiiiiii i e ans 62

6.4 Retirement Processcooiuiiiiiii i e e 63
T B € 13 o5 1= N 63
6.4.2 Activities Listociiiiiiiiiii i e e e 63
I B B\ (41 o 2 01T N 63
6.4.4 Conduct Parallel Operations (If Applicable)c.coviiiiiiiiiiiiiiiii i 64
6.4.5 Retire System.....ccoiiiiiiiiiiiiiiii i e e e, 64

R oYY o U o oY= O 66

7.1 Verification and Validation Process.............couiiiiiiiiiiiiiiiiiiiie it ianeeennnn, 66
0 O R € 75 s ¥ S 66
T.1.2 Activities LISt ..oiuuiiiiiiiiiiii i i et e 66
7.1.3 Plan Verification and Validation................oooiiiiiiiiiiiiiiiiiiiiiiiiiiiinens 66
7.1.4 Execute Verification and Validation Tasksccovveiiiiiiiiiriiiiiiiiinneennns 67
7.1.5 Collect and Analyze Metric Datacovviiiiiiiiiiieeeieeieiiiiiiiiiierennens 68
716 Plan Testing ..o i e et e 69
7.1.7 Develop Test Requirementscouuuuiiiiiiiiiiieit ittt iiraeeennnn, 70
7.1.8 Execute the Tests ...c..oouiiiiiiiiiiiiii i i i i e e iaaeeneeass 71

7.2 Software Configuration Management Process...........cccevieviiiiiiiiiiiieiirinneeiineenn. 72
2 I 6 12 o5 U= 72
T.2.2 ActiVItIes LISt ..ouvuiiii i s 72
7.2.3 Plan Configuration Managementcooiveieiiiiiiriiersiaaeeeiiiaininnrneens 72
7.2.4 Develop Configuration Identification...............cccoeiiiiiiiiiiiiiiiiiiiiiiiinees 73
7.2.5 Perform Configuration Control............ccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaiaeenees 73
7.2.6 Perform Status AcCCOUNtingoovviiiiiiiii ittt iiiiiiiiiiiiaeiaeeenannans 74

7.3 Documentation Development Process..........cooviviiiiiiiiiiiii it eiiiiaeecieneenans 75
R T R 0 T ot TS U 75
T.3.2 Activities LIStooiiiiii i it ettt ee et e, 5B
7.3.3 Plan Documentationcoiiiiiiiiiiiiiiiiiiii e iiiiiie ittt 75
7.3.4 Implement Documentationooviiiiiiiiiiiiiiiiiiiiiiiiiiiiii e reeeeenas 76
7.3.5 Produce and Distribute Documentation...............cccoiiiiiiiiniiiiii i, Vi

R I B Y o B0 0T o YT 78
A T T € 3 o Y- 78
T.4.2 Activities LISt ..ot e e e 78
7.4.3 Plan the Training Program............ccciiiiiiiiiiiiiiiii i ciaes 79
7.4.4 Develop Training Materialscooiiiiiiiiiiiiiiiiiiii i i iiiiiiiaaes 80
7.4.5 Validate the Training Programccoiiiiiiiiiiiiiiiiiii i 81
7.4.6 Implement the Training Programoooiiiiiiiereiireiiiiiiiiiiiiiiinneaans 81

S 5 510 Y 0T =g o7 1+ o 2 83

FIGURES PAGE
Fig 1. Example of Invoked Processesooiiiiiiiiiiiiiiiii i cineaees 17
Fig 2. Information Flowoooiiiiiiiiiiiiiiiiiiiiiiiiei ittt et ettt aiae s e eeenaaaess 18
Fig 3. Software Life Cycle Relationships............coooo i 20
TABLES
Table 1. Standard Organization...........c.oviiiiiiiiiinterniiiiiiiieenteetrarearneniresreeneeennns 13
Table 2. Cross Reference of IEEE Standards.............ooiiiiiiiiiiiiiiii it e aans 7|
APPENDIXES
Appendix A. Mapping Software Life Cycle Processes to Various Examples of

Software Life Cycleso.iiiiiiiiiiie it i iiiiiie et teieteerenaeearnaerceanesnes 86
Appendix B. Software Project Management Tailoring Template...................c.iiiiiinnl, 9
Appendix C. Process Interrelationships...........coooiiiiiiiiiiiiiiiiiiiiii i i iiiiiiiveeeeeenenns 105
APPENDIX TABLES
Table Al. Software Life Cycle Example Based on Eight Phasesc..cooiiiiiiiiiiiiiinniinnnn. 87
Table A2. Software Life Cycle Example Based on Five Phasesoiii 90
Table A3. Software Life Cycle Example Based on Prototyping............coooiiiiiiiiiinennnna.. 93
Table A4. Software Life Cycle Example Based on an Operational Specification 96
Table B1. Software Project Management Tailoring Template........ccoooviiiiiiiiiiiiniiennennn.. 100
APPENDIX FIGURE ' |
Fig C1. Process Interrelationships........coiiiiiiiiiiiiiiini i e e eens 106
| 0 e - T P 107

IEEE Standard for Developing Software
Life Cycle Processes

1. Introduction

1.1 Scope. This standard provides the set of Activities that constitute the Processes that are
mandatory for the development and maintenance of software, whether stand-alone or part of a
system. (Non-software Activities, such as hardware development and purchasing, are outside of
the scope of this standard.) This standard also provides associated Input and Output Information.

For convenience, Activities are listed and described under specific Processes. In practice, the
Activities may be performed by persons whose organizational titles or job descriptions do not
clearly convey that a Process is part of their job. The Process under which an Activity is listed in
this standard may be transparent in practice.

This standard does not prescribe a specific software life cycle model (SLCM). Each using
organization must map the activities specified in the standard into its own software life cycle
(SLC). If an organization has not yet defined an SLC, it will be necessary for them to select or
define one before attempting to follow this standard. Further, this standard does not presume the
use of any specific software development methodology nor the creation of specific documents.

For software already developed, it is recommended that these requirements, or a subset thereof,
be applied. The existence of this standard should not be construed to prohibit the imposition of
additional or more stringent requirements where the need exists, e.g., critical software.

Compliance with this standard is defined in 1.5.1.

1.2 References. No other publications are required for use of this standard. However, a list of other
IEEE standards, which may be consulted for additional guidance, is given in the Bibliography in
Section 8. Although this standard does not require adherence to any other IEEE standard,
knowledge of principles and concepts described in the standards listed in the Bibliography would
be helpful.
1.3 Definitions and Acronyms

1.3.1 Definitions. The definitions listed here establish meanings within the context of this
standard. Definitions of other terms used in this document can be found in IEEE Std 610.12-1990
1]} ,
Activity. A constituent task of a Process. See: task.

analysis. Examination for the purpose of understanding.

anomaly. Any deviation from requirements, expected or desired behavior, or performance of the
software.

contractual requirements. Customer-imposed performance, logistics, and other requirements and
commitments governing the scope of software development, delivery, or support.

customer. The person, or persons, who pay for the product and usually (but not necessarily) decide
the requirements. In the context of this document the customer and the supplier may be members of
the same organization. [5]

data base. A collection of data fundamental to a system. [22]

IThe numbers in brackets correspond to those of the bibliographic references listed in Section 8.

11

ki

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

evaluation. Determination of fithess for use.

external. An Input Information source or OQutput Information destination that is outside the control
of this standard, and therefore may or may not exist.

function. A specific purpose of an entity or its characteristic action. [22]
installation. The period of time in the software life cycle during which a software product is
integrated into its operational environment and tested in this environment to ensure that it

performs as required. [1]

Mapping. Establishing a chronological relationship of the Activities in this standard according to
a selected SLCM. '

methodology. A body of methods, rules, and postulates employed by a discipline.
owner. A single point of contact, identified by organization position.

pi'oblem. The inability of a system or component to perform its required functions within specified
performance requirements. [1]

Process. A function that must be performed in the software life cycle. A Process is composed of
Activities. ‘

product. Any output of the software development Activities; e.g., document, code, model.

quality management. That aspect of the overall management function that determines and
implements the quality policy. (ISO 9000)

quality policy. The overall quality intentions and direction of an organization as regards quality,
as formally expressed by top management. (ISO 9000)

revision. A controlled item with the same functional capabilities as the original plus changes,
error resolution, or enhancements.

software life cycle (SLC). A project-specific, sequenced mapping of Activities.

software life cycle model (SLCM). The skeleton framework selected by each using organization
on which to map the Activities of this standard to produce the software life cycle.

software quality management. That aspect of the overall software management function that
determines and implements the software quality policy.

software quality policy. The overall quality intentions and direction of an organization as
regards software quality, as expressed by top management.

software system, Software that is the subject of a single software project.

supplier. The person, or persons, who produce a product for a customer. In the context of this
document, the customer and the supplier may be members of the same organization. [5]

task. The smallest unit of work subject to management accountability. A task is a well-defined
work assignment for one or more project members. Related tasks are usually grouped to form
Activities. [17]

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

unit. A logically separable part of a program. [1]
user. The person, or persons, who operate or interact directly with the system. [5]
1.3.2 Acronyms. The following acronyms appear within the text of this standard:

CASE Computer-Aided Software Engineering

1/0 Input/Output

PR&RP Problem Report and Resolution Planned Information
SCMP Software Configuration Management Planned Information
SDD Software Design Description

SLC Software Life Cycle

SLCM Software Life Cycle Model

SPMP Software Project Management Planned Information

SQA Software Quality Assurance

SRS Software Requirements

SVVP Software Verification and Validation Planned Information

1.4 Organization of This Document. The organization of this standard provides a logical approach
to the development, operation, and maintenance of software. The detailed requirements of this
document are organized into 17 Processes, which are comprised of a total of 65 Activities. The Pro-
cesses and their Activities are described in six major sections. Table 1 depicts this organization.

Table 1
Organization of the Standard

Section Title Processes

2 Software Life Cycle Model Process Software Life Cycle Model

3 Project Management Processes Project Initiation
Project Monitoring and Control
Software Quality Management

4 Pre-Development Processes Concept Exploration
System Allocation

5 Development Processes Requirements
Design
Implementation

6 Post-Development Processes Installation

Operation and Support
Maintenance
Retirement

7. Integral Processes Verification and Validation

Software Configuration Management
Documentation Development
Training

All of a Process’ required actions are specified in its constituent Activities. Each Activity
discussion has three parts:

(1) Input Information, which lists information that is to be used by the Activity, and its source.

(2) Description, which details the actions to be performed.

(3) Output Information, which lists the information that is generated by the Activity, and its
destination.

13

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Where information flows between Activities, it can be traced from its original Activity to the
receiving Activity through the Input and Output Information tables.

As mentioned above, all Processes are mandatory. Activities, however, are categorized as
mandatory? or “If Applicable.” “If Applicable” Activities are marked “If Applicable” in the
Activity title. All other Activities are mandatory. Each “If Applicable” Activity contains an
explanation of the cases to which it will apply (e.g., 5.2.4, Design Data Base, applies when the
software product contains a data base).

1.5 Use of This Standard. To facilitate the understanding and use of a standard of this magnitude,
this section provides additional information.

1.5.1 Applicability. This standard applies to software development and maintenance projects.

This standard can be applied to commercial, scientific, and military software. Applicability is
not restricted by size, complexity, or criticality of the software. This standard considers both the
software and its context.

It is recognized that a project may be too small, in terms of schedule, budget, risk, nature, or use
of software to be developed, used, and maintained, to warrant total application of the standard. In
such cases, selected Activities may be applied even though compliance with this standard may not
be claimed. This may also apply when only purchased software is involved.

A large project may be subdivided into smaller manageable projects, and this standard applied
to each of the smaller projects and then to the whole. Similarly, some projects may be of long
duration, and may be delivered in multiple versions or releases; it may be helpful in some cases to
treat the development of each successive version as a separate project with its own life cycle.

1.5.2 Compliance. Compliance with this standard is defined as the performance of all
mandatory Activities. Some mandatory Activities may occur in different instances (e.g.,
performing tests at various levels); compliance with this standard means the complete
performance of each instance of the mandatory Activity. The standard does not specify instances
of any Activity.

The performance of an Activity or an instance thereof is complete when all Input Information
has been processed, and all Qutput Information has been generated. This may require several
iterations of an Activity or instance.

All Input and Output Information are not required for a given occurrence of an iterative
Activity. The presence of sufficient Input Information to permit processing by the Activity to begin
constitutes the entry criterion, and the creation of any Output Information is a sufficient exit
criterion.

This standard does not impose the order in which Activities must be performed. However, an
order must be established by executing the Activities defined in Section 2 and the Activity in 3.1.3.

In some cases, certain Input and Output Information may not be required for completion of an
Activity. These are indicated as “External” to the SLC and may not exist. To the extent that they
exist, they must be processed by affected Activities.

This standard prescribes the processes of the software life cycle, not the products of that life cycle.
Therefore, the standard does not require the completion of specific documents. The information
generated by Activities, listed in the Output Information tables, may be collected into documents in
any manner consistent with the selected SLCM.

In the event that this standard is contractually imposed, and one or more subcontractors are
involved in the project, it is recommended that the requirements of this standard be imposed on the
subcontractors.

2The term “mandatory” as used in this standard is synonymous with the term “essential.”
3The term “if applicable” as used in this standard is synonymous with the terms “conditional” and “optional.”

4

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

1.5.8 Intended Audience. This standard cannot be implemented by a single functional group
within a development organization. Mapping this standard’s Activities into an organization’s
SLCM, and coordinating these Activities with existing development and support methodologies
and standards, require specific expertise and authority within the organization.

After mapping is complete, the Activities in Sections 3—7 are ready for execution. These Activity
descriptions are directed to the functional specialist most likely to be performing them (e.g., the
Requirements and Analysis Activities assume a basic familiarity with analysis techniques).

1.5.4 Process and Activity Relationships

1.5.4.1 Project Management Processes. There are three Processes in this section: the Project
Initiation Process, the Project Monitoring and Control Process, and the Software Quality Man-
agement Process. The Project Initiation Process consists of those Activities that create and main-
tain the project framework. The Activities within the Project Monitoring and Control Process and
the Software Quality Management Process are performed throughout the life of the project to ensure
the appropriate level of project management and compliance with the mandated Activities.

1.5.4.2 Development-Oriented Processes. These are the Processes that must be performed be-
fore, during, and after the development of the software. The Pre-Development Processes are Con-
cept Exploration and System Allocation. Development Processes include Requirements, Design,
and Implementation. Finally, the Post-Development Processes include Installation, Operation
and Support, Maintenance, and Retirement.

1.5.4.3 Integral Processes. This section includes those Processes that are necessary to ensure
the successful completion of a project, but are not Development Processes. The Integral Processes
are Verification and Validation, Software Configuration Management, Documentation Develop-
ment, and Training. All of these Processes contain two types of Activities:

(1) Those that are performed discretely and are therefore mapped into an SLCM.
(2) Those that are performed in the course of completing another Activity, These are invoked
Activities and will not be mapped into the SLCM in every instance.

Many Activities invoke, or call like a subroutine, appropriate Integral Process(es). This is an
intuitive method of getting a task, such as the evaluation or production of a document, done without
specifying an exact control flow within this standard.

To track the flow of a product into, through, and back from an Integral Process, there are generic
sources and destinations listed in the Input and Output Information tables called “Creating
Process.” Within the Integral Process that is invoked, the Activity that first receives the product
has a generic Input Information whose source is Creating Process. This product passes through
one or more Activities of that Integral Process, then is returned to the invoking Activity through an
Activity’s Output Information, whose destination is Creating Process. An example of this flow is
shown in Fig 1, which illustrates how one Activity within the Design Process invokes the Integral
Processes. This figure will be easier to follow if it is compared directly with 5.2.7, “Perform
Detailed Design.” The order of Invoked Processes in the figure differs from that in 5.2.7.

The invoked Process is specified in the text by the name of the Process and the number of the first
Activity to be performed within that Process [e.g., Verification and Validation (7.1.4)].

15

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

1.5.4.4 Use of IO Tables. The Input Information to and Output Information from each Activity
are listed in tables that accompany the Activity descriptions. As a convention of this document, In-
put and Output Information names are always capitalized in the text.

The /0O tables show the flow of Information through the Activities. The pertinent Informatlon is
listed in the left-hand column. The source or destination of the Information (both Process and Ac-
tivity) is shown in the right-hand columns. The Information names were chosen, where possible,
to suggest the titles of documents commonly used in the software industry. The Information
names also frequently relate to the documents described in the standards listed in Section 8. Some
of these Information items are represented in the text by acronyms that were deliberately chosen to
suggest the commonly used names of the corresponding documents.

External Input Information sources and External Qutput Information destinations are outside
the scope of this standard. External Input Information may or may not exist, and if it does not exist,
it is not required. When an External Input does exist and is therefore used, it is presumed to
include any associated documentation. External output destinations also may or may not exist.
External sources and destinations are not necessarily Processes, and no corresponding Activities
are shown in the I/O tables. .

16

SOFTWARE LIFE CYCLE PROCESSES

IEEE

Std 1074-1991

DESIGN PROCESS
("*CREATING PROCESS") THE OUTPUTIS
\\ SENTTO
INPUTS FROM IMPLEMENTATION
DESIGN AND PERFORM DETAILED DESIGN >
/ % | I A} k PROCESSES
// I Ny
/
/ I \
/ / \
/ I \
INPUT INFORMATION / / PUBLISHED [| (TEM TO BE \ \ EVALUATION
FOR DOCUMENT / I/ DOCUMENT | EVALUATED \ PEPORTS
| \
/ | ITEMTOBE | CONTROLLED \ \
/ CONTROLLED | mem \

IMPLEMENT
DOCUMENTATION
(7.3.4)

PRODUCE AND
DISTRIBUTE
DOCUMENTATION

(7.3.5)

DOCUMENTATION
DEVELOPMENT
PROCESS

Example of Invoked Processes

PERFORM
CONFIGURATION
CONTROL (7.2.5)

SOFTWARE CONFIGURATION
MANAGEMENT PROCESS

Fig1

17

EXECUTE V&V
TASKS (7.1.4)

VERIFICATION AND
1 VALIDATION PROCESS

IEEE
Std 1074-1991

In most cases, the Input Information and Output Information columns of the tables designate the
specific information that enters or exits the Activity. However, since many Activities have Output
Information whose destination is Retain Records (3.2.6), the various Input Information to Retain
Records is collected under the term “Original Records.” The corresponding Process and Activity
columns refer simply to Originating Process and Originating Activity. Figure 2 depicts the con-
ceptual flow of Input Information and Output Information into and out from an Activity, respec-
tively.

1.5.5 Getting Started. Before beginning a project that will use this standard, the Activities need to
be reviewed for applicability to a specific project and organized into a time sequence appropriate to
that project. To perform that time sequencing, an SLCM must be chosen or developed and Activities
mapped into the SLCM. This mapping is discussed in Section 2 and the mapping Activity in 3.1.3.
Examples are given in Appendix A.

This mapping produces a temporal “road map” called the Software Life Cycle (SLC) used to fol-
low this standard throughout the project. The mapped Activities must be initiated in their desig-
nated sequence.

1.5.6 Additional Considerations

1.5.6.1 Organizational Independence. This standard does not presume or dictate an organiza-
tional structure for a software project. Therefore, it is neither implied nor required that Activities
within a Process be performed by the same organizational entity, nor that an organizational en-
tity’s involvement be concentrated in only one Process. To ensure that all Activities are assigned
to an appropriate organizational entity, the concept of Activity Ownership is described in the Ac-
tivity in 3.1.3.

1.5.6.2 Combining Documents. The Information developed in this standard, as shown in the
Output Information tables, may carry generic names similar to those used in other IEEE stan-
dards. This does not imply that the format and content specified in other IEEE standards must be
followed, nor that this information must be packaged into documents in any particular manner.
Combination of documents into a single document is acceptable as long as understanding is not
compromised.

