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Preface

IN TRADITIONAL COMPUTER GRAPHICS, 3D objects are created using high-
level surface representations such as polygonal meshes, NURBS (nonuni-

form rational B-spline) patches, or subdivision surfaces. Using this model-
ing paradigm, visual properties of surfaces, such as color, roughness, and
reflectance, are described by means of a shading algorithm, which might
be as simple as the Lambertian diffuse reflection model or as complex as
a fully-featured shift-variant anisotropic BRDF.1 Because light transport
is evaluated only at points on the surface, these methods usually lack the
ability to account for light interaction that takes place in the atmosphere
or in the interior of an object.

Compared with surface rendering, volume rendering describes a wide
range of techniques for generating images from 3D scalar data. These
techniques are originally motivated by scientific visualization, where vol-
ume data is acquired by measurement or generated by numerical simula-
tion. Typical examples are medical data of the interior of the human body
obtained by computerized tomography (CT) or magnetic resonance imag-
ing (MRI). Other examples are data from computational fluid dynamics
(CFD), geological and seismic data, and abstract mathematical data such
as the 3D probability distribution of a random number, implicit surfaces,
or any other 3D scalar function.

It did not take long for volume-rendering techniques to find their way
into visual arts. Artists were impressed by the expressiveness and beauty of
the resulting images. With the evolution of efficient rendering techniques,
volume data is also becoming more and more important for applications in
computer games. Volumetric models are ideal for describing fuzzy objects,
such as fluids, gases, and natural phenomena like clouds, fog, and fire.

1BRDF = bidirectional reflection distribution function: a function used to describe
complex optical material properties.

xi
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Many artists and researchers have generated volume data synthetically to
supplement their traditional surface models. They have found that volume-
rendering techniques are useful for producing a large variety of impressive
visual effects.

Although, at first glance, volumetric data sets seem to be more difficult
to visualize than surfaces, it is both worthwhile and rewarding to render
them as truly 3D entities without falling back to 2D subsets. Efficient ren-
dering techniques that generate high-quality images of volumetric objects
including local and global illumination effects in real time, or at least at
interactive frame rates, are the topic of this book.

Intended Audience
This book is intended for two groups of readers. The first group com-
prises members of the scientific community, such as computer scientists,
engineers, physicists, and medical imaging professionals. The other group
comprises game developers, visual artists and animators, technical direc-
tors, and all people that are concerned with the development of multimedia
and visual-entertainment applications. For scientists, the clarity and the
accuracy of the visual representation of their data is essential. The enter-
tainment community will focus more on artistic merits and creative aspects
such as aesthetics, expressiveness, and everything that helps them commu-
nicate with the audience and tell their story. Both groups will find that
interactivity is essential.

Although most of the topics covered in this book deal with the program-
ming of computer-graphics applications, the book is not solely intended for
software developers or computer scientists. Content creators and visual
artists, whose primary concern is usually not software development, will
find out that volume graphics is not as difficult to realize as they might
think. They will learn expressive and powerful techniques for creating vi-
sual effects that are hard to realize with traditional surface modeling. From
our experience with various application areas, we know that there are also
many people from scientific disciplines who need customized methods for
visualizing their scientific data. They often find themselves writing pro-
grams to visually display their abstract data without really having a pool
of working methods that they can build upon. For those people, this book
will provide effective solutions, important concepts, and ideas for tailoring
their applications to their specific needs.

How to Read This Book
From the didactic point of view, the best way to read this book is from
cover to cover. Having said that, we encourage you to browse through
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the book and start reading wherever a passage or a figure catches your
attention. As we know, many readers prefer to skip parts of the text and
jump back and forth through the different chapters. In this section, we
want to give you some hints about what you will find in which parts of the
book and which chapters are built upon other chapters.

The first two chapters cover the basic prerequisites for the rest of the
book. Chapter 1 explains the physical basics of light transport and lays
the theoretical groundwork for later chapters. If you already feel familiar
with optics and light transfer, or if you are more interested in practical
implementation than theory, you can skip this chapter for now and return
to it later. Chapter 2 gives an overview of programmable graphics hardware
and its most important features. We assume that you are already familiar
with graphics programming to a certain extent, and this chapter is only
meant as a refresher.

The next few chapters are essential for all readers, regardless of whether
you’re interested in scientific visualization, visual arts, or games. Chapter 3
starts with a practical introduction to different approaches to texture-based
volume rendering. After having worked through this chapter, you should
be able to implement your first completely functional volume-rendering
system. Some of the techniques described in this chapter do not even
require programmable graphics hardware, but the algorithms are essential
for the rest of the book. Chapter 4 introduces transfer functions, which are
used to specify the optical properties based on your underlying volumetric
data. You will learn different mechanisms to perform color mapping and
understand their influence on image quality.

With the next two chapters, we increase the level of realism by inte-
grating different aspects of light-matter interaction. Chapter 5 shows how
to adapt popular local illumination techniques to volumetric data. This is
important for applications both in science and entertainment. Chapter 6
introduces global illumination techniques such as shadows, scattering, and
translucency. These advanced illumination effects are clearly motivated by
visual arts, but scientific applications will also benefit from shadows and
improved realism.

Although graphics hardware has been designed for object-order ap-
proaches, modern techniques also allow image-order approaches such as
ray casting to be implemented. Chapter 7 explains GPU-based imple-
mentations of ray casting, including optimization techniques such as space
leaping and early ray termination.

The next two chapters cover optimization strategies, which are impor-
tant for all application areas. Chapter 8 analyzes rendering speed and
covers effective techniques to get the maximum performance out of your
graphics board. Chapter 9 provides methods to improve the visual quality
of your images. Different types of visual artifacts and their real causes
are analyzed, and efficient countermeasures are introduced. Chapter 10
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revisits transfer functions and extends them to multiple dimensions and
multivariate data. User interfaces for intuitive classification and guidance
are demonstrated. These three chapters together are essential for imple-
menting a state-of-the-art volume-rendering system.

Chapter 11 is a guide to volume-rendering techniques for game pro-
grammers. It discusses the value of volume-graphics techniques for games
and compares them to traditional techniques. It explains how to seamlessly
integrate volume graphics into a game engine. The next two chapters fo-
cus on visual arts. Chapter 12 covers practical techniques for generating
volumetric models from scratch using polygonal surfaces and procedural
techniques. Chapter 13 discusses techniques for volumetric deformation
and animation. These techniques can be used to sculpt volumetric models
or to deform measured data. Apart from visual arts, fast deformation tech-
niques are important for scientific applications such as computer-assisted
surgery.

Chapter 14 deals with illustrative volume-rendering techniques and non-
photorealistic rendering. The goal of such approaches is to create contours
and cutaways to convey the important information by amplification through
simplification. The chapter covers approaches such as importance-driven
visualization, focus-and-context techniques, and non-photorealistic shad-
ing, which are mainly important for scientific visualization. Chapter 15
explains a variety of interactive clipping techniques, which facilitate the ex-
ploration of volume data in scientific data analysis. Segmented volume data
is often used in medical scenarios, where certain inner organs or anatom-
ical structures are marked explicitly by different tags. Chapter 16 covers
techniques for integrating segmentation data into our volume-rendering
framework. Finally, with respect to the ongoing trend toward huge data
sets, Chapter 17 introduces effective strategies to overcome memory and
bandwidth limitations for rendering of large volume data.

Graphics Programming
Only a couple of years ago, real-time volume graphics was restricted to ex-
pensive graphics workstations and large rendering clusters. The past couple
of years, however, have seen a breathtaking evolution of consumer graph-
ics hardware from traditional fixed-function architectures (up to 1998) to
configurable pipelines to fully programmable floating-point graphics proces-
sors with hundreds of millions of transistors. The first step toward a fully
programmable GPU was the introduction of configurable rasterization and
vertex processing in late 1999. Prominent examples are NVIDIA’s register
combiners and ATI’s fragment shader OpenGL extensions. Unfortunately,
at the time, it was not easy to access these vendor-specific features in a
uniform way.
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The major innovation provided by today’s graphics processors is the
introduction of true programmability. This means that user-specified mi-
croprograms can be uploaded to graphics memory and executed directly by
the vertex processor (vertex programs) and the fragment processor (frag-
ment programs).2 Vertex and fragment programs consist of assembler-like
instructions from the limited instruction set understood by the graphics
processor (MOV, MAD, LERP, and so on). To spare the user the tedious task
of writing assembler code, high-level shading languages for GPU program-
ming have been introduced. They provide an additional layer of abstraction
and allow access to the capabilities of different graphics chips in an almost
uniform way. Popular examples of high-level shading languages are GLSL,
the shading language introduced with the OpenGL 2.0 specification, and
Cg, introduced by NVIDIA, which is derived from the Stanford Shading
Language. HLSL, the high-level shading language introduced in Microsoft’s
DirectX 9.0 SDK, uses a syntax very similar to Cg.

We believe that code samples are essential for conveying algorithms.
Throughout this book, we provide code samples that concretely illustrate
our rendering algorithms. We have made an effort to keep the samples sim-
ple and easy to understand, and we have taken our choice of programming
languages seriously. Unless stated otherwise, the samples in this book are
written in C/C++ with OpenGL as the graphics API and Cg as the shading
language.
C++ is the most popular programming-language choice of graphics pro-

grammers. There are many introductory textbooks on C++ programming,
including [257]. The reason for choosing OpenGL as the graphics API is
that it is consistently supported on the largest number of different plat-
forms and operating systems. At this point, we assume that you already
have a basic knowledge of graphics programming and OpenGL. If you are
not familiar withOpenGL, we suggest studying theOpenGL Red Book [240]
first. However, we do not expect that readers who are more familiar with
the DirectX API will have major problems when adapting the code samples.
The reason for choosing Cg as the high-level shading language rather than
OpenGL’s built-in shading language GLSL is that Cg can be used directly
with both OpenGL and DirectX, and the current version of the Cg compiler
is also able to generate GLSL code. The syntax of Cg should be intelligible
to anyone familiar with C/C++, and even a less experienced programmer
should not have major problems understanding the code and adapting the
samples to any high-level shading language. Introductory material and
sample code using Cg can be found on the NVIDIA developer site [34].

2The terms vertex shader and vertex program and also fragment shader and fragment
program have the same meaning, respectively. We usually prefer the term program
because a major part of the code is not related to shading at all.



�

�

�

�

�

�

�

�

xvi Preface

Acknowledgments

This book has evolved as a result of several courses and tutorials held at
ACM SIGGRAPH, IEEE Visualization, and Eurographics conferences in
the past couple of years. We are indebted to many people who helped make
it possible in one way or another.

Gordon Kindlmann and Aaron Lefohn have contributed significant
parts to the text and to the original SIGGRAPH course notes. Gordon’s
work on curvature-based classification and Aaron’s ideas on efficient data
structures are essential parts of the book.

This book reflects the collective work of many researchers over several
years and would not exist without the wealth of experience provided to us.
Many of these researches have also supported the writing of this book by
generously providing their material, especially images and data sets. We
would like to thank (in alphabetical order): Dörte Apelt, Anna Vilanova ı́
Bartroli, Christoph Berger, Stefan Bruckner, Katja Bühler, Min Chen,
Roger Crawfis, Paul Debevec, Helmut Doleisch, Knut E. W. Eberhardt,
David S. Ebert, Laura Fritz, Markus Gross, Stefan Guthe, Peter Hast-
reiter, Jǐŕı Hlad̊uvka, Shoukat Islam, Mark Kilgard, Andrea Kratz, Martin
Kraus, Caroline Langer, Bob Laramee, Torsten Möller, Lukas Mroz, André
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1
Theoretical Background and

Basic Approaches

THIS BOOK COVERS two seemingly very different applications of volume
graphics: on the one hand, “special effects” and realistic rendering

of clouds, smoke, fire, and similar effects for computer games, movie pro-
duction, and so forth; on the other hand, the scientific visualization of
volumetric data. How do these different fields fit together, and why are
they covered in the same text?

The simple answer is that both fields rely on the same underlying phys-
ical models and therefore use identical, or at least very similar, rendering
techniques. This chapter focuses on the physical model for volume render-
ing, discussing its fundamental mathematical description and its approxi-
mations typically used for real-time volume rendering. The basic idea is to
model light transport in gaseous materials such as clouds or fog. Therefore,
volume graphics targets the same goal as computer graphics in general: the
simulation of light propagation in order to produce images as recorded by
a virtual camera.

The specific challenge for volume graphics is the interaction between
light and the participating media. Light may be absorbed, scattered, or
emitted by the gaseous materials that virtually “participate” in light prop-
agation. This interaction needs to be evaluated at all positions in the
3D volume filled by the gas, making volume rendering a computationally
intensive task. Therefore, the techniques discussed throughout this book
address the issue of efficient volume rendering. The remainder of this chap-
ter focuses on the theoretical foundation for these rendering methods, and
it provides a general overview of the volume-rendering process.

We have decided to lay out a theoretical background for volume ren-
dering in the beginning of this book. Our motivation is to provide a sound
foundation for the various algorithms that are presented in later chapters.
However, for readers who would like to start with practical issues of volume

1
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2 Theoretical Background and Basic Approaches

rendering, we have included a brief summary of the most important equa-
tions of this chapter in the box in Figure 1.1. This book need not be read
in sequential order; therefore, you are welcome to start with other chapters
(such as the basic introduction to practical volume rendering in Chapter 3)
if you prefer a hands-on approach. Nevertheless, we would like to encour-

Mathematics of Volume Rendering
in a Nutshell

Radiance

Fundamental measure of radiative energy, defined as radiative en-
ergy Q per projected unit area A⊥, per solid angle Ω, and per unit
of time t:

I =
dQ

dA⊥dΩdt
. (1.1)

Volume-Rendering Integral

The emission-absorption optical model leads to the volume-
rendering integral:

I(D) = I0 e
−

D�

s0

κ(t) dt

+

D∫
s0

q(s) e
−

D�

s

κ(t) dt
ds , (1.7)

with optical properties κ (absorption coefficient) and q (source term
describing emission) and integration from entry point into the vol-
ume, s = s0, to the exit point toward the camera, s = D.

Compositing

Iterative computation of the discretized volume-rendering integral.
Front-to-back compositing (from the camera into the volume):

Cdst ← Cdst + (1− αdst)Csrc

αdst ← αdst + (1− αdst)αsrc .
(1.14)

Back-to-front compositing (toward the camera):

Cdst ← (1− αsrc)Cdst + Csrc . (1.15)

Figure 1.1. Summary of mathematical equations for volume rendering.
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age you to return to this theoretical chapter at a later time, especially once
you plan to dive deeper into advanced topics of volume rendering.

1.1 Problem Setting
Volume graphics needs the participating medium to be modeled along with
the actual light-transport mechanism. Although the realistic rendering of
gaseous phenomena and the scientific visualization of volumetric data share
the same mechanism of light propagation, they differ in the way that the
participating medium is modeled.

Photorealistic volume rendering imitates the look of realistic gases and
therefore requires a physically accurate description of the participating
medium. Ideally, a physics-based simulation of the medium is employed to
obtain such a description, e.g., by a reliable simulation of cloud behavior
and fluid flow. This simulation heavily depends on the type of medium, and
its detailed discussion would reach well beyond the scope of this book. How-
ever, rather simple procedural models of participating media may achieve
convincing results without a physics simulation. The procedural approach
is discussed in Chapter 12, followed by volume-animation techniques in
Chapter 13.

Direct volume visualization has the goal of visually extracting informa-
tion from a 3D scalar field, which can be written as a mapping

φ : IR3 → IR ,

i.e., a function from 3D space to a single-component value (the scalar value).
The 3D scalar field typically originates from simulations or measurements,
defined on a discretized grid. Figure 1.2 illustrates a volume data set
represented on a discrete grid. This discretization leads to the issue of
reconstructing the function φ on all points in the 3D domain (see Section 1.5

Figure 1.2. Volume data set given on a discrete uniform grid.
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for details). For the time being, we assume that such a reconstruction is
available and provides a function defined on the complete domain. Direct
volume visualization maps the 3D scalar field to physical quantities that
describe light interaction at the respective point in 3D space. This mapping
mechanism is called classification and is usually based on the concept of a
transfer function (see Chapter 4).

1.2 Physical Model of Light Transport
Both photorealistic volume rendering and direct volume visualization pro-
vide a volumetric description of the physical properties of a participat-
ing medium. These physical properties are then used to compute light
transport for actual image synthesis. This section discusses both the fun-
damental equation of light transfer (Section 1.2.1) and different optical
models based on this light transfer (Section 1.2.2). One version of the
optical models leads to the so-called volume-rendering integral—the most
frequently employed basis for volume rendering, which is discussed later in
Section 1.3.

1.2.1 Equation of Light Transfer

The physical basis for volume rendering relies on geometric optics, in which
light is assumed to propagate along straight lines unless interaction between
light and participating medium takes place. Therefore, the interaction be-
tween light and matter is most interesting. The following types of interac-
tion are typically taken into account.

Emission. The gaseous material actively emits light, increasing the radia-
tive energy. In reality, for example, hot gas emits light by converting
heat into radiative energy.1

Absorption. Material can absorb light by converting radiative energy into
heat. In this way, light energy is reduced.

Scattering. Light can be scattered by participating media, essentially
changing the direction of light propagation. If the wavelength (or
the energy of photons) is not changed by scattering, the process is
called elastic scattering. Conversely, inelastic scattering affects the
wavelength. Unless otherwise noted, we only consider elastic scatter-
ing.

1We only consider spontaneous emission and neglect stimulated emission that plays
an important role for lasers.
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absorptionemission in-scattering out-scattering

Figure 1.3. Interactions between light and participating media that affect the radi-
ance along a ray.

Absorption, emission, and scattering affect the amount of radiative energy
along a light ray. The light energy can be described by its radiance I,
which is defined as the radiative energy Q per unit area A, per solid angle
Ω, and per unit of time t:

I =
dQ

dA⊥dΩdt
. (1.1)

The subscript ⊥ indicates that the area is measured as projected along the
direction of light: A⊥ = A cos θ, if θ is the angle between light direction
and the normal vector on the surface A. Note that radiance is sometimes
called specific intensity. However, we will use the term radiance throughout
this book. In general, radiance is the fundamental quantity for computer
graphics because it does not change along a light ray in vacuum. The
two-volume book by Glassner [80] gives a comprehensive introduction to
physical quantities for light measurements, including background informa-
tion on the definition of radiance.

The presence of a participating medium affects the radiance along a light
ray. Absorption reduces light energy, whereas emission adds light energy;
see Figure 1.3. Scattering can both reduce and increase radiative energy
along a light ray: through in-scattering, additional energy is redirected into
the direction of the ray. Conversely, out-scattering removes energy from the
current ray by scattering it into a different direction.

By combining the absorption, emission, and scattering effects, the fol-
lowing equation for the transfer for light is obtained:

ω · ∇xI(x, ω) = −χI(x, ω) + η . (1.2)

The term ω · ∇xI is the dot product between the light direction ω and
the gradient of radiance I with respect to position x (the “nabla” operator
∇ = (∂/∂x, ∂/∂y, ∂/∂z) is a short notation for the gradient operator).
This dot product describes the directional derivative taken along the light
direction. If a light ray is parameterized by arc length s, then ω · ∇xI
can be written as the derivative dI/ds. The term χ is the total absorption
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6 Theoretical Background and Basic Approaches

coefficient and defines the rate that light is attenuated by the medium. The
quantity η is the total emission and describes the extent to which radiative
energy is increased through the participating medium. Here, we adopt the
notation used by Hege et al. [103].

The total absorption coefficient consists of two parts: the true absorp-
tion coefficient κ (e.g., for the conversion of light energy into heat) and
the scattering coefficient σ, which represents the energy loss from out-
scattering. Therefore, the total absorption coefficient can be written as

χ = κ + σ .

Analogously, the total emission coefficient can be split into a source term q,
which represents emission (e.g., from thermal excitation), and a scattering
term j:

η = q + j .

Please note that all quantities χ, η, κ, σ, q, and j may depend on position
x and direction ω along a light ray. These parameters are typically left out
for simplicity of writing the equations.

The terms κ, σ, and q are optical material properties that are directly
assigned through a transfer function (see Chapter 4) or originate from a
physical model of a gas (see Section 1.1). The scattering part j, however,
needs to be indirectly computed from material properties. In fact, all pos-
sible contributions from all incoming light directions have to be considered,
leading to

j(x, ω) =
1
4π

∫
sphere

σ(x, ω′)p(x, ω′, ω)I(x, ω′) dΩ′ . (1.3)

Here, contributions from incident light I(x, ω′) are accumulated by inte-
grating over all directions ω′. The contributions are weighted by the scat-
tering coefficient σ and the phase function p, which describes the chance
that light is scattered from the original direction ω′ into the new direction
ω. The phase function is responsible for representing the angle-dependency
of scattering. Therefore, the phase function is an important optical prop-
erty of a participating medium. Different materials may have different
phase functions that can lead to very different “looks” of the volume—just
like varying reflection properties of a surface-based object result in different
looks of a surface-oriented scene. Chapter 6 discusses typical choices for
phase functions in more detail.

We assume that the phase function is normalized according to

1
4π

∫
sphere

p(x, ω′, ω) dΩ′ = 1 .
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The factor 1/4π is just used to cancel the factor 4π that is picked up by
integrating a unit function over a whole sphere.

By combining emission, absorption, in-scattering, and out-scattering,
the complete equation for the transfer for light is obtained:

ω · ∇xI(x, ω) = −(κ(x, ω) + σ(x, ω))I(x, ω) + q(x, ω)

+
∫

sphere

σ(x, ω′)p(x, ω′, ω)I(x, ω′) dΩ′ . (1.4)

This equation is a longer version of the original Equation 1.2. Large por-
tions of this book deal with efficient methods to determine the radiance I
from the above equation for the transfer for light. In particular, Chapter 6
on global illumination describes details of rendering methods and numeri-
cal approaches. Very often, only a subset of the full equation of transfer is
solved in order to achieve less cost-intensive computations. The theoretical
basis for choosing approximations or restricted models is discussed in the
following sections.

So far, only grayscale images can be described by the radiance I. To
facilitate color images, a wavelength-dependent behavior has to be taken
into account, typically by computing the wavelength-dependent radiance
Iλ = dI/dλ. Visible light roughly covers a range of wavelengths λ between
400 nanometers (nm), which is perceived as blue, to 800 nm, which is per-
ceived as red. In most cases, no change of wavelength (i.e., no inelastic
scattering) is considered, and then Equation 1.4 can be solved for each
wavelength independently. The optical properties have to be specified in
a wavelength-dependent way as well. With the assumption of elastic scat-
tering, color images are commonly computed for a few wavelength bands
only (for example, red, green, and blue).

1.2.2 Optical Models

Because the solution of the complete equation of transport for light is
computationally intensive, simplified models are often used. The basic
strategy is to remove or simplify one or more terms in Equation 1.4 in
order to obtain an equation that is more tractable. The following models
are commonly used.

Absorption Only. The volume is assumed to consist of cold, perfectly
black material that may absorb incident light. No light is emitted or
scattered.

Emission Only. The volume is assumed to consist of gas that only emits
light but is completely transparent. Absorption and scattering are
neglected.
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Emission-Absorption Model. This optical model is most common in
volume rendering. The gas can emit light and absorb incident light.
However, scattering and indirect illumination are neglected.

Single Scattering and Shadowing. This model includes single scatter-
ing of light that comes from an external light source (i.e., not from
within the volume). Shadows are modeled by taking into account the
attenuation of light that is incident from an external light source.

Multiple Scattering. Here, the goal is to evaluate the complete illumi-
nation model for volumes, including emission, absorption, and scat-
tering.

The emission-absorption model is the most widely used model for volume
rendering because it provides a good compromise between generality and
efficiency of computation. This model, of course, subsumes absorption only
and emission only models as special cases. The emission-absorption model
leads to the following equation,

ω · ∇xI(x, ω) = −κ(x, ω)I(x, ω) + q(x, ω) , (1.5)

which is referred to as the volume-rendering equation. More precisely, this
equation is the volume-rendering equation in its differential form because
it describes light transport by differential changes in radiance. If only a
single light ray is considered, Equation 1.5 can be rewritten as

dI(s)
ds

= −κ(s)I(s) + q(s) , (1.6)

where positions are described by the length parameter s.

1.3 Volume-Rendering Integral
The volume-rendering equation in its differential form (Equation 1.6) can
be solved for radiance by integrating along the direction of light flow from
the starting point s = s0 to the endpoint s = D, leading to the volume-
rendering integral

I(D) = I0 e
−

D�

s0

κ(t) dt

+
D∫

s0

q(s) e
−

D�

s

κ(t) dt
ds . (1.7)
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The term I0 represents the light entering the volume from the background
at the position s = s0; I(D) is the radiance leaving the volume at s = D
and finally reaching the camera. The first term in Equation 1.7 describes
the light from the background attenuated by the volume. The second term
represents the integral contribution of the source terms attenuated by the
participating medium along the remaining distances to the camera.

The term

τ(s1, s2) =

s2∫
s1

κ(t) dt (1.8)

is defined as the optical depth between positions s1 and s2. The optical
depth has a physical interpretation in the form of a measure for how long
light may travel before it is absorbed; i.e., optical depth indicates the typical
length of light propagation before scattering occurs. Small values for the
optical depth mean that the medium is rather transparent, and high values
for the optical depth are associated with a more opaque material. The
corresponding transparency (for a material between s1 and s2) is

T (s1, s2) = e−τ(s1,s2) = e
−

s2�

s1

κ(t) dt

. (1.9)

With this definition of transparency, we obtain a slightly different version
of the volume-rendering integral

I(D) = I0 T (s0,D) +

D∫
s0

q(s)T (s,D) ds .

The volume-rendering integral is the most common description of volume
rendering. Large portions of this book are devoted to efficient algorithms
for computing this integral.

1.3.1 Local Illumination for Volume Rendering

The volume-rendering integral in its classic form, Equation 1.7, accurately
represents the emission-absorption model but no scattering effects. Single
scattering of external light can be included to introduce greater realism
into this optical model. In a simple volume-shading model, the external
illumination is assumed to unimpededly reach a point in the volume from
an outside light source, neglecting any absorption or scattering along its
way.

Single scattering is often approximated by a local illumination model
that imitates local surface rendering, such as the Phong or the Blinn-Phong
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illumination models. In volume shading, the gradient of the scalar field
serves as the normal vector for these local illumination models because
the gradient is identical to the normal vector on an isosurface through the
respective point in space. In this way, volume shading produces an effect
similar to an illuminated isosurface. Local illumination is included in the
volume-rendering integral (see Equations 1.5 and 1.7) by extending the
source term to

qextended(x, ω) = qemission(x, ω) + qillum(x, ω) .

The emissivity qemission(x, ω) is identical to the source term in the pure
emission-absorption model. The additional scattering term qillum(x, ω) de-
scribes the additional light coming from local reflection (i.e., single scatter-
ing). We refer to Chapter 5 for a detailed discussion of local illumination
in volume rendering. The advantage of local illumination is that it does
not increase the complexity of the computations for the volume-rendering
integral but improves the perception of volume models.

1.3.2 Density Model

Sometimes, optical properties are derived from a density model of the par-
ticipating medium. In this description, ρ represents the density of the ma-
terial, and all optical properties are weighted by this density. For example,
the total absorption coefficient χ is replaced by χ′ according to

χ = χ′ρ .

There are similar substitutions for the true absorption coefficient, κ = κ′ρ,
the scattering coefficient, σ = σ′ρ, and the true emission term, q = q′ρ.

This density model builds upon a description of a density of particles
that are responsible for emission, absorption, and scattering. Originally,
such a particle model was proposed by Sabella [230] for his density-emitter
model of volume rendering. Williams and Max [300] provide a detailed
discussion of a volume-density model.

1.4 Discretization

The main goal of volume rendering is to compute the volume-rendering
integral, Equation 1.7. Typically, the integral cannot be evaluated analyti-
cally. Instead, numerical methods are applied to find an approximation as
close to the solution as possible.
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s0 s1 s2 s3 snsn-1
s

f(s) segment 3

Figure 1.4. Partitioning of the integration domain into several intervals. The inter-
vals are described by locations s0 < s1 < · · · < sn−1 < sn . The ith interval or
segment is [si−1, si]. The hatched box indicates the integration result for the third
segment.

1.4.1 Splitting into Several Integration Intervals

A common approach splits the integration domain into n subsequent inter-
vals. The intervals are described by locations s0 < s1 < · · · < sn−1 < sn,
where s0 is the starting point of the integration domain and sn = D is
the endpoint. Please note that the intervals do not necessarily have equal
lengths. Figure 1.4 illustrates the partitioning of the integration domain
into several intervals or segments.

Considering the light transport within the ith interval [si−1, si] (with
0 < i ≤ n), we can obtain the radiance at location si according to

I(si) = I(si−1)T (si−1, si) +

si∫
si−1

q(s)T (s, si) ds .

We introduce a new notation for the transparency and color contribution
(i.e., radiance contribution) of the ith interval:

Ti = T (si−1, si) , ci =

si∫
si−1

q(s)T (s, si) ds . (1.10)

The hatched box in Figure 1.4 illustrates the result of integration over one
interval. The radiance at the exit point of the volume is then given by

I(D) = I(sn) = I(sn−1)Tn + cn = (I(sn−2)Tn−1 + cn−1) Tn + cn = . . . ,

which can be written as

I(D) =
n∑

i=0

ci

n∏
j=i+1

Tj , with c0 = I(s0) . (1.11)
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s0 s1 s2 s3 snsn-1
s

f(s)

Figure 1.5. Approximation of an integral by a Riemann sum.

In general, the notation
∑l

i=k ai means that all terms ai (for k ≤ i ≤ l)
are summed. Similarly,

∏l
i=k ai is a notation for the multiplication of all

terms ai (for k ≤ i ≤ l). Often, transparency Ti is replaced by opacity
αi = 1− Ti.

At this point, we have halfway solved the problem of computing volume
rendering: the integration domain is segmented into n discrete intervals,
and the summations and multiplications in Equation 1.11 can be com-
puted. The missing point is the evaluation of the transparency and color
contributions of the intervals.

A most common approach approximates the volume-rendering integral
by a Riemann sum over n equidistant segments of length ∆x = (D−s0)/n.
Here, the function to be integrated is approximated by a piecewise-constant
function, as illustrated in Figure 1.5. The integral over a single interval
corresponds to the area of the rectangle defined by the function value at
a sampling point and by the sampling width (see the hatched boxes in
Figure 1.5).

In this approximation, the transparency of the ith segment is

Ti ≈ e−κ(si)∆x (1.12)

and the color contribution for the ith segment is

ci ≈ q(si)∆x . (1.13)

Many volume-rendering methods employ the above approximation with a
piecewise-constant function over equidistant sampling points. A prominent
example is the widely used approach with texture-based volume rendering,
as explained in Chapter 3.

Despite the widespread use of a piecewise-constant approximation with
equidistant sampling, other alternatives are sometimes employed to ob-
tain a better solution for the segments’ transparency and color contribu-
tions. One approach is to apply alternative quadrature rules (i.e., inte-
gration rules) for evaluating the volume-rendering integral, for example,
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the trapezoidal rule, Simpson’s rule, or other higher-order rules accord-
ing to Newton-Cotes formulas [217]. Unfortunately, the volume-rendering
integral typically contains discontinuities, for example, at the boundary
between different materials. Therefore, higher-order integration methods
often do not provide appropriate accuracy. Instead, adaptive sampling is
a much more common approach for improved volume rendering because it
modifies the sampling rate based on the properties of the integrand (see
Section 9.1 for details). Another alternative is a Monte Carlo approach that
introduces a jittering in sampling positions to avoid artifacts from uniform
sampling (also see Section 9.1 for details).

Finally, pre-integration partially computes the volume-rendering inte-
gral in a preprocessing step, which can be done with high accuracy. The
essential idea is to pre-compute all possible results for the volume-rendering
integral along a single segment, as described by Equation 1.10. During run-
time, only the discrete summations and multiplications according to Equa-
tion 1.11 are evaluated. Therefore, pre-integration leads to high rendering
quality at high speed, making it one of the most popular approaches for
volume rendering. Details of pre-integration are given in Sections 4.5 and
9.3.

1.4.2 Compositing Schemes

Compositing is the basis for the iterative computation of the discretized
volume-rendering integral (Equation 1.11). The idea is to split the summa-
tions and multiplications that are contained in Equation 1.11 into several,
yet simpler operations that are executed sequentially. Two different basic
compositing schemes are common: front-to-back compositing and back-to-
front compositing.

The front-to-back compositing scheme is applied when the viewing rays
are traversed from the eye point into the volume. Here, we use slightly
different variable names: C represents a color, typically given as a three-
channel RGB (red, green, blue) color value. Both the newly contributed
radiance c and the accumulated radiance I from the previous sections are
now associated with such a color description.

Then, the front-to-back iteration equations are

Ĉi = Ĉi+1 + T̂i+1Ci ,

T̂i = T̂i+1(1− αi) ,

with the initialization

Ĉn = Cn ,

T̂n = 1− αn .
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The results of the current iteration step are Ĉi and T̂i; Ĉi+1 and T̂i+1 are
the accumulated results of the previous computations. The source term Ci

and the opacity αi are given by the transfer function or they originate from
a physical model of a gas (see Section 1.1). The iteration starts at the first
sampling position i = n (closest to the camera) and ends at i = 0 (at the
backside of the volume).

By renaming the variables according to Cdst = Ĉj (with j = i, i + 1),
Csrc = Ci, αdst = 1 − T̂j (with j = i, i + 1), and αsrc = αi, front-to-back
compositing can be written in its most common way:

Cdst ← Cdst + (1− αdst)Csrc ,
αdst ← αdst + (1− αdst)αsrc .

(1.14)

This set of assignment equations explicitly shows the iterative nature of
compositing. Variables with subscript src (as for “source”) describe quan-
tities introduced as inputs from the optical properties of the data set (e.g.,
through a transfer function or from a physical model of a gas), whereas vari-
ables with subscript dst (as for “destination”) describe output quantities
that hold accumulated colors and opacities. Equation 1.14 is repeatedly
applied while marching along a ray, updating color Cdst and opacity αdst

along its way.
By reversing the traversal direction, we obtain the back-to-front com-

positing scheme:

Ĉi = Ĉi−1(1− αi) + Ci ,

T̂i = T̂i−1(1− αi) ,

with the initialization

Ĉ0 = C0 ,

T̂0 = 1− α0 .

The iteration starts at i = 0 and ends at i = n. Note that the accumulated
transparency T̂i is not needed to compute the color contribution Ĉi and
can thus be omitted.

Analogously to the front-to-back scheme, we can also rewrite the back-
to-front compositing in an explicitly iterative fashion:

Cdst ← (1− αsrc)Cdst + Csrc . (1.15)
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Note that there is no iterative update of opacity needed because accu-
mulated opacity (or transparency) is not required to determine the color
contribution.

In addition to the above compositing schemes, alternative approaches
are sometimes used. For example, maximum intensity projection (MIP)
and x-ray or weighted sum projections are often applied in medical imaging
applications. MIP is computed according to the compositing equation

Cdst ← max(Cdst, Csrc) . (1.16)

The final result is the maximum color contribution along a ray. This com-
positing scheme is independent of the traversal order; i.e., it may be applied
in a back-to-front, a front-to-back, or any other order. The main applica-
tion for MIP is virtual angiography—the display of vessel structures in
medical scans (see the survey article [218]). More details on MIP and its
implementation are provided in Section 3.2.3, along with an example image
in Figure 3.4. X-ray or weighted sum projections result in a weighted sum
of color contributions along a ray. All of these alternative schemes have an
order-independent compositing process in common [187].

In the remainder of this book, unless otherwise noted, we use a com-
positing scheme that implements the emission-absorption model—either
according to back-to-front or front-to-back traversal.

We would like to point out that colors C should be interpreted as ra-
diances values (per wavelength band) in order to obtain a consistent and
physically correct description of light transport. From the radiance that
arrives at the virtual camera, the corresponding detector response on the
image plane can be derived. For fixed camera parameters and a linear
response of the camera, the strength of the recorded color values is pro-
portional to the incident radiance. Therefore, the final radiance C can be
interpreted as a measure for RGB colors. Moreover, it is common prac-
tice to already specify intermediate colors C as RGB values—and we often
adopt this sloppy way of dealing with radiance throughout this book.

1.4.3 Opacity Correction

Volume rendering is typically described in terms of the discrete sum (Equa-
tion 1.11) or the corresponding compositing schemes. This discrete ap-
proach often assumes an equidistant sampling, for example, in conjunction
with the approximation through a Riemann sum. A problem arises when
the sampling rate needs to be changed: the discretized opacity and color
contributions need to be modified accordingly because their values depend
on the sampling distance (see Equations 1.10, 1.12, and 1.13). There are
several reasons for changing the sampling rate, such as adaptive sampling
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for accelerated volume rendering and improved image quality (see Sec-
tion 9.1) or purely geometric reasons in slice-based volume rendering (see
the discussion of 2D texture slicing in Section 3.2).

According to Equations 1.9 and 1.10, the transparency of a segment of
length ∆x (ranging from position si to si + ∆x) is

T = e
−

si+∆x�

si

κ dt

= e−κ∆x ,

if we assume a constant absorption coefficient κ within the segment. Analo-
gously, a segment of different length ∆x̃ has transparency T̃ = exp(−κ∆x̃).
Therefore, the two transparency values are related to each other according
to

T̃ = T (∆x̃
∆x ) .

In terms of opacity, the two intervals of different lengths are related by

α̃ = 1− (1− α)(
∆x̃
∆x ) . (1.17)

This equation describes opacity correction and allows for varying sample
rates even if the optical properties are only given with respect to a discrete
version of the volume-rendering integral, i.e., even if the optical properties
are described by opacities and not by a continuous absorption coefficient
κ(s).

Analogously, the color contribution, which is approximately c = q∆x
for the original length of a segment, is transformed according to the color
correction equation

c̃ = c

(
∆x̃

∆x

)
. (1.18)

1.4.4 Associated Colors

So far, we have assumed associated colors, as introduced by Blinn [14].
Associated colors consist of color components that are already weighted by
their corresponding opacity. An alternative description uses color compo-
nents that have not been premultiplied with opacity. The previous equa-
tions have to be modified to allow for nonassociated colors: original color
terms have to be replaced by color terms that are explicitly weighted by
opacity.

For example, Csrc needs to be substituted by αsrcCsrc in the iterative
compositing equations. With nonassociated colors, the front-to-back com-
positing Equation 1.14 is replaced by

Cdst ← Cdst + (1− αdst)αsrcCsrc

αdst ← αdst + (1− αdst)αsrc .
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Similarly, the back-to-front compositing scheme is changed from Equa-
tion 1.15 to

Cdst ← (1− αsrc)Cdst + αsrcCsrc .

From a conceptual point of view, both associated and nonassociated colors
are equivalent—except for a different interpretation of the color compo-
nents. The only noticeable difference appears when these colors are com-
puted by interpolation from a discrete set of color points. Color bleeding
artifacts that may occur during interpolation are avoided by using associ-
ated colors [303]. The effects of color bleeding are discussed and explained
in more detail in Section 3.2.3.

1.5 Volume Data and Reconstruction Filters
Volume rendering assumes a continuous 3D scalar field, which can be writ-
ten as a mapping

φ : IR3 → IR ,

which is a function from 3D space to a single-component value.
In practice, however, a volumetric field is given on a discretized grid be-

cause it is the result of a simulation or a measurement. Figure 1.6 illustrates
a volume data set represented on a discrete grid. A discrete representa-
tion leads to the following basic questions. First, how is the original data
discretized? Second, how is the continuous function generated from a dis-
crete set of samples? The first question leads to the issues of data storage
(discussed in the following section) and of data acquisition (discussed in
Section 1.5.2). The second question targets the issue of reconstructing a
continuous function, which is addressed in Section 1.5.3.

1.5.1 Classification of Grids

A two-dimensional raster image serves as the role model for the discrete
representation of a volume. An image consists of pixels (short for “pic-
ture elements”) that are organized in a regular array. Pixels are the data
elements of a 2D image, holding color values.

A discrete volume data set can be represented in a similar fashion by
just “lifting” the description from two dimensions to three dimensions.
Then, a 2D pixel is extended to a 3D voxel (short for “volume element”).
Voxels are organized in a regular 3D array, covering the volume data set.
Unfortunately, the term voxel has two slightly different interpretations in
the literature. One interpretation is that a voxel is a small cube that fills



�

�

�

�

�

�

�

�

18 Theoretical Background and Basic Approaches

Figure 1.6. Examples of uniform grids: 2D uniform grid with quadratic cells (left)
and 3D uniform grid with cuboid cells (right).

a small volumetric region with its associated data value. The other inter-
pretation assumes that voxels are points in 3D space, along with an inter-
polation scheme that fills the in-between space. In this book, we adopt the
second interpretation because it allows for a more flexible reconstruction
of in-between data values (see Section 1.5.3).

Our definition of a voxel is compatible with a grid-based description of
the volume data set: voxels serve as grid points of a uniform grid. The grid
points are connected by edges, forming hexahedral (i.e., cube-like) cells. In
fact, a 3D uniform grid can be defined as a collection of grid points that are
connected to form rectangular, hexahedral cells of equal size. Figure 1.6
illustrates uniform grids in two and three dimensions.

A uniform n-dimensional grid has the advantage of being well-
structured, which leads to a compact representation in computer memory
(e.g., in the form of an n-dimensional array) and a fast access to selected
data cells. Uniform grids, however, are not very flexible. Therefore, other
grid structures may be used to represent discretized data. Higher flexibility
can be achieved by permitting more flexible cell types or a more flexible
combination of cells to a grid. For example, distorted hexahedra (i.e., with
nonperpendicular cell axes) or completely different cell types (e.g., prisms)
may be used. Moreover, different kinds of cells may be combined in a single
grid.

A prominent example of a more flexible structure is a grid consisting
of simplices (or simplical cells), as shown in Figure 1.7. A simplex (more
specifically, an n-simplex) is defined as the convex hull of (n + 1) affinely
independent points in Euclidean space of a dimension equal to, or greater
than, n. For example, a 0-simplex is a point, a 1-simplex is a line segment,
a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so forth. Sim-
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Figure 1.7. Examples of simplical grids: 2D triangular grid (left) and 3D tetrahedral
grid (right). (Right image courtesy of M. Kraus and T. Ertl [134] (Figure 9), reprinted
with kind permission of Springer Science and Business Media.)

plices can be used to build a triangulation of an n-dimensional domain.
A triangulation partitions the domain without leaving any holes or intro-
ducing overlaps between simplices. Moreover, the boundaries (faces, edges,
and points) of neighboring cells have to coincide. A triangulation can be
used to approximately represent any kind of manifold. This advantage of
a triangulation is widely used in surface-oriented computer graphics: tri-
angle meshes are ubiquitously employed to model the surfaces of arbitrary
objects. Similarly, a tetrahedral grid can be used to represent any kind
of volume data set (at least approximately). For example, it is common
practice to transform a grid with more complex cells (i.e., prisms, distorted
hexahedra, etc.) into a tetrahedral grid by splitting these cells into several
tetrahedra.

In the remainder of this book, we will exclusively discuss uniform or
tetrahedral grids. We primarily focus on uniform grids because they offer
great performance benefits and little memory consumption. Similarly, uni-
form grids are the most common data structure in practical applications.
However, Section 7.5 covers a volume-rendering technique specifically de-
signed for tetrahedral grids.

1.5.2 Data Sources and Volume Acquisition

Data for volume rendering can come from a variety of different areas of
application. An important type of application is the scientific visualization
of scalar data. More specifically, medical imaging was one of the early fields
that adopted volume rendering. In medical imaging, 3D data is typically
acquired by some kind of scanning device.
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CT (computerized tomography) is a frequently used method for ob-
taining medical 3D data. The physical scanning process is based on x-rays.
The x-rays are emitted onto the patient’s body from one side and the ra-
diation that traverses the body is recorded on the other side. Through the
interaction between x-rays and the different materials that make up the pa-
tient’s body, radiation is attenuated. The radiation emitter rotates around
the patient to obtain attenuation data for different directions through the
body. From this collection of detected radiation, a 3D image is finally
reconstructed.

MRI (magnetic resonance imaging) relies on nuclear magnetic resonance
to identify different materials in a 3D spatial context. An MRI scanner
needs a strong magnetic field—often in the range of a few tesla—to align
the spins of atomic nuclei. Through a separate, weaker magnetic field, MRI
scanners can perturb the aligned spins of the nuclei by an excitation pulse.
When the spin realigns with the outer magnetic field, radiation is emitted.
This radiation is recorded by the scanner. Different types of nuclei (i.e.,
different types of atoms) have different radiation characteristics, which is
used to identify materials. Moreover, the excitation field is modified by a
magnetic gradient field in order to introduce a spatial dependency into the
signals. In this way, materials can be located in 3D space.

Although MRI and CT are the most common methods for 3D medical
imaging, other modalities are also used. For example, ultrasound or PET
(positron emission tomography, which is based on the emission of positrons
from a short-lived radioactive tracer isotope) can be applied for 3D recon-
struction. All these medical imaging modalities have in common that a
discretized volume data set is reconstructed from the detected feedback
(mostly radiation). This means that some kind of transformation process
takes place and that we typically do not use the original data for volume
rendering. More examples for sources of volume data in medical imaging
are described by Lichtenbelt et al. [165].

Simulation results are another class of data sources. Typical exam-
ples are CFD (computational fluid dynamics) simulations in engineering,
computed electromagnetic fields in physical sciences, or simulations of fire
and explosions for special effects. Here, the grid used for the simulation
is often different from the grid used for visualization. The simulation grid
might be designed for a well-behaved simulation and therefore adapted to
the physical phenomenon (e.g., by using an adaptive, unstructured grid),
whereas the visualization is often based on a uniform grid, which facilitates
fast volume-rendering methods. As a consequence, even simulation data is
often transformed before it is given to the volume renderer.

Another typical source of volume data is voxelization (see Section 12.2).
Voxelization turns a surface representation of a 3D object (e.g., a triangle
mesh representation) into a volumetric object description. Here, the ac-
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curacy of the representation can be controlled by choosing an appropriate
resolution for the volumetric grid. A related data source is procedural mod-
eling (see Section 12.3). Here, the volume is specified by algorithms or code
segments that define rules to evaluate the scalar field at any given point
in space. Therefore, procedural descriptions are not affected by accuracy
problems.

In general, the type of data source has to be taken into account when
the reliability and quality of volume rendering needs to be assessed. In
particular, the errors introduced by measurements and the inaccuracies
from data transformations should be considered. Whereas reliability might
be less important for special effects rendering, it can be crucial in scientific
and medical visualization.

1.5.3 Reconstruction

As discussed in Section 1.5.1, a volume data set is usually represented
in discretized form—typically on a uniform or tetrahedral grid. This dis-
cretization leads to the issue of reconstructing a scalar function on all points
in the 3D domain.

The problem of a faithful reconstruction is addressed intensively in the
context of signal processing. In this book, we only briefly review a few,
most relevant aspects of signal processing. More background information
can be found in textbooks of the field, for example, by Oppenheim and
Schafer [204].

We first consider the 1D case, and later extend the discussion to 3D
reconstruction. An important question for an appropriate reconstruction
is: is the number of samples sufficient to reconstruct the underlying con-
tinuous function? The answer to this question is given by the Nyquist-
Shannon sampling theorem of information theory [201, 238]. This theorem
states that the sampling frequency must be greater than twice the highest
frequency of the input signal to be able to reconstruct the original signal
from the sampled version. Otherwise the signal will be aliased; i.e., the
continuous signal will be reconstructed incorrectly from the discrete signal.

In mathematical notation, appropriate sampling can be described as
follows: for a continuous and periodic input signal represented by the
function f(t), we first determine its maximum frequency νf . Maximum
frequency means that the Fourier transform of f(t) is zero outside the
frequency interval [−νf , νf ]. Then the critical sampling frequency—the
Nyquist frequency—is νN = 2νf . For an appropriate sampling, more than
2νf samples have to be chosen per unit distance. For a uniform sampling
at a frequency νs, the sample points can be described by fi = f(i/νs), with
integer numbers i.



�

�

�

�

�

�

�

�

22 Theoretical Background and Basic Approaches

Provided that the original signal is sampled at a frequency νs > νN ,
the signal can be recovered from the samples fi according to

f(t) =
∑

i

fi sinc(π(νst− i)) . (1.19)

The sinc function (for sinus cardinalis) is defined

sinc(t) =

{
sin(t)

t if t �= 0
1 if t = 0

.

A signal whose Fourier transform is zero outside the frequency interval
[−νf , νf ] is called band-limited because its bandwidth (i.e., its frequency)
is bounded. In practice, the frequency content of an input data set may
be unknown. In these cases, a low-pass filter can be applied to restrict the
maximum frequency to a controlled value.

Equation 1.19 is one example of a convolution. In general, the convolu-
tion of two discrete functions f(i) = fi and h(i) = hi is given by

g(m) = (f ∗ h)(m) =
∑

i

f(i)h(m− i) . (1.20)

The summation index i is chosen in a way that f(·) and h(·) are evaluated
at all positions within their respective supports (i.e., at all positions where
f(·) and h(·) are nonzero). Therefore, the above sum is a finite sum if at
least one of the functions f(·) and h(·) has finite support.

The analogue of the above equation for the continuous case leads to the
convolution integral

g(t) = (f ∗ h)(t) =

∞∫
−∞

f(t′)h(t− t′) dt′ . (1.21)

In general, convolution is a prominent approach to filtering. In this context,
f(·) is the input signal, h(·) is the filter kernel, and g(·) is the filtered output.
In this notation, Equation 1.19 describes the convolution of a sampled input
signal fi with a sinc filter kernel.

Unfortunately, the sinc filter has an unlimited extent; i.e., it oscillates
around zero over its whole domain. As a consequence, the convolution has
to be evaluated for all input samples fi, which can be very time-consuming.
Therefore, in practice, reconstruction filters with finite support are often
applied. A typical example is the box filter, which leads to nearest-neighbor
interpolation when the box width is identical to the sampling distance (i.e.,
the reconstructed function value is set to the value of the nearest sample
point). Another example is the tent filter, which leads to piecewise linear
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Figure 1.8. Three reconstruction filters: (a) box, (b) tent, and (c) sinc filters.

reconstruction when the width of one side of the tent is identical to the
sampling distance. Figure 1.8 illustrates different reconstruction filters.
Another approach to overcome the problem of the infinite support of the
sinc filter is to compute the convolution in frequency space, where the sinc
filter has finite support. For example, Artner et al. [3] adopt this approach
in the context of volume rendering.

So far, we have discussed functions of only one variable. By apply-
ing a tensor-product approach, 1D reconstruction can be immediately ex-
tended to n dimensions and, in particular, to 3D volumes. The essen-
tial idea is to perform the reconstruction for each dimension in a com-
bined way. For the 3D case, a tensor-product reconstruction filter is
h(x, y, z) = hx(x)hy(y)hz(z), where hx(·), hy(·), hz(·) are one-parameter
filters along the x, y, and z directions. One important advantage of uni-
form grids (see Section 1.5.1) is their direct support for tensor-product
reconstruction.

We discuss the example of tensor-product linear interpolations in more
detail because they are widely used in volume rendering. As illustrated
in Figure 1.9, the tensor-product approach separates the interpolations
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Figure 1.9. Tensor-product linear interpolations: linear, bilinear, and trilinear.
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along the different dimensions and therefore allows us to compute the re-
constructed value by a sequence of linear interpolations. To simplify the
notation, the following discussion assumes normalized coordinate values
x, y, and z that are in the interval [0, 1] for points within the cell (i.e.,
line in 1D, rectangle in 2D, and cube in 3D). Normalized coordinates can
be obtained from arbitrary coordinates by scaling and translation. Linear
interpolation between two points a and b can then be computed by

f(p) = (1− x)f(a) + xf(b) ,

where f(a) and f(b) are the function values at the sample points a and b,
respectively. The result is the interpolated function value at point p.

Tensor-product linear interpolation in two dimensions is called bilin-
ear interpolation. Bilinear interpolation at point p can be computed by
successive linear interpolations in the following way:

f(p) = (1− y)f(pab) + yf(pcd) ,

with the intermediate results from linear interpolations along the x direc-
tion according to

f(pab) = (1− x)f(a) + xf(b) ,

f(pcd) = (1− x)f(d) + xf(c) .

By combining these expressions, we obtain a single expression for bilinear
interpolation:

f(p) = (1− x)(1− y)f(a) + (1− x)yf(d) + x(1− y)f(b) + xyf(c) ,

which explicitly shows that bilinear interpolation is not linear because it
contains quadratic terms (terms of second order).

Similarly, trilinear interpolation in three dimensions can be computed
by the linear interpolation between two intermediate results obtained from
bilinear interpolation:

f(p) = (1− z)f(pabcd) + zf(pefgh) .

The terms f(pabcd) and f(pefgh) are determined by bilinear interpolation
within two faces of the cube. Trilinear interpolation contains terms up to
cubic order; i.e., trilinear interpolation is not linear.

Tensor-product linear interpolations play a dominant role in volume
rendering because they are fast to compute. In particular, graphics hard-
ware provides direct support for this kind of interpolation within 1D, 2D, or
3D textures. Although tensor-product linear interpolations are often used,
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Figure 1.10. Comparison between trilinear filtering (left) and cubic B-spline filtering
(right).

it should be noted that they might not result in appropriate rendering qual-
ity. As discussed in Chapter 9, especially in the context of volume filtering
and reconstruction (Section 9.2), better filtering methods have been de-
veloped for real-time volume rendering. Figure 1.10 serves as an example
image that motivates the use of more accurate reconstruction filters: tri-
linear interpolation (Figure 1.10 (left)) shows significant artifacts, whereas
a higher-order filter (Figure 1.10 (right)) removes most of these artifacts.

Uniform grids are most often used in volume rendering and, thus, cor-
responding tensor-product reconstruction filters are frequently employed.
For other grid structure, slightly different reconstruction methods may be
applied. For example, barycentric interpolation is a common technique for
tetrahedral cells. Barycentric interpolation provides a linear interpolant
and it might be better known as the interpolation method for values within
triangles. For example, graphics hardware interpolates in-between values
of triangle meshes in this way.

1.6 Volume-Rendering Pipeline and Basic
Approaches

In this section, we give a structural overview of volume-rendering algo-
rithms. Volume-rendering techniques are typically used to compute the op-
tical model from Section 1.2 by a discrete approximation (Section 1.4) of the
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volume-rendering integral (Section 1.3). Because of this common problem
setting, the different volume-rendering techniques share most of their basic
computational components. These components are briefly described in the
following section, and the differences between volume-rendering methods
are outlined in the subsequent section.

1.6.1 Components of the Volume-Rendering Pipeline

The evaluation of the optical model for volume rendering can be separated
into several subsequent stages of a pipeline—the volume-rendering pipeline.
The following stages are typically present in volume-rendering techniques:
data traversal, interpolation, gradient computation, classification, shading,
and compositing. The components are briefly described:

Data Traversal. Sampling positions are chosen throughout the volume.
The samples serve as the basis for the discretization of the continuous
volume rendering integral.

Interpolation. The sampling positions are usually different from grid
points. Therefore, a continuous 3D field needs to be reconstructed
from the discrete grid in order to obtain the data values at the sam-
ple points. Section 1.5.3 describes reconstruction methods. Trilinear
interpolation is most common for uniform grids and is also used in
most of the methods presented in this book.

Gradient Computation. The gradient of the scalar field is often used to
compute local illumination (see the brief introduction in Section 1.3.1
and more details in Chapter 5). The gradient of a discretized volu-
metric data set is typically approximated by discrete gradient filters,
such as central differences. Alternative methods for gradient compu-
tation are discussed in Section 5.3.1.

Classification. Classification maps properties of the data set to optical
properties for the volume-rendering integral. Classification allows us
to distinguish different areas or materials in a volume. It is usually
based on transfer functions (see Chapter 4). The transfer function
typically assigns the discretized optical properties in the form of color
C and opacity α.

Shading and Illumination. Volume shading can be incorporated by
adding an illumination term to the emissive source term that goes
into the volume-rendering integral (see Section 1.3.1 and more de-
tails in Chapter 5).

Compositing. Compositing is the basis for the iterative computation of
the discretized volume-rendering integral. The compositing equation



�

�

�

�

�

�

�

�

1.6 Volume-Rendering Pipeline and Basic Approaches 27

depends on the traversal order. The front-to-back iteration equations
are used when the viewing rays are traced from the eye point into the
volume. The back-to-front compositing scheme is used when the data
set is traversed from its backside.

The components interpolation, gradient computation, shading, and classi-
fication work on a local basis—they are performed in the neighborhood of,
or directly at, a sample point. Therefore, these components are typically
independent of the rendering method and can be reused within different
methods. The rendering techniques can be primarily distinguished accord-
ing to the way they traverse the data set. In addition, the order of traversal
also affects the rendering scheme.

Volume-rendering techniques can be classified as either image-order or
object-order methods. Image-order approaches work in 2D image space—
the pixels on the image plane—as the starting point for volume traversal.
Beginning at pixels, the data volume is traversed. On the other hand,
object-order methods follow some organized scheme to scan the 3D volume
in its object space. The traversed volume areas are then projected onto
the image plane.

1.6.2 Overview of Rendering Methods

Ray casting. Ray casting is the most popular image-order method for vol-
ume rendering. The basic idea is to directly evaluate the volume-rendering
integral along rays that are traversed from the camera. For each pixel in the
image, a single ray is cast into the volume (neglecting possible supersam-
pling on the image plane). Then the volume data is resampled at discrete
positions along the ray. Figure 1.11 illustrates ray casting.

The natural traversal order is front-to-back because rays are concep-
tually started at the camera. Ray casting is the most important method

image

plane

eye

rays

Figure 1.11. Ray-casting principle. For each pixel, one viewing ray is traced. The ray
is sampled at discrete positions to evaluate the volume-rendering integral.
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for CPU volume rendering; it has been used for quite some time (for some
20 years), and several acceleration methods have been developed. GPU
ray casting is a rather new development (only in the past two or three
years) because earlier GPUs did not support the functionality required for
ray casting. GPU ray casting has the advantages that it can be easily ex-
tended to benefit from acceleration techniques (see Chapter 8) and that it
supports both uniform grids and tetrahedral grids (see Chapter 7). There-
fore, GPU ray casting has already become very popular in a short period
of time—and it is safe to assume that ray casting will play an even more
important role as GPUs further evolve.

Texture slicing. Today, texture slicing is the dominant method for GPU-
based volume rendering. It is an object-order approach: 2D slices located
in 3D object space are used to sample the volume. The slices are projected
onto the image plane and combined according to the compositing scheme.
Slices can be ordered either in a front-to-back or back-to-front fashion—
and the compositing equation has to be chosen accordingly. Texture slicing
is directly supported by graphics hardware because it just needs texture
support and blending (for the compositing schemes). Therefore, texture
slicing is widely available and very efficient. One drawback, however, is the
restriction to uniform grids. This book primarily focuses on texture slicing.
Chapter 3 presents the basic implementations of texture slicing.