EXTERNAL EXTERNAL

PROCESS

PROCESS PROCESS

| ACTIVITY

INPUT

$1 ACTIVITY
T [AcTVITY |

SOURCE DESTINATION

CURRENT

Fig2
Information Flow

2. Software Life Cycle Model Process

2.1 Overview. Many variables affect an organization’s selection of a software life cycle model
(SLCM). While this standard neither dictates nor defines a specific software life cycle (SLC) or its
underlying methodologies, it does require that an SLCM be chosen and used.

This Process provides the Activities required to identify candidate SLCMs and select the SLCM
to be used by other Activities in the standard.

This standard includes the specification of the non-time-ordered set of “Mandatory” Activities
that must be incorporated into an SLCM. An SLCM (e.g., Rapid Prototyping) defines a specific ap-
proach to producing software. It specifies a time-ordered set of Activities (including all of the
“Mandatory” Activities identified in this standard), which is to be used as the basis for mapping
the Activities of this standard. An SLCM may also propose standards for the performance of the
Activities or the deliverables produced during the project.

The SLC (defined for a project by the Activity in 3.1.3) is the time-ordered set of Activities or in-
stances of Activities to be performed. This set is to be mapped into a selected SLCM. The SLC also
identifies specific responsibilities for each Activity. While the same SLCM may be valid for sev-
eral projects, each project must define its own SLC.

Once an SLCM is selected, there are two additional required actions:

(1) Mapping the Activities described in this standard into the chosen life cycle (3.1.3).
(2) Identifying and documenting the standards and controls that govern the SLC (3.1.5).

Figure 3 illustrates this progression from this standard to a project-specific SLC.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

2.2 Activities List

(1) Identify Candidate Software Life Cycle Models
(2) Select Project Model

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

SOFTWARE LIFE ACTIVITIES
CYCLE PROCESS
|EEE Std ACTIVITY 1

1074-1991 | ACTIVITY 2

1 ACTIVITY n
SOFTWARE LIFE —_—— il ~
CYCLE MODEL =T =y ~ N IDENTIFY
— w—
—— ——— 7/ / ~ ~ MODELS
—_—— —— ~ ~
ACTIVITIES | APPLICABLE
STANDARDS
MODEL | ACTIVITY 1 AND
2 ACTIVITY 2 CONTROLS
ACTIVITY n
—— — — p—
— S — —
. - / Te=<T / /,/’ SELECT
} —~—], e —~—] - ONE
| ACTIVITIES |appicaBLe | OWNER
; _ PROJECT STANDARDS
| SOFTWARE 1 | aomviva | A | Ownenz
| LIFE CYCLE ! CONTROLS "
ACTIVITY n OWNERN INPUT TO PROJECT
MANAGEMENT
— — PLANNED
7 - ~ INFORMATION
~ _ rd
ACTIVITIES OWNER SCHEDULE | RESOURCES
‘ APPLICABLE
PROJECT | acTiviTy 1 | STANDARDS [OWNER PROJECT PROJECT
SOFTWARE 1 ACTIVITY 2 AND OWNER 2 SCHEDULE | RESOURCES
PROJECT " CONTROLS "
MANAGEMENT . .
PLANNED " .
| INFORMATION ACTIVITY n OWNERn
t
i
Fig3
Software Life Cycle Relationships

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

2.3 Identify Candidate Software Life Cycle Models

2.3.1 Input Information
Input Information Source
Process Activity
Available Software Life Cycle External '
Models)
Constraints External

2.3.2 Description. In this Activity, the set of Available SLCMs and applicable Constraints shall
be considered and Candidate SLCMs identified. A new model may be constructed by combining
elements of other SLCMs.

Maintenance is an iteration of the Software Life Cycle, and the SLCM must support this
iteration. :

2.3.3 Output Information
Output Information Destination
Process Activity
Candidate Software Life Cycle Software Life Cycle Model Select Project Model (2.4)
Model(s)
24 Select Project Model
2.4.1 Input Information
Input Information Source
Process Activity
Historical Project Records External
Constraints External
Candidate Software Life Cycle Software Life Cycle Model Identify Candidate Software Life
Model(s) Cycle Models (2.3)

2.4.2 Description. In this Activity, one of the candidate SLCMs from 2.3.2 is selected for use.

Based on the type of product (interactive, batch, transaction processing, etc.), Constraints, and
Historical Project Records, an SLCM analysis shall be conducted, and a decision made as to
which model will best support the management of the project.

It is possible for an organization to have more than one SLCM, but only one model may be
selected for a project. It is not necessary to have a single, organization-wide SLCM.

The SLCM shall provide the necessary framework for software projects to map the Activities to
produce the SLC (as shown in Fig 3). The mapping effort is specified in the Project Initiation
Process, Map Activities to Software Life Cycle Model (3.1.3).

24.3 Output Information
Output Information Destination
Process Activity
Selected Software Life Cycle Model | Project Initiation Map Activities to Software Life
Cycle Model (3.1.3)

21

3. Project Management Processes

These are the Processes that initiate, monitor, and control software projects throughout the
software life cycle (SLC).

3.1 Project Initiation Process

3.1.1 Overview. This Process contains those Activities that create the framework for the project.
During this Process, the SLC is created for this project, and plans for managing the project are
established. Standards, methodologies, and tools needed to manage and execute the project are
identified and a plan prepared for their timely implementation.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

3.1.2 Activities List

(1) Map Activities to Software Life Cycle Model
(2) Allocate Project Resources

(3) Establish Project Environment

(4) Plan Project Management

3.1.3 Map Activities to Software Life Cycle Model

3.1.3.1 Input Information
Input Information ‘ Source
Process Activity
Contractual Requirements External ,
Selected Software Life Cycle Model | Software Life Cycle Model Select Project Model (2.4)
Statement of Need Concept Exploration Refine and Finalize the Idea or
Need (4.1.7)

3.1.3.2 Description. The Activities identified in this standard shall be mapped into the selected
SLC Model (SLCM). Mapping involves establishing the chronological relationship of the Activi-
ties in this standard according to the selected SLCM. It may be necessary to use the Contractual
Requirements and the Statement of Need to accomplish this mapping. Appendix A provides sev-
eral examples of such mappings. Appendix B is a template for adding additional project-specific
information, such as document titles and applicable standards, to the mapped Activities.

The use of certain software development methods defines the execution of some Activities to be
automated. Compliance with this standard must be demonstrated by mapping those automated A¢-
tivities into the appropriate points within the SLCM.

Each Activity shall be assigned a single “owner.” An owner is a single point of contact, and is
identified by organizational position. Ownership is assumed by the person currently filling that
position. Each owner has the responsibility and authority to control and complete the Activity
within the planned schedule and budget. In addition, each owner is accountable for the quality of
the Activity outputs. If Activities are to be performed by multiple organizations, the owning orga-
nization and position of the owner shall be identified. In the case of multiple instances of an Ac-
tivity, an owner for each instance shall be identified.

IEEE)
Std 1074-1991

The resulting map of the Activities to be performed, with their corresponding owners, is the SLC
for this project. All “If Applicable” Activities that do not apply to this project shall be identified and

explained in the List of Activities Not Used.. \
3.1.3.3 Output Information
Output Information Destination i
Process Activity
Software Life Cycle Project Initiation Allocate Project Resources (3.1.4)
Establish Project Environment ‘
(3.1.5) : ‘
Plan Project Management (3.1.6) |
List of Activities Not Used Project Monitoring and Control Retain Records (3.2.6)]
3.1.4 Allocate Project Resources
3.14.1 Input Information
Input Information Source
Process Activity
Historical Project Records External _
Resources External |
Statement of Need Concept Exploration Refine and Finalize the Idea or
. Need (4.1.7)
Software Life Cycle Project Initiation 4 Map Activities to Software Life
Cycle Model (3.1.3)
System Functional Software System Allocation Decompose System Requirements
Requirements (4.2.5)

3.1.4.2 Description. Resource Allocations shall be identified at the Software Life Cycle’s Ac-
tivity level. Resources to be allocated include personnel, equipment, space, etc. Available Histori-
cal Project Records and the Statement of Need may provide valuable insight into Resource
Allocation. :

3.1.4.3 Output Information
Output Information . Destination
Process Activity
Resource Allocations Project Initiation Establish Project Environment
(3.1.5)
Plan Project Management (3.1.6)
Project Management and Control | Analyze Risks (3.2.3)

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

3.1.5 Establish Project Environment

3.1.5.1 Input Information
Input Information Source
Process Activity

Methodologies External

Standards External

Tools External

Software Library External

Purchased Software External

Contractual Requirements External

Analysis of Risks Project Monitoring and Control Analyze Risks (3.2.3)

Software Life Cycle Project Initiation Map Activities to Software Life
Cycle Model (3.1.3)

Defined Metrics Software Quality Management Define Metrics (3.3.4)

Collection and Analysis Methods Software Quality Management Define Metrics (3.3.4)

Resource Allocations | Project Initiation Allocate Project Resources (3.1.4)

Statement of Need Concept Exploration Refine and Finalize the Idea or
Need (4.1.7)

3.1.5.2 Description. The needs of the project for procedural and technological Tools, Method-
ologies, and Standards shall be defined. Approaches to these needs shall be identified and evalu-
ated. These approaches could include automated and nonautomated tools, modeling and
prototyping methodologies, environment simulators, test beds, and software libraries. Selection
criteria for Tools and Methodologies should include resource, schedule, safety, and security con-
siderations, and the project requirements defined in the Statement of Need and Analysis of Risks.
The project standards shall include requirements, design, coding, test, and documentation stan-
dards.

After evaluating the approaches, a set of Tools, Methodologies, Standards, and reusable or
Purchased Software shall be selected to provide the Project Environment, considering the Input In-
formation.

The selected tools shall be acquired or developed and installed for use in project Activities. The
owner of this Activity shall ensure that applicable personnel are familiar with the Tools,
Methodologies, and Standards selected for the project.

For assistance in identifying applicable standards, [9] should be consulted.

Prior to distribution of the Project Environment, the Training Process (7.4.4) shall be invoked.

3.1.5.3 Output Information
Output Information Destination
Process Activity
Project Environment Project Initiation Plan Project Management (3.1.6)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
3.1.6 Plan Project Management
3.1.6.1 Input Information
Input Information Source
Process Activity
Contractual Requirements External
Software Life Cycle Project Initiation Map Activities to Software Life
Cycle Model (3.1.3)
Resource Allocations Project Initiation Allocate Project Resources (3.1.4)
Project Environment Project Initiation Establish Project Environment
(3.1.5)
Contingency Planned Information | Project Monitoring and Control Perform Contingency Planning
' (3.2.4)
Project Management Reported Project Monitoring and Control .Manage the Project (3.2.5)
Information
Preliminary Statement of Need Concept Exploration Identify Ideas or Needs (4.1.3)
Recommendations Concept Exploration Conduct Feasibility Studies (4.1.5)
Statement of Need Concept Exploration Refine and Finalize the Idea or
Need (4.1.7)

3.1.6.2 Description. Project management planning requires collection and synthesis of a
great deal of information into a coherent and organized Software Project Management Planned
Information (SPMP) based on the SLC. This Activity shall initially define and subsequently up-
date the SPMP using the Input Information. This Activity shall detail the project organization and
assign responsibilities. Standards, methodologies, and tools for configuration management,
quality assurance, verification and validation, training, documentation, and development shall
be specified. This Activity shall apportion the project budget and staffing, and define schedules,
using the applicable Input Information. It also shall define procedures for scheduling, tracking,
and reporting, and shall address considerations such as regulatory approvals, required certifica-
tions, user involvement, subcontracting, and security.

This Activity shall include planning for support, problem reporting, and retirement. Support
planning shall include methods for supporting the software in the operational environment. Prob-
lem Reporting and Resolution Planning Information shall include, at a minimum, defining a
method for logging, routing, and handling problem reports; categories of severity; and the method
for verifying problem resolution. Retirement Planned Information shall address issues such as
probable retirement date, archiving, replacement, and residual support issues.

As new or revised Input Information is received in this Activity, project plans shall be updated
and further project planning shall be based upon these updated plans.

Additional guidance for SPMPs can be found in [17].

Prior to distribution of the SPMP, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
3.1.6.3 Output Information
Output Information Destination
Process Activity
Problem Reporting and Resolution | Project Monitoring and Control Manage the Project (3.2.5)
Planned Information
Analyze Risks (3.2.3)

Implement Problem Reporting
Method (3.2.7)

Retirement Planned Information

Project Monitoring and Control

Manage the Project (3.2.5)

Retirement

Notify User (6.4.3)

Conduct Parallel Operations (If
Applicable) (6.4.4)

Retire System (6.4.5)
Software Project Management Most Processes Most Activities
Planned Information
Support Planned Information Project Monitoring and Control Analyze Risks (3.2.3)
Manage the Project (3.2.5)

Operation and Support

Maintain Support Request Log
(6.2.5)

Operate the System (6.2.3)

Provide Technical Assistance and
Consulting (6.2,4)

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

3.2 Project Monitoring and Control Process

3.2.1 Overview. Monitoring and control is an iterative Process of tracking, reporting, and
managing costs, schedules, problems, and performance of a project throughout its life cycle. The
progress of a project is reviewed and measured against project milestones established in the Soft-
ware Project Management Planned Information (SPMP).

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding

further in this section.
3.2.2 Activities List

(1) Analyze Risks

(2) Perform Contingency Planning .

(3) Manage the Project
(4) Retain Records

(5) Implement Problem Reporting Method

3.2.3 Analyze Risks
3.2.3.1 Input Information
Input Information Source
Process Activity

Procurement/Lease Data External

System Constraints External

Historical Project Records External

Support Planned Information Project Initiation Plan Project Management (3.1.6)

Resource Allocations Project Initiation Allocate Project Resources (3.1.4)

Software Project Management Project Initiation Plan Project Management (3.1.6)

Planned Information

Problem Reporting and Resolution | Project Initiation Plan Project Management (3.1.6)

Planned Information

Transition Impact Statement (If Concept Exploration Plan System Transition (If

Applicable) Applicable) (4.1.6)

Statement of Need Concept Exploration Refine and Finalize the Idea or
Need (4.1.7)

Software Interface Requirements | Requirements Define Interface Requirements
(5.14)

Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)

Software Design Description Design Perform Detailed Design (5.2.7)

Integration Planned Information Implementation Plan Integration (5.3.7)

Analysis Reported Information Verification and Validation Collect and Analyze Metric Data
(7.1.5)

Test Planned Information(s) Verification and Validation Plan Testing (7.1.6)

Test Summary Reported Verification and Validation Execute the Tests (7.1.8)

Information

3.2.3.2 Description. Because risk management often involves trade-offs between many
factors, risk analysis is an iterative Activity performed throughout a project’s life. This analysis

|
;
|
|
i

IEEE .
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

shall consider project risks, including technical, economic, operational support, and schedule
risks.

Factors that may impair, prevent, or require technical trade-offs for accomplishing the techni-
cal objectives of the project or product shall be identified and analyzed. Technical factors may
include such items as real-time performance, safety considerations, security considerations, im-
plementation considerations, testability, and maintainability. Analytical approaches for techni-
cal risk assessment may include static and dynamic modeling and simulation, prototyping,
independent reviews, and audits.

Cost, resource factors, earnings, liabilities, or other economic measures involved in the project
shall be identified and analyzed. The objective of this analysis is to identify potential economic
opportunities, losses, and trade-offs. Analytical approaches for economic risk assessment may
include financial analysis, such as return on investment and possible incentive and penalty
contract clauses.

Operational and support risk analysis shall determine the probability that the delivered soft-
ware will meet the user’s requirements. Operational and support requirements such as interoper-
ability, security, performance, installability, and maintainability shall be considered. Both
completeness of, and conformance to, these requirements shall be analyzed.

Cost, resource, technical, and other requirements shall be evaluated for their impact on project
schedule. This analysis should consider project interdependence and the effect of schedule ad-
justments. Analytical approaches for schedule risk assessment may include critical path
analysis and resource leveling techniques.

3.2.3.3 Output Information
Output Information Destination
~ Process Activity
Analysis of Risks Project Initiation Establish Project Environment
(3.1.5)
Project Monitoring and Control Perform Contingency Planning
(3.2.4)
Requirements Define and Develop Software
Requirements (5.1.3)
Verification and Validation Plan Verification and Validation
(7.1.3)
3.2.4 Perform Contingency Planning
3.24.1 Input Information
Input Information Source .
Process Activity
Analysis of Risks Project Monitoring and Control Analyze Risks (3.2.3)
Analysis Reported Information Verification and Validation Collect and Analyze Metric Data
(7.1.5)

3.2.4.2 Description. This Activity shall define alternative actions in the event that a given
risk materializes, using the Input Information. Contingency Planned Information shall include
resource planning and the establishment of trigger conditions that would invoke a contingency
action. Contingency actions may include consideration of revised requirements, delay, or can-
cellation of the project.

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
3.24.3 Output Information
l
Output Information Destination o
Process Activity ‘ \
Contingency Planned Information | Project Initiation Plan Project Management (3.1.6) '
Project Monitoring and Control Manage the Project (3.2.5) \
3.2.5 Manage the Project |
3.2.5.1 Input Information
Input Information Source
: Process Activity]
Problem Reporting and Resolution | Project Initiation Plan Project Management (3.1.6) ‘
Planned Information j |
Retirement Planned Information Project Initiation Plan Project Management (3.1.6) |
Software Project Management Project Initiation Plan Project Management (3.1.6))
Planned Information
Support Planned Information Project Initiation Plan Project Management (3.1.6)

Contingency Planned Information

Project Monitoring and Control

Perform Contingency Planning
(3.2.4)

Software Quality Management

Software Quality Management

Plan Software Quality

Planned Information Management (3.3.3)
Quality Improvement Software Quality Management Identify Quality Improvement
Recommendations Needs (3.3.6))

Plan Integration (5.3.7)
Install Software (6.1.5)

Execute Verification and Validation
Tasks (7.1.4)

Collect and Analyze Metric Data
(7.1.5)

Plan Testing (7.1.6)
Execute the Tests (7.1.8)

Integration Planned Information Implementation
Installation Reported Information | Installation
Evaluation Reported Information | Verification and Validation

i ———

Analysis Reported Information Verification and Validation

Verification and Validation
Verification and Validation

Test Planned Information(s)

Test Summary Reported
Information

Status Reported Information

Software Configuration Perform Status Accounting (7.2.6)

Management

Operate the System (6.2.3)

Feedback Data Operation and Support

3.2.5.2 Description. Throughout the life cycle, the progress of the project shall be reviewed and
measured against the established milestones and budget in the plan(s) (i.e., predicted and
planned progress versus actual progress, and . budgeted versus actual expenditures). Project track-
ing and reporting includes analyzing the Input Information, collecting other pertinent data, and
monitoring project Activities. Anomalies may result. Risk management procedures must be im-
plemented to control risk.

This Activity also encompasses the day-to-day management of the project needed to ensure suc-
cessful project completion. Information collected within this Activity is used to improve the
performance of the project.

Prior to distributing the Project Management Reported Information, the Verification and Vali-
dation Process (7.1.4) should be invoked.

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
3.2.5.3 Output Information
Output Information Destination
Process Activity
Project Management Reported Project Initiation Plan Project Management (3.1.6)

Information

Project Monitoring and Control

Retain Records (3.2.6)

External

Anomalies Project Monitoring and Control Implement Problem Reporting
Method (3.2.7)
3.2.6 Retain Records
3.2.6.1 Input Information
Input Information Source
Process Activity
Documentation Retention External
Standards
Original Records Originating Process Originating Activity
Software Project Management Project Initiation Plan Project Management (3.1.6)

Planned Information

Software Configuration
Management Planned Information

Software Configuration
Management

Plan Configuration Management
(7.2.3)

Documentation Planned
Information

Documentation Development

Plan Documentation (7.3.3)

Published Document

Documentation Development

Produce and Distribute
Documentation (7.3.5)

3.2.6.2 Description. This Activity accepts the original project documentation and records from
each originating Process. The records shall be retained in accordance with the SPMP, Software
Configuration Management Planned Information, and any external document retention stan-
dards. Input Information documentation becomes part of the Historical Project Records of the or-
ganization. Uses for these records may include project audits, future project planning, and

corporate accounting.

3.2,6.3 Output Information

Output Information

Destination

Process

Activity

Historical Project Records

External

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

3.2.7 Implement Problem Reporting Method

3.2.7.1 Input Information
Input Information Source
Process Activity
Anomalies External
Creating Process
Controlled Item Software Configuration Perform Configuration Control
_ Management (7.2.5)
Problem Reporting and Resolution | Project Initiation Plan Project Management (3.1.6)
Planned Information

3.2.7.2 Description. This Activity accepts Anomalies from any source and prepares a problem
report. The problem report shall contain information as specified in the Problem Reporting and
Resolution Planned Information (PR&RP). Possible problem solutions may be suggested by the
problem reporter. Problems may be resolved through corrections or enhancements (as defined in
the PR&RP). Corrections are documented in the Correction Problem Reported Information for
further consideration. Enhancements may be documented in the Enhancement Problem Reported
Information and are possible candidates for new projects. A Report Log shall be maintained to as-
sure that all problems are tracked until they are resolved and the resolution has been approved.
This Activity shall also analyze the problem including the Controlled Item, the problem report,
and the Report Log to make the following determinations:

(1) What the anomalies are.

(2) Source and cause of product or process problem.

(3) Product(s) or process(es) presumed to contain the error, including documentation.
(4) Problem severity.

(5) Course of corrective action.

Problem reports that originate from an Activity not included in this standard are noted as re-
solved within this Activity and forwarded for appropriate action to the responsible authority.

This Activity shall monitor the problem correction efforts performed by the responsible Process,
shall determine (according to the PR&RD) that the implementation of the solution by the responsi-
ble Process has been completed, and shall then record the resolution of the problem in the Resolved
Problem Reported Information. The Resolved Problem Reported Information shall be distributed
as specified in the Problem Reporting and Resolution Planned Information.

Further information related to this Activity may be found in [15].

The Resolved Problem Reported Information should be made available to the Process or external
source that reported the problem. . "

Prior to distribution of a Problem Reported Information or the Report Log, the Software Configu-
ration Management Process (7.2.5) should be invoked.

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
3.2.7.3 Output Information
Output Information Destination
Process Activity

Resolved Problem Reported External

Information
Creating Process
Software Quality Management Manage Software Quality (3.3.5)
Verification and Validation Execute Verification and Validation

Tasks (7.1.4)

Collect and Analyze Metric Data
(7.1.5)

Report Log Software Quality Management Manage Software Quality (3.3.5)
Verification and Validation Collect and Analyze Metric Data
(7.1.5)
Enhancement Problem Reported Concept Exploration Identify Ideas or Needs (4.1.3)
Information
Verification and Validation Collect and Analyze Metric Data
(7.1.5)
Correction Problem Reported Maintenance Reapply Software Life Cycle (6.3.3)
Information
Verification and Validation Collect and Analyze Metric Data

(7.1.5)

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

3.3 Software Quality Management Process

3.3.1 Overview. An important role of Software Quality Management is to address the planning
and administration of the Software Quality Assurance (SQA) program. It further addresses such
concerns as client satisfaction (which transcends adherence only to established technical re-
quirements), and internal quality improvement programs. The responsibilities, functions, obli-
gations, and duties of an SQA program are properly a constituent part of all Activities in the
Software Life Cycle, and thus are interspersed into each Activity as appropriate. Software Quality
Management is the methodology used in this standard for tying the SQA responsibilities together
with other Quality concerns. The Activities of this Process span the entire Software Life Cycle
(SLC).

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

3.3.2 Activities List

(1) Plan Software Quality Management
(2) Define Metrics

(3) Manage Software Quality

(4) Identify Quality Improvement Needs

3.3.3 Plan Software Quality Management

3.3.3.1 Input Information
Input Information Source
Process Activity
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Defined Metrics Software Quality Management Define Metrics (3.3.4)
Collection and Analysis Methods Software Quality Management Define Metrics (3.3.4)

3.3.3.2 Description. A Software Quality Management program shall be initiated and dccu-

mented.

It shall include a Software Quality Assurance program, which may be documented separately.

The goals of the Software Quality Management program are to identify SQA actions, describe
supplier quality requirements, address client satisfaction, and provide for the identification of
quality improvement needs.

Overall quality objectives are derived using the organizational guidelines and contractual re-
"quirements from the Software Project Management Planned Information.

The program information shall include the Software Quality Management organization and
responsibilities, and the tools, techniques, and methodologies to implement the program.

The goals and standards to be applied to the project shall also be identified.

The goals are further expanded into quality objectives and milestones in the Software Quality
Management Planned Information.

Further information related to this Activity may be found in [2] and [8].

Prior to distribution of the Software Quality Management Planned Information, the following
Processes shall be invoked: ’

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
3.3.3.3 Output Information
Output Information Destination
Process Activity
Software Quality Management Project Monitoring and Control Manage the Project (3.2.5)

Planned Information

Software Quality Management Define Metrics (3.3.4)
Manage Software Quality (3.3.5)

Identify Quality Improvement
Needs (3.3.6)

Verification and Validation Plan Verification and Validation
(7.1.3)
Collect and Analyze Metric Data
(7.1.5)
3.3.4 Define Metrics
3.34.1 Input Information
Input Information Source
- Process Activity
Software Quality Management Software Quality Management Plan Software Quality
Planned Information Management (3.3.3)
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information

3.3.4.2 Description. The metrics required for the project, based on the Software Project Man-
agement Planned Information, shall be defined. Metrics should be applied to the products of the
project and to the processes that affect the project. The metrics shall be used throughout the SLC. For
each Defined Metric, Collection and Analysis Methods shall be specified.
Further information related to this Activity may be found in [6], [7], [16], and [19].
Prior to the distribution of Defined Metrics, the Verification and Validation Process (7.1.4) shall
be invoked.

3.34.3 Output Information
Output Information Destination
Process Activity
Defined Metrics Software Quality Management Manage Software Quality (3.3.5)
Plan Software Quality
Management (3.3.3)
Project Initiation Establish Project Environm’t (3.1.5)
Verification and Validation - Collect and Analyze Metric Data
(7.1.5)
Collection and Analysis Methods Software Quality Management Plan Software Quality
Management (3.3.3)
Manage Software Quality (3.3.5)
Verification and Validation Collect and Analyze Metric Data
(7.1.5)
Project Initiation Establish Project Environm’t (3.1.5)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
3.3.5 Manage Software Quality
3.3.5.1 Input Information
Input Information Source
Process Activity

Report Log Project Monitoring and Control Implement Problem Reporting
Method (3.2.7)

Resolved Problem Reported Project Monitoring and Control Implement Problem Reporting

Information Method (3.2.7)

Software Quality Management Software Quality Management Plan Software Quality

Planned Information Management (3.3.3)

Defined Metrics Software Quality Management Define Metrics (3.3.4)

Collection and Analysis Methods Software Quality Management Define Metrics (3.3.4)

Quality Improvement Software Quality Management Identify Quality Improvement

Recommendations Needs (3.3.6)

Analysis Reported Information Verification and Validation Collect and Analyze Metric Data
(7.1.5)

Post-Operation Review Reported Retirement Retire System (6.4.5)

Information

3.3.5.2 Description. Using

the listed Input Information, this Activity implements the provi-

sions of the Software Quality Management Planned Information. Based on the Software Quality
Management Planned Information quality objectives and milestones, progress shall be measured
and reported in Project Quality Assessments.

3.3.5.3 Output Information
Output Information Destination
Process Activity

Project Quality Assessments Verification and Validation Execute Verification and Validation

Tasks (7.1.4)
3.3.6 Identify Quality Improvement Needs
3.3.6.1 Input Information
Input Information Source
Process Activity

Software Project Management Project Initiation Plan Project Management (3.1.6)

Planned Information

Software Quality Management Software Quality Management Plan Software Quality

Planned Information Management (3.3.3)

Software Verification and Verification and Validation Plan Verification and Validation

Validation Planned Information (71.3)

Evaluation Reported Information | Verification and Validation Execute Verification and Validation
Tasks (7.1.4)

Analysis Reported Information Verification and Validation Collect and Analyze Metric Data
(7.1.5)

Test Planned Information(s) Verification and Validation Plan Testing (7.1.6)

Training Planned Information(s) Training Plan Training Program (7.4.3)

IEEE
Std 1074-1991

3.3.6.2 Description. This Activity identifies needs for quality improvements and outputs the
Quality Improvement Recommendations in accordance with the Software Quality Management
Planned Information. This is accomplished by using the Input Information. These recommenda-
tions shall include their impact on the quality of the software delivered. In addition, applicable
tools, techniques, and methods for implementation of these recommendations should be identified.

3.3.6.3 Output Information
Output Information Destination
Process Activity
Quality Improvement Project Monitoring and Control Manage the Project (3.2.5)
Recommendations
Software Quality Management Manage Software Quality (3.3.5)
External

4, Pre-Development Processes \

These are the Processes that must be performed before software development can begin.

4.1 Concept Exploration Process

4.1.1 Overview. A development effort is initiated with the identification of an idea or need for a
system to be developed, whether it is a new effort or a change to all or part of an existing applica-
tion. The Concept Exploration Process examines the requirements at the system level, producing a
Statement of Need that initiates the System Allocation or Requirements Process. The Concept Ex- “
ploration Process includes the identification of an idea or need, its evaluation and refinement,
and, once boundaries are placed around it, generation of a Statement of Need for developing a

system.
Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding -

further in this section.
4.1.2 Activities List

(1) Identify Ideas or Needs

(2) Formulate Potential Approaches

(3) Conduct Feasibility Studies

(4) Plan System Transition (If Applicable)
"(5) Refine and Finalize the Idea or Need

4.1.3 Identify Ideas or Needs
4.1.3.1 Input Information
Input Information Source
Process Activity
Changing Software Requirements | External
Customer Requests External
Ideas from Within the External
Development Organization
Marketing Information Sources . External
User Requests External
Enhancement Problem Reported Project Monitoring and Control Implement Problem Reporting
Information Method (8.2.7)
Maintenance Recommendations Maintenance Reapply Software Life Cycle (6.3.3)
| Feedback Data : Operation and Support Operate the System (6.2.3)

4.1.3.2 Description. An idea or a need for a new or modified system is generated from one or more
of the sources identified in the table above. Input Information to the Preliminary Statement of Need
shall be documented, outlining function and performance needs. Changing Software Require-
ments may come from legislation, regulations, national and international standards, mainte-

nance, etec.

37

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Prior to distribution of the Preliminary Statement of Need to other Activities, the Verification
and Validation Process (7.1.4) may be invoked.

4,1.3.3 Output Information
Output Information Destination
Process Activity
Preliminary Statement of Need Project Initiation Plan Project Management (3.1.6)
Concept Exploration Formulate Potential Approaches
(4.1.4)
Conduct Feasibility Studies (4.1.5)
Plan System Transition (If
Applicable) (4.1.6)
Refine and Finalize the Idea or
Need (4.1.7)
4.1 4 Formulate Potential Approaches
4.1.4.1 Input Information
Input Information Source
Process Activity

Development Resources and External ’

Budget

Market Availability Data External

Resource Information External

Preliminary Statement of Need Concept Exploration Identify Ideas or Needs (4.1.3)

4.1.4.2 Description. Using Resource Information, budget data, and availability of third party
software products, Potential Approaches shall be developed based upon the Preliminary Statement
of Need and any data pertinent to the decision to develop or acquire the system. The Formulate Po-
tential Approaches Activity shall also produce the constraints and benefits with regard to develop-
ment of the software. The Constraints and Benefits should include all aspects of the life cycle.
Prior to release of Constraints and Benefits and Potential Approaches, the following Processes

may be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)

4.1.4.3 Output Information
Output Information Destination
Process . Activity
_Constraints and Benefits Concept Exploration Conduct Feasibility Studies (4.1.5)
Refine and Finalize the Idea or
Need (4.1.7)
Potential Approaches Concept Exploration Conduct Feasibility Studies (4.1.5)
Refine and Finalize the Idea or
Need (4.1.7)

- : IEEE
SOFTWARE LIFE CYCLE PROCESSES ' Std 1074-1991

4.1.5 Conduct Feasibility Studies

4.1.5.1 Input Information
Input Information Source
Process Activity

Preliminary Statement of Need Concept Exploration Identify Ideas or Needs (4.1.3)

Constraints and Benefits Concept Exploration Formulate Potential Approaches
4.1.4)

Potential Approaches Concept Exploration Formulate Potential Approaches
(4.14)

4.1.5.2 Description. The feasibility study shall include the analysis of the idea or need, Poten-
tial Approaches, and all life cycle Constraints and Benefits. Modeling and prototyping techniques
may be considered. In conducting the feasibility study, there may be a need to decide whether to
make or buy the system, in part or in total. Justification for each Recommendation shall be fully
documented and formally approved by all concerned organizations (including the user and the
developer).
Prior to the distribution of the Recommendations, the Verification and Validation Process
(7.1.4) may be invoked.

4.1.5.3 Output Information
Output Information Destination
Process Activity
Recommendations Project Initiation Plan Project Management (3.1.6)
Concept Exploration Plan System Transition (If

Applicable) (4.1.6)
Refine and Finalize the Idea or

Need (4.1.7)
System Allocation Analyze Functions (4.2.3)
4.1.6 Plan System Transition (If Applicable)
4.1.6.1 Input Information
Input Information Source
Process Activity

Retirement Planned Information External

Preliminary Statement of Need Concept Exploration Identify Ideas or Needs (4.1.3)
Recommendations Concept Exploration Conduct Feasibility Studies (4.1.5)

4.1.6.2 Description. This Activity is applicable only when an existing system (automated or
manual) is being replaced with a new system. The transition shall be planned and documented in
accordance with the Retirement Planned Information of the system being replaced, Preliminary
Statement of Need, and recommended solutions. Transition strategies and tools shall be part of the
Transition Planned Information. A Transition Impact Statement shall also be produced.

IEEE '
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Prior to distribution of the Transition Planned Information, the following Processes may be
invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

4.1.6.3 Output Information
Output Information Destination
Process Activity
Transition Impact Statement Project Monitoring and Control Analyze Risks (3.2.3)
Transition Planned Information Concept Exploration Refine and Finalize the Idea or
Need (4.1.7)
Installation Plan Installation (6.1.3)

4.1.7 Refine and Finalize the Idea or Need

4.1.7.1 Input Information
Input Information Source
. Process Activity
Preliminary Statement of Need Concept Exploration Identify Ideas or Needs (4.1.3)
Constraints and Benefits Concept Exploration Formulate Potential Approaches
(4.1.4)
Potential Approaches Concept Exploration Formulate Potential Approaches
: (4.1.4) 1
! Recommendations Concept Exploration Conduct Feasibility Studies (4.1.5)

A Transition Planned Information (If | Concept Exploration Plan System Transition (If
! Applicable) Applicable) (4.1.6)

4.1.7.2 Description. The idea or need shall be refined by analyzing the Preliminary State-
ment of Need, the Potential Approaches, Recommendations, and Transition Planned Information
(If Applicable). An approach shall be selected and documented that refines the initial idea or need.
Based upon the refined ideas or needs, a Statement of Need shall be generated that identifies the
software idea, need, or desire, the recommended approach for its implementation, and any data
pertinent to a management decision concerning the initiation of the described development effort.
Prior to distribution of the Statement of Need, the following Processes may be invoked:

(1) Verification and Validation (7.1.4)
(2) Documentation Development (7.3.4)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
4.1.7.3 Output Information
Output Information Destination
Process Activity
Statement of Need Project Initiation Map Activitieso Software Life

Cycle Model (3.1.3)

Allocate Project Resources (3.1.4)

Establish Project Environment
(8.1.5)

Plan Project Management (3.1.6)

" Project Monitoring and Control

Analyze Risks (3.2.3)

System Allocation

Analyze Functions (4.2.3)

Develop System Architecture
(4.2.4)

41

e e

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

4.2 System Allocation Process

4.2.1 Overview. The System Allocation Process is the bridge between Concept Exploration and
the definition of software requirements. This Process maps the required functions to software and
hardware.

The Statement of Need forms the basis for the analysis of the system, resulting in system re-
quirements. This definition determines the inputs to the system, the processing to be applied to the
inputs, and the required outputs. The software and hardware operational functions are also identi-
fied in these definitions.

The architecture of the system must be developed during the System Allocation Process. The
system functions are derived from system requirements, and the hardware, software, and opera-
tional requirements are identified. These requirements are analyzed to produce System Func-
tional Software Requirements and System Functional Hardware Requirements. The hardware,
software, and operational interfaces must be defined and closely monitored. The hardware re-
quirements analysis is not discussed in this document since it is beyond the scope of this standard.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

4.2.2 Activities List

(1) Analyze Functions

(2) Develop System Architecture

(3) Decompose System Requirements

4.2.3 Analyze Functions

4.2.3.1 Input Information

Input Information Source
. Process Activity
Recommendations Concept Exploration Conduct Feasibility Studies (4.1.5)
Statement of Need Concept Exploration Refine and Finalize the Idea or
Need (4.1.7)

4.2.3.2 Description. The Statement of Need and Recommendations for solution shall be ana-
lyzed to identify the functions of the total system. Once the functions have been defined, they are
delineated in the Functional Description of the System and used to develop the system architecture
and identify the hardware and software functions.
Prior to the distribution of the Functional Description of the System, the following Processes
shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
4233 Output Information
Output Information Destination
Process Activity
Functional Description of the System Allocation Develop System Architecture
System 4.2.4)
Decompose System Requirements
(4.2.5)
Requirements Define Interface Requirements
(5.1.4)
424 Develop System Architecture
4.24.1 Input Information
Input Information Source
Process Activity
‘Project Environment Project Initiation . Establish Project Environment
(3.1.5)
Statement of Need Concept Exploration Refine and Finalize the Idea or
Need (4.1.7)
Functional Description of the System Allocation Analyze Functions (4.2.3)
System

4.2.4.2 Description. The Statement of Need and the Functional Description of the System shall
be transformed into the System Architecture, using the methodology, standards, and tools estab-
lished by the organization. The System Architecture becomes the basis for the Design Process and

the determination of the hardware and software functions.

4.24.3 Output Information
Output Information Destination
Process Activity
System Architecture System Allocation Decompose System Requirements
(4.2.5)
Design Perform Architectural Design
(5.2.3)
4.2.5 Decompose System Requirements
4.2.5.1 Input Information
Input Information Source
Process Activity
Functional Description of the System Allocation Analyze Functions (4.2.3)
System
System Architecture System Allocation Develop System Architecture

(4.24)

IEEE
Std 1074-1991

4.2.5.2 Description. The system functions documented in the Functional Description of the
System shall be divided according to the System Architecture to form software requirements,
hardware requirements, and the system interfaces. The System Interface Requirements define
the interfaces that are external to the system and the interfaces between configuration items that
comprise the system. Note that the hardware requirements go to an external destination since they
are beyond the scope of this standard. The decomposition of the system may result in requirements
for more than one project. Each software project shall be managed individually.
Prior to distribution of the requirements produced by this Activity, the following Processes shall
be invoked:

(1) Verification and Validation (7.1.4)

(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

(4) Training (7.4.4)

4.25.3 Output Information
Output Information Destination
Process Activity
System Functional Hardware External
Requirements
System Functional Software Project Initiation Allocate Resources (3.1.4)
Requirements
Requirements Define and Develop Software
Requirements (5.1.3)
Define Interface Requirements
(5.1.4)
System Interface Requirements (If | Requirements Define and Develop Software
Applicable) Requirements (5.1.3)
Define Interface Requirements
(5.1.4)
External

5. Development Processes

These are the Processes that must be performed during the development of a software product.
5.1 Requirements Process

5.1.1 Overview. This Process includes those Activities directed toward the development of soft-
ware requirements. In the development of a system containing both hardware and software com-
ponents, the Requirements Process follows the development of total system requirements, and the
functional allocation of those system requirements to hardware and software. For a system in-
volving only software development, this effort begins once the Statement of Need is completed.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

65.1.2 Activities List
(1) Define and Develop Software Requirements
(2) Define Interface Requirements

(3) Prioritize and Integrate Software Requirements

5.1.3 Define and Develop Software Requirements

5.1.3.1 Input Information
Input Information Source
Process Activity
Installation Support Requirements | External
System Constraints External
Project Environment Project Initiation Establish Project Environment
(3.1.5)
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Analysis of Risks Project Monitoring and Control Analyze Risks (3.2.3)
System Functional Software System Allocation Decompose System Requirements
Requirements (If Applicable) (4.2.5)
System Interface Requirements (If | System Allocation Decompose System Requirements
Applicable) (4.2.5)

5.1.3.2 Description. The first Activity in this Process, defining the software requirements, is
iterative in nature. Whether the software development constitutes the entire project or is part of a
system (hardware and software), software requirements, including constraints, shall be gener-
ated from Input Information documents and the results of modeling, prototyping, or other tech-
niques. '

IEEE -
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Using the above Input Information, the developer shall analyze the software requirements to de-
termine traceability, clarity, validity, testability, safety, and any other project-specific character-
istics. The use of a comprehensive methodology is recommended to ensure that requirements are
complete and consistent. Techniques such as structured analysis, modeling, prototyping, or
transaction analysis are helpful in this Activity. When needed, the requirements for a data base
shall be included in the requirements.