Shear-warp volume rendering. Shear-warp volume rendering is strongly
related to 2D texture–based slicing. In this object-order method, the vol-
ume is traversed in a slice-by-slice fashion. The basic idea of shear-warp
is illustrated in Figure 1.12 for the case of orthogonal projection. The
projection does not take place directly on the final image plane but on
an intermediate image plane, called the base plane, which is aligned with
the volume. The volume itself is sheared in order to turn the oblique pro-
jection direction into a direction that is perpendicular to the base plane,
which allows for a fast implementation of this projection. In such a set-up,
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Figure 1.12. Shear-warp volume rendering.
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an entire slice can be projected by 2D image resampling. Finally, the base
plane image has to be warped to the final image plane. Note that this warp
is only necessary once per generated image, not once per slice. Perspective
projection can be accommodated by an additional scaling of the volume
slices [235].

Two-dimensional texture slicing (Section 3.2) is directly related to
shear-warp volume rendering. When 2D textures are used to store slices of
the volume data, and a stack of such slices is texture-mapped and blended
in graphics hardware, bilinear interpolation is also substituted for trilinear
interpolation, similar to shear-warp. The difference between shear-warp
rendering and 2D texture slicing is the order of performing the image warp
and the compositing: texture slicing warps each slice and performs com-
positing on the final image, whereas shear-warp rendering only once warps
the intermediate image.

A strength of the shear-warp algorithm is the possibility for several op-
timizations, which makes the shear-warp algorithm one of the fastest CPU
methods for volume rendering. These optimizations require a nonuniform
access to memory (for example, for run-length encoding), which are at the
moment only feasible for CPU implementations. Therefore, we do not dis-
cuss shear-warp rendering any further in this book. For more details, we
refer to the original paper by Lacroute and Levoy [149].

Splatting. The idea of splatting [299] is to project 3D reconstruction ker-
nels onto the image plane. The 2D image of such a 3D kernel is called a
footprint. Splatting is an object-order approach: it traverses the volume in
object space and projects volume elements onto image space. In general,
splatting allows for a quite flexible spatial order for traversing the volume.
For example, it might be applied to traverse a uniform grid in a voxel-by-
voxel fashion, or it might even be applied to scattered data (i.e., a cloud
of arbitrarily distributed data points)—as long as some spatial sorting is
provided to guarantee a correct result for back-to-front or front-to-back
compositing. Image-aligned sheet-based splatting [188] chooses a specific
order of traversal by sampling the volume along sheets (i.e., slicing slabs)
that have the same orientation as the image plane. For more details on
splatting, we refer to the survey chapter [36].

Cell projection. Cell projection is an object-order approach for the volume
rendering of tetrahedral grids or even more complex unstructured meshes.
The first cell projection algorithm that made efficient use of graphics hard-
ware is the projected tetrahedra (PT) algorithm by Shirley and Tuch-
man [239]. The basic idea of the PT algorithm is to traverse the cells
of the unstructured grid and project these cells onto the image plane. The
projection itself leads to a collection of triangles that represent the image of
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the 3D cell on the image plane. The PT algorithm consists of the following
steps.

1. Decomposition of the unstructured grid into tetrahedral cells.

2. Spatial sorting of the cells according to their distance from the cam-
era.

3. Classification of each tetrahedron according to its projected profile,
along with a decomposition of the projected tetrahedron into triangles
(on the image plane).

4. Assignment of color and opacity values attached to the triangles.

5. Rendering and blending of triangles.

Unfortunately, cell projection with the emission-absorption model of
volume rendering is connected to noncommutative blending (compositing).
Therefore, it requires a view-dependent depth sorting of cells, which still
has to be performed on the CPU. Whenever the camera or the volume
is moved, new graphical primitives have to be generated by the CPU and
transferred to the GPU. Therefore, cell projection benefits only in part from
the performance increase of GPUs. Another problem of cell projection is
that cyclic meshes require special treatment [132]. We do not cover cell
projection further in this book and refer to the survey articles [121, 244]
for more information.

1.7 Further Reading
Hege et al. [103] provide a comprehensive presentation of optical models,
a derivation of the equation of transport of light, a connection to the ren-
dering equation for surface-based graphics, and strategies for numerical
solutions for volume rendering and light transport. Similarly, Max [181]
gives a detailed presentation of optical models. We recommend these two
papers for more background information on the mathematical and optical
models of volume rendering.

Volume rendering is one example of the simulation of physical light
transport. Therefore, the physics literature provides a wealth of informa-
tion on this and related topics. For example, Chandrasekhar [23] describes
radiative transfer in its breadth. Light transport can be considered a special
case of a generic transport mechanism based on the Boltzmann equation.
The mathematics of the Boltzmann equation is presented, for example, by
Duderstadt and Martin [54] or Case and Zweifel [21]. In the context of vol-
ume visualization, Krueger describes the use of transport theory [137, 138].
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Similarly, Arvo and Kirk [4] discuss a particle transport model for image
synthesis in general. Good introductions to physically based light trans-
port for computer graphics—in particular for surface-based graphics—are
given in textbooks by Pharr and Humphries [211] and Dutré et al. [55].

Readers interested in the historic development of volume rendering are
referred to some “classic” papers [13, 52, 118, 161, 230]. A modern descrip-
tion of volume rendering using graphics hardware is given in a book chapter
by Pfister [208]. Finally, the book by Lichtenbelt et al. [165] gives a com-
prehensive overview of volume-rendering techniques, along with a descrip-
tion of practical OpenGL implementations on traditional (fixed-function)
graphics hardware.
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GPU Programming

THE GRAPHICS BOARD of almost every modern PC is equipped with
a specialized processor for hardware-accelerated 3D graphics. In
general, such modern graphics processing units (GPUs) are highly

optimized data-parallel streaming processors. The major innovation in re-
cent years was the replacement of the traditional fixed-function pipeline
by a programmable pipeline, which allows the programmer to upload user-
written microprograms to be executed very fast and efficiently. Program-
ming models for GPUs, however, differ significantly from those of tradi-
tional CPUs. Although GPU programs have a number of limitations, in
the following chapters we will see that GPUs are superior to CPUs in many
aspects. They turn out to be ideal for implementing object-order as well
as image-order algorithms for direct volume rendering. If you want to
leverage this computational power for real-time applications, it is impor-
tant to know both the limitations and the strengths of the GPU program-
ming model. This chapter gives an overview of the architecture of modern
GPUs from the programmer’s point of view. We also give a couple of
examples on how to access the computational power using the program-
ming language Cg.

2.1 The Graphics Pipeline
In order to prepare a virtual scene description for hardware-accelerated
rendering, complex geometric descriptions (such as NURBS or subdivision
surfaces) must first be decomposed into planar polygons. This process is
called tessellation. The GPU is designed to generate raster images from
tessellated scene descriptions very fast and efficiently. The process of con-
verting a set of polygonal primitives into a raster image is called display

33
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traversal. Foley et al. [74] give several examples of display traversal for a
variety of different rendering tasks. An excellent introduction to the ren-
dering pipeline implemented by modern GPUs can be found in The Cg
Tutorial [71] or in the second volume of GPU Gems [210].

All 3D graphics processors implement the display traversal as a pipeline
consisting of a fixed sequence of processing stages. The ordering of oper-
ations in a modern graphics processor can be described by the graphics
pipeline shown in Figure 2.1. The input of such a pipeline is an ordered
stream of vertices. The result after display traversal is a raster image of the
virtual scene in local video memory, which will finally be displayed on your
video screen. At the topmost level of abstraction, the graphics pipeline can
be divided into three basic stages.

Vertex Processing. Vertex processing, also termed geometry processing,
computes linear transformations of the incoming vertices such as ro-
tation, translation, and scaling in the 3D spatial domain. This step
comprises the transformation of vertices from local model coordinates
into world space (modeling matrix), subsequently into the camera
space (viewing matrix), and finally into screen space (projection ma-
trix). In the primitive assembly, groups of vertices from the incoming
stream are joined together to form geometric primitives (points, lines,
triangles). After clipping, culling, and viewport mapping, the primi-
tives are handed over to the fragment processor.

Fragment Processing. The rasterization stage first decomposes each ge-
ometric primitive into a set of fragments. Every fragment corresponds
to a single pixel in screen space. The attributes given at the vertices
are interpolated in barycentric coordinates with perspective correc-
tion. The fragment processor is able to perform several texture fetch
and filtering operations for each fragment. Eventually, the fragment
program computes the final color of the fragment from the interpo-
lated vertex attributes and the filtered texture samples.

Clipping/Culling
Viewport
Mapping

Fragment
Program

Primitive
Assembly Rasterization

Vertex
Program

Frame-Buffer
Operations

Vertices Primitives Pixels
Shaded

Fragments
Transformed

Vertices
Screen-Space

Primitives

Unprocessed
Fragments

VERTEX PROCESSING FRAGMENT PROCESSING COMPOSITING

Figure 2.1. The programmable graphics pipeline.



�

�

�

�

�

�

�

�

2.2 Vertex Processing 35

Compositing. The compositing step is the final step before the fragments
are written into the frame buffer. Several tests are applied that finally
determine whether the incoming fragment must be discarded (e.g.,
due to occlusion) or displayed on the screen. Frame buffer operations
also decide how the color of the incoming fragment is combined with
the color value stored in the frame buffer at the corresponding raster
position.

In order to fully understand all the techniques explained in the follow-
ing chapters, it is important to know the exact ordering of operations in
the graphics pipeline. Let us examine the different stages of the graphics
pipeline in a little more detail.

2.2 Vertex Processing
The vertex processor performs the so-called per-vertex operations. These
are operations that modify the incoming stream of vertices. It is impor-
tant to note that the vertex processor can only modify existing vertices. It
can neither discard vertices nor insert additional vertices into the stream.
Every vertex that enters the pipeline has a set of attributes, such as its
position, the normal vector, and several texture coordinates and color val-
ues. The vertex processor usually computes linear transformations of the
position and the normal vector, such as translation, rotation, nonuniform
scaling, and projection. Position and normal vectors in general are repre-
sented by four-component vectors in homogeneous coordinates. The linear
transformations are carried out by multiplying the vertices with 4× 4 ma-
trices, such as the well-known modelview matrix or the projection matrix.
Remember that, in order to maintain consistency, normal vectors must be
multiplied by the transposed inverse of the modelview matrix. This ensures
that they stay perpendicular to the surface elements.

In the traditional fixed-function pipeline, local illumination is calculated
for each vertex during geometry processing, and the illumination terms
have been interpolated for each fragment (Gouraud or smooth shading).
This is the reason why the vertex processor has formerly been referred
to as the transform & light unit (T&L). This term, however, is no longer
appropriate, because in the programmable pipeline, local illumination is
usually computed by the fragment processor (Phong shading).

2.2.1 Vertex Programs

Vertex programs are user-written microprograms that substitute major
parts of the traditional fixed-function computation of the geometry pro-
cessing unit. They are used to customize the vertex transformations and
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allow almost arbitrary modifications of the vertex attributes. A specified
vertex program is executed once per vertex. Every time a vertex enters the
pipeline, the vertex processor receives a set of vertex attributes, executes
the vertex program, and finally emits the attributes for exactly one vertex.

The programmable vertex processor is outlined in Figure 2.2. The ver-
tex program stored in the instruction memory of the vertex processor is
executed for each vertex independently. At the beginning of the outer
loop, an instruction is first fetched and decoded. The operands for the
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Temporary
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Figure 2.2. The programmable vertex processing unit executes a vertex program
stored in local video memory. The vertex texture fetch is only available on graphics
boards that support Shader Model 3.0. (Image inspired by Mark Kilgard’s original
diagram in The Cg Tutorial [71].)
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instruction are then read from input registers, which contain the original
vertex attributes, or from temporary registers, which store intermediate
results. Constant parameters in the program are usually declared as uni-
form variables and are treated the same way as input parameters. Their
values are specified by the programmer and cannot be changed during the
execution. Most instructions are floating-point vector operations that are
performed on xyzw components for homogeneous coordinates or the RGBA
quadruplets for colors. Both notations are equivalent. Input mapping al-
lows the programmer to specify, duplicate, and exchange the indices of the
vector components (a process known as swizzling) and also to negate the re-
spective values. After the operands are correctly mapped, the instruction
is executed, and the result is eventually written to temporary or output
registers. At the end of the loop, the vertex processor checks whether or
not there are more instructions to be executed and decides to reenter the
loop or terminate the program by emitting the output registers to the next
stage in the pipeline. On modern GPUs that support loops and conditional
branches in the vertex program, the next instruction to be executed does
not have to be the next instruction in the command sequence.

A simple example of a vertex program in Cg is shown in Listing 2.1.
The parameters declared in the main function specify the input and output
parameters of the function as well as uniform parameters. The input and
output parameters in this example are the same: a vertex consists of a po-

// A simple vertex program in Cg

void main( float4 Vertex : POSITION,

half3 Color : COLOR,

half3 TexCoord : TEXCOORD0,

uniform float4x4 matModelViewProj,

out float4 VertexOut : POSITION,

out half3 ColorOut : COLOR,

out half3 TexCoordOut : TEXCOORD0)

{
// transform vertex into screen space

VertexOut = mul(matModelViewProj, Vertex);

// hand over color and texture coordinate

ColorOut = Color;

TexCoordOut = TexCoord;

return;

}

Listing 2.1. A simple example of a vertex program in Cg.
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sition in 3D space, a color value, and a texture coordinate. The compound
modeling, viewing, and projection matrix is specified as a uniform param-
eter in this program. The position of the incoming vertex is in local model
coordinates and must be multiplied by this matrix to transform it into
screen space. The color value and texture coordinates remain unchanged
and are simply handed down the pipeline. This simple vertex program is
all that we need for most of the rendering tasks described in this book. At
the end of Chapter 3, we will see a couple of more sophisticated examples
of vertex programs.

2.2.2 Vertex Textures

Until recently, only fragment programs were allowed to perform texture
fetches. On graphics cards that support the Shader Model 3.0 specifica-
tion, vertex programs can perform texture look-ups as well. In this case,
there is a separate path in the vertex processing unit as shown in Fig-
ure 2.2. If the active instruction is a texture fetch operation, the vertex
shader computes the memory address of the texel1 from the given tex-
ture coordinates. It then fetches the texture samples that are required to
compute the texel color. Depending on the underlying hardware, not all
filtering methods available in the fragment processor may be supported by
the vertex processor. Vertex texture fetches are often restricted to nearest-
neighbor interpolation.

2.3 Fragment Processing
The fragment processing stage consists of the rasterization unit and the
fragment program. Rasterization denotes the process of converting screen-
space primitives into fragments. Each fragment corresponds to a single
raster position in the resulting image, and many fragments may contribute
to the final color of a pixel. The rasterization unit calculates a set of
attributes for each fragment it generates by interpolating the vertex at-
tributes given at the primitive’s vertices. These primitive interpolants are
the input of the fragment program. Based on this set of attributes, the
fragment program computes the final color of the fragment.

2.3.1 Fragment Programs

Fragment programs are user-written microprograms that substitute major
parts of the traditional fixed-function computation of the rasterization unit.
They are used to compute the final color and optionally the depth value

1Texel: short for texture element.
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of each fragment. The fragment program is executed once per fragment:
Every time that primitive rasterization produces a fragment, the fragment
processor receives a set of attributes, such as colors and texture coordinates,
executes the fragment program once, and writes the final color and z-value
of the fragment to the output registers.

The diagram for the programmable fragment processor is shown in Fig-
ure 2.3. The instruction cycle of the fragment processor is similar to the
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Figure 2.3. For each fragment, the programmable fragment processor executes
a micro-program. In addition to reading the input and temporary registers, the
fragment processor is able to generate filtered texture samples from the texture
images stored in video memory. (Image inspired by Mark Kilgard’s original diagram
in The Cg Tutorial [71].)
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vertex processor, with a separate path for texture fetch instructions. At
first an instruction is fetched and decoded. The operands for the instruc-
tion are read from either the input registers, which contain the fragment’s
attributes, or from temporary registers, which are used to store interme-
diate results. The mapping step again computes the component swizzling
and negation.

If the current instruction is a texture fetch instruction, the fragment
processor computes the texture address with respect to texture coordinates
and level of detail. Afterwards, the texture unit fetches all the texels that
are required to interpolate a texture sample at the given coordinates. These
texels are finally filtered to interpolate the texture color value.

If the current instruction is not a texture fetch instruction, it is executed
with the specified operands and the result is written to the respective target
registers. At the end of the loop, the fragment processor checks whether
or not there are more instructions to be executed and decides to reenter
the loop or terminate the program by emitting the output registers to the
fragment processing stage.

Textures are (one-, two-, or three-dimensional) raster images that are
mapped onto the polygon according to texture coordinates specified at the
vertices. For each fragment, these texture coordinates are interpolated,
and a texture look-up is performed at the resulting position. This process
generates a texture sample, which refers to an interpolated color value sam-
pled from the texture map. For maximum efficiency, it is also important
to take into account that most hardware implementations maintain a tex-
ture cache. We will have a detailed look at texture caching and memory
management strategies in Chapters 8 and 17.

In Cg, texture images are declared as uniform parameters of type
sampler1D, sampler2D, or sampler3D, with respect to the dimension of the
texture. The sampler types samplerRECT or samplerCUBE are used for recti-

// A simple fragment shader

float4 main ( half4 primary : COLOR

half2 uv : TEXCOORD0,

uniform sampler2D texture) : COLOR

{
float4 texel = tex2D(texture,uv);

return texel * primary;

}

Listing 2.2. A simple example of a fragment program in Cg. The final color is
computed as the component-wise product of a texture sample and the primary
color of the fragment.
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linear textures and cube maps, respectively. The commands for sampling a
given texture image are tex1D, tex2D, and so forth. As an example, a simple
fragment program is shown in Listing 2.2. It performs a 2D texturing oper-
ation, which modulates the primary color with the texture color, equivalent
to the fixed function pipeline in a standard OpenGL environment. We will
see a variety of different fragment programs throughout this book.

texture 0polygon texture 1

(s ,t )0 0

RGBA

s

t

G

final
color

R
(s ,t )1 1

(s ,t )2 2

(s,t )

Figure 2.4. Dependent texture look-up: the texture coordinates (s, t) are interpo-
lated as usual from the values given at the polygon vertices. An RGBA quadruplet
is obtained from the first texture. The red (R) and the green (G) components of this
quadruplet are used as texture coordinates for the second texture look-up. The
resulting final texel value is used to color the fragment.

2.3.2 Texture Indirection

One important feature of the programmable fragment processor is its capa-
bility to perform dependent texture look-ups. This means that the texture
coordinates used to access a texture image are not directly computed from
the values given at the vertices. Instead, the texture coordinates are ob-
tained by sampling another texture image. This concept is illustrated in
Figure 2.4, and the corresponding fragment program is given in Listing 2.3.

// fragment program using texture indirection

half4 main( half2 texUV : TEXCOORD0,

uniform sampler2D first texture,

uniform sampler2D second texture) : COLOR

{
half4 texUV2 = tex2D(first texture, texUV);

half4 result = tex2D(second texture, texUV2.xy);

return result;

}

Listing 2.3. A simple Cg fragment program using texture indirection.



�

�

�

�

�

�

�

�

42 GPU Programming

Dependent textures do not need to be interpreted as image data. In
many real-time applications, dependent textures are used to implement
abstract one-, two-, or three-dimensional functions as look-up tables. If
you ever find that the analytical evaluation of a complex function is too
expensive for real-time performance, it can probably be pre-computed as a
large table and accessed via dependent texture look-up at runtime.

2.4 Frame-Buffer Operations
The fragments produced by rasterization are written into the frame buffer,
a two-dimensional array of pixel attributes (color, alpha, depth) that cor-
responds to the final image. The color portion of the frame buffer is finally
displayed on the video screen. When an incoming fragment is written, it
modifies the values already contained in the frame buffer according to a
number of parameters and conditions. The sequence of available tests and
modifications is termed frame-buffer operations or fragment operations and
comprise the following.

Alpha Test. The alpha test allows a fragment to be discarded conditional
on the outcome of a comparison between the fragment’s opacity α and
a specified reference value. The alpha test can be useful in many ways,
but the original idea was to discard fragments that are completely
transparent. If the alpha test fails, the read and write operations
from/to the frame buffer can be skipped.

Stencil Test. The stencil test allows a per-pixel mask to be applied to the
visible frame buffer. The mask is contained in a separate portion of
the frame buffer, called the stencil buffer, and is usually rendered in a
pre-processing step. The stencil test conditionally drops a fragment
if the stencil buffer is set for the corresponding pixel.

Depth Test. Because primitives are generated in arbitrary sequence, the
depth test is needed to provide an effective mechanism for correct
depth ordering of partially occluded objects. The depth value of a
fragment is therefore stored in a so-called depth buffer. The depth
test checks if an incoming fragment is occluded by a fragment that has
been previously written. The occlusion test compares the incoming
depth value to the value already stored in the depth buffer. This
test allows occluded fragments to be discarded immediately. Because
this decision is made according to the z-value of a fragment in screen
space, the depth test is often referred to as z-test or z-culling.

Alpha Blending. To allow for semi-transparent objects, alpha blending
combines the color of the incoming fragment with the color of the
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corresponding pixel currently stored in the frame buffer. We will see
different blending set-ups in Chapter 3.

After the scene description has completely passed through the graphics
pipeline, the resulting raster image contained in the frame buffer can be
displayed on the screen or read back into main memory and saved to disk.

2.4.1 Early Z-Test

As mentioned above, the depth test discards all fragments that are oc-
cluded by previously drawn fragments according to a comparison of their
z-values. The depth test is part of the frame buffer operations, which
are performed after fragment processing. If the computation done in the
fragment program, however, is rather expensive, it might be inefficient to
perform fragment processing at all if we know in advance that the resulting
fragment will be discarded afterwards.

In consequence, many modern GPUs allow the depth test to be per-
formed before the fragment program execution. This concept is known as
early z-test. The programmer, however, does not have explicit control over
this feature. Instead, the graphics driver automatically decides whether
an early z-test is feasible or not. The decision is made internally based
on hardware-specific criteria. One basic condition for activating the early
z-test is that the fragment program does not modify the z-value of the frag-
ment. Some hardware architectures also decide to activate the early z-test
only if some or all other fragment tests are disabled. For rendering scenes
with a large overdraw due to a high depth complexity, the early z-test is
an efficient means of increasing the rendering speed. For the early z-test
to work most efficiently, however, it is mandatory to draw the objects in
front-to-back order as possible.

2.4.2 Offscreen Buffers and Multiple Render Targets

For many advanced rendering algorithms, it is necessary to generate tex-
tures or intermediate images on-the-fly. These intermediate images are not
directly displayed onscreen. Instead, they are used as texture images in
successive rendering passes. Rendering intermediate results into a texture
in OpenGL traditionally required copying the frame-buffer content to the
texture using calls to glCopyTexImage2D. To circumvent resolution prob-
lems and performance penalties that arise from the copy operation, addi-
tional offscreen buffers in local video memory have been introduced. Such
offscreen buffers can be used as alternative render targets to the visible
frame buffer. Up until recently, the standard method for offscreen ren-
dering was the pixel buffer, or pbuffer. In combination with the OpenGL
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extension WGL ARB render texture (or similar extensions for Unix-style sys-
tems), which allows pbuffers to be bound directly as texture, this was an
effective, yet heavyweight solution to generate texture images on-the-fly.

The main drawbacks of pbuffers are the inconvenient requirement of
unique OpenGL contexts, expensive context switching, platform depen-
dence, and limited flexibility. In response to these drawbacks, frame-
buffer objects (FBOs) have been introduced with the OpenGL extension
GL EXT framebuffer object. FBOs are a more flexible and lightweight so-
lution to platform-independent, offscreen render targets, and they do not
require separate OpenGL contexts. For volume graphics, FBOs are of great
interest, because they allow us to directly render into z-slices of 3D tex-
tures. We will utilize this feature for creating 3D textures on-the-fly in
Chapter 12. FBOs also provide an interface to floating-point render tar-
gets, which do not clamp pixel colors to unit range. Although floating-point
rendering buffers cannot directly be displayed on the screen, they are im-
portant for implementing tone-mapping techniques for high dynamic range
rendering as we will see in Chapter 5.

Another important feature of modern GPUs is the support for multiple
render targets (MRTs). They allow fragment shaders to output multiple
color values at one time and write them into separate offscreen render tar-
gets of the same resolution. MRTs are implemented as a separate OpenGL
extension GL ARB draw buffers, and FBOs provide a flexible interface to
them. They can be used to efficiently generate multiple renditions in a
single rendering pass.

2.4.3 Occlusion Queries

Another very useful and important feature of modern graphics hardware
is the possibility to perform so-called occlusion queries. As we have seen
in Section 2.4, not all of the fragments created during rasterization finally
end up as pixels in the frame buffer. Depending on the configuration of
the individual per-fragment tests, a significant number of fragments may
be discarded. Occlusion queries allow an application to count the number
of fragments that are actually passing all the tests.

The main purpose of this mechanism is to determine the visibility of a
group of primitives. For example, an application might utilize an occlusion
query to check whether or not the bounding box of a complex geometry
is visible. If the rasterization of the bounding box returns an insignificant
number of fragments, the application might decide to completely skip the
rendering of the complex geometry.

Occlusion queries are implemented by the OpenGL extension
GL ARB occlusion query. A code example is given in Section 8.5 in the
context of occlusion culling.
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2.5 Further Reading
There are many excellent introductory texts on graphics and shader pro-
gramming. If you are looking for a general source of information on real-
time graphics, we recommend the book Real-Time Rendering by Akenine-
Möller and Haines [2], which provides a practical overview on the current
state of the art. For readers focusing more on game development, the
first volume of 3D Games by Watt and Policarpo [283] might also be an
alternative.

The OpenGL Programming Guide [240], commonly known as the Red
Book, is a must-have for everybody concerned with graphics programming
in OpenGL. Make sure you have an up-to-date edition on your shelf for
reference. Another very recommendable book is Advanced Graphics Pro-
gramming in OpenGL by McReynolds and Blythe [184]. They provide deep
insights into OpenGL that go far beyond the programming manual.

The developer’s toolkit for the high-level shading language Cg is freely
available for Windows and Linux at NVIDIA’s developer website [33]. As a
developer’s guide to Cg, we recommend The Cg Tutorial book by Fernando
and Kilgard [71]. This is an excellent book for learning Cg in addition to
the Cg User Manual included in the Cg Toolkit.

The Internet is a huge source of information on graphics and shader
development in general. The official OpenGL website, http://www.opengl.
org, is always a good starting point. Additionally, all major manufacturers
of graphics boards maintain a developer website with software development
kits, white papers, code samples, and demos. Everybody involved in GPU
programming is well advised to regularly visit the developer sites at http://
www.ati.com and http://www.nvidia.com to look for new hardware features
and other improvements.

http://www.opengl.org
http://www.opengl.org
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Basic GPU-Based
Volume Rendering

AFTER HAVING WORKED THROUGH the important prerequisites, we are
now ready to start with a first GPU-based implementation. We will

first identify the individual components that a volume renderer is built
upon. Afterwards, we examine different implementations and analyze their
strengths and weaknesses both in terms of image quality and rendering
performance.

We assume that the scalar volume is sampled on an equidistant rectan-
gular 3D grid. This is the most common discrete representation of volume
data in practice. All the techniques described in this chapter are object-
order approaches. The graphics hardware is used in the way it was designed
for in the first place. We decompose the object into geometric primitives
and then render these primitives using the GPU. Image-order techniques
and the GPU-based ray-casting approach will be discussed in Chapter 7.

3.1 Software Components
If you have read the introduction to graphics hardware in the previous
chapter, you might have noticed that the graphics pipeline only supports
polygonal rendering primitives. We cannot directly use volumetric prim-
itives, such as solid tetrahedra or hexahedra. Instead, we are forced to
decompose our volumetric object into primitives supported by the graph-
ics pipeline.

To understand how object-order techniques work, it is helpful to recog-
nize how we usually visualize 2D scalar fields. A simple photograph can be
viewed as a 2D scalar field (if we neglect color information for now). Such
a 2D image can directly be displayed on our video screen. If we utilize 3D
graphics hardware, we can easily use such a photograph as a 2D texture
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image and map it onto a planar quadrangle in 3D. We can then decide that
some pixels in the texture image should be transparent, and the observer
will be able to see through parts of the quadrangle.

In object-order volume rendering, we make use of the fact that a discrete
3D scalar field can be represented as a stack of 2D slices. Hence, we can
visualize a 3D data set by displaying a high number of semi-transparent 2D
slices extracted from it. The polygons that correspond to the slices are the
geometric primitives used for rendering. It is important to notice that these
geometric primitives only represent a proxy geometry. They only describe
the shape of the data domain, usually the bounding box, not the shape of
the object contained in the data. We will examine different texture-based
approaches that mainly differ in the way these slice images are extracted.

The data itself is stored as one or more texture images—2D or 3D
textures depending on the specific implementation. As we have seen in
Chapter 1, optical properties such as emission and absorption coefficients
are required to generate an image. Let us assume for now that we are di-
rectly given such optical properties instead of scalar values. We store these
coefficients in the texture images. When we introduce transfer functions
in Chapter 4, we will examine effective ways of deriving optical properties
from the scalar data at runtime.

The two most important operations related to volume rendering are in-
terpolation and compositing. Both types of operation can efficiently be
performed on modern graphics hardware. Texture mapping operations
basically interpolate or filter a texture image to obtain color samples at
locations that do not coincide with the original grid. Texture mapping
hardware is thus an ideal candidate for performing repetitive resampling
tasks. Compositing individual samples can easily be done by exploiting
fragment operations in hardware. We can now identify the basic compo-
nents an object-order GPU-based volume renderer is built upon.

Geometry Set-Up. This component performs the decomposition of the
volume data set into polygonal slices. It calculates the position and
texture coordinates of the vertices that need to be rendered.

Texture Mapping. This component determines how the volume data is
stored in memory and how the data is used during fragment process-
ing. For our first implementation, we keep this module very simple.
In the forthcoming chapters dealing with classification and illumi-
nation, more sophisticated techniques will be implemented in this
module.

Compositing Set-Up. This component defines how the color values of
the textured polygons that we draw are successively combined to
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create the final rendition. This module determines whether we cal-
culate a physically-based solution or use an empirical model, such as
maximum intensity projection.

You might have noticed that there is no strict one-to-one correspondence
between the described software components and the volume-rendering
pipeline outlined in Section 1.6.1. Geometry set-up mainly corresponds
to the data-traversal step, which determines the sampling positions. An-
other important aspect of data traversal, however, is memory management,
which involves the texture-mapping step as well. We will examine memory-
management techniques later in Chapter 8. Interpolation is completely
handled by the fragment programs in the texture-mapping component. In
subsequent chapters, we will see that classification and shading are also
implemented by this component. The gradient computation mentioned in
Section 1.6.1 is explained in Chapter 5. It is also part of the texture-
mapping component, either performed as a pre-processing step before tex-
ture set-up or implemented by a fragment program. The compositing stage
of the volume-rendering pipeline directly corresponds to the compositing
set-up in the software components.

3.2 2D Texture–Based Volume Rendering
The first implementation we are going to examine manages with 2D tex-
tures and bilinear interpolation only. If we want to exploit 2D texture
mapping capabilities, the volumetric data must be stored in several tex-
ture images. An implication of using 2D textures is that the hardware is
only able to sample 2D subsets of the original 3D data.

The proxy geometry in this case is a stack of object-aligned slices, as
displayed in Figure 3.1. In the literature, object-aligned slices are some-

Proxy Geometry Final Rendition2D Textures

Figure 3.1. Object-aligned slices used as proxy geometry with 2D texture mapping.
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times referred to as axis-aligned slices. We prefer the term object-aligned,
to emphasize the fact that the slices are defined with respect to the object’s
local coordinate system.

All polygons are required to be aligned with one of the major axes in
object space (either the x, y, or z axis). The reason for this requirement
is that 2D texture coordinates are used to access the texture data. The
third coordinate in space must therefore be constant. For every point in
3D object space, one coordinate determines the texture image to be used
from the stack of slices. The remaining two vector components become
the actual 2D texture coordinates. The polygons are mapped with the
respective 2D texture, which, in turn, is resampled by the hardware-native
bilinear filtering.

3.2.1 Texture Set-Up

To allow an interactive rotation of the data set, the slicing direction must be
chosen with respect to the current viewing direction. The major axis must
be selected in a way that minimizes the angle between the slice normal and
an assumed viewing ray. This will effectively circumvent the problem of
viewing rays passing between two slices without intersecting one of them.
As a consequence, three stacks of texture images are stored, one stack of
slices for each major axis. This is necessary to enable switching between
different stacks at runtime. Figure 3.2 illustrates this idea in 2D by showing
an incremental rotation of a volume object. With an angle between viewing
direction and slice normal of 45◦ (in Figure 3.2 (d)), the slicing direction
becomes ambiguous and can be chosen arbitrarily. With an angle larger
than 45◦, the stacks must be switched.

(b)(a) (d)

image plane image planeimage planeimage planeimage plane

(c) (e)

Figure 3.2. Switching the slice stack according to the viewing direction illustrated
in 2D. The slice stack used for rendering must be switched between frames (c) and
(e) in order to minimize the angle between the slice normal and the viewing direc-
tion. In frame (d) the slicing direction is ambiguous, as both alternatives result in
the same angle.
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// simple 2D texture sampling

float4 main (half2 texUV : TEXCOORD0,

uniform sampler2D slice) : COLOR

{
float4 result = tex2D(slice, texUV);

return result;

}

Listing 3.1. A simple fragment program in Cg that samples the given 2D texture
image.

During texture set-up, we must prepare the texture images for the three
stacks of slices and upload it to local graphics memory. During rendering,
the geometry set-up will take care that the correct textures are bound
for each polygon. OpenGL automatically performs a least-recently-used
(LRU) texture management strategy. If storage space is needed to roll in
additional textures, those texture images with the oldest time stamp are
swapped out. This is appropriate as long as we have enough local graphics
memory to store all textures required during one frame. In some cases the
LRU strategy is inefficient. In fact, a most-recently-used (MRU) strategy
is advantageous, if the texture data required to render one frame does not
fit into local graphics memory all at once. In this case, texture priorities
must be used to control the memory management.

As mentioned above, we assume for now that we are directly given
emission and absorption values for each voxel instead of the scalar value.
The information stored in each texel is an RGBA quadruplet. The RGB part
defines intensity and color of the emitted light. The A component specifies
opacity, i.e., the amount of light absorbed by the voxel. For now, we create
a number of texture objects with an internal texture format of RGBA. We
will change the internal format later, when we assign the optical properties
using transfer functions (see Chapter 4).

For shading the fragments, we use the simple fragment program dis-
played in Listing 3.1. The final color of the fragment is replaced by the
sample from the active 2D texture. More elaborate fragment programs will
be introduced in later chapters, when we look at transfer functions and
illumination techniques.

3.2.2 Geometry Set-Up

A code fragment implementing the view-dependent geometry set-up in
OpenGL is given in Listing 3.2. To compute the viewing direction rela-
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GLfloat pModelViewMatrix[16];

GLfloat pModelViewMatrixInv[16];

// get the current modelview matrix

glGetFloatv(GL MODELVIEW MATRIX, pModelViewMatrix);

// invert the modelview matrix

InvertMatrix(pModelViewMatrix,pModelViewMatrixInv);

// rotate the initial viewing direction

GLfloat pViewVector[4] = {0.0f, 0.0f, -1.0f, 0.0f};
MatVecMultiply(pModelViewMatrixInv, pViewVector);

// find the maximal vector component

int nMax = FindAbsMaximum(pViewVector);

switch (nMax) {
case X:

if(pViewVector[X] > 0.0f) {
DrawSliceStack PositiveX();

} else {
DrawSliceStack NegativeX();

}
break;

case Y:

if(pViewVector[Y] > 0.0f) {
DrawSliceStack PositiveY();

} else {
DrawSliceStack NegativeY();

}
break;

case Z:

if(pViewVector[Z] > 0.0f) {
DrawSliceStack PositiveZ();

} else {
DrawSliceStack NegativeZ();

}
break;

}

Listing 3.2. OpenGL code for selecting the slice direction. An example implemen-
tation for the drawing functions can be found in Listing 3.3.
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tive to the volume object, the modelview matrix must be obtained from
the current OpenGL state. This matrix represents the transformation from
the local coordinate system of the volume into camera space. The viewing
direction in camera space (the negative z-axis in OpenGL) must be trans-
formed by the inverse of this matrix. According to the maximum compo-
nent of the transformed viewing vector, the appropriate stack of slices is
chosen. This code sample assumes that all object and camera transforma-
tions are stored in the modelview matrix stack. You should not misuse
the projection matrix for storing them. Note that the multiplication of
the negative z-axis with the viewing matrix in this example can further
be simplified by directly extracting and negating the third column vector
from the 4× 4 matrix.

The selected stack of object-aligned polygons is displayed by drawing
it in back-to-front order. During rasterization, each polygon is textured

// draw slices perpendicular to x-axis

// in back-to-front order

void DrawSliceStack NegativeX() {

double dXPos = -1.0;

double dXStep = 2.0/double(XDIM);

for(int slice = 0; slice < XDIM; ++slice) {
// select the texture image corresponding to the slice

glBindTexture(GL TEXTURE 2D, textureNamesStackX[slice]);

// draw the slice polygon

glBegin(GL QUADS);

glTexCoord2d(0.0, 0.0); glVertex3d(dXPos,-1.0,-1.0);

glTexCoord2d(0.0, 1.0); glVertex3d(dXPos,-1.0, 1.0);

glTexCoord2d(1.0, 1.0); glVertex3d(dXPos, 1.0, 1.0);

glTexCoord2d(1.0, 0.0); glVertex3d(dXPos, 1.0,-1.0);

glEnd();

dXPos += dXStep;

}
}

Listing 3.3. OpenGL code for drawing a stack of object-aligned textured polygons
in back-to-front order along the negative x-axis. The volume is assumed to lie
within the unit cube and has a resolution of XDIM×YDIM×ZDIM voxels. In a practical
implementation, a display list should be used and the geometry should be written
into vertex buffers in order to minimize the number of function calls.
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with the image information directly obtained from its corresponding 2D
texture map. Bilinear interpolation within the texture image is accelerated
by the texturing subsystem. Note that the third interpolation step for a
full trilinear interpolation is completely omitted in this approach.

Let us assume that our volume is defined within the unit cube (x, y, z ∈
[−1, 1]) and has a resolution of XDIM×YDIM×ZDIM voxels. Listing 3.3 shows
the code for drawing a slice stack along the negative x-axis. The drawing
function for the positive x-axis is simply obtained by reversing the for loop
in Listing 3.3. This means that dXPos is initialized with a value of 1.0 and
decremented with each pass. In this case, the texture names must be bound
in reverse order, the index into the array must be XDIM-slice-1 instead of
slice.

Drawing functions for the remaining viewing directions are simply ob-
tained by permutation of the vector components and by using the array
of texture names that corresponds to the selected major axis. For most
efficient rendering, the geometry should also be stored in a vertex array
or a vertex buffer, if available. This will reduce the number of function
calls and the amount of data transferred to the GPU. The entire for loop
including the texture binding operations can be compiled into a display
list.

3.2.3 Compositing

According to the physical model described in Section 1.4, the equation
of radiative transfer can be iteratively solved by discretization along the
viewing ray. As described above, the internal format for our 2D textures
is RGBA, which means that each texel allocates four fixed-point values, one
value for the red (R), green (G), and blue (B) components, respectively,
plus one for the opacity (A) value. For each voxel, the color value (RGB)
is the source term ci from Equation 1.13. The opacity value A is the in-
verted transparency (1−Ti) from Equation 1.12. Using this configuration,
the radiance I resulting from an integration along a viewing ray can be
approximated by the use of alpha blending.

The blending equation specifies a component-wise linear combination
of the RGBA quadruplet of an incoming fragment (source) with the values
already contained in the frame buffer (destination). If blending is disabled,
the destination value is replaced by the source value. With blending en-
abled, the source and the destination RGBA quadruplets are combined by a
weighted sum forming a new destination value. In order to compute the
iterative solution according to Equation 1.11, opacity (1−Ti) stored in the
A component of the texture map must be used as blending factor. To im-
plement the back-to-front compositing scheme from Equation 1.15, a color
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// alpha blending for colors pre-multiplied with opacity

glEnable(GL BLEND);

glAlphaFunc(GL ONE, GL ONE MINUS SRC ALPHA);

// standard alpha blending setup

glEnable(GL BLEND);

glAlphaFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA);

Listing 3.4. Compositing: OpenGL code for back-to-front alpha blending. The
upper listing assumes that the color values are pre-multiplied with opacity in order
to avoid color bleeding during interpolation. The lower listing is the standard set-
up for alpha blending in OpenGL

component C ∈ {R,G,B} is computed by a blending equation as follows:

C′
dest = Csrc + Cdest (1−Asrc) . (3.1)

This blending scheme corresponds to the OpenGL alpha blending set-up
displayed in the upper part of Listing 3.4. It is important to note that
this blending set-up uses associated colors as explained in Section 1.4.4.
Associated colors consist of RGB components that are already weighted by
their corresponding opacity A.

The described blending set-up is different from the standard way of
alpha blending you might be familiar with. OpenGL applications often use

A

B

C

A

B

C

A

B

C

color
bleeding

Figure 3.3. Example of color bleeding during interpolation: a triangle is drawn
with different colors specified at the vertices. Color values are interpolated in the
interior of the triangle. In the middle image, the red and green vertices have been
set to completely transparent, but their colors are still “bleeding” into the inte-
rior of the triangle due to linear interpolation. In the right image, color bleeding
was suppressed by pre-multiplying the vertex colors by their opacity value before
interpolation.
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a different equation for back-to-front blending, denoted

C ′
dest = Csrc ·Asrc + Cdest (1−Asrc) . (3.2)

This equation is equivalent to the blending set-up displayed in the lower
part of Listing 3.4. It assumes that the RGB components of the incoming
fragment are not pre-multiplied with opacity A. The color values are thus
weighted by the opacity at the blending stage, before they are written
into the frame buffer. Although at first glance both set-ups seem to be
equivalent, they are actually not. The benefit of associated colors is the
fact that color-bleeding artifacts that may occur during interpolation are
avoided.

To understand the principle of color bleeding, let us examine the simple
case outlined in Figure 3.3. A triangle is drawn with different color values
at the vertices. If we enable smooth shading, the color values for fragments
in the interior of the triangle are interpolated from the values given at the
vertices. If we set the opacity value A for some of the vertices to 0 (full
transparency), the color value of the vertex should not have any influence
on the rendering at all. However, as can be seen in the middle image in Fig-
ure 3.3, this is not the case if standard interpolation and blending is used.
The color of the red and green vertices are still visible, due to component-
wise linear interpolation of the RGBA quadruplets across the triangle. Exam-
ine a fragment that lies halfway between the fully transparent red vertex
(RGBA= [1, 0, 0, 0]) and the fully opaque blue vertex (RGBA= [0, 0, 1, 1]). It
will receive an RGBA value of [1

2
, 0, 1

2
, 1

2
]. The red component is not equal to

0, although the red vertex should be invisible.
Contrary to the example illustrated in Figure 3.3, in our volume-

rendering approach, color-bleeding effects occur during texture filtering
instead of fragment color interpolation, but the effect is the same. Both
effects can easily be suppressed by using associated colors. To avoid color
bleeding, it is only necessary to pre-multiply the RGB vertex colors by their
corresponding opacity value A prior to interpolation. In this case, a com-
pletely transparent vertex would receive an RGBA value of (RGBA= [0, 0, 0, 0])
regardless of its original color. As can be seen in the right image of Fig-
ure 3.3, the color-bleeding artifacts have been successfully removed. The
blending weight for the source color is here set to one (see Listing 3.4, top),
because we already have multiplied it with the source opacity value before
the interpolation. As we see, such a blending set-up allows color-bleeding
effects to be removed at no additional cost.

As an alternative, the back-to-front scheme may be substituted by front-
to-back compositing (see Section 1.4.2). Only a few modifications to the
code are necessary: the slices must now be drawn in reverse order. This
can easily be achieved by exchanging the drawing functions for the positive
and the negative case in Listing 3.3. In the upper part of Listing 3.4, the
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blending weights must be replaced by GL ONE MINUS DST ALPHA and GL ONE

for associated colors. The result is a blending equation according to

C ′
dest = Csrc (1−Adest) + Cdest. (3.3)

For nonassociated colors, the RGB value of each fragment must be multi-
plied by its alpha component in the fragment program. The drawback of
front-to-back compositing is that an alpha buffer is required for storing
the accumulated opacity. The back-to-front compositing scheme manages
without the alpha buffer because the alpha value of the incoming fragment
is used as the blending weight. Front-to-back compositing, however, is re-
quired to implement early ray termination and occlusion-culling techniques,
as we will see in Chapter 8.

Maximum intensity projection. As an alternative to solving the equation
of radiative transfer, maximum intensity projection (MIP) is a common
technique that does not require numerical integration at all. Instead, the
color of a pixel in the final image is determined as the maximum of all the
intensity values sampled along the ray, according to

I = maxk=0..N

(
sk

)
, (3.4)

with sk denoting the original scalar value sampled along the ray.
Unfortunately, the maximum operation in the blending stage is not

part of the standard OpenGL fragment operations. Implementing MIP
is a simple example for the use of the widely supported OpenGL exten-
sion EXT blend minmax. This extension introduces a new OpenGL function
glBlendEquationEXT, which enables both maximum and minimum compu-
tation between source and destination RGBA quadruplets. The respective
blending set-up is displayed in Listing 3.5.

#ifdef GL EXT blend minmax

// enable alpha blending

glEnable(GL BLEND);

// enable maximum selection

glBlendEquationEXT(GL MAX EXT);

// setup arguments for the blending equation

glBlendFunc(GL SRC COLOR, GL DST COLOR);

#endif

Listing 3.5. OpenGL compositing set-up for maximum intensity projection in the
per-fragment operations using the widely supported extension EXT blend minmax.
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(a) (b)

Figure 3.4. CT angiography: a comparison between the emission-absorption model
(a) and maximum intensity projection (b). Note that the depth relations in image
(b) are unclear because only the largest value along the ray is displayed regardless
of occlusion.

Maximum intensity projection is frequently used in medical applica-
tions. It is applicable to tomographic data recorded after injecting contrast
dye of high signal, such as angiography data. A visual comparison of MIP
and ray integration is exemplified in Figure 3.4 by means of CTA1 data of
blood vessels inside the human head. Whereas for the emission-absorption
model (Figure 3.4 (a)) a transfer function table must be assigned to extract
the vessels (see Chapter 4), the same vascular structures are immediately
displayed in the MIP image (Figure 3.4 (b)). Note that in comparison
to ray integration, the surface structure of the bone is not visible in the
MIP image. Bone structures have the highest signal intensity in CT data.
Hence, all rays that hit a bone voxel somewhere inside the data set are
set to bright white. In consequence, a major drawback of MIP is the fact
that depth information is completely lost in the output images. This comes
with a certain risk of misinterpreting the spatial relationships of different
structures.

3.2.4 Discussion

The main benefits of our first solution based on 2D texture mapping are its
simplicity and its performance. The high rendering speed is achieved by
utilizing bilinear interpolation performed by the graphics hardware. Be-
cause only 2D texturing capabilities are used, fast implementations can
be achieved on almost every OpenGL compliant hardware. We will see,
however, that this first solution comes with several severe drawbacks if we
analyze the quality of the generated images.

1CTA: computerized tomography angiography.
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Figure 3.5. Aliasing artifacts become visible at the edges of the slice polygons.

The image quality is equivalent to a CPU implementation using a shear-
warp factorization [149], because the same computational mechanisms are
applied. Magnification of the images often results in typical aliasing arti-
facts, as displayed in Figure 3.5. Such artifacts become visible at the edges
of the slice polygons and are caused by an insufficient sampling rate.

The sampling rate in our implementation cannot be changed. It is
determined by the distance between two slice images. This distance is fixed
and restricted by the number of texture images we have created. We will
see in Chapter 4 that a fixed sampling rate is impractical, especially if used
in conjunction with transfer functions that contain sharp boundaries. The
sampling rate must be increased significantly to accommodate to additional
high frequencies introduced into the data.

The strong aliasing artifacts in Figure 3.5 originate from an inaccu-
racy during ray integration. We could easily remove such artifacts by pre-
computing and inserting multiple intermediate slices. This would be equiv-
alent to increasing the sampling rate. Interpolating additional slices from
the original discrete volume data and uploading them as texture images,
however, would mean that we waste graphics memory by storing redundant
information on the GPU. Obviously, the sampling rate we use is too low
and bilinear interpolation is not accurate enough. In Chapter 4, we will
examine the sampling rate problem in more detail. It becomes evident that
we need a mechanism for increasing the sampling rate at runtime without
increasing the resolution of the volume in memory.

Before we proceed, let us have a look at other inaccuracies introduced
by the algorithm. In order to analyze image quality, it is important to
examine how numerical integration is performed in this implementation.
Let us reconsider the physical model described in Chapter 1. Both the
discretized transparency Ti and the source term ci are built upon the no-
tion of a constant length ∆x of ray segments. This segment length is the
distance between subsequent sampling points along the viewing ray, and
it is determined by the spacing between two adjacent slice planes with re-
spect to the viewing direction. The distance between two slices of course is
fixed. The source terms and opacity coefficients stored in the 2D textures
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d 0 d4d2d1 d3

Figure 3.6. The distance between adjacent sampling points depends on the view-
ing angle.

are only valid if we assume a fixed distance between the sampling points
along a ray. This, however, is not true for the described algorithm, be-
cause the distance between adjacent sampling points depends on the angle
at which the assumed viewing ray intersects the slices (see Figure 3.6). In
consequence, the result of the numerical integration will only be accurate
for one particular viewing direction in case of orthographic projection. For
perspective projection, the angle between the viewing ray and a slice poly-
gon is not even constant within one image. Throughout our experiments,
however, we have observed that this lack of accuracy is hardly visible as
long as the field of view is not extremely large.

In addition to the sampling artifacts, a flickering may be visible when
the algorithm switches between different stacks of polygon slices. The rea-
son for such effects is an abrupt shift of the sampling positions. Figure 3.7
illustrates this problem. Figures 3.7 (a) and (b) show the viewing direction
at which the slicing direction is ambiguous. If we examine the location of
the sampling points by superimposing both configurations (Figure 3.7 (c)),
it becomes clear that the actual position of the sampling points changes
abruptly, although the sampling rate remains the same. According to the
sampling theorem, the exact position of the sampling points should not
have any influence on the reconstructed signal. However, this assumes an
ideal reconstruction filter and not a tent filter. The magnitude of the nu-
merical error introduced by linear approximation has an upper limit that

(c)(a) (b)

Figure 3.7. Flickering is caused by changing between different slice stacks (a) and
(b). The superposition (c) shows that the location of the sampling points abruptly
changes, which results in visible switching effects.
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is determined by the sampling rate. Within its bounds, however, the nu-
merical error can change abruptly from frame to frame and this causes the
flickering effects. Again, if we find a way of increasing the sample rate, we
could alleviate this effect by lowering the error bounds. We will completely
circumvent this effect in the following section by the use of viewport-aligned
slices and 3D textures.

Due to the inability to increase the sampling rate, the value of the 2D
texture–based implementation so far is very limited in practice, unless you
have a very outdated graphics system that does not support multitextures
or 3D textures. However, the algorithm is easy to understand and serves
as a basis for implementing a more sophisticated multitexture-based al-
gorithm, as we will see in Section 3.4. Before we turn to multitextures,
however, let us have a look at another quite intuitive implementation using
3D texture mapping.

3.3 3D Texture–Based Approach

Several problems of the 2D texture–based approach are caused by the fixed
number of slices and their static alignment within the object’s coordinate
system. The reason why we had to put up with these restrictions was that
2D textures did not provide the trilinear interpolation capabilities required.
If we use 3D textures instead of 2D textures, this situation changes.

Those who have not used 3D textures before should be aware of the fact
that 3D textures do not represent volumetric rendering primitives. They
are nothing more than volumetric texture objects, which means that the
image information used to texture-map a planar polygon can be “cut out”
of a solid 3D texture block.

In consequence, using 3D textures does save us from the necessity of
decomposing the volume object into planar polygons. Compared with our
first approach, we now have greater flexibility on how to compute this
decomposition.

As we have already seen, one drawback of using object-aligned slices is
the inconsistent sampling rate that results from the static proxy geometry.
Because 3D textures allow the slice polygons to be positioned arbitrarily in
the 3D space, a more consistent sampling rate for different viewing direc-
tions could be achieved by adapting the distance of the object-aligned slices
to the current viewing angle. This is actually done in the 2D multitexture–
based approach described later in this chapter. Adjusting the slice distance,
however, does not remove the flickering artifacts that occur when the algo-
rithm switches between different slice stacks.
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Final RenditionProxy Geometry 3D Texture

Figure 3.8. Decomposition of the volume object into viewport-aligned polygon
slices.

Both problems are efficiently solved by the use of viewport-aligned slices
as displayed in Figure 3.8. This means that the volumeric object is cut into
slices parallel to the image plane. The proxy geometry, however, must be
recomputed whenever the viewing direction changes. In case of parallel
projection, the decomposition into viewport-aligned slices ensures a con-
sistent sampling rate for all viewing rays as illustrated in Figure 3.9 (a).
In the perspective case, the sampling rate is still not consistent for all rays
(Figure 3.9 (b)). The distance of sampling points varies with the angle
between the slice polygon and the viewing ray. Such effects, however, are
only noticeable if the field of view is extremely large.

The compositing process in case of 3D texture–based volume render-
ing is exactly the same as for the 2D texture–based algorithm described
in Section 3.2.3. The intersection calculation for viewport-aligned slices
algorithm, however, requires a more detailed description.
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Figure 3.9. Sampling illustrated for viewport-aligned slices in the case of paral-
lel (a) and perspective projection (b).
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3.3.1 Geometry Set-Up

Compared with object-aligned slicing, the procedure of intersection calcu-
lation between the bounding box and a stack of viewport-aligned slices is
computationally more complex. To make matters worse, these slice poly-
gons must be recomputed whenever the viewing direction changes. Be-
cause the whole computation must be performed several times per second
to achieve an interactive frame rate, an efficient algorithm is required. One
way of computing the plane-box–intersection can be formulated as a se-
quence of three steps.

1. Compute the intersection points between the slicing plane and the
straight lines that represent the edges of the bounding box.

2. Eliminate duplicate and invalid intersection points. Invalid points
may occur if the plane intersects the straight line but the intersection
point does not lie on the edge.

3. Sort the remaining intersection points to form a closed polygon.

The intersection between a plane and a straight line in step 1 can easily
be solved analytically. To determine whether an intersection point actually
lies on an edge of the bounding box, a bounding-sphere test can be applied
in step 2. Points that are located outside the bounding sphere do not lie
on an edge and are thus discarded from the list of valid intersection points.
Additionally, duplicate points that coincide with a corner vertex of the
bounding box are merged together.

In order to facilitate the sorting of the remaining edge intersection
points in step 3, a set of six flags is stored for each edge, one flag for
each of the six faces of the bounding box. As outlined in Figure 3.10, a
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Figure 3.10. Sorting of edge intersection points to form a valid polygon: Each edge
holds a set of six flags (left), one flag for each face of the bounding box. A flag is
set if the edge belongs to the corresponding face and cleared otherwise. Edges
that share a common face are easily determined by OR-ing the edge flags. If the
result is nonzero, a common face exists. Four examples for edge flags are displayed
(A–D).
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flag is set if the edge belongs to the corresponding face and cleared oth-
erwise. The sequence of intersection points that form a valid polygon is
found when the flags of two adjacent edge intersection points have one flag
in common. This property can be easily verified by computing a bitwise
OR operation of the edge flags. If the result is nonzero for every pair of ad-
jacent points, the sequence is valid and the resulting polygon is exactly the
cross section between the plane and the bounding box. A valid ordering of
intersection points can be obtained by the use of a greedy algorithm start-
ing with an arbitrary point. Further optimization of the slicing algorithm
can be achieved by computing the intersection points for the subsequent
slice plane incrementally.

The geometry set-up described in this chapter assumes that the inter-
section calculation is performed on the CPU and the resulting vertices are
uploaded to the graphics processor for each frame. You will probably end
up with a well-balanced process that efficiently exploits all the available
resources in parallel: the computational power of the CPU and the GPU,
as well as the storage capacity and the memory bandwidth. The only part
of the pipeline that currently is somewhat underemployed is the vertex
processor. In Section 3.5, we will see that the cube-plane intersection can
be efficiently performed by a customized vertex program.

3.3.2 Texture Set-Up

Listing 3.6 shows the sequence of commands necessary to upload a sin-
gle 3D texture into local graphics memory. The internal format is set to

// bind 3D texture target

glBindTexture( GL TEXTURE 3D, volume texture name );

// set texture parameters such as wrap mode and filtering

glTexParameteri(GL TEXTURE 3D, GL TEXTURE WRAP S, GL CLAMP);

glTexParameteri(GL TEXTURE 3D, GL TEXTURE WRAP T, GL CLAMP);

glTexParameteri(GL TEXTURE 3D, GL TEXTURE WRAP R, GL CLAMP);

glTexParameteri(GL TEXTURE 3D, GL TEXTURE MAG FILTER, GL LINEAR);

glTexParameteri(GL TEXTURE 3D, GL TEXTURE MIN FILTER, GL LINEAR);

// upload the 3D volume texture to local graphics memory

glTexImage3D(GL TEXTURE 3D, 0, GL RGBA,

size x, size y, size z,

GL RGBA, GL UNSIGNED BYTE, volume data rgba );

Listing 3.6. OpenGL set-up for a 3D texture.
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GL RGBA, which means that the emission/absorption values are stored as
an RGBA quadruplet for each texel. Note that the code is not much differ-
ent from a 2D texture set-up, except for the third dimension parameter in
glTexImage3D and the additional wrap mode setting.

Compared with the previous approach using 2D textures, memory man-
agement for 3D textures, however, is a little bit more difficult. Because the
whole volume data set is defined as a single 3D texture, it must entirely fit
into the texture memory at one time. With the increasing size of volume
data sets, the available texture memory becomes the limiting factor. Now
two questions arise immediately:

1. How do we determine whether or not a texture fits onto the graphics
boards?

2. What can we do if the texture does not entirely fit into graphics
memory?

The answer to the first question is simple. OpenGL provides a mecha-
nism called proxy texture, which allows us to test in advance whether or not
a desired texture resolution will work. For more details on proxy textures,
please refer to the OpenGL Red Book.

The answer to the second question is called bricking. Bricking tackles
the memory problem by subdividing a large data set into smaller chunks
(usually called bricks) that entirely fit into local graphics memory, one at
a time.

The naive approach of simply splitting the data set into bricks and
rendering each brick separately introduces additional artifacts at the brick
boundaries. To explain these artifacts, we have to look at how texture

discard

duplicate

correct interpolationinconsistent interpolation

splitting

rendering

splitting

rendering

Figure 3.11. Bricking illustrated for the 1D case. Simply splitting the texture leads
to inconsistent interpolation at the transition (left). Duplicating a voxel at the
boundary between bricks (a plane of voxels in 3D) leads to correct interpolation
results (right). The discarded white voxel must be accommodated by the adjacent
brick, together with a duplicate of the leftmost black voxel.
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interpolation is performed at the transition between neighboring bricks.
Figure 3.11 (left) illustrates this problem. At the boundary between tex-
ture tiles, the interpolation is incorrect, as the texture unit does not have
enough information to consistently interpolate across texture boundaries.
The solution to this problem is to duplicate a plane of voxels at each brick
boundary. If two neighboring bricks share a common plane of voxels, the
texture units can be set up to deliver the correct interpolation results, as
displayed in Figure 3.11 (right). More details on bricking and memory-
management techniques will be discussed in Chapter 17.