The Preliminary Software Requirements shall include consideration of System Constraints
such as timing, sizing, language, marketing restrictions, and technology.

Further information related to this Activity may be found in [5].

Prior to the distribution of the Preliminary Software Requirements and Installation Require-
ments, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

5.1.3.3 Output Information
Output Information ‘ Destination
. Process Activity

Preliminary Software Requirements Prioritize and Integrate Software
Requirements Requirements (5.1.5)

Define Interface Requirements

(5.1.4)

Verification and Validation) Plan Testing (7.1.6)
Installation Requirements Installation Plan Installation (6.1.3)
5.14 Define Interface Requirements
5.1.4.1 Input Information
Input Information Source
Process Activity

System Constraints External
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Preliminary Software Requirements Define and Develop Software
Requirements Requirements (5.1.3)
Functional Description of the System Allocation Analyze Functions (4.2.3)
System (If Applicable)
System Functional Software System Allocation Decompose System Requirements
Requirements (If Applicable) (4.2.5)
System Interface Requirements (If | System Allocation Decompose System Requirements
Applicable) (4.2.5)

5.1.4.2 Description. All user, software, and hardware interfaces shall be defined using the ap-
plicable Input Information. These interfaces shall be defined either as requirements or as con-
straints and shall be reviewed by all involved parties.

The user interface is critical in determining the usability of the system. The user interface def-
inition shall specify not only the information flow between the user and the system but also how a
user goes about using the system. For a complex interactive system, user interface definition may
be a separate document.

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

The Software Interface Requirements shall specify all software interfaces required to support
the development and execution of the software system. Software interfaces may be affected by Sys-
tem Constraints including operating system, data base management system, language compiler,
tools, utilities, network protocol drivers, and hardware interfaces.

Prior to the distribution of the Output Information, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Documentation Development (7.3.4)
(3) Software Configuration Management (7.2.5)

5.1.4.3 Output Information
Output Information Destination
Process Activity
Software Interface Requirements | Project Monitoring and Control Analyze Risks (3.2.3)
Requirements Prioritize and Integrate Software
Requirements (5.1.5)
Design Design Interfaces (5.2.5)
Implementation Create Operating Documentation
(5.3.6)
5.1.5 Prioritize and Integrate Software Requirements
5.1.5.1 Input Information
Input Information Source
Process Activity

Define and Develop Software
Requirements (5.1.3)

Preliminary Software Requirements

Requirements

Define Interface Requirements
(5.1.4)

'} Software Interface Requirements | Requirements

5.1.5.2 Description. The functional and performance requirements shall be reviewed and a
prioritized list of requirements shall be produced, addressing any tradeoffs that may be needed.
The organization of the emerging Software Requirements shall be reviewed and revised as neces-
sary. While completing the requirements, a particular design shall not be imposed -(i.e., design
decisions are made in the Design Process). The Software Requirements shall describe the func-
tional, interface, and performance requirements. It shall also define the required operational and
support environments. |

Further information related to this Activity may be found in [5]. 1
Prior to distribution of the Software Requirements, the following Processes shall be invoked: |

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

47

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
5.1.5.3 Output Information
Output Information Destination
Process Activity
Software Requirements Project Monitoring and Control Analyze Risks (3.2.3)
Design All Activities (5.2)
Implementation Create Test Data (5.3.3)
Plan Integration (5.3.7)
Verification and Validation Plan Testing (7.1.6)
Develop Test Specification(s)
(7.1.7)
Training Plan Training Program (7.4.3)
5.2 Design Process

5.2.1 Overview. During the Design Process, major decisions are made that determine the
structure of the system. The objective of the Design Process is to develop a coherent, well-organized
representation of the software system that meets the Software Requirements.

The Design Process maps the “what to do” of requirements specifications into the “how to do it” of
design specifications. At the architectural design level, the focus is on the functions and structure
of the software components that comprise the software system. At the detailed design level, the em-
phasis is on the data structures and algorithms that are used within each software component.

The Perform Architectural Design and Perform Detailed Design Activities are usually carried
out in sequence because detailed design is derived from the architectural design. They differ from
each other in the level of design detail. Other Design Process Activities may be carried out in par-
allel with these Activities.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

5.2.2 Activities List

(1) Perform Architectural Design

(2) Design Data Base (If Applicable)

(3) Design Interfaces

(4) Select or Develop Algorithms (If Applicable)
(5) Perform Detailed Design

5.2.3 Perform Architectural Design

5.2.3.1 Input Information
Input Information Source
Process Activity

Software Project Management Project Initiation . | Plan Project Management (3.1.6)

Planned Information

System Architecture System Allocation Develop System Architecture
(4.2.4)

Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

5.2.3.2 Description. The Perform Architectural Design Activity transforms the Software Re-
quirements and the System Architecture into high-level design concepts. During this Activity the
software components constituting the software system and their structures are identified. Pur-
chased software and the contents of the software libraries (as referenced in the SPMP) may influ-
ence the architectural design. Techniques such as modeling and prototyping may be used to
evaluate alternative designs if called for in the SPMP.

By the end of the Perform Architectural Design Activity, the design description of each of the
software components shall have been completed. The data, relationships, and constraints shall be
specified. In addition, all internal interfaces (among components) shall be defined. This Activity
shall create the Software Architectural Design Description.

Prior to distribution of the Software Architectural Design Description, the following Processes
shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

52.3.3 Output Information
Output Information Destination
Process Activity
Software Architectural Design Design Perform Detailed Design (5.2.7)
Description
5.2.4 Design Data Base (If Applicable)
52.4.1 Input Information
Input Information Source
Process Activity
Project Environment Project Initiation Establish Project Environment
' 3.1.5)
Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)

5.2.4.2 Description. The Design Data Base Activity applies when a data base is to be created as
a part of the project. This Activity shall specify the information structure outlined in the Software
Requirements and its characteristics within the software system. The Design Data Base Activity
involves three separate but dependent steps: conceptual data base design, logical data base design,
and physical data base design. Techniques such as data dictionary, data base optimization, and
data modeling may be considered. Requirements are molded into an external schema that de-
scribes data entities, attributes, relationships, and constraints. The various external schemas are
integrated into a single conceptual schema. The conceptual schema is then mapped into an im-
plementation-dependent logical schema. Finally, the physical data structures and access paths
are defined. The result of this Activity is to generate the Data Base Description.

Prior to distribution of the Data Base Description, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
524.3 Output Information
Output Information Destination
Process Activity
Data Base Description Design Perform Detailed Design (5.2.7)
5.2.6 Design Interfaces
5.2.5.1 Input Information
Input Information Source
Process Activity
Software Interface Requirements | Requirements Define Interface Requirements
(5.1.4)
Software Requirements Requirements Prioritize and Integrate Software

Requirements (5.1.5)

5.2.5.2 Description. The Design Interfaces Activity shall be concerned with the interfaces of
the software system contained in the Software Requirements and Software Interface Require-
ments. This Activity shall consolidate these interface descriptions into a single Interface Descrip-

tion of the software system.

52.5.3 Output Information
Output Information Destination
Process Activity
Interface Description Design Perform Detailed Design (5.2.7)
5.2.6 Select or Develop Algorithms
5.2.6.1 Input Information
Input Information Source
Process Activity
Software Requirements Requirements Prioritize and Integrate Software

Requirements (5.1.5)

5.2.6.2 Description. This Activity is concerned with selecting or developing a procedural rep-
resentation of the functions specified in the Software Requirements for each software component
and data structure. The algorithms shall completely satisfy the applicable functional and/or
mathematical specifications. To the extent possible, the use of existing algorithms should be con-

sidered.

Prior to distribution of the Algorithm Descriptions, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)

(2) Software Configuration Management (7.2.5)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
5.2.6.3 Output Information
Output Information Destination
Process Activity
Algorithm Descriptions Design Perform Detailed Design (5.2.7)
5.2.7 Perform Detailed Design

5.2.7.1 Input Information

Input Information Source
Process Activity
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)
- | Software Architectural Design Design Perform Architectural Design
Description (5.2.3)
Data Base Description (If Design Design Data Base (If Applicable)
Applicable) (5.24)
Interface Description Design Design Interfaces (5.2.5)
Algorithm Descriptions Design Select or Develop Algorithms
(5.2.6)

5.2.7.2 Description. In the Perform Detailed Design Activity, design alternatives shall be cho-
sen for implementing the functions specified for each software component. By the end of this Ac-
tivity, the data structure, algorithm, and control information of each software component shall be
specified. The Software Design Description (SDD) contains the consolidated data for all of the
above Input Information. The details of the interfaces shall be identified within the SDD.
For further information on this topic, see [12].
Prior to distribution of the SDD, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

5.2.7.3 Output Information

Output Information Destination
Process Activity

Software Design Description Project Monitoring and Control Analyze Risks (3.2.3)
Implementation Create Test Data (5.3.3)
Create Source (5.3.4)

Create Operating Documentation
(5.3.6)

Plan Integration (5.3.7)
Verification and Validation Plan Testing (7.1.6)

Develop Test Specification(s)
(7.1.7D

Training Develop Training Materials (7.4.4)

51

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

5.3 Implementation Process

5.3.1 Overview. The Activities completed during the Implementation Process result in the trans-
formation of the Detailed Design representation of a software product into a programming lan-
guage realization. This Process produces the source code, data base (if applicable), and the docu-
mentation constituting the physical manifestation of the design. In addition, the code and data
base are integrated. Care must also be taken during the Implementation Process to apply the appro-
priate coding standards.

The output of this Process must be the subject of all subsequent testing and validation. The code
and data base, along with documentation produced during previous Processes, are the first com-
plete representation of the software product.

Section 1.5, “Use of This Standard,” provides background information necessary for the suc-
cessful understanding and application of this material. It should be read prior to proceeding
further in this section. :

5.3.2 Activities List

(1) Create Test Data

(2) Create Source

(8) Generate Object Code

(4) Create Operating Documentation
(5) Plan Integration

(6) Perform Integration

5.3.3 Create Test Data
5.3.3.1 Input Information
Input Information Source
Process Activity

Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)

Software Design Description Design Perform Detailed Design (5.2.7)

Source Code (If Applicable) Implementation Create Source (5.3.4)

Data Base (If Applicable) Implementation Create Source (5.3.4)

Test Planned Information(s) Verification and Validation Plan Testing (7.1.6)

Test Requirements Verification and Validation Develop Test Requirements (7.1.7)

5.3.3.2 Description. Using the Software Requirements, the Software Design Description
(SDD), and the Source Code (when required), Test Data shall be generated. The Test Planned In-
formation(s) describe the test environment. Test Requirements define the type of test data to be
used. To support the testing effort, test Stubs and Drivers may be generated at this time for each
item to be tested. The test drivers allow the execution of software tests on an individual or inte-
grated basis. Test Data may be loaded for use in testing the data base.
Further information may be found in {10].

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
5.3.3.3 Output Information
Output Information Destination
Process Activity
Stubs and Drivers (If Applicable) Implementation Perform Integration (5.3.8)
Test Data Verification and Validation Execute the Tests (7.1.8)
5.34 Create Source
5.3.4.1 Input Information
Input Information Source
: Process Activity
Software Project Management Project Initiation Plan Project Management (3.1.6)

Planned Information

Software Design Description

Perform Detailed Design (5.2.7)

Design

5.3.4.2 Description. The Source Code, including suitable comments, shall be generated using
the project environment, as found in the Software Project Management Planned Information
(SPMP) and the Software Design Description. If the software requires a Data Base, then the Data
Base utilities may need to be coded. If Source Code is going to be used to create test data, the Source
Code shall be made available to the Create Test Data Activity (5.3.3).

5.34.3 Output Information
Output Information Destination
Process Activity
Data Base (If Applicable) Implementation Create Test Data (5.3.3)
Generate Object Code (5.3.5)
Source Code (If Applicable) Implementation Create Test Data (5.3.3)
Source Code Implementation Generate Object Code (5.3.5)
5.3.5 Generate Object Code
5.3.5.1 Input Information
Input Information Source
Process Activity
Data Base (If Applicable) Implementation Create Source (5.3.4)
Source Code Implementation Create Source (5.3.4)

5.3.5.2 Description. The code shall be grouped into processable units. (This will be dictated by
selected language and design information.) All assembly language units shall be assembled and
all high-level language units compiled into Object Code. Syntactically incorrect code, identified

by the assembler or compiler output, shall be reworked until the source code can be processed free of

syntactical errors. These units shall be debugged. If a Data Base is coded, it too shall be debugged.

IEEE
Std 1074-1991

IEEE STANDARD FOR DEVELOPING

Prior to distribution of the software, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)

5.35.3 Output Information
Output Information Destination
Process Activity
Corrected Data Base (If Applicable) | Implementation Perform Integration (5.3.8)
Corrected Source Code Implementation Perform Integration (5.3.8)
Object Code Implementation Perform Integration (5.3.8)
5.8.6 Create Operating Documentation
5.3.6.1 Input Information
Input Information Source
Process Activity
Software Design Description Design Perform Detailed Design (5.2.7)
Software Interface Requirements | Requirements Define Interface Requirements

(5.1.4)

Documentation Planned
Information(s)

Documentation Development

Plan Documentation (7.3.3)

5.3.6.2 Description. This Activity shall produce the software project’s operating documenta-
tion from the SDD and the Software Interface Requirements in accordance with the Documentation
Planned Information. The Operating Documentation is required for installing, operating, and

supporting the system throughout the life cycle.
For further information, [21] may be used.
Prior to distribution of the documents listed below, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

5.3.6.3 Output Information

Output Information

Destination

Process

Activity

Operating Documentation

Installation

Distribute Software (6.1.4)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
5.3.7 Plan Integration
5.3.7.1 Input Information
Input Information Source
Process Activity
Software Project Management Project Initiation Plan Project Management (3.1.6)

Planned Information

Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)

Software Design Description Design Perform Detailed Design (5.2.7)

Test Planned Information(s) Verification and Validation Plan Testing (7.1.6)

5.3.7.2 Description. During the Plan Integration Activity, the Software Requirements and the
SDD are analyzed to determine the order of combining software components into an overall sys-
tem. The project environment, as defined in the SPMP, shall be considered when planning inte-
gration. The integration methods shall be documented in the Integration Planned Information.
The Integration Planned Information shall be coordinated with the Test Planned Information(s)
and they may be combined.
Prior to distribution of the Integration Planned Information, the following Processes shall be
invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

5.3.7.3 Output Information
Output Information Destination
Process Activity
Integration Planned Information Project Monitoring and Control Analyze Risks (3.2.3)
Manage the Project (3.2.5)
Implementation Perform Integration (5.3.8)
Verification and Validation Plan Testing (7.1.6)
5.3.8 Perform Integration
5.3.8.1 Input Information
Input Information Source
Process Activity
Stubs and Drivers (If Applicable) Implementation Create Test Data (5.3.3)
Corrected Data Base (If Applicable) | Implementation Generate Object Code (5.3.5)
Corrected Source Code Implementation Generate Object Code (5.3.5)
Integration Planned Information Implementation Plan Integration (5.3.7)
System Components External
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Object Code Implementation Generate Object Code (5.3.5)
Tested Software ' Verification and Validation Execute the Tests (7.1.8)

IEEE
Std 1074-1991

5.3.8.2 Description. This Activity shall execute the Integration Planned Information. This is
accomplished by appropriately combining the Corrected Data Base, Corrected Source Code, Object
Code, and Stubs and Drivers, as specified, into Integrated Software. Other necessary Object Code,
from the project environment as defined in the SPMP, shall also be integrated. If a system
includes both hardware and software components, the system integration may be included as part
of this Activity.
Prior to software integration and the distribution of the Integrated Software, the following
Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)

5.3.8.3 Output Information
Output Information Destination
Process Activity
Integrated Software Verification and Validation Execute the Tests (7.1.8)

6. Post-Development Processes

These are the Processes that must be performed to install, operate, support, maintain, and retire a
software product.

6.1 Installation Process

6.1.1 Overview. Installation consists of the transportation and installation of a software system
from the development environment to the target environment. It includes the necessary software
modifications, checkout in the target environment, and customer acceptance. If a problem arises,
it must be identified and reported; if necessary and possible, a temporary “work-around” may be
applied.

During the Installation Process, the software to be delivered is installed, operationally checked
out, and monitored. This effort culminates in formal customer acceptance. The scheduling of
turnover and customer acceptance is defined in the Software Project Management Planned In-
formation (SPMP).

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

6.1.2 Activities List

(1) Plan Installation

(2) Distribute Software

(8) Install Software

(4) Accept Software in Operational Environment

6.1.3 Plan Installation
6.1.3.1 Input Information
Input Information Source
Process Activity

Software Project Management Project Initiation . Plan Project Management (3.1.6)

Planned Information

Installation Requirements Requirements Define and Develop Software
Requirements (5.1.3)

Transition Planned Information (if | Concept Exploration Plan System Transition (4.1.6)

applicable)

Operating Documentation Implementation Create Operating Documentation
(5.3.6)

6.1.3.2 Description. The tasks to be performed during installation shall be described in
Software Installation Planned Information. The Installation Requirements and the other Input
Information shall be analyzed to guide the development of the Software Installation Planned In-
formation. This Planned Information, the associated documentation, and the developed software
shall be used to install the software product.

57

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Prior to distribution of the Software Installation Planned Information, the following Processes
shall be invoked:

(1) Verification and Validation (7.1.4)

(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

(4) Training (7.4.4)

6.1.3.3 Output Information
Output Information Destination
Process Activity
Software Installation Planned Installation Distribute Software (6.1.4)
Information
6.1.4 Distribute Software
6.1.4.1 Input Information
Input Information Source
Process Activity
Operating Documentation Implementation Create Operating Documentation
(5.3.6)
Software Installation Planned Installation Plan Installation (6.1.3)
Information
Data Base Data External
Tested Software Verification and Validation Execute the Tests (7.1.8)
Software Praject Management Project Initiation Plan Project Management (3.1.6)
Planned Information :

6.1.4.2 Description. During this Activity, the Tested Software with necessary Data Base Data,
Operating Documentation, and Installation Planned Information shall be packaged onto their re-
spective media as designated in the SPMP. The Packaged Software is distributed to the appropriate
site(s) for installation. The Installation Planned Information is distributed as appropriate to the
site(s) to facilitate the installation efforts. The Packaged Operating Documentation shall be avail-
able for operation of the system.
Prior to distribution of the Qutput Information, the following Processes shall be invoked:

(1) Software Configuration Management (7.2.5)
(2) Verification and Validation (7.1.4)
(3) Documentation Development (7.3.4)

6.1.4.3 Output Information
Output Information Destination
Process Activity
Packaged Operating Operation and Support Operate the System (6.2.3)
Documentation
Packaged Installation Planned Installation Install Software (6.1.5)
Information
Packaged Software Installation Install Software (6.1.5)

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

6.1.5 Install Software

6.1.5.1 Input Information

Input Information Source

Process Activity

Packaged Installation Planned Installation Distribute Software (6.1.4)
Information '

Packaged Operating Installation Distribute Software (6.1.4)
Documentation

Packaged Software Installation Installation Distribute Software (6.1.4)

Data Base Data External .