3.3.3 Discussion

In comparison with the 2D texture–based solution, the 3D texture–based
approach has proved superior in terms of image quality, removing some of
the significant drawbacks while preserving almost all the benefits. The 2D
texture–based approach requires three copies of the data set to be stored in
local memory. With 3D textures, this is no longer necessary because trilin-
ear interpolation allows the extraction of slices with arbitrary orientation.
In this context, viewport-aligned slices guarantee a sampling distance that
is consistent among adjacent frames for parallel projection. The problem
of variable sample rate for perspective projection, however, still remains.
As long as the virtual camera views the volume object from an exterior
position, the effect of the inconsistent sampling rate is hardly visible.

As we have already noted in our first 2D texture–based implementa-
tion, adjusting the sampling rate is essential to remove sampling artifacts.
Hardware support for trilinear interpolation provides us now with a natu-
ral means of increasing the sampling rate. This is important to accurately
account for a transfer function of high frequency as we will see later in
Chapter 4.

For large volume data sets, however, the bricking strategy turns out to
be inefficient. In this case, the rendering process is limited by the mem-
ory bandwidth between the GPU and the host memory, while the GPU is
stalled until the required texture data is fetched from host memory. To
make matters worse, bricking increases the overall memory for storing the
volume data set. As explained, correct interpolation across brick bound-
aries requires one plane of voxels to be duplicated at the boundary between
any two bricks.

The size of the bricks has significant influence on the overall perfor-
mance. In order to optimize cache coherency, the bricks should be kept
small enough to fit into the texture cache. On the other side, however, the
bricks should not be too small, otherwise the duplicated voxels at the brick
boundaries would significantly increase the memory required for storing the
volume. Additionally, a large number of bricks results in a higher number
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of intersection calculations for the CPU. In consequence, a higher number
of vertices must be transferred to the GPU for each frame, and we will end
up with a worsening of the bandwidth problem. As a result, the frame rate
for large data will be significantly lower compared with 2D textures. Note
that this is true even though the 2D texture–based approach requires the
storing of three copies of the volume data.

Memory management is a crucial point in the 3D texture–based im-
plementation. We will examine this aspect in detail in Chapter 8. The
efficiency of 3D texture look-ups greatly depends on the individual graph-
ics processor, the amount of graphics memory available, and on driver
optimization. Unfortunately, there is no general rule to determine the op-
timal level of subdivision. Experimenting with different brick sizes is thus
essential in order to optimize the performance for different graphics sys-
tems. GPU manufacturers might decide to store 3D textures as a linear
array of samples in local video memory. This might lead to texture caching
being effective only if texture coordinates are shifted in u or v direction.
Cache misses are likely to happen when texture coordinates are shifted in
w direction. Other implementations might decide to rearrange the data in
order to optimize 3D texture cache coherency. This, however, may come
at the cost that 3D textures cannot be transferred asynchronously from
host to video memory anymore, because the CPU is required to rearrange
the data. More details on improving texture-cache coherence are given in
Chapter 8.

At the bottom line, 3D textures are usually not as efficient as 2D tex-
tures with respect to memory management and texture cache coherency.
Because the texture map for a single polygon slice is cut out of a volumetric
texture block, it is obvious that there must be redundant data in texture
memory. In our first implementation based on 2D textures, there was a
strict one-to-one correspondence between slices and textures. In this case,
we knew exactly which portion of the texture data was required to tex-
ture the polygon beforehand. The main drawback using 2D textures was
the lack of trilinear filtering. In the next section, we will switch back to
the 2D texture–based approach and examine a way to implement trilinear
interpolation using 2D multitextures instead of 3D textures.

3.4 2D Multitexture–Based Approach
The 2D texture–based method is capable of rendering a volume data set at
high frame rate. The mathematical accuracy, the subjective image quality,
and the memory requirements, however, are far from being optimal. In the
previous section, we saw that the 3D texture–based approach removes some
of these limitations at the cost of a less efficient memory management. At
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this point, let us make a list of the main advantages of 3D texture–based
volume rendering over our first implementation.

• Trilinear instead of bilinear interpolation.

• A more consistent sampling rate between adjacent frames.

• Lower memory requirements.

We will now examine a third alternative approach, which supplements the
original 2D texture–based implementation by removing at least two of the
above-mentioned limitations and preserving the benefit of more efficient
memory management.

The advantage of 3D textures over 2D textures is that trilinear interpo-
lation is directly supported by the graphics hardware. In our multitexture-
based implementation, we take advantage of the fact that a trilinear in-
terpolation operation can be decomposed into two bilinear interpolation
operations followed by one linear interpolation. Bilinear interpolation is
efficiently performed by the 2D texture unit. The idea to accomplish trilin-
ear interpolation with 2D multitextures is to use a fragment program that
samples two adjacent 2D textures and performs the missing linear inter-
polation step afterwards. In comparison with our first 2D texture–based
implementation, such a fragment program will allow intermediate slices to
be interpolated on the fly, without the need to pre-compute the correspond-
ing texture map. More generally, this approach allows us to draw correct
object-aligned slices at an arbitrary position along the chosen major axis.

// fragment program for trilinear interpolation

// using 2D multi-textures

float4 main (half3 texUV : TEXCOORD0,

uniform sampler2D texture0,

uniform sampler2D texture1 ) : COLOR

{
// two bilinear texture fetches

float4 tex0 = tex2D(texture0, texUV.xy);

float4 tex1 = tex2D(texture1, texUV.xy);

// additional linear interpolation

float4 result = lerp(tex0,tex1,texUV.z);

return result;

}

Listing 3.7. Cg fragment program for trilinear interpolation of 2D multitextures.
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The fragment program that computes the trilinear interpolation is dis-
played in Listing 3.7. For a slice image at an arbitrary position along a
chosen major axis, the two adjacent 2D textures are bound as multitex-
tures. The fragment program samples both textures at the same texture
coordinate. Bilinear filtering is performed automatically by the texture

// draw slices perpendicular to x-axis

// in back-to-front order

void DrawSliceStack NegativeX(int nNumSlices)

{
double dXPos = -1.0;

double dXStep = 2.0/double(nNumSlices);

for(int slice = 0; slice < nNumSlices; ++slice) {
// select the texture images corresponding

// to the two adjacent slices

double dXPosTex = (XDIM * (dXPos + 1.0)/2.0);

int nTexIdx = int(dXPosTex);

double dAlpha = dXPosTex - double(nTexIdx);

glActiveTexture(GL TEXTURE0);

glBindTexture(GL TEXTURE 2D, texNamesStackX[nTexIdx]);

glActiveTexture(GL TEXTURE1);

glBindTexture(GL TEXTURE 2D, texNamesStackX[nTexIdx+1]);

// draw the slice polygon

glBegin(GL QUADS);

glTexCoord3d(0.0, 0.0, dAlpha);

glVertex3d(dXPos,-1.0,-1.0);

glTexCoord3d(0.0, 1.0, dAlpha);

glVertex3d(dXPos,-1.0, 1.0);

glTexCoord3d(1.0, 1.0, dAlpha);

glVertex3d(dXPos, 1.0, 1.0);

glTexCoord3d(1.0, 0.0, dAlpha);

glVertex3d(dXPos, 1.0,-1.0);

glEnd();

dXPos += dXStep;

}
}

Listing 3.8. OpenGL code for drawing a stack of object-aligned multitextured
polygons in back-to-front order along the negative x-axis.
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unit. The remaining linear interpolation step between these two samples
is performed by the lerp operation afterwards.

3.4.1 Geometry Set-Up

An example implementation for the geometry set-up is displayed in List-
ing 3.8. It is essentially the same as in our first implementation (see List-
ing 3.3) with only a few modifications. The number of slices to be drawn
does not have to be equal to the dimension of the volume in the respective
direction. It is now specified as an argument to the function and can be
chosen arbitrarily. In our example, the spatial position dXPos within the
unit cube is transformed into texture space (dXPosTex). The integer part
of this position is used to select the two neighboring texture images.

Texture coordinates are now 3-component vectors according to the frag-
ment program in Listing 3.7. The third component is used as the interpola-
tion weight dAlpha for the third interpolation step. This weight is obtained
by taking the fractional part of the position in texture space dXPosTex.
Drawing functions for the other slicing direction are again obtained by
permutation of the vertex coordinates and by reversing the polygon order
as explained in Section 3.2.2.

3.4.2 Discussion

The 2D multitexture–based approach fills the gap between the traditional
2D and 3D texture–based methods. With the possibility to trilinearly inter-
polate intermediate slices within the graphics hardware, two drawbacks of
the traditional 2D texture–based approach have been removed as promised.

• Trilinear interpolation can be performed by multitexture blending.
This allows the rendering of axis-aligned slices at arbitrary positions.

• Consistent sampling rate in parallel projection can be achieved by
adjusting the distance between the slice images to the viewing angle.

The third critical point is the high storage requirements that come with
the necessity of keeping three copies of the data set in memory. Besides the
memory requirement, there are some considerable differences between the
3D texture and the 2D multitexture–based approaches. The switching arti-
facts that can be observed when the 2D texture–based algorithm switches
between orthogonal slice stacks are still evident in the 2D multitexture–
based method. However, due to the ability to adapt the slice distance
arbitrarily, the effect appears less disturbing.

The multitexture-based interpolation allocates two texturing units to
interpolate one slice. These texturing units cannot be used for classification
and illumination calculations, as we will see in the following chapters. The
main advantage of the 2D multitexture approach over 3D textures is the
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more efficient memory management. The bricking mechanism that must be
applied for volumes that do not fit entirely into texture memory is rather
inefficient, as a huge part of the graphics memory must be swapped at a
time. Using 2D textures to represent the volume is advantageous, as the
graphics memory is partitioned into small portions, which can be replaced
more efficiently.

There is also a possibility to completely get rid of the additional two
stacks of slices. The idea is to store only one stack and reconstruct the
missing stacks on-the-fly using offscreen rendering targets. In order to
reconstruct a slice image for a missing slice direction, we can render one
line from each of the original 2D textures into an offscreen render target.
This offscreen rendering target is then bound as a textures image to render
the proxy geometry.

Such an approach, however, is only feasible if enough local video mem-
ory is available to store one stack of textures, but not enough to store all
three stacks. It is obvious that if all three stacks fit into video memory,
storing them would be more efficient because offscreen rendering could be
omitted. If not even one stack of textures fits entirely into memory, the on-
the-fly reconstruction would be very inefficient because all textures must
be swapped in from host memory to reconstruct one slice. Because only
one line from each texture is used in the reconstruction, this will result in
much redundant data traveling over the bus again and again during one
frame. Such problems can only be solved by very complex paging strate-
gies, similar to the texture management strategies proposed by Lefebvre et
al. [157].

Another reason one might not want to deal with three sets of slices is
if the volume data is dynamically created either by the CPU or the GPU.
We will see examples of on-the-fly computation in Chapter 12. In the case
where the data is coming from the CPU, it must be transferred over the
graphics port. Using a single set of slices decreases bus bandwidth by a
factor of three. In the case where the GPU is creating the volume data
set, copy operations in video memory can be completely avoided. In this
case, efficiency will greatly depend on the ratio between rendering and
computation time. If the volume is not updated very frequently, it might
be worth it to cache three sets of slices. If rendering and computation
processes are balanced, creating three stacks in memory will most likely
not be worthwhile.

3.5 Vertex Programs
The performance limit for all GPU-based approaches we have seen so far
is either the pixel fill-rate or the memory bandwidth. The major workload
is handled by the fragment processor, and only a negligible computational
load is assigned to the vertex processor. In the remainder of this chapter,
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Figure 3.12. Extracting an object-aligned slice can be formulated as a vertex blend-
ing operation between the first slice and the last slice along a fixed major axis.

// vertex program for computing object aligned slices

void main( float4 Vertex0 : POSITION,

float4 Vertex1 : TEXCOORD0,

half2 TexCoord0 : TEXCOORD1,

uniform float slicePos,

uniform float4x4 matModelViewProj,

out float4 VertexOut : POSITION,

out half3 TexCoordOut : TEXCOORD0)

{
// interpolate between the two positions

float4 Vertex = lerp(Vertex0, Vertex1, slicePos);

// transform vertex into screen space

VertexOut = mul(matModelViewProj, Vertex);

// compute the correct 3D texture coordinate

TexCoordOut = half3(TexCoord.xy, slicePos);

return;

}

Listing 3.9. Cg vertex program for calculating intermediate slices.
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we will examine ways of incorporating the programmable vertex processor
into the algorithms.

3.5.1 Object-Aligned Slices

Let us first examine the approaches that draw object-aligned slices. As
we have noted in Section 3.2.2, for maximum performance the vertex data
should not be transferred over the memory bus for each frame. To reduce
the bus-load, it is advantageous to pre-compute the vertices, transfer them
once, and store them as a vertex buffer in local graphics memory. A large
number of slices, however, will result in a considerable amount of memory
allocated for the geometry.

The geometry set-up, however, is rather simple in the case of object-
aligned slices. It can easily be encoded into a vertex program that reduces
the size of the vertex buffer to a minimum. An arbitrary object-aligned
slice can be described by blending vertices from the front face and the
back face with respect to a fixed major axis. This idea is illustrated in
Figure 3.12. For drawing slices along one fixed major axis, all we need to
store in the vertex buffer are the eight corner vertices of the bounding box.
An arbitrary slice image can then be rendered using the vertex program
displayed in Listing 3.9.

An input vertex structure is here carrying a pair of position vectors
Vertex0 and Vertex1 as well as a 2D texture coordinate TexCoord. The
position of the slice inside the cube is specified by a uniform parameter
slicePos, which is updated for each slice to be rendered. This value is used
as an interpolation weight for blending the two corresponding vertices of
the front and the back polygon. Additionally, the value of slicePos can be
used directly as a third texture coordinate, using the fragment shader for
2D multitexture interpolation (Listing 3.7).

3.5.2 Viewport-Aligned Slices

Calculating the intersection between a cube and an arbitrarily oriented
plane is a more complicated task, as we have seen in Section 3.3.1. How-
ever, there also exist vertex programs that are capable of performing the
intersection calculation in this case.

In Chapters 8 and 17, we will examine memory management strategies
and empty-space skipping techniques. Efficient vertex programs can min-
imize the amount of data that must be transferred from host memory to
the GPU. This allows us to render significantly smaller bricks, resulting in
a much higher flexibility for memory management.

The intersection between a box and a plane results in a polygon with
three to six vertices (assuming that the plane actually intersects the box).
The different cases are illustrated in Figure 3.13. Our vertex program must
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Figure 3.13. Intersecting a box with a plane. The resulting polygon has between
three and six vertices. Symmetric cases are omitted.

compute the correct sequence of vertices for such intersection polygons
directly. The vertex processor, however, can neither insert new vertices
nor remove vertices from the stream. As a consequence, we will design a
vertex program that always receives six vertices and outputs six vertices.
If the intersection polygon consists of less than six vertices, the vertex
program will generate one or more duplicate vertices (i.e, two identical
vertices with an edge of length zero in between). Such duplicate vertices
will result in degenerated triangles that do not produce any fragments in
the rasterization step.

Intersecting an edge of the box with the slice plane is easy if the plane
is given in Hessian normal form,

nP · x = d , (3.5)

with nP denoting the normal vector of the plane and d the distance to the
origin. For viewport-aligned slicing, the normal vector nP is the viewing
direction. An edge between two vertices vi and vj of the bounding box
can be described as

Ei→j : x = vi + λ (vj − vi) (3.6)
= vi + λ ei→j with λ ∈ [0, 1] .

Note that the vector ei→j does not have unit length in general. The in-
tersection between the plane and the straight line spanned by Ei→j is
calculated by

λ =
d− 〈nP ◦ vi〉
〈nP ◦ ei→j〉 . (3.7)

The denominator becomes zero only if the edge is coplanar with the plane.
In this case, we simply ignore the intersection. We have found a valid
intersection only if λ is in the range [0, 1], otherwise the plane does not
intersect the edge.

The main difficulty in performing the intersection calculation in the
vertex processor is to maintain a valid ordering of the intersection points.
The result must form a valid polygon. To understand the slicing algorithm,
let us assume for now that we have one vertex v0 that is closer to the
camera than all other vertices, as displayed in Figure 3.14 (left). Vertex
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Figure 3.14. Left: the vertices are numbered sequentially. There always exist three
independent paths from the front vertex v0 to the back vertex v7 as marked by
the solid lines. Right: the intersection point of the dotted line must be inserted
between the intersection points from the solid lines.

v7 is then identified as the vertex lying on the opposite corner across the
cube’s diagonal. In the following, we will refer to the vertex indices given
in Figure 3.14 (left).

If v0 is the front vertex and v7 is the back vertex, there are exactly
three independent paths from v0 to v7 as marked in Figure 3.14 (left) by
the solid lines in red, green, and blue. In this context, independent means
that these paths do not share any vertices other than the start and the
end vertex. Each path consists of a sequence of three edges {E1, E2, E3},
e.g., E1 = E0→1, E2 = E1→4, and E3 = E4→7 for the red path. For a
given front vertex, we can construct these three paths uniquely by forcing
that the vectors corresponding to E1, E2, and E3 for each path form a
right-handed system.

Now imagine we are sweeping a viewport-parallel plane from front to
back through the box in Figure 3.14 (left). The first vertex that the plane
touches is v0. Before this happens, we do not have any valid intersection
with the box. The last vertex that the plane touches, if we proceed from
front to back, is vertex v7. After that, we will not have any valid intersec-
tion anymore. As a consequence, any viewport-aligned plane that intersects
the box will have exactly one unique intersection point along each of the
three paths, respectively. In the case that our intersection polygon has only
three vertices, they will be exactly those intersection points with the three
paths. As a result, we can compute three of the possible six intersection
points pi by checking intersections with sequences of edges, respectively:

p0 = Intersection with E0→1 or E1→4 or E4→7 ,

p2 = Intersection with E0→2 or E2→5 or E5→7 ,

p4 = Intersection with E0→3 or E3→6 or E6→7 .

Now, let us consider where the remaining intersection points must lie
if our polygon has more than three vertices. We will first examine the red
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void main( int2 Vin : POSITION,

uniform float3 vecTranslate, // updated per cube

uniform float dPlaneStart,

uniform int frontIdx, // updated per frame

uniform float3 vecView,

uniform float4x4 matModelViewProj,

uniform float dPlaneIncr, // never updated

uniform int nSequence[64],

uniform float3 vecVertices[8],

uniform int v1[24],

uniform int v2[24],

out float4 VertexOut : POSITION,

out half3 TexCoordOut : TEXCOORD0)

{
float dPlane = dPlaneStart + Vin.y * dPlaneIncr;

float3 Position;

for(int e = 0; e < 4; ++e) {
int vidx1 = nSequence[int(frontIdx *8 +v1[Vin.x *4 +e])];

int vidx2 = nSequence[int(frontIdx *8 +v2[Vin.x *4 +e])];

float3 vecV1 = vecVertices[vidx1];

float3 vecV2 = vecVertices[vidx2];

float3 vecStart = vecV1+vecTranslate;

float3 vecDir = vecV2-vecV1;

float denom = dot(vecDir,vecView);

float lambda = (denom!=0.0) ?

(dPlane-dot(vecStart,vecView))/denom : -1.0;

if((lambda >= 0.0) && (lambda <= 1.0)) {
Position = vecStart + lambda * vecDir;

break;

} // if(...

} // for(...

VertexOut = mul(matModelViewProj,float4(Position,1.0));

TexCoordOut = 0.5 * (Position) + 0.5;

return;

}

Listing 3.10. Cg vertex program for box-plane intersection.



�

�

�

�

�

�

�

�

3.5 Vertex Programs 77

dotted edge E1→5 in Figure 3.14. If there exists a valid intersection with
this edge, then it must be inserted between the intersection points with the
red path and the green path as can be easily seen in Figure 3.14 (right).
If an intersection with the dotted edge does not exist, we simply set the
point equal to p0, which is the intersection point with the red path. The
other dotted edges can be treated analogously, resulting in the remaining
three intersection points:

p1 = Intersection with E1→5, otherwise p0 ,

p3 = Intersection with E2→6, otherwise p2 ,

p5 = Intersection with E3→4, otherwise p4 .

We have now determined all six intersection points of the plane with
the box in a sequence that forms a valid polygon. It is easy to check that
the same sequence works fine if the front edge or the front face of the box is
coplanar with the viewing plane. We simply select one of the front vertices
as v0 and set v7 to the opposite corner. Remember that we ignore any
intersections with an edge that is coplanar with the plane.

3.5.3 Implementation

The algorithm for computing the correct sequence of intersection points as
described in the previous section can be implemented as a vertex program
in Listing 3.10. The program has been designed for slicing a high number of
equally-sized and equally-oriented boxes with a stack of equidistant planes.
Care has been taken to minimize the number of state changes and the
amount of data transferred to the graphics board for each frame.

The input stream of vertices for one intersection polygon is specified
in Listing 3.11. The x-coordinate of the vertex is an index that speci-

glBegin(GL POLYGON);

glVertex2i(0, nPlaneIndex);

glVertex2i(1, nPlaneIndex);

glVertex2i(2, nPlaneIndex);

glVertex2i(3, nPlaneIndex);

glVertex2i(4, nPlaneIndex);

glVertex2i(5, nPlaneIndex);

glEnd();

Listing 3.11. OpenGL example vertex stream for calculating one intersection poly-
gon: stores the indexes of the intersection point to be calculated and of the plane.
The vertex stream is stored in a vertex buffer for maximum efficiency.
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fies which of the six possible intersection points should be computed. The
y-coordinate of the vertex is the index of the plane that is used for intersec-
tion. As the plane index is constant for one polygon, it could alternatively
be specified as a separate parameter in the vertex stream (e.g., as texture
coordinate). However, current hardware implementations do not support
vertices that have only one coordinate, so we incorporate the plane index
into the y-coordinate of the vertex.

In this implementation, we assume that all the boxes have the same size
and orientation, although simple modifications to the program will allow
arbitrary size and orientation at the cost of a slightly larger number of state
changes. In our case, each box consists of the same set of vertices and a
translation vector vecTranslate. The translation vector is specified once
for each box to be rendered. The vertices of one box are kept in a constant
uniform vector array vecVertices[8] and will not be changed at all.

Besides the usual modelview projection matrix, we specify for each
frame the index of the front vertex with respect to the viewing direction in
the uniform parameter frontIndex. Because all our boxes are equally ori-
ented, the front index will not change during one frame. Additionally, we
set the uniform parameters vecView to the normal vector nP of the plane
and dPlaneIncr to the distance between two adjacent planes. The correct
distance d for the plane equation is computed as the variable dPlaneDist.

The constant uniform index array nSequence stores the permutation of
vertex indices with respect to the given index of the front vertex frontIndex.
As described in the previous section, several edges must be checked for
intersection in sequence, according to the index of the intersection point.

In order to calculate the intersection points p1, p3, and p5, we must
first check for an intersection with the dotted edge, and if this intersection
does not exist we must check for intersection with the corresponding path
(solid line, Figure 3.14). Hence, the maximum number of edges that must
be tested for intersection is four. This is done within the for loop. For the
intersection points p0, p2, or p4, we have to check only three edges. In this
case, the program breaks out of the for loop when the intersection point
is found after a maximum of three iterations.

The two constant index arrays v1 and v2 store the indices of start and
end vertices of the edges that must be tested successively for intersection.
They are indexed by the intersection index Vin.x from the vertex stream
in combination with the current iteration count e.

At first, the program computes the correct vertex indices of the edge
that must be tested for intersection. The vertices are fetched from the
constant uniform array vecVertices. Subsequently, we compute the correct
start point and the edge vector for the current edge, taking into account the
local translation of the box. The denominator denom from Equation 3.6 is
computed. If the denominator is unequal zero (which means that the edge is
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not coplanar with the plane), the lambda value for the edge is computed as in
Equation 3.6. Finally, we test if we have a valid intersection. If this is true,
the program breaks out of the for loop. The resulting intersection point is
transformed into screen space, and texture coordinates for the vertex are
calculated. The texture coordinates in this example are obtained by scaling
and biasing the vertex position to the range [0, 1]. Alternatively, texture
coordinates could be specified by another uniform parameter similar to
vecVertices.

This admittedly intricate implementation allows one box to be inter-
sected with several parallel planes using one single function call that feeds
a predefined vertex buffer into the graphics pipeline.

3.6 Further Reading
The types of proxy geometry used in this chapter are all based on planar
slices. This implies that the sampling rate in perspective projection will
inevitably increase toward the edges of the image. This might result in
noticeable artifacts if the field-of-view angle is relatively large. Constant
sampling rate for perspective projection can only be achieved by the use of
spherical rendering primitives instead of slices as proposed by LaMar et al.
[152]. Rendering spherical shells is only applicable in combination with 3D
texture mapping. In most practical cases, however, the improvement of the
image quality does not outweigh the computational cost for the tessellation
of spherical primitives.

Large field-of-view angles are usually applied in virtual fly-through ap-
plications. An interesting algorithm especially designed for navigation
within the volume has been proposed by Brady et al. [17]. It is based
on CPU ray casting accelerated by 2D texture mapping.

Besides the presented vertex program for cube-plane intersection, there
also exist efficient programs for slicing other types of cells. Lensch et
al. [160] describe a slicing procedure for triangular prisms. Reck et al. [219]
demonstrate how tetrahedra can be sliced in a vertex program.
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Transfer Functions

FOR SOLVING THE LIGHT-TRANSFER EQUATIONS from Chapter 1, we need
to know the optical properties, such as the emission and absorption

coefficients, at each point inside the volume. In the previous chapter, we
assumed that we are given these coefficients directly, and we examined
different implementations that compute the volume-rendering integral.

In scientific visualization, however, we are given a volumetric data set
that contains abstract scalar data values that represent some spatially vary-
ing physical property. In general, there is no natural way to obtain emission
and absorption coefficients from such data. Instead, the user must decide
how the different structures in the data should look by assigning optical
properties to the data values using arbitrary mappings. This mapping is
called a transfer function. This process of finding an appropriate transfer
function is often referred to as classification.1

4.1 Classification

In the context of volume visualization, classification is defined as the process
of identifying features of interest based on abstract data values. Classifica-
tion is essentially a pattern-recognition problem. Different patterns found
in raw data are assigned to specific categories, or classes. An overview of

1The use of the term classification in the literature might be confusing. Sometimes,
classification is used as a synonym for applying a transfer function. Other places in the
literature use the term classification to refer to a pattern-recognition process, such as
segmentation. Even though we want to differentiate between the process of identifying
different regions in the data and the process of specifying optical properties to those
regions, for brevity the terms pre-classification and post-classification will be used to
refer to pre-interpolative and post-interpolative transfer functions, respectively.

81
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general theory and popular methods can be found in the classic text by
Duda, Hart, and Stork [53].

Traditionally, the transfer function is not thought of as a feature classi-
fier at all. Often, it is simply viewed as a function that takes the domain of
the input data and transforms it to the range of red, green, blue, and alpha.
With the evolution of volume visualization, however, transfer function de-
sign is going far beyond a simple color-table set-up. Transfer functions are
used to identify specific patterns and assign them to ranges of values in the
source data that correspond to features of interest.

In addition to the emission and absorption coefficients, we will see a
variety of other optical properties, such as reflectivity or translucency coef-
ficients, in the forthcoming chapters. All of them can be derived from the
original scalar data using transfer functions. Although a few approaches
exist to automatically generate transfer functions by some image- or data-
driven mechanisms [123], the design of a transfer function in general is a
manual, tedious, and time-consuming procedure, which requires detailed
knowledge of the spatial structures that are represented by the data set.
In order to facilitate this assignment process, it is crucial for the user to
be provided with direct visual feedback of his action. In consequence, im-
plementations must allow the transfer function to be modified in real time
while continuously rendering the volume.

In the previous chapters, we stored the optical properties directly in
the volume. There are at least two reasons why this is not advisable in
practice. First, it is inefficient to update the entire volume each time the
transfer function changes. Second, evaluating the transfer function (as-
signing optical properties) at each sample point prior to data interpolation
(i.e., texture filtering) might violate the sampling theorem and cause strong
visual artifacts. Both problems are addressed in this chapter.

4.1.1 Principles

Although analytic descriptions of continuous functions are applicable in
theory, almost all practical volume graphics applications use a discretized
version of the transfer function, implemented as a look-up table of fixed size.
The emitted radiance ci (Equation 1.13) is represented as an RGB value to
allow for the emission of colored light. The opacity (1−Ti) (Equation 1.12)
is represented by a scalar value between 0 and 1. We have already seen in
Chapter 3 that both coefficients can be combined into one RGBA quadruplet.

Discrete volume data is usually represented by a 3D array of sample
points. According to sampling theory, a continuous signal can be recon-
structed from these sampling points by convolution with an appropriate
reconstruction filter kernel. Sampling theory thus allows us to reconstruct
as much of the original continuous data as necessary to create images in
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a desired screen-space resolution. The transfer function can either be ap-
plied directly to the discrete sampling points before the reconstruction (pre-
interpolative) or alternatively to the signal reconstructed in screen-space
resolution (post-interpolative). Both methods lead to different visual re-
sults. Accordingly, there are two possible ways to perform the assignment
in hardware, which differ in the positioning of the table look-up with re-
spect to the graphics pipeline. Implementations of color-table look-ups
strongly depend on the underlying hardware architecture. Multiple differ-
ent hardware implementations are described later in this chapter.

4.1.2 Pre-Interpolative Transfer Functions

Pre-interpolative mapping denotes the application of a transfer function
to the discrete sample points before the data interpolation. The recon-
struction of the signal in screen-space resolution is performed subsequently
based on the emission and absorption values. Figure 4.1 (left) outlines this
concept. The transfer function is here represented as the graph of a 1D
function. In practice, several of these curves would be used to describe
individual transfer functions for each of the RGBA components separately.
The original sampling values on the x-axis are mapped to emission and
absorption values on the y-axis. As displayed in the diagram, the emission
and absorption coefficients for a sample point that does not lie on an ex-
act grid position is determined by interpolating between the emission and
absorption coefficients given at the neighboring grid points.
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Figure 4.1. Transfer functions are used to map data values to physical quantities,
which describe the emission and absorption of light. This mapping can be ap-
plied either before the interpolation (pre-classification) or after the interpolation
of data values (post-classification), leading to different visual results.
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With respect to the graphics pipeline, pre-interpolative mapping means
that the color-table look-up is performed before or during the rasterization
step, however in any case before the texture filtering step. The transfer
function is applied to every texel before interpolation. The advantage of
this concept is that an implementation of a pre-classification table is pos-
sible on almost every graphics hardware. Before we examine and evaluate
different implementations, we will have a look at the alternative concept of
post-classification.

4.1.3 Post-Interpolative Transfer Functions

Post-classification reverses the order of operations. Transfer function appli-
cation is performed after the reconstruction in screen space. The classifica-
tion function is thus applied to the continuous signal instead of its discrete
sampling points. This idea is illustrated in Figure 4.1 (right). For a sample
point that does not lie on an exact grid position, the data value itself is
interpolated. Subsequently, the emission and absorption values are deter-
mined by using the interpolated data value as index into the color look-up
table. It is easy to see in Figure 4.1 that pre- and post-classification lead
to different results. Both alternatives will be evaluated and discussed in
Section 4.4.

In the following sections, we will examine several ways of implementing
transfer functions that work together with all the texture-based approaches
described in Chapter 3. Both pre- and post-interpolative transfer functions
are discussed. Our main objective is to implement a fast color-table update,
allowing the transfer function to be modified in real time.

4.2 Implementation of Pre-Classification
As defined above, a pre-interpolative transfer function is applied a priori
to the texture images. Although there is no technical restriction that for-
bids the application of a color table as a pre-processing step, it is very
unlikely that such an implementation will achieve interactive frame rates
while updating the transfer function. The reason for this is twofold:

• A modification of the transfer function would require a reconstruc-
tion of the whole volume in main memory and a reload of the texture
image into the local video memory of the graphics board. This will
inevitably result in a memory bandwidth bottleneck, which signifi-
cantly degrades performance.

• For storing the emission (color) and absorption (opacity) values di-
rectly in the texture, an internal RGBA format is required that allocates
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four bytes per texel. An index into a color table, however, would only
require one or two bytes per texel. As a result, using color indices
significantly reduces both the memory footprint and the bandwidth
problem.

4.2.1 Pixel Transfer

The standard OpenGL specification provides a way to apply a color map
during the pixel transfer from main memory to the graphics board. This
is exactly what is done when a texture image is defined and transferred to
the graphics board. Because changing the color table requires uploading
the texture again, this is of course not a very fast way to apply the transfer
function. However, for graphics hardware that does not support some of
the OpenGL extensions described in the following chapters, it represents
the only way to achieve the color mapping. The OpenGL code for setting
up the pixel transfer is displayed in Listing 4.1.

Besides the poor performance, the main drawback of this approach is
again the amount of data that must be allocated in local video memory.
Although only the scalar data values are stored in main memory, the pixel
transfer converts every scalar value into an RGBA quadruplet when writing
it into the portion of video memory that is allocated for the texture image.
As a result, the size of the data that must be stored increases by a factor
of four in the worst case. To work around this problem, some hardware
manufacturers have decided to implement a mechanism that allows for the
storage of color indices in the texture image together with a separate color
table. This concept is known as paletted textures.

// enable and set up pixel transfer

glPixelTransferi(GL MAP COLOR, GL TRUE);

glPixelMapfv(GL PIXEL MAP I TO R, m nTableSize, m pColorMapR);

glPixelMapfv(GL PIXEL MAP I TO G, m nTableSize, m pColorMapG);

glPixelMapfv(GL PIXEL MAP I TO B, m nTableSize, m pColorMapB);

glPixelMapfv(GL PIXEL MAP I TO A, m nTableSize, m pColorMapA);

// (re-)create texture image

glTexImage3D(...);

// disable pixel transfer

glPixelTransferi(GL MAP COLOR, GL FALSE);

Listing 4.1. OpenGL set-up for color mapping during the pixel transfer from main
memory to the local texture memory.
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4.2.2 Paletted Textures

Similar to many 2D image file formats that include a color table, texture
palettes can significantly reduce the memory that must be allocated for
storing the texture on the graphics board. Additionally, this feature can
be used to implement coloring effects by modifying the color palette without
the necessity of modifying the texture object itself. Instead of storing the
RGBA values for each texel, an index into a color look-up table of fixed
size is used. This color table is stored together with the index texture in
local video memory. During the texture-generation step, the indices are
replaced by the respective color values stored in the texture palette. It
is important to notice that the color-table look-up is located before the
usual texture generation. The interpolation is performed after the look-up
using the color values obtained from the look-up table, resulting in a pre-
interpolative transfer function. The amount of local video memory that
must be allocated for storing an RGBA texture is significantly reduced, as
only a single index value must be stored for each texel, instead of four
values for the four color components. Taking into account the memory
that is allocated for the texture palette itself, the required texture memory
is thus reduced almost by a factor of four.

The access to texture palettes is controlled by two separate OpenGL
extensions. The first extension EXT paletted texture enables the use of
texture palettes in general. A paletted texture is created in the same way
as a conventional RGBA texture. The only difference is that, during texture
specification, the internal format of RGBA (GL RGBA) must be substituted by
an indexed format, such as GL COLOR INDEX8 EXT, GL COLOR INDEX12 EXT,
or GL COLOR INDEX16 EXT according to the intended size of the color table

#if defined GL EXT shared texture palette

glEnable(GL SHARED TEXTURE PALETTE EXT);

glColorTableEXT(

GL SHARED TEXTURE PALETTE EXT, // GLenum target

GL RGBA, // GLenum internal format

m nColorTableSize, // GLsizei size of the table

GL RGBA, // GLenum external format

GL UNSIGNED BYTE, // GLenum data type

m pColorTable); // const GLvoid *table

#endif // GL EXT shared texture palette

Listing 4.2. OpenGL set-up for the paletted texture extension.
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(see [35] for details). Although the specification of this extension defines
texture palettes with a resolution of 1, 2, 4, 8, 12, or 16 bits, resolutions
larger than 8 bits are rarely supported by existing hardware. In this case,
a unique texture palette must be maintained for each texture separately.
A second OpenGL extension named GL EXT shared texture palette ad-
ditionally allows a texture palette to be shared by multiple texture objects.
This further reduces the memory footprint for a volume data set, if 2D
textures or 2D multitextures are used or if a 3D texture is split up into
several bricks. The OpenGL code for creating and updating a shared tex-
ture palette is displayed in Listing 4.2.

Compared with the pixel-transfer method described in the previous sec-
tion, the main advantage of the shared texture palettes is the ability to
change the texture palette—and thus the transfer function—without hav-
ing to reload the texture itself. In addition, the palette sizes of 12 or 16 bits
enable high-precision transfer functions for tomographic data. As a result,
the most efficient way of implementing pre-interpolative transfer functions
is to use paletted textures. Unfortunately, at the time of the writing of this
book, an up-to-date consumer-level graphics board that supports paletted
textures does not exist. The described OpenGL extension was supported
by older NVIDIA GPUs (up to GeForce 3), but it is not available on the
new architectures.

4.3 Implementation of Post-Classification

Implementing a post-interpolative transfer function requires a mechanism
to realize a color-table look-up after the texture sample is interpolated in
screen space. Using the programmable fragment processor, implementing
such a color-table look-up at fragment level is straightforward.

4.3.1 Dependent Textures

The dependent texture mechanism outlined in Section 2.3.1 can efficiently
be used to implement a color-table look-up at fragment level. To achieve
this, the color indices of the voxels are stored as luminance values in the first
multitexture (which can be a 2D or 3D texture). The second multitexture
is defined as a 1D texture, which has the same resolution as the color table.
During rasterization, the color index obtained from the first texture is used
as texture coordinate for the second texture, which stores the color table.
The resulting RGBA quadruplet now represents a color value obtained via
post-interpolative index look-up. A code example is given in Listing 4.3.
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// fragment program for post-classification

// using 3D textures

half4 main (half3 texUV : TEXCOORD0,

uniform sampler3D volume texture,

uniform sampler1D transfer function) : COLOR

{
half index = tex3D(volume texture, texUV);

half4 result = tex1D(transfer function, index);

return result;

}

// fragment program for post-classification

// using 2D multitextures

half4 main (half3 texUV : TEXCOORD0,

uniform sampler2D slice texture0,

uniform sampler2D slice texture1,

uniform sampler1D transfer function) : COLOR

{
half index0 = tex2D(slice texture0, texUV.xy);

half index1 = tex2D(slice texture1, texUV.xy);

half index = lerp(index0, index1, texUV.z);

half4 result = tex1D(transfer function, index);

return result;

}

Listing 4.3. Fragment programs for post-classifications via dependent texture
look-up in Cg. The upper listing uses 3D textures. The lower listing uses 2D multi-
texture interpolation.

The major benefit of dependent textures compared with all the other
implementations is that also higher-dimensional transfer functions can be
realized with this concept. We will focus our interest on multidimensional
transfer functions in Section 10.2.

4.3.2 Texture Color Tables

There exists an olderOpenGL extension named SGI texture color table,
which goes back to the era before graphics hardware became fully pro-
grammable. This rarely supported extension has been designed specifically
for post-interpolative texture look-up. The mechanism to set up the tex-
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#if defined GL SGI texture color table

glEnable(GL TEXTURE COLOR TABLE SGI);

glColorTableSGI(

GL TEXTURE COLOR TABLE SGI, // GLenum target

GL RGBA, // GLenum internal format

m nColorTableSize, // GLsizei size of the table

GL RGBA, // GLenum external format

GL UNSIGNED BYTE, // GLenum data type

m pColorTable); // const GLvoid *table

#endif // GL SGI texture color table

Listing 4.4. OpenGL set-up for the texture color-table extension. Although this
code fragment is very similar to the paletted-texture set-up in Listing 4.2, in this
case the color-table look-up is performed after the interpolation of texture sam-
ples.

ture look-up table is similar to paletted textures. The extension must be
enabled, and a color table must be set up as described in Listing 4.4. Al-
though this code looks very similar to the code presented in Listing 4.2,
here the color-table look-up is performed after the texture interpolation.
The texture color table, which is enabled by this extension, is not restricted
to a specific texture object, so it can be efficiently shared among multiple
texture images.

4.4 Pre- versus Post-Interpolative
Transfer Functions

A transfer function usually tries to separate different objects inside the
volume data set according to their scalar value. Due to the band limitation
of the voxel data set, however, sharp boundaries between different objects
do not exist in the data. Thus, trying to display objects as isosurfaces with
a sharp peak of infinite frequency in the transfer function is not appropriate
to represent the fuzzy boundary. The transfer function of course should
account for this fuzziness and simultaneously be able to separate tiny detail
structures. A good transfer function will be a compromise between a sharp
edge and a smooth transition between different objects.

We have seen two different ways of applying a transfer function for
direct volume rendering. Pre-classification applies the transfer function for
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each sample point on the data grid before interpolation. Contrary, post-
classification evaluates the transfer function for each sample point in screen
space after the filtering step. The question of which is the correct way of
applying a transfer function caused much discussion a couple of years ago.

If we compare the visual quality of pre- and post-classification, the
answer is simple. The two images in Figure 4.2 have been created with
exactly the same sampling rate and the same transfer function. The left
image uses pre-classification, while the right image uses post-classification.
The left image is cluttered with lots of blocky artifacts, which seem to arise
from the underlying data grid. In order to explain these disturbing visual
artifacts, we have to look again at sampling theory.

In all our volume-rendering approaches, we assume that the discrete
samples of a voxel data set represent a continuous 3D scalar field. We
also assume that the sampling theory has guided the discretization of the
data set, which means that the grid size has been chosen according to
the maximal frequency component inherent in the data. Without loss of
generality, let us restrict our considerations to a continuous 1D signal that
is obtained by casting a ray through the volume. According to sampling
theory, a continuous signal f(x) can be exactly reconstructed from discrete
values f(k · τ) sampled at a step size τ , according to

f(x) =
∑

k

f(k · τ) · sinc
(1
τ

(x− kτ)
)
, k ∈ IN (4.1)

Figure 4.2. Comparison of pre- (left) and post-classification (right) of a CTA data
set using a transfer function of high frequency. Both images were generated with
exactly the same transfer function and with exactly the same number of slice im-
ages. The pre-classified image is rather disturbing due to its blocky artifacts. The
volumetric shapes are much better represented by the high frequency of the trans-
fer function applied as post-classification.
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Obviously, the application of a transfer function T to the discrete sampling
points instead of the continuous signal yield different results:

T
(
f(x)

) �= ∑
k

T
(
f(k · τ)

) · sinc
(1
τ

(x− kτ)
)
. (4.2)

Figure 4.3 illustrates the difference between pre- and post-classification
with respect to sampling and reconstruction. The left column shows an ex-
ample of an original continuous signal and a box transfer function applied
to it, resulting in the modified signal shown at the bottom. The original
signal, however, must be discretized to be processed in digital computing
devices. Digitization leads to the discretized signal shown in the top row.
If we reconstruct this signal with linear interpolation (tent filter), we will

SupersamplingTransfer Function

Supersampling

Transfer Function

Analytical Solution Post-interpolative TF

Discrete dataContinuous data

Pre-interpolative TF

Transfer Function
Classified data

Figure 4.3. Comparison of pre- (left) and post-interpolative transfer functions
(right) with respect to sampling and reconstruction using a box transfer function,
which contains infinite frequencies. The original continuous data is first discretized.
Pre-interpolative look-up applies the transfer function first and reconstructs the
signal in screen space afterwards. It cannot account for the additional high fre-
quencies introduced by the transfer function. Post-interpolative look-up first re-
constructs the signal in screen space and applies the transfer function afterwards.
The result is much closer to the analytical solution, because it much better repre-
sents the high frequencies of the transfer function.
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obtain a piecewise linear approximation of the original signal. Here we
see the difference between pre- and post-classification. Pre-classification
(as shown in the middle column) first applies the transfer function on the
discrete samples, replacing every sample point by its classified value. Af-
terwards, the signal is reconstructed in screen space by supersampling with
linear interpolation. If we compare the result to the analytic continuous
solution, we see that the shape of the signal is poorly approximated. Note
that the second narrow peak in the analytical solution is completely missing
in the pre-classified signal. Post-classification first reconstructs the origi-
nal signal in screen resolution by supersampling and linear interpolation.
The transfer function is then applied for every sample in screen space and
the resulting signal is much closer to the analytic solution. The reason
for this is that the transfer function introduces additional high-frequency
components into the result signals, such as the sharp edges in the example.
The data grid used during discretization, however, only accounts for the
frequency components of the original signal. If we use the same data grid
for the classified signal after transfer function application, the information
contained in the high frequencies is lost. This causes the blocky artifacts
seen in Figure 4.2.

As a conclusion, we have seen that the transfer function modifies the
frequency spectrum of the original scalar field. The original data grid
does not account for the high-frequency components introduced by the
transfer function. In consequence, the number of slices must be increased
and the spacing between two adjacent slices must be decreased in order
to properly account for such high frequencies. Post-interpolative transfer
functions must be used to properly evaluate the classified signal in screen-
space resolution. Pre-interpolative transfer functions are not capable of
removing aliasing artifacts because the classified signal is evaluated in the
resolution of the original data grid instead of the required screen-space res-
olution. Pre-interpolative transfer functions, however, might be useful for
rendering segmented data. If the data set is divided into separate regions,
it is usually not correct to interpolate scalar values across segmentation
boundaries. In this case, pre-classification might be a working solution.
Rendering techniques for segmented data are discussed in Chapter 16.

4.5 Pre-Integrated Transfer Functions
As we have seen before, the transfer function introduces additional high-
frequency components into the signal that can cause aliasing artifacts dur-
ing ray integration. A high frequency in the transfer function is eas-
ily introduced by using a simple step-transfer function with steep slope.
Such transfer functions are very common in many application domains.
To capture these high frequencies, oversampling (i.e., additional slice poly-
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gons or sampling points) must be added. In turn, they directly decrease
performance.

Classification employs transfer functions for color densities q(s) and ex-
tinction densities κ(s), which map scalar values s = s(x) to colors and ex-
tinction coefficients. In order to overcome the limitations discussed above,
the approximation of the volume-rendering integral has to be improved. In
fact, many improvements have been proposed, e.g., higher-order integra-
tion schemes [199, 39], adaptive sampling (see Section 9.1.2), etc. However,
these methods do not explicitly address the problem of high Nyquist fre-
quencies (see Section 9.1.1) of the color after the classification q

(
s(x)

)
and

an extinction coefficient after the classification κ
(
s(x)

)
resulting from non-

linear transfer functions. On the other hand, the goal of pre-integrated
classification [226, 64] is to split the numerical integration into two inte-
grations: one for the continuous scalar field s(x) and one for each of the
transfer functions q(s) and κ(s) in order to avoid the problematic product
of Nyquist frequencies [135].

The first step is the sampling of the continuous scalar field s(x) along
a viewing ray. Note that the Nyquist frequency for this sampling is not
affected by the transfer functions. For the purpose of pre-integrated classi-
fication, the sampled values define a 1D, piecewise linear scalar field. The
volume-rendering integral for this piecewise linear scalar field is efficiently
computed by one table look-up for each linear segment. The three argu-
ments of the table look-up are the scalar value at the start (front) of the
segment sf := s

(
x(id)

)
, the scalar value at the end (back) of the segment

sb := s
(
x((i+1)d)

)
, and the length of the segment d (see Figure 4.4). More

s ( ( ))x �

sf = s i d( ( ))x �

sb = s i d( (( +1) ))x �

( +1)i d�i d�

d

x( )�

�

x( )i d� x(( +1) )i d�

Figure 4.4. Scheme for determining the color and opacity of the ith ray segment.
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precisely spoken, the opacity αi of the ith segment is approximated by

αi = 1− exp

(
−

∫ (i+1)d

i d

κ
(
s
(
x(λ)

))
dλ

)

≈ 1− exp
(
−

∫ 1

0

κ
(
(1− ω)sf + ωsb

)
d dω

)
. (4.3)

Thus, αi is a function of sf , sb, and d (or of sf and sb, if the length
of a segment is constant). The (associated) colors ci are approximated
correspondingly:

ci ≈
∫ 1

0

q
(
(1− ω)sf + ωsb

)
× exp

(
−

∫ ω

0

κ
(
(1− ω′)sf + ω′sb

)
d dω′

)
d dω . (4.4)

Analogous to αi, ci is a function of sf , sb, and d. Thus, pre-integrated
classification calculates the volume-rendering integral by evaluating the
equation

I ≈
n∑

i=0

ci

i−1∏
j=0

(1− αj)

with colors ci pre-computed according to Equation 4.4 and opacities αi pre-
computed according to Equation 4.3. For a nonassociated color-transfer
function q̃(s), i.e., when substituting q(s) by τ(s)q̃(s), we will also employ
Equation 4.3 for the approximation of αi and the following approximation
of the associated color c

(κ)
i :

c
(κ)
i ≈

∫ 1

0

κ
(
(1− ω)sf + ωsb

)
q̃
(
(1− ω)sf + ωsb

)
× exp

(
−

∫ ω

0

κ
(
(1− ω′)sf + ω′sb

)
d dω′

)
d dω . (4.5)

Note that pre-integrated classification always computes associated colors,
regardless of whether a transfer function for associated colors q(s) or for
nonassociated colors q̃(s) is employed.

In either case, pre-integrated classification allows us to sample a contin-
uous scalar field s(x) without increasing the sampling rate for any nonlinear
transfer function. Therefore, pre-integrated classification has the potential
to improve the accuracy (less undersampling) and the performance (fewer
samples) of a volume renderer at the same time.

One of the major disadvantages of the pre-integrated classification is
the need to integrate a large number of ray segments for each new transfer
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function dependent on the front and back scalar value and the ray-segment
length. Consequently, an interactive modification of the transfer function
is not possible in all cases. Therefore, several modifications to the com-
putation of the ray segments were proposed [64] that lead to an enormous
speed-up of the integration calculations by employing integral functions.

Integral functions are used to facilitate the calculation of the integrals
in Equations 4.3, 4.4, and 4.5 for all combinations of scalar values sf and
sb. The integral of a function f(x),

F (x) =
∫ b

a

f(x) dx , (4.6)

for arbitrary values of a and b can be calculated using integral functions
K(s),

G(s) =
∫ s

0

f(x) dx , (4.7)

according to

F (x) = G(b)−G(a) . (4.8)

To our pre-integration method, this means that we only have to eval-
uate an integral function G(s) for all scalar values. The integrals for all
combinations of scalar values sf and sb can then be obtained by computing
differences according to Equation 4.8. Equation 4.3 can be rewritten as

αi ≈ 1− exp
(
−

∫ 1

0

κ
(
(1− ω)sf + ωsb

)
d dω

)
.

= 1− exp

(
− d

sb − sf

∫ sb

sf

κ(s)ds

)
(4.9)

= 1− exp
(
− d

sb − sf

(
T (sb)− T (sf )

))
. (4.10)

using the integral function

T (s) =
∫ s

0

κ(s′) ds′ . (4.11)

Using integral functions to calculate Equation 4.4 requires neglecting the
self-attenuation within a ray segment, i.e, the exponential term. Yet, it is
a common approximation for post-classification and well justified for small
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products κ(s) d. Equation 4.4 can thus be approximated by

ci ≈
∫ 1

0

q
(
(1− ω)sf + ωsb

)
d dω. (4.12)

=
d

sb − sf

∫ sb

sf

q(s)ds (4.13)

=
d

sb − sf

(
K(sb)−K(sf )

)
. (4.14)

with an integral function

K(s) =
∫ s

0

q(s′) ds′. (4.15)

An approximation for Equation 4.5 using integral functions can be found
in the thesis by Martin Kraus [135].

The dimensionality of the look-up table can easily be reduced by as-
suming constant ray segment lengths d. This assumption is correct for
orthogonal projections and view-aligned proxy geometry. It is a good ap-
proximation for perspective projections and view-aligned proxy geometry,
as long as extreme perspectives are avoided. The assumption is correct for
perspective projections and shell-based proxy geometry.

4.6 Implementation of Pre-Integrated
Transfer Functions

In the following GPU implementation, 2D look-up tables for the pre-
integrated ray segments are employed. As we assume a constant ray seg-
ment length, those look-up tables are only dependent on sf and sb. First
we compute a look-up texture that stores pre-integrated ray segments for
all possible combinations of sf and sb. The C code in Listing 4.5 computes
a 256 × 256 pre-integration look-up texture from an 8-bit RGBA transfer
function using integral functions.

Note that, for transfer functions with higher precision, the pre-
integration texture becomes quite large. For example, a 12-bit transfer
function results in a 4096× 4096 texture, which consumes 64 MB of mem-
ory. To prevent having to compute and store such large look-up textures,
it is possible to shift the integral functions–based integral computation into
the fragment processing stage on the GPU. For this, the integral functions
are stored in a single 1D RGBA texture. During rendering, we perform two
look-ups with sf and sb as texture coordinates into this integral function
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void createPreintegrationTable(GLubyte* Table) {
double r=0.,g=0.,b=0.,a=0.; int rcol, gcol, bcol, acol;

double rInt[256],gInt[256],bInt[256],aInt[256];

GLubyte lookupImg[256*256*4]; int smin,smax,preintName;

double factor; int lookupindex = 0;

rInt[0] = 0.;gInt[0] = 0.;bInt[0] = 0.;aInt[0] = 0.;

// compute integral functions

for (int i=1;i<256;i++) {
tauc = (Table[(i-1)*4+3]+Table[i*4+3])/2.;

r = r + (Table[(i-1)*4+0]+Table[i*4+0])/2.*tauc/255.;

g = g + (Table[(i-1)*4+1]+Table[i*4+1])/2.*tauc/255.;

b = b + (Table[(i-1)*4+2]+Table[i*4+2])/2.*tauc/255.;

a = a + tauc;

rInt[i] = r;gInt[i] = g;bInt[i] = b;aInt[i] = a; }
// compute look-up table from integral functions

for (int sb=0;sb<256;sb++)

for (int sf=0;sf<256;sf++) {
if (sb < sf) { smin = sb;smax = sf; }
else { smin = sf;smax = sb; }
if (smax != smin) {

factor = 1. / (double)(smax - smin);

rcol = (rInt[smax] - rInt[smin]) * factor;

gcol = (gInt[smax] - gInt[smin]) * factor;

bcol = (bInt[smax] - bInt[smin]) * factor;

acol = 256.*

(1.-exp(-(aInt[smax]-aInt[smin])*factor/255.));

} else {
factor = 1. / 255.;

rcol = Table[smin*4+0]*Table[smin*4+3]*factor;

gcol = Table[smin*4+1]*Table[smin*4+3]*factor;

bcol = Table[smin*4+2]*Table[smin*4+3]*factor;

acol = (1.-exp(-Table[smin*4+3]*1./255.))*256.; }
lookupImg[lookupindex++] = clamp(rcol,0,255);

lookupImg[lookupindex++] = clamp(gcol,0,255);

lookupImg[lookupindex++] = clamp(bcol,0,255);

lookupImg[lookupindex++] = clamp(acol,0,255); }
// create texture

glGenTextures(1,&preintName);

glBindTexture(GL TEXTURE 2D,preintName);

glTexImage2D(GL TEXTURE 2D, 0, GL RGBA, 256, 256, 0,

GL RGBA, GL UNSIGNED BYTE, &lookupImg);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP TO EDGE);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL CLAMP TO EDGE);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL LINEAR);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR);

}

Listing 4.5. C code for computing a 256 × 256 pre-integration look-up texture
from an 8-bit transfer function using integral functions.
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// Pre-integration vertex program in Cg

struct appin {
float4 Position : POSITION;

float4 TCoords0 : TEXCOORD0;

};
struct v2f {

float4 HPosition : POSITION;

float4 TCoords0 : TEXCOORD0;

float4 TCoords1 : TEXCOORD1;

};
v2f main(

appin IN,

uniform float4x4 ModelViewProj,

uniform float4x4 ModelView,

uniform float4x4 ModelViewI,

uniform float4x4 TexMatrix,

uniform float SliceDistance)

{
v2f OUT;

// compute texture coordinate for sF

OUT.TCoords0 = mul(TexMatrix, IN.TCoords0);

// transform view pos and view dir to obj space

float4 vPosition = float4(0,0,0,1);

vPosition = mul(ModelViewI, vPosition);

float4 vDir = float4(0.f,0.f,-1.f,1.f);

vDir = normalize(mul(ModelViewI, vDir));

// compute position of sB

float4 eyeToVert = normalize(IN.Position - vPosition);

float4 sB = IN.Position

- eyeToVert * (SliceDistance / dot(vDir, eyeToVert));

// compute texture coordinate for sB

OUT.TCoords1 = mul(TexMatrix, sB);

// transform vertex position into homogeneous clip space

OUT.HPosition = mul(ModelViewProj, IN.Position);

return OUT;

}

Listing 4.6. A vertex program for pre-integration in Cg that computes the texture
coordinate for sb from the given texture coordinate for sf .
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front
slice

back
slice

sf
sb

Figure 4.5. A slab of the volume between two slices. The scalar value on the front
(back) slice for a particular viewing ray is called sf (sb).

texture and compute the integral on-the-fly. Consequently, large look-up
tables are not required; however, a higher fragment-processing load is pro-
duced.

For a GPU implementation of pre-integrated volume rendering, tex-
ture coordinates for two subsequent sampling points sf and sb along rays
through the volume must be computed. The two sampling points define a
ray segment through a view-orthogonal volume slab between two adjacent
slice polygons with a thickness equivalent to the sampling distance (see Fig-
ure 4.5). The Cg vertex program in Listing 4.6 computes the second texture
coordinates for sb from the standard primary 3D texture coordinates given
for sf .

The distance between sf and sb is determined using the input parameter
SliceDistance. In the fragment stage, the texture coordinates for sf and
sb allow two subsequent samples along a ray to be looked up. These two
samples are then used as texture coordinates for a dependent texture look-
up into a 2D texture containing the pre-integrated ray segments (see Cg
fragment shader code in Listing 4.7). The result obtained from the pre-
integration table is then blended into the frame buffer.

Slicing-based volume rendering is equivalent to ray casting where all
rays are traced in parallel into the volume. Unfortunately, there is no effi-
cient means to cache the previous sample along each ray from one slice poly-
gon to the next slice polygon. Consequently, slicing-based pre-integration
requires two samples to be taken for each integration step; i.e., twice the
amount of samples must be taken in comparison with post-interpolative
classification. Note that additional samples considerably reduce rendering
performance, as memory access is generally “expensive.”