6.1.5.2 Description. The packaged software and any required Data Base Data shall be in-
stalled in the target environment according to the procedures in the Software Installation Planned
Information. This may include tailoring by the customer. The Installation Reported Information

- shall document the installation and any problems encountered.

6.1.5.3 Output Information
Output Information Destination
Process Activity
Installation Reported Information | Project Monitoring and Control Manage the Project (3.2.5)
Installed Software Installation Accept Software in Operational
Environment (6.1.6)

6.1.6 Accept Software in Operational Environment

6.1.6.1 Input Information

Input Information Source
Process Activity

User Acceptance Planned External
Information

Test Summary Reported Verification and Validation Execute the Tests (7.1.8)
Information

Installed Software Installation Install Software (6.1.5)

6.1.6.2 Description. The software acceptance shall consist of analysis of the Test Summary
Reported Information(s) according to the User Acceptance Planned Information to assure that the
Installed Software performs as expected. When the results of the analysis satisfy the requirements
of the User Acceptance Planned Information, the Installed Software System is accepted by the
User.
Prior to completion of accepting software in the operational environment, the following Pro-
cesses should be invoked:

(1) Verification and Validation (7.1.4))
(2) Software Configuration Management (7.2.5)

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

6.1.6.3 Output Information
Output Information Destination
Process] Activity

Customer Acceptance External

Installed Software System Operation and Support Operate the System (6.2.3)

Retirement Conduct Parallel Operations (If
Applicable) (6.4.4)
6.2 Operation and Support Process

6.2.1 Overview. The Operation and Support Process involves user operation of the system and
ongoing support. Support includes providing technical assistance, consulting with the user, and
recording user support requests by maintaining a Support Request Log. Thus the Operation and
Support Process may trigger Maintenance Activities via the ongoing Project Monitoring and
Control Process, which will provide information re-entering the software life cycle (SLC).

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding

further in this section.
6.2.2 Activities List

(1) Operate the System
(2) Provide Technical Assistance and Consulting

(8) Maintain Support Request Log

6.2.3 Operate the System
6.2.3.1 Input Information
Input Information Source
Process Activity
Packaged Operating Installation Distribute Software (6.1.4)
Documentation
Support Planned Information Project Initiation Plan Project Management (3.1.6)
Installed Software System Installation Accept Software in Operational
Environment (6.1.6)

6.2.3.2 Description. During this Activity, the Installed Software System shall be utilized in the
intended environment and in accordance with the operating instructions. Feedback Data are col-
lected for product and documentation improvement and system tuning. The user shall analyze the
Feedback Data and identify System Anomalies (which include desired enhancements). System

Anomalies are reported.
Prior to the distribution of the Output Information, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
6.2.3.3 Output Information
Output Information Destination
Process Activity
System Anomalies Project Monitoring and Control Implement Problem Reporting
Method (3.2.7)
Operation Logs External
Feedback Data . Project Monitoring and Control Manage the Project (3.2.5)
Concept Exploration Identify 1deas or Needs (4.1.3)

6.2.4 Provide Technical Assistance and Consulting

6.2.4.1 Input Information
Input Information Source
Process Activity
Request for Support External
Support Planned Information Project Initiation Plan Project Management (3.1.6)

6.2.4.2 Description. This Activity applies after the user has accepted the software. The support
function shall include providing responses to the user’s technical questions or problems. A Support
Response is sent to the Maintain Support Request Log Activity so that feedback can be provided to
other Processes.

6.24.3 Output Information
Output Information Destination
Process Activity
Support Response Operation and Support Maintain Support Request Log
(6.2.5)
External
6.25 Maintain Support Request Log
6.2.5.1 Input Information
Input Information Source
Process Activity
Support Planned Information Project Initiation Plan Project Management (3.1.6)
Support Response Operation and Support Provide Technical Assistance and
Consulting (6.2.4)

6.2.5.2 Description. This Activity shall record support requests in the Support Request Log.
Methodology regarding management of this Activity shall be identified in the Support Planned In-
formation. Anomalies that are reported shall be reported also to the Project Monitoring and Con-
trol Process. Prior to release of the Support Request Log, the Verification and Validation Process
(7.1.4) shall be invoked.

61

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
6.2.,5.3 Output Information
Output Information Destination
Process Activity

Anomalies Project Monitoring and Control Implement Problem Reporting
Method (3.2.7)

Support Request Log Verification and Validation Execute Verification and Validation
Tasks (7.1.4)

6.3 Maintenance Process

6.3.1 Overview. The Maintenance Process is concerned with the resolution of software errors,
faults, and failures. The requirement for software maintenance initiates software life cycle
(SLC) changes. The SLC is remapped and executed, thereby treating the Maintenance Process as
iterations of development.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

6.3.2 Activities List
(1) Reapply Software Life Cycle

6.3.3 Reapply Software Life Cycle

6.3.3.1 Input Information
Input Information Source
Process Activity
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Correction Problem Reported Project Monitoring and Control Implement Problem Reporting
Information Method (3.2.7)

6.3.3.2 Description. The information provided by the Correction Problem Reported Informa-
tion and the current Software Project Management Planned Information (SPMP) shall result in
the generation of Maintenance Recommendations. These Maintenance Recommendations will
then enter the SLC at the Concept Exploration Process to improve the quality of the software system.

6.3.3.3 Output Information
Output Information Destination
Process Activity
Maintenance Recommendations Concept Exploration Identify Ideas or Needs (4.1.3)

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 10741991

6.4 Retirement Process

6.4.1 Overview. The Retirement Process involves the removal of an existing system from its
active support or use either by ceasing its operation or support, or by replacing it with a new system
or an upgraded version of the existing system. .

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

6.4.2 Activities List
(1) Notify User

(2) Conduct Parallel Operations (If Applicable)
(3) Retire System

6.4.3 Notify User
6.4.3.1 Input Information
Input Information Source
Process Activity
Retirement Planned Information Project Initiation Plan Project Management (3.1.6)

6.4.3.2 Description, This Activity shall be the formal notification to any user (both internal
and external customers) of an operating software system that is to be removed from active support
or use. This notification can take any of several forms as appropriate for the individual environ-
ment. It is important that all users of the outgoing system be made aware that it will become un-
supported. The actual dates of the removal of support are to be clearly specified and must allow time
for carrent users to make whatever arrangements are necessary to respond to this notification. In-
cluded in the user notification should be one or more of the following:

(1) Description of the replacement system including its date of availability.
(2) Statement as to why the system is not being supported.
(3) Description of possible other support.

Prior to the distribution of the Official Notification, the Documentation Development Process
(7.3.4) shall be invoked.

64.3.3 Output Information
Output Information Destination
Process Activity
Official Notification Project Monitoring and Control Retain Records (3.2.6)
External
63

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

6.4.4 Conduct Parallel Operations (If Applicable)

6.4.4.1 Input Information
Input Information Source
Process Activity
Transition Planned Information External
(for the replacing system)
Retirement Planned Information Project Initiation Plan Project Management (3.1.6)
Installed Software System Installation Accept Software in Operational
Environment (6.1.6)

6.4.4.2 Description. If the outgoing system is being replaced by a new system, this Activity
may apply. This Activity shall involve a period of dual operation utilizing the retiring system for
official results, while completing the preparation of the new system for formal operation. It is a pe-
riod of user training on the new system and validation of the new system. The Retirement
Planned Information, as well as the Transition Planned Information, may be used to provide in-
formation to conduct parallel operations for the replacing system.
While conducting this Activity, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Training (7.4.4)

644.3 Output Information
Output Information Destination
Process Activity
Parallel Operations Log Project Monitoring and Control Retain Records (3.2.6)
6.4.5 Retire System
6.4.5.1 Input Information
Input Information Source
Process Activity
Retirement Planned Information Project Initiation Plan Project Management (3.1.6)

6.4.5.2 Description. This Activity shall consist of the actual removal and archiving of the re-
tiring system from regular usage according to the Retirement Planned Information. It may be
spread over a period of time and take the form of a phased removal, or it may be the simple removal
of the entire system from the active software library. Prior to the retirement, users must have been
notified of the event. Any preparations for the use of a replacement system should have been com-
pleted. The Post-Operation Review Reported Information is generated at this time. The Retire
System Activity must be documented in Archive Reported Information.
Prior to the final distribution of the Post-Operation Review Reported Information and Archive
Reported Information, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
64.5.3 Output Information
Output Information Destination
Process Activity
Post-Operation Review Reported Project Monitoring and Control Retain Records (3.2.6)

Information

Software Quality Management

Manage Software Quality (3.3.5)

Archive Reported Information

External

7. Integral Processes

These are the Processes needed to successfully complete project Activities. These Processes are
utilized to ensure the completion and quality of project functions.

7.1 Verification and Validation Process

7.1.1 Overview. The Verification and Validation Process includes planning and performing
both Verification and Validation tasks. Verification tasks include reviews, configuration audits,
and quality audits. Validation tasks include all phases of testing. These Verification and Valida-
tion tasks are conducted throughout the software life cycle (SLC) to ensure that all requirements
are satisfied. This Process addresses each life cycle Process and product.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

7.1.2 Activities List

(1) Plan Verification and Validation

(2) Execute Verification and Validation Tasks
(3) Collect and Analyze Metric Data

(4) Plan Testing

(5) Develop Test Requirements

(6) Execute the Tests

7.1.3 Plan Verification and Validation

7.1.3.1 Input Information
Input Information Source
Process Activity
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Analysis of Risks Project Monitoring and Control Analyze Risks (3.2.3)
Software Quality Management Software Quality Management Plan Software Quality
Planned Information Management (3.3.3)

7.1.3.2 Description. This Activity shall be responsive to the Software Project Management
Planned Information and the Software Quality Assurance (SQA) Planned Information by identi-
fying Processes and Process Output Information to be verified and validated. The purpose and
scope of the verification and validation task shall be defined for each Process and all Process Out-
put Information. The planning shall include developing schedules, estimating resources, identi-
fying special resources, staffing, and establishing exit or acceptance criteria. Verification and
validation methods to be considered in this planning Activity include audits (e.g., functional and
physical configuration, compliance), reviews (e.g., design, code, document), prototyping, inspec-
tion, formal proof, analysis, and demonstration. Special attention should be given to minimizing
technical risks and verifying requirements traceability. This planning shall be documented in
the Software Verification and Validation Planned Information (SVVP).

IEEE
Std 1074-1991

Because of the importance of testing in the Verification and Validation Process, this standard
addresses testing Activities separately. Test planning and execution may be included in the Veri-
fication and Validation Planning and Execution Activities.

Further information on verification and validation planning may be found in [2], [3], [4], (6], [7],
(81, [12], [13], [14], [15], and [16].

Prior to distribution of the SVVP, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Documentation Development (7.3.4)
(3) Software Configuration Management (7.2.5)

7.1.3.3 Output Information
Output Information Destination
Process Activity
Software Verification and Software Quality Management Identify Quality Improvement
Validation Planned Information Needs (3.3.6)
Verification and Validation Execute Verification and Validation

Tasks (7.1.4)
Plan Testing (7.1.6)

7.1.4 Execute Verification and Validation Tasks

7.14.1 Input Information
Input Information Source
Process Activity
Item(s) to Be Evaluated Creating Process

Resolved Problem Reported
Information

Project Monitoring and Control

Implement Problem Reporting
Method (3.2.7)

Project Quality Assessments

Software Quality Management

Manage Software Quality (3.3.5)

Support Request Log Operation and Support Maintain Support Request Log
(6.2.5)
Software Verification and Verification and Validation Plan Verification and Validation
Validation Planned Information (7.1.3)
Basis or Bases for Evaluation External
Creating Process

7.1.4.2 Description. This Activity shall include performing the tasks specified in the SVVP
using the Input Information. Results shall be provided in Evaluation Reported Information.
Anomalies identified during the performance of these tasks shall be reported.
Further information related to this Activity may be found in [2], [3], [8], [12], [13], and [14].
Prior to distribution of Evaluation Reported Information, the following Processes shall be in-
voked:

(1) Documentation Development (7.3.4)
(2) Software Configuration Management (7.2.5)

67

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
7.1.4.3 Output Information
Output Information Destination
Process Activity
Evaluation Reported Information | Project Monitoring and Control Manage the Project (3.2.5)

Software Quality Management

Identify Quality Improvement
Needs (3.3.6)

Verification and Validation

Collect and Analyze Metric Data
(7.1.5)

Creating Process

Anomalies

Project Monitoring and Control

Implement Problem Reporting
Method (3.2.7)

7.1.5 Collect and Analyze Metric Data

7.1.5.1 Input Information
Input Information Source
Process Activity
Support Personnel Reported External
Information
User Input Information External
Metric Data Originating Process Originating Activity

Correction Problem Reported
Information

Project Monitoring and Control

Implement Problem Reporting
Method (3.2.7)

Enhancement Problem Reported
Information

Project Monitoring and Control

Implement Problem Reporting
Method (3.2.7)

Report Log

Project Monitoring and Control

Implement Problem Reporting
Method (3.2.7)

Resolved Problem Reported
Information

Project Monitoring and Control

Implement Problem Reporting
Method (3.2.7)

Software Quality Management

Software Quality Management

Plan Software Quality

Planned Information Management (3.3.3)
Defined Metrics Software Quality Management Define Metrics (3.3.4)
Collection and Analysis Methods Software Quality Management Define Metrics (3.3.4)

Evaluation Reported Information

Verification and Validation

Execute Verification and Validation
Tasks (7.1.4)

7.1.5.2 Description. This Activity collects Evaluation Reported Information, Problem Re-
ported Information, and project-generated Metric Data, as stated in the Software Quality Man-
agement Planned Information. The data shall be analyzed using defined methodologies. This
Activity shall identify improvements in both quality and requirements as a result of Support Per-
sonnel and User Input Information. Analysis Reported Information shall be generated describing
the results of metrics validation and analysis, defect trend analysis, and the user’s view anal-

ysis.

Further information related to this Activity may be found in [6], [7], [15], and [16].

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

Prior to distribution of the Analysis Reported Information, the following Processes should be
invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

7.15.3 Output Information
Output Information Destination
Process Activity

Analysis Reported Information Project Monitoring and Control Analyze Risks (3.2.3)
Perform Contingency Planning
(324)
Manage the Project (3.2.5)

Software Quality Management Manage Software Quality (3.3.5)
Identify Quality Improvement
Needs (3.3.6)
7.1.6 Plan Testing
7.1.6.1 Input Information
Input Information Source
Process Activity

Software Project Management Project Initiation Plan Project Management (3.1.6)

Planned Information

Preliminary Software Requirements Define and Develop Software

Requirements Requirements (5.1.3)

Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)

Software Design Description Design Perform Detailed Design (5.2.7)

Integration Planned Information Implementation Plan Integration (5.3.7)

Software Verification and Verification and Validation Plan Verification and Validation

Validation Planned Information (7.1.3)

7.1.6.2 Description. This Activity shall identify the overall scope, approach, resources, and

schedule of the testing tasks over the entire SLC and document them in Test Planned Informa-
tion(s). The Test Planned Information(s) shall define the generic levels of testing and the basic
test environment and structure needed to support required levels of testing. Each Test Planned In-
formation shall identify the items to be tested, the requirements to be tested, and the test pass-or-fail
criteria based on the Software Requirements and the Software Design Description (SDD) (as soon
as available). The Test Planned Information(s) shall identify test coverage criteria, the tools and
approaches being applied, the environmental needs, the testing tasks to be performed, the organi-
zational structure, the management controls and reporting procedures, and the risks and contin-
gencies,

The Test Planned Information(s) shall be coordinated with, and may be combined with, the
Integration Planned Information and SVVP,

Further information related to this Activity may be found in [4], (10}, [12], and [18].

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
Prior to distribution of the Test Planned Information(s), the following Processes shall be

invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

7.1.6.3 Output Information
Output Information Destination
Process Activity
Test Planned Information(s) Project Monitoring and Control Analyze Risks (3.2.3)

Manage the Project (3.2.5)

Software Quality Management Identify Quality Improvement
Needs (3.3.6)

Implementation Create Test Data (5.3.3)
Plan Integration (5.3.7)

Verification and Validation Develop Test Requirements (7.1.7)
Execute the Tests (7.1.8)

7.1.7 Develop Test Requirements

7.1.7.1 Input Information
Input Information Source
Process Activity
Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)
Software Design Description Design Perform Detailed Design (5.2.7)
Test Planned Information(s) Verification and Validation Plan Testing (7.1.6)

7.1.7.2 Description. Test Requirements for each generic level of testing shall be developed to

refine the test approach from the Test Planned Information(s) to item-specific test procedures used
for test execution. The Test Requirements shall define what is to be tested, the data to be used in
testing, expected results, the test environment components, and the procedures to be followed in
testing. Information from the SRS, the SDD, and the Test Planned Information(s) is used to gen-
erate the Test Requirements.

Further information related to this Activity may be found in [4] and [10].

Prior to distribution of the Test Requirements, the following Processes shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

7.1.7.3 Output Information
Output Information Destination
Process Activity
Test Requirements Implementation Create Test Data (5.3.3)
Verification and Validation Execute the Tests (7.1.8)

70

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
7.1.8 Execute the Tests
7.1.8.1 Input Information
Input Information Source
Process Activity
Test Environment Components External
Test Data Implementation Create Test Data (5.3.3)
Integrated Software Implementation Perform Integration (5.3.8)
Test Planned Information(s) Verification and Validation Plan Testing (7.1.6)
Test Requirements Verification and Validation Develop Test Requirements (7.1.7)

7.1.8.2 Description. This Activity shall configure the Test Environment Components as re-
quired by the Test Requirements. Each test shall be conducted on the Integrated Software using
Test Data as defined in its associated Test Requirements and in accordance with the Test Planned
Information(s).

This Activity could be iterative, with several instances performed during the software’s life. Not
all Input Information and Output Information are required for a given iteration; the presence of
any Input Information is sufficient as an entry criterion, and the creation of any Output Informa-
tion is a sufficient exit criterion.

Based on comparison of actual results with expected results, according to the pass-fail criteria, a
pass-fail determination shall be made and recorded in a test log. Each anomalous event that oc-
curs during execution which requires further investigation shall be reported. The impact on the
validity of the test should also be noted.

Test Summary Reported Information shall summarize the results of a test based on its Test Re-
quirements and test log. Tested Software is that software which has successfully passed all tests at
the appropriate level and met the specified criteria and requirements. Tested Software may then be
further integrated with other software or sent for installation, -

Further information related to this Activity may be found in [4] and [10].

Prior to distribution of the Output Information from this Activity, the following Processes shall
be invoked: :

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

7.1.8.3 Output Information
Output Information Destination
Process Activity
Test Summary Reported Project Monitoring and Control Analyze Risks (3.2.3)
Information
Manage the Project (3.2.5)

External ‘

Tested Software Implementation Perform Integration (5.3.8)
Installation Distribute Software (6.1.4)

Anomalies

Project Monitoring and Control

Implement Problem Reporting
Method (3.2.7)

ol cen .

R~ -

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

7.2 Software Configuration Management Process

7.2.1 Overview. Software Configuration Management the items in a software development
project and provides both for control of the identified items and for the generation of Status
Reported Information for management visibility and accountability throughout the software life
cycle (SLC). Items to be managed are those defined in Software Configuration Management
Planned Information (SCMP). Examples to be considered for inclusion in the SCMP are code,
documentation, plans, and specifications. Configuration audits, if required by the Project, should
be addressed in the Verification and Validation Process. The Software Configuration Manage-
ment approach for a given project should be compatible with the Configuration Management ap-
proach being used on associated systems.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section.

7.2.2 Activities List
(1) Plan Configuration Management
(2) Develop Configuration Identification

(3) Perform Configuration Control
(4) Perform Status Accounting

7.2.3 Plan Configuration Management

7.2.3.1 Input Information
Input Information Source
Process Activity
Contract Deliverable List External
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Configuration Identification Software Configuration Develop Configuration
Management Identification (7.2.4)

7.2.3.2 Description. This Activity shall plan and document specific software configuration
management organizations and responsibilities, procedures, tools, techniques, and methodolo-
gies in an SCMP. The SCMP shall also describe how and when such procedures are to be per-
formed.

Overall software configuration management objectives are derived using internal guidelines
as well as contractual requirements from the Software Project Management Planned Information
(SPMP). -

Further information related to this Activity may be found in [3] and {14].

Prior to distribution of the Planned Information, the following Processes shall be invoked:

(1) Verification vand Validation (7.1.4)
(2) Documentation Development (7.3.4)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
7233 Output Information
Output Information Destination
Process Activity
Software Configuration Project Monitoring and Control Retain Records (3.2.6)
Management Planned Information
Software Configuration Develop Configuration
Management Identification (7.2.4)
Perform Configuration Control
(7.2.5)

Perform Status Accounting (7.2.6)

7.24 Develop Configuration Identification

7.24.1 Input Information
Input Information Source
Process Activity
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information
Software Configuration Software Configuration Plan Configuration Management
Management Planned Information | Management (7.2.3)

7.2.4.2 Description. This Activity shall define a Configuration Identification that includes

project baseline definition, titling, labeling, and numbering to reflect the structure of the product
for tracking. The SCMP identifies those configuration items to be addressed by the Configuration
Identification. The identification shall support the software throughout the SLC, and shall be doc-
umented in the SCMP. The Configuration Identification shall also define the documentation re-
quired to record the functional and physical characteristics of each Configuration Item.

A series of baselines shall be established as the product moves from initial idea to the mainte-
nance phase as required by the SPMP.

Further information related to this Activity may be found in [3] and [14].

72423 Output Information
Output Information Destination
Process Activity
Configuration Identification Software Configuration Plan Configuration Management
Management (7.2.3)
7.2.5 Perform Configuration Control
7.2.5.1 Input Information
Input Information Source
Process Activity
Items to Be Controlled Creating Process
Software Configuration Software Configuration Plan Configuration Management
Management Planned Information | Management (7.2.3)

3

N

A

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

7.2.5.2 Description. This Activity controls the configuration of products. Changes to controlled
products shall be tracked to assure that the configuration of the product is known at all times. Each
baseline shall be established and all subsequent changes tracked relative to it. All items specified
in the SCMP are subject to this change management discipline. The history of changes to each con-
figuration item shall be maintained throughout the SLC for status accounting.

Changes to Controlled Items shall be allowed only with approval of the responsible authority.
This may result in establishment of a formal software configuration control board. Controlled
Items shall be maintained in a software library.

Further information related to this Activity may be found in [3] and [14].

7253 Output Information
Output Information Destination
Process Activity
Change Status Software Configuration Perform Status Accounting (7.2.6)
Management
Controlled Item Creating Process
Project Monitoring and Control Implement Problem Reporting
Method (3.2.7)
7.2.6 Perform Status Accounting
7.2.6.1 Input Information
Input Information Source
Process Activity
Software Configuration Software Configuration Plan Configuration Management
Management Planned Information | Management (7.2.3)
Change Status Software Configuration Perform Configuration Control
Management (7.2.5)

7.2.6.2 Description. This Activity shall include the receipt of Change Status from the Perform
Configuration Control Activity and the preparation of Status Reported Information that reflects the
status and history of controlled items. Status Reported Information may include such data as
number of changes to date for the project, number of releases, and the latest version and revision
identifiers.
Further information related to this Activity may be found in [3] and [14].
Prior to the distribution of the Status Reported Information, the following Processes shall be in-

voked:

(1) Verification and Validation (7.1.4)
(2) Documentation Development (7.3.4)

7263 Output Information
Output Information Destination
Process Activity
Status Reported Information Project Monitoring and Control Manage the Project (3.2.5)
External

74

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

7.3 Documentation Development Process

7.3.1 Overview. The Documentation Development Process for software development and usage
is the set of Activities that plan, design, implement, edit, produce, distribute, and maintain those
documents needed by developers and users. The purpose of the Documentation Development Pro-
cess is to provide timely software documentation to those who need it, based on Input Information
from the invoking Processes.

This Process covers both product- and procedure-oriented documentation for internal and exter-
nal users. Examples of internal users include those who plan, design, implement, or test software.
External users may include those who install, operate, apply, or maintain the software.

The Documentation Development Process occurs over various phases of the software life cycle
(SLC) depending on the individual document and the timing of its development. Typically there
will be multiple documents, each at different stages of development.

The Documentation Development Process has Activities that must be performed concurrently
with the software development or usage. Since the software is seldom stable during development or
testing, this requires effective communication and timely response between the software person-
nel and documentation personnel.

7.3.2 Activities List
(1) Plan Documentation

(2) Implement Documentation
(3) Produce and Distribute Documentation

7.3.3 Plan Documentation
7.3.3.1 Input Information
Input Information Source
Process Activity
Contractual Requirements External
Project Standards Project Initiation Establish Project Environment
(3.1.5)
Software Project Management Project Initiation Plan Project Management (3.1.6)
Planned Information

7.3.3.2 Description. In this Activity, information such as the Software Project Management

Planned Information (SPMP) product descriptions, schedules, and resource constraints shall be
assimilated to create a consistent and disciplined approach to achieving the required documenta-
tion. The approach shall identify required documents, document production schedules and deliv-
ery schedules, and documentation standards. Responsible organizations, information sources,
and intended audiences shall be defined for each document. The approach shall be documented in
the Documentation Planning Information. The Documentation Planning Information shall in-
clude resource allocations for this Activity.

Additional guidance for the development of user documentation can be found in {21].

Prior to distribution of the Documentation Planning Information, the following Processes shall
be invoked:

(1) Verification and Validation (7.1.4)
(2) Documentation Development (7.3.4)

The Software Configuration Management Process (7.2.5) should also be invoked.

75

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING
7.33.3 Output Information
Output Information Destination
Process Activity
Documentation Planned Project Monitoring and Control Retain Records (3.2.6)
Information
Implementation Create Operating Documentation
(5.3.6)
Documentation Development All Activities (7.3)
7.3.4 Implement Documentation
7.3.4.1 Input Information
Input Information Source
Process Activity
Input Information for Document Creating Process .
Project Environment Project Initiation Establish Project Environment
(3.1.5)
Documentation Planned Documentation Development Plan Documentation (7.3.3)
Information

7.3.4.2 Description. This Activity includes the design, preparation, and maintenance of doc-
umentation. Those documents identified in the Documentation Planned Information shall be de-
fined in terms of audience, approach, content, structure, and graphics. Arrangements may be
made with word or text processing and graphics facilities for their support of implementation.

Input Information shall be used to produce the document, including related graphics. This in-
volves extensive use of information sources, close communication with the responsible subject
matter experts, and utilization of word or text processing and graphics tools.

Following a documentation review, any changes shall be incorporated to produce a technically
correct document. Format, style, and production rules shall be applied to produce a final docu-
ment.

Prior to distribution of the Document, the following Processes should be invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)

7.34.3 Output Information
Output Information Destination
‘ " Process Activity
Document Documentation Development Produce and Distribute
Documentation (7.3.5)

76

' IEEE
SOFTWARE LIFE CYCLE PROCESSES , Std 1074-1991

7.3.5 Produce and Distribute Documentation

7.3.5.1 Input Information { 3
Input Information Source Y
Process Activity l
Documentation Planned Documentation Development Plan Documentation (7.3.3) ‘)
Information ‘
Document Documentation Development Implement Documentation (7.3.4) 1

7.3.56.2 Description. This Activity shall provide the intended audience with the needed infor-
mation collected in the document, as specified in the Documentation Planned Information. Doc- ‘
ument production and distribution may involve electronic file management, paper document |
reproduction and distribution, or other media handling techniques.)

7353 Output Information
Output Information Destination
: Process Activity
Published Document Project Monitoring and Control Retain Records (3.2.6)
Creating Process
External

R\

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

7.4 Training Process

7.4.1 Overview. The development of quality software products is largely dependent upon knowl-
edgeable and skilled people. These include the developer’s technical staff and management. Cus-
tomer personnel may also have to be qualified to install, operate, and maintain the software.
Training is therefore essential for developers, technical support staff, and customers. It is essen-
tial that Training Planned Information be completed early in the software life cycle, prior to the
time when personnel would be expected to apply required expertise to the project. Plans for cus-
tomer training should be prepared and reviewed with the customer.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in this section. i

74.2 Activities List
(1) Plan the Training Program
(2) Develop Training Materials

(3) Validate the Training Program
(4) Implement the Training Program

8

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

74.3 Plan the Training Program

74.3.1 Input Information
Input Information "Source
Process Activity

Applicable Information External

Skills Inventory External

Project Environment Project Initiation Establish Project Environment
(3.1.5)

Software Project Management Project Initiation Plan Project Management (3.1.6)

Planned Information

Software Requirements Requirements Prioritize and Integrate Software
Requirements (5.1.5)

Training Feedback Training Implement the Training Program
(7.4.6)
Validate the Training Program
(74.5)

7.4.3.2 Description. This Activity shall identify the needs for different types of training and
the categories of people requiring training for each need. Customer and project documents shall be
reviewed along with existing personnel inventories. This information is used to produce docu-
mented Training Planned Information. Implementation schedules shall also be generated and
resources allocated to the training program. Implementation schedules, resource allocations, and
training needs shall be specified in the Training Planned Information.
Prior to distribution of the Training Planned Information, the following Processes shall be
invoked:

(1) Verification and Validation (7.1.4)
(2) Software Configuration Management (7.2.5)
(3) Documentation Development (7.3.4)

74.3.3 Output Information
Output Information Destination
Process Activity
Training Planned Information Software Quality Management Identify Quality Improvement
Needs (3.3.6)
Training All Activities (7.4)

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

74.4 Develop Training Materials

744.1 Input Information
Input Information Source
Process Activity
Applicable Documentation External
Creating Process
Project Environment Project Initiation Establish Project Environment
(3.1.5)

Software Design Description Design Perform Detailed Design (5.2.7) -
Training Planned Information Training Plan Training Program(7.4.3)

7.4.4.2 Description. This Activity shall consist of identification and review of all available
materials that appear pertinent to the training objectives. Included in the Develop Training
Materials Activity shall be the development of the substance of the training, training manual, and
materials to be used in presenting the training, such as outlines, text, exercises, case studies, visu-
als, and models.
Prior to distribution of the Training Manual and Training Materials, the following Processes
shall be invoked:

(1) Verification and Validation (7.1.4)
(2) Documentation Development (7.3.4)

The Software Configuration Management Process (7.2.5) should also be invoked.

7443 Output Information
Output Information Destination
Process Activity
Training Manual Training Validate Training Program (7.4.5)
Training Materials Training Validate Training Program (7.4.5)

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
7.4.5 Validate the Training Program
74.5.1 Input Information
Input Information Source
Process Activity

Training Planned Information Training Plan Training Program7.4.3)
Training Manual Training Develop Training Materials (7.4.4)
Training Materials Training Develop Training Materials (7.4.4)

7.4.5.2 Description. This Activity shall consist of presenting the training to a class of evalua-
tors using the preliminary training manual and materials. The evaluators shall assess the
training presentation and materials in detail. The purpose is to evaluate the effectiveness of the

delivery and the validity of the material presented. Lessons learned in the test of the training

program shall be incorporated into the material prior to a general offering. All training manuals
and materials shall be evaluated and, if necessary, updated at this time.
Prior to distribution of Updated Training Manuals and Materials, the following Processes shall

be invoked:

(1) Verification and Validation (7.1.4)
(2) Documentation Development (7.3.4)

The Software Configuration Management Process (7.2.5) should be invoked.

7453 Output Information
QOutput Information Destination
Process Activity
Updated Training Manual Training Implement Training Program
(7.4.6)
Updated Training Materials Training Implement Training Program
(7.4.6)
Training Feedback Training Plan Training Program (7.4.3)
7.4.6 Implement the Training Program
74.6.1 Input Information
Input Information Source
Process Activity
Staff Participants External
Students External
Training Planned Information Training Plan Training Program(7.4.3)
Updated Training Manual Training Validate Training Program (7.4.5)
Updated Training Materials Training Validate Training Program (7.4.5)

81

IEEE
Std 1074-1991

‘ 7.4.6.2 Description. This Activity shall ensure the provision of all necessary materials, ar-
‘ range the locations and facilities for training, assign instructors and, if necessary, train them.
Included in this Activity shall be the enrolling of students and monitoring of the course effective-
ness.
Lessons learned and information needed for updating the materials for the next training
! cycle shall be fed back into the beginning of the Training Process.

7463 Output Information
Output Information Destination
Process Activity
Trained Personnel Creating Process
Training Feedback Training Plan Training Program (7.4.3)
Updated Skills Inventory External

8. Bibliography

The IEEE standards listed below and other subsequent standards should be consulted when us-
ing this document. However, compliance with this standard neither requires nor implies compli-
ance with the listed standards. Table 2 provides a cross reference of specific Activities to other
IEEE standards.

[1] IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology (ANSI).*
[2] IEEE Std 730-1989, IEEE Standard for Software Quality Assurance Plans (ANSI).

[3] IEEE Std 828-1990, IEEE Standard for Software Configuration Management Plans (ANSI).

[4] IEEE Std 829-1983, IEEE Standard for Software Test Documentation (ANSI).

[5] IEEE Std 830-1984, IEEE Guide to Software Requirements Specifications (ANSI).

(6] IEEE Std 982.1-1988, IEEE Standard Dictionary of Measures to Produce Reliable Software
(ANSI).

(71 IEEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software (ANSI).

8] IEEE Std 983-1986, IEEE Guide for Software Quality Assurance Planning (ANSI).

[9] IEEE Std 1002-1987, IEEE Standard Taxonomy for Software Engineering Standards (ANSI).
[10] IEEE Std 1008-1987, IEEE Standard for Software Unit Testing (ANSI).

[11] IEEE Std 1012-1986, IEEE Standard for Software Verification and Validation Plans (ANSI).
[12] IEEE Std 1016-1987, IEEE Recommended Practice for Software Design Descriptioris (ANSI).
[13]1 IEEE Std 1028-1988, IEEE Standard for Software Reviews and Audits (ANSI).

(14] IEEE Std 1042-1987, IEEE Guide to Software Configuration Management Planning (ANSI).
[15] P1044, Standard for Classification of Software Errors, Faults, and Failures.®

[16] P1045, Standard for Software Productivity Metrics.

[17] IEEE Std 1058.1-1987, IEEE Standard for Software Project Management Plans (ANSI).

[18] P1059, Guide for Software Verification and Validation.

‘IEEE publications are available from the Institute of Electrical and Electronics Engineers, Service Center, 445 Hoes
Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA.

5References [15], (16], [18], [19], and [20] are authorized standards projects that were not approved by the IEEE Standards
Board at the time this document went to press. The latest drafts of the documents are available from the IEEE Service
Center.

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELGCPING

[19] P1061, Standard for a Software Quality Metrics Methodology.

[20] P1062, Recommended Practice for Software Acquisition.

[21] IEEE Std 1063-1987, IEEE Standard for Software User Documentation (ANSI).

[22] ANSI Technical Report, American National Dictionary for Information Processing, X3/TR-
1-77, September 1977.

Table 2
Cross Reference of IEEE Standards and Authorized Standards Projects

Applicability of Standards

Activities 1.3.1 3.1.5 3.1.6 3.2.7 3.3.3 3.34 5.1.3 5.2.7 5.3.3
(Paragraph 5.1.5 5.3.5
Numbers)
Referenced
IEEE Standards

and Authorized
Standards Projects

[1] 610.12-1990 X
(2] 730-1989 X
[3] 828-1990
[4] 829-1983
(6] 830-1984 X X
(6] 982.1-1988 X
[7) 982.2-1988 X
[8] 983-1986 X
[9] 1002-1987 X
[10] 1008-1987
(11] 1012-1986
[12] 1016-1987
(13] 1028-1988
(14] 1042-1987
[15] P1044 X
[16] 1045 X
[17] 1058.1-1987 X X
(18] P1059
[19] P1061 X
[20] P1062

(21] 1063-1987

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

Table 2
Cross Reference of IEEE Standards and Authorized Standards Projects (Continued)

Applicability of Standards

Activities 53315361713 | 714)| 715]| 716 | 717 | 723 | 7.3.3

(Paragraph 5.3.5 7.18 | 7.2.4

Numbers) 7.2.5
7.2.6

Referenced

IEEE Standards

{11 610.12-1990
[2] 730-1989
[3] 828-1990
[4] 829-1983
[5] 830-1984
[6] 982.1-1988 X

[7) 982.2-1988 X , X
(8] 983-1986 X

[9] 1002-1987 B
10] 1008-1987 X X \
[11] 1012-1986
(12] 1016-1987
[13] 1028-1988
[14] 1042-1987
[15] P1044

[16] P1045

[17] 1058.1-1987
[18] P1059 X
[19] P1061
20] P1062
[21] 1063-1987 . X X

XXX
x
x

x
X
X
X

XXX |x
x
>

Appendixes

(These Appendixes are not a part of IEEE Std 1074-1991, IEEE Standard for Developing Life Cycle Processes, but are
included for information only.)

Appendix A
Mapping Software Life Cycle Processes to Various Examples of
Software Life Cycles

This Appendix demonstrates the mappings of the Activities in this standard to four different
software life cycles (SLCs). This Appendix is not intended to be comprehensive. Many other SLCs
are possible, for example, small development, quick reaction, and the spiral model. The SLCs pre-
sented here are examples only, and the user of this document is not required to select any of these
SLCs.

Table Al demonstrates a mapping of Activities to an eight-phase SLC.

Table A2 demonstrates a mapping of Activities to a five-phase SLC.

Table A3 demonstrates a mapping of Activities to an SLC that uses prototyping to establish
requirements and design.

Table A4 demonstrates a mapping of Activities to an SLC that includes a theoretical, highly
automated software development mode.