To overcome the problem of the additional sample that has to be con-
sidered, we need a means of caching the sample from the previous sampling
position. The problem can thus be reduced by computing multiple integra-
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// Pre-integration fragment program in Cg

struct v2f {
float4 TexCoord0 : TEXCOORD0;

float4 TexCoord1 : TEXCOORD1;

};
float4 main(

v2f IN,

uniform sampler3D Volume,

uniform sampler2D PreIntegrationTable) : COLOR

{
float4 lookup;

// sample front scalar

lookup.x = tex3D(Volume, IN.TexCoord0.xyz).x;

// sample back scalar

lookup.y = tex3D(Volume, IN.TexCoord1.xyz).x;

// lookup and return pre-integrated value

return tex2D(PreIntegrationTable, lookup.xy);

}

Listing 4.7. A pre-integration fragment program in Cg for a slicing-based volume
renderer. Note that two samples have to be fetched from the volume for a single
integration step.

tion steps at once; e.g. if we compute five integrations at once, we need six
samples from the volume instead of ten compared with single integration
steps [227]. Current graphics hardware allows us to perform the complete
integration along the rays in a single pass. In this case, pre-integration does
not introduce any significant performance loss compared with the standard
integration using post-interpolative classification.

4.7 Discussion
A comparison of the results of pre-interpolative classification, post-
interpolative classification, and pre-integrated classification is shown in Fig-
ure 4.6. Obviously, pre-integration produces the visually most pleasant re-
sults. However, for slicing this comes at the cost of looking up an additional
filtered sample from the volume for each sampling position. This consid-
erably reduces performance due to the fact that memory access is always
expensive. Additionally, texture-cache misses are more likely to happen if
the transfer function is stored in a 2D texture than if it is stored in a 1D
texture. However, using pre-integration, a substantially smaller sampling
rate is required when rendering volume with high-frequency transfer func-
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Figure 4.6. Comparison of the results of pre-, post-, and pre-integrated classifica-
tion for a random transfer function. Pre-interpolative classification (top) does not
reproduce high frequencies of the transfer function. Post-interpolative classifica-
tion reproduces the high frequencies on the slice polygons (middle). Pre-integrated
classification (bottom) produces the best visual result due to the integration of
high frequencies from the transfer function in the pre-processing step. (Image
from [63], c© Eurographics Association 2002.)

tions. Another advantage is that the computation of the pre-integration
table is performed as a pre-processing step with the full precision of the
CPU. Consequently, pre-integrated transfer functions reduce quantization
artifacts from blending, even when using low-precision frame buffers (see
Section 9.5).
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Pre-integrated transfer functions allow us to use much lower sampling
rates than post-interpolative transfer functions when using transfer func-
tions that contain high frequencies. In that sense, pre-integration can also
be seen as a performance optimization for rendering volume data. However,
it should be noted that pre-integrated transfer functions still require the
volume to be sampled at the Nyquist frequency of the volume data itself
(see Section 9.1.1).

Another important fact that should be stressed is that pre-integrated
transfer functions assume a linear progression of the scalar values between
two subsequent sampling points inside the volume. In fact, the progression
of the scalar value in the volume is dependent on the employed filtering
scheme. As we usually employ a trilinear filter for the volume, the assump-
tion of a linear progression of the scalar value is not correct. However,
post-interpolative classification assumes that there is an abrupt change of
the scalar value from one to the next sampling point along a ray, i.e., no
change of the scalar value happens in between two subsequent sampling
points inside the volume. In that sense, though pre-integration is still not
fully correct, the assumptions made for pre-integrated transfer functions
are still far superior than the assumptions for post-interpolative transfer
functions.

4.8 Further Reading
Up until now, we have determined color and opacity values for a voxel
simply as function of its scalar value. Although this is the most common
method of deriving the physical quantities required for ray integration, it
is not the only possibly way. In addition to the traditional one-dimensional
transfer function of the scalar intensity, the transfer function domain can be
expanded by taking other local features of the data set into account. Such
multidimensional transfer functions will be discussed in detail in Chap-
ter 10.

Pre-integrated volume rendering has additional nice properties, such as
the ability to render arbitrary numbers of isosurfaces without a performance
penalty compared with rendering a single isosurface [226, 64].
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Local Volume Illumination

IN THE SOLUTIONS TO DIRECT VOLUME RENDERING we have seen so far,
radiant energy has only been emitted by the voxels themselves. The

emission-absorption model we used is based on the assumption of a dense
cloud of particles where each particle simultaneously emits and absorbs
light. We did not account for illumination effects caused by external light
sources. There was no interaction between light coming in from outside the
volume and the volume itself. The only exception was the intensity of the
background light, which is absorbed to some degree and thus attenuated
by the volume before it reaches the eye. Light energy also traveled along
linear rays only. We did not allow for reflection, refraction, and scattering
of light. Such illumination effects, however, add a great deal of realism
to the resulting images. Surfaces properties, such as roughness, are very
hard to recognize without external lighting. Illumination effects provide
additional depth cues and greatly enhance the perception of small-scale
spatial structures, which is of great importance for scientific visualization.

The major optical effect that is missing in the emission-absorption
model is scattering of light. Loosely speaking, we are using the term scat-
tering as the volumetric equivalent to reflection and refraction of light at
material boundaries. In volume rendering, light is scattered by particles in
3D space instead of surfaces. For surfaces, the local reflection of light is fully
described using the bidirectional reflectance distribution function (BRDF),
which determines the intensity of reflected light for given directions. Sim-
ilar concepts exist for transmission and refraction. With volumetric light
scattering, the directions and intensities of light particle interaction are de-
scribed by a phase function (see Equation 1.3 in Chapter 1). For realistic
visual effects, it is important to properly account for indirect illumination
caused by scattering. Light that enters the volume or is emitted inside in a
direction that does not reach the eye directly can be scattered toward the
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104 Local Volume Illumination

eye when it interacts with particles in the volume. This way, light becomes
visible although the direct path to the eye is occluded.

Local vs. Global Volume Illumination

A single light-matter interaction that changes both direction and intensity
of emitted light before it reaches the eye is called single scattering. Single-
scattering effects are modeled using traditional local illumination models.
The most simple volumetric illumination model accounts for such local ef-
fects only. For simplicity, external light is assumed to reach any point
within the volume directly and unimpededly, without absorption or scat-
tering. A single reflection calculation is performed inside the volume, and
the light intensity scattered towards the eye is added to the radiant en-
ergy emitted at that point (see Figure 5.1 (left)). Despite the doubtfulness
of the physical plausibility, single-scattering approaches and local illumi-
nation models allow fast and easy implementations and usually result in
meaningful images. Although multiple scattering effects, attenuation, and
shadows can also be implemented efficiently for real-time volume rendering,
the most prevalent models are still based on local illumination.

Traditional local illumination models for surface lighting can be easily
adapted to volumetric representations. Local illumination models use the
notion of a normal vector, which describes the local orientation of a surface.
Such an illumination model calculates the reflection of light as a function
of this normal, the viewing direction, the angle of incidence, and a couple
of material properties. As we will see in Section 5.3, almost any surface
illumination model can be used in volume rendering by substituting the
surface normal by the normalized gradient vector of the volume. It is
worth noting that, in homogeneous media such as fog of constant density,
it is possible to evaluate such effects analytically [259]. More details about
this can be found in Chapter 11.

volume

Figure 5.1. Different types of volumetric illumination models. Left: single scatter-
ing. Light reaches any point inside the volume unimpededly. Middle: single scat-
tering with attenuation. Light intensity is reduced due to absorption inside the
volume. Right: multiple scattering. Light is scattered several times before it reaches
the eye.
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The next step in volume illumination is to consider the spatial distance
between the light source and the point where it is scattered toward the
eye. This will account for the visibility of the light source and thus the
incorporation of shadows. In the volumetric case, shadowing is caused by
the absorption of light between the light source and a point inside the
volume (see Figure 5.1 (middle)). Going further, the scattering of light on
the way to a given point and further scattering on its way toward the eye can
also be considered (see Figure 5.1 (right)). Taking such multiple scattering
interactions into account leads to full indirect or global illumination of
the volume. Volumetric shadows and approximations to global volume
illumination are the topic of Chapter 6.

5.1 Terminology

Before we begin, let us review some of the terms that are important for
all physically based lighting computations. This is only intended as a re-
fresher and an introduction to the terminology we are using. More detailed
descriptions can be found in standard texts on the topic [80, 211].

5.1.1 Radiant Flux

The radiative power emitted by a light source is defined by its radiant
flux Φ, measured in watts (W). In general, radiant flux specifies the amount
of energy Q that passes through a surface, such as a sphere surrounding the
light source, per unit of time. In computer graphics, the time dependency
is usually omitted, as we are only interested in the equilibrium state.

5.1.2 Irradiance

Irradiance E is defined as the area density of radiant flux, i.e., the radiative
power per unit area,

E =
dΦ
dA

, (5.1)

measured in watts per square meter (W/m2). Pharr and Humphries [211]
explain irradiance in an illustrative way by considering two concentric
spheres, with different radii, that surround a light source. The radiant
flux measured on both spheres will be equal, but the area density, the irra-
diance E, will be less on the larger sphere since it has a larger area. This
also explains why perceived illumination falls off with the squared distance
from a light source.
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5.1.3 Radiance

As defined in Section 1.2.1, radiance is the most important quantity in
computer graphics. The radiance I is a measure of the radiant flux at a
point in space per projected unit area, per solid angle:

I =
dΦ

dΩdA⊥
. (5.2)

Radiance values are the ones that we finally store as pixels. In this chapter,
we will often refer to radiance simply as illumination.

Surface-rendering techniques often require the calculation of the radi-
ance reflected in a certain direction at an intersection point between a ray
and a surface. For points on a nonemissive surface, this outgoing radiance
is a function of the outgoing direction, the incoming radiance from all di-
rections on the hemisphere around the point, and the reflective properties
of the surface material (the BRDF). In volume rendering, the outgoing ra-
diance at a point in a given direction is a function of the incoming radiance
from all directions and the reflective properties of the participating medium
specified by the phase function (see Equations 1.2 and 1.3 in Section 1.2.1).

5.1.4 Radiance and Irradiance Distribution Function

The incoming radiance at a point can be described as a function of the
incoming direction. Such a function is called the incident radiance dis-
tribution function. Likewise, the irradiance E for all points on the unit
sphere centered around a given point can be described by the irradiance
distribution function. A practical way of storing such functions is to use
environment maps. An environment map is created using a discretized 2D
parameterization of all spatial directions. Environment maps storing the
incident radiance and the irradiance are called reflection maps and irradi-
ance maps, respectively. We will examine environment maps in detail in
Section 5.7.

5.2 Types of Light Sources
There is a variety of different types of light sources in computer graphics.
Each type creates a unique visual effect and adds a specific amount of
computational complexity to the scene. Some types of light sources, such
as point lights, are cheap to compute. Other types, such as area lights,
cause a significant computational load. In consequence, each light source
in visual arts or visualization should have a designated purpose and the
type of light source should be carefully chosen.
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• Point light sources, or omnidirectional light sources, emit light at a
single point in space equally in all directions. A fall-off function
specifies the reduction of intensity with respect to distance from the
light source.

• Spotlights are point light sources that emit light only in certain di-
rections, which are usually specified as a cone with its apex at the
position of the light source. In addition to fall-off due to distance,
a radial fall-off function is commonly used, e.g., with respect to the
angle between the major axis of the cone and the light direction.

• Directional light sources are point light sources at infinity. They are
solely described by their light direction, and all emitted light rays are
parallel to each other. In computer graphics, the sun is often assumed
to be sufficiently for away to be treated as a directional light source.

• Environment maps can fundamentally be considered as a collection
of an infinite number of directional light sources that completely sur-
round the space of interest. An environment map stores the incom-
ing illumination for all directions over an entire sphere. Different
representations for environment maps that are used in practice are
discussed in Section 5.7.

• Area light sources emit light over an entire specified area such as a
triangle or other geometry. For illumination computations, they are
often sampled as multiple point light sources. Due to their computa-
tional complexity, they are not commonly used to illuminate volumes,
except when they can be approximated as an environment map.

• Volume light sources represent the light emitted by a volume, e.g., in
the most general case computed by full volume rendering. Using the
idea of environment maps in an inverse manner, the light emitted by a
volume light source can be stored in or rendered into an environment
map.

Another important property of light source types is whether they give rise
to hard-edged or soft-edged shadows. Soft shadows consist of two differ-
ent regions: an umbra and a penumbra. Umbral regions are parts of the
geometry that do not receive light due to complete occlusion. Penumbral
regions occur when an area light source is only partially occluded. Hard
shadows consist of an umbral region only. Point lights, spotlights, and
directional lights produce hard shadows, whereas environment maps, area
light sources, and volume light sources generally lead to soft shadows. The
latter are inherently hard to compute, although powerful and robust real-
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time methods have been developed in recent years. Shadow-computation
techniques for volume graphics are discussed in Chapter 6.

5.3 Gradient-Based Illumination
Traditional local illumination models are built upon the notion of the nor-
mal vector, which describes the local orientation of a surface patch. In
order to adapt such local illumination models to volume graphics, we as-
sume that external light is reflected at isosurfaces inside the volume data.
If we consider a point p inside a volume with an associated scalar value
f(p), we can imagine the isosurface I(p) passing through that point as the
union of all points that share the same scalar value,

I(p) = {x | f(x) = f(p)} . (5.3)

As we see, this structure is a subset of the original volume in general. Ex-
cept for singular points and homogeneous regions of the volume, however,
it turns out to be a surface. The normal vector we use for shading a point
is thus the unit vector perpendicular to the isosurface through that point.
The gradient vector of the scalar field f(x),

∇f(x) =

⎛⎜⎜⎜⎝
∂f(x)

∂x

∂f(x)
∂y

∂f(x)
∂z

⎞⎟⎟⎟⎠ , (5.4)

points into the direction of steepest ascent, which is always perpendicular
to the isosurface. Specifically, if we move away from p by a very small
vector v, the change in scalar value ∆f(x,v) can be approximated by the
directional derivative, which is defined as dot product ∇f(p) · v. We will
get the most significant change by moving in the direction of the gradient
and zero change if we move perpendicular to it, because the dot product
of two perpendicular vectors is zero. No change in scalar value, however,
means staying on the isosurface. The tangent plane to the isosurface at p
is thus perpendicular to the gradient ∇f(p).

The normal vector used in local illumination models must always have
unit length. Because this is not true for the gradient vector in general, it
must be normalized to meet this requirement:

n(x) =
∇f(x)
‖∇f(x)‖ , if ‖∇f(x)‖ �= 0 . (5.5)

If the gradient vector becomes zero, the scalar field is either homogeneous
or it has a local extremum. In both cases, we set the normal vector to zero,
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which implies that also the illumination term becomes zero. This corre-
sponds to the idea that light is reflected at boundaries between different
optical media only and passes though homogeneous regions unaffectedly.

As we see, determining the normal vector for local illumination boils
down to estimating the gradient vector at p. Before we examine different
local illumination models, we will have a closer look at how to estimate
gradients in practice.

5.3.1 Gradient Estimation

There is a variety of techniques for estimating the gradient from discrete
volume data. In GPU-based volume rendering, gradient estimation is usu-
ally performed in one of two major ways. Either the gradient vector will be
pre-computed and stored in an additional volume texture that is sampled
at runtime, or gradient estimation is implemented on-the-fly, which means
that directional derivatives must be estimated in real time at any point in
the volume. The major difference between the two approaches is that pre-
computed gradients are commonly calculated at the integer positions of the
original grid and interpolated trilinearly, whereas on-the-fly gradients are
computed on a per-pixel basis in the fragment shader. There are different
methods for estimating gradient vectors, which differ in the computational
complexity and the accuracy of the resulting gradients.

Finite differences. Finite differencing schemes are fast and efficient meth-
ods for estimating partial derivatives and gradients on discrete data. All
finite differencing schemes are based on a Taylor expansion of the function
to be differentiated. The Taylor series of a 1D scalar function f(x) in the

xi−1 xi xi+1 xi−1 xi xi+1 xi−1 xi xi+1

Figure 5.2. Finite differencing schemes approximate the derivative of a curve (blue)
by substituting the slope of the tangent (dotted red) by the slope of the secant
(green). Forward differences (left) construct the secant from the current sample to
the next, backward differences (middle) from the current sample and the previous
one. Central differences construct the secant from the previous sample to the
next.
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neighborhood of a point x0 is defined as the infinite sum,

f(x0 + h) = f(x0) +
f ′(x0)

1!
h +

f ′′(x0)
2!

h2 + . . .

=
∞∑

n=0

f (n)(x0)
n!

hn . (5.6)

If we stop the Taylor expansion after the second term,

f(x0 + h) = f(x0) +
f ′(x0)

1!
h + o(h2) , (5.7)

and solve for the first-order derivative, we obtain a first approximation,

f(x0)′ =
f(x0 + h)− f(x0)

h
+ o(h) , (5.8)

This approximation is called a forward difference. As we see, the approx-
imation error is of the same order as the step size h. The same approach
can be used with a backward Taylor expansion,

f(x0 − h) = f(x0) − f ′(x0)
1!

h + o(h2) , (5.9)

and results in another approximation for the first-order derivative called
backward difference:

f(x0)′ =
f(x0)− f(x0 − h)

h
+ o(h) . (5.10)

The approximation error of the backward differencing scheme has the same
order as the forward differences. To obtain a finite differencing scheme with
a higher-order approximation error, we write down one forward and one
backward Taylor expansion up to the third term,

f(x0 + h) = f(x0) +
f ′(x0)

1!
h +

f ′′(x0)
2!

h2 + o(h3) (5.11)

f(x0 − h) = f(x0) − f ′(x0)
1!

h +
f ′′(x0)

2!
h2 + o(h3) , (5.12)

subtract the second equation from the first one,

f(x0 + h)− f(x0 − h) = 2 f ′(x0)h + o(h3) , (5.13)

and solve for the first-order derivative,

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
+ o(h2) . (5.14)
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The result is a finite differencing scheme called central differences with an
approximation error within the order of magnitude o(h2). The approxi-
mation error for central differences thus is of higher order compared with
forward or backward differences.

Central differences are the most common approach for gradient esti-
mation in volume graphics. Each of the three components of the gradient
vector ∇f(x) = ∇f(x, y, z) is estimated by a central difference, resulting
in

∇f(x, y, z) ≈ 1
2h

⎛⎝ f(x + h, y, z)− f(x− h, y, z)
f(x, y + h, z)− f(x, y − h, z)
f(x, y, z + h)− f(x, y, z − h)

⎞⎠ . (5.15)

As we see, six additional neighbor samples are taken with a distance h
around the position where the gradient is estimated. For pre-computing
gradient vectors, the step size h can simply be set to the grid size in order
to avoid unnecessary interpolation operations. For computing gradients on
the fly, the step size h is set to a constant value that is small with respect
to the grid size.

One important property of central differences in this regard is that
the order of applying linear, bilinear, or trilinear interpolation and central
differencing does not matter, as the result will be exactly the same. This
can be easily verified:

α
(f(x + 2)− f(x)

2

)
+ (1− α)

(f(x + 1)− f(x− 1)
2

)
=

1
2

(
αf(x + 2) + (1− α)f(x + 1)

)
− 1

2

(
αf(x) + (1− α)f(x− 1)

)
.

As an implication, central difference gradients stored in an RGB texture that
is sampled using linear, bilinear, or trilinear interpolation are equivalent to
performing the six neighbor look-ups of Equation 5.15 with linear, bilinear,
or trilinear interpolation on-the-fly, respectively. In practice, however, care
has to be taken with regard to the texture filtering precision of the GPU.
We will address this issue in Chapter 9.

Convolution filtering for gradient estimation. Although finite differences
often yield gradients of sufficient quality, more general approaches based
on larger filter kernels might achieve considerably better results, yet at a
higher computational cost.

The standard approach for filtering a signal or function is to perform
a mathematical operation called a convolution of the function with a fil-
ter kernel, which is covered in more detail in Sections 1.5.3 and 9.2. The
described gradient-estimation techniques based on finite differences are, in
fact, special cases of convolution filtering. An important property of convo-
lution is that differentiation and convolution with a linear filter obeys the
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associative law. Instead of computing the derivative of a function and filter-
ing it afterwards, the function can as well be convolved with the derivative
of a filter kernel, yielding the same result.

However, such a linear filter can compute a partial derivative in one
direction only. Three different filter kernels are necessary for estimat-
ing the full gradient vector. Each filter calculates the directional deriva-
tive along one of the major axes. The results yield the x-, y-, and z-
components of the gradient. Each of these 3D filter kernels is computed
by performing the tensor product of a 1D derivative filter for one axis with
a 1D function reconstruction filter for each of the other two axes, e.g.,
h′

x(x, y, z) = h′(x)h(y)h(z) for the directional derivative along the x axis,
where h(x) is the function reconstruction filter and h′(x) is the first-order
derivative of the reconstruction filter. For example, Figures 9.8 and 9.14
in Section 9.2 show the cubic B-spline for function reconstruction and its
first derivative for derivative reconstruction, respectively.

Discrete filter kernels. When the derivative is only needed at the grid
points, it is sufficient to represent the filter kernel as a collection of discrete
filter weights, which are the values of the filter kernel where it intersects
the grid. This approach is very common in image processing. Because a
discrete filter has a single value at its center, the width of such a filter is
usually odd, e.g., 3× 3× 3 or 5× 5× 5 in 3D.

A common discrete filter kernel for gradient estimation is the Sobel
operator, which is also often used for edge detection. The standard 3D Sobel
kernel has size 33 and can be computed from a triangle filter for function
reconstruction with smoothing (h(−1) = 1, h(0) = 2, h(1) = 1; with
normalization factor 1/4) and central differences (h′(−1) = −1, h′(0) =
0, h′(1) = 1; with normalization factor 1/2) for derivative reconstruction.
The 3D kernel for derivation in x is then h′

x(x, y, z) = h′(x)h(y)h(z) with
x, y, z ∈ {−1, 0, 1}:

z = −1 z = 0 z = 1
h′

x( −1, 1, z ) = −1 −2 −1
h′

x( −1, 0, z ) = −2 −4 −2
h′

x( −1, −1, z ) = −1 −2 −1
h′

x( 0, y, z ) = 0 0 0 ∀y
h′

x( 1, 1, z ) = 1 2 1
h′

x( 1, 0, z ) = 2 4 2
h′

x( 1, −1, z ) = 1 2 1

. (5.16)

In order to estimate the correct gradient magnitude, these weights have to
be normalized by a factor of 1/32. The other two kernels h′

y(x, y, z) and
h′

z(x, y, z) can be obtained by computing the respective tensor product or
by simply rotating the axes of h′

x(x, y, z). There are several variants of
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the Sobel kernel that use slightly different weights, e.g., using h(−1) = 3,
h(0) = 10, and h(1) = 3 with a normalization factor of 1/16.

Although it produces gradients of better quality than the simple central
differences scheme, an obvious disadvantage of a full 3× 3× 3 filter kernel
such as the Sobel is its computational complexity. The Sobel kernel shown
above requires 54 neighbor sample look-ups (18 for each of the three gradi-
ent components) and the corresponding multiplications and additions for
evaluating the convolution. Therefore, filter kernels of this size are usually
only used for pre-computing gradients that are then stored in a texture for
easy and fast retrieval in the fragment shader.

Other examples of filter kernels for gradient reconstruction would be the
Prewitt edge detection filter that uses a box filter where the Sobel filter
uses a triangle filter, and a Gaussian and its derivative, which, however, is
usually only used with size 5× 5× 5 and above.

Continuous filter kernels. When the function or derivative is needed be-
tween grid points and the discrete filters described above are used, they
have to be applied at all neighboring grid points, e.g., at the eight corners
of a cube, and then interpolated, e.g., using trilinear interpolation. How-
ever, a much more natural choice is to use continuous filter kernels instead
of discrete filters in order to reconstruct the function and its derivatives at
arbitrary points in the volume directly from the original grid of function
samples.

Fast filtering with a continuous cubic B-spline and its derivatives is
described in detail in Section 9.2. On-the-fly gradient reconstruction with
the cubic B-spline is possible in real time on current GPUs for rendering
isosurfaces. This is especially easy when deferred shading is used, a general
image-space method that is described in Section 8.7. The cubic B-spline
can also be used as a basis for real-time computation of implicit isosurface
curvature, which is described in Section 14.4.

5.3.2 Problems with Gradient-Based Volume Illumination

In practice, several problems can occur when gradient information is used
for volume illumination. First, gradients can easily be of zero length. There
is no data variation in homogeneous areas, and thus the gradients in such
areas will be (0, 0, 0). Zero-length gradients make it impossible to compute
a well-defined gradient direction. This also corresponds to the fact that the
normalized gradient can be interpreted as normal vector to the isosurface
passing through a given point, as described in Section 5.3. If this point
is within a homogeneous area, there exists no well-defined surface passing
through it.
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Even when an area is not entirely homogeneous, the gradient directions
of very small gradients will be very unreliable due to numerical inaccuracies.
In this case, neighboring gradient directions may vary wildly, which usu-
ally results in noticeable noise when these directions are used for shading
computations. In general, the larger the gradient magnitude is, the more
reliable the corresponding gradient direction will be. Numerical problems
also depend significantly on the gradient estimation scheme in use; filters
with larger kernels take more neighbor samples into account and thus in
general produce more reliable results than central differences, for example.
Moreover, in contrast to CPU implementations, GPU volume renderers
very often do not check for division by zero or by very small values, result-
ing in NaN (not a number) results that will propagate into all following
calculations.

Because the gradient magnitude is more reliable than gradient direction,
the major approach for coping with the associated numerical problems is to
modulate computations that depend on gradient direction with the gradient
magnitude. This degree of “surface-ness” of a given point is sometimes
called the surface scalar. As an alternative, a heuristic shading technique
that manages completely without gradient estimation has been recently
proposed by Desgranges, Engel, and Paladini [46].

5.4 Local Illumination Models
Local illumination models only consider light that comes directly from the
light sources to the point being shaded. Every point is basically considered
independently from all other points. To incorporate volume illumination
into the emission-absorption model, we modify the emission by adding a
contribution from external illumination. The amount of reflected light can
be computed using any local surface illumination model.

The light source is assumed to be either a point light or directional
light. Spotlights are seldom used in volume graphics but could be easily
implemented, analogously to surface lighting, and we refer the reader to the
lighting chapters in The Cg Tutorial [71]. Area and volume lights for local
illumination are usually approximated using clusters of point light sources.

5.4.1 Blinn-Phong Illumination

The local illumination model most frequently used in computer graphics is
the Blinn-Phong model. Although it does not fulfill the physical require-
ments of energy conservation or Helmholtz reciprocity, it is definitely the
most popular phenomenological illumination model in practice.1

1There is also a less popular version of the original Phong model, called the modified
Phong model, which is physically plausible. See [202] for details.
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Like many popular illumination models, the Blinn-Phong model com-
putes the light reflected by an object as a combination of three different
terms, an ambient, a diffuse, and a specular term:

IPhong = Iambient + Idiffuse + Ispecular . (5.17)

Note that illumination terms are denoted as RGB triplets. The frequency
dependency of the illumination equations are omitted by considering color
components separately. The product between two RGB triplets, such as
the multiplication of an illumination term by a material color, is always
performed component-wise.

The ambient term Iambient is modeled as a constant global light mul-
tiplied by the ambient color and the ambient coefficient of the material:

Iambient = ka Ma Ia . (5.18)

The color and intensity of the global ambient light is specified by the RGB

triplet Ia. It is multiplied component-wise by the ambient material color
Ma. The scalar ambient coefficient ka is a constant between 0 and 1 that
controls how much of the ambient light that arrives at the surface is actually
reflected by it. Often the ambient coefficient ka and the ambient material
color Ma are combined into a single RGB triplet. Ambient light is the
easiest way to compensate for missing indirect illumination and to lighten
up shadow regions. In the real world, such illumination effects are caused
by light that arrives indirectly at the surface via multiple scattering.

Without ambient lighting, every surface not directly facing a light
source would be completely black, which is often found unrealistic. Am-
bient light will alleviate this by adding constant light. The ambient term,
however, has only been introduced for practical reasons. It does not have
any physically based justification. It is important to understand that am-
bient light will always reduce the contrast and the dynamic range of the

Figure 5.3. Different types of reflections. Left: Lambertian surfaces reflect light
equally in all directions. Middle: perfect mirrors reflect incident light in exactly one
direction. Right: shiny surfaces reflect light in a specular lobe around the direction
of perfect reflection (specular reflection).
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image. For good reasons, many artists prefer setting the ambient light to
zero and using additional light sources called fill lights to lighten up dark
regions.

The diffuse and specular parts of the Blinn-Phong model are illus-
trated in Figure 5.3. The diffuse term (Figure 5.3 (left)) models the view-
independent part of reflected light. A perfect mirror (Figure 5.3 (middle))
reflects incident light in exactly one direction. The specular term (Fig-
ure 5.3 (right)) is a generalization of a mirror, where light is scattered
around the direction of perfect reflection. The shape of the specular term
in Figure 5.3 is called specular lobe and depends on the material coefficients.

The diffuse term Idiffuse corresponds to Lambertian reflection, which
means that light is reflected equally in all directions. Diffuse reflection
is exhibited by a dull, matte surface. Its brightness is independent of
the viewing angle and depends only on the angle of incidence ϕ between
the direction l of the incoming light and the surface normal n (see Fig-
ure 5.4 (left)). All vectors used in local illumination computations are
assumed to have unit length, so that the cosine of the angle between two
vectors can be computed by the dot product. Diffuse illumination term
can be written as:

Idiffuse = kd Md Id cos ϕ if ϕ ≤ π

2
(5.19)

= kd Md Id max((r · v), 0) . (5.20)

The diffuse material color Md is multiplied component-wise by the color Id

emitted by the light source. The scalar diffuse coefficient kd is a constant
between 0 and 1 that specifies the amount of diffuse reflection of the mate-
rial. Again, the diffuse coefficient kd and the diffuse material color Md can

n

l

h

l

n
v

r
l

n v

Figure 5.4. Left: the diffuse illumination term depends on the angle of incidence ϕ
between the normal n and the light direction l. Middle: in the original Phong model,
the specular term is based on the angle ρ between the reflected light vector r and
the viewing direction v. Right: the specular term depends on the angle between
the normal and a vector h, which is halfway between the viewing and the light
direction.
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be combined into a single RGB triplet. In order to avoid surfaces being lit
from behind, Idiffuse should be zero when the angle ϕ becomes larger than
π/2, which is ensured by the maximum operator. In order to simplify the
notation, we are going to omit these maximum operators in the following
equations.

The specular lighting term Ispecular models the reflection behavior of
shiny surfaces, which cause so-called specular highlights. It depends on
the viewing vector v, which points from the surface point to be shaded
to the eye position. The specular term of the original Phong model (see
Figure 5.4 (middle)) uses the direction of perfect reflection r, which is
calculated by mirroring the light vector l about the surface normal n. The
amount of specular reflection is determined by the cosine of the angle ρ
between r and the viewing vector v,

cos ρ = (r · v) , with (5.21)
r = 2 (l · n)n − l , (5.22)

resulting in a specular term according to

Ispecular = ks Ms Is cosn ρ , if ρ ≤ π

2
(5.23)

= ks Ms Is (r · v)n . (5.24)

In the Blinn-Phong model, the specular term is computed more efficiently
by introducing the vector h, which is halfway between v and l,

Ispecular ≈ ks Ms Is (h · n)n , with (5.25)

h =
v + l
‖v + l‖ . (5.26)

The dot product (h·n) is also clamped to a positive range to account for an-
gles ρ ≤ π

2 only. The specular material color Ms is multiplied component-
wise by the radiance Is of the light source. The scalar specular coefficient
ks determines the amount of specular reflection of the material. The spec-
ular exponent n is called the shininess of the surface and is used to control
the width of the specular lobe and thus the size of the resulting highlights.

Both the original Phong model and Blinn-Phong model are phenomeno-
logical illumination models. This means that they might produce believable
illumination effects, although certain aspects are not physically plausible.
The degree of realism greatly depends on the choice of the material coeffi-
cients. The law of energy conservation requires that the amount of reflected
light never exceeds the incident radiant energy. As a rule of thumb, the
sum of the scalar coefficients ka, kd, and ks should not exceed 1 in practice
and the ambient coefficient ka should be as small as possible. Straightfor-
ward implementations of the Blinn-Phong model for per-fragment surface
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shading with different types of light sources can be found in The Cg Tuto-
rial [71].

In order to use a local illumination model in volume graphics, we uti-
lize the fact that light is additive. In fact, we can render a scene several
times, each time with a different light source and add up all the resulting
images afterwards to obtain a final image that will correctly contain the
contribution of all the light sources. For incorporating local illumination
into the emission-absorption model, we can simply add the scattered light
to the volume emission term Iemission at each sample.

Ivolume = Iemission + IBlinnPhong (5.27)
= Iemission + Iambient + Idiffuse + Ispecular

= ke Ie + ka Ma Ia + kd Md Id〈 l ◦ n〉+ ks Ms Is〈h ◦ n〉n .

The maximum operators are again omitted in the equation. For volume
illumination in practice, there are different possibilities for specifying the
material coefficients. The scalar coefficients ke, ka, kd, and ks are usually
specified as global constants. Note that in order to avoid clamping of
illumination values when their sum exceeds 1, floating-point render targets
and high dynamic range rendering must be used. In this case, ke can
be allowed to be arbitrarily big, e.g., ke > 1. Section 5.8 contains more
information on high dynamic range volume rendering.

The emitted radiance Ie is defined as a function of the underlying scalar
field s(x). It is specified by a transfer function,

Ie(x) = TIe
(s(x)) . (5.28)

The material colors Ma,Md,Ms, the shininess n, and the emitted radiance
can either be defined as a global parameter or as a function of the scalar
field. The ambient term is often omitted. The diffuse material coefficient
Md is usually set to the same color as the emitted light Ie. The coefficients
of the specular term Ms and n are often specified as global parameters.

In general, however, nothing prevents us from specifying all material
coefficients as function of the scalar field. A separate transfer function can
be used for each optical property. In practice, there are two factors that
limit this approach. The first factor is a technical limit. Every transfer
function must be implemented as a dependent texture look-up in the frag-
ment program, as explained in Chapter 4. There might be an upper limit
for the possible number of texture look-ups, and every texture look-up will
also decrease the rendering performance noticeably. The second factor is
the practical aspect. Setting up a transfer function is often a tedious and
time-consuming task of manual parameter tweaking. If every parameter is
specified separately, the expenditure for user interaction will significantly
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// Blinn-Phong illumination

half4 shading(float3 N, float3 V, float3 L) {

// material properties

float3 Ka = float3(0.1, 0.1, 0.1); // ambient

float3 Kd = float3(0.6, 0.6, 0.6); // diffuse

float3 Ks = float3(0.2, 0.2, 0.2); // specular

float n = 100.0; // shininess

// light properties

float3 lightColor = float3(1.0, 1.0, 1.0);

float3 ambientLight = float3(0.3, 0.3, 0.3);

// Calculate halfway vector

float3 H = normalize(L + V);

// Compute ambient term

float3 ambient = Ka * ambientLight;

// Compute the diffuse term

float diffuseLight = max(dot(L, N), 0);

float3 diffuse = Kd * lightColor * diffuseLight;

// Compute the specular term

float specularLight = pow(max(dot(H, N), 0), shininess);

if (diffuseLight <= 0) specularLight = 0;

float3 specular = Ks * lightColor * specularLight;

return ambient + diffuse + specular;

}

Listing 5.1. Cg function implementing the Blinn-Phong local illumination model.

increase. With these two aspects in mind, however, we encourage the reader
to experiment with whatever concept for parameter specification will turn
out to be appropriate for your application.

A sample implementation of the Blinn-Phong illumination model can
be found in Listing 5.1. The model is implemented as a separate function,
which will be called from different main programs later in this chapter. The
material coefficients k and M have again been combined into one coefficient
K for the diffuse and the specular term, respectively. To keep the code
as simple as possible, the light and material properties have been hard-
coded. In practical applications, these parameters will be passed as uniform
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Figure 5.5. Examples of gradient-based volume illumination using the local illumi-
nation models by Blinn-Phong (left) and Cook-Torrance (right)

variables to the main function and handed over to the shading function
as additional arguments. An example rendition demonstrating gradient-
based volume illumination using the Blinn-Phong model is displayed in
Figure 5.5 (left).

5.4.2 Other Shading Models

Apart from the Phong and the Blinn-Phong model, a variety of other
shading models can be found in [202], such as Lafortune’s model, Banks’
anisotropic model, and the physically based model of Ashikhmin. A popu-
lar physically based illumination model is the microfacet model introduced
by Cook and Torrance [74]. The microscopic structure of a surface is here
modeled as a distribution of randomly oriented perfect mirrors. Like most
illumination models, the Cook-Torrance model consists of a diffuse and a
specular term. The diffuse term is defined similarly to the Phong model:

Idiffuse = kd Md Id (l · n) . (5.29)

The maximum operator on the dot product has again been omitted. The
specular part of the model,

Ispecular = ks Ms Is
F ·D ·G
(n · v)

, (5.30)
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consists of a Fresnel term F , a statistical distribution D that describes the
orientation of the microfacets, and a geometric self-shadowing term G:

F ≈ (1 + (v · h))4 ; (5.31)

D ≈ C · exp
(

(h · n)2 − 1
m

)
; (5.32)

G = min
(

1 ,
2 (n · h) (n · v)

(h · v)
,
2 (n · h) (n · l)

(h · v)

)
. (5.33)

// Cook-Torrance local illumination

half3 shading(float3 N, float3 V, float3 L) {

// material properties

float3 Kd = float3(0.6, 0.6, 0.6); // diffuse

float3 Ks = float3(0.2, 0.2, 0.2); // specular

float mean = 0.7; // mean value of microfacet distribution

float scale = 0.2; // constant factor C

// light properties

float3 lightIntensity = float3(1.0, 1.0, 1.0);

float3 H = normalize(L + V);

float n h = dot(N,H);

float n v = dot(N,V);

float v h = dot(V,H);

float n l = dot(N,L);

half3 diffuse = Kd * max(n l,0);

// approximate Fresnel term

half fresnel = pow(1.0 + v h,4);

// approximate microfacet distribution

half delta = acos(n h).x;

half exponent = -pow((delta/mean),2);

half microfacets = scale * exp(exponent);

// calculate self-shadowing term

half term1 = 2 * n h * n v/v h;

half term2 = 2 * n h * n l/v h;

half selfshadow = min(1,min(term1,term2));

// calculate Cook-Torrance model

half3 specular = Ks *fresnel *microfacets *selfshadow / n v;

return lightColor * (diffuse + specular);

}

Listing 5.2. Cg function implementing the physically based microfacet illumination
model introduced by Cook-Torrance.
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The parameter m describes the mean value of the statistical distribution
of microfacets. The constant C is chosen to normalize the model. Further
details on the Cook-Torrance model and the specific terms can be found
in [74, 202]. To be physically correct, the light colors must be equal for the
diffuse and the specular term, and the intensity Î of the point light source
must be weighted by the inverse square of its distance r:

Is = Id =
Î

πr2
. (5.34)

A sample implementation for a single point light source can be found in
Listing 5.2. The material coefficients k and M have again been combined
into one coefficient K for the diffuse and the specular term, respectively.
Material and light properties have again been hard-coded in the shading
function to keep the notation simple. An example rendition demonstrating
the Cook-Torrance model is displayed in Figure 5.5 (right).

5.5 Pre-Computed Gradients
A couple of years ago, the only practical way of gradient-based shading
in volume rendering was to pre-compute all gradient vectors. The idea
of gradient pre-computation is to perform the entire gradient estimation
step in a pre-processing phase. For each sample point of the original scalar
data set, a gradient vector is calculated with one of the gradient estimation
schemes discussed in Section 5.3.1. The pre-computed gradients are stored
as additional 2D or 3D textures and uploaded to GPU memory. This way,
a gradient vector of relatively high quality can be obtained at runtime with
a single texture fetch operation and native texture filtering.

There are several different approaches to storing the gradient informa-
tion in textures. The most straightforward way uses the same internal
format as a standard normal map. The x-, y-, and z-components of the
normalized gradient ∇̂f(x) are directly stored as an RGB triplet in an RGB

texture:

∇̂f(x) =

⎛⎜⎝ gx

gy

gz

⎞⎟⎠ −→
−→
−→

R = (gx + 1)
2

G = (gy + 1)
2

B = (gz + 1)
2

.

Floating-point texture formats are not required if the components are
scaled and biased to fit into the unsigned color range [ 0, 1]. The values
are expanded again to the original signed range [−1, 1] in the fragment
shader. The RGB format is appropriate if only the gradient direction is
needed, and the gradient magnitude is not used.
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If the gradient magnitude is also required, e.g., for weighting the opacity
or for multidimensional transfer functions (see Chapter 10), an internal
texture format of RGBA can be used instead of RGB. The magnitude of the
gradient is then stored in the additional A component of the texture:

∇̂f(x) =

⎛⎜⎝ gx

gy

gz

⎞⎟⎠ −→
−→
−→

R = (gx + 1)
2

G = (gy + 1)
2

B = (gz + 1)
2

‖∇f(x)‖ −→ A = ‖∇f(x)‖ (scaled to [ 0,1])

.

Note that the range of gradient magnitude must also be scaled to the unit
range [ 0, 1] and expanded afterwards in the fragment program.

One of the most popular texture formats is a structure that combines
the original scalar field with the normalized gradients into a single RGBA

texture. The normalized gradient is scaled, biased, and stored in RGB com-
ponents as described above. The A component stores the values of the
scalar field itself and is used as an index into a post-interpolative transfer
function table:

∇̂f(x) =

⎛⎜⎝ gx

gy

gz

⎞⎟⎠ −→
−→
−→

R = (gx + 1)
2

G = (gy + 1)
2

B = (gz + 1)
2

f(x) −→ A = f

.

A fragment shader that implements this idea using 3D textures is dis-
played in Listing 5.3. The fragment program first obtains an RGBA value
by sampling the 3D texture. The RGB portion contains the x-, y-, and z-
components of the normalized gradient scaled to the unit interval [ 0, 1].
The RGB portion is thus expanded to its original signed range [−1, 1] and
then normalized again to eliminate interpolation artifacts. The normal vec-
tor is used for local illumination. The shading function has been omitted
in this example. Possible implementations of the shading function have
been discussed in Section 5.4. The A portion of the texture sample is used
as index into a dependent texture that stores the post-interpolative trans-
fer function as explained in Chapter 4. The same techniques can also be
used with 2D multitextures instead of 3D textures as displayed in List-
ing 5.4. The 3D texture look-up is here substituted by two samples from
2D textures and a subsequent interpolation operation.

The same texture format can efficiently be used without the dependent
texture look-up for rendering shaded isosurfaces. A single texture fetch
yields all information needed for determining whether the isosurface has
been intersected. The OpenGL alpha test can efficiently be used to discard
all fragments that do not belong to the isosurface. The modified fragment
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//fragment program for local illumination and

//post-interpolative transfer function using 3D textures

half4 main (half3 texUV : TEXCOORD0,

float3 position : TEXCOORD1,

uniform float3 lightPosition,

uniform float3 eyePosition,

uniform sampler3D volume texture,

uniform sampler1D transfer function) : COLOR

{
float4 sample = tex3D(volume texture, texUV);

// expand and normalize the normal vector

float3 N = normalize(2.0*sample.xyz - 1..xxx);

// calculate light and viewing directions

float3 L = normalize(lightPosition - position);

float3 V = normalize(eyePosition - position);

// emission and absorption from transfer function

half4 result = tex1D(transfer function, sample.w);

// add local illumination

result.rgb += shading(N,V,L);

return result;

}

Listing 5.3. Cg fragment program for local illumination with 3D textures. Possible
implementations of the shading function can be found in Listings 5.1 and 5.2

shader and the C++ code for setting up the alpha test are displayed in
Listing 5.5. Strictly speaking, the code does not really produce an isosur-
face but a filled region bounded by an isosurface. A real isosurface could
be generated by setting the alpha function to GL EQUAL, but this would
require an enormous number of slices to be rendered to capture the in-
finitesimally thin surface. The code sample, however, represents a working
solution for isosurface display. Because this approach allows isosurfaces to
be rendered without extracting an explicit polygonal representation (like
in the marching cubes algorithm [168]), this approach is often referred to
as nonpolygonal isosurfaces. Example images are displayed in Figure 5.6.

The texture formats described above directly store the x-, y-, and
z-components of the gradient vector and thus require three 8-bit values
per voxel in GPU memory. A unit vector, however, is fully described by
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// fragment program for local illumination and

// post-interpolative transfer function using 2D multi-textures

half4 main (half3 texUV : TEXCOORD0,

float3 position : TEXCOORD1,

uniform float3 lightPosition,

uniform float3 eyePosition,

uniform sampler2D slice texture0,

uniform sampler2D slice texture1,

uniform sampler1D transfer function) : COLOR

{
// sample the texture

float4 sample0 = tex2D(slice texture0, texUV.xy);

float4 sample1 = tex2D(slice texture1, texUV.xy);

float4 sample = lerp(sample0, sample1, texUV.z);

// expand and normalize the normal vector

float3 N = normalize(2.0*sample.xyz - 1..xxx);

// calculate light- and viewing direction

float3 L = normalize(lightPosition - position);

float3 V = normalize(eyePosition - position);

// add local illumination

result.rgb += shading(N,V,L);

// emission and absorption from transfer function

half4 result = tex1D(transfer function, sample.w);

return result;

}

Listing 5.4. Cg fragment program for local illumination with 2D multitextures.
Possible implementation of the shading function can be found in Listings 5.1 and 5.2.

specifying a point on the unit sphere, which again can be described by an
azimuth and an elevation angle. Converting the normalized gradient vector
into spherical coordinates,

ϕ = arctan( cy

cx
), ϕ ∈ [ 0, 2π]

ϑ = arccos(cz), ϑ ∈ [−π
2 , π

2 ] , (5.38)

allows us to store a normalized gradient as two angles instead of three
Cartesian coordinates. These two angles can efficiently be stored in a two-
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// disable alpha blending

glDisable(GL BLEND);

// enable alpha test for isosurface

glEnable(GL ALPHA TEST);

glAlphaFunc(GL LESS, fIsoValue); // or GL GREATER

//fragment program for non-polygonal isosurfaces

// with local illumination using 3D textures

half4 main (half3 texUV : TEXCOORD0,

float3 position : TEXCOORD1,

uniform sampler3D volume texture) : COLOR

{
float4 sample = tex3D(volume texture, texUV);

// expand and normalize the normal vector

float3 N = normalize(2.0*sample.xyz - 1..xxx);

// calculate light- and viewing direction

float3 L = normalize(lightPosition - position);

float3 V = normalize(eyePosition - position);

half4 result;

result.rgb = shading(N,V,L);

result.a = sample.a;

return result;

}

Listing 5.5. OpenGL compositing set-up for the alpha test (top) and Cg fragment
program for rendering shaded isosurfaces using 3D textures. The same approach
can be used with 2D multitextures as in Listing 5.4.

component texture format such as luminance-alpha, which effectively saves
texture memory. The two angles can be converted back to Cartesian coor-
dinates:

cx = cos ϕ sin ϑ ; (5.39)
cy = sinϕ sin ϑ ; (5.40)
cz = cos ϑ . (5.41)

This conversion can either be directly implemented in a fragment shader
using the sincos function to simultaneously compute sine and cosine func-
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Figure 5.6. Examples of nonpolygonal isosurfaces using the set-up in Listing 5.5
and the Blinn-Phong model for different isovalues.

tions, or the two angles can be used as texture coordinates to look-up the
Cartesian coordinates in a pre-computed 2D texture.

The main drawback of pre-computed gradients is the amount of memory
that is consumed by the additional gradient data, which is usually three
times as much memory as is needed for the basic volume data. Also, the
time it takes to perform gradient pre-computation is often perceived as a
disadvantage. If data sets do not change, pre-computed gradient volumes
can be cached on disk but still need to be loaded and consume a significant
amount of both CPU memory and GPU texture memory.

5.6 On-the-Fly Gradients
Many current state-of-the-art volume renderers do not use pre-computed
gradients anymore. The advent of powerful GPU fragment shader hardware
now allows us to compute gradients on-the-fly during rendering, wherever
they are needed. That is, gradients are computed for every sample of the
volume where shading with gradient directions is performed or where the
gradient magnitude is needed by the transfer function. This is still slower
than using pre-computed gradients, but volume sizes are getting bigger and
bigger and the considerable amount of memory consumed by gradient data
makes computing them on-the-fly very attractive. For the visualization
of really large data sets as described in Chapter 17, computing gradients
on-the-fly is mandatory. For a detailed discussion of the benefits of on-the-
fly gradient estimation for improving image quality, we refer the reader to
Chapter 9.

On-the-fly gradient computation usually approximates gradient vectors
using the central differences scheme. A Cg fragment program for on-the-
fly gradient estimation is displayed in Listing 5.6. This simple scheme
requires six additional neighbor samples for each gradient. Note that it
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// fragment program for on-the-fly gradient estimation

#define DELTA (0.01)

#define THRESHOLD (0.1)

half4 main (half3 uvw : TEXCOORD0,

float3 position : TEXCOORD1,

uniform sampler3D texture,

uniform sampler1D transfer function) : COLOR

{
// one texture sample for the scalar value

half sample = tex3D(texture,uvw).x;

// emission and absorption from transfer function

half4 result = tex1D(transfer function, sample);

if (result.a > THRESHOLD) {
float3 sample1, sample2;

// six texture samples for the gradient

sample1.x = tex3D(texture,uvw-half3(DELTA,0.0,0.0)).x;

sample2.x = tex3D(texture,uvw+half3(DELTA,0.0,0.0)).x;

sample1.y = tex3D(texture,uvw-half3(0.0,DELTA,0.0)).x;

sample2.y = tex3D(texture,uvw+half3(0.0,DELTA,0.0)).x;

sample1.z = tex3D(texture,uvw-half3(0.0,0.0,DELTA)).x;

sample2.z = tex3D(texture,uvw+half3(0.0,0.0,DELTA)).x;

// central difference and normalization

float3 N = normalize(sample2-sample1);

// calculate light- and viewing direction

float3 L = normalize(lightPosition - position);

float3 V = normalize(eyePosition - position);

// add local illumination

result.rgb += shading(N,V,L);

}
return result;

}

Listing 5.6. Cg fragment program for local volume illumination and on-the-fly
gradient estimation. Possible implementation of the shading function can be found
in Listings 5.1 and 5.2.
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// fragment program for on-the-fly gradient estimation

#define DELTA (0.01)

#define THRESHOLD (0.1)

half4 main (half3 uvw : TEXCOORD0,

float3 position : TEXCOORD1,

uniform float3 lightPosition,

uniform float3 eyePosition,

uniform sampler3D texture,

uniform sampler1D transfer function) : COLOR

{
// one texture sample for the scalar value

half sample = tex3D(texture,uvw).x;

// emission and absorption from transfer function

half4 result = tex1D(transfer function, sample);

if (result.a > THRESHOLD) {
float3 sample1, sample2, alpha1, alpha2;

// six texture samples for the gradient

sample1.x = tex3D(texture,uvw-half3(DELTA,0.0,0.0)).x;

sample2.x = tex3D(texture,uvw+half3(DELTA,0.0,0.0)).x;

sample1.y = tex3D(texture,uvw-half3(0.0,DELTA,0.0)).x;

sample2.y = tex3D(texture,uvw+half3(0.0,DELTA,0.0)).x;

sample1.z = tex3D(texture,uvw-half3(0.0,0.0,DELTA)).x;

sample2.z = tex3D(texture,uvw+half3(0.0,0.0,DELTA)).x;

// six texture samples for the transfer function

alpha1.x = tex1D(transfer function,sample1.x).a;

alpha2.x = tex1D(transfer function,sample2.x).a;

alpha1.y = tex1D(transfer function,sample1.y).a;

alpha2.y = tex1D(transfer function,sample2.y).a;

alpha1.z = tex1D(transfer function,sample1.z).a;

alpha2.z = tex1D(transfer function,sample2.z).a;

// central difference and normalization

float3 N = normalize(alpha2-alpha1);

// calculate light- and viewing direction

float3 L = normalize(lightPosition - position);

float3 V = normalize(eyePosition - position);

// add local illumination

result.rgb += shading(N,V,L);

}
return result;

}

Listing 5.7. Cg fragment program for local volume illumination and on-the-fly
gradient estimation on the classified data. Possible implementation of the shading
function can be found in Listings 5.1 and 5.2.
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would be more efficient to calculate the texture coordinates for these addi-
tional lookups in the vertex program. In the sample code, we have chosen
to do this in the fragment program to keep the code understandable and
modular. Although this approach provides good image quality, sampling
the texture six times is quite costly with respect to performance. On GPUs
that support true conditional branches, the if clause in Listing 5.6 will skip
the gradient computation if the opacity of the sample is below a specified
threshold. Gradient estimation and shading is only performed when the
alpha value of a sample is high. Samples with high transparency are used
without shading. For older hardware that does not support conditional
branches, the if clause can just as well be omitted.

If rendering performance is more important than image quality, the
central differences can be substituted by either forward or backward differ-
ences. They only require three additional texture samples instead of six for
estimating a full gradient vector, however at the expense of a significantly
reduced numerical accuracy. Also, if 2D multitextures are used instead of
3D textures, central differences are rather intricate to implement and re-
quire an even greater number of texture samples. In this case, forward or
backward differences might be a working alternative.

More expensive gradient estimation schemes such as a 3× 3× 3 or even
larger filter kernels are currently too expensive to be calculated on-the-fly
in such a naive way as described. In Section 8.7, however, we will exam-
ine deferred-shading techniques. Such approaches allow more expensive
gradient-estimation techniques to be applied in real time.

One popular objection to pre-computed gradients is the fact that gradi-
ent estimation is performed on the original, unclassified data. The transfer
function, however, might map two different data values to the same optical
properties. It is obvious that this will change the direction of a gradient
vector if it is based on the actual opacity instead of the original data val-
ues. Such a gradient pre-computation can only account for a static trans-
fer function and would become incorrect if the transfer function changes
at runtime. When gradient estimation is performed on-the-fly, however,
the transfer function can be considered during gradient estimation, which
results in an estimation scheme that computes gradient vectors on the clas-
sified data, however at the cost of a greater number of dependent texture
look-ups. An example implementation of this idea is given in Listing 5.7.
In practice, such an expensive implementation will hardly be necessary,
and the improvement in terms of image quality is usually negligible.

5.6.1 Approximating Directional Derivatives

Sampling a texture several times for full on-the-fly gradient estimation
often implies a significant performance penalty. If the gradient vector is
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// fragment program for on-the-fly Lambertian illumination

#define DELTA (0.01)

#define THRESHOLD (0.1)

half4 main (half3 uvw : TEXCOORD0,

float3 position : TEXCOORD1,

uniform float3 lightPosition,

uniform half3 lightColor,

uniform half3 Kd, // diffuse coefficient k d * M d

uniform sampler3D volume texture,

uniform sampler1D transfer function) : COLOR

{
// one texture sample for the scalar value

half sample = tex3D(volume texture,uvw).x;

// emission and absorption from transfer function

half4 result = tex1D(transfer function, sample.x);

if (result.a > THRESHOLD) {
// calculate light direction

float3 L = normalize(lightPosition - position);

// approximate the directional derivative by a

// forward difference in direction of the light

half sampleL = tex3D(volume texture,uvw+ DELTA*L).x;

half n l = (sampleL - sample);

// Lambertian term

half3 diffuse = Kd * lightColor * n l;

// add local illumination

result.rgb += diffuse;

}

return result;

}

Listing 5.8. Cg fragment program for Lambertian illumination with directional
derivatives to directly approximate (n·l) instead of using a full gradient estimation.
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used solely for illumination terms, a full estimation of the gradient vector
might not be necessary. Illumination calculations usually compute the dot
product between the normal n = ∇̂f and another vector. The Lambertian
term 〈n ◦ l 〉 is a simple example for this. If we neglect the normalization
of the gradient, we can interpret such a dot product as the directional
derivative of the scalar field f in direction of the vector l. In fact, the
directional derivative is defined exactly that way,

∂f(x)
∂l

= 〈∇f(x) ◦ l 〉 . (5.42)

A numerical approximation of such a directional derivative can be obtained
directly by a forward difference,

〈∇f(x) ◦ l 〉 ≈ f(x + hl ) − f(x)
h

+ o(h) , (5.43)

a backward difference,

〈∇f(x) ◦ l 〉 ≈ f(x) − f(x− hl )
h

+ o(h) , (5.44)

or a central difference,

〈∇f(x) ◦ l 〉 ≈ f(x + hl ) − f(x− hl )
2h

+ o(h2) . (5.45)

As an example, we can approximate Lambertian illumination directly by
a forward difference in a fragment program that only requires one addi-
tional texture fetch. The code for such an implementation is displayed
in Listing 5.8. Note that the dot product with the halfway vector h in
Equation 5.25 can as well be approximated by a finite difference. The only
drawback of this approximation is the missing gradient normalization. The
resulting dot product can easily become larger than one, and it might be
difficult to find a global scaling factor to compensate for this.

5.7 Environment Mapping
The idea of environment mapping is to either capture or pre-compute com-
plex illumination scenarios. The usefulness of this approach derives from
its ability to approximate local illumination with an infinite number of
lights and arbitrary types of light sources in real time. Environment map-
ping [87] in general is a two-stage process that involves the construction of
a reflection map and/or an irradiance map as a pre-computation step.
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Figure 5.7. Examples of a reflection map (left) and a corresponding irradi-
ance map (right). (Eucalyptus Grove Light Probe Image c© 1998 Paul Debevec,
www.debevec.org.)

Environment maps store the light intensity emitted into, or arriving
from, all spherical directions around a point in 3D space. Storing an en-
vironment map thus requires a 2D parameterization of a spherical surface.
In practice, different representations of environment maps exist.

• Spherical maps store the entire incoming illumination in a single cir-
cular image. An example is displayed in Figure 5.7. The basic idea is
that when a perfectly mirroring sphere is rendered (or, as an approxi-
mation, photographed) with an orthographic projection, the resulting
image contains the reflection of almost all spherical directions around
a point. In the limit, where the sphere is infinitely small, a spherical
map actually captures all spherical directions. However, with this
approach distortions for directions behind the view direction are very
severe, and thus a spherical map can only be used for the view direc-
tion for which it has been generated or for very similar directions.

• Dual paraboloid maps reduce the distortions of spherical maps by
mapping all spherical directions to two circular images. The param-
eterization corresponds to the orthogonal projection of a paraboloid
for each of these two images.

• Cube maps store all spherical directions in the six faces of a cube. For
each of these faces, standard rendering and projection of the environ-
ment with a field of view of 90 degrees can be used, and thus cube
maps are extremely easy to generate on-the-fly on GPUs. Because
of this property, cube maps are currently the most versatile repre-
sentation for real-time rendering. They can be easily updated every
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frame. For example, in order to capture the volumetric illumination
of a volume light source, the volume simply has to be rendered from
six sides.

• Spherical harmonics are a frequency-based approach for representing
spherical functions. Spherical harmonic coefficients correspond to fre-
quencies and also have the same property that low-frequency signals

// irradiance and reflection mapping with

// post-classification using 3D textures

half4 main (half3 texUV : TEXCOORD0,

float3 position : TEXCOORD1,

uniform float3 Kd, // diffuse,

uniform float3 Ks, // specular

uniform float3 eyePosition,

uniform sampler3D volume texture,

uniform sampler1D transfer function,

uniform samplerCUBE irradiance map,

uniform samplerCUBE reflection map) : COLOR

{
float4 sample = tex3D(volume texture, texUV);

// expand and normalize the normal vector

float3 N = normalize(2.0*sample.xyz - 1..xxx);

// calculate viewing and reflection vectors

float3 V = normalize(eyePosition - position);

float3 R = reflect(V,N);

// sample irradiance map (normal direction)

float3 diffuse = Kd * texCUBE(irradiance map,N);

// sample reflection map (mirrored viewing direction)

float3 specular = Ks * texCUBE(reflection map,R);

// emission and absorption from transfer function

half4 result = tex1D(transfer function, sample.w);

// add illumination

result.rgb += diffuse + specular;

return result;

}

Listing 5.9. Cg fragment program for local volume illumination with environment
mapping. The specular term is looked up in a reflection cube map, and the diffuse
term is obtained from a pre-computed irradiance cube map.
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can be represented quite accurately by storing only a few coefficients
and setting high frequencies to zero. Thus, spherical harmonics are
especially powerful in the case of low-frequency lighting or diffuse
lighting. For example, an environment map that will be used only
in conjunction with diffuse reflection can be represented with a very
small number of spherical harmonic coefficients without almost any
noticeable error.

Environment maps can be used to efficiently implement different illu-
mination effects. In general, they cache the incident illumination from all
directions at a single point in space. The light reflected into our eye by
a perfect mirror comes from exactly one spatial direction. For a perfect
mirror, the incident illumination can thus directly be looked up in an en-
vironment map using the reflection direction r as in Equation 5.22.

Lambertian reflection requires integration of the incident illumination
over the hemisphere centered about the normal vector. Such an integration
can again be pre-computed as a so-called irradiance map, which stores the
value of the integral over the hemisphere as function of the normal direction.
An example of such an irradiance map is displayed in Figure 5.7 (right).

Nonperfect specular reflection can be implemented by pre-filtering en-
vironment maps for isotropic BRDFs and a rotational symmetric specular
lobe. Just as in standard polygon-based rendering, environment maps can
also be used in volume rendering to capture the entire external illumi-
nation surrounding a volume. Theory and practice of diffuse and glossy
pre-filtering of environment maps can be found in [202]. An example im-
plementation of local volume illumination using an irradiance map for the
diffuse term and a reflection map for the specular term is given in List-
ing 5.9. In a reversed sense, environment maps can also be used to capture
the entire illumination emitted by a volume into the surrounding space.

5.8 High Dynamic Range Illumination
and Volume Rendering

The dynamic range of an image is defined as the ratio between the brightest
and the dimmest measurable light intensity. In traditional real-time graph-
ics applications, the color and light intensities are represented as 24-bit RGB
triplets with 8-bit fixed point precision for each primary color component.
This color representation is mainly motivated by the dynamic range and
the color gamut of commercial CRT2 display monitors. The limited 8-bit
precision, however, turns out to be inadequate to describe light intensities

2CRT: cathode ray tube.
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in the real world. This can be easily verified if you use a digital camera
with variable exposure time. If you are taking several images of a real
scene with varying exposure, you will most likely notice that every image
contains illumination details that cannot be found in the other images.

The goal of high dynamic range imaging (HDRI) [282] is to capture
as much of the original light intensities of a scene as possible and store
the result at floating-point precision. In practice, HDR images are either
synthesized by physically based rendering algorithms or obtained by HDR
photography [40], which is based on multiexposure image-capture tech-
niques as mentioned above. But why should we capture more information
that we are able to display on our monitor? The answer to this question
is twofold. The first reason is that we want to mimic the capabilities of
the human eye to adapt itself to different brightness levels by contracting
and dilating the pupil. The second reason comes from physically based
rendering and image-based lighting. The appearance of realistic materials
with different reflective behavior is dominated by different portions of the
dynamic range of light. Fully realistic lighting can only be achieved if all
the subtleties caused by the entire dynamic range are considered.

One of the most popular applications of HDR images is image-based
lighting as introduced by Paul Debevec [41]. A virtual scene is illuminated
by images from the real world. The basic idea is essentially the same as
reflection mapping described above, except for the high dynamic range.
The incident light from a real environment is captured by taking omnidi-
rectional multiexposure photographs and reconstructing the incident light
intensities (environment maps). Similar techniques can be used to derive
HDR irradiance maps.

Tone-mapping techniques are used to map the high dynamic range back
to the low dynamic range of conventional display monitors. Many tone-
mapping techniques have been proposed in recent years [47]. Basically,
they can be divided into global and local approaches. Global tone map-
ping approaches calculate a spatially uniform scaling function to map the
high dynamic range to 8-bit RGB. These approaches are based on the total
brightness of an image. Local tone mapping operators only consider the
light intensities in a limited neighborhood of each pixel. The scaling func-
tion is spatially varying and parts of the image with different brightness
levels are handled separately.

In recent years, many rendering methods have incorporated formats
of a higher dynamic range for representing illumination or colors. High
dynamic range techniques require all rendering operations to be performed
at floating-point precision. In response to this requirement, current GPU
architectures support texture formats and render targets with 16-bit and
32-bit floating-point precision for each primary color component.

Apart from external illumination with HDR environment, the idea of
treating volumes as light-emitting entities makes a high dynamic range
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Figure 5.8. Examples of a high dynamic range volume-rendering system. Turbulent
mixing of air and sulfur hexafluoride (SF6). The small images are generated at dif-
ferent exposure levels. (Images courtesy of Xiaoru Yuan, Minh X. Nguyen, Baoquan
Chen, and David Porter, University of Minnesota at Twin Cities. Data provided by
David Porter and Paul Woodward, Lab of Computer Science and Computer Engi-
neering (LCSE), University of Minnesota at Twin Cities ( c© 2005 IEEE).)

approach very attractive. High dynamic range volume rendering re-
quires floating-point render targets as well as alpha blending and transfer
functions in floating-point precision. High-precision alpha blending with
floating-point render targets is discussed in Section 9.5. Appropriate trans-
fer functions are implemented using floating-point texture formats for the
dependent texture look-ups. Finally, tone mapping operators must be ap-
plied to map the pixel values from the floating-point render target to the
visible frame buffer with the usual 24-bit RGBA format. Yuan et al. demon-
strate a working implementation of a HDR volume rendering system [307].
They propose effective methods and user interfaces for specifying HDR
transfer functions. An adaptive logarithmic mapping function is used for
tone reproduction. Example images produced by their implementation are
displayed in Figure 5.8. Another volume-rendering framework that sup-
ports high dynamic range rendering was presented by Vollrath et al. [275].

5.9 Further Reading
Although most of the local illumination techniques described in this chap-
ter violate the laws of physics in one way or the other, they significantly
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contribute to the comprehensibility and the visual quality of the image re-
sults. Global illumination techniques will be discussed in the next chapter.
Optimization strategies such as deferred shading is explained in Chap-
ter 8. Non-photorealistic approaches to volume illumination are discussed
in Chapter 14.

For further reference on accurate illumination, Glassner has written a
very detailed and comprehensive book on the theory of physically based
illumination in two volumes [80]. A more practical text on illumination
and rendering techniques is Physically Based Rendering by Pharr and
Humphries [211]. The book Real-Time Shading by Olano et al. is an ex-
cellent introduction to physically accurate illumination and programmable
shading for real-time applications.

For more information on high dynamic range imaging and image-based
lighting, we refer to the comprehensive guide by Reinhard et al. [221].
There also exist several SIGGRAPH course notes on image-based lighting
that can be used as reference [281].
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CHAPTER 5 COVERS VARIOUS techniques for rendering semitransparent
volume surfaces using an approximation to the Blinn-Phong local

surface shading model. Although this model is adequate for shading sur-
faces, it does not provide sufficient lighting characteristics for translucent
materials or materials where scattering dominates the visual appearance.
Furthermore, the normal required for the Blinn-Phong shading model is
derived from the normalized gradient of the scalar field. Although this
normal is well defined for regions in the volume that have high gradient

Figure 6.1. Surface-based shading versus volume shading. Surface shading cannot
adequately shade homogeneous regions such as the soft tissue in a CT scan (left).
A more general volume-shading model is needed to render the classified regions
(right). (Images reprinted from [129], c© 2003 IEEE.)

139
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magnitudes, this normal is undefined in homogeneous regions, i.e., where
the gradient is the zero vector, as seen in Figure 6.1 (left). The use of the
normalized gradient is also troublesome in regions with low gradient mag-
nitudes, where noise can significantly degrade the gradient computation. In
Chapter 10, we discuss volume rendering and transfer function techniques
that can be used to directly visualize multivariate data sets. Although a
type of derivative measure can be computed for these data sets, it is not
suitable for deriving a normal for surface shading.

Several studies have shown that the appearance of many common ob-
jects is dominated by scattering effects [16, 113]. This is especially true for
natural phenomena such as smoke and clouds but it is also true for wax,
skin, and other translucent materials.

Although the effects of multiple scattering are important, the physi-
cally accurate computation of these effects is not necessarily required to
create meaningful images. In fact, most interactive graphics applications
already employ non–physically based or heuristic methods (e.g., ambient
light, OpenGL style fog, even the Blinn-Phong surface shading model),
which are substantially less computationally expensive than their physically
based analogues. Interactivity for visualization is important because it aids
in the rapid and accurate setting of transfer functions, as well as provides
important visual cues about spatial relationships in the data. Although
it is possible to pre-compute multiple scattering effects, such methods are
inevitably dependent on the viewpoint, light position, transfer function,
and other rendering parameters, which limits interactivity.

The following section describes an approximation of the transport equa-
tion (discussed in Chapter 1), which is designed to provide interactive or
near-interactive frame rates for volume rendering when the transfer func-
tion, light direction, or volume data are not static. This requires the light
intensity at each sample to be recomputed every frame. The method for
computing light transport is done in image-space resolutions, allowing the
computational complexity to match the level of detail. Because the com-
putation of light transport is decoupled from the resolution of the volume
data, we can also accurately compute lighting for volumes with high fre-
quency displacement effects, like those described in Chapter 12.

6.1 Volumetric Shadows
The design of a general, interactive volume-shading model can best be
understood if we first examine the implementation of direct lighting. A
brute force implementation of direct lighting, or volumetric shadows, can
be accomplished by sending a shadow ray toward the light for each sample
along the viewing ray to estimate the amount of extinction caused by the
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portion of the volume between that sample and the light. This algorithm
would have the computational complexity of O(nm) ≡ O(n2) where n is
the total number of samples taken along each viewing ray, and m is the
number of samples taken along each shadow ray. In general, the algorithm
would be far too slow for interactive visualization. It is also very redun-
dant because many of these shadow rays overlap. One possible solution
would be to pre-compute lighting, by iteratively sampling the volume from
the light’s point of view, and storing the light intensities at each spatial
position in a so-called shadow volume. Although this approach reduces
the computational complexity to O(n + m) ≡ O(n), it has a few obvious
disadvantages. First, this method can require a significant amount of addi-
tional memory for storing the shadow volume. When memory consumption
and access times are a limiting factor, one must trade the resolution of the
shadow volume, and thus the resolution of direct lighting computations,
for reduced memory footprint and improved access times. Another disad-
vantage of shadow-volume techniques is known as “attenuation leakage,”
caused by the interpolation kernel used when accessing the illumination in
the shadow volume.

If direct lighting could be computed in lock step with the accumula-
tion of light for the eye, the integrals for both (the eye and light) could
be computed iteratively in image space using 2D buffers; one for accumu-
lating the rendered image from the eye’s point of view and another for
accumulating attenuation from the light source point of view. This can be
accomplished using the method of half-angle slicing, where the slice axis
is halfway between the light and view directions or halfway between the
light and inverted view directions depending on the sign of the dot prod-
uct. If the sign of the dot product between the view and light directions
is positive, the slicing and rendering proceeds in front-to-back order with
respect to the eye. If the dot product is negative, rendering proceeds in
back-to-front order with respect to the eye. Rendering from the light’s
point of view is always front to back. This is illustrated in Figure 6.2.

v

l

s

(a)

s l

v -v

(b)

½ ½

Figure 6.2. Half-angle slice axis for light transport.
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Figure 6.3. Two-pass shadows using half-angle slicing. For each slice, first render
into the eye’s buffer, sampling the positions that the slice projects to in the light
buffer (left). Next render the slice into the light buffer, updating the light attenua-
tion for the next slice. ωs indicates the slice axis (right).

Generate volume slices using half-angle.

Initialize light buffer to 1,1,1,1.

For each slice:

Render slice into eye buffer.

Bind eye buffer as render target.

Bind light buffer as texture.

Compute light buffer texture coordinates.

For each sample (fragment program):

Evaluate sample color.

Read light intensity from light buffer.

Multiply color by light intensity.

End for

Render slice into light buffer.

Bind light buffer as render target.

Set blend to "over".

For each sample (fragment program):

Evaluate sample opacity (a).

Output color {0,0,0,a}.
End for

End for

Listing 6.1. Pseudocode for volume shadows.
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Figure 6.4. An example of a volume rendering with direct lighting.

The modification of the slicing axis provides the ability to render each slice
from the point of view of both the observer and the light, thereby achieving
the effect of a high-resolution shadow volume without the requirement of
pre-computation and storage.

Volumetric shadows can be implemented very efficiently on graphics
hardware using multipass, slice-based volume-rendering techniques. The
approach requires an additional pass for each slice, updating the light in-
tensities for the next slice. Each slice is first rendered from the eye’s point
of view, where the light intensity at each sample on the slice is acquired by
sampling the position it would project to in the light’s buffer. This light
intensity is multiplied by the color of the sample, which is then blended
into the eye’s buffer. This step is illustrated in Figure 6.3 (left). Next the
slice is rendered into the light buffer, attenuating the light by the opacity at
each sample in the slice. This step is illustrated in Figure 6.3 (right). List-
ing 6.1 shows the algorithm in pseudo code. An example of direct lighting
in volume-rendering applications can be seen in Figure 6.4.

6.2 Phase Functions
The role of the phase function in volume light transport is similar to that of
the bidirectional reflectance distribution function (BRDF) in surface-based
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ω
ω' Θ

{ r

Figure 6.5. An example of a symmetric phase function plotted in polar coordi-
nates. The incoming direction ω is fixed, whereas outgoing direction ω′ varies over
all directions.

light transport problems. It describes the distribution of light after a scat-
tering event for each outgoing direction ω′ given an incoming light direction
ω. Whereas the BRDF is only defined over a hemisphere of directions rel-
ative to the surface normal, the phase function describes the distribution
of light over the entire sphere of directions. Phase functions are generally
only dependent on the cosine of the angle between the incoming and out-
going directions ω and ω′: cos θ = ω ·ω′. Although true phase functions are
normalized,

∫
4π

P (ω, ω′)dω′ = 1, this is not required (or even useful) for
interactive graphics applications. We will discuss this issue further in the
next section (6.2.1). Figure 6.5 shows a plot of a simplified phase function
in polar coordinates. The radius r is essentially the weighting for a par-
ticular direction. Notice that the phase function is wavelength dependent,
indicated by the colored contours. This class of phase functions is referred
to as symmetric phase functions because the distribution of scattered en-
ergy is rotationally symmetric about the incoming direction. Symmetric
phase functions are valid for spherical or randomly oriented particles. For
most applications, this class of phase functions is quite adequate.

Symmetrical phase functions can be implemented in conjunction with
direct lighting by computing the dot product of the unit vector from the
sample to the eye with the unit vector from the light to the sample, and
then using this scalar value as an index into a 1D look-up table, i.e., this
dot product is used as texture coordinate for reading from a 1D texture
that stores the phase function term. The light and view directions can
be computed for each vertex that defines the corners of the current slice
being rendered and assigned to texture coordinates for each vertex. These
coordinates are interpolated over the slice during rasterization. In the
fragment program, we need to renormalize these vectors and compute the
dot product between them. Because the range of values resulting from the
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Figure 6.6. Phase-function effects on a spherical cloud. The images use the
Henyey-Greenstein phase function with g = 1 − α, i.e., the phase-function
anisotropy is proportional to the transparency at each sample. Notice that the
back-lit cloud (upper-left) has very bright fringes, whereas the front-lit cloud
(upper-right) has dark fringes. This is because these regions have a highly forward
peaked phase function. The center of the cloud has an isotropic phase function,
which makes it brighter in the front-lit clouds. The lower-left image shows the
spherical cloud lit at a 45◦ angle to the viewer. The lower-right image was rendered
using the Henyey-Greenstein phase function plus a Mie phase function generated
using MiePlot; it is the Mie phase function that creates the subtle glory effect.

dot product are [−1..1], we first scale and bias the values (x′ = (x+1)/2), so
that they are in the range [0..1], and then read from the 1D phase function
texture. The result is then multiplied with the direct lighting and reflective
color. Figure 6.6 shows some effects of phase functions.
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Figure 6.7. Henyey-Greenstein phase functions. Each graph plots multiple phase
functions with g varying from 0 to .9. The plot on the left shows phase functions
that integrate to 1 over the sphere (normalized). The plot on the right shows phase
functions that have been “renormalized” into the range [0..1] for use in interactive
graphics with generic lighting.

6.2.1 Henyey-Greenstein Phase Function

For most purposes, wavelength dependence is not an important character-
istic of the phase function. In general, we need the phase function only
to describe the degree to which the scattering of light prefers forward (or
backward) scattering. In this case, the Henyey-Greenstein phase function
is an excellent choice:

G(θ, g) =
1− g2

4π(1 + g2 − 2g cos θ)1.5
, (6.1)

where g is the anisotropy of the phase function. When g = 0, the scattering
of light is equal in all directions, positive values of g in the range [0..1] indi-
cate forward scattering. Figure 6.7 plots two phase functions using different
g values. Note that this phase function is normalized,

∫
4π

P (ω, ω′)dω′ = 1.
The units of this probability density function are 1/steradian or sr−1 (stera-
dians are the units associated with solid angles, a sphere has 4π steradians).
This is not exactly a quantity we are accustomed to dealing with in inter-
active graphics. A normalized phase function is really only meaningful if
the light intensity is expressed in terms of radiometric irradiance, which
has the units of watts per square meter. When the phase function and ir-
radiance are multiplied together we get the radiance for a scattering event,
which has the units of watts per steradian per meter squared. The prob-
lem is twofold: (1) in interactive graphics applications, we are generally
using some generic light intensity, restricted to the range [0..1] for each RGB

color component, with no real associated units, and( 2) the shading models
we use, e.g., Blinn-Phong, do not conserve energy. These issues becomes
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clear when we attempt to use a normalized phase function in this “generic
light” setting. If we take a white light (I = {1, 1, 1}) and use the isotropic
phase function G(0, 0) to compute light scattered in the forward direction
(Iforward = IG(0, 0))), we get the value Iforward = {0.079, 0.079, 0.079},
which is nearly black when displayed as a color. In contrast, if we com-
pute the forward scattered light using a forward peaked phase function,
G(0, .8), we get the value Iforward = {3.58, 3.58, 3.58}, which is not even a
displayable color besides the fact that this implies we are scattering three
times as much light in the forward direction than we had to begin with.
Even though the Blinn-Phong shading model does not (necessarily) con-
serve energy, it does not reflect more light than it began with. How can
we take advantage of these phase functions in interactive rendering that
does not deal directly with radiance and irradiance? Obviously, the phase
function should be limited to the range [0..1] for any given phase angle,
and we do not require it to integrate to unity over the sphere of directions.
We could renormalize for our generic light environment by dividing the
phase function by its maximum value. Because we know that the Henyey-
Greenstein phase function will always have a maxima at the 0 phase angle
for positive values of g, the renormalized phase function is

G′(θ, g) =
G(θ, g)
G(0, g)

, (6.2)

where negative values of g (back-scattering) would have a maxima at 180◦

and therefore require G(180, g) in the denominator. Here’s the rub: renor-
malizing the phase function in this way will eliminate the essential inten-
sity differences between isotropic scattering and forward scattering at the
0 phase angle. That is, G′(0, g) = 1 for all g greater than or equal to
0, which means that there will be no difference in the scattered intensity
for different phase functions when the phase angle is 0. However, this is
probably not an issue, as this situation requires the material to be back-lit
and even then, only a single pixel in the image plane will have a zero phase
angle. This is not unlike the specular highlight in the Blinn-Phong shading
model; regardless of what specular power is specified, the specular weight
in the direction of the reflection vector will always be 1.

In practice, it is useful to cache a range of these phase functions in a
2D texture, where the first index is based on the phase angle θ (scaled and
biased to the [0..1] range) and the second texture coordinate is the g value.
When we are rendering a volume using phase functions, the g term can be
specified as an additional optical property in the transfer function along
with color and opacity. This is useful when rendering clouds, since the
less dense outer fringes will have a highly forward peaked phase function,
while the dense interior will have an isotropic phase function. In this case,
one could set the g value to 1− α and achieve excellent results, as seen in



�

�

�

�

�

�

�

�

148 Global Volume Illumination

Figure 6.6. Notice that when the light is coming from behind the viewer,
the outer fringes of the cloud are darker than the interior, while a back-lit
cloud has very bright fringes.

6.2.2 Mie Scattering Phase Functions

Wavelength-dependent phase functions come into play when we are seek-
ing the more exotic scattering effects like rainbows and glories. The reason
that these phenomena are so exotic or rare is that they require very spe-
cific physical conditions, i.e., raindrops of a relatively uniform size or a
very fine mist of relatively uniform water particles suspended in air. The
phase functions themselves require very sophisticated physically based sim-
ulation over hundreds of individual wavelengths to compute. Fortunately,
a tool exists for computing, visualizing, and analyzing these complicated
effects. MiePlot by Philip Laven is an excellent tool for generating these
special-purpose phase functions. Keep in mind that, while this tool can
generate scattering functions for specific wavelengths, a three-wavelength
phase function (one for each of red, green, and blue) will not produce very
good results for rendering. The reason for this is that the RGB channels
that we use for display are meant to cover three wavelength intervals, not
three individual wavelengths. Also, this tool is designed to simulate scat-
tering effects for water particles of very specific sizes, and changing the
size of particles can result in very different phase functions. This tool al-
lows one to simulate scattering for a distribution of particle sizes; when
this is done, we can observe that increasingly heterogeneous particle sizes
result in phase functions that have little or no wavelength dependence.

Figure 6.8. A glory effect computed using MiePlot (inset) overlaid with a real pho-
tograph of the phenomena. The phase function required a simulation involving
200 individual wavelengths of light and a uniform water particle size of 4.8 mi-
crons.
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This is why clouds, which (generally) have a wide distribution of water
particle sizes, do not necessarily require this kind of sophisticated phase
function simulation, thus motivating the use of simple Henyey-Greenstein
phase functions for general applications. Figure 6.8 shows a glory simula-
tion generated using MiePlot, and Figure 6.6 (lower-right) shows the effect
rendered using a modified version of this phase function combined with
a variable Henyey-Greenstein phase function. Because the phase function
values that represent the glory phenomena are 1/1000th of those in the
forward direction, we only used the Mie phase function for angles from 90◦

to 180◦ and renormalized based on the max of these values.
Note that MiePlot will display a color map of the phase function above

the plots of “intensity vs. scattering angle”; you can quickly generate phase
function look-up tables by doing a screen grab of the tool and extracting
this row of pixels, which will already be “renormalized” for generic lighting
as discussed in the previous section. MiePlot can also save the floating
point values into a file; it only takes a little extra work to extract the
RGB components. Remember that the best results will involve a simulation
over a wide range of wavelengths. MiePlot will do the integration of these
wavelengths for the RGB intervals we need for rendering, but you will need
to do the renormalization.

6.3 Translucent Volume Lighting
Once direct lighting has been implemented, computing the higher-order
scattering terms becomes a simple extension of this algorithm. As light is
propagated from slice to slice, some scattering is allowed. This scattering is
forward-only due to the incremental nature of the propagation algorithm.
Thus, this method is only an approximation of the general volume light
transport problem, in much the same way that the Blinn-Phong model is
an approximation of physically based surface lighting.

One major difference between this translucent volume shading model
and the volume-rendering approaches discussed in the previous chapters is
the additional optical properties required for rendering to simulate higher-
order scattering. The key to understand this treatment of optical properties
comes from recognizing the difference between absorption and extinction.
The attenuation of light for direct lighting is proportional to extinction,
which is the sum of absorption and out-scattering. The goal of this method
is to account for the portion of light that was scattered and not absorbed.

The traditional volume-rendering pipeline only requires two optical
properties for each material: extinction and material color. However, rather
than specifying the extinction coefficient τ , which is a value in the range
zero to infinity (see Chapter 1 for more details), the more intuitive opacity,
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Figure 6.9. To attenuate scattered light, a chromatic indirect alpha, or absorption,
term is required (left). However, this tends to be difficult for a user to specify. The
complement of this color (right), which is the color that light will become as it is
attenuated, is a more intuitive way to understand and specify this term. (Images
reprinted from [129], c© 2003 IEEE.)

or alpha, term is used:
α = 1− e−τ(x) . (6.3)

For the remainder of this section, this opacity will be referred to as the
direct opacity or attenuation αd. In addition to color and opacity, this
model adds an indirect attenuation term to the transfer function. This term
is chromatic, meaning that it describes the indirect attenuation of light for
each of the R, G, and B color components. Similar to direct attenuation,
the indirect attenuation can be specified in terms of an indirect alpha:

αi = 1− e−τi(x) . (6.4)

Although this is useful for describing indirect attenuation mathematically,
it is not very intuitive for user specification. We prefer to specify a transport
color that is 1− αi, because this is the color the indirect light will become
as it is attenuated by the material. Figure 6.9 illustrates the difference
between the absorption, or indirect alpha, and the transport color.

The indirect opacity αi can be treated as a means for capturing the
attenuation of light due to absorption only, i.e., the light absorbed by
the participating medium, whereas the direct opacity αd is meant to cap-
ture the total extinction, i.e, the light lost due to both absorption and
out-scattering. Therefore, it is easy to see that if the indirect opacity is
absorption-only, then it should always be less than or equal to the direct
opacity:

‖αi‖ ≤ αd . (6.5)

The decision to leave the direct opacity achromatic, as it is in the tradi-
tional volume-rendering pipeline, was purely for practical reasons. First,
it is convenient to keep track of only four attenuation terms (three for in-
direct light, and one for direct light), because 4-vectors are a natural data
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Figure 6.10. An opalescent material lit from above. The complex scattering effects
needed to create the characteristic hue shift from blue to red are approximated
using an empirical translucent volume-shading model. The reflective color is a de-
saturated blue and the transport color is a desaturated red.

quantum in graphics hardware. Second, it can be very difficult for a user
to understand and specify chromatic (direct) attenuation, as this could
affect how overlapping materials blend with each other from the viewer’s
perspective, leading to very unintuitive results. This need for intuitive,
user-specified parameters is the reason we prefer the transport color for
indirect opacity specification, it is easy to grasp the idea that this is the
color light will become as it penetrates deeper into the material. Finally,
although the characteristic hue-shift in translucent materials can be due
to scattering as well as absorption, these effects can be still be captured
by appropriately adjusting the material color (sometimes referred to as
the reflective color in this section) and the chromatic indirect attenuation.
For instance, materials with an “opalescent” quality (like the daytime sky)
exhibit the hue-shift effect (from bluish to red) almost entirely due to wave-
length dependent scattering. In this case, shorter (bluer) light wavelengths
are scattered more than the longer (redder) wavelengths, with little or no
loss due to absorption. The net effect, however, is the loss of blue wave-
lengths as light penetrates deeper into the material. We can achieve this
effect by making the reflective material color a desaturated blue, as the
reflection of light is a scattering phenomena and we know that this ma-
terial preferentially scatters blue, and making the transport color slightly
red, as we know that red wavelengths exhibit less out-scattering attenua-
tion. In this case, we are using the indirect attenuation term to capture the
gradual, wavelength-dependent loss of light due to scattering rather than
absorption. Figure 6.10 shows an example rendering using this approach.
Naturally, this description is purely empirical but nonetheless based on and
motivated by physical principles.

6.3.1 Algorithm Overview

This volume-rendering pipeline computes the transport of light through the
volume in lock step with the accumulation of light for the eye. Just as we
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updated the direct lighting (shadows) incrementally, the indirect lighting
contributions are computed in the same way. To account for scattering, we
must integrate the incoming light over a range of incoming directions; thus
we need to sample the light buffer in multiple locations within a disk to
accomplish the blurring of light as it propagates.

The algorithm utilizes three buffers; one buffer for the eye, which ac-
cumulates the image that the viewer will see, and two buffers for the light
view, which accumulate the attenuation and scattering of light. Both light
buffers are initialized to 1 for all (RGBA) components. Whereas the shadow
method only required a single buffer for light attenuation, this method re-
quires two in order to accommodate a custom blending operation. Unlike
the volume shadow method described earlier, instead of a single (achro-
matic) attenuation of light intensity, the light buffer will be storing four
different attenuation terms; independent red, green, and blue indirect-light
(stored in the RGB components) plus the (achromatic) direct light (stored
in the alpha component). In the light update step, the direct light will
be attenuated in the usual fashion; the opacity of the incoming sample is
used to attenuate the light previously available at that position in the light
buffer. The update (blend) function for direct light Ld attenuation is

L′
d = (1− αd)Ld , (6.6)

where αd is the achromatic direct light opacity for a sample. This is iden-
tical to the blend function used for volume shadows. The indirect atten-
uation, however, is updated by examining N locations in a neighborhood
around the samples location in the light buffer, computing the amount of
light in-scattered based on this neighborhood, and attenuating this light
per wavelength. The general expression for updating the value stored in
the light buffer for indirect light is

L′
i = (1− αi)

N∑
i

(wd,iLd,i + wi,iLi,i) , (6.7)

where αi is the chromatic indirect light opacity for the sample being ren-
dered, w∗,i are blur weights for the direct and indirect light scattering with∑

w∗,i = 1, and L∗,i is the direct and indirect light (respectively) currently
in the light buffer for each of the N neighborhood samples. The indirect
light weights (wi,i) can be set to 1/N , resulting in a simple average over the
neighborhood. The direct light weights (wd,i) could be based on the phase
function (P ) times the difference between indirect and direct opacity, for
instance

wi =
P (θi) (αd − αi)

N
, (6.8)

where θi is the angle between the light direction and the vector from the
neighbor sample to the current sample. Of course if no phase function has
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been specified, we can set P (θi) = 1. There are several issues to consider
here. (1) A weighting function like Equation 6.8 can end up being quite
expensive and therefore cut into our rendering performance. (2) Because
this is effectively a blur, an inaccurate wi weight will not affect the results
dramatically. (3) Using the difference between direct opacity and indirect
opacity assumes that the indirect opacity is being used to represent ab-
sorption only. As noted earlier, this term could also be used to account for
attenuation due to scattering. In this case, the difference of direct and in-
direct opacity isn’t really meaningful. Arguably, the most important thing
about the direct light weights is that they account for the presence (or lack
thereof) of material at the neighbor sample, because when no material is
present, we should not expect any in-scattering from that location. One
could also argue that the same is true for the indirect light weights, and
indeed it makes sense to only scatter indirect light when there is something
there to scatter it. However, we can also think of the indirect light as dif-
fuse, i.e., light that does not really have a preferred direction. In this case,
we are thinking of the indirect light at a neighbor sample simply as the
amount of diffuse light that has not been attenuated by the participating
media. Notice that we initialized the indirect light in the light buffers to
1; this diffuse treatment of indirect light is the reason. The main point
of this discussion is the ideal weights used to integrate light in-scatter will
depend on the application, though the qualitative difference in the images
for different weighting schemes can be subtle at best. After all, it is really
just a fancy blur operation.

Because we need to sample the light buffer in multiple locations, we
cannot use the native OpenGL frame buffer blending operations. This is
why two buffers are required; we cannot read-from and write-to the same
buffer simultaneously. The reason we cannot do this is complicated, and
OpenGL does not explicitly forbid it, but doing so can generate inconsistent
results. In the following algorithm explanation, one light buffer will be
referred to as the next light buffer; it is the buffer that will be rendered
to (bound as the render target) in the light update step. The other is
referred to as the current light buffer, it is bound as a texture and read
from in both the eye update step and light update step. After each slice
has been rendered (both passes completed), the light buffers are swapped,
i.e., next→current and current→next.

6.3.2 Algorithm Details

Set-up. When slicing the volume, you will need to add additional texture
coordinates for each vertex. In all, you will need three or four sets: (1)
3D texture coordinates for the volume data, as with any texture-based
volume rendering application, (2) 2D texture coordinates for the position
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that the vertex projects to in the light buffer, much like geometric shadow
mapping algorithms, (3) 3D texture coordinates for representing the view
direction from the eye to the vertex, and if the light is not infinitely far
from the volume, (4) texture coordinates representing the light direction
from the light to the vertex. Texture coordinates 3 and 4, the light and
view directions, are needed to evaluate the phase function.

Pass 1: Observer update. In the first pass, a slice is rendered from the
observer’s point of view. The eye buffer is the render target, and the current
light buffer is bound as a texture. In the fragment program, the transfer
function is evaluated and the material color is multiplied by the sum of
the indirect and direct light previously computed at that slice position
in the current light buffer. Remember that the direct light component is
achromatic, i.e., it is a scalar value. The total light intensity is expressed
as

I ′ = (Li + Ld) I0 , (6.9)

where I ′ is the total (RGB) light intensity available at the current sample,
Li is the indirect (RGB) light color from the current light buffer, Ld is the
direct (achromatic/scalar) light intensity from the current light buffer, and
I0 is the original light color. If phase functions or surface lighting is used,
this term should only be applied to the direct lighting component, since we
are assuming that the scattered, indirect light is diffuse,

I ′ = (Li + LdS()) I0 , (6.10)

where S() is a surface shading or phase function. This color is then blended
into the observer buffer using the alpha value from the transfer function in
the usual fashion.

Pass 2: Light update. In the second pass, the same slice is rendered into
the next light buffer from the light’s point of view to update the lighting
for the next iteration. The current light buffer is bound as a texture.
In the fragment program for this pass, the texture coordinates for the
neighborhood samples can be computed by adding a random 2D vector to
the current sample location’s texture coordinate. This random vector is
stored in a noise texture, similar to those used for volume perturbation
discussed in Chapter 12. Four neighborhood samples are usually enough
to produce good results. Randomizing the neighborhood sample offsets in
this way can mask some artifacts caused by a coarse, regular sampling. The
amount of this offset is scaled by either a user-defined blur angle (θ) or an
angle based on the anisotropy of the phase function, times the slice-plane
spacing (d):

offset ≤ d tan
(

θ

2

)
. (6.11)
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The current light buffer is then read using the new texture coordinates.
These values are weighted and summed to compute the blurred inward
flux (scattered light) at the sample. The transfer function is evaluated
for the current sample based on the volume data to obtain the indirect
attenuation (αi) and direct attenuation (αd) values for the current slice.
The blurred inward flux is attenuated as described before (Equation 6.7)
and written to the RGB components of the next light buffer. The direct light
intensity, i.e., the alpha component from the current light buffer read using
the unmodified texture coordinates, is attenuated by αd (Equation 6.6)
and written out to the alpha component of the next light buffer.

After this pass has been completed, the light buffers are swapped, so
that the next buffer becomes the current and vice versa. That is, the
last light buffer rendered-to will be read-from when the next slice is ren-
dered. This approach is called ping pong blending and is discussed further
in Section 9.5.

6.3.3 Analysis

This empirical volume shading model adds a blurred indirect light contri-
bution at each sample:

I(x1, ω) = T (0, l)I(x0, ω) +
∫ l

0

T (0, s)C(s)Il(s)ds , (6.12)

where τi(s) is the indirect light attenuation term, C(s) is the reflective
color at the sample s, S(s) is a surface shading parameter, and Il is the
sum of the direct light and the indirect light contributions. These terms
are defined as follows:

C(s) = E(s) ((1− S(s)) + fs(s)S(s)) ; (6.13)

Il(s) =Il ∗ exp

(
−

∫ lt

s

τ(x)dx

)
P (θ)+

Il exp

(
−

∫ lt

s

τi(x)dx

)
Blur(θ) , (6.14)

where Il is the intensity of the light as before, Il(s) is the light inten-
sity at a location on the ray as it gets attenuated, and P (θ) is the phase
function. Note that the final model in Equation 6.12 includes direct and
indirect components as well as the phase function that modulates the di-
rect contribution. Spatially varying indirect contribution (scattering) and
phase function were not included in the classical volume-rendering model
discussed in previous chapters.
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Figure 6.11. Left: general light transport scenario, where at any sample x(s) we
must consider incoming light scattered from all directions over the unit sphere
Ω. Right: the approximation, which only considers light scattered in the forward
direction within the cone of directions, the light direction ωl with apex angle θ.

It is interesting to compare the nature of this approximation to the
physically based light transport equation. One way to think of it is as a
forward diffusion process. This is different from traditional diffusion ap-
proximations [247, 280, 70] because it cannot backpropagate light. A per-
haps more intuitive way to think of the approximation is in terms of what
light propagation paths are possible. This is shown in Figure 6.11. The
missing paths involve lateral movements outside the cone or any backscat-
tering. This can give some intuition for what effects this model does not
approximate, such as a reverse bleeding under a barrier. This, however, is
less of a problem in volume rendering than it is with surface-based translu-
cency techniques, as materials below the surface are being rendered and
will contribute to light paths toward the eye.

Because the effect of indirect lighting in dense media is effectively a
diffusion of light through the volume, light travels farther in the volume
than it would if only direct attenuation is taken into account. Translu-
cency implies blurring of the light as it travels through the medium due
to scattering effects. This effect is approximated by simply blurring the
light in some neighborhood and allowing it to attenuate less in the light
direction. Figure 6.12 shows how the important phenomenological effect of
translucency is captured by this model. The upper-left image, a photo of
a wax candle, is an example of a common translucent object. The upper-
right image is a volume rendering using this model. Notice that the light
penetrates much deeper into the material than it does with direct attenua-
tion alone (volumetric shadows), seen in the lower-right image. Also notice
the pronounced hue shift from white to orange to black due to an indirect
attenuation term that attenuates blue slightly more than red or green. The
lower-left image shows the effect of changing just the reflective (material)
color to a pale blue.
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Figure 6.12. Translucent volume-shading comparison. The upper-left image is
a photograph of a wax block illuminated from above with a focused flashlight.
The upper-right image is a volume rendering with a white reflective color and a
desaturated orange transport color (1− indirect attenuation). The lower-left image
has a bright blue reflective color and the same transport color as the upper-right
image. The lower-right image shows the effect of light transport that only takes
into account direct attenuation. (Images reprinted from [129], c© 2003 IEEE.)

Surface shading can also be added for use with scalar data sets. For
this we recommend the use of a surface-shading parameter, the so-called
surface scalar. This is a scalar value between one and zero that describes the
degree to which a sample should be surface shaded. It is used to interpolate
between surface shading and no surface shading. This value can be added
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to the transfer function, allowing the user to specify whether or not a
classified material should be surface shaded. It can also be determined
automatically using the gradient magnitude at the sample. In this case, we
assume that classified regions will be surface-like if the gradient magnitude
is high and therefore should be shaded as such. In contrast, homogeneous
regions, which have low gradient magnitudes, should only be shaded using
light attenuation.

6.4 Shading Strategies
The translucent shading model discussed earlier is not meant to replace sur-
face shading in volumes. If the volumetric objects we are rendering are best
represented as surfaces, they should be shaded as such. The translucent
shading model can be used as a replacement for the diffuse component
of the Blinn-Phong shading model. In fact, this diffuse, or Lambertian,
shading is an approximation of subsurface shading, a special case of light
transport in participating media. It was shown as early as 1914 that there
is no opaque surface configuration that can produce equal reflection in
all directions. Surfaces that exhibit true Lambertian reflectance are al-
ways composed of highly translucent materials, i.e., their appearance is
dominated by scattering in a participating media. Examples include the
outer gas-giant planets, Jupiter, Saturn, Neptune, and Uranus. Uranus is
a particularly good example; due to its uniform cloud layer, visible light
images of this planet tend to look like a perfectly diffuse shaded sphere
(Figure 6.13).

When we combine surface shading and translucent volume shading,
specular highlights are essential, as the translucent model essentially pro-
vides the diffuse component. Figure 6.14 compares different combinations
of lighting models. All of the renderings use the same color map and al-
pha values. The image on the upper left is a typical volume rendering
with surface shading using the Blinn-Phong shading model. The image on
the upper right shows the same volume with only direct lighting, provid-
ing volumetric shadows. The image on the lower right uses both direct
and indirect lighting. Notice how indirect lighting brightens up the image.
The image on the lower left uses direct and indirect lighting combined with
specular surface shading where surface shading is only applied to the leaves
where there is a distinct material boundary.

The model/framework described in this chapter should not be thought
of as a physically based simulation of light transport. Although this model
is inspired by physically based solutions and has much in common with
its physically based brethren, it was really designed to capture the qual-
itative effects that physically based solutions simulate. For example, the
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Figure 6.13. An image of the planet Uranus taken during the Voyager flyby. Notice
how this gas giant appears to be a perfectly diffuse shaded ball. Image courtesy of
NASA.

Figure 6.14. A comparison of shading techniques. Upper-left: surface shading
only. Upper-right: direct lighting only (shadows). Lower-right: direct and indirect
lighting. Lower-left: direct and indirect lighting with surface shading only on leaves.
(Images reprinted from [129], c© 2003 IEEE.)
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Figure 6.15. The feet of the Visible Female CT. The top-left image shows a rendering
with direct lighting only, the top-center image shows a rendering with achromatic
indirect lighting, and the top-right image shows a rendering with chromatic indirect
lighting. (Images reprinted from [129], c© 2003 IEEE.)
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opalescent material shown in Figure 6.10 would require a physically based
path-tracer to simulate hundreds of ray paths per pixel, each one simulating
potentially hundreds of scattering events, to recreate this effect. Perhaps
the fact that the model is not restricted to rigorous physical constraints
is advantageous. Accurate physically based simulations of light transport
require material optical properties to be specified in terms of scattering and
absorption coefficients. Unfortunately, these values are difficult to acquire.
There does not yet exist a comprehensive database of common material
optical properties. Even if a user has access to a large collection of optical
properties, it may not be clear how to customize them for a specific look.
Interactivity combined with a higher-level description of optical properties
(e.g., diffuse reflectivity, indirect attenuation, and alpha) will allow you the
freedom to explore and create images that achieve a desired effect, in much
the same way one would “tune” the parameters of a surface shading model
to recreate the visual appearance of a material.

Figure 6.15 (top) demonstrates the familiar appearance of skin and tis-
sue. The optical properties for these illustrations were specified quickly (in
several minutes) without using measured optical properties. Figure 6.15
(bottom) demonstrates the effectiveness of this lighting model in the con-
text of scientific visualization.

6.5 Further Reading
The optical effects caused by participating media are diverse and fascinat-
ing. The book Clouds in a Glass of Beer by Craig F. Bohren provides a
gentle and entertaining introduction to physical principles behind atmo-
spheric lighting phenomena. Absorption and Scattering of Light by Small
Particles by Craig F. Bohren and Donald R. Huffman is a very in-depth
treatment of the physics and mathematics of light-particle interactions.

For those interested in understanding physically based approximations
for volume light transport in realistic computer graphics, Physically Based
Rendering by Pharr and Humphries [211] provides a superb coverage of this
topic in addition to a comprehensive treatment of surface-based methods
and integration techniques.
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GPU-Based Ray Casting

SO FAR, THIS BOOK HAS MAINLY DISCUSSED a traditional and widely
used approach to GPU-based volume rendering that uses a 2D proxy

geometry to sample the underlying 3D data set (see, in particular, Chap-
ter 3 on basic GPU-based volume rendering for details on this approach).
The predominant proxy geometries are either view-aligned slices (through
a 3D texture) or axis-aligned slices (oriented along a stack of 2D textures).
Slice-based volume rendering owes its success and popularity to a number
of important reasons:

• a high bandwidth between texture memory and rasterization unit,

• built-in interpolation methods for a fast resampling (bilinear for
stacks of 2D textures or trilinear in 3D textures), and

• a high rasterization performance.

Moreover, the core rendering routines are quite simple to implement.
Despite these advantages, slice-based volume rendering has a number

of significant disadvantages—especially for large data sets. As the number
and the position of the slices are directly determined by the volume data
set, this object-space approach is strongly influenced by the complexity of
the data set. Output sensitivity, however, should be the ultimate goal of
any computer graphics algorithm. An image-space approach that takes into
account the complexity of the generated image may come closer to this goal.
In volume rendering, the overhead for a naive object-space technique can be
quite large because a significant number of fragments does not contribute
to the final image. Typically, only 0.2% to 4% of all fragments are visible
[139]. Most volume-rendering applications focus on visualizing boundaries
of objects or selected material regions. Therefore, large parts of a volume
data set are set completely transparent and are not visible. In addition,
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Figure 7.1. Volume rendering of an aneurysm data set (left) and a CT scan of a carp
(right). In these two images, only a small portion of all voxels contributes to the
final image, which is a common observation for most volume-rendered pictures.

many of the remaining fragments are invisible due to occlusion effects.
Figure 7.1 shows two typical examples of volume visualization that contain
only a small fraction of visible fragments.

Generalizing the possible problems of slice-based volume rendering: it is
rasterization-limited, it has difficulties in incorporating acceleration meth-
ods and improved rendering algorithms, and it is rather inflexible. In con-
trast, ray casting is an appropriate approach to address these issues. The
basic idea of ray casting is to trace rays from the camera into the volume,
computing the volume-rendering integral along these rays. The main ad-
vantage is that these rays are handled independently from each other. This
flexibility allows for several optimization strategies, such as early-ray ter-
mination, adaptive sampling, and empty space leaping. These approaches
are discussed in detail in Chapter 8. Another advantage of ray casting is
its straightforward generalization from uniform grids to tetrahedral grids,
as described later in this chapter in Section 7.5.

Ray casting is a well-known method for CPU-based volume rendering
that has been used early on, dating back to the 1980s (see, e.g., the dis-
cussion by Levoy [161]). On the other hand, GPU ray casting is a rather
new development, with its first implementations [227, 139] published in
2003. The reason for the late development of GPU ray casting is the de-
mand for advanced fragment shader functionality that was not available
earlier. GPU ray casting often builds upon previous CPU methods, essen-
tially adopting these for graphics hardware. The main goal of this chapter
is to describe how ray casting can be realized on GPU architectures.

Section 7.1 discusses ray casting on a generic level, laying out the basic
ideas and algorithmic structure. The subsequent sections cover GPU as-
pects of ray casting. Section 7.2 focuses on ray casting for uniform grids
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that can be accomplished by single-pass rendering. The following Sec-
tion 7.3 describes acceleration methods that are tightly connected to ray
casting, and Section 7.4 shows how ray casting can be implemented by mul-
tipass rendering. Finally, Section 7.5 describes ray casting for tetrahedral
grids.

7.1 Basic Structure of Ray Casting
The ray-casting idea is to directly evaluate the volume-rendering integral
(see Chapter 1 for a discussion of the volume-rendering integral) along rays
that are traversed from the camera. For each pixel in the image, a single
ray is cast into the volume (neglecting possible supersampling on the image
plane). Then the volume data is resampled at discrete positions along the
ray. Figure 7.2 illustrates ray casting. By means of the transfer function,
the scalar data values are mapped to optical properties that are the basis
for accumulating light information along the ray. Typically, compositing
can be performed in the same order as the ray traversal. Therefore, front-
to-back compositing (see Equation 1.14) is applied:

Cdst = Cdst + (1− αdst)Csrc

αdst = αdst + (1− αdst)αsrc . (7.1)

The ray-casting algorithm can be described by the pseudocode from List-
ing 7.1. Accordingly, ray casting can be split into the following major
components.

Ray Set-up. First, a viewing ray needs to be set up according to given
camera parameters and the respective pixel position. This component

image

plane

eye

rays

Figure 7.2. Ray-casting principle. For each pixel, one viewing ray is traced. The ray
is sampled at discrete positions to evaluate the volume-rendering integral.
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Determine volume entry position

Compute ray direction

While (ray position in volume)

Access data value at current position

Compositing of color and opacity

Advance position along ray

End while

Listing 7.1. Pseudocode for ray casting.

computes the volume entry position—the coordinates of the first in-
tersection between ray and the bounding geometry of the volume data
set. This component also determines the direction of the ray.

Traversal Loop. This main component traverses along the ray, evaluat-
ing the volume-rendering integral. The ray is sampled at discrete
positions, and the traversal loop scans the rays along these positions.
Each iteration of the loop consists of the following subcomponents.

Data Access. The data set is accessed at the current ray position,
which might involve a reconstruction filter (i.e., interpolation).
The corresponding color and opacity are computed by applying
the transfer function. Either point-wise classification or pre-
integrated classification are possible.

Compositing. The previously accumulated color and opacity are
updated according to the front-to-back compositing equation
(Equation 7.1).

Advance Ray Position. The current ray position is advanced to
the next sampling location along the ray.

Ray Termination. The traversal loop ends when the ray leaves the
data set volume. This subcomponent checks whether the current
ray position is inside the volume and it only enters the next
iteration of the loop when the ray is still inside.

The ray-casting algorithm and its components are well known and have
been frequently used in CPU-based implementations. The following sec-
tions describe how ray casting can be mapped to GPU architectures.

Ray casting exhibits an intrinsic parallelism in the form of completely
independent light rays. This parallelism is compatible with hardware par-
allelism in GPUs: for example, by associating the operations for a single
ray with a single pixel, the built-in parallelism for GPU fragment process-
ing (multiple pixel pipelines) is used to achieve efficient ray casting. In
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addition, volume data and other information can be stored in textures and
thus accessed with the high internal bandwidth of a GPU.

7.2 Single-Pass GPU Ray Casting for
Uniform Grids

Uniform grids have a simple geometric and topological structure (see Sec-
tion 1.5.1). In particular, a 3D uniform grid can be identified with a 3D
texture—in the same way as for 3D texture slicing. Therefore, uniform
grids are widely used for GPU ray casting. The actual rendering algorithm
(see pseudocode in Listing 7.1) can be almost directly mapped to a frag-
ment program. Here, a fragment or a pixel on the image plane is identified
with its corresponding ray.

Listing 7.2 shows the Cg fragment shader for single-pass ray casting.
It facilitates all components mentioned in the previous section: ray set-up
(computing entry position and ray direction), ray traversal, data access,
compositing, and ray termination. The entry points are attached as texture
coordinates TexCoord0. All positions and direction vectors are described
with respect to the local coordinate system of the volume data set. The
bounding box of the volume can be assumed to be oriented along the main
coordinate axes in the local reference frame. Therefore, the bounding box
can be described by two 3D points volExtentMin and volExtentMax, which
provide the minimal and maximal coordinates of the bounding box, re-
spectively. The position of the camera and the stepsize are also given with
respect to the local coordinate system of the volume. The ray direction is
computed as the normalized difference between entry position and camera
position.

Ray traversal is implemented by a shader loop. Here, the volume data
set, stored in the 3D texture SamplerDataVolume, is accessed. Trilinear in-
terpolation is a built-in feature of graphics hardware and automatically
provides a reconstruction filter when the current ray position is different
from a grid point. Corresponding RGBA values are computed by applying the
transfer function, which is held in the 1D texture SamplerTransferFunction.
Then, front-to-back compositing is performed and the ray position is ad-
vanced. A fixed step size is used in this example. The last part of the shader
implements ray termination. The ray traversal is only continued when all
three coordinates x, y, and z of the current ray position are greater than
the respective coordinates of volExtentMin and smaller than the respective
coordinates of volExtentMax. Only in this case the dot product yields a
value of 3 for inside.

Fragments for single-pass ray casting are generated by rendering the
front faces of the bounding box of the volume. The entry points (with
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// Cg fragment shader code for single-pass ray casting

float4 main(float4 TexCoord0 : TEXCOORD0,

uniform sampler3D SamplerDataVolume,

uniform sampler1D SamplerTransferFunction,

uniform float3 camera,

uniform float stepsize,

uniform float3 volExtentMin,

uniform float3 volExtentMax

) : COLOR

{
float4 value;

float scalar;

// Initialize accumulated color and opacity

float4 dst = float4(0,0,0,0);

// Determine volume entry position

float3 position = TexCoord0.xyz;

// Compute ray direction

float3 direction = TexCoord0.xyz - camera;

direction = normalize(direction);

// Loop for ray traversal

for (int i = 0; i < 200; i++) // Some large number

{
// Data access to scalar value in 3D volume texture

value = tex3D(SamplerDataVolume, position);

scalar = value.a;

// Apply transfer function

float4 src = tex1D(SamplerTransferFunction, scalar);

// Front-to-back compositing

dst = (1.0-dst.a) * src + dst;

// Advance ray position along ray direction

position = position + direction * stepsize;

// Ray termination: Test if outside volume ...

float3 temp1 = sign(position - volExtentMin);

float3 temp2 = sign(volExtentMax - position);

float inside = dot(temp1, temp2);

// ... and exit loop

if (inside < 3.0)

break;

}
return dst;

}

Listing 7.2. Cg fragment shader for single-pass ray casting.
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// Cg fragment shader code for single-pass ray casting

// Add-ons for pre-integration

...

float4 main(float4 TexCoord0 : TEXCOORD0,

uniform sampler3D SamplerDataVolume,

uniform sampler2D SamplerPreintegrationTable,

...

{
...

float2 scalar = float2(0,0);

...

for (int i = 0; i < 200; i++) // Some large number

{
// Data access to scalar value in 3D volume texture

value = tex3D(SamplerDataVolume, position);

scalar.y = value.a;

// Lookup in pre-integration table

float4 src = tex2D(SamplerPreintegrationTable,

scalar.xy);

...

position = position + direction * stepsize;

// Save previous scalar value

scalar.x = scalar.y;

...

}

Listing 7.3. Cg fragment shader for single-pass ray casting with pre-integration.
Only the changes with respect to the original shader (Listing 7.2) are included.

respect to the local coordinate system of the volume) are attached as tex-
ture coordinates to the vertices of the bounding box. Scanline conversion
automatically fills in-between values via interpolation. In this way, exactly
one ray is traversed through each pixel that is covered by the volume.

The code in Listing 7.2 implements a most basic volume renderer, just
with point-sampling of the volume-rendering integral and without illumi-
nation. However, a more sophisticated assignment of optical properties can
be easily included. For example, local illumination (see Chapter 5) can be
directly incorporated by slightly extending the computation of colors and
opacities (in src).

Another direct extension leads to pre-integrated classification (see Sec-
tion 4.5). Here, color and opacity are assigned according to the scalar
values at the beginning and the end of a ray segment. Listing 7.3 shows
the (slight) changes required for pre-integration. First, the look-up in the
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transfer function is replaced by a look-up in the pre-integration table, based
on the two scalar values. Second, the scalar value from the current ray po-
sition is saved for the pre-integration look-up in the following iteration of
the ray traversal loop. In this way, only one scalar value has to be accessed
for each iteration. In contrast, pre-integrated texture slicing requires two
look-ups in the data set for each fragment.

Additional technical background on single-pass ray casting can be found
in a paper by Stegmaier et al. [251], who describe a flexible framework
for ray casting along with an implementation via assembler-level fragment
programs. They provide the source code of their implementation. Another
demo code for ray casting is available from NVIDIA [200].

7.3 Performance Aspects and
Acceleration Methods

Ray casting can easily incorporate a number of acceleration techniques
to overcome the aforementioned problems of slice-based volume rendering.
This section discusses acceleration techniques that are immediately related
to ray casting: early ray termination, adaptive sampling, and empty-space
skipping.

7.3.1 Cost of Ray Termination

The previously described implementation of single-pass ray casting (List-
ing 7.2) is a direct mapping of the conceptual ray-casting process to a
GPU. It should be pointed out, however, that the ray termination part
of the pipeline can consume a large portion of the overall render costs.
First, the evaluation of the termination criterion (here, the check for po-
sitions within the bounding box of the volume) needs a couple of shader
instructions. Second, dynamic branching—the conditional break out of the
traversal loop—may be associated with performance costs (which is true for
current Shader Model 3.0 GPUs). Therefore, alternative implementations
may be useful to increase the rendering performance.

One approach is based on overshooting. Essentially, overshooting com-
pletely removes the ray termination part. Instead, a constant and con-
servative number of ray traversal steps is taken so that it is guaranteed
that at least the whole volume is traversed. Normally, rays are traversed
beyond the back face of the volume. A texture border of zero opacity
and color needs to be set in order to avoid incorrect contributions to the
volume-rendering integral from behind the volume.

A compromise can be found between mere overshooting and the exact
ray termination in Listing 7.2: ray termination is computed and performed
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...

// Additional termination condition for

// early ray termination

if (dst.a > 0.95)

break;

...

Listing 7.4. Cg fragment shader part for early ray termination.

only every nth traversal step. The cost of ray termination can be weighed
against its benefit in the form of a reduced number of ray-traversal steps,
optimizing for a good value of n. This hybrid method can be implemented
by a nested loop. Ray termination is only included in the outer loop, the
inner loop iterates over a fixed number of steps, n. It should be noted
that nested loops might be necessary anyway for large volumes because
the maximum number of iterations is often restricted by GPUs.

Another method makes use of early fragment tests (e.g., early z-test
or early stencil test) to avoid costly dynamic branching during fragment
processing. Technical details and alternative ways of implementing ray
termination are described in Section 8.6.2.

7.3.2 Early Ray Termination

Early ray termination allows us to truncate light rays as soon as we know
that volume elements further away from the camera are occluded. Ray
traversal can be stopped when the accumulated opacity αdst reaches a
certain user-specified limit (which is typically very close to 1).

The stopping criterion is added to the ray termination criteria that
might already be part of ray casting, for example, the test for leaving the
bounding box of the volume. Listing 7.4 shows the part of the fragment
shader that implements early ray termination by dynamic branching that
leaves the traversal loop. Here, the limit value is chosen αthreshold = 0.95.

Section 8.6.2 discusses an alternative implementation of this termina-
tion by means of the early z-test.

7.3.3 Adaptive Sampling

Another advantage of ray casting is that the step sizes for one ray can
be chosen independently from other rays, e.g., empty regions can be com-
pletely skipped or uniform regions can be quickly traversed by using large
step sizes.

A typical volume data set has different regions with different character-
istics. On the one hand, there can be largely uniform, or even completely



�

�

�

�

�

�

�

�

172 GPU-Based Ray Casting

(a) (b) (c)

Figure 7.3. Comparison of the number of rendering steps for different transfer
functions. Image (a) shows the original volume visualization, image (b) the cor-
responding number of sampling steps (black corresponds to 512 samples). Image
(c) visualizes the number of sampling steps for a more opaque transfer function;
this illustrates the effect of early ray termination. (Images courtesy of Röttger et
al. [227], c© The Eurographics Association, 2003.)

empty, regions in which a fine sampling of the ray integral is not necessary.
On the other hand, details at boundaries between different regions should
be represented by an accurate sampling of the ray. Adaptive sampling
along rays can be used to address this issue [227].

Adaptive sampling relies on an additional data structure that controls
the space-variant sampling rate. This importance volume describes the min-
imum isotropic sampling distance and is computed from a user-specified er-
ror tolerance and the local variations of the scalar data set. The importance
volume is stored in a 3D texture whose resolution can be chosen indepen-
dently from the resolution of the scalar data set. During ray traversal, an
additional 3D texture look-up in the importance volume (at the current
position) yields the step size for the following iteration. This space-variant
step size is now used to compute the next sampling point—instead of a
fixed step distance.