Section 1.5, “Use of This Standard,” provides background information necessary for the
successful understanding and application of this material. It should be read prior to proceeding
further in these Appendixes. :

IEEE :
Std 1074-1991 ‘

Table Al !
Software Life Cycle Example Based on Eight Phases - ;

Design (DE) Implementation (IM)
Test (TE) Installation and Checkout (IN)
Operation and Maintenance (OM) Retirement (RT)

Concept Exploration (CE) Requirements (RQ) {

Activities CEIRQDE|IM | TE}| IN |OM|RT |
SOFTWARE LIFE CYCLE PROCESS

Identify Candidate SLC Models
Select Project Model

PROJECT MANAGEMENT PROCESSES
Project Initiation Process
Map Activities to SLC Model
Allocate Project Resources

Establish Project Environment
Plan Project Management

Project Monitoring and Control Process

Analyze Risks

Perform Contingency Planning
Manage the Project X
Retain Records X
Implement Problem Reporting System

Software Quality Management Process ‘ ;

Plan Software Quality Management X
Define Metrics

Manage Software Quality

Identify Quality Improvement Needs

PRE-DEVELOPMENT PROCESSES
Concept Exploration Process

Identify Ideas or Needs

Formulate Potential Approaches
Conduct Feasibility Studies

Plan System Transition (If Applicable)
Refine and Finalize)he Idea or Need

System Allocation Process]
Analyze Functions. X X]

|

|

xX X

XX XX
X X X
xX X

XX XXX
‘><><><><><
XX XXX
XX X XX
XX X X X
X X X

X X X

X
X X X X
X X X X

X X X X
XX X X
x
x
x
x
x
x

x
x

Develop System Architecture
Decompose System Requirements

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Table Al
Software Life Cycle Example Based on Eight Phases (Continued)

Activities CEIRQ|IDE|IM | TE| IN {OM| RT

DEVELOPMENT PROCESSES
Requirements Process

Define and Develop Software Requirements
Define Interface Requirements

Prioritize and Integrate Software
Requirements

Design Process

Perform Architectural Design
Design Data Base (If Applicable)
Design Interfaces

Select or Develop Algorithms X
Perform Detailed Design

Implementation Process

Create Test Data

Create Source

Generate Object Code

Create Operating Documentation
Plan Integration '
Perform Integration

POST-DEVELOPMENT PROCESSES
Installation Process

Plan Installation X
Distribute Software

Install Software

Accept Software in Operational Environment

Operation and Support Process

Operate the System
Provide Tech. Asst. & Consult.
Maintain Support Request Log

Maintenance Process
Reapply Software Life Cycle X
Retirement Process

Notify User X
Conduct Parallel Operations (If Applicable)
Retire System

X X X
XXX X X XX X X X X X X
X XXX X
X X X
X X X

X X X

SOFTWARE LIFE CYCLE PROCESSES

Table Al
Software Life Cycle Example Based on Eight Phases (Continued)

IEEE

Std 1074-1991

Activities

CE

RQ

DE

IM

TE

IN

oM

RT

INTEGRAL PROCESSES
Verification and Validation Process

Plan Verification and Validation
Execute V&V Tasks

Collect and Analyze Metric Data
Plan Testing

Develop Test Requirements
Execute the Tests

Software Configuration Management Process

Plan Configuration Management
Perform Configuration Identification
Perform Configuration Control
Perform Status Accounting

Documentation Development Process

Plan Documentation
Implement Documentation
Produce and Distribute Documentation

Training Process

Plan the Training Program
Develop Training Materials
Validate the Training Program
Implement the Training Program

X X X X

xX X

XXX XX

X X X X

xX X

XXX XX

X X X

X X X

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Table A2
Software Life Cycle Example Based on Five Phases

Project Initiation (PI) Concept Development (CD)
Definition and Design (DD) System Development (SD)
Installation and Operation (I0)

Activities Pl CD DD SD I0
SOFTWARE LIFE CYCLE PROCESS

Identify Candidate SLC Models
Select Project Model

PROJECT MANAGEMENT PROCESSES
Project Initiation Process
Map Activities to SLC Model
Allocate Project Resources

Establish Project Environment
Plan Project Management

Project Monitoring and Control Process

Analyze Risks

Perform Contingency Planning
Manage the Project

Retain Records

Implement Problem Reporting System

Software Quality Management Process

Plan Software Quality Management X
Define Metrics

Manage Software Quality

Identify Quality Improvement Needs

PRE-DEVELOPMENT PROCESSES
Concept Exploration Process

Identify Ideas or Needs

Formulate Potential Approaches
Conduct Feasibility Studies

Plan System Transition (If Applicable)
Refine and Finalize the Idea or Need

System Allocation Process

Analyze Functions
Develop System Architecture
Decompose System Requirements

xX X

XXX X
xX X

xX X X

x X
XX XXX
XXX XX
XX XXX
XX XXX

XX X X
X X X X

xX X
xX X
X X

XX X X

X X XX

X X X
x

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

Table A2
Software Life Cycle Example Based on Five Phases (Continued)

Activities PI CD DD SD I0
DEVELOPMENT PROCESSES
Requirements Process

Define and Develop Software Requirements
Define Interface Requirements

Prioritize and Integrate Software
Requirements

Design Process
Perform Architectural Design
Design Data Base (If Applicable)
Design Interfaces

Select or Develop Algorithms X
Perform Detailed Design

Implementation Process

Create Test Data

Create Source

Generate Object Code

Create Operating Documentation
Plan Integration

Perform Integration

POST-DEVELOPMENT PROCESSES
Installation Process |
Plan Installation X g

X X X
X X X

XX X X X

XX X X X
X X XXX

Distribute Software

Install Software

Accept Software in Operational Environment A
Operation and Suppart Process ji'

Operate the System : ;

Provide Tech. Asst. & Consult.
Maintain Support Request Log

Maintenance Process
Reapply Software Life Cycle X |
Retirement Process l

Notify User
Conduct Parallel Operations (If Applicable)
Retire System

XX X X

X X X

X X X

91

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Table A2
Software Life Cycle Example Based on Five Phases (Continued)

Activities PI CD DD SD (8]
INTEGRAL PROCESSES
Verification and Validation Process

Plan Verification and Validation X
Execute V&V Tasks

Collect and Analyze Metric Data
Plan Testing

Develop Test Requirements
Execute the Tests

Software Configuration Management Process

Plan Configuration Management X
Perform Configuration Identification X
Perform Configuration Control
Perform Status Accounting

Documentation Development Process

Plan Documentation X
Implement Documentation
Produce and Distribute Documentation X X

Training Process

Plan the Training Program X X
Develop Training Materials X X
Validate the Training Program X X
Implement the Training Program X

X X X
XXX XXX
XX XXX

XX X X
X X X
x

xX X

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

Table A3
Software Life Cycle Example Based on Prototyping

Concept Exploration (CE) Prototyping (PT)

Implementation (IM) Test (TE)

Installation and Checkout (IN) Operation and Maintenance (OM)
Retirement (RT)

Activities CE|PT|IM|TE| IN|OM]| RT
SOFTWARE LIFE CYCLE PROCESS

Identify Candidate SLC Models X
Select Project Model X

PROJECT MANAGEMENT PROCESSES
Project Initiation Process
Map Activities to SLC Model
Allocate Project Resources

Establish Project Environment
Plan Project Management

Project Monitoring and Control Process
Analyze Risks
Perform Contingency Planning
Manage the Project X

Retain Records X
Implement Problem Reporting System

Software Quality Management Process

Plan Software Quality Management
Define Metrics

Manage Software Quality

Identify Quality Improvement Needs

PRE-DEVELOPMENT PROCESSES

Concept Exploration Process

Identify Ideas or Needs

Formulate Potential Approaches
Conduct Feasibility Studies

Plan System Transition (If Applicable)
Refine and Finalize the Idea or Need

System Allocation Process

Analyze Functions
Develop System Architecture
Decompose System Requirements

X X X X
X X X

XXX XX
XXX X X
XXX XX
XXX XX
X X X
X X X

xX X
X X X X
x X
xX X
xX X

XX XX

X X X X

XXX

!
IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Table A3
Software Life Cycle Example Based on Prototyping (Continued)

Activities CE|PT|{IM|TE | IN |OM| RT
DEVELOPMENT PROCESSES
Requirements Process

Define and Develop Software Requirements
Define Interface Requirements
Prioritize and Integrate Software Rqmts.

Design Process

Perform Architectural Design
Design Data Base (If Applicable)
Design Interfaces

Select or Develop Algorithms
Perform Detailed Design

Implementation Process

Create Test Data

Create Source

Generate Object Code

Create Operating Documentation
Plan Integration '
Perform Integration

POST-DEVELOPMENT PROCESSES
Installation Process

Plan Installation X
Distribute Software

Install Software

Check out Software in Operational Envnmt.

Operation and Support Process

Operate the System
Provide Tech. Asst. & Consult.
Maintain Support Request Log

Maintenance Process
Reapply Software Life Cycle X

X X X X X X X X

X X X X X
X XX XX
X

X X X

X X X

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

Table A3
Software Life Cycle Example Based on Prototyping (Continued)

Activities CE|PT|IM|TE|IN JOM|RT
Retirement Process

Notify User X
Conduct Parallel Operations (If Applicable)
Retire System

INTEGRAL PROCESSES
Verification and Validation Process

Plan Verification and Validation
Execute V&V Tasks

Collect and Analyze Metric Data
Plan Testing

Develop Test Specifications
Execute the Tests

Software Configuration Management Process

Plan Configuration Management
Perform Configuration Identification
Perform Configuration Control
Perform Status Accounting

Documentation Development Process

Plan Documentation
Implement Documentation
Produce and Distribute Documentation X X

Training Process
Plan the Training Program X
Develop Training Materials X X X

Validate the Training Program X X
Implement the Training Program X

X X X

XXX XX
XX XXX

XX XX
X X X
X X X
x
x
x

xX X

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Table A4
Software Life Cycle Example Based on an Operational Specification®

System Requirements (SR) Operational Specification (OS)
Transformed Specification (TS) Delivered System (DS)

Activities SR 0S TS DS
SOFTWARE LIFE CYCLE PROCESS

Identify Candidate SLC Models
Select Project Model

PROJECT MANAGEMENT PROCESSES
Project Initiation Process
Map Activities to SLC Model
Allocate Project Resources

Establish Project Environment
Plan Project Management

Project Monitoring and Control Process

Analyze Risks

Perform Contingency Planning
Manage the Project

Retain Records

Implement Problem Reporting System

Software Quality Management Process

Plan Software Quality Management
Define Metrics

Manage Software Quality

Identify Quality Improvement Needs

PRE-DEVELOPMENT PROCESSES
Concept Exploration Process

Identify Ideas or Needs

Formulate Potential Approaches

‘ Conduct Feasibility Studies

i Plan System Transition (If Applicable)
‘ Refine and Finalize the Idea or Need

7 System Allocation Process

| Analyze Functions
Develop System Architecture
Decompose System Requirements

- X X
X X

X X XX
x
X

X X X X
XX XXX
XX X X X
XX XXX

XXX X
X X X X
xX X
xX X

XX XXX
X

xX X X
x

* As defined in the IEEE Tutorial, “New Paradigms for Software Development,” by William W. Agresti.

96

IEEE
SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991

Table Ad
Software Life Cycle Example Based on an Operational Specification (Continued)

Activities SR 0S TS DS
DEVELOPMENT PROCESSES
Requirements Process

Define and Develop Software Requirements
Define Interface Requirements
Prioritize and Integrate Software Requirements

Design Process

Perform Architectural Design
Design Data Base (If Applicable)
Design Interfaces

Select or Develop Algorithms X
Perform Detailed Design

Implementation Process

Create Test Data

Create Source

Generate Object Code

Create Operating Documentation
Plan Integration

Perform Integration

POST-DEVELOPMENT PROCESSES
Installation Process

Plan Installation X
Distribute Software

Install Software

Check out Software in Operational Environment

Operation and Support Process

Operate the System
Provide Tech. Asst. & Consult.
Maintain Support Request Log

Maintenance Process
Reapply Software Life Cycle X
Retirement Process

Notify User
Conduct Parallel Operations (If Applicable)
Retire System

X X X
X X X X X XX X X X xX X
X XX XX

¥

X X X

X X X

X X X

IEEE

Std 1074-1991

Table A4

Software Life Cycle Example Based on an Operational Specification (Continued)

Activities

SR

0S

TS

DS

INTEGRAL PROCESSES
Verification and Validation Process

Plan Verification and Validation
Execute V&V Tasks

Collect and Analyze Metric Data
Plan Testing

Develop Test Specifications
Execute the Tests

Software Configuration Management Process

Plan Configuration Management
Perform Configuration Identification
Perform Configuration Control
Perform Status Accounting

Documentation Development Process

Plan Documentation
Implement Documentation
Produce and Distribute Documentation

Training Process
Plan the Training Program
Develop Training Materials

Validate the Training Program
Implement the Training Program

X X X

X X X X XXX XX

xX X

X X X X X

X X X

Appendix B
Software Project Management Tailoring Template

The Software Project Management Tailoring Template is designed to assist project managers
in identifying project-critical deliverables and assuring their completion as needed.

This template may be used to assist in the project-specific mapping of information into the re-
quired project documentation.

o e

2 S N MR i 4 e e

IEEE
Std 1074-1991 IEEE STANDARD FOR DEVELOPING

Table B1
Software Project Management Tailoring Template

SOFTWARE PROJECT MANAGEMENT TAILORING TEMPLATE

Process or Activity Name Section Output Information Mapped Deliverables or
_ Activities
PROCESS GROUP Required
Process Output Information
Activity
SOFTWARE LIFE CYCLE PROCESS 2
Identify Candidate SLC Models 23 Candidate SLC Model(s)
Select Project Model 24 Selected SLC Model
PROJECT MANAGEMENT PROCESSES | 3
Project Initiation 31
Map Activities to SLC Model 3.1.3 | Software Life Cycle
List of Activities Not Used
Allocate Project Information 3.1.4 | Resource Allocations
Establish Project Environment 3.1.5 | Project Environment
Plan Project Management 3.1.6 | Problem Reporting &
Resolution Planned Info.
Retirement Planned Info.
Software Project
Management Planned
Info.
Support Planned Info.
Project Monitoring and Control 32
Analyze Risks 3.2.3 | Analysis of Risks
Perform Contingency Planning 3.2.4 | Contingency Planned
Info.
Manage the Project 3.2.5 | Project Management
Reported Info.
Anomalies
Retain Records 3.2.6 | Historical Project
Records
Implement Problem Reporting Method 3.2.7 | Resolved Problem
Reported Info.
Report Log
Enhancement Problem
Reported Info.
Corrections Problem
Reported Info.

100

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
Table B1 ‘
Software Project Management Tailoring Template o
(Continued) I
SOFTWARE PROJECT MANAGEMENT TAILORING TEMPLATE
Process or Activity Name Section Output Information Mapped Deliverables or
Activities
Software Quality Management 33
Plan Software Quality Management - 3.3.3] Software Quality
Management Planned
Info.
Define Metrics 3.3.4 | Defined Metrics
Collection and Analysis
Methods i
Manage Software Quality 3.3.5 | Project Quality
Assessments
Identify Quality Improvement Needs 3.3.6 | Quality Improvement {
Recommendations]
1
N
PRE-DEVELOPMENT PROCESSES 4 .
Concept Exploration 4.1 ’
Identify Ideas or Needs 4.1.3 | Prelim. Statement of i
Need |
Formulate Potential Approaches 4.1.4 | Constraints and Benefits
Potential Approaches
Conduct Feasibility Studies 4.1.5| Recommendations
Plan System Transition (If Applicable) 4.1.6 | Transition Impact
Statement ‘
Transition Planned Info. “
Refine and Finalize the Idea or Need 4.1.7 | Statement of Need
System Allocation 4.2
Analyze Functions 4.2.3 | Functl Description of
System
Develop System Architecture 4.2.4 | System Architecture
Decompose System Requirements 4.2.5 | Funct'l Hardware Rqmts.
Funct’] Software Rqmts.
System Interface
Requirements (If | }
Applicable) |
DEVELOPMENT PROCESSES 5
Requirements 5.1 |
Define and Develop Software Rqmts. 5.1.3 | Prelim. Software Rqmts. | é
Installation Rqmts. i
Define Interface Requirements 5.1.4 | Software Interface 1
Rqmts. f
Prioritize and Integrate Software Rqmts. 5.1.5 | Software Rqmts. |

101 !

IEEE

Std 1074-1991 IEEE STANDARD FOR DEVELOPING
Table B1
Software Project Management Tailoring Template
(Continued)
SOFTWARE PROJECT MANAGEMENT TAILORING TEMPLATE
Process or Activity Name Section Output Information Mapped Deliverables or
Activities
Design 5.2
Perform Architectural Design 5.2.3 | Software Architectural
Design Description
Design Data Base (If Applicable) 5.2.4 | Data Base Description
Design Interfaces 5.2.5 | Interface Description
Select or Develop Algorithms 5.2.6 | Algorithm Descriptions
Perform Detailed Design 5.2.7 | Software Design
' Description
Implementation 5.8
Create Test Data 5.3.3 | Stubs and Drivers (If
Applicable)
Test Data
Create Source 5.3.4 | Data Base (If Applicable)
Source Code
Generate Object Code 5.3.5 | Corrected Data Base (If
Applicable)
Corrected Source Code
1 Object Code
Create Operating Documentation 5.3.6 | Operating
Documentation
Plan Integration 5.3.7 | Integration Planned Info.
Perform Integration 5.3.8 | Integrated Software
POST-DEVELOPMENT PROCESSES |6
Installation 6.1
Plan Installation 6.1.3 | Software Installation
Planned Info.
Distribute Software 6.1.4 | Packaged Operating
Docs.
Packaged Software
Packaged Installation
Planned Info.
Install Software 6.1.5 | Installation Reported
Info.
Installed Software
Accept Software in Operational Envrmt. 6.1.6 | Installed Software
System

Customer Acceptance

102

IEEE

SOFTWARE LIFE CYCLE PROCESSES Std 1074-1991
i
: Table Bl ‘
Software Project Management Tailoring Template .
(Continued) y
SOFTWARE PROJECT MANAGEMENT TAILORING TEMPLATE
Process or Activity Name Section Output Information Mapped Deliverables or
Activities
Operation and Support 6.2
Operate the System 6.2.3 | System Anomalies
Operation Logs
Feedback Data
Provide Tech. Asst. & Consult. 6.2.4 | Support Response
Maintain Support Request Log 6.2.5 | Anomalies
Support Request Log
Maintenance 6.3
Reapply Software Life Cycle 6.3.3 | Maintenance) |
Recommendations 1
f
Retirement 6.4 fi
Notify User 6.4.3 | Official Notification ;i
Conduct Parallel Operations 6.4.4 | Parallel Operations Log r
Retire System 6.4.5 | Post-Operation Review f
Reported Information .
Archive Reported Info.
INTEGRAL PROCESSES 7
Verification and Validation 7.1 .
Plan V&V ' 7.1.3 | Software V&V Planned
' Info.
Execute V&V Tasks 7.1.4 | Evaluation Reported Info.
Anomalies
Collect and Analyze Metric Data 7.1.5 | Analysis Reported Info.
Plan Testing 7.1.6 | Test Planned Info. ‘ !
Develop Test Requirements 7.1.7{ Test Requirements :
Execute the Tests ‘ 7.1.8 | Test Summary Reported
Info. ; ;
Tested Software | '
Anomalies }

IEEE

Std 1074-1991
Table B1
Software Project Management Tailoring Template
(Continued)
SOFTWARE PROJECT MANAGEMENT TAILORING TEMPLATE
Process or Activity Name Section Output Information Mapped Deliverables or
Activities
Software Configuration Management 7.2
Plan Configuration Management 7.2.3 | Software Config.
Management Planned
Info.
Develop Configuration Identification 7.2.4 | Config. Identification
Perform Configuration Control 7.2.5 | Change Status
Controlled Item
Perform Status Accounting 7.2.6 | Status Reported Info.
Documentation Development 7.3
Plan Documentation 7.3.3 | Documentation Planned
"| Info.
Implement Documentation 7.3.4 | Document
Produce and Distribute Documentation 7.3.5 | Published Document
Training 74
Plan the Training Program 7.4.3 | Training Planned Info.
Develop Training Materials 7.4.4 | Training Manual
Training Materials
Validate the Training Program 7.4.5 | Updated Training
Manual
Updated Training
Materials
Training Feedback
Implement the Training Program 7.4.6 | Trained Personnel
Training Feedback
Updated Skills Inventory

104

Appendix C
Process Interrelationships

Figure C1 in this Appendix shows the interrelationships between the Processes. The boxes in
Fig C1 are Processes; the directed lines show the flow of input and output information between Pro-
cesses. The Management Processes are grouped in the center of the figure, with the Development-
Oriented Processes arranged around them.

This figure does not attempt to show Process invocations. All the directed lines to and from the
Invoked Processes represent explicit information passed between those Processes.

105

IEEE STANDARD FOR DEVELOPING

$53004d —
1HOddNS ®
T T T NoLYHad0 $5300Hd
— §5300Hd FONVNIINVA |
t ONINIVHL i €9
j' vi
L[S — # %

§53008d >
NOLLYTIVLSN $$3004d
e ININ3YILZY
D v
—— e ——— 7\ | . y
-y SS3004d 1 :
ININOTIAZA ,
| NOILVINIWNDOG |-
gL m.
L— - $S3IJ0Hd "LNOW ..m
ALITVNO WS
€€ m
5
i
: $$300Hd 5) 8
S3004d < . NOILVILINI $S300Hd 1300W o —
NOILVININI 1AW , Smmwxm 30D wu_: ws 5
es < $5300Hd TOHLINGD L
8 ONIHOLINOW]
A A : 153rodd
— ze 1HvV1iS
s S — .
$S3004d LWOW | g
fnoivanolanoo ws| |
- |2|.. N I | : §S300Hd
»| Nouveowx3 <
1d30N00 O/ $$3004d
mmwmm_mn_ >t | “sasszooud |
ze - 1 _ IVHOIAUNI |_
$S3004d
« f ¢ _ NOILYOOTIV > §35S300Hd
r——-1— y zmww>m Q3INIHO-"A3Q
| SS300Hd NOLLVOI VA “[$$300Hd
2 NOILVOIJIMIA , SINJWIHIND3Y |eg
VL -¢ g $38S300Hd
| IS S | @ “LWOW TOMd

Std 1074-1991

TEEE

SOFTWARE LIFE CYCLE PROCESSES

IEEE
Std 1074-1991

Index

Accept Software in Operational Environment 57, 59,
60, 64
Accept Software in Operational Environment
Activity 59
Acronym List 13
Activities (See also individual Activities by title), 45
And Integral Processes 66
As a part of the SLCM 21
Establishing an order for 14
Not Used, list of 23
Number of 13
Scope of 11
Activity
Definition of 11
Plan Project Management 25
Three parts of an 13-14
Algorithm Descriptions 50, 51
Allocate Project Resources 22, 23, 24, 27, 41
Allocate Project Resources Activity 23
Allocate Resources 44
Analysis 15, 24, 27, 39, 42, 46, 59, 66, 68
Definition of 11
Analysis of Risks 24, 28, 45, 66
Analysis Reported Information 27, 28, 29, 35, 68, 69
Analysis, SLCM 21
Analyze Functions 39, 41, 42, 43, 46
Analyze Functions Activity 42
Analyze Risks 27, 28, 40, 41, 45, 47, 48, 51, 55, 66, 69,
70, 71
Analyze Risks Activity 27
Anomalies 31, 60, 62, 67, 71
Anomaly, definition of 11
Applicable Documentation 80
Archive Reported Information 64
Audit 28, 30, 66, 72
Available or Candidate Software Life Cycle Models
21
Candidate Software Life Cycle Model 21
. Change Status 74
Changing Software Requirements 37
Collect and Analyze Metric Data 27, 28, 29, 32, 34, 35,
66, 68
Collect and Analyze Metric Data Activity 68
Collection and Analysis Methods 24, 33, 34, 35, 68
Collection of information for Project Management 25
Compliance 11, 14, 66, 83
Mapping Activities as a part of 22
Concept Exploration 22, 23, 24, 25, 27, 32, 3741, 42,
43, 57, 61, 62
Concept Exploration and System Allocation 15
Concept Exploration Process 3741, 62

107

Conduct Feasibility Studies 25, 37, 38, 39, 40, 42

Conduct Feasibility Studies Activity 39

Conduct Parallel Operations 26, 60, 63

Conduct Parallel Operations Activity 64

Conducted parallel operations 64

Configuration Identification 72, 73

Configuration item 44, 73, 74

Constraints and Benefits 38, 39, 40

Contingency Planned Information 25, 29

Contract Deliverable List 72

Contractual requirements 22, 24, 25, 75

Definition of 11

Controlled item 12, 31, 74

Corrected Data Base 56

Corrected Source Code 56

Correction Problem Reported Information 32, 62, 68

Create Operating Documentation 51, 54, 57, 76

Create Operating Documentation Activity 54

Create Source 51, 52, 53

Create Source Activity 53

Create Test Data 48, 51, 52, 53, 55, 70, 71

Create Test Data Activity 52

Creating Process 15, 31, 32, 67, 73, 76, 77, 80, 82

Critical software 11

Customer acceptance 57, 60

Customer Requests 37

Customer, definition of 11

Data base 14, 46, 47, 49, 52, 53, 55

Definition of 11

Data Base Data 58, 59

Data Base Description 50, 51

Decompose System Requirements 23, 42, 43, 45, 46

Decompose System Requirements Activity 43

Define and Develop Software Requirements 28, 44,
45,46, 47,57, 69

Define and Develop Software Requirements Activity
45

Define Interface Requirements 27, 43, 44, 45, 46, 47,
50, 54

Define Interface Requirements Activity 46

Define Metrics 24, 33, 34, 35, 68

Define Metrics Activity 34

Defined Metrics 24, 33, 34, 35, 68

Definitions 11-13

Design 15, 24, 27, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55,
66, 69, 70, 75, 76, 80

Design Data Base 14, 48, 49, 51

Design Data Base Activity 49

Design Interfaces 47, 48, 50, 51

Design Interfaces Activity 50

Design Process 15, 43, 47, 48

IEEE
Std 1074-1991

Develop Configuration Identification 72, 73
Develop Configuration Identification Activity 73
Develop System Architecture 41, 42, 43, 48
Develop System Architecture Activity 43
Develop Test Requirements 52, 66, 70, 71
Develop Test Requirements Activity 70
Develop Training Materials 78, 80, 81
Develop Training Materials Activity 80
Development Processes 15, 45-56
Development Resources and Budget 38
Development-Oriented Processes 15, 105
Distribute Software 54, 57, 58, 59, 60, 71
Distribute Software Activity 58
Documentation Development 15, 25, 30, 33, 40, 44, 46,
47, 49, 51, 54, 55, 58, 64, 67, 69, 70, 71, 72, 74, 75, 76,
77, 79, 80, 81
Documentation Development Process 63, 75-77
Documentation Planned Information 30, 54, 76, 77
Documentation Retention Standards 30
Enhancement Problem Reported Information 31, 32,
37, 68
Establish Project Environment 22, 23, 25, 28, 34, 41,
43, 45, 49, 75, 76, 79, 80
Ownership responsibility 24
Tools, Methodologies, and Standards 24
Establish Project Environment Activity 24
Evaluation 15, 37, 67
Definition of 12
Evaluation Reported Information 29, 35, 67, 68
Execute the Tests 27, 29, 53, 55, 58, 59, 66, 70, 71
Execute the Tests Activity 71
Execute Verification and Validation Tasks 29, 32, 35,
62, 66, 67, 68
Execute Verification and Validation Tasks Activity 67
External 14, 16, 21, 49, 75
Definition of 12
External (input information) 21, 22, 23, 24, 25, 27, 30,
31, 37, 38, 39, 45, 46, 55, 58, 59, 61, 64, 67, 68, 71, 72,
75, 79, 80, 81
External (output information) 30, 32, 36, 44, 60, 61, 63,
65,71, 74, 717, 82
Feedback Data 37, 61
Formulate Potential Approaches 37, 38, 39, 40
Formulate Potential Approaches Activity 38
Function 33, 42, 43, 44, 48, 50, 51, 61, 66
Definition of 12
Software management 12
Functional Description of the System 43, 46
Generate Object Code 53, 55
Generate Object Code Activity 53
Hardware interfaces 46
Historical Project Records 21, 23, 30
1/O Tables, use of 16
Ideas from Within the Development Organization 37

IEEE STANDARD FOR DEVELOPING

Identify Candidate Software Life Cycle Models 19, 21

Identify Candidate Software Life Cycle Models
Activity 21

Identify Ideas or Needs 25, 32, 37, 38, 39, 40, 61, 62

Identify Ideas or Needs Activity 37

Identify Quality Improvement Needs 29, 34, 35, 67,
68, 69, 70, 79

Identify Quality Improvement Needs Activity 35

Implement Documentation 75, 76, 77

Implement Documentation Activity 76

Implement Problem Reporting Method 26, 27, 30, 31,
35,37, 61, 62, 67,68, 71, 74

Implement Problem Reporting Method Activity 31

Implement the Training Program 78, 79, 81

Implement the Training Program Activity 81

Implementation 15, 22, 27, 29, 31, 36, 40, 47, 48, 49, 51,
52, 53, 55, 57, 58, 69, 70, 71, 76, 79

Implementation Process 52-56

information flow 14, 46

(Figure) 18

Input Information for Document 76

Install Software 29, 57, 58, 59

Install Software Activity 59

Installation 15, 29, 40, 46, 54, 57-60, 64, 71

Definition of 12

Installation Process 57-60

Installation Reported Information 29, 59

Installation Requirements 46, 57

Installation Support Requirements 45

Installed Software 59

Installed Software System 60, 64

Integral Process, tracking 15

Integral Processes 15, 66-82

Integrated Software 56, 71

Integration Planned Information 27, 29, 55, 69

Interface Description 50, 51

Internal interfaces 49

Invoked Processes, example of (Figure) 17

Item(s) to Be Evaluated 67

Items to Be Controlled 73

Maintain Support Request Log 26, 60, 61, 67

Maintain Support Request Log Activity 61

Maintenance 13, 14, 15, 21, 32, 37, 62, 73, 76

Maintenance Activities 60

Maintenance Process 62

Maintenance Recommendations 37, 62

Manage Software Quality 32, 34, 35, 36, 65, 67, 69

Manage Software Quality Activity 35

Manage the Project 25, 26, 27, 29, 34, 36, 55, 59, 61, 68,
69, 70, 71, 74

Manage the Project Activity 29

Mandatory Activity 14

Map Activities to Software Life Cycle Model 21, 22,
23, 24, 25

108

SOFTWARE LIFE CYCLE PROCESSES

Map Activities to Software Life Cycle Model Activity
22

- Mapping 19, 21

Definition of 12
Market Availability Data 38
Marketing Information Sources 37
Methodologies 15, 19, 24, 25, 33, 68, 72
Methodology 33, 43, 46, 61

Definition of 12
Metric Data 28, 29, 31, 33, 68
Notify User 26, 63
Notify User Activity 63
Official Notification 63
Operate the System 26, 29, 37, 58, 60
Operate the System Activity 60
Operating Documentation 54, 57, 58
Operation and Support 15, 26, 29, 37, 58, 60, 61, 67
Operation and Support Process 60
Operation Logs 61
Organization of the Standard (Table) 13
Original Records 18, 30
Originating Process 18, 30, 68
Owner 22
Ownership

Of an activity 18

Responsibilities and authority of 22
Packaged Installation Planned Information 58, 59
Packaged Operating Documentation 58, 59
Packaged Software 58
Packaged Software Installation 59
Parallel Operations Log 64
Perform Architectural Design 43, 48, 49, 51
Perform Architectural Design Activity 48
Perform Configuration Control 31, 72, 73, 74
Perform Configuration Control Activity 73
Perform Contingency Planning 25, 27, 28, 29, 69
Perform Contingency Planning Activity 28
Perform Detailed Design 27, 48, 49, 50, 51, 52, 53, 54,

55, 69, 70, 80

Perform Detailed Design Activity 51
Perform Integration 53, 54, 55, 71
Perform Integration Activity 55
Perform Status Accounting 29, 72, 73, 74
Perform Status Accounting Activity 74
Phase 73
Plan Configuration Management 30, 72, 73, 74
Plan Configuration Management Activity 72
Plan Documentation 30, 54, 75, 76, 77
Plan Documentation Activity 75
Plan Installation 40, 46, 57, 58
Plan Installation Activity 57
Plan Integration 27, 29, 48, 51, 55, 69
Plan Integration Activity 55

109

IEEE
Std 1074-1991

Plan Project Management 22, 23, 24, 25, 27, 29, 30, 31,
33, 34, 35, 38, 39, 41, 45, 46, 48, 51, 53, 55, 57, 58, 60,
61, 62, 63, 64, 66, 69, 72, 73, 75, 79

Plan Project Management Activity 25

Plan Software Quality Management 29, 34, 35, 66, 68

Plan Software Quality Management Activity 33

Plan System Transition 27, 37, 38, 39, 40, 57

Plan System Transition Activity 39

Plan Testing 27, 29, 35, 46, 48, 51, 52, 55, 66, 67, 69, 70,
71

Plan Testing Activity 69

Plan the Training Program 35, 48, 78, 80, 81, 82

Plan the Training Program Activity 79

Plan Verification and Validation 28, 34, 35, 66, 67, 69

Plan Verification and Validation Activity 66

Post-Development Processes 15, 57-65

Post-Operation Review Reported Information 65

Potential Approaches 38, 39, 40

Pre-Development Processes 15, 37-44

Preliminary Software Requirements 46, 47, 69

Preliminary Statement of Need 25, 38, 39, 40

Prioritize and Integrate Software Requirements 27,
45, 46, 47, 48, 49, 50, 51, 52, 55, 69, 70, 79

Prioritize and Integrate Software Requirements
Activity 47

Problem 25, 27, 31, 59, 61

Definition of 12
Installation 57

Problem report 25, 31, 68

Problem Reporting and Resolution Planned
Information 26, 27, 29, 31

Process 25, 30, 31, 33, 34, 38, 39, 40, 42, 43, 44, 46, 47,
49, 50, 51, 54, 55, 56, 58, 60, 61, 62, 63, 64, 67, 70, 71,
72,74, 76,79, 80, 81

Definition of 12
Overview 63
Process Interrelationships (Figure) 106
Processes (See individual processes by title)
Number of 13

Produce and Distribute Documentation 30, 75, 76, 77

Produce and Distribute Documentation Activity 77

Product 14, 21, 28, 31, 34, 38, 45, 52, 57, 60, 66, 73, 74,
75, 78

Definition of 12
Tracking the flow of a 15

Project Environment 24, 25, 43, 45, 49, 76, 79, 80

Project Initiation 21, 22-26, 27, 28, 29, 30, 31, 33, 34, 35,
38, 39, 41, 43, 44, 45, 46, 48, 49, 51, 53, 55, 57, 58, 60,
61, 62, 63, 64, 66, 69, 72, 73, 75, 76, 79, 80

Project Initiation Process 15, 21, 22-26

Project management 15

Project Management and Control 23

Project Management Processes 15, 22-36

IEEE
Std 1074-1991

Project Management Reported Information 25, 29

Project Monitoring and Control 23, 25, 26, 27-32, 34,
35, 36, 37, 40, 41, 45, 47, 48, 51, 55, 59, 61, 62, 63, 64,
65, 66, 67, 68, 70, 71, 73, 74, 76, 77

Project Monitoring and Control Process 15, 27-32, 60,
61

Project Quality Assessments 35, 67

Project standards 24, 75

Provide Technical Assistance and Consulting 26, 60,
61

Provide Technical Assistance and Consulting Activity
61

Published Document 30, 77

Quality Improvement Recommendations 29, 35, 36

Quality Management, definition of 12

Quality Policy, definition of 12

Reapply Software Life Cycle 32, 37, 62

Reapply Software Life Cycle Activity 62

Recommendations 25, 36, 39, 40, 42

References 11

Refine and Finalize the Idea or Need 22, 23, 24, 25, 27,

317, 38, 39, 40, 42, 43
Refine and Finalize the Idea or Need Acnv1ty 40
Report Log 31, 32, 35, 68
Request for Support 61
Requirements 13, 15, 24, 27, 28, 33, 37, 42, 43 44,45,
46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 59, 66, 68, 69, 70,
71,72, 79
Contractual 22
For software already developed 11
Requirements Process 37, 45
Resolved Problem Reported Information 31, 32, 35,
67, 68
Resource Allocations 23, 24, 25, 27, 79
Resource Information 38
Resources 23
Retain Records 18, 23, 27, 30, 63, 64, 65, 73, 76, 77
Retain Records Activity 30
Retire System 26, 35, 63, 64
Retire System Activity 64
Retirement 15, 25, 26, 35, 60, 63, 64-65
Retirement Planned Information 25, 26, 29, 39, 63, 64
Retirement Process 63-65
Review 28, 66, 76, 80
Revision 74
Definition of 12
risk 14, 27, 28, 29, 66, 69
Select or Develop Algorithms 48, 50, 51
Select or Develop Algorithms Activity 50
Select Project Model 19, 21, 22
Select Project Model Activity 21
Selected Software Life Cycle Model 21, 22
Skills Inventory 79
Software Architectural Design Description 49, 51

IEEE STANDARD FOR DEVELOPING

Software Configuration Management 15, 25, 29, 30,
31, 33, 38, 40, 42, 44, 46, 47, 49, 50, 51, 54, 55, 56, 58,
59, 60, 64, 67, 69, 70, 71, 72, 73, 74, 79

Software Configuration Management Planned
Information 13, 30, 72, 73, 74

Software Configuration Management Process 31, 72-
74, 75, 80, 81

Software Design 51, 52, 53, 69

Software Design Description 13, 27, 51, 52, 53, 54, 55,
69, 70, 80

Software Installation Planned Information 58, 569

Software Interface Requirements 27, 47, 50, 54

Software Library 24

Software life cycle 11, 13, 14, 21, 22, 23, 24, 25, 33, 60,
62, 66, 72, 75, 718

As temporal road map 18

Definition of 12

Example Based on an Operational

Specification (Table) 96-98

Example Based on Eight Phases (Table) 87-89

Example Based on Five Phases (Table) 90-92

Example Based on Prototyping (Table) 93-95
Software life cycle model 11, 13, 21, 22, 24, 25, 41

Definition of 12

Software Life Cycle Model Process 19-21

Software Life Cycle Relationships (Figure) 20

Software Project Management Planned Information
13,26, 27, 29, 30, 33, 34, 35, 45, 46, 48, 51, 53, 55, 57,
58, 62, 66, 69, 72, 73, 75, 79

Collecting information for 25

Software Project Management Tailoring Template
(Table) 99

Software Quality Management 24, 29, 32 33-36, 65,
66, 67, 68, 70, 79

Software Quality Management Planned Information
29, 34, 35, 66, 68

Software Quality Management Process 15, 33-36

Software Quality Management, definition of 12

Software Quality Policy, definition of 12

Software Requirements 13, 23, 27, 42, 46, 48, 49, 50,
51, 52, 55, 69, 70, 79

Sources of changes to 37
Software System 47, 48, 49, 50, 57, 59, 60, 62, 63
Definition of 12

Software Verification and Validation Planned
Information 13, 35, 67, 69

Source code 52, 53, 56

Staff Participants 81

Standard 11, 15, 18, 22, 33, 42, 44, 67

Scope of 11

Use of 14
Applicability 14
Compliance 14
Getting started 18

110

SOFTWARE LIFE CYCLE PROCESSES

Intended audience 15

Standards 19, 24, 25, 30, 38, 37, 43, 52, 83

As a part of mapped Activities 22

As used in this standard 18

Combining documents 18

IEEE 18

IEEE, cross reference of (Table) 84-85
Standards, bibliographical 83
Statement of Need 22, 23, 24, 25, 27, 37, 38, 39, 40, 42,

43,45

As part of mapping 22
Status Reported Information 29, 72, 74
Stubsg and Drivers 52, 53, 55, 56
Students 81
Supplier 33

Definition of 12
Support Personnel Reported Information 68
Support Planned Information 26, 27, 29, 60, 61
Support Request Log 60, 61, 67
Support Response 61
System Allocation 23, 37, 39, 41, 42, 43, 45, 46, 48
System Allocation Process 42-44
System Anomalies 61
System architecture 42, 43, 48
System Functional Hardware Requirements 42, 44
System Functional Software Requirements 23, 24, 42,

44, 45,47

System Interface Requirements 44, 45, 46
Tailoring 59
Task 11, 15, 57, 66, 67, 69

Definition of 12
Test Data 53, 71

111

IEEE
Std 1074-1991

Test environment 52, 69

Test environment components 70, 71

Test Planned Information(s) 27, 29, 35, 52, 55, 69, 70,
71

Test Requirements 52, 70, 71

Test Specification(s) 48

Test Summary Reported Information 27, 29, 59, 71

Tested Software 55, 58, 71

Tools 24, 25, 33, 36, 39, 43, 47, 69, 72, 76

Trained Personnel 82

Training 15, 25, 35, 44, 48, 51, 58, 64, 78, 79, 80, 81

Training Feedback 79, 82

Training Manual 80, 81

Training Materials 51, 78, 80, 81

Training Planned Information 35, 78, 79, 80, 81

Training Process 24, 78, 82

Transition Impact Statement 27, 39

Transition Planned Information 39, 40, 567, 64

Unit, definition of 13

Updated Skills Inventory 82

Updated Training Manual and Materials 81

User Acceptance Planned Information 59

User Input Information 68

User interface 46

User Requests 37

User, definition of 13

Validate the Training Program 78, 79, 81

Validate the Training Program Activity 81

Verification and Validation 15, 25, 27, 28, 29, 32, 33,
34, 35, 38, 39, 40, 42, 44, 46, 47, 49, 50, 51, 52, 54, 55,
58, 59, 60, 62, 64, 66, 67-71, 72, 74, 75, 79, 80, 81

Verification and Validation Process 29, 66, 67-71, 72

SH94213
ISBN 1-55937-442-X
September 14, 1994