This approach relies on pre-integration (see Section 4.5) to determine
a segment’s contribution to the volume-rendering integral. A key feature
of pre-integration is its separation of the sampling criteria for the data
set and the transfer function [135]. Without pre-integration, the rate for
an accurate sampling of the volume-rendering integral has to be based
on the variations of the RGBA values that result from a mapping of scalar
values via the transfer function. If, for example, the scalar values vary
only very smoothly and slowly, but the transfer function contains very
high frequencies, a high overall sampling rate will have to be chosen for
the volume-rendering integral. In other words, the sampling rate has to
take into account the frequencies of the data set and the transfer function.
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In contrast, pre-integration “absorbs” the effect of the transfer function
by means of a pre-computed look-up table. Accordingly, only the spatial
variations of the data set have to be taken into account for an accurate
sampling. Therefore, the construction of the importance volume makes use
of the structure of the data set only and does not consider the transfer
function. A benefit of this approach is that the importance volume is fixed
for a stationary data set, i.e., it is computed only once (by the CPU) and
downloaded to the GPU. Note that adaptive sampling requires us to modify
the opacity value and color contribution for each discrete ray segment. This
can be achieved by using a 3D pre-integration table that depends on the
segment length as well as the two scalar values at the entry and exit points
of the segment. Alternatively, an approximation according to the equation
for opacity correction (see Section 1.4.3) can be used in combination with
a 2D pre-integration table.

Figure 7.3 shows an example image generated by ray casting with adap-
tive sampling. Figure 7.3 (a) depicts the original volume visualization. Fig-
ure 7.3 (b) visualizes the corresponding number of sampling steps. Due to
adaptive sampling, only few steps are needed for the uniform, empty space
around the bonsai. Early ray termination reduces the number of samples in
the region of the opaque trunk. In the region of the leaves, the importance
volume indicates that a fine sampling is required (due to strongly varying
scalar data values). Therefore, many sampling steps are used for this part
of the image. Figure 7.3 (c) visualizes the number of sampling steps if a
more opaque transfer function is applied to the same data set and under
the same viewing conditions. The reduced number of samples for the leaves
is striking. This effect is caused by early ray termination: after the first
hit on an opaque leaf, a ray is ended.

Section 9.1 discusses adaptive sampling in the context of rendering
quality.

7.3.4 Empty-Space Skipping

Empty-space skipping is useful when a volume visualization contains large
portions of completely transparent space. Transparency is determined after
the transfer function is applied to the data set. An additional data structure
is used to identify empty regions. For example, an octree hierarchy can be
employed to store the minimum and maximum scalar data values within
a node. In combination with the transfer function, these min/max values
allow us to determine completely transparent nodes.

Krüger and Westermann [139] reduce the octree to just a single level
of resolution—in their implementation to (1/8)3 of the size of the scalar
data set. This reduced “octree” can be represented by a 3D texture, with
the R and G components holding the minimum and maximum values for
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each node. Empty regions can only be identified by applying the transfer
function to the original data and, afterwards, checking whether the data is
rendered visible. We need a mapping from the min/max values to a Boolean
value that classifies the node as empty or not. This two-parameter function
is realized by a 2D texture that indicates for each min/max pair whether
there is at least one non-zero component in the transfer function in the
range between minimum and maximum scalar value. This 2D empty-space
table depends on the transfer function and has to be updated whenever the
transfer function is changed. The empty-space table is computed on the
CPU and then uploaded to the GPU. Note that the “octree” 3D texture
depends on the data only and has to be generated just once for a stationary
data set.

The fragment program for ray termination is extended to take into
account empty-space skipping. The front faces of the volume are rendered
in the same way as before, while the step size is increased according to the
size of the “octree” structure. Due to the larger step size, the number of
traversal iterations is decreased. The min/max values are sampled from
the “octree” and serve as parameters for a dependent texture look-up in
the empty-space table. Empty space is skipped by setting the z-value of the
depth buffer to the maximum; the code for the fine-grained sampling of the
scalar data set is skipped by the early z-test. Conversely, a nonempty node
leads to a z-value of zero and a subsequent integration of the ray segment.
The z-value is reset to zero as soon as a nonempty node is found (and if
the opacity is still below the threshold for early ray termination).

We refer to Section 8.4 for more information on empty-space leaping.

7.4 Multipass GPU Ray Casting for Uniform Grids
This section describes GPU ray casting implemented by multipass render-
ing. Historically, multipass ray casting was developed before single-pass
ray casting because GPUs did not facilitate the functionality needed for
single-pass ray casting at the time of the first GPU ray-casting methods.
The following key features were missing. First, loops were not supported in
fragment programs. Therefore, the traversal of a ray needed to be initiated
by a CPU-based program. Second, it was hard to implement conditional
breaks, which are required to stop ray traversal.

The multipass approach is included in the book because it allows us to
implement ray casting on all GPUs that support Pixel Shader 2.0 function-
ality (e.g., ATI Radeon 9700 or higher, NVIDIA GeForce FX or higher).
Therefore, multipass ray casting is recommended if availability of the latest
graphics hardware cannot be assumed. This section is based on the two
original papers on GPU ray casting [227, 139].
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terminated

not terminated
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Figure 7.4. Principal structure of multipass rendering for GPU ray casting.

We discuss the two main ingredients of GPU-based ray casting: (a) data
storage and (b) fragment processing. In graphics hardware, data can be
stored in, and efficiently accessed from, textures. The data set (its scalar
values and, possibly, its gradients) are held in a 3D texture in the same way
as for single-pass ray casting. In addition, ray casting needs intermediate
data that is “attached” to light rays. Due to the direct correspondence
between ray and pixel, intermediate data is organized in 2D textures with
a one-to-one mapping between texels and pixels on the image plane.

Accumulated colors and opacities are held in such 2D textures to imple-
ment the front-to-back compositing equation (Equation 7.1). In addition,
the current sampling position along a ray can be stored in an intermedi-
ate texture. Typically, just the 1D ray parameter is held, i.e., the length
between entry point into the volume and current position [227]. The men-
tioned intermediate values are continuously updated during ray traversal.
Because OpenGL (as well as DirectX) has no specification for a simultane-
ous read and write access to textures, a ping-pong scheme makes such an
update possible. Two copies of a texture are used; one texture holds the
data from the previous sample position and allows for a read access while
the other texture is updated by a write access. The roles of the two textures
are exchanged after each iteration. Textures can be efficiently modified via
render-to-texture functionality (e.g., by means of a frame-buffer object).

Some intermediate parameters can either be stored in 2D textures or,
alternatively, computed on-the-fly within a fragment program. For exam-
ple, the ray direction can be computed once and then stored in a texture (as
in [139]) or computed on-the-fly (as in [227]). As in single-pass ray casting,
the ray direction can be determined by taking the normalized difference
vector between exit point and entry point or the normalized difference be-
tween entry point and camera position.

Other important aspects deal with the implementation of the fragment
programs. Different programs are used in different parts of a multipass
rendering approach. Figure 7.4 shows the principal structure of multipass
rendering for GPU ray casting.

Ray set-up for multipass rendering is analogous to ray set-up for single-
pass ray casting. The ray set-up is performed once per frame to compute
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the initial parameters for the rays, i.e., the entry points into the cube-
shaped volume and the direction of the rays (in [139]) or the initial ray
parameter (in [227]). The entry points are determined by rendering the
front faces of the volume and attaching the positions to the vertices.

Ray traversal is performed via multiple render passes. Fragments are
generated by rendering the front faces of the volume bounding box. The
new position is computed by shifting the previous position along the ray
direction according to the integration step size. The contribution of this
ray segment (between previous and subsequent position) is accumulated ac-
cording to front-to-back compositing (Equation 7.1). The source color Csrc

and source opacity αsrc can be obtained by evaluating the transfer function
at the sample points [139]. Alternatively, the pre-integrated contribution
of the ray segment between the two points can be taken into account [227].
Regardless whether pre-integration or point sampling are used, a ping-pong
scheme is employed to iteratively update the colors and opacities along the
rays.

Another important aspect is the implementation of the stopping crite-
rion. In particular, ray traversal has to end when the ray is leaving the
volume. In addition, early ray termination leads to cancellation of ray
traversal as soon as a certain opacity level is reached. This ray termination
cannot be included in the above fragment program for ray traversal and
integration because we cannot assume that the GPU provides the func-
tionality for a conditional break of the loop. Therefore, ray termination is
implemented in another fragment program that is executed after the shader
for traversal and integration (see Figure 7.4). Actual ray termination is im-
plemented by using a depth test and setting the z-buffer accordingly, i.e.,
the z-value is specified in a way to reject fragments that correspond to
terminated rays. In addition to the termination of single rays on a pixel-
by-pixel basis, the whole iteration process (the outer loop in multi-pass
rendering) has to stop when all rays are terminated. An asynchronous oc-
clusion query (see Section 2.4.3) allows us to check how many fragments
are actually drawn in a render process; multipass rendering is stopped
when the occlusion query reports no drawn fragments [227]. An alterna-
tive solution is based on the early z-test (as used in [139]). The maximum
number of render passes has to be known beforehand, e.g., by comput-
ing the worst-case number of sampling steps. Here, all sampling steps are
always initiated by multipass rendering. Fragments that correspond to ter-
minated rays, however, are rejected by the efficient early z-test. In this way,
the time-consuming fragment programs are skipped for terminated rays.

In the remainder of this section, the two implementations [139, 227]
are described separately. The approach by Röttger et al. [227] is realized
as follows. Three floating-point textures, with two components each, are
used for intermediate values: the first texture for accumulated RG values,
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the second texture for accumulated BA values, and the third texture for the
single-component ray parameter (i.e., the other component is not used).
In all rendering passes, fragments are generated by rendering the front
faces of the volume box. Ray set-up and the first integration step are
combined in a single render pass (and therefore in a combined fragment
program). The implementation uses multiple render targets to update the
three aforementioned 2D textures.

A second fragment program realizes a single ray traversal and integra-
tion step. Nonnormalized ray directions are attached as texture coordi-
nates to the vertices of the volume’s bounding box and interpolated during
scanline conversion. Actual direction vectors are determined within the
fragment program by normalizing to unit length. The current sampling
position is computed from the direction vector and the ray parameter (as
fetched from the intermediate texture). The subsequent position is ob-
tained by adding the fixed traversal step size. A 3D texture look-up in
the data set provides the scalar values at the two endpoints of the current
ray segment. These two scalar values serve as parameters for a dependent
look-up in the pre-integration table. If (optional) volume illumination is
switched on, the gradients included in the 3D data texture are used to evalu-
ate the local illumination model (typically Phong or Blinn-Phong). Finally,
all contributions are added and combined with the previously accumulated
RGBA values according to the compositing equation (Equation 7.1).

A third fragment program is responsible for ray termination. It is
executed after each traversal step. The ray termination program checks
whether the ray has left the volume or the accumulated opacity has reached
its limit. When a ray is terminated, the z-buffer is set so that the corre-
sponding pixel is no longer processed (in any future rendering pass for ray
traversal).

An asynchronous occlusion query is applied to detect when all rays are
terminated. A total number of 2n+1 render passes is required if n describes
the maximum number of samples along a single ray.

Krüger and Westermann [139] use a similar algorithmic structure but
include some differences in their implementation. Their ray set-up is dis-
tributed over two different rendering passes. The first pass determines the
entry points into the volume. The front faces of the volume box are ren-
dered, with the 3D positions attached to the vertices. In-between positions
are obtained via interpolation during rasterization. The 3D positions are
written to a 2D render texture that we denote POS. The second pass com-
putes the ray direction by taking the normalized difference between exit
and entry points (at the boundaries of the volume). Only in this second
pass are fragments generated by rendering the back faces of the volume
box. The 3D positions of the exit points are attached to the vertices and
interpolated during scanline conversion. The entry points are read from
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the texture POS. In addition to the ray direction, the length of each ray is
computed and stored in a 2D render texture denoted DIR.

The main loop iterates over two different fragment programs. In these
rendering passes, fragments are generated by drawing the front faces of
the volume. The first program implements ray traversal and integration.
Each render pass samples m steps along the ray by partially rolling out
the traversal loop within the fragment program. This avoids some data
transfer between fragment program and textures (for the accumulated RGBA

values) and therefore increases the rendering performance. In addition, the
traversal shader checks whether the ray has left the volume, based on the
length of a ray that is read from the texture DIR. If a ray has left the volume,
opacity is set to a value of one. The second shader program implements ray
termination. Here, opacity is checked against a given threshold. If the ray
is ended (due to early ray termination or because it has left the volume),
the z-buffer is set so that the corresponding pixel is no longer processed.

Krüger and Westermann [139] use a fixed number of rendering passes
and do not employ an occlusion query. The number of passes depends on
the maximum length of a ray, the traversal step size, and the number of
intermediate steps m. Due to the efficiency of the early z-test, the overhead
for possibly unnecessary render passes is small.

7.5 Ray Casting in Tetrahedral Grids
Unstructured grids are widely used in numerical simulations to discretize
the computational domain. Their resolution can be locally adapted to
achieve a required numerical accuracy while minimizing the total num-
ber of grid cells. For example, unstructured grids are popular in appli-
cations like computational fluid dynamics (CFD). Although unstructured
grids may contain a variety of different cell types (such as tetrahedra, hexa-
hedra, or prisms), these grids can always be decomposed into a collection of
tetrahedra. Therefore, tetrahedral meshes are the most important type of
unstructured grids. Section 1.5.1 provides more information on tetrahedral
grids.

Volume rendering of tetrahedral meshes is traditionally implemented on
graphics hardware by means of cell projection, e.g., according to Shirley
and Tuchman [239]. Unfortunately, cell projection with noncommutative
blending requires a view-dependent depth sorting of cells, which still has to
be performed on the CPU. Whenever the camera or the volume is moved,
new graphical primitives have to be generated by the CPU and trans-
ferred to the GPU. Therefore, cell projection benefits only in parts from
the performance increase of GPUs. Another problem of cell projection is
that cyclic meshes require special treatment [132]. With the R-buffer ar-
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chitecture [305, 125] order-independent cell projection could be achieved;
however, the R-buffer has not been realized yet.

Fortunately, ray casting for tetrahedral meshes can overcome these
problems. This chapter describes a ray-casting approach that can be com-
pletely mapped to the GPU. This approach was proposed by Weiler et
al. [289], who provide details of their implementation and additional back-
ground information. Similar to ray casting in uniform grids (see previous
sections), the algorithm can be readily parallelized because the operations
for each ray are independent. A ray is once again identified with its cor-
responding pixel on the image plane. Therefore, rays can be processed in
parallel on the GPU by mapping the ray-casting operations to fragment
programs. The rendering performance can additionally be increased by
early ray termination.

7.5.1 Basic Structure of the Algorithm

GPU ray casting is based on a ray-propagation approach similar to the
CPU approach by Garrity [77]. Figure 7.5 illustrates how each viewing ray
is propagated in a front-to-back fashion from cell to cell until the whole
grid has been traversed. The traversal follows the links between neigh-
boring cells. A ray begins at its first intersection with the mesh, which is
determined during an initialization phase.

In the implementation of Weiler et al. [289], the traversal is performed
in multiple render passes. In each pass, the color and opacity contribution
of a pixel’s current cell is computed analogously to the GPU-based view-
independent cell projection by Weiler et al. [290]. Pre-integrated volume
rendering is used to determine the contribution of a ray segment within a
tetrahedron [226]. Finally, these contributions are accumulated according
to the front-to-back compositing equation (Equation 7.1). The convexifi-

image
plane

eye

rays

Figure 7.5. Ray traversal in a tetrahedral grid. For each pixel, one viewing ray is
traced. The ray is sampled at all intersected cell faces (white dots).
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Ray setup (initialization)

While (within the mesh)

Compute exit point for current cell

Determine scalar value at exit point

Compute ray integral within current cell

via pre-integration

Accumulate colors and opacities by blending

Proceed to adjacent cell through exit point

End while

Listing 7.5. Pseudocode for ray casting in a tetrahedral grid.

cation approach by Williams [302] is used to allow for reentries of viewing
rays in nonconvex meshes. Convexification converts nonconvex meshes
into convex meshes by filling the empty space between the boundary of the
mesh and a convex hull of the mesh with imaginary cells. An alternative
approach [291] applies a technique similar to depth peeling [67] to handle
nonconvex meshes. Here, the basic idea is to perform ray casting for sev-
eral depth layers of the boundary of the tetrahedral mesh. Each of these
depth layers can be processed by the above ray-casting method, which is
only designed for convex grids.

Although ray casting for uniform grids and tetrahedral grids are
strongly related to each other, some important differences have to be taken
into account to process tetrahedral meshes. First, the topological informa-
tion about the connectivity of neighboring cells has to be stored, i.e., more
complex data structures have to be handled. Second, ray traversal samples
the volume at entry and exit points of cells, i.e., intersections between ray
and cells need to be computed.

Fragment programs are used to perform all computations for the ray
propagation. Fragments are generated by rendering screen-filling rectan-
gles. Each rendering pass executes one propagation step for each viewing
ray. The whole mesh is processed by stepping through the volume in mul-
tiple passes. The pseudocode of the algorithm is given in Listing 7.5.

The algorithm starts by initializing the first intersection of the viewing
ray, i.e., an intersection with one of the boundary faces of the mesh. This
can be implemented using a rasterization of the visible boundary faces,
similar to ray casting in uniform grids. However, it may also be performed
on the CPU as there are usually far less boundary faces than cells in a
mesh, and thus, this step is not time critical.

The remaining steps can be divided into the handling of ray integration
and ray traversal. These steps have to transfer intermediate information
between successive rendering passes. This information is represented by
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several 2D RGBA textures that have a one-to-one mapping between texels
and pixels on the image plane. The textures contain the current intersection
point of the ray with the face of a cell, the index of the cell the ray is about
to enter through this face (including the index of the entry face), and the
accumulated RGBA values.

The intermediate textures are read and updated during each rendering
pass. Because OpenGL (as well as DirectX) has no specification for a simul-
taneous read and write access to textures, a ping-pong scheme makes such
an update possible. Two copies of a texture are used; one texture holds the
data from the previous sample position and allows for a read access while
the other texture is updated by a write access. The roles of the two textures
are exchanged after each iteration. Textures can be efficiently modified via
render-to-texture functionality (e.g., by means of a frame-buffer object; see
Section 2.4.2).

7.5.2 Mesh Representation

Before we discuss ray integration and ray traversal in more detail, we would
like to show how the rather complex mesh data can be represented on the
GPU. A tetrahedral mesh contains information on topology (neighboring
cells), geometry (position of vertices, normal vectors), and scalar data val-
ues. Figure 7.6 illustrates how this information is attached to a mesh for
the example of a 2D mesh. Cells are labeled by an integer index t that
ranges from 0 to n − 1, where n is the number of cells in the mesh. Each
tetrahedron t has four faces. The normal vectors on the faces are labeled
nt,i, where i ∈ {0, 1, 2, 3} specifies the face. Normal vectors are assumed
to point outwards. The four vertices of a tetrahedron t are denoted vt,i;
vertex vt,i is opposite to the ith face. The neighbor of a tetrahedron t that

vt,1

vt,2

vt,0

nt,0

nt,2
nt,1

t

at,0

at,2
at,1

t

ft,0

ft,2 ft,1

t

(a) (b) (c)

Figure 7.6. Terminology for the tetrahedral mesh representation. (a) The vertex
vt,i is opposite to the ith face of cell t; the normal nt,i is perpendicular to the
ith face. (b) The neighboring cell at,i shares the ith face. (c) The ith face of t
corresponds to the ft,ith face of t’s neighbor at,i . (Figures adapted fromWeiler et
al. [289].)
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Data in Tex coords Texture data
texture u v w r g b α

Vertices t i vt,i —
Face normals t i nt,i ft,i

Neighbor data t i at,i — —
Scalar data t — gt ĝt

Table 7.1. Mesh data represented by textures (adopted fromWeiler et al. [289]).

is adjacent to the ith face is labeled at,i. The index of the face of at,i that
corresponds to the ith face of t is called ft,i.

In addition to the structure of the mesh, the data values play an im-
portant role. The scalar field value s(x) at a point x can be computed by

s(x) = gt · (x− x0) + s(x0) = gt · x + (−gt · x0 + s(x0)) . (7.2)

The gradient of the scalar field, gt, is constant within a cell because a linear
(barycentric) interpolation is assumed. The advantage of this representa-
tion is that the scalar values inside a cell can be efficiently reconstructed
by computing one dot product and one scalar addition, while we still need
to store only one vector gt and one scalar ĝt = −gt · x0 + s(x0) for each
cell (x0 is the position of an arbitrary vertex of the cell).

The mesh data is stored in 2D and 3D RGBA textures at floating-point
resolution. Because the mesh data is constant for a stationary data set,
these textures are generated in a pre-processing step on the CPU. Table 7.1
gives an overview of this texture representation. Cell indices are encoded
in two texture coordinates because their values can exceed the range of a
single texture coordinate. 3D textures are used for vertices, face normals,
and neighbor data; a 2D texture is used for the scalar data. The textures
are accessed via the cell index. For 3D textures, the additional w coordinate
represents the index of the vertex, face, or neighbor.

7.5.3 Ray Integration and Cell Traversal

Integration along a whole ray is split into a collection of integrations within
single cells. The evaluation of the volume-rendering integral within a
cell can be efficiently and accurately handled by pre-integration (see Sec-
tion 4.5). Röttger et al. [226] describe pre-integration in the specific context
of tetrahedral cells.

For the following discussion, we assume that we have a 3D pre-
integration table that provides the color Csrc and opacity αsrc of a ray
segment. The parameters for the look-up table are the scalar values at
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the entry point and exit point of the segment, as well as the length of the
segment.

The entry point and its scalar value are communicated via the inter-
mediate 2D textures. In addition, the index of the current cell is given in
these textures. The exit point is computed by determining the intersection
points between the ray and the cell’s faces and taking the intersection point
that is closest to the eye (but not on a visible face). We denote the index
for the entry face by j, the position of the eye by e, and the normalized
direction of the viewing ray by r. Then the three intersection points with
the faces of cell t are e + λir, where 0 ≤ i < 4 ∧ i �= j and

λi =
(v − e) · nt,i

r · nt,i
, with v = vt,3−i .

Note that no intersection is checked for the entry face j because this in-
tersection point is already known. A face is visible and its corresponding
intersection point should be discarded when the denominator in the above
equation is negative. The minimum of the values λi is computed in the
fragment program to determine the exit point.

The exit point is used to calculate the corresponding scalar value ac-
cording to Equation 7.2. Also, the distance between exit and entry point
is determined. With the length of the ray segment and the two scalar val-
ues at the endpoints of the segment, a look-up in the 3D pre-integration
table yields the color Csrc and opacity αsrc of this segment. Finally, this
RGBA contribution is accumulated according to the compositing equation
(Equation 7.1).

The traversal of the whole mesh is guided by the current cell index
stored in the intermediate textures. The fragment program takes the cur-
rent index and updates each texel of the texture with the index of the
cell adjacent to the face through which the viewing ray leaves the current
cell. This index is given by at,i for the current cell t, where i is the index
that corresponds to the exit face. Boundary cells are represented by an
index −1, which allows us to determine whether a viewing ray has left the
mesh. The current cell index is also used to implement early ray termina-
tion: the index is set to −1 when the accumulated opacity has reached the
user-specified threshold.

This approach is only valid for convex meshes, where no “reentries”
into the mesh are possible. Therefore, nonconvex meshes are converted
into convex meshes by filling the empty space between the boundary of
the mesh and a convex hull of the mesh with imaginary cells during a pre-
processing step [302]. An alternative approach [291] applies a technique
similar to depth peeling [67] to handle nonconvex meshes.

Another aspect is the implementation of ray termination. Two issues
have to be taken into account. First, for each fragment we have to detect
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(a) (b)

Figure 7.7. GPU-based ray casting in a tetrahedral grid. Image (a) shows the
isosurface of an orbital data set, image (b) a semi-transparent volume rendering.
(Images courtesy of M. Weiler.)

whether the corresponding ray is terminated (due to early ray termina-
tion or because the ray has left the volume). Second, the whole render
loop has to be stopped when all rays are terminated (see the discussion in
Section 7.4). Ray termination is realized by using a depth test and set-
ting the z-buffer accordingly, i.e., the z-value is specified in a way to reject
fragments that correspond to terminated rays. Actual ray termination is
implemented in another fragment program that is executed after the shader
for traversal and integration. The ray termination shader checks whether
the current index is −1. In this case, the z-value is set to a value that
prevents further updates of the corresponding pixel, i.e., subsequent exe-
cutions of the shader for ray integration and cell traversal are blocked by
the efficient early z-test. An asynchronous occlusion query is employed to
determine when all rays have been terminated. The asynchronous delivery
of the occlusion query result leads to some additional rendering passes.

Figure 7.7 shows example images generated by GPU-based ray casting
in a tetrahedral grid. Figure 7.7 (a) depicts the isosurface of an orbital
data set, Figure 7.7 (b) a semitransparent volume rendering.

7.6 Further Reading
GPU ray casting was introduced by Röttger et al. [227], followed by an
alternative implementation by Krüger and Westermann [139]. These two
approaches rely on multipass rendering. Single-pass ray casting is described
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by Stegmaier et al. [251]. They provide the source code of their implementa-
tion, which is based on assembler-level fragment shaders. Klein et al. [127]
describe empty-space leaping in order to accelerate GPU ray casting.

The aforementioned papers discuss ray casting for uniform grids. The
first GPU ray-casting approach for tetrahedral meshes was proposed by
Weiler et al. [289]. In a follow-up paper, Weiler et al. [291] include the
compression of tetrahedral strips to accommodate larger data sets within
GPU memory in order to achieve a fast rendering of these large meshes. An
overview of GPU methods for tetrahedral meshes, including ray casting, is
given by Silva et al. [244].
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Improving Performance

THE PERFORMANCE OF GPU-BASED volume-rendering algorithms is usu-
ally bounded by the fragment processor. With larger data sets, higher

sampling rate and image resolution, more fragments are processed to ac-
curately represent the data. With a larger number of fragments, mem-
ory bandwidth and latency become increasingly critical, because multiple
data values from the volume are read for each fragment. Because memory
bandwidth and latency strongly depend on the employed memory access
patterns, we have to find ways to access the volume data during rendering
in an optimized way.

In addition to memory access bottlenecks, complex fragment program
computations with a lot of ALU1 instructions can also be a major bot-
tleneck. Therefore, the number of fragments for which complex shaders
are executed must be reduced. One way to achieve this is by performing
“expensive” computations and accessing memory only selectively. Further-
more, methods like leaping over empty space, skipping occluded parts, and
termination of rays that have accumulated sufficient opacity help to ac-
complish this goal.

8.1 Improving Memory Access
Even though today’s GPUs provide an enormous peak memory bandwidth
of more than 30 GB per second, the visualization of large-volume data
requires optimization techniques to achieve satisfying frame rates.

Consider a 1-GB volume: in theory a memory bandwidth of 30 GB per
second should provide us with sufficient bandwidth to access the complete
volume data 30 times per second; thus, neglecting rendering times, this

1ALU: arithmetic logic unit.
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should yield 30 frames per second frame rate. In practice however, there
are several reasons why this calculation is totally academic.

• For a single trilinear interpolation, eight data values from the volume
must be read. Many of those data values will be read multiple times,
because neighboring fragments might require the same data values to
compute a trilinear interpolation. GPU-internal texture-caches try to
address this problem by providing fast access to data values that were
read by a previous texture fetch, however they cannot completely
prevent multiple access to volume data values.

• Some algorithms require multiple interpolated data values for com-
puting a per-fragment result. For instance, for high-quality filtering
the contribution of many voxels is required. In addition, on-the-fly
shading requires fetching neighboring voxels for computing the local
gradient.

• The theoretical GPU memory bandwidth can only be achieved if
memory is solely accessed in a texture-cache friendly manner. This
is not typical in many cases, especially when using 3D textures or
when the results of previous texture fetches is used as the texture-
coordinate for a subsequent texture fetch (dependent texture fetch).
Thus, the actual sustained bandwidth is usually much lower than we
would expect.

In addition to memory bandwidth limitations, the role of memory latency is
often underestimated. For read access to memory, the term memory latency
refers to the time between a request and the delivery of the data value.
Because GPUs are designed as streaming processors with an optimized
memory controller, memory latency can be hidden quite efficiently if data is
read or written sequentially. Pairing memory access with math instructions
is another efficient method to hide memory latency. This optimization is
usually carried out automatically by the shading language compiler or the
GPU driver.

Despite all of these optimizations, image-order algorithms such as ray
casting produce noncoherent memory access patterns that significantly re-
duce the performance of the memory subsystem. Even object-order ren-
dering algorithms can show strange dependencies of the frame rate on the
current viewing direction. For 3D texture–based slicing on some graphics
hardware, the performance when looking mainly along the z-direction is
much faster compared with other viewing directions. This is due to incon-
sistent texture-cache efficiency. Let us assume that we have implemented
an object-order volume-rendering algorithm that accesses the volume data
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Figure 8.1. In a linear memory layout (left), the distance between neighboring
voxels differs depending on the major axis, whereas in a swizzled memory layout,
neighboring voxels have a more consistent distance (block-based).

0 2 4 6 8 10 12 14 16 18

frames per second

Unswizzled

Swizzled

Performance Swizzled/Unswizzled

X Y Z

Figure 8.2. Comparison of the rendering performance along the three main axes
for an on-the-fly gradient shader using swizzled and unswizzled 3D textures. Mea-
surements were done with an NVIDIA GeForce 6800 GT PCIe x16 graphics card.
Note that, in contrast with the unswizzled 3D texture, the swizzled 3D texture pro-
vides a consistent frame rate along the viewing directions.
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in Figure 8.1 (left) in the x-direction first, followed by the y-direction and
finally the z-direction. Because the data will be read in a linear fashion, the
memory controller and texture caches are utilized very efficiently. Please
recall that each time memory is read, a certain number of sequential data
values are loaded into a cache-line. If a data value with an address close to
a previously read data value is read, the probability that the data value is
already in the cache-line is very high. In slice-based volume rendering, the
memory access patterns will be very similar to the scenario described above
if the proxy geometry is oriented mainly orthogonal to the z-direction.

However, if we access the volume data in the z-direction first, followed
by the y-direction and finally the x-direction, we will access the data values
in a nonlinear fashion, actually we will jump forth and back in memory.
This access pattern is disadvantageous for memory controllers and tex-
ture caches, reducing the performance significantly. If proxy geometry in
slice-based volume rendering is oriented mainly orthogonal to the x- or
y-direction, memory access patterns will be very similar to this scenario.
Due to the inconsistent utilization of the memory controller and texture
caches, we will obtain very different rendering performance depending on
the viewing direction (see Figure 8.2).

8.1.1 Mipmapping

For minification of volume data, i.e., if the projected voxel size on the
output image is smaller than the pixel size, mipmapping can improve ren-
dering performance and reduce artifacts. MIP is the acronym for the Latin
phrase multum in parvo, meaning “much in a small space.” Mipmaps are
smaller pre-filtered versions of the original data. Each mipmap level con-
sists of a copy of the pixel or voxel data with half the resolution of the
next lower mipmap level. 2D mipmaps increase the memory required for
storing the volume data by approximately 1/3, while 3D mipmaps require
1/7 additional memory.

GPUs support mipmapping of 1D, 2D and 3D textures. They allow
the storage of multiple mipmap levels for each texture and automatically
choose and interpolate appropriate mipmap levels during rendering depend-
ing on the zoom factor. Due to the smaller size of mipmaps and the closer
proximity of neighboring voxels in lower-resolution mipmap levels, texture
caches in graphics hardware can be utilized much more efficiently. Thus,
mipmapping improves the rendering performance for minified volume data
significantly. Minification is typical for computer games, where volumetric
effects like clouds, fire, or explosions are often far away from the camera
(see Chapter 11).

Since users exploring scientific volume data are often interested in small
details hidden in the data, volume data in scientific applications is usually
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magnified. Consequently, the full resolution version of the volume data
must be used during rendering and mipmapping will therefore not improve
the rendering performance.

8.1.2 Block-Based Swizzling

To circumvent this problem, one option is to store the volume data in a
block-based fashion as shown in Figure 8.1 (right). This kind of rearrange-
ment of the voxels is often referred to as swizzling. A block-based swizzling
approach is conceptually equivalent to bricking as described in Section 17.2,
but now in the context of optimized memory access instead of the context
of limited texture memory. Note that the block size of 23 in Figure 8.1 is
used for clarification only. Large block/brick sizes such as 323 might be
more efficient. In this context, you should also keep in mind that we need
at least one voxel overlap between neighboring blocks to ensure continuous
interpolation (see Sections 3.3.1 and 17.2). The smaller the block size, the
greater the induced memory overhead due to the overlap.

With a block-based approach, it is already possible to increase the lo-
cality of most neighboring voxels significantly. If we access neighboring
data values inside a block, the addresses of the data values will most of the
time be closer than in an unswizzled memory layout. Once again, please
keep in mind that local memory access increases the cache hit probabil-
ity. However, there is still a big distance between two neighboring voxels
belonging to different blocks. Anyhow, the blocks/bricks are sorted and
rendered one-by-one as described in Section 17.2. Consequently, no data
values from neighboring blocks will be required, because memory access
across block-boundaries is handled by the overlap.

8.1.3 Multioriented Swizzling

In order to further improve the average frame rate for different viewing
directions, we can alternate the orientation of neighboring blocks [294];
that is, the fastest, the medium, and slowest axis for storage of data inside
a block are alternated. The following storage pattern ensures a balanced
memory access performance (fastest, medium, slowest):
(x,y,z), (y,z,x), (z,x,y),
(x,y,z), (y,z,x), (z,x,y),
(x,y,z), (y,z,x), etc.

Consequently, the varying performance for different viewing directions
is averaged out within a single image.

A swizzled volume data memory layout can provide a more consistent
rendering performance for all viewing directions. Note that some GPUs al-
ready provide consistent 3D texture performance if all texture dimensions
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are a power of two (all NVIDIA GPUs), while other GPUs require addi-
tional effort such as described in this section to achieve view-independent
frame rates (most ATI GPUs).

8.2 Asynchronous Data Upload
Asynchronous data transfer allows components inside a PC to exchange
data without involvement of the CPU; i.e., the CPU can continue working
on other tasks while the data is transferred. While the CPU initiates the
transfer, the transfer itself is performed by the DMA2 controller.

If the volume data is too large to be stored entirely in GPU memory,
data blocks must be reloaded into GPU memory during rendering (see
Section 17.2). To achieve the best performance during the upload, the
blocks of data should already be prepared in main memory in such a way
that they can be sent to the GPU as a contiguous block of data; that is,
the data should be stored in a contiguous block of main memory including
the overlap to neighboring blocks.

When sending texture data to the GPU using the glTexSubImage3D or
glTexSubImage2D OpenGL commands, the CPU usually copies the data
into AGP3 memory and blocks until all the data has been sent to the
GPU. Consequently, all subsequentOpenGL commands are stalled until the
data transfer has been completed. The pixel buffer object (PBO) OpenGL
extension (see ARB pixel buffer object extension) allows for the uploading
of texture data to the GPU asynchronously using DMA; i.e., the CPU does
not block if this extension is used for data transfer. However, the data has
to be available in AGP memory already in the GPU internal format.

As discussed in the previous section, some graphics cards use a rear-
ranged format for 3D texture data in GPU memory to increase the locality
of neighboring data values. This has the consequence that the CPU will be
rearranging the data in main memory before uploading the brick to GPU
memory. One possible solution to prevent involving the CPU for uploading
texture data to the GPU is to store the bricks in main memory in the same
format that the GPU uses internally and tell the driver that the data is al-
ready prepared. Currently however, there is no official OpenGL mechanism
available to achieve this.

Non–power-of-two (NPOT, see ARB texture non power of two OpenGL
extension) textures, however, are not rearranged and copied by the driver
before they are uploaded into GPU memory. Consequently, NPOT textures
can be uploaded asynchronously with an upload bandwidth that is usually
much closer to the theoretical limit.

2DMA: direct memory access.
3AGP: accelerated graphics port.
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void *pboMemory, *texData;

// create and bind texture image buffer object

glGenBuffers(1, &texBuffer);

glBindBuffer(GL PIXEL UNPACK BUFFER EXT, texBuffer);

glBufferData(GL PIXEL UNPACK BUFFER EXT, texSize, NULL,

GL STREAM DRAW);

// get first brick

texData = getNextBrick();

while (texData) {
// map the texture image buffer

pboMemory = glMapBuffer(GL PIXEL UNPACK BUFFER EXT,

GL WRITE ONLY);

// modify (sub-)buffer data

memcpy(pboMemory, texData, texsize);

// unmap the texture image buffer

if (!glUnmapBuffer(GL PIXEL UNPACK BUFFER EXT)) {
// Handle error case

}
// update sub-volume from texture image buffer

glTexSubImage3D(GL TEXTURE 3D, 0, 0, 0, 0,

brickWidth, brickHeight, brickDepth,

GL LUMINANCE8, GL UNSIGNED SHORT,

BUFFER OFFSET(0));

// draw the brick

glBegin(GL QUADS);

...

glEnd();

texData = getNextBrick();

}

glBindBuffer(GL PIXEL UNPACK BUFFER EXT, 0);

Listing 8.1. Fast transfer of 3D texture data from main memory to GPU memory
using the pixel buffer object OpenGL extension.

It should be noted that such NPOT textures should be kept small to pre-
vent view-dependent rendering performance due to cache-inefficient mem-
ory access patterns (see Section 8.1). An additional option already dis-
cussed in the previous section is to store blocks oriented differently along
the main axes [294]. We recommend using NPOT textures with a resolution
close to 64× 64× 64 voxels, for example 64× 64× 63.
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no PBO
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Figure 8.3. Comparison of the upload bandwidth on an NVIDIA GeForce 6800 GT
PCIe x16 with power-of-two (POT) 3D textures and non–power-of-two (NPOT) 3D
textures with and without pixel buffer objects (PBO).

To achieve the best upload performance, the texture data should be
streamed asynchronously to the GPU using the ARB pixel buffer object

OpenGL extension. The example C code in Listing 8.1 uses PBOs to upload
data from AGP memory asynchronously to GPU memory using the DMA
controller.

Our own measurements on an NVIDIA GeForce 6800 GT PCIe x16
show that uploading NPOT 3D textures with PBO yields approximately
four times the transfer rate compared with uploading POT 3D textures
without PBO (see Figure 8.3). Note that the bandwidth in the optimal
case is still far away from the maximum theoretical bandwidth of 4 GB/sec
on PCIe x16. This might be due to the AGP/PCIe bridge on the used
NVIDIA board. The poor performance of the PBO/POT combination
probably indicates a driver problem (driver version 78.01).

8.3 Bilinear Filtering
Each time we sample a 3D texture in a fragment program, the graphics
hardware has to request 8 data values from the memory to perform a tri-
linear interpolation. Hence it is no surprise that texture fetches from 3D
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2D texture–based

3D texture–based

Performance 2D/3D texture–based
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Figure 8.4. Performance comparison of 2D and 3D texture–based pre-integrated
volume rendering with an NVIDIA GeForce 6800 GT PCIe x16 graphics card.

textures are “expensive” operations. One naive idea to overcome these
expensive operations to achieve a performance improvement would be to
replace linear filtering for 3D textures by nearest-neighbor filtering. Un-
fortunately, because most modern GPUs do not implement an optimized
path in the graphics hardware for different filtering modes, a performance
benefit cannot be achieved for nearest-neighbor filtering.

In contrast with 3D textures, a 2D texture fetch however only requires
4 data values from memory to perform a bilinear interpolation. Conse-
quently, linearly interpolated samples from 2D textures only require half
the memory bandwidth as filtered 3D textures fetches. Due to their smaller
size, 2D textures have the additional advantage that they are much simpler
to handle for GPU-internal texture caches. Furthermore, because GPUs
are mainly designed to render computer games, which mostly employ 2D
textures, GPUs are more optimized to handle them.

As discussed in Section 3.2, we can employ 2D textures to render vol-
ume data. In our experience, the frame rate of 2D texture–based volume
rendering is approximately 50% faster compared with its 3D texture–based
counterpart (see Figure 8.4). However, to have one stack of slices for each of
the main axes, the data has to be tripled. Quite often, tripling the volume
might not be a feasible solution, especially in the case of large-volume data.
But on the other hand, volume-rendering engines often use a subsampled
copy of the volume data for interactive frames. For such a subsampled ver-
sion of the volume data, we usually have sufficient GPU memory to store
three copies of the data. Another example is very large data that needs
bricking to fit into GPU memory (see Chapter 17). Here, no drawback of
the 2D textures occurs because data needs to be downloaded for each frame
anyway.
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A possible solution that avoids storing three copies of the data in GPU
memory is to reorient the volume data along the dominant main axis on-
the-fly. In such approaches, however, the small delays at certain viewing
angles due to the reorientation of the volume data may be noticeable and
disturbing.

Please note that reintroducing trilinear filtering by utilizing a multi-
texture approach as described in Section 3.4 will nearly absorb the perfor-
mance advantage of 2D texture–based rendering. Hence, 2D texture–based
volume rendering with only bilinear interpolated volume samples should be
used for best performance. The reduced image quality is a trade-off that
is acceptable, especially in many application areas where interactivity is
more important than image quality.

8.4 Empty-Space Leaping

Volumetric data sets contain many features that are not required for the
final rendering. Typically, they are removed by setting zero alpha values in
the transfer function. In order to not waste time on features that have been
removed by the transfer function, empty-space leaping can be employed to
reduce memory access and save computation power (see also Section 7.3.4).

For that purpose, the volume is subdivided into smaller blocks. In
order to detect empty space, all blocks of the volume are classified in a

Figure 8.5. Nonempty blocks of a CT volume for two different transfer functions.
Roughly 40% of the fragments are skipped with the left transfer function, whereas
80% of the fragments are skipped with the right transfer function.
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Figure 8.6. Performance improvement due to empty-space leaping (ESL) for ren-
derings showing bone and skin of the CT data set from Figure 8.5. Note that the
performance improvement is bigger with the bone transfer function, because more
empty space can be skipped.

pre-processing step. For each block, the minimum and maximum scalar
values are stored. Based on the transfer function and the minimum and
maximum density values, the visibility of each block can quickly be deter-
mined after each change of the transfer function [164]. This allows slicing
to be restricted to visible blocks only (see Figure 8.5), thus increasing the
number of vertices but reducing the number of fragments.

Because the vertex processor is usually idle during volume rendering in
most of the cases anyway (the number of slice polygons is rather small), this
technique provides significant performance improvements for many trans-
fer functions and balances out the rendering pipeline more evenly. See
Figure 8.6 for a comparison of rendering with and without empty-space
block-based leaping for different transfer functions. The performance num-
bers were measured with an NVIDIA GeForce 6800 GT PCIe x16 graphics
card.

8.5 Occlusion Culling
A block-based rendering technique as used for empty space skipping is also
usable to prevent the rendering of blocks that are completely occluded by
objects in front of them.
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struct v2f simple {
float2 Position : WPOS;

};

float4 main(v2f simple IN,

uniform samplerRect FrameBuffer

) : COLOR

{
// sample frame buffer

return texRect(FrameBuffer, Position);

}

Listing 8.2. Cg code for filtering frame-buffer pixels that have accumulated suffi-
cient opacity.

To exploit occlusion for higher performance, blocks have to be sorted
and rendered in a front-to-back manner. Before slicing or ray casting each
block, we first render the front faces of the bounding box of each block
with the current contents of the frame buffer applied as a texture; i.e., each
fragment covered by the bounding box of a block outputs the RGBA values
of the frame buffer at this position (see Listing 8.2). Fragments are filtered
out that have an alpha value larger than the occlusion threshold. Using
an alpha test we prevent those fragments from being rendered; i.e., we use
glAlphaFunc(GL LESS, threshold). Again we prefer using the alpha test
to a fragment discard operation, because the latter operations implicitly
disable early fragment tests on most graphics hardware.

The ARB occlusion query OpenGL extension is then employed to count
the pixels that pass this so-called occlusion pass. This extension allows us
to create a query that counts the number of fragments written into the
frame buffer for all rendering commands between the start and the end of
the query. Due to the filtering for the pixels covering the current block, only
fragments are counted that have low opacity (see Listing 8.3). If the number
of pixels counted is 0, all pixels that are covered by the bounding box of
the block whose occlusion we want to find out already have accumulated
sufficient opacity; that is, the block is completely occluded and thus does
not need to be rendered. In the other case, we render the block in the main
volume-rendering pass using any volume-rendering technique.

Because the contents of the frame buffer cannot be accessed in a
fragment program with current graphics hardware, we have to render to
a texture in the volume-rendering pass (see WGL ARB render texture and
GL EXT framebuffer objects OpenGL extensions). This texture is used as
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GLuint query;

GLuint sampleCount;

GLint available;

glGenQueriesARB(1, &query);

...

// for all blocks sorted front-to-back

for (i = 0; i < N; i++) {
// save frame buffer bandwidth

glColorMask(GL FALSE, GL FALSE, GL FALSE, GL FALSE);

glDepthMask(GL FALSE);

glBeginQueryARB(GL SAMPLES PASSED ARB, query);

cgGLEnableProfile(pixelFilteringProfile);

// only render fragments with small alpha

glAlphaFunc(GL LESS, threshold);

glEnable(GL ALPHA TEST);

// render with frame buffer as input texture

renderBoundingBox(i);

glFlush();

glEndQueryARB(GL SAMPLES PASSED ARB);

glDisable(GL ALPHA TEST);

// wait for result of query

do {
glGetQueryObjectivARB(query,

GL QUERY RESULT AVAILABLE ARB,

&available);

} while (!available);

glGetQueryObjectuivARB(query, GL QUERY RESULT ARB,

&sampleCount);

// if some pixels do not have enough opacity

if (sampleCount > 0) {
// write to frame buffer

glColorMask(GL TRUE, GL TRUE, GL TRUE, GL TRUE);

glDepthMask(GL TRUE);

cgGLEnableProfile(volumeRenderingProfile);

// reenable other state, such as 3D texturing

renderBlock(i);

}
}

Listing 8.3. C code for block-based rendering of a volume with occlusion culling.
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an input texture in the occlusion pass to read the alpha values from the
frame buffer for pixels covering the current block. Because nothing is ac-
tually rendered in the occlusion pass (see the color and depth mask in
Listing 8.3), we can utilize the frame-buffer texture as the rendering target
and the input texture at the same time. It is usually advised not to do
so; however, read-write race-conditions, which are the main reason for such
advice, cannot occur in our case. If you feel uncomfortable with this solu-
tion, you may alternatively use a ping-pong technique such as described in
Section 9.5. As usual, it should be understood that context switches with
heavyweight rendering targets such as pbuffers are quite “expensive”; thus,
frame-buffer objects are preferable.

The speed-up sustained by occlusion culling is dependent on the block
size and the transfer function. It can provide a significant speed-up for
isosurface like transfer functions and small block sizes.

8.6 Early Ray Termination

Finer occlusion test granularity than block-based occlusion culling is pro-
vided by early ray termination, another important optimization technique
known from ray casting (see Chapter 7). When tracing rays through a vol-
ume in a front-to-back fashion, many rays quickly accumulate full opacity.
This means that features in the data set in the back are occluded and need
not be considered for rendering the image. Thus the ray can be terminated.

8.6.1 Dynamic Branching

As the primary design principle behind a GPU is basically that of a stream-
ing processor, dynamic branching, i.e., branching based on data values
produced during processing, was not supported on older GPUs. Early
branching support was based on conditional writing; i.e., the GPU had to
execute both sides of the branch before the result of one branch was written
into some output register. Consequently, branching on older GPUs did not
provide any performance benefit. Newer generation GPUs with support for
Shader Model 3.0 (e.g., NVIDIA GeForce7 series and ATI 1xxx series) sup-
port dynamic branching and provide a performance benefit under certain
conditions.

Early ray termination can be easily implemented in a simple ray caster
using dynamic branching. As demonstrated in the Cg fragment program
in Listing 8.4, we branch out of the ray marching loop as soon as the
accumulated opacity has reached a given threshold. This requires front-to-
back compositing along the rays.
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// a simple fragment program for raycasting

// with early ray termination

struct v2f simple {
float4 TexCoord0 : TEXCOORD0;

float4 TexCoord1 : TEXCOORD1;

};

fragout main(v2f simple IN,

uniform sampler3D Volume : TEXUNIT0,

uniform sampler1D TransferFunction : TEXUNIT1,

uniform float3 rayDir

) : COLOR

{
fragout OUT;

// set ray start position

float3 samplePos = IN.TexCoord0.xyz;

OUT.col = float4(0,0,0,0);

float sample;

// integrate along the ray

for (int i=0;i<200;i++)

{
// sample the volume

sample = tex3D(Volume, samplePos).x;

// classification

float4 color = tex1D(TransferFunction, sample);

// blend

OUT.col = (1-OUT.col.a) * color + OUT.col;

// early-ray termination

if (OUT.col.a > .95)

break;

// march

samplePos = samplePos + rayDir;

}
return OUT;

}

Listing 8.4. A ray-casting Cg fragment program that uses a dynamic branch for
early ray termination.
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Unfortunately, dynamic branches often introduce a significant overhead
on current GPUs and provide a speed-up only in the case that many neigh-
boring fragments take the same branch. This is due to the fact that graphics
hardware works in parallel on neighboring pixels and cannot finish process-
ing a pixel before all pixels that are processed at the same time are finished.
Additionally, the branching statement, which is a very “expensive” oper-
ation for current graphics hardware, has to be executed for every single
fragment.

8.6.2 Early Fragment Tests

Because of this problem, other technique employ early z- or early-stencil
operations to “simulate” dynamic branching [140, 227]. In the standard
OpenGL rendering pipeline, the z- and stencil tests are performed after
the fragment-program stage. Consequently, z- or stencil tests would not
provide any speed-up when using expensive fragment programs. Newer
graphics hardware, however, perform a stencil test and a z-test before the
fragment processing stage to prevent unnecessary computations and mem-
ory reads in the fragment stage. These early tests can be employed as
a more efficient dynamic branching mechanism for early ray termination.
However, to achieve a speed-up for direct volume rendering, at least ATI
9500 and NVIDIA GeForce6 class hardware is required.

There exists no explicit API to program early z- and early stencil tests.
Instead, early tests are performed automatically by the graphics hardware.
The hardware may automatically disable early tests without any notifi-
cation. For instance, the early z-test is usually disabled if the fragment
program changes the depth of the incoming fragment. Note that hardware
limitations, other OpenGL states, and driver settings might also implicitly
disable early z- and stencil tests. In general it can be said that speed-
ups using early tests are much trickier to achieve on NVIDIA than on
ATI graphics hardware. You should always refer to the GPU program-
ming guide from the particular GPU vendor to find out about limitations
that might prohibit performance improvements with early tests (see the
developer websites of GPU vendors for those guides).

In order to mask pixels corresponding to rays in the z-buffer that should
not be processed any further, an intermediate pass is performed, in which
the alpha channel of the frame buffer is checked for high alpha values
(see Listing 8.5). Because this intermediate pass is relatively “expensive,”
it turned out to be better to perform this test only every n integration
steps along each ray. For slice-based volume rendering, for example, the
intermediate ray-termination test pass is only performed every n rendered
slices, where n = 10 is usually a good choice. For ray casting, the rendering
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for (int j=1;j<=numSlices;j++)

{
// check if ert-test should be performed

if (j % checkEveryN) == 0))

earlyRayTermination(ertThreshold);

// compute a slice through the volume

computeSlice(j);

// render slice

renderSlice(j);

}

Listing 8.5. C code that checks the frame buffers every n passes for early ray
termination.

of the volume is split into multiple alternating ray-integration and ray-
termination passes. Only few integration steps are performed for each ray
per ray-integration pass; i.e., the ray front is only advanced slightly. After
each integration pass, the rays are checked for possible termination in a
ray-termination pass.

Because only properties of the current fragment, program arguments,
and texture can be read in a fragment program on current hardware, we
render to a texture and bind this texture as an input texture in the ray-
termination pass. Hence the frame-buffer contents can be read for the
ray-termination check.

Before rendering the volume, the depth buffer is cleared with the (de-
fault) maximum depth value. In the main volume-rendering pass, depth
writes are disabled and the depth test is set to GL LESS. In the ray-
termination pass, the front faces of the bounding box of the volume are
rendered, textured with the frame buffer, to check all pixels covered by the
volume. Alternatively and slightly less efficiently, we can use a screen-filled
quad with depth 0 to cover all pixels of the screen.

Only for pixels in the frame buffer with an alpha value above a certain
threshold (e.g., 0.95) is a depth value written. Obviously, the alpha test
can be used to perform this threshold test. Each fragment passing the
alpha test will write a depth value into the frame buffer, preventing later
fragments at this position from passing the GL LESS depth test.

Note that ping-pong rendering with two frame buffers as in Chapter 9.5
should be employed to prevent race conditions when reading from and
writing to the same frame buffer. Our tests showed that this technique
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void earlyRayTermination(float ertThreshold)

{
// write depth

glDepthMask(GL TRUE);

// don’t write colors

glColorMask(GL FALSE,GL FALSE,GL FALSE,GL FALSE);

// test alpha channel of the framebuffer

glAlphaFunc(GL GEQUAL, ertThreshold);

glEnable(GL ALPHA TEST);

glEnable(GL DEPTH TEST);

glDepthFunc(GL LESS);

// disable volume rendering fragment program

cgGLDisableProfile(volumeRenderingProfile);

// bind the framebuffer as input texture

bindFramebufferTexture();

// render all pixels covered by the volume

renderFramebufferToScreen();

// enable volume rendering fragment program

cgGLEnableProfile(volumeRenderingProfile);

// disable alpha test

glDisable(GL ALPHA TEST);

// continue integration

glColorMask(GL TRUE,GL TRUE,GL TRUE,GL TRUE);

// stop writing depth values

glDepthMask(GL FALSE);

// test rays for early ray termination

glEnable(GL DEPTH TEST);

glDepthFunc(GL LESS);

}

Listing 8.6. C code of the intermediate rendering pass that masks pixels with
depth values, preventing further processing of rays through pixels that have accu-
mulated sufficient opacity.

even works without ping-pong rendering on current graphics hardware.
The code for the intermediate pass is outlined in Listing 8.6.

For many transfer functions with high opacity values, early ray termina-
tion provides a significant speed-up. See Figure 8.7 for a comparison of the
performance with and without early ray termination of a 2D texture–based
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Figure 8.7. Performance improvement due to early ray termination (ERT) when
rendering bone and skin of the CT data set from Figure 8.5. Note that the per-
formance improvement is bigger with the skin transfer function, as rays can be
terminated earlier once they hit the skin surface.
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Figure 8.8. Combined performance improvement of empty-space leaping (ESL)
and early ray termination (ERT) when rendering bone and skin of the CT data set
from Figure 8.5. Note that because the methods are complementary, the perfor-
mance is improved significantly for both skin and bone renderings.



�

�

�

�

�

�

�

�

206 Improving Performance

volume renderer with on-the-fly gradient-based shading on an NVIDIA
GeForce 6800 GT PCIe x16 graphics card. Early ray-termination tests
were performed every 15 integration steps and early z-tests were employed
to obtain the results.

In fact, early ray termination and occlusion culling are complementary
acceleration techniques to empty-space skipping. See Figure 8.8 for the
combined performance improvement obtain with empty-space leaping and
early ray termination on an NVIDIA GeForce 6800 GT PCIe x16 graphics
card. If the volume contains a lot of empty space, empty-space skipping
performs quite well while early ray termination and occlusion culling do
not. Vice versa, if the volume does not contain much empty space and
the transfer function is not too transparent, early ray termination and
occlusion culling provide a big speed-up while empty-space skipping does
not perform well.

8.7 Deferred Shading

For shading large volumetric data, it is impractical to store pre-computed
gradients in texture maps. Hence, gradients are often computed on-the-
fly (see Sections 9.4 and 5.6). The resulting gradients have a very high
quality and do not produce any memory overhead; however, many texture
fetches are required for the per-fragment gradient calculation (for example,
six for central differences). A large number of texture fetches decrease per-
formance considerably, hence it is desirable to perform those “expensive”
shading computations only if they are actually necessary.

The basic idea of deferred shading is to perform an “inexpensive” com-
putation for all fragments and to defer “expensive” lighting computations
to a later pass that operates only on a small number of fragments. This
small number of fragments is either obtained by filtering out a small sub-
set of all fragments or by performing the shading operation in image-space
only (a single shading operation for each pixel).

The latter approach can be employed for shading opaque isosurfaces
(see Section 14.5). In this section, we will concentrate on volumetric shad-
ing by deferring shading operations to fragments with alpha values from
classification greater than a given threshold, as shading effects are only ap-
parent if the transparency of a fragment is not too small. We first perform
post-interpolative classification for all fragments. If the alpha value from
classification is below the shading threshold, we blend the result into the
frame buffer. The “expensive” on-the-fly gradient shading computation is
only performed for the remaining fragments.
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The simplest method to implement this is to perform post-interpolative
classification and then use a dynamic branch in a fragment program that is
performing shading only for high opacity fragments. Because the dynamic
branching capabilities on most GPUs only provide a measurable speed-up
when most of the fragments in a particular area of the frame buffer take the
same branch, we will instead once again employ early z-tests for dynamic
branching (see Section 8.6.2). Especially in the case of a quite complex
and expensive fragment program, a two-pass approach with an early z-test
that defers the complex computation to a second pass can provide a huge
performance benefit.

In the first pass, the slice polygon is rendered with a post-classification
fragment program. An alpha test that only allows fragments to pass with an
opacity below the shading threshold ensures that only low-alpha fragments
are blended into the frame buffer. By enabling depth writes in this pass,
we also write a depth value for those fragments.

In the second pass, we render the same slice polygon again. Because we
enable the OpenGL depth test with the GL NOTEQUAL comparison function,

struct v2f simple {
float3 TexCoord0 : TEXCOORD0;

};

half4 main(v2f simple IN,

uniform sampler3D Volume,

uniform sampler1D TransferFunction,

uniform float magnitudeThreshold

) : COLOR

{
// fetch volume scalar and gradient magnitude

// from 2 channel texture

half2 sample = tex3D(Volume, IN.TexCoord0).xy;

// check if gradient magnitude is small

if (sample.y < magnitudeThreshold)

// render unshaded

return tex1D(TransferFunction, sample.x);

else

// render nothing (shade in 2nd pass)

return half4(0,0,0,0);

}

Listing 8.7. Cg fragment program that performs post-interpolative classification
for small gradient magnitudes. All other fragments are shaded in the second pass.
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now only the fragments that were removed in the first pass are processed
by the complex fragment program. Because the depth test is performed
after the fragment stage in the traditional OpenGL rendering pipeline, this
requires an early z-test (see Section 8.6.2). Such a test is performed by
the graphics hardware before the actual fragment program is run for a
certain fragment, thus providing a performance benefit if a large number of
fragments have an opacity below our shading threshold after classification.

In addition to the selective computation of gradients based on the al-
pha values from classification, gradient computation can also be deferred
to regions of the volume that provide “good” gradients. “Bad” gradients
come from homogeneous regions of volume data sets, where the gradient
magnitude is low and gradients have arbitrary orientation, resulting in very
noisy shading results. To remove those noisy regions, a common technique
is to check the gradient magnitude before the computation of the shading
coefficients. If the magnitude of the gradient is below a certain threshold,
the fragment is rendered with the color obtained directly from classifica-
tion. However, this does not provide any significant speed-up, because the
expensive gradient computation has to be performed before the gradient
magnitude can be derived. Thus it is necessary to pre-compute the gradi-
ent magnitude for each voxel of the volume data and store this information
together with the volume data, for example in a two-channel texture.

As before, we render each slice polygon twice. In the first pass, we
fetch the gradient magnitude and scalar data from a two-channel texture
(see Listing 8.7). If the magnitude is below a certain threshold, we classify
and render the unshaded result into the frame buffer. If the magnitude is
above the threshold, we set the alpha value to zero. Using the alpha test, we
make sure that only fragments with alpha greater than zero are rendered;
i.e., we use glAlphaFunc(GL GREATER, 0.0). We enable depth writes to
allow z-values to be written for fragments that are not shaded. We prefer
using the alpha test for selective writing of z-values to a fragment program
discard operation, as such operations implicitly disable early z-tests on
most graphics hardware.

In the second pass, a standard fragment program with gradient and
shading computation is used (see Listing 5.6 in Chapter 5). This expensive
second pass is only performed for a relatively small fraction of the total
fragments rendered, as we enable the depth test to prevent pixels from
being processed that were rendered in the first pass again. The depth
test is set to GL LESS for back-to-front and GL GREATER for front-to-back
rendering. If the volume data consists of many homogeneous regions, the
depth test will make sure that most of the fragments will be processed in
the first pass only.
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If completely transparent fragments are already culled by empty-space
leaping (see Section 8.4), deferred shading based on low opacity only pro-
vides a measurable speed-up when using transfer functions with many small
alpha values. As a matter of course, it is possible to defer expensive shad-
ing operations based on other volume properties, such as material proper-
ties from segmentation information. Such properties can be pre-computed,
stored into texture maps, and used during the first pass for computational
masking.

8.8 Image Downscaling
As mentioned before, the performance of direct volume rendering is usually
bounded by fragment processing. This is due to the fact that either a very
large number of fragments is produced in slicing-based algorithms or very
long and thus “expensive” fragment programs are executed in ray casting–
based algorithms. Reducing the number of fragments by culling fragments
in object-space as described earlier is only one option.

In addition, we can also reduce the number of fragments by rendering
the image into an offscreen render target with lower resolution (for example,
with half the resolution in x and y) and zoom up the image when display-
ing it on the screen. Rendering to a texture (see WGL ARB render texture

OpenGL extension) or frame-buffer object (see EXT framebuffer object

OpenGL extension) are ideal for this purpose, because the volume-rendering
result can be rendered directly to the screen and scaled up to the desired
resolution at the same time. For that purpose, a single screen-filled quad
polygon textured with the low-resolution rendering result is rendered to
the onscreen frame buffer. Built-in texture filters or handcrafted filters can
be applied during this process to make the reduced image resolution less
apparent to the user (see Listing 8.8).

The performance improvement is usually linear with the number of
pixels rendered, i.e., when rendering with half the resolution in x and y we
obtain nearly four times the performance, as the rendering and scaling of
the resulting low-resolution image to the frame buffer does not introduce
significant overhead (see Figure 8.9).

An adaptive image resolution dependent on the homogeneity of the im-
age area could also be a feasible solution. This technique is similar to
adaptive sampling as discussed in Section 9.1.2, but now in image-space as
opposed to object-space. It is known from CPU ray casting where addi-
tional rays are often shot in areas with high variance. To our knowledge,
this method has not yet been applied to GPU-based volume rendering.
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// disable depth test and blending

glDisable(GL DEPTH TEST);

glDisable(GL BLEND);

glMatrixMode(GL PROJECTION);

// save projection matrix & load identity

glPushMatrix(); glLoadIdentity();

glMatrixMode(GL MODELVIEW);

// save modelview matrix & load identity

glPushMatrix(); glLoadIdentity();

// disable fragment and vertex program

cgGLDisableProfile(fProfile);

cgGLDisableProfile(vProfile);

// bind offscreen buffer texture

glActiveTextureARB(GL TEXTURE0 ARB);

glBindTexture(GL TEXTURE 2D, offscreenResult);

glEnable(GL TEXTURE 2D);

// use bilinear filtering

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER,

GL LINEAR);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER,

GL LINEAR);

// render screen-filled quad

glBegin(GL QUADS);

glTexCoord2f(0, 0); glVertex2i(-1,-1);

glTexCoord2f(1, 0); glVertex2i( 1,-1);

glTexCoord2f(1, 1); glVertex2i( 1, 1);

glTexCoord2f(0, 1); glVertex2i(-1, 1);

glEnd();

// restore projection matrix

glMatrixMode(GL PROJECTION);

glPopMatrix();

// restore modelview matrix

glMatrixMode(GL MODELVIEW);

glPopMatrix();

Listing 8.8. C code for upscaling an offscreen rendering result to the screen with
bilinear interpolation.
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Figure 8.9. Performance comparison between rendering with half the viewport
resolution (256 × 256 pixels) and rendering at the full viewport resolution (512 ×
512 pixels). The performance of the reduced resolution rendering includes the final
blow-up to the full viewport size.

8.9 Discussion
The mastery of GPU-based volume rendering is to prevent idle times by
delivering volume data values efficiently to the computational units in the
fragment-processing pipelines. This still remains a challenge, as limited
bandwidths and high latencies of the involved memory subsystems prevent
a constant delivery of data values to the fragment pipelines. Even though
modern GPUs implement several methods to hide memory latency, idle
times often cannot be circumvented. Hence, the number of fragments that
are processed must be reduced to prevent these data delivery delays. In this
chapter, we discussed several methods to offload the fragment-processing
stage by removing fragments early in the rendering pipeline of graphics
hardware. Despite the fact that modern GPUs provide plenty of computa-
tional horsepower, reducing the number of fragments also helps to reduce
the load in the fragment-processing stage.

The following are general guidelines for high-performance volume ren-
dering.

• Find the optimal distribution of the processing subtasks to all pipeline
stages to utilize the processing power of graphics hardware to its max-
imum. Algorithms that are fragment processing bound should offload
some of the tasks to the vertex pipelines, while vertex processing
bound algorithms should offload tasks to the fragment stage.

• Keep volume data as close to the GPU as possible. GPU memory pro-
vides very high bandwidth and low latency. Employing other types of
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memory will result in copying, rearrangement, and transfer of volume
data, which can significantly reduce performance.

• Optimize memory-access patterns: use mipmapping for minification,
swizzle volume data for magnification, and avoid dependent texture
fetches.

• Transfer data asynchronously to GPU memory. If the data does not
fit into GPU memory, make sure that you provide a constant stream
of data to the GPU. Asynchronous transfer of data over AGP or PCIe
allows you to bring in new data while other data is rendered. Data
must be stored in main memory in the native GPU data format to
prevent “expensive” data conversion.

• Cull data that does not contribute to the final image early in the
volume-rendering pipeline. Empty-space leaping, early ray termina-
tion, and occlusion culling are effective methods to achieve this goal.
Early fragment tests such as early z- and early stencil culls often
provide higher speed-ups than dynamic branching.

• Perform “expensive” per-fragment operations selectively. Deferring
such operations to image-space or to only a small subset of the frag-
ments can provide a huge performance benefit.

• Optimize your fragment programs. Complex fragment programs in-
troduce a high-performance penalty for fragment-bound algorithms
such as volume rendering. Constant parameters should be pre-
computed and passed into the fragment program as parameters. Pa-
rameters that change linearly over the proxy geometry should be
computed in the vertex stage.

• Employ multiple levels of resolution to access fewer data values in
regions which are homogeneous or far away from the camera (also see
Section 17.3).

• Use adaptive sampling to reduce the number of trilinear interpola-
tions and memory read operations from the volume.

• Scale down the image size during interaction to reduce the number
of fragments that need to be computed. A reduced image resolution
during interaction is often acceptable for the user.

• Avoid OpenGL context switches by employing lightweight rendering
targets such as frame-buffer objects.
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GPU manufacturers provide several performance optimization tools that
allow one to find bottlenecks in rendering algorithms. NVIDIA offers
NVShaderPerf to report shader performance metrics, an instrumentation
driver (NVPerfKit) to monitor low-level performance counters inside the
driver, and NVPerfHUD for displaying real-time statistics on top of running
applications (see NVIDIA developer website at http://developer.nvidia.
com). ATI offers a plugin for Microsoft’s PIX (Performance Investiga-
tor for DirectX) tool. PIX is a performance-analysis tool that Microsoft
has introduced with the DirectX 9 SDK (see ATI developer website at
http://www.ati.com/developer).

http://developer.nvidia.com
http://developer.nvidia.com
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REAL-TIME EXPLORATION OF VOLUMETRIC DATA is an important tool
that allows finding details hidden within the data that would usu-

ally be overlooked, thus providing additional insight compared with static
visualizations. Hence, one of the most important goals of volume rendering
is to generate results under a given time constraint to provide a high frame
rate and thus interactivity to the user. Time constraints, however, quite
often require trade-offs between quality and performance, which can be
made at different stages of the volume-rendering pipeline. Depending on
the trade-offs made, more or less apparent artifacts are visible in the result-
ing images. In this chapter, we will therefore first identify possible sources
of artifacts during the volume-rendering process. After this improved un-
derstanding of the sources of artifacts, we can then find methods to produce
high-quality volume visualizations even under given time constraints.

Artifacts are introduced in the various stages of the volume-rendering
pipeline. Generally speaking, the volume-rendering pipeline consists of five
stages (see Figure 9.1). First, a sampling stage, which accesses the volume
data to obtain the value of voxels along straight rays through the volume.

Figure 9.1. The volume-rendering pipeline. Each step in this pipeline is a potential
source of artifacts.
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Second, a filtering stage, which interpolates the voxel values. Third, a clas-
sification step, which maps interpolated values from the volume to emission
and absorption coefficients. An optional fourth stage is required if external
light sources are taken into account to compute the shading of the volume
data. Finally, the integration of the volume data is performed. This is
achieved in graphics hardware by blending emission colors with their asso-
ciated alpha values into the frame buffer. This pipeline is repeated until
all samples along the rays through the volume have been processed. Each
stage of the pipeline is a potential source of artifacts.

Note that sampling and filtering are actually performed in the same
stage in graphics hardware; i.e., during slice-based volume rendering, we
define sample positions using texture coordinates of slice polygons. In
image-order–based approaches, sample positions are explicitly computed in
the fragment program. The hardware automatically performs filtering once
the volume is accessed with a texture fetch operation. The position and
weighting factors for the interpolation of data values is identified using the
corresponding texture coordinate, interpolated inside the proxy geometry,
or computed along the ray. The type of filtering performed by the graphics
hardware is specified by setting the appropriateOpenGL state of the volume
texture. Current graphics hardware only supports nearest-neighbor and
linear filtering, i.e., linear, bilinear, and trilinear filtering. However, due
to the programmability of graphics hardware, additional filtering methods
such as cubic filters can be added. Consequently, we will treat sampling
and filtering as two steps, as they become two separate operations once we
implement our own filtering method.

The goal of this chapter is to remove or at least suppress artifacts that
occur during volume rendering while maintaining real-time performance.
For this purpose, all proposed optimizations will be performed directly
on the GPU in order to avoid expensive readback of data from the GPU
memory. We will review the stages of the volume-rendering pipeline step-
by-step, identify possible sources of error introduced in the corresponding
stage, and explain techniques to remove or suppress those errors while
ensuring interactive frame rates.

9.1 Sampling Artifacts
The first stage in the process of volume rendering consists of sampling the
discrete voxel data. Current GPU-based techniques employ explicit proxy
geometry to trace a large number of rays in parallel through the volume
(slice-based volume rendering) or directly sample the volume along rays
(ray casting). The distance of those sampling points influences how accu-
rately we represent the data. A large distance between sampling points,
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Figure 9.2. Wood-grain artifacts caused by a low sampling rate.

i.e., a low sampling rate, will result in severe artifacts (see Figure 9.2). This
effect is often referred to as undersampling and the associated artifacts are
often referred to as wood-grain artifacts.

The critical question: how many samples do we have to obtain along
rays in the volume to accurately represent the volume data? The answer
to this question lies in the so-called Nyquist-Shannon sampling theorem of
information theory.

9.1.1 Sampling Theorem

The theorem is one of the most important rules of sampling [201, 238].
It states that, when converting analog signals to digital, the sampling fre-
quency must be greater than twice the highest frequency of the input signal
to be able to later reconstruct the original signal from the sampled version
perfectly. Otherwise the signal will be aliased; i.e., high frequencies will
be reconstructed incorrectly from the discrete signal. An analog signal can
contain arbitrary high frequencies, therefore an analog low-pass filter is of-
ten applied before sampling the signal to ensure that the input signal does
not have those high frequencies. Such a signal is called band-limited.

For example, for an audio signal the sampling theorem has the con-
sequence that, if we want to sample the audio signal with 22 kHz as the
highest frequency, we must at least sample the signal with twice the sam-
pling rates; i.e., with at least 44 kHz. As already stated, this rule applies
if we want to discretize contiguous signals. But what does this rule mean
for sampling an already discretized signal? Well, in volume rendering we
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assume that the data represents samples taken from a contiguous band-
limited volumetric field. During sampling, we might already have lost some
information due to a too-low acquisition sampling rate. This is certainly
something we cannot fix during rendering. However, the highest frequency
in a discrete signal that is assumed to be contiguous is an abrupt change
in the data from one sampling position to an adjacent one. This means
that the highest frequency is one divided by the smallest distance between
adjacent voxels of the volume data. Thus, in order to accurately recon-
struct the original signal from the discrete data, we need to take at least
two samples per smallest inter-voxel distance.

There is actually no easy way to get around this theorem. We have to
take two samples per voxel to avoid artifacts. However, taking a lot of sam-
ples along rays inside the volume has a direct impact on the performance.
We achieve this high sampling rate by either increasing the number of slice
polygons or by reducing the sampling distance during ray casting. Taking
twice the number of samples inside the volume will typically reduce the
frame rate by a factor of two. However, volumetric data often does not
only consist of regions with high variations in the data values. In fact, vol-
ume data can be very homogeneous in certain regions while other regions
contain a lot of detail and thus high frequencies. We can exploit this fact
by using a technique called adaptive sampling.

9.1.2 Adaptive Sampling

Adaptive sampling techniques cause more samples to be taken in inhomo-
geneous than in homogeneous regions of the volume. In order to distinguish
homogeneous and inhomogeneous parts of the volume during integration
along our rays through the volume, a 3D texture containing the sampling
rate for each region can be employed. This texture, the so-called impor-
tance volume, can be computed in a pre-processing step and may have
smaller spatial dimensions than our volume data. For volume ray casting
on the GPU, it is easy to adapt the sampling rate to the sampling rate
obtained from this texture because sampling positions are generated in
the fragment stage. Slice-based volume rendering, however, is more com-
plicated because the sampling rate is directly set by the number of slice
polygons. In other words, the sampling rate is set in the vertex stage, while
the sampling rate from our importance volume is obtained in the fragment
stage.

However, the texture coordinates for sampling the volume interpolated
on the slice polygons can be considered as samples for a base sampling
rate. We can then take additional samples along the ray direction at those
sampling positions in a fragment program, thus sampling higher in regions
where the data set is inhomogeneous. In order to obtain a performance
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improvement by a only locally high sampling rate, such an implementation
requires dynamic branching in a fragment program to adapt the number
of volume samples in the fragment program to the desired sampling rate
at this position. Such dynamic branching is available on Pixel Shader 3.0
compliant hardware. Alternatively, computational masking using early z-
or stencil-culls can be employed to accelerate the rendering for regions with
lower sampling rate. The slice polygon is rendered multiple times with dif-
ferent fragment programs for the different sampling rates, and rays (pixels)
are selected for the different passes by masking the corresponding pixels
using the stencil- or z-buffer. For a more detailed description on the imple-
mentation of dynamic branching using early tests, please see Section 8.6.2.

9.1.3 Opacity Correction

Changing the sampling rate globally or locally requires correction of the
opacity of fragments being blended into the frame buffer. This prevents
regions from getting brighter in sparsely sampled regions and darker in
highly sampled regions. This can be implemented globally by changing the
alpha values in the transfer function or locally by adapting the alpha values
before blending in a fragment program. The corrected opacity is a function
of the stored opacity αstored for the base sample distance and the actual
sample distance with the sample spacing ratio ∆x/∆x0:

αcorrected = 1− [1− αstored]∆x/∆x0 .

Figure 9.3. Comparison of a visualization of the inner ear with low (left) and high
(right) sampling rate.
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Rendering a volumetric data set with globally or locally high sampling
rates allows us to remove wood-grain artifacts (see Figure 9.3). However,
such high sampling rates can significantly reduce performance. To make
things even worse, in most volumetric renderings complex transfer functions
are used in the classification stage. Those can introduce high frequencies
into the sampled data, thus increasing the required sampling rate well
beyond the Nyquist frequency of the volume data itself. We will discuss
this effect in detail in Section 9.3 and provide a solution to the problems by
using a technique that separates those high classification frequencies from
high frequencies in the scalar field in a pre-processing step.

9.1.4 Stochastic Jittering

As an alternative to removing wood-grain artifacts, we can try to hide
them. Wood-grain artifacts are due to a sudden change in the depth be-
tween neighboring opaque fragments belonging to the same surface. The
alternative to high sampling rates for artifact removal is called stochastic
jittering. This technique hides wood-grain artifacts by adding small offsets
to the sampling positions of rays in the viewing direction. The sampling

int size = 32;

unsigned char* buffer = new unsigned char[size*size];

srand( (unsigned)time( NULL ) );

for (int i=0;i<(size*size);i++)

buffer[i] = 255.*rand()/(float)RAND MAX;

glGenTextures(1,&noiseTex);

glActiveTextureARB(GL TEXTURE3 ARB);

glBindTexture(GL TEXTURE 2D,noiseTex);

glTexImage2D(

GL TEXTURE 2D, // target

0, // level

GL LUMINANCE8, // internal

size, // width

size, // height

0, GL LUMINANCE, GL UNSIGNED BYTE, buffer);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST);

delete buffer;

Listing 9.1. C code creating a texture containing random numbers, used to offset
ray sampling positions.
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positions along each ray through a pixel are offset by a different random
factor. Consequently, coherence between pixels that becomes manifest in
artifacts is suppressed by noise.

For the implementation, we create a single-channel GL LUMINANCE 2D
texture containing random numbers. A small 2D texture with 32 × 32
random numbers, tiled over the output image usually provides sufficient
randomization. During rendering, we acquire different random numbers
from this 2D texture for each pixel to offset the sampling positions for the
ray through the corresponding pixel. Listing 9.1 creates such a 2D texture.
Note that the GL REPEAT texture environment allows us to tile the texture
over the output image:

Due to the implicit computation of the sampling positions in slicing-
based volume rendering using proxy geometry, the same offset must be
added to every sampling position along the rays.

To fetch a different random number for each pixel, we divide the window
position WPOS by the size of the random number texture. This results in
texture coordinates for the look-up into the 2D texture containing our
random numbers; i.e., the texture is tiled over the output image. We pass
the ray direction vector with a length equal to the sampling distance and
the dimensions of the random number texture as uniform variables to the
fragment shader (see Listing 9.2). By multiplying the random number for

struct v2f simple {
float3 TexCoord0 : TEXCOORD0;

float3 Position : WPOS;

};

half4 main(v2f simple IN,

uniform sampler3D Volume : TEXUNIT0,

uniform sampler1D TransferFunction : TEXUNIT1,

uniform sampler2D Random : TEXUNIT3,

half3 rayDir, half2 tileSize) : COLOR {
// offset sampling position

IN.TexCoord0 = IN.TexCoord0 + rayDir

* tex2D(Random, IN.Position.xy / tileSize.xy).x;

// sample

half4 sample = tex3D(Volume, IN.TexCoord0);

// classify and return

return tex1D(TransferFunction, sample.r);

}

Listing 9.2. Cg fragment shader for jittering the sampling position in a slicing-
based volume renderer along the viewing direction.
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struct v2f simple {
float3 TexCoord0 : TEXCOORD0;

float3 Position : WPOS; };

float4 main(v2f simple IN,

uniform sampler3D Volume : TEXUNIT0,

uniform sampler1D TransferFunction : TEXUNIT1,

uniform sampler2D Random : TEXUNIT3,

half3 rayDir, half2 tileSize) : COLOR {
float4 OUT;

// jitter ray start position along ray direction

float3 samplePos = IN.TexCoord0.xyz + rayDir *

tex2D(Random, IN.Position.xy / tileSize.xy).x;

col = float4(0,0,0,0);

float2 sample = float2(0,0);

// integrate along the ray

for (int i=0;i<200;i++) {
// sample the volume

sample.x = tex3D(Volume, samplePos).x;

// classification

float4 color = tex1D(TransferFunction , sample.x);

// blend

col = (1-col.a) * color + col;

samplePos = samplePos + rayDir;

}
return OUT;

}

Listing 9.3. Cg fragment shader for jittering the sampling position in a ray casting–
based volume renderer along the viewing direction.

Figure 9.4. Volume rendering without (left) and with (right) stochastic jittering of
the sampling positions.



�

�

�

�

�

�

�

�

9.2 Filtering Artifacts 223

each pixel (in the range [0, 1]) with the ray direction vector and adding
the resulting vector to the sampling position, we obtain differently offset
sampling positions for each ray; i.e., a different sampling pattern with a
maximum offset equal to the sampling distance is created for each pixel.

Though stochastic jittering in slicing only requires a look-up into a very
small noise texture and a few additional arithmetic instructions, the jitter
offset has to be fetched and added for each integration step. This results in
reduced rendering performance compared with standard slice-based volume
rendering. For short fragment programs, such as a simple post-interpolative
classification fragment program, the overhead is significant. For complex
fragment programs, such as an on-the-fly gradient computation fragment
program (see Section 5.3.1), the overhead is only small. In contrast, for
ray casting the offset can be added only once in the ray–set-up phase as
demonstrated by the Cg fragment program in Listing 9.3; i.e., in contrast
with slicing, the jittering is done only once for a complete ray. Thus the
overhead is negligible. As before, we provide the ray direction vector with
a length equal to the sampling distance and the size of the random number
texture as input variables to the fragment shader.

This method is quite effective for hiding wood-grain artifacts without
requiring high sampling rates. The resulting images contain more noise, but
noise is often less annoying than regular patterns. Even for very low sam-
pling rates, volume rendering with stochastic jittering can produce accept-
able results. Figure 9.4 shows a comparison of standard volume rendering
and volume rendering with stochastic jittering of the sampling position.

9.2 Filtering Artifacts
The next possible source for artifacts in volumetric computer graphics is
introduced during the filtering of the volume data. Basically, this phase
converts the discrete volume data back to a continuous signal. To recon-
struct the original continuous signal from the voxels, a reconstruction filter
is applied that calculates a scalar value for the continuous 3D domain (R3)
by performing a convolution of the discrete function with a filter kernel. It
has been proved that the perfect, or ideal, reconstruction kernel is provided
by the sinc filter [204].

Unfortunately, the sinc filter has an unlimited extent; i.e., it oscillates
around zero over its whole output domain. Therefore, in practice simpler
reconstruction filters like tent or box filters are used (see Figure 9.5). Cur-
rent graphics hardware supports pre-filtering mechanisms like mipmapping
and anisotropic filtering for minification. For magnification, linear, bilin-
ear, and trilinear filters are provided. The internal precision of the filtering
on current graphics hardware is dependent on the precision of the input
texture; i.e., 8-bit textures will internally only be filtered with 8-bit preci-
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Figure 9.5. Three reconstruction filters: (a) box, (b) tent, and (c) sinc filters.

sion. To achieve higher quality filtering results with the built-in filtering
techniques of GPUs, we must use a higher-precision internal texture for-
mat when defining textures (i.e., the LUMINANCE16 and HILO texture
formats). Note that floating-point texture formats often do not support
filtering.

However, the use of higher internal precision for filtering cannot on its
own provide satisfactory results with built-in linear reconstruction filters
(see Figure 9.6 (left)). Quite efficient techniques that use multitextures
and programmable rasterization hardware have been developed to evaluate
arbitrary filter kernels during rendering [91].

High-quality filters implemented in fragment programs can consider-
ably improve image quality. However, it must be noted that performing
higher-quality filtering in fragment programs on current graphics hardware
is expensive; i.e., frame rates drop considerably. We recommend higher-
quality filters only for final image quality renderings. During interaction

Figure 9.6. Comparison between trilinear filtering and cubic B-spline filtering.
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with volume data or during animations, it is probably better to use built-
in reconstruction filters, as artifacts will not be too apparent in motion.
To prevent unnecessary calculations in transparent or occluded regions of
the volume, the optimization techniques presented in Chapter 8 should be
used.

9.2.1 Convolution Filtering

A linear filtering operation is usually described via an operation called
the convolution of a filter kernel function h(·) with a signal function s(·).
Note that, although this is a linear operation, the filter kernel function
is usually not a linear function. Linear in this case means that the filter
kernel h(·) does not depend on the signal s(·). In the general continuous
case, convolution is described by the convolution integral over an infinite
extent:

g(x) = (s ∗ h)(x) =
∫ ∞

−∞
h(x′)s(x− x′)dx′ . (9.1)

However, we are interested in filtering sampled signal functions, i.e., texture
maps, which we denote as a series of samples fi at locations x = i. We
consider only finite filter kernels h(·), where the convolution need only be
evaluated over a certain range, i.e., the width of the filter. The convolution
integral then simplifies to the finite convolution sum:

g(x) = (f ∗ h)(x) =
m∑

i=−m+1

h(u− i)fi with u = x− �x� . (9.2)

Here, g(x) is the filtered output at a given fractional resampling position x.
The fi are the samples of the discrete input texture given at the integers of
x. The continuous filter kernel is denoted by h(·), and m is half the filter
width, e.g., for cubic filters m = 2. Figure 9.7 illustrates the convolution
sum with a cubic B-spline filter.

fx

f f2f0

w w1 w2w0

x

-1

-1 f1

Figure 9.7. Convolution with a cubic B-spline filter. Because this filter has width
four, it subtends four input samples fi that are multiplied by four corresponding
filter weights wi(u) = h(u − i) with i ∈ {−1, 0, 1, 2}. See Equations 9.2 and 9.3.
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Instead of using a single function h(·) to describe the filter kernel, we
can use multiple weight functions wi(u) that are each defined over the
interval u ∈ [0, 1], where u = x− �x�, defining wi(u) := h(u− i):

g(x) =
m∑

i=−m+1

wi(u)fi with u = x− �x� . (9.3)

Note that, in order to simplify the equations and the discussion below,
we always assume a relative numbering of input samples, that is, f0 to
the left of the current position x, and f1 to the right of x. If the input
samples are given a constant global numbering, each fi in the equations
would become an fj with j = �x�+ i.

9.2.2 Evaluating the Convolution Sum

There are several ways in which evaluation of the convolution sum for
filtering can be approached on graphics hardware. These approaches differ
with regard to performance, the types of filter kernels for which they work
well, their simplicity of implementation, and the fragment shader hardware
features they require.

The two fundamental parts of this computation are (1) computing filter
weights wi(u) and (2) fetching the required input samples fi. In general,
the convolution sum is often stated with infinite extent, but in practice of
course only a relatively low number of filter weights will be nonzero. If
the filter kernel is polynomial, its degree determines the number of input
samples and corresponding weights that are required. In particular, certain
kinds of filters such as cubic filters provide a very good trade-off between
quality and speed. For this reason, many implementations are optimized
for special cases. However, it is possible to evaluate all kinds of finite
convolution filters in graphics hardware with a simple general multipass
approach that has minimal requirements on fragment shader resources and
features.

9.2.3 Convolution in 2D and 3D

In the following, we illustrate all the different approaches using 1D con-
volution. However, they can all be extended to 2D and 3D. The most
common approach for extending 1D filter kernels to 2D or 3D is to use the
tensor product. The weights for all dimensions are computed by fetching
weights from 1D filter functions for each of the axes and multiplying, i.e.,
wij(u, v) = wi(u)wj(v) and wijk(u, v, w) = wi(u)wj(v)wk(w). Another ap-
proach is to use radially symmetric filters, e.g., h(x, y) = h(

√
x2 + y2).

The general texture-based approach described in Section 9.2.5 is able to
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use arbitrary 2D and 3D extensions of 1D filters by simply using 2D or 3D
filter weight textures.

9.2.4 Procedural Convolution

The most straightforward approach for evaluating the convolution sum is
to compute all weights procedurally in the fragment shader. As long as the
function that describes the filter kernel can be evaluated in the fragment
shader at arbitrary positions x, all required weights wi(u) can be computed
easily. All input samples fi are fetched from the input texture with nearest-
neighbor interpolation. The convolution sum is then evaluated directly as
given in Equation 9.3.

Example: Cubic B-spline. The cubic B-spline is part of the family of the
BC-splines [185] (B = 1, C = 0). It is depicted in Figure 9.8. Like all cubic
filters, it has width four and thus requires four weights and subtends four
input samples. The weights are defined as

w0(u) =
1
6
(−u3 + 3u2 − 3u + 1) , (9.4)

w1(u) =
1
6
(3u3 − 6u2 + 4) , (9.5)

w2(u) =
1
6
(−3u3 + 3u2 + 3u + 1) , (9.6)

w3(u) =
1
6
u3 . (9.7)

The parameter u is the fractional position in [0, 1] between two neighboring
samples, i.e., u = x − �x�. Note that for every u,

∑
i wi(u) = 1, which is

called the partition of unity property. The fact that the cubic B-spline is
2/3 in its center (see Figure 9.8) implies that this filter is approximating
or smoothing, instead of interpolating. That is, it modifies the values at

h(x)
2

x

3/

-2 -1 20 1

Figure 9.8. The cubic B-spline. The filter kernel h(x) is defined over the interval
[−2, 2] and never negative, and it is 2/3 in the center. Thus, it is an approximating or
smoothing filter. However, it is the only cubic BC-spline with a continuous second
derivative (see Figure 9.14) which is important for derivative measurements.
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the original sample positions. It is also nonzero at other integers of x (at
both x = −1 and x = 1, it has a value of 1/6), which is also a property of
smoothing filters. In contrast, interpolating filters are one at the center and
zero at all other integers, such as the Catmull-Rom spline described below.
Smoothing is often a desired filter property, especially in combination with
derivative filtering, but some applications demand that the original samples
are not modified, e.g., in medical imaging.

For procedural evaluation of filter weights in the fragment shader, it is
useful to first compute u, u2, and u3. The coefficients in the formulas for
the weights can be stored in one 4-vector (i.e., a single fragment shader
parameter) per weight, which for the cubic B-spline yields

vecw0 =
( −1

6
, 1

2
, − 1

2
, 1

6

)
,

vecw1 =
(

1
2 , −1, 0, 2

3

)
,

vecw2 =
( −1

2 , 1
2 , 1

2 , 1
6

)
,

vecw3 =
(

1
6 , 0, 0, 0

)
.

Each weight can then be computed for a given u by taking the dot product
of the weight vector with the vector containing the exponentiated u values:

wi(u) = vecwi
· (u3, u2, u, 1) .

This scheme can be used for any polynomial filter. Thus, a single fragment
shader can be used for polynomial filtering of a certain order, e.g., for
order three as used here. The actual filter shape can then be determined
by simply supplying different fragment shader constants.

Example: Catmull-Rom spline. The Catmull-Rom spline is another cubic
spline in the family of the BC-splines [185] (B = 0, C = 0.5). It is shown
in Figure 9.9. However, in contrast with the cubic B-spline, it is an inter-
polating filter. It is the only cubic BC-spline that has this property. Using
the vector notation given above, the weights of the Catmull-Rom spline are
defined as

vecw0 =
( −0.5, 1, −0.5, 0

)
,

vecw1 =
(

1.5, −2.5, 0, 1
)

,

vecw2 =
( −1.5, 2, 0.5, 0

)
,

vecw3 =
(

0.5, −0.5, 0, 0
)

.

Because it is interpolating, the Catmull-Rom spline is one at the center
and zero at all other integers of x. The interpolation property is important
in applications where no smoothing is desired, which for example is often
the case in medical imaging.
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h(x)

x

-2 -1 20 1

1

Figure 9.9. The cubic Catmull-Rom spline. The filter kernel h(x) is defined over
the interval [−2, 2] and has zero-crossings at the integers except at zero where it
is one. Thus, it is an interpolating filter that leaves the original samples intact.

However, in contrast with the cubic B-spline, the cubic Catmull-Rom
spline does not have a continuous second derivative. In spline terminology,
the cubic Catmull-Rom spline is only C1 continuous, whereas the cubic
B-spline is C2 continuous. These continuity considerations have many im-
plications. An example is the curvature measurements with convolution
filters described in Chapter 14. There, curvature is computed from sec-
ond derivatives, and the resulting curvature information is only continuous
if the second derivatives also are, which is determined by the continuity
property of the filter that is used.

9.2.5 Texture-Based Convolution

Many GPU algorithms pre-compute complicated functions and store the
resulting look-up tables in texture maps in order to reduce arithmetic com-
plexity to simple texture fetches. This approach is especially common in
the evaluation of complex shading equations, e.g., lighting models based
on the BRDF of a surface [182, 156]. The same principle can be applied to
computation of filter kernel weights, by pre-evaluating the function that de-
scribes the filter and storing it in one or multiple textures. Pre-computing
filter kernel weights is only the first step, however, as a major part of eval-
uating the convolution sum is also to multiply input samples fi with the
exactly corresponding weights wi(u) that depend on the current resampling
position x, which in this case can also be done without any fragment shader
computations.

The most important advantage of texture-based convolution is that it
allows one to make the fragment shader completely independent from the
size and the shape of the filter kernel. The filter is determined by the con-
tents of texture maps, and an arbitrary finite filter size can be evaluated
by simply using multiple rendering passes with the same exact fragment
shader. Another advantage is that the computation of texture coordinates



�

�

�

�

�

�

�

�

230 Improving Image Quality

h(x)

x

Figure 9.10. A 1D cubic filter kernel (here, cubic B-spline) is sampled and stored in
the four channels of a single RGBA texture map. The four channels correspond to
the four wi(u) functions given in Section 9.2.4.

for either the input samples or the filter weights need not be performed
on a per-fragment basis, as all coordinates needed for texture look-ups can
be linearly interpolated from the vertices. This property allows evaluation
of arbitrary convolution filters on graphics hardware without dependent
texture look-ups and even on current GPUs saves fragment shader compu-
tation time by moving most operations to the vertex shader.

Before we describe the completely general approach, however, we illus-
trate texture-based filtering for the cubic case.

Simple texture-based cubic filtering. We have seen above that a 1D cubic
filter kernel can be described by four weight functions wi(u) that are defined
over u ∈ [0, 1]. These four functions can be sampled over this [0, 1] domain
and stored in the four channels of an RGBA texture map (see Figure 9.10).
During rendering, this filter texture is replicated over the input texture
such that the entire filter texture corresponds to a single texel of the input
texture. Replication is performed by setting the filter texture wrap mode
to GL REPEAT. The texture coordinate u for indexing the filter texture is
determined as u(x) = x ·Tsize−0.5, where x is the resampling coordinate of
the source texture and Tsize is the size of the source texture in texels. This
is illustrated in Figure 9.11, where the vertical black lines are the locations

x

h(x)

Figure 9.11. Replicating an interleaved RGBA filter texture over the output sample
grid yields a distribution of basis functions familiar from spline curves. All four
weights needed for convolution at any given re-sampling location are available via
a single texture fetch.
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// vector program for texture-based cubic filtering

void main vp (float input coord : TEXCOORD0,

uniform float t size,

out float4 neighbor coords : TEXCOORD0,

out float filter coord u : TEXCOORD1)

{
neighbor coords.x = input coord - 1 / t size;

neighbor coords.y = input coord;

neighbor coords.z = input coord + 1 / t size;

neighbor coords.w = input coord + 2 / t size;

filter coord u = input coord * t size - 0.5;

// do standard stuff (transformation, ...)

}
// fragment program for texture-based cubic filtering

float4 main fp (float4 neighbor coords : TEXCOORD0,

float filter coord u : TEXCOORD1,

uniform sampler1D input tex,

uniform sampler1D filter tex ) : COLOR

{
float4 neighbors;

neighbors.x = tex1D(input tex, neighbor coords.x);

neighbors.y = tex1D(input tex, neighbor coords.y);

neighbors.z = tex1D(input tex, neighbor coords.z);

neighbors.w = tex1D(input tex, neighbor coords.w);

float4 filter = tex1D(filter tex, filter coord u);

float4 result = dot(neighbors, filter);

return result;

}

Listing 9.4. Cg program for texture-based cubic filtering of a monochrome 1D
texture.

of the input texture samples. The input texture is simply used with nearest-
neighbor interpolation, and the offset of −0.5 in the computation of u(x)
compensates for the fact the OpenGL centers texels at 0.5. The steps just
outlined ensure a correct match of input samples with filter weights.

Listing 9.4 shows Cg code for this approach. The convolution sum
becomes a single dot product of one 4-vector containing the input samples
and one 4-vector containing the corresponding filter weights. In practice,
the resolution of the filter texture need not be very high in order to achieve
high-quality results. Usually a resolution of 64 or 128 texels is sufficient.

General texture-based filtering. The simple texture-based approach for cu-
bic filtering just outlined can be extended to filters of arbitrary width and
thus arbitrary order. This also includes non-polynomial filter kernels such
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as windowed sinc filters. Fundamentally, the convolution sum consists of a
series of terms where each is a multiplication of one input sample fi by one
corresponding filter weight wi(u), followed by the summation of all of these
terms. We can formulate a very simple but general multipass filtering algo-
rithm that evaluates exactly one of these terms for all output pixels in one
rendering pass. Summing the results of these individual passes together
yields the result of the convolution sum.

This idea is illustrated in Figure 9.12 with the simplest example: a tent
filter that results in linear interpolation. However, the same exact approach
works for filters of arbitrary shape and width, which is also true for 2D and
3D filter kernels. Each weight function wi(u) is sampled into a texture and
used in a single rendering pass that samples the replicated filter weight
texture. The input texture is sampled with a given texture coordinate
offset. For each pixel, these two values are multiplied and stored in the
output buffer. In the next pass, another filter weight texture is used, and
the input texture is used with a different offset. What this amounts to is
that instead of gathering the contribution of all relevant input pixels in the
convolution sum to a single output pixel, such as in procedural convolution
as shown above, the contribution of input pixels is distributed to all relevant
output pixels.

shifted input samples (texture 0)
(nearest-neighbor interpolation)

filter tile (texture 1)

mirrored

10 2 3

1 2 3 4

pass 2

pass 1

output samples

Figure 9.12. Tent filter (width two) used for reconstruction of a 1D function in
two passes. Imagine the values of the output samples added together from top to
bottom.
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Of course, it is once again possible to combine four weight textures
wi(u) into a single RGBA texture as in the previous section. Also, this multi-
pass approach can be executed in its entirety in a single actual rendering
pass when the hardware fragment shader allows the necessary number of
texture fetches and instructions.

9.2.6 Recursive Convolution

For certain types of splines, there are algorithms for computing filter
weights from repeated linear interpolations in a recursive fashion. For
example, the standard recursive approach for evaluating B-splines is the de
Boor scheme. A major property of this algorithm is that the function de-
scribing the filter kernel need not be known at all, as the weights wi(u) are
never computed explicitly. The de Boor scheme also works for all orders
of B-splines, e.g., if it is applied for order one, it simply results in linear
interpolation. In the cubic case, one output sample can be calculated hier-
archically from six linear interpolations with interpolation weights αl

i(u),
where l is the level of recursion and i is the weight number in a given
level. This is illustrated in Figure 9.13 (a). The parameter u once again
is the fractional position in [0, 1] between two neighboring samples, i.e.,

w0

0w + w

w2

2w + w1

α
f f f2f

f1 f2f0

w1 w2w0

2
w + w

1

x

x

f-1

w-1

-1

-1

0 α
0

0 α
1

0

α
-1

1

α
-1

2

α
0

1

0 1-1

(a)

(b)

Figure 9.13. Comparing the de Boor scheme in the cubic case (a) with a recursive
scheme tuned for the characteristics of graphics hardware and a minimum number
of linear interpolations (b). The scheme in (a) needs no knowledge of the weights,
but they can easily be pre-computed and stored in a 1D texture, which we will use
for (b).
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u = x− �x�. Thus, the same u is used for all interpolation weights αl
i(u).

Each interpolation step is (1 − αl
i)f

l
i + αl

if
l
i+1 with f0

i = fi. The weights
can be computed as

αl
i(u) =

u− i− l + 1
3− l

, with i ∈ [−1, 1− l]; l ∈ {0, 1, 2}; u ∈ [0, 1] .

Thus, they are

α2
−1(u) = u ,

α1
−1(u) =

u + 1
2

, α1
0(u) =

u

2
,

α0
−1(u) =

u + 2
3

, α0
0(u) =

u + 1
3

, α0
1(u) =

u

3
.

For an arbitrary order n instead of the cubic case n = 3 that is illustrated
here, adapting these formulas is straightforward.

The complexity of the de Boor scheme for filtering can be stated as∑n
i=1 id d-linear interpolations, where n is the order and d is the dimension,

i.e., 36 trilinear interpolations for tricubic filtering (n = 3, d = 3). The
lowest level of the linear interpolation pyramid (l = 0) can be evaluated by
native texturing hardware using linear texture filtering. Still, the number
of interpolation operations is quite significant, and many weights have to
be computed, especially in 2D and 3D filtering.

GPU-optimized recursive cubic convolution. If we employ the idea of
texture-based convolution that stores filter weights in textures instead of
computing them, we can use a simpler and much faster approach with fewer
linear interpolations [241]. In order to achieve independent weights wi and
wi+1 in a general linear combination wifi + wi+1fi+1, we rewrite it as

(wi + wi+1)
( wi

wi + wi+1
fi +

wi+1

wi + wi+1
fi+1

)
= w · lerp(α, fi, fi+1) (9.8)

with w := wi + wi+1 and α := wi+1/(wi + wi+1) .

For brevity, we are now denoting linear interpolations as

lerp(α, u, v) := (1− α)u + αv , with 0 ≤ α ≤ 1 .

In order to enforce a convex combination where 0 ≤ α ≤ 1, wi and wi+1

must satisfy
0 ≤ wi+1

wi + wi+1
≤ 1 , (9.9)

which is exactly the case when wi and wi+1 have the same sign and are not
both zero, a requirement fulfilled by the B-spline. Additionally, B-spline
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and most other filters used for function reconstruction purposes fulfill the
partition of unity:

∑
i wi = 1. The cubic convolution sum can then be

written as three linear interpolations, illustrated here for x ∈ [0, 1] without
losing generality as

g(x) = lerp
(
w1 + w2, lerp(

w0

w−1 + w0
, f−1, f0), lerp(

w2

w1 + w2
, f1, f2)

)
,

(9.10)
yielding the pyramidal scheme shown in Figure 9.13 (b). The bottom row
of the pyramid is computed automatically via texture filtering, and the top
row in the fragment shader. The case where the filter weights do not sum
up to one, e.g., in derivative filters, can also be handled easily, as will be
shown below.

After considering how a single output sample can be computed in prin-
ciple, the scheme is extended to all output samples simultaneously when
a texture is rendered. The blending weights in Equation 9.2.6 that deter-
mine the linear interpolations depend directly on the filter kernel weights
wi(u), and thus the sampling location x. However, like the wi(u) they are
defined entirely on the interval u ∈ [0, 1], due to the truncation x − �x�
that is always part of the argument to h(·) in Equation 9.2. Thus, instead
of calculating weights in the fragment shader, they can be pre-computed
over the range [0, 1] and stored in a texture map. Fetching weights from a
texture is both faster and simpler than calculating them in the fragment
shader. Moreover, filtering with different kernels can be done using the
same fragment program with different weight textures. We store all three
weights in the three channels of an RGB texture map F (u):

Fr(u) =
h(u)

h(u + 1) + h(u)
− u− 1 , (9.11)

Fg(u) =
h(u− 2)

h(u− 1) + h(u− 2)
− u + 1 , (9.12)

Fb(u) = h(u− 1) + h(u− 2) , (9.13)

where u ∈ [0, 1] is the 1D weight texture coordinate, and h(·) is the filter
kernel function defined over [−2, 2]. We can state h(·) by concatenating
the weight functions of the cubic B-spline filter given in Equations 9.4–9.7:

h(x) = [−2,−1]w3(x + 2) + [−1, 0]w2(x + 1) + [0, 1]w1(x) + [1, 2]w0(x− 1) ,

where the notation is such that [a, b] is one when x ∈ [a, b) and zero oth-
erwise. Fr(u) and Fg(u) contain additive factors of −u ± 1, which yield
the correct sampling offset with respect to texture coordinates linearly in-
terpolated automatically by the graphics hardware, i.e., −u compensates
for the linear ramp in the source texture coordinates, and ±1 offsets the
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coordinate for the left and right pair of input samples, respectively. Cubic
filtering of a source texture T (x) can then be implemented as

Tcubic(x) = lerp

(
Fb(u), T

(
x + Fr(u)/Tsize

)
, T

(
x + Fg(u)/Tsize

))
,

where u is the weight texture coordinate, which is directly determined by
the source texture coordinate as u = x · Tsize − 0.5, where Tsize is the
size of the source texture in texels. The clamp mode of the weight texture
is set to GL REPEAT, which ensures that F (u) = F (u − �u�). Evaluating
the bottom row of the pyramid in Figure 9.13 (b) is achieved by setting
the filter mode of the source texture T (x) to GL LINEAR. Note that in
higher dimensions all blending weights along an axis i ∈ {0, 1, 2} can still
be retrieved from a single 1D texture, which is simply indexed with each
sampling coordinate xi.

Recursive derivative filters. It is easily possible to extend the recursive
scheme described above to derivative filters, which have very interesting
applications. Filtering with the derivatives of the cubic B-spline is, for ex-
ample, employed in Chapter 14 for computing implicit isosurface curvature
and non-photorealistic volume rendering. When a derivative filter is ap-
plied to a texture, the result is not a reconstruction of the original function
but of its derivative. In order to reconstruct first and second derivatives, for
example, the original scalar volume is convolved with the first and second
derivative of the cubic B-spline kernel, respectively. These filter kernels are
depicted in Figure 9.14.

With respect to the restriction stated in Equation 9.9, the first deriva-
tive of the cubic B-spline fortunately still has the property that both pairs of
wi have the same sign. In this case, h′(x) ≥ 0 ∀x ≤ 0, and h′(x) ≤ 0 ∀x ≥ 0

f1 f2

(b)

x

f-1 f0

fx

f1 f2

(a)

x

f-1 f0

fx

1 1

Figure 9.14. The first and second derivatives of the cubic B-spline for derivative
filtering. Note that the second derivative is still continuous, a property that is
unique to the B-spline among polynomial filters of order three. This implies that the
resulting reconstructed derivative of the filtered function will also be continuous.
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(see Figure 9.14 (a)). The only difference to the case of reconstructing the
original function is that now for the first derivative

∑
i wi = 0. Conse-

quently, the top of the pyramid in Figure 9.13 (b) is not a linear interpo-
lation anymore. Thus, the cubic first derivative filter becomes

T ′
cubic(x) = −Fb(u)T

(
x + Fr(u)/Tsize

)
+ Fb(u)T

(
x + Fg(u)/Tsize

)
.

The second derivative of the cubic B-spline must be evaluated differently.
It consists of four piecewise linear functions, where h′′(x) ≤ 0 ∀x ∈ [−1, 1],
and h′′(x) ≥ 0 everywhere else (see Figure 9.14 (b)). The latter property
and the simple shape of h′′(x) allow us to evaluate the convolution sum for
the second derivative as

T ′′
cubic(x) = T (x− 1/Tsize)− 2T (x) + T (x + 1/Tsize) .

In the 2D and 3D cases, a derivative filter simply consists of a derived filter
kernel along the axis of derivation, and the standard B-spline kernel for all
other axes.

9.3 Classification Artifacts

Classification (see Chapter 4) is a crucial phase in the volume-rendering
pipeline and yet another possible source of artifacts. Classification employs
transfer functions for color densities and extinction densities, which map
scalar values to colors and extinction coefficients. The order of classification
and filtering strongly influences the resulting images, as demonstrated in
Figure 9.15. The image shows the results of pre-interpolative and post-
interpolative classification for a small 163 voxel hydrogen orbital volume
and a high-frequency transfer function for the green color channel.

Notice that pre-interpolative classification, i.e., classification before fil-
tering, does not reproduce high frequencies in the transfer function. In
contrast with this, post-interpolative classification, i.e., classification after
filtering, reproduces high frequencies in the transfer function. However,
high frequencies (e.g., isosurface spikes) may not be reproduced in between
two subsequent sampling points along a ray through the volume. To cap-
ture those details, oversampling (i.e., additional slice polygons or sampling
points) must be added. It should be noted that a high-frequency transfer
function is not only introduced by a random transfer function, such as used
for Figure 9.15. Random transfer functions were merely used to demon-
strate the differences between the classification methods. A high frequency
in the transfer function is also introduced by using a simple step transfer
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voxels

transfer function

filtering

classificationfiltering

Classification Schemes

classification

Figure 9.15. Comparison of pre-interpolative and post-interpolative classification.
Alternate orders of classification and interpolation lead to completely different re-
sults. For clarification, a random transfer function is used for the green color chan-
nel. Piecewise linear transfer functions are employed for the other color channels.
Note that, in contrast with pre-interpolative classification, post-interpolative clas-
sification reproduces the high frequencies contained within the transfer function.

Figure 9.16. Quality comparison of post-classification (left) and pre-integrated
classification (right) for a CT data set. The transfer function used for these images
contains a very thin spike for the semi-transparent skin isosurface and a few trape-
zoids with steep slopes for bone and vessels. In contrast with post-interpolative
classification, pre-integrated classification does not show holes in the isosurface
and significantly reduces slicing artifacts.
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function with steep slope. Such transfer function are very common in many
application domains.

The basic idea of pre-integrated classification (see Section 4.5) is to cap-
ture high frequencies in the transfer function in a pre-processing step. The
numerical integration is split into a pre-integration of the transfer functions
and an integration of the continuous scalar field. Consequently, it is not
necessary to increase the sampling rate once high frequencies are added
to the transfer function. In pre-integrated volume rendering, a sampling
rate that is independent of the transfer function and close to the Nyquist
frequency of the data is sufficient to capture all high frequencies.

See Figure 9.16 for a comparison of a post-classification and pre-
integrated classification rendering result. Obviously, pre-integrated clas-
sification produces a visually much more pleasant result. Spikes in the
transfer function that correspond to isosurfaces in the resulting images do
not contain any holes when using pre-integration. In addition, even though
the same sampling rate was used for rendering, slicing artifacts are less ap-
parent in the pre-integrated result.

9.4 Shading Artifacts
The most common shading model for volumetric data interprets a volume
as a self-illuminated gas that absorbs light emitted by itself. In this case,
the shading is implicitly done during blending colors from the transfer
function into the frame buffer. However, if external light sources are taken
into account, a shading stage has to be added to the volume-rendering
pipeline (see Chapter 5).

Shading can greatly enhance depth perception and manifest small fea-
tures in the data; however, it is another common source of artifacts (see
Figure 9.17 (left)). Shading requires a per-voxel gradient to be computed
that is determined directly from the volume data by investigating the neigh-
borhood of the voxel. Although the newest generation of graphics hard-
ware permits calculating of the gradient at each sampling position (see
also Section 5.3.1), in the majority of the cases the voxel gradient is pre-
computed in a pre-processing step. This is due to the limited number of
texture fetches and arithmetic instructions of older graphics hardware in
the fragment-processing phase of the OpenGL graphics pipeline, as well as
to improve rendering performance. For scalar volume data, the gradient
vector is defined by the first-order derivative of the scalar field I(x, y, z),
which is constructed using the partial derivatives of I in the x-, y-, and
z-direction:

∇I = (Ix, Iy, Iz) =
(

∂

∂x
I,

∂

∂y
I,

∂

∂z
I

)
. (9.14)
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Figure 9.17. Comparison between pre-computed, quantized gradients (left) and
on-the-fly gradient computation (right).

The length of this vector defines the local variation of the scalar field and
is computed using the following equation:

‖∇I‖ =
√

Ix
2 + Iy

2 + Iz
2 . (9.15)

Gradients are often computed in a pre-processing step. To access those
pre-computed gradient during rendering, gradients are usually normalized,
quantized to 8 bits, and stored in the RGB channels of a separate volume
texture. For performance reasons, the volume data is often stored together
with the gradients in the alpha channel of that same texture so that a single
texture look-up provides the volume data and gradients at the same time.

Aside from the higher memory requirements for storing pre-computed
gradients and the pre-processing time, quantizing gradients to 8-bit preci-
sion can cause artifacts in the resulting images, especially if the original
volume data is available at a higher precision. Even worse, gradients are in-
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terpolated in the filtering step of the volume-rendering pipeline. Note that,
when interpolating two normalized gradients, an unnormalized normal may
be generated. Previous graphics hardware did not allow renormalization of
gradients in the fragment stage. Such unnormalized and quantized gradi-
ents cause dark striped artifacts, which are visible in Figure 9.17 (left).

One possible solution to this problem is to store the pre-computed gra-
dients at higher precision in a 16-bit fixed-point or 32-bit floating-point 3D
texture and apply normalization in the fragment processing stage on inter-
polated gradients. Those high-precision texture formats are available on
newer graphics hardware; however, the increased amount of texture mem-
ory required to store such high-precision gradients does not permit this
solution for high-resolution volumetric data.

A significantly better solution is to compute high-precision gradients
on-the-fly. For a central-differences gradient, six additional neighboring
voxels need to be fetched. For this purpose, it is advantageous to provide
six additional texture coordinates to the fragment program computed in
the vertex stage, each shifted by one voxel distance to the right, left, top,
bottom, back, or front. Using this information, a central differences gradi-
ent can be computed per fragment. The resulting gradient is normalized
and used for shading computations. The Cg fragment program Listing 5.6
in Chapter 5 demonstrates the computation of gradients for shading during
rendering. For simplicity, this code computes the offset texture coordinates
for the look-up of the neighbors in the fragment stage. However, we rec-
ommend computing the offset texture coordinates for all neighbors in the
vertex stage for optimal performance.

The resulting quality of on-the-fly gradient computation is shown in
Figure 9.17 (right). The enhanced quality compared with pre-computed
gradients is due to the fact that we used filtered scalar values to compute
the gradients compared with filtered gradients. This provide much nicer
and smoother surface shading, which even allows reflective surfaces to look
smooth (see Figure 9.18). Besides this advantage, no additional memory
is wasted to store pre-computed gradients. This is especially important
for high-resolution volume data that already consumes a huge amount of
texture memory or must be bricked to be rendered (see Chapter 17). This
approach facilitates even higher-quality gradients, for example, Sobel gra-
dients with 26 texture fetches.

However, the improved quality comes at the cost of additional texture
memory fetches, which considerably decrease performance. Even though
graphics hardware memory provides a very high memory bandwidth com-
pared with other types of memory, the memory latency and bandwidth is
most likely to become the limiting factor in this case. It is thus important
that expensive gradient computations are only performed when necessary.
Several techniques, like empty-space leaping, occlusion culling, early ray
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Figure 9.18. Reflective environment mapping computed with on-the-fly gradient
computation. Note the smoothness of the surface.

termination, and deferred shading (which are discussed in Chapter 8), are
effective in achieving real-time performance, even when computing gradi-
ents on-the-fly.
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9.5 Blending Artifacts

The final step of the rendering pipeline involves combining color values
generated by previous stages of the pipeline with colors written into the
frame buffer during integration. As discussed in previous chapters, this
is achieved by blending RGB colors with their alpha values into the frame
buffer. A large number of samples along the rays through the volume are
blended into the frame buffer. Usually, color values in this stage are quan-
tized to 8-bit precision. Therefore, quantization errors are accumulated
very quickly when blending a large number of quantized colors into the
frame buffer, especially when low alpha values are used. This is due to
the fact that the relative error for small 8-bit fixed point quantization is
much greater than for larger numbers. Figure 9.19 demonstrates blending
artifacts for a radial distance volume renderer with low alpha values. In
contrast with fixed point formats, the relative error remains constant for
small and large numbers using a floating-point representation.

Whereas graphics hardware performed all vertex processing with
floating-point precision from the start, older GPUs computed per-fragment
operations with only 8 to 10 bits of precision. Just recently, floating-point
precision was also brought into the pixel processing part of graphics hard-
ware. However, the first generation of graphics hardware with floating-
point precision throughout the graphics pipeline still had a number of re-
strictions. For example, such hardware did not support blending when
using higher-precision formats. Such restrictions are slowly falling, how-
ever even some of the newest generation of graphics hardware is still limited
to 16-bit floating-point precision for built-in blending.

As an alternative to built-in functionality, blending can also be im-
plemented manually in a fragment shader. Because the onscreen frame

Figure 9.19. Comparison between 8-bit (left), 16-bit (middle), and 32-bit blending
(right).



�

�

�

�

�

�

�

�

244 Improving Image Quality

Blend

Blend

Blend

Figure 9.20. Programmable blending with a pbuffer as input texture and render
target at the same time.

buffer only supports 8-bit precision, offscreen pbuffers (WGL ARB pbuffer ex-
tension) are required for blending with higher precision. The fragment
shader is programmed to read the current contents of the floating-point
pbuffer, blend the incoming color with the frame-buffer content, and write
the result back into the pbuffer. To bind a pbuffer as an input image to a
fragment program, the pbuffer is defined as a so-called render texture (see
WGL ARB render texture); i.e., a texture that can be rendered to. To read
the current contents of the pbuffer at the current rasterization position,
the window position (WPOS), which is available in fragment programs,
can directly be used as a texture coordinate for a rectangle texture fetch.
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// Volume rendering with floating-point blending

struct v2f {
float3 TexCoord0 : TEXCOORD0;

float2 Position : WPOS;

};
float4 main(v2f IN,

uniform sampler3D Volume,

uniform sampler1D TransferFunction,

uniform samplerRECT RenderTex,

) : COLOR {
// get volume sample

float4 sample = tex3D(Volume, IN.TexCoord0);

// perform classification to get source color

float4 src = tex1D(TransferFunction, sample.r);

// get destination color

float4 dest = texRECT(RenderTex, IN.Position);

// blend

return (src.rgba * src.aaaa) +

(float4(1.0, 1.0, 1.0, 1.0) - src.aaaa) * dest.rgba;

}

Listing 9.5. A Cg fragment program that implements back-to-front floating-point
blending.

Figure 9.20 illustrates the approach while the Cg source code in Listing 9.5
demonstrates the approach with a simple post-interpolative classification
fragment program with over-operator compositing.

It should be noted that the specification of the render texture extension
explicitly states that the result is undefined when rendering to a texture
and reading from the texture at the same time. However, current graphics
hardware allows this operation and produces correct results when reading
from the same position that the new color value is written to. If you feel
uncomfortable with this solution, you can employ ping-pong blending as an
alternative (see Figure 9.21). Ping-pong blending alternates two rendering
targets between subsequent blending operations to prevent read-write race
conditions. The first rendering target is used as an input texture while
the result is written into the second rendering target. For every blending
operation, the input and output rendering targets are swapped.

Note that pbuffers are heavyweight; i.e., each pbuffer comes with its
own full-blown OpenGL context. It should be emphasized that switch-
ing between two heavyweight contexts introduces a significant overhead,
because it requires to flush the entire OpenGL rendering pipeline and to
exchange the complete OpenGL state. To avoid context-switching overhead
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Figure 9.21. Programmable ping-pong blending with two pbuffers.

when changing rendering targets, one option is to employ a double-buffered
pbuffer, i.e., a single pbuffer whose back and front buffer are then used for
ping-pong blending. Another option is to employ lightweight rendering
targets, such as provided by the EXT framebuffer object extension.

As you can see in Figure 9.19 (middle), even 16-bit floating-point pre-
cision might not be sufficient to accurately integrate colors with low alpha
values into the frame buffer. However, as memory access does not come for
free, performance decreases as a function of precision. Therefore, it is nec-
essary to find a good balance between quality and performance. For most
applications and transfer functions, 16-bit floating-point blending should
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produce acceptable results. Pre-integration (see Section 9.3) and perform-
ing the blending of complete rays in the pixels shader, such as in pure
ray-casting approaches, also help to prevent blending artifacts.

9.6 Discussion
As we have seen, artifacts are introduced in various stages of the volume-
rendering process. Fortunately, high-precision texture formats and floating-
point computations in combination with the advanced programmability
of today’s GPUs allow for suppression of artifacts or even the complete
removal of such artifacts. All of the techniques presented in this chapter can
be implemented quite efficiently using programmable graphics hardware
and thus lead to real-time performance. However, those optimization do
not come for free—to maximize performance, trade-offs between quality
and performance are often necessary.

Perceptual considerations such as the fact that the human visual system
is less sensitive to artifacts in moving pictures than static images should
also be taken into account. Therefore, for some applications it is acceptable
to trade off quality for performance while the volumetric object is moving
and use higher quality when the object becomes stationary.
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Transfer Functions Reloaded

CHAPTER 4 INTRODUCES THE CONCEPTS OF transfer-function design
and implementation. Recall that the transfer function is the

mechanism used in volume rendering to transform raw data values into
the optical properties needed to make a picture. Although the transfer
function essentially plays the role of a simple color map, it is one of the
most important stages of the volume-rendering pipeline, especially when
we are using volume rendering to visualize medical or scientific data.
Because the transfer function is responsible for making features of interest
in the data visible as well as hiding unimportant regions, the quality of
transfer-function specification will have a dramatic impact on the quality
of the visualization.

This chapter explores techniques for generalizing transfer-function de-
sign. In Chapter 4, the transfer function was defined as a mapping from
a single scalar data value to color and opacity. In contrast, this chapter
discusses the utility and design of multidimensional transfer functions. By
multidimensional, we mean that the input to the transfer function consists
of multiple data values, or a vector of values, which are used to determine
the optical properties for rendering.

10.1 Image Data versus Scalar Field
In the vast majority of cases that use volume rendering to visualize 3D
data, the data is a single, spatially varying value. For instance, in a med-
ical application we may be interested in visualizing a CT (computerized
tomography) scan of a human tooth, in which the data is represented as a
3D grid of radio-opacity measurements. If we know the range of data val-
ues for dentin (the soft “body” of the tooth), we can create a 1D transfer

249
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Figure 10.1. 1D versus 2D transfer functions using the human tooth CT. (a) The
result of a 1D transfer function (data value only) that attempts to assign opacity
to the range of values that represent the dentin. Unfortunately, it also assigns
opacity to “air”-enamel boundary. These boundary values overlap with the values
for dentin. Because boundaries will have high gradient magnitudes, we can fix this
by restricting the opacity assignment to dentin values and low gradient magnitudes
(b). (c) The “air”–enamel boundary is added back in with a different color.

function that assigns this range of values for color and opacity, as seen in
Figure 10.1 (a). However, when we use this transfer function, we see that
opacity is also given to a very thin region around the enamel (the hard
“business end” of the tooth). Why does this happen? It is clearly not the
intended result.

Two reasons that the transfer function unintentionally assigns opac-
ity to boundaries between distinct features are: (1) we are (artificially)
treating the image data as a smooth scalar field, and (2) we are simply
unable to capture boundary discontinuities using discrete sampling. We
learned in Chapter 4 that it is important to interpolate data values first
and then apply the transfer-function color map. As a result, data values
will smoothly transition from one spatial position to the next. In the tooth
example, notice that the enamel has high values and the background has
low values. When these materials are next to each other, the interpolated
data values near this boundary must transition through the range of values
that represent dentin, which is more dense than the background and less
dense than enamel. Even if we were able to come up with an interpolation
scheme that did not let the values at the boundary between enamel and
background cross the values for dentin, we would still see this artifact. The
reason for this is expressed by the sampling theorem, which relates the
maximum reproducible frequency in the reconstructed signal to the sam-



�

�

�

�

�

�

�

�

10.2 Multidimensional Transfer Functions: Introduction 251

ple spacing. The boundary between enamel and air (the background) is in
reality distinct, but such a distinct boundary would result in an infinitely
high frequency with respect to the signal captured by the imaging system
and thus require infinitesimally small sample spacing. Distinct boundaries
are effectively blurred, resulting in artificially smooth transitions in data
values near these boundaries. Alternatively, you can think of the sampled
data value as the average data value over some small region around its
spatial location in the real world. In fact, image data is “blurry” for both
of these reasons, limited frequency and spatial averaging (a.k.a. partial
voluming). To make matters worse, due to thermal variation and electro-
magnetic interference, images also have noise, introducing an element of
random variation.

There are plenty of instances where it is perfectly acceptable to assume
that data values should make smooth transitions from one spatial position
to the next, for instance when the physical interpretation of the data value
is temperature or electric charge in a homogeneous medium. In this case,
the interpretation of the data as a smooth scalar field agrees with reality.
It is safe to assume that temperature will not suddenly change from one
spatial location to the next. The tooth rendering is in fact a correct ren-
dering of the scalar field. The artifact is really conceptual; we would like to
impose a model or interpretation of data behavior (i.e., distinct materials
and boundaries) that cannot be supported by a smooth scalar field.

10.2 Multidimensional Transfer Functions:
Introduction

One way to address the disconnect between our conceptual model of fea-
tures in image data (i.e., an aggregate of distinct objects) and the math-
ematical model of the data (i.e., smooth scalar field) is to use additional
information that will allow us to disambiguate data values representing
materials as opposed to those representing “fuzzy” boundaries. The inspi-
ration for this comes from edge detection methods used in image processing
and computer vision. The key idea is to measure how “fast” data value
changes from one sample to the next; data values near boundaries should
be changing faster than those inside a homogeneous material. If we assume
that the data is a scalar field, then the gradient of the field (a vector val-
ued quantity) gives the direction and magnitude of greatest change. Recall
from Chapter 5 that the normalized gradient is often used as the normal
for surface-based shading, and Section 5.3.1 provides details on measuring
the gradient. When the gradient magnitude at some location in the data
is large, we can say that we are near a boundary. Furthermore, when the
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gradient magnitude is at a maxima (with respect to spatial position) we
can say that we are at the center of the boundary. A maximum gradient
magnitude can be detected using the second directional derivative. Further
details of these measurements will be discussed later. For now let’s examine
how this works in our tooth example, Figure 10.1.

Recall that we wanted to assign opacity to data values representing the
dentin, but inadvertently assigned opacity to the enamel–air boundary. We
now know that this problem is due to the fact that the data values must
transition smoothly from the low-intensity air to the high-intensity enamel,
causing us to assign opacity to these transitional values just because they
happen to be the same intensity as dentin. We can exclude these transi-
tional value opacity assignments by only assigning opacity to values that
are both within the data value range for dentin and within the gradient
magnitude range for a homogeneous material, Figure 10.1 (b). Ideally, a
homogeneous material would have a gradient magnitude of 0, i.e., the value
is not changing spatially. But, in reality there is almost always some varia-
tion in the intensity for a material as well as noise. As such, a homogeneous
material will tend to have small gradient magnitudes, usually much smaller
than gradient magnitudes near boundaries.

A transfer function that uses both data value and gradient magnitude
can be built using a 2D look-up table. The data value for a sample gives
us the x index and the gradient magnitude gives us the y index. We can
now assign opacity for each unique combination of data value and gradient
magnitude. The simplest way to implement this is to first compute the
gradient magnitude for each sample in the data set, storing this quantity
as an additional 3D texture. When we are rendering the volume, we now

// fragment program for 2D transfer functions

// using data value and gradient magnitude

half4 main (half3 texUVW : TEXCOORD0,

uniform sampler3D data texture,

uniform sampler3D gradient magnitude texture,

uniform sampler2D transfer function 2D) : COLOR {
half2 index;

index.x = tex3D(data texture, texUVW);

index.y = tex3D(gradient magnitude texture, texUVW);

half4 result = tex2D(transfer function 2D, index);

return result;

}

Listing 10.1. A fragment program for evaluating a 2D transfer function using data
value and gradient magnitude.
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read from both the data texture and the gradient texture. These values
can then be used as the coordinates into the 2D transfer-function texture,
which returns the color and opacity values. Listing 10.1 shows an example
Cg program for evaluating a 2D transfer function using data value and
gradient magnitude.

10.3 Data Value and Derivatives
Let’s take a closer look at the relationship between derivative measures and
boundary behavior in image data. This relationship requires some minimal
assumptions:

• Distinct materials have roughly constant data value.

• Data values transition smoothly from one material to the next.

The second assumption is grounded in the fact that any physical measure-
ment process (such as CT or MRI scanning) is necessarily band-limited,
because infinitely high frequencies cannot be measured, ensuring that mea-
sured material boundaries are smooth. Figure 10.2 first shows an idealized
material boundary, along which data value f(x) and its first and second
derivatives, f ′(x) and f ′′(x), are plotted along a path through the bound-
ary, parameterized by x. Second, parametric plots of f ′(x) versus f(x) and
f ′′(x) versus f(x) are drawn from the same boundary.

Most important for the task of transfer-function specification is how the
parametric plots of first and second derivatives form characteristic curves,
in particular the arch formed by the relationship between f(x) and f ′(x).
The strategy, common in computer vision, of locating a material edge or
surface at the maximum of the first derivative, or the zero crossing in the

Figure 10.2. Relationships between f , f ′ , f ′′ in an ideal boundary.
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second derivative, applies to both Figure 10.2 (left) and (right). Transfer
functions are often designed to emphasize the surfaces of materials, imply-
ing opacity should be assigned to those data values associated with a maxi-
mum in the first derivative, namely, at the middle of the f ′(x) arch. Opacity
assignment can be successfully guided by inspecting scatter plots (joint his-
tograms) of data value and gradient magnitude as they appear throughout
the data, in order to detect the arches signifying material boundaries.

During volume processing or volume rendering, the derivatives playing
the role of f ′(x) and f ′′(x) above are directional derivatives of f along
the gradient of f , g = ∇f = [∂f/∂x ∂f/∂y ∂f/∂z]T. Considering the
directional derivatives along the normalized gradient ĝ = g/‖g‖, we know
from vector calculus that the first directional derivative of f along v is

Dvf = ∇f · v ⇒ Dĝf = ∇f · ĝ = g · ĝ = ‖g‖ .

The second directional derivative of f along the normalized gradient
direction may be found by Taylor expansion:

D2
ĝf =

1
‖g‖2 gT Hg ,

where H is the Hessian of f , the 3× 3 matrix of second partial derivatives
of f . Using a combination of first and second central differences to measure
the coefficients in the gradient g and the Hessian H provides a simple way
of evaluating Dvf and D2

ĝf at the data sample points in a regular volume.
Figure 10.3 illustrates how one can “read” histogram information to

infer where features of interest are located in the transfer-function domain.
The top-left image shows a (1D) histogram of data values in the Chapel
Hill CT head. Notice that it is very difficult to see where one might set

Figure 10.3. Gradient magnitude as an axis of a 2D transfer function. (Images
reprinted from [128], c© 2001 IEEE.)
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Figure 10.4. The second directional derivative as an axis of a 3D transfer function.
The labeled materials are (A) pulp, (B) air or background, (C) dentin, and (D) enamel.
The labeled boundaries are (E) pulp–dentin, (F) air–dentin, (G) dentin–enamel, and
(H) air–enamel. (Images reprinted from [128], c© 2001 IEEE.)

opacity to visualize the annotated features. The bottom-left image shows a
joint histogram of data value versus gradient magnitude, with key features
annotated. Now, it is clear where homogenous features are located (blobs
at the bottom) as well as boundaries (arches connecting the blobs). The
image on the right shows a volume rendering with each of the key features
of interest using a 2D transfer function.

Figure 10.4 shows how the second directional derivative (f ′′) can help
disambiguate multiple boundaries that share values, in much the same
way that gradient magnitude helped disambiguate boundaries and materi-
als. Figure 10.4 (a) shows joint histograms of data value versus gradient
magnitude. Notice that the arches for boundaries E (pulp–dentin), F (air–
dentin), and H (air–enamel) all collide in the circled region. Figure 10.4 (b)
shows a joint histogram of data value versus second derivative; notice that
now the boundaries in the circled region no longer overlap. Figure 10.4 (c)
and (d) compare volume renderings that attempt to visualize the air–dentin
boundary (yellow) and the dentin–enamel boundary (blue) using 2D (Fig-
ure 10.4 (c)) versus 3D (Figure 10.4 (d)) transfer functions.

10.4 General Multidimensional Transfer
Functions

The previous sections demonstrated the utility of extending the domain
(input) of the transfer function to include derivative information. How-
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Figure 10.5. Examples of multivariate data sets rendered using multidimensional
transfer functions. Left: the NIH-NLM Visible Human Color Cryosection data set
has three values at each sample (RGB). Center: a numerical weather simulation from
the Canadian Meteorological Center requires multiple physical quantities (temper-
ature, humidity, etc.) to identify air masses and fronts. Right: MRI scanners can
measure multiple chemical characteristics for identifying different tissue types in a
human brain.

ever, the addition of derivative information is not the only way we can
leverage the enhanced specificity of multidimensional transfer functions.
What if the data isn’t scalar to begin with? Imagine that instead of a
single value at each sample, we had several values. This is analogous to
the difference between a grayscale image (one value per pixel) and a color
image (3 values per pixel). For instance, the National Institute of Health’s
Visible Human Project provides 3D color data for an entire human body.
In this case, we could utilize a multidimensional transfer function to make
optical property assignments based on unique color values; i.e., the trans-
fer function would be a 3D table indexed by the individual red, green, and
blue values. Figure 10.5 shows a volume rendering of this data using 3D
transfer functions.

When there are multiple values that represent features in the data set in
different ways, we can use the unique combinations of these values to iden-
tify features far better than we could with any single value by itself. In the
previous section, gradient magnitude by itself would only allow us to dis-
criminate between edge and non-edge characteristics; it is the combination
of data value and gradient magnitude together that allows us to discrimi-
nate individual materials and the pair-wise boundaries between them. In
the color data set example, no single color channel can adequately differ-
entiate each of the tissue types. Another example is MRI data. Unlike
CT data, MRI can measure a number of different quantities related to
the chemical makeup of tissues in the body. However, for any single MRI
scanning modality, multiple tissue types tend to share the same measured
intensities. By combining multiple scanning modalities, we can differentiate
tissue types that may share intensities in one modality but not in another.
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Figure 10.6. Combining multiple MRI scanning modalities to better separate differ-
ent materials in the transfer function domain. Left: a 2D log-scale joint histogram
of proton density (PD) and T2 MRI scans with the corresponding 1D histograms.
Center: a joint histogram with high gradient magnitude values excluded. The la-
beled materials are (a) cerebro-spinal fluid, (b) gray matter, (c) white matter, (d) fat,
(e) background, and (f) blood. Right: slices from three scans.

Figure 10.6 illustrates how combining proton density and T2-weighted MRI
modalities helps us to better distinguish key issues.

Depending on the task, multiple values can be essential in identifying
features of interest. A good example of this is the identification of weather
phenomena based on principal physical quantities like temperature, pres-
sure, and humidity. Features such as weather fronts are defined based on
the relationships between these physical quantities.

10.5 Engineering Multidimensional Transfer
Functions

If two data values are better than one, and three are better than two, why
not assign optical properties based on as many different data characteristics
as possible? While this would be ideal for identifying features in our data,
there are a number of engineering issues that can make this approach quite
impractical. Each new channel of data increases the size of the data set.
With limited memory resources and bandwidth, data size and interactivity
become trade-offs. For instance, we would expect a data set using four
channels of data to take roughly twice as long to render as a data set con-
sisting of only two channels. It is important to consider how each channel
of data contributes to our ability to differentiate features. At some point
we face the issue of “diminishing returns.” That is, eventually adding addi-
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tional channels of data will only improve our ability to differentiate features
marginally, while its negative impact on rendering performance continues
to increase linearly.

The issue of data set size versus rendering speed is considerably easier
to understand and manage than the issue of generating arbitrarily high-
dimensional transfer functions. Whereas it is a simple matter to represent
a 2D transfer function using a 2D texture, a 3D transfer function repre-
sented as a 3D texture could easily take up more memory than the data
set itself. Furthermore, we have no built-in mechanism for representing
higher-dimensional look-up tables (four or more dimensions) in hardware,
let alone the memory capacity for storing them. One could address this
problem by creating transfer functions for each individual axis (or pairs of
axes) of the transfer-function domain, and combine them in some way. For
instance, you could assign opacity based on one set of values and assign
color based on another. Or, you could create multiple transfer functions
for different axes of the transfer-function domain and combine them by
multiplying the optical properties from each transfer function. We call this
kind of transfer function separable because we treat the axes of the trans-
fer function as separate or independent entities and combine them with
a simple operator. This approach solves the problem of increased mem-
ory requirements, four 1D look-up tables require substantially less memory
than one 4D look-up table. Unfortunately, this approach also dramatically
limits our ability to identify features and assign optical properties based
on unique combinations of data values. Figure 10.7 illustrates this issue.
In general, it is not possible to localize our optical property assignments
using separable transfer functions.

Figure 10.7. A comparison of general and separable 2D transfer functions. Left:
a general 2D transfer function transforms unique combinations of x1 and x2 data
values into opacity (vertical axis). Right: a separable 2D transfer function, com-
posed of two 1D transfer functions multiplied together, will generate opacity where
it many not have been intended.
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The first and most important strategy for addressing the issues de-
scribed above is to choose the axes of the transfer function wisely. The
more you understand about how the different data values relate to the fea-
tures you are interested in visualizing, the better you will be at selecting
the minimal set of values needed to accurately visualize the features.

10.5.1 Factor Analysis

One approach for addressing the engineering constraints of multidimen-
sional transfer functions involves reducing the dimensionality of the
transfer-function space in an intelligent way. For instance, if we are given
a data set with N data values at each sample, we could identify a 2D
subspace of the N -dimensional transfer-function domain that best cap-
tures the important characteristics of the data’s behavior. This approach
is commonly used in statistics and falls in to the broad category of factor
analysis methods. Two commonly used techniques are principal compo-
nent analysis (PCA) and independent component analysis (ICA). Both of
these methods develop a linear transformation of the data space (i.e., the
transfer-function domain) in such a way that the axes of the new space
best represent the behavior of the data. In particular, both of these meth-
ods rank these axes based on their “importance.” For PCA, importance is
based on how much the data samples vary along that axis; axes with large
variation will be ranked higher than axes with very little variation. For
ICA, importance is based on how well an axis separates values that are
far apart in the original ND data space; that is, axes with less projected
overlap of dissimilar data values are ranked higher. The transformation
provided by PCA or ICA may make it easier to localize features in the
transfer-function domain. However, the transformation may remove the
user’s intuitive understanding of what the original axes represented. For
example, if we are visualizing meteorological simulation data using physical
quantities (pressure, temperature, humidity, and wind speed), these values
are meaningful to the user. When we perform ICA or PCA and end up with
a new set of axes, these axes are made up of arbitrary linear combinations
(mixtures) of the original physical quantities, which may not be intuitively
understandable for the user. Furthermore, factor-analysis techniques re-
duce the dimensionality of the data space by discarding the “unimportant”
axes. This means that (1) differing data values in the original space may
project to the same value in the new space, and (2) we cannot easily detect
when this overlap is causing incorrect results. These disadvantages should
not deter you from making the best of this approach. In many cases, the
original axes aren’t necessarily meaningful to a user. Consider how unin-
tuitive the RGB color space is; what combination of RGB values result in a
“burnt sienna” color? MRI data is another example; the actual measured
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intensities can vary widely from scanner to scanner and are dependent on
a number of variables. What really matters for MRI data is contrast, i.e.,
the difference between the measured values representing dissimilar tissue
types, a data characteristic that factor analysis methods strive to preserve.

10.5.2 Procedural Transfer Functions

The practical limitations of look-up table–based transfer-function imple-
mentations can also be addressed in a more direct fashion. Perhaps a
single look-up table is not the best way to represent transfer functions.
Per-fragment programming capabilities allow us to represent the transfer
function as an explicit mathematical formula. If we can identify mathemat-
ical primitives that are simultaneously efficient to evaluate and useful for
accurately assigning optical properties for features of interest, we can avoid
the pitfalls of look-up tables and design transfer functions of virtually any
dimension. One function that is well suited to this task is the Gaussian:

g(x, h, c,K) = he−‖K(x−c)‖2
. (10.1)

This function describes a “blob”-like primitive, where x is a vector of data
values for a sample being rendered, h is the height of the blob, c is its
center, and K is a linear transform that has the role of scaling and orienting
the blob. Figure 10.8 shows a 2D example of a Gaussian. This function
can be used to generate useful optical property assignments, where opacity
= g(x, h, c,K) and color is constant. In this case h controls the maximum
opacity assigned to data values covered by the blob. This canonical form
is a useful opacity function because materials tend to be represented as
a localized distribution in the data space. In fact, it is often a default
assumption, due to noise and other factors, that a homogeneous material
will have measured values that follow a Gaussian distribution.

However, just because our features have a Gaussian distribution, this
does not necessarily mean that a Gaussian is an ideal opacity function.
The problem is that we would like to have more control over how the
opacity ramps from high to low. There is a key insight here; the Gaussian
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Figure 10.8. A 2D Gaussian.
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is effectively a function of the squared distance from a point (c). A more
general definition of a blob primitive might be

blob(x, c,K, αmax) = αmaxf(‖K(x− c)‖2) , (10.2)

where αmax is the maximum opacity generated by the blob function, f(x) is
any function with the domain x ∈ [0.. inf], and range f(x) ∈ [0, 1]. Notice
that the input to f(x) is the squared distance to c under the transform K.
Using the squared distance is an important optimization that allows us
to avoid costly square root operations in the fragment program. Here,
we are also leveraging the fact that the squared length of a vector is the
dot product of the vector with itself, i.e., ‖x‖2 = x · x. Using this blob
definition, a Gaussian blob would have

f(x) = e−x∗9 , (10.3)

where the factor of 9 is used to scale the width of the Gaussian to fit nicely in
the range x ∈ [0..1], i.e., the value of this function is “effectively” 0 outsize
of this range. The nice thing about this kind of transfer-function primitive
representation is that f(x), which determines the shape or profile of the
opacity function, is a simple 1D scalar function that can have predefined
domain bounds. That is, we can limit the domain of this function to
something like x ∈ [0..1], where f(x > 1) = 0, i.e., f(x) is clamped to zero
outside the chosen range. This allows us to store f(x) in a 1D texture, or
a family of f(x)s with varying profiles in a 2D texture. Figure 10.9 shows
two different f(x) profiles.

A complete transfer function is built by combining multiple primitives.
The opacity for multiple primitives can be summed, and color can be de-
termined using a weighted average based on opacity (see Figure 10.10):

Cfinal =
∑

i Ciαi∑
i αi

. (10.4)

Listing 10.2 is a Cg program that shows how this approach works for
a volume with four values at each sample, thus requiring a 4D transfer
function. In this example, the arrays alpha[], C[], and K[] are user-
defined constants. Because we know ahead of time how many primitives
we have (num tf primitives), this term is also constant and allows Cg to
unroll the loop in eval tf(). This detail is important, as an unrolled loop
will be far more efficient and more easily optimized by the compiler than
a general loop. Notice that the f(x) function is stored in a 1D texture
(fx tex), indicating that we are using a single profile for all of the blob
primitives. The f(x) texture could also be a 2D texture, where the second
texture coordinate indexes a different profile. This “profile index” would be
another user-defined per-primitive constant array. Also, notice that the last
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Figure 10.9. Two transfer-function primitive profiles. Because x is the squared
distance, the plots are also shown with the x axis varying as the square root of x,
so that you can see how the profile would look in a linear space.

line of code in the function eval tf() in Listing 10.2 is a texture read using
the texture named alpha scale tex. This texture read is another function
stored in a texture, much like the f(x) texture used in the blob() function.
This function is absolutely essential for maintaining the appearance of the
visualization when the sample rate changes. The function stored in this
texture is

alpha scale(α) = 1− (1− α)
1
s , (10.5)

where s is the current sample spacing. This function effectively lowers the
opacity for each sample as the sample spacing decreases, thus ensuring
that the overall opacity in the final visualization remains the same. The
derivation of this alpha scale function can be found in Chapter 1. When
we are using a single texture for the entire transfer function, as is often
the case with simple 1D or 2D transfer functions, this scaling of opacity is
usually taken into account when the entries of the look-up table are filled.

This approach of procedurally evaluating the transfer function as the
composition of multiple mathematical primitives is advantageous for a num-
ber of reasons. First, simple mathematical primitives can be designed in
any dimension, like the blob example above, which allows us to avoid build-
ing troublesome N-dimensional look-up tables. Even though we are using
a look-up table for f(x) in the blob example, f(x) is only a 1D function
in a “normalized” space and is only used to control how opacity falls-off as

Figure 10.10. Combining two transfer-function primitives using a weighted aver-
age based on opacity.
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// fragment program for procedural 4D transfer function

// blob function

half blob (half4 value,

uniform half4 center,

uniform half4x4 K,

uniform sampler1D fx tex)

{
half4 vmc= K*(value-center);

half dsq= dot(vmc,vmc);

return tex1D(fx tex, dsq);

}
// function that evaluates transfer function, returns color

// and opacity

half4 eval tf (half4 value, uniform sampler1D fx tex,

uniform sampler1D alpha scale tex) {
half4 ret color = half4(0,0,0,0);

for(half i= 0; i<num tf primitives; ++i){
half b= alpha[i] * blob(value,C[i],K[i],tf tex);

ret color+= half4(color[i]*b, b);

}
ret color.rgb /= ret color.a;

ret color.a = tex1D(alpha scale tex, ret color.a);

return ret color;

}
// main

half4 main (half3 texUVW : TEXCOORD0,

uniform sampler3D volume texture,

uniform sampler1D fx tex,

uniform sampler1D alpha scale tex) : COLOR

{
half4 index = tex3D(volume texture, texUVW);

half4 result = eval tf(index, fx tex, alpha scale tex);

return result;

}

Listing 10.2. An example fragment program for evaluating a 4D transfer function
using multiple “blob” primitives. The arrays alpha[], C[], and K[] are the per-
primitive constants for alpha, primitive center, and blob transforms, respectively.

a function of distance. Second, mathematical primitives allow us to eas-
ily generate transfer functions for high-precision data formats, e.g., 16-bit
and floating-point. For instance, the blob function can assign opacity to
an arbitrarily narrow range of data values by increasing the scale term as-
sociated with the K transform. In contrast, look-up tables need to have
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as many entries as there are distinct data values, meaning that 8-bit data
requires 256 look-up–table entries and 16-bit data requires 65536 entries
(which is currently larger than the maximum allowed OpenGL texture size).
It may not be clear how many look-up–table entries would be required for
floating point data. The problem becomes even more pronounced when we
attempt to build look-up tables for multidimensional transfer functions; for
instance, a 2D look-up table for 16-bit data would require 655362 > 4×109

entries. One disadvantage of procedural transfer functions is the cost of
evaluating the primitives. Because the transfer function must be evalu-
ated for each primitive and each rendered sample, the performance penalty
when we are using a large number of primitives can be significant. This
emphasizes the importance of choosing simple primitives and using them
wisely. Look-up tables, on the other hand, only require a single texture
read. In practice, however, four or five well-placed primitives are enough
for both a high-quality visualization and interactive performance.

There are several transfer-function primitives that we have found useful;
the “sharp blob” (s-blob), the gradient magnitude triangle blob (t-blob),
and line blob (l-blob).

The sharp blob is just like the blob primitive discussed earlier, with the
addition of a sharpness term (s) that controls the steepness of the profile’s
fall-off:

s blob(x, c,K, αmax, s) = αmaxgain
(
f(‖K(x− c)‖2), s/2 + .5

)
, (10.6)

where s varies from [0..1) with s = 1 being the sharpest setting (a step
function). Gain is a function that smoothly transitions from a linear ramp
to a step function,

gain(x, g) =

{
x < .5

(
(2x)log(1−g)/ log(.5)

)
/2

x ≥ .5 1− (
(2− 2x)log(1−g)/ log(.5)

)
/2 ,

(10.7)

where g varies from (0..1) and g = .5 leaves the value of x unchanged, i.e.,
gain(x, .5) = x. In Equation 10.6 we are only using the range of g from
(0.5..1]. Figure 10.11 shows how gain(x, g) changes a Gaussian profile
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Figure 10.11. The sharp blob, using two different profiles.
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as well as the function f(x) = max(1 − √x, 0), which is a simple linear
ramp. When we are using an s-blob, we can take any f(x) and generate a
2D texture, where the first dimension indexes the x value and the second
dimension indexes the sharpness term (s).

When gradient magnitude is used as an axis of the transfer function,
we can visualize material boundaries by assigning opacity to high gradi-
ent magnitudes. It has been observed that, by increasing the width of the
opacity profile as a function of gradient magnitude, we can create visual-
izations of surfaces that appear to have constant thickness. This effect can
be achieved by scaling the input to the f(x) profile function as the squared
reciprocal of gradient magnitude:

t blob(x, c,K, αmax, g) = αmaxf

(
‖K(x− c)‖2 g2

max

g2 + ε

)
, (10.8)

where g is the gradient magnitude (or a multigradient magnitude), gmax is
the largest significant gradient magnitude, and ε is a small positive number
(e.g., 0.0001) needed to ensure that we never divide by 0. Figure 10.12
shows how this scale term affects the width of the blob as a function of
gradient magnitude. Just as in the s-blob example, we can cache the evalu-
ation of the profile in a 2D texture indexed by x and g/gmax (i.e., gradient
magnitude normalized into the range [0..1]).

The final primitive is the line blob, or l-blob. This function effectively
elongates the blob in a particular direction in the transfer-function domain.
It is useful for a number of reasons. First, when the values that represent a
feature of interest do not follow a localized distribution (like a Gaussian), a
blob-based primitive may not be the best way to generate an opacity func-
tion. For instance, when we have a boundary between two materials, the
values that represent this boundary are composed of linear combinations
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Figure 10.12. The triangle blob. Left: a 2D t-blob for value (x1) and gradient mag-
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(multi)gradient magnitude (g).
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of the values for each material, and therefore follow a fuzzy line segment
connecting the two material distributions. Second, the K transform used
in all of the previous blob functions is an N × N matrix, where N is the
dimension of the transfer-function domain. This transform requires N dot
products per-primitive, which can be a very expensive operation. It is often
the case that we only need to elongate a blob primitive in one direction,
thus it would seem that N dot products is overkill. The line blob can be
defined as

l blob(x, c, l, wl, wp, dl, αmax) =

αmaxf

((‖x− c‖2 − ((x− c) · l)2) 1
w2

p

+ max ((|(x− c) · l| − d), 0)2
1

w2
l

)
,

(10.9)

where l is a unit vector in the direction of the line segment centered on c, wl

is the width of the profile in the direction of the line, wp is the width of the
profile perpendicular to the line, and dl is 1/2 of the line segment’s length.
Although this function seems complicated, it is actually quite simple and
lends itself well to efficient implementations. The derivation of this function
utilizes the Pythagorean theorem (h2 = a2+b2) to get the squared distance
perpendicular to the line (the first half inside f(x)) and the distance in the
direction of the line (the second half inside f(x)). We know that ‖x−c‖2 =
(x − c) · (x − c) is by definition the squared distance from x to c (h2).
Because l is a unit vector, ((x − c) · l)2 is the squared distance from x
to c in the l direction (a2). Therefore, the squared distance from x to
c perpendicular to l is simply b2 = h2 − a2. The second term in f(x),
max((|(x − c) · l| − d), 0)2, is designed to force the distance computation
in the l direction to be measured from the endpoints of the line segment.
This primitive is typically used in one of two ways. The first way uses
the same profile widths (i.e., wl = wp) and a nonzero segment length
dl, which is a line-like blob; useful for the material boundary problem
discussed earlier. The second way sets the segment length dl = 0 and uses
different values for wl and wp, which generates elongated blobs. In this
case max((|(x− c) · l| − d)2, 0) becomes simply |(x− c) · l|2. Figure 10.13
illustrates this profile in a 2D transfer-function domain.

The goal when using the aforementioned primitives or developing your
own is to eliminate or simplify any unnecessary operations without sacrific-
ing the quality of the opacity function. As noted earlier, the K transform
can be an expensive operation, but it is only necessary when you need an
oriented (rotated) primitive with different widths along each of the axes. If
you do not need rotation, the K transform will only have nonzero entries
along the diagonal and can be replaced with a component-wise vector multi-
plication. If you do not need different widths along the axes of the transfer-
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Figure 10.13. The line blob. Left: a fuzzy line segment blob, created using a nonzero
dl . Right: an elongated blob, created by setting dl = 0 with wl > wp .

function domain, K can be replaced with a single scalar width term. On
the other hand, if all primitives require roughly the same orientation, con-
sider transforming the data space instead, using PCA for instance (without
discarding axes). Another big optimization is the use of a texture for the
opacity profiles f(x), which evaluates the function based on the knowledge
that the x variable has been squared. Because many useful profiles are
defined by relatively complex expressions, replacing these operations with
a single texture read is a big win. To some degree, we can rely on the Cg
and graphics-card–driver compilers to optimize our code for us, especially
when we make judicious use of constant variables. However, it is always a
good idea to understand and leverage the underlying basic machine oper-
ations. For instance, a 4-vector dot product is a single instruction, as is a
4-vector “multiply-add” (multiply two vectors and add a third). However,
square root is only a scalar operation and actually requires two hardware
instructions, a reciprocal square root followed by a reciprocal: two very
expensive operations. This is why we pass the squared distance to f(x).
Another example optimization is the elimination of the max() operation
in the l-blob function (Equation 10.9). The max() function requires two
hardware operations: a subtraction and a compare. The compare opera-
tion is currently the most expensive (slowest) hardware instruction on the
NVIDIA GeForce FX 7800. The idea is to use a 2D texture for the f(x)
profile indexed by

s =
(‖x− c‖2 − ((x− c) · l)2) 1

w2
p

, (10.10)

t = (|(x− c) · l| − d)
1
wl

, (10.11)

where f ′(s, t) = f(s + max(t, 0)2). Notice that the max() is now pre-
computed in the texture, and we were also able to remove a scalar multiply.
However, we now have the possibility of indexing the texture f ′(s, t) using
negative values of t. The key here is to use the GL CLAMP TO EDGE as the
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texture wrap mode for the t coordinate of the texture. This mode ensures
that texture coordinate values of t less than 0 are clamped to 0, imple-
menting exactly the max(t, 0) that we want. In fact, the max() operation
in the definition of f ′(s, t) is completely superfluous, since the texture will
only contain positive t values.

Another final issue that must be addressed when using procedural trans-
fer functions is the fact that the fragment program, or at least the func-
tion that evaluates the transfer function (eval tf), must be dynamically
generated. One way to address this is to write code that generates the
transfer-function program on the fly, so-called metaprogramming. That is,
the application executable assembles the Cg code for this function based on
the current primitives being used. This problem of having to dynamically
generate variations of a fragment program or function is quite common
in real-world interactive graphics applications. As such, there are a num-
ber of frameworks available for handling exactly this situation. CgFx is
a framework and API, which is built on Cg and designed to help manage
complex and dynamic fragment programs. It allows one to not only handle
variations of a function or sequence of functions, but also handle specific
instances of these functions that are optimized for a particular hardware
platform.

10.6 Transfer-Function User Interfaces
The design of user interfaces for specifying transfer functions is an active re-
search topic unto itself. Although techniques exist for (semi-)automatically
generating transfer functions, at some point the user must be able to de-
cide what they want to see and how it should look. The majority of
volume-rendering applications today only utilize 1D transfer functions.
One-dimensional transfer-function interfaces are substantially easier to de-
sign than an interface for general multidimensional transfer functions. The
simplest 1D transfer-function interface would have the user “hand-draw”
the opacity and color function, as seen in Figure 10.14. There are two
major issues with this approach. First it is extremely difficult to generate
a desired color by manipulating the red, green, and blue components di-
rectly. Second, this user interface does not provide a mechanism for easily
manipulating the optical properties associated with a particular feature of
interest. For instance, how would one change the color of bone when vi-
sualizing CT data? The problem is that this method does not provide the
user with any notion of object locations in the transfer-function domain.
This problem is made worse by the fact that the behavior of data in the
transfer-function domain can be difficult to understand, especially for a
naive user. Furthermore, “hand-drawing” opacity and color functions as
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Figure 10.14. 1D transfer-function user interfaces. Top, a “hand-drawn” transfer
function makes it difficult for the user to produce a clear and meaningful visualiza-
tion. Bottom, a constrained user interface can make the task of transfer-function
specification more manageable.

a user interface paradigm simply does not extend to higher-dimensional
transfer functions.

Ideally, a user interface would have the user select which objects they
would like to see, and how they should look; leaving the details of gen-
erating opacity functions and other optical properties to more principled
automatic algorithms. Unfortunately, fully automatic transfer-function de-
sign is not practical because the definition of an object or feature of interest
depends on the task and the kind of data being visualized. An acceptable
compromise would have the user interface:

1. constrain user interaction with the transfer-function domain in a
meaningful way,

2. provide the user with a semantic notion of features of interest, and

3. guide the user toward “good” transfer functions based on application-
specific information.

The design of transfer-function interfaces implicitly involves the fundamen-
tal question: What kinds of tools benefit the different kinds of visualization
needs? More specifically, how much knowledge (on the part of the user) can
be assumed when creating interfaces for handling complicated parameter
settings? When is it better to simply create guidance through a parame-
ter space versus enforce constraint to some heuristically determined subset
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of the parameter space? What is the appropriate amount of automation?
What is the best context to present new information extracted from a given
data set, beyond what is used in any particular parameter setting task?

There is a wide range of reported techniques for transfer-function user
interfaces and specification. We will refer the reader to Section 10.7 for
a short survey of these methods. The remainder of this section will focus
on a user-interface framework that has been useful for a wide range of
users and applications. This approach centers on the idea that the user
will have an intuitive understanding of the objects they wish to visualize
when they are presented in the spatial domain. That is, the user can
generally identify their features of interest when they view the data as slices
or a volume rendering. This interface allows the user to point at features
on slice images or “probe” the volume and have the transfer function set
automatically based on the data values at these user specified locations.
This process, involving interactions in the spatial domain that in tern affect
the transfer-function domain, has been dubbed dual-domain interaction.
Dual-domain interaction is effectively a reversal of the traditional approach
to transfer-function specification, where the user makes changes directly to
the transfer function and observes their affect on the visualization. The
traditional approach can be a tedious and time-consuming process of trial
and error, which becomes increasingly problematic as the dimension of
the transfer function increases. Figure 10.15 (a) illustrates this process:
a clipping plane is placed in conjunction with the volume rendering and
mapped with the corresponding data slice, the user then clicks on the slice
(green crosshair), the data values at this location are read from the volume
data, a small region of opacity is then set in the transfer-function domain

Figure 10.15. Dual-domain interaction as a user interface paradigm. The user
points at features in the spatial domain, and opacity is automatically set in the
transfer-function domain. (Images reprinted from [128], c© 2001 IEEE.)
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centered on these data values, and the visualization is updated to reflect
this change to the transfer function. Figure 10.15 (b) and (c) shows the
transfer function and visualization updating dynamically as the user moves
the query location from one material to another.

This volume probing or point-and-click data query method can be used
in a variety of ways. In the previous example, the opacity function (in the
transfer-function domain) followed the values pointed to by the user (in the
spatial domain). If we are using the primitive opacity functions described
in Section 10.5.2, the value or vector of values at the queried position can
be used to specify the center (c) of a primitive opacity (blob) function.
For this method to work, however, the K transform (width and orientation
of the primitive) must also be specified. One could choose a reasonable
constant width (w) to begin with, i.e., K = (1/w2)I. Or, in addition
to the value(s) at the query location, we could sample values in a region
around the queried position in the volume data, analyze the variation in
these values, and tailor the width of the primitive based on this variation.
For instance we could set the K transform equal to the inverse covariance
matrix derived from neighborhood samples. In practice, it is important to
ensure that we maintain some minimum width, so that truly homogeneous
regions of the data do not generate transfer-function primitives with zero
width. Once the user has identified a feature of interest, they should be
able to save the current primitive and continue probing. After the user has
identified the important objects in the data, they can then improve, up-
date, and modify the parameters of the transfer-function primitives. This
can be accomplished by providing tools that allow the user to modify the
parameters for the primitives in the transfer-function domain. Figure 10.16
shows an example interface for manipulating primitives in two dimensions.
When the transfer function has more than two dimensions, the parameters
can be manipulated using multiple 2D “views” of the transfer-function do-

Figure 10.16. Tools for manipulating a transfer function. The transfer-function
domain “lives” within the outer frame. Transfer function primitive parameters are
modified by moving control-points.
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Figure 10.17. A user interface for “probing” the data to automatically set/specify
transfer-function primitives. Left: a slice-based interface allows the user to “see”
the data, and mark locations where their features of interest are located. The user
can select these features by name (lower-right box in slice interface) and set their
optical properties.

main. Alternatively, the user could continue working the spatial domain
by selecting a previously defined primitive (from a list) and updating its
parameter settings by identifying additional locations where the object is
present. In this case, we could assign the center of the primitive (c) as the
average of the values associated with the probed locations; similarly, the
K transform would be the inverse covariance matrix associated with the
set of queried values. Figure 10.17 shows an example user interface that
allows the user to revisit and refine transfer-function primitives by identify-
ing object locations in the slice data. As a user-interface developer, the key
thing to keep in mind when building this kind of interface is that the data
behavior of materials may not always follow a Gaussian distribution (an
implicit assumption when using the mean and covariance). For instance, if
the user probes the boundaries between materials, the distribution for this
feature of interest, with respect to nonderivative values, will follow a line-
like distribution like the l-blob primitive discussed in Section 10.5.2. With
respect to the gradient magnitude, material boundaries follow a parabolic
arch as discussed in Section 10.3. It is a relatively simple matter to detect
whether or not a sampled value is likely to be a boundary value and ad-
just the primitive type accordingly. However, a more semantic approach
might allow the user to specify whether the feature they are updating is a
material or a boundary.
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10.7 Further Reading
For a concise survey of classic transfer-function specification research, we
refer the reader to a white paper by Gordon Kindlmann, “Transfer Func-
tions in Direct Volume Rendering: Design, Interface, Interaction.” This pa-
per covers many notable methods developed before 2002. Often, the goal of
transfer-function specification is, in essence, the same goal as pattern recog-
nition and classification in image processing and computer vision. Pattern
Classification by Richard Duda, Peter Hart, and David Stork is an excel-
lent handbook on classification and data analysis methods. Unfortunately,
few of the methods are specific to 2D or 3D image data classification. A re-
cent book by Scott Umbaugh, Computer Imaging: Digital Image Analysis
and Processing, provides a nice introduction to the fundamentals of image
processing and feature classification. The research paper “An Intelligent
System Approach to Higher-Dimensional Classification of Volume Data”
by Fan-Yin Tzeng, Eric Lum, and Kwan-Liu Ma describes a system that
directly combines advanced ideas from the pattern recognition field with an
extreme form of dual-domain interaction (i.e, no transfer-function domain
interaction whatsoever). This is an excellent example of the current di-
rection being taken with volume-rendering and transfer-function research:
utilizing high-quality classification and segmentation methods when the
more traditional transfer-function methods fail.
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Game Developer’s Guide to

Volume Graphics

THE POWER OF CURRENT CONSUMER GRAPHICS HARDWARE increasingly
allows the integration of truly volumetric graphics into applications

with very high real-time demands. Computer and video games are certainly
the prime example. In many traditional volume-rendering applications,
such as medical volume rendering, frame rates between 10 and 20 frames
per second are usually considered to be sufficient. In games, however, the
overall frame rate needs to be much higher than that, including all the
simulation and rendering for the entire scene, of which volumetric effects
are but a small part.

This chapter describes approaches for integrating volume graphics into
game engines and provides an overview of recent developments in simu-
lating and rendering volumetric effects with very high frame rates. It is
also intended as a guide to the other chapters of this book from a game
developer’s perspective.

11.1 Volume Graphics in Games
Traditionally, many volumetric effects in games have been rendered with
approximations such as animated billboards and particle systems. Because
these terms are sometimes used interchangeably and terminology can be
confusing, we clarify the terminology we are using in this chapter below
in Section 11.1.1. Common examples for volumetric effects in games are
explosions, fire, or smoke. The influence of participating media such as fog
or the earth’s atmosphere is also a very important part of realistic rendering
that has traditionally been approximated using very limited methods such
as OpenGL’s fog color blending.

Although we believe that particle systems per se will continue to play
a very important role in games in the future, we argue that on current and

275
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future GPUs the use of simple animated billboards can often be replaced
by truly volumetric effects for much better results. The effect of partici-
pating media can also be simulated with increasing accuracy, moving away
from earlier extremely simplified real-time models. Recently, the interest
in incorporating true volume rendering into games has been increasing [86].
GPU performance has reached a level where convincing truly volumetric
effects are possible in real time. Moreover, with recent GPU features such
as data-dependent looping and branching, volumes have also become much
easier to render and integrate with game engines. General references on
game programming can be found in Section 11.9.

11.1.1 Billboards, Sprites, Impostors, Particle Systems,
and Terminology

Generally speaking, billboards or sprites are textured 2D geometry that
represents objects that are too complex to render in real time. However,
there is no really consistent terminology and there are various techniques
that make use of this basic idea in one way or another [2]. The most basic
billboard is simply a quad with a single texture on it that in each frame is
automatically rotated such that it is perpendicular to the view direction.
This kind of billboard is often called a sprite, which was the common term
in early arcade, computer, and video games. In these early examples, sprite
textures were usually hand-drawn, whereas later on they were pre-rendered
using offline 3D rendering software.

Billboards can also be used to represent complex geometric objects, such
as in billboard clouds [44], where their position and orientation, and tex-
ture images, are automatically optimized for good results with a minimum
number of billboards in a pre-process. A common application for this kind
of object representation is rendering trees and foliage [9]. In games, such
billboards have traditionally been generated manually or semi-manually by
artists.

A related technique that uses billboards as basic drawing primitives are
impostors [2, 233, 237]. However, impostor billboards act as image caches
and are usually dynamically updated by rendering into offscreen buffers.
They “stand in” for actual geometry or volumes for several frames; that is,
impostor images are usually not updated every frame, e.g., by performing
an update only when a certain maximum approximation error is exceeded.
These kinds of billboards often are not aligned with the view but with scene
geometry, which is illustrated in Figure 11.1. Expensive volumetric effects
such as clouds are a natural candidate for impostor rendering [94].

In the current generation of games, many effects are rendered with
billboards that have a static geometric position but are rendered with ani-
mated textures, i.e., animated billboards. Examples are a log fire or flames
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Figure 11.1. A powerful combination of volume and billboard rendering is to use
billboards as impostors [2], e.g., for cloud rendering (left). The cached impostor
images are updated only when the error with respect to the real view becomes too
large [94, 233, 237]. A major problem of using billboards or impostors are potential
clipping artifacts where they intersect scene geometry (center). (Images courtesy
of Mark Harris [97].)

on candles or torches that are rendered as an arrangement of intersecting
semitransparent billboards with texture animations. These animations are
either pre-computed or computed procedurally on-the-fly, depending on the
performance cost and required quality.

Individual particles of a particle system are commonly also rendered as
billboards. The textures used on particle billboards are often animated; i.e.,
multiple texture frames are played back in order to change the appearance of
the particles in addition to animating their position in 3D space. Common
examples in games are rendering fire, smoke, or clouds of dust. Sometimes,
the terms particle systems and billboards are used to describe the same kind
of effect. In this chapter, however, when we use the term particle systems,
we are most of all concerned with the dynamic behavior of these systems,
i.e., the animation of particle positions. In this context, the term billboard
refers to the animated appearance of texture sprites. This distinction is only
important insofar as we argue below that volume rendering can increasingly
replace animated billboards, and particle systems are a complementary
technique. For games, we can say that some effects traditionally based
on particle systems and billboard rendering can be substituted entirely by
real-time volume rendering, whereas sparse widely distributed effects, such
as water splashing from a fountain, or effects with small particles, such as
sparks, are most likely still best rendered with particle systems.

11.1.2 Where Volumes Are Present in Games

In the following, we give an overview of the main areas where volumetric
structures and effects are present in games, focusing on rendering aspects.
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Most of these effects and volumes are currently approximated without an
underlying volumetric representation. However, the nature of many ef-
fects in games is volumetric, and with the rapid move toward more and
more realistic graphics and increasing GPU power, they will increasingly
be computed based on actual volumetric representations.

Volumetric effects. A major problem of using billboards for effects such as
fire, smoke, and explosions is that the geometry of the billboards is often
clearly visible. The worst case of this happens when billboards clip into
scene geometry. The resulting intersection lines can clearly be seen and
the illusion of a volumetric effect breaks down completely. This problem is
illustrated in the center image of Figure 11.1. Effects based on billboards
usually also have the problem that the 2D nature of the underlying geom-
etry, i.e., the underlying image or stack of images, becomes visible when
the view is rotated. When billboard geometry is aligned with the viewer,
billboards are often perceived as rotating by themselves. If they are static
with respect to the world, their planar geometry often becomes clearly
discernible when they are viewed close to edge-on.

Even for real-time rendering, billboard effects can increasingly be re-
placed by truly volumetric effects, which provides a consistent model for
rendering and the basis for also simulating these effects in real time. Proce-
dural effects can be computed on GPUs in real time and rendered directly
as volumes. Clipping artifacts can, in principle, be removed entirely. Even
if the sampling rate during rendering is rather low, scene intersections are
much less visible in volume rendering than with billboard rendering. Sec-
tion 11.6 covers rendering volumetric effects, and Section 11.7 takes this a
step further toward real-time simulation of the underlying data.

Figure 11.2. The standard OpenGL fog model using simple distance-based blending
with a constant fog color (left). A recent, more accurate real-time single scattering
model [259] (right). Note that, in the right image, even the reflectance behavior
of surfaces is modified due to scattering between the surface and the viewer (in-
sets). (The images are included courtesy of Bo Sun et al. [259], c© 2005 ACM, Inc.
Reprinted by permission.)
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Participating media. Most rendering deals with light interaction only at a
small part of the entire 3D space, i.e., commonly at points on surfaces that
are part of the scene geometry. In this case, the media, such as air or
water, that fills up the space between these surfaces is not participating
in lighting computations. However, effects such as light scattering in the
earth’s atmosphere or in fog are a very important part of the realism of
the resulting rendered images. An example in indoor scenes is light that is
scattered by dust particles in the air, e.g., resulting in “light shafts” ema-
nating from windows. All these scattering interactions are often subsumed
as taking the effect of participating media into account.

One example is a recent method that allows OpenGL fog blending to
be replaced with a more accurate method that takes single scattering into
account [259] (Figure 11.2). Other approaches avoid the approximation of
“light shafts” with simple semitransparent polygonal geometry by using
more accurate models [51, 186].

Semitransparent and flexible objects. In a completely different vein from
volumetric effects and participating media, volumes can also be used as
highly flexible object representations. Volumes naturally allow the interior
of objects to be taken into account. Semitransparent objects can thus be
rendered in their entirety. As described in Chapter 13, such volumes can
be animated and deformed in real time.

Even surface-based models can be converted into a volumetric represen-
tation, for example by converting an object into a distance field [205]. In
this representation, operations such as constructive solid geometry (CSG)
or morphing are very easy and fast to compute. Complex deformations with
complicated changes of surface shape and even topology can be computed
on volumes using level set methods [205].

Particle effects. For completeness, we also include in Section 11.6.2 a brief
discussion of recent advances in rendering particle systems composed of
millions of independent particles on current GPUs. Rendering particle
systems is usually not considered a volume-rendering method, although it
shares basic properties with splatting, which is described in Section 1.6.2.
However, the basic goal is to render effects composed of a complex structure
that is distributed throughout a volume.

In general, particle systems are a very powerful method that is comple-
mentary to using volume rendering for visual effects. They are especially
useful when accurate volume rendering is still too expensive, e.g., when the
volume encompassing the effect is big but very sparsely populated, such
as in water splashing from a fountain. However, certain kinds of effects
that in real-time rendering have traditionally been rendered using particle
systems, such as explosions, can now be rendered in higher quality with
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Figure 11.3. Pre-computed radiance transfer for volume illumination [245]. Global
lighting is represented by a low-frequency environment map that can be rotated
arbitrarily with real-time updates of volume lighting. (Images courtesy of Peter-
Pike Sloan, Jan Kautz, and Jon Snyder, c© 2002 ACM, Inc. Reprinted by permission.)

volume rendering. A fully volumetric representation also allows for GPU-
based simulation, which is described in Section 11.7.

Irradiance volumes. Irradiance volumes [88] are the 3D analog of 2D light
maps. Their use is becoming common in GPU-based real-time render-
ing [262]. However, irradiance volumes are used like solid textures [58].
That is, although they are a volumetric representation, they are not ren-
dered as volumes but usually sampled on geometrically represented sur-
faces.

Pre-computed radiance transfer. Pre-computed radiance transfer (PRT)
[245] is traditionally computed for surfaces but can also be used to cap-
ture the illumination in a volume as illustrated in Figure 11.3. In this
case, radiance transfer is stored at the grid points of the volume. For sur-
face rendering, radiance transfer information is stored at the vertices of a
mesh or in surface textures. However, a special variant called neighborhood
transfer caches radiance transfer data in a solid, i.e., volumetric, texture.
This texture can then be used to compute radiance transfer effects such as
soft shadowing in the corresponding subvolume of 3D space surrounding
an object.

Subsurface scattering. Subsurface scattering approaches [279] consider the
volume below an object’s surface to a certain depth in order to capture the
translucent and smooth appearance of surfaces such as skin. However,
rendering is performed using customized algorithms for computing light
transfer due to scattering and not general volume rendering.
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Displacement mapping and relief mapping. Displacement mapping and re-
lief mapping [203, 213] are usually not considered to be volume-rendering
approaches, although they capture the volume above a base surface. How-
ever, common implementations use ray casting in fragment programs and
thus have close similarities to the volume ray-casting approaches presented
in this book.

Hair and fur rendering. Common approaches for rendering fur employ 3D
representations [119] or use volume slabs above surfaces [159]. High-quality
shadowing when rendering hair can be computed using a fundamentally
volumetric representation such as deep shadow maps [167]. Although
deep shadow maps are not a real-time method, they are described in Sec-
tion 11.8.4 as they facilitate a comprehensive understanding of volumetric
shadowing and the combination of geometry and volumes, which is crucial
for volume rendering in games.

11.1.3 Simulation and GPGPU

The recently emerging field of general purpose computations on GPUs
(GPGPU [85]) allows one to move the simulation of effects from the CPU
to the GPU. This very often has significant performance advantages. For
visual effects, it also has the property of moving the simulation of effects
much closer to where the resulting data are actually needed for rendering.
As GPUs become more powerful, the simulation and simultaneous visu-
alization of volumetric effects is rapidly becoming a reality. Section 11.7
gives an overview of simulating volumetric effects in real time.

11.2 Differences from “Standalone” Volume
Rendering

Most research publications, and indeed also most of this book, deal with
volume rendering as an isolated problem. Usually, a single volume is viewed
from the outside without intervening geometry, and the external lighting
environment is relatively simple, e.g., consisting of only one or two direc-
tional or point light sources, or a single environment map. However, in the
context of a game engine, volumes have to be integrated in a consistent
manner with the rest of the engine. They have to fit in with the projection
that is used, clip correctly with surrounding geometry, and use the same
lighting environment that is used for all other parts of the scene. In the
most general case, they also have to interact with each other. This section
summarizes the major differences between volume rendering as part of a
bigger system and volume rendering as a “standalone” application.
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11.2.1 Integration with Scene Geometry

The first major issue when integrating volume graphics into games is to
ensure proper interaction with the majority of the scene, which is repre-
sented by geometry. This geometry must be allowed to intersect volumes.
In doing so, opaque and semitransparent scene geometry must be handled
differently. Due to its importance, Section 11.4 is devoted entirely to the
topic of integrating volumes with scene geometry.

Interaction with semitransparent geometry. Semitransparent geometry is
a special case in virtually all rendering engines. In contrast with opaque
geometry, triangles that are not fully opaque have to be rendered in correct
visibility order. Fundamentally, semitransparent volumes in a scene are
very similar to regular semitransparent geometry. Like their geometric
counterparts, they also have to be rendered after all opaque parts of the
scene. The visibility order of volumes and transparent geometry is an
inherently hard problem and is discussed in Section 11.4.

11.2.2 Handling Multiple Volumes

Games naturally require a multitude of different effects to be visible at the
same time, so when they are rendered as volumes, multiple volumes must
be handled seamlessly. Traversal of these volumes has to be performed
in correct visibility order. In the most general case, a correct visibility
ordering must be established even when volumes are interpenetrating.

11.2.3 Integration with Occlusion Culling

As all other objects and effects, volumes have to be integrated with the
occlusion culling system. In general, this is easily accomplished using the
existing occlusion culling solution by considering a volume’s bounding box
or bounding geometry (e.g., a room filled entirely with volumetric fog),
which is discussed in Section 11.4.5.

11.2.4 Integration with Scene Lighting

Game engines are moving toward more and more realistic lighting, in-
creasingly allowing all light sources to change dynamically. Where for
many years different kinds of lights and light-surface interactions have been
treated as individual special cases, now all these different cases are becom-
ing unified in order to provide completely consistent lighting. Therefore,
when volume rendering is incorporated into a game engine, it also has to
be integrated with its existing scene lighting in a consistent manner.

That is, volumes have to be integrated with how lighting and especially
shadows are computed in the scene. The illumination that is external to the
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volume is determined by global scene lighting. Unfortunately, the feasibil-
ity of completely consistent volume lighting is very dependent on whether
shadows are computed using shadow volumes [37] or shadow maps [301].
Going a step further, the light emitted and scattered by a volume can be
used in order to provide illumination for the rest of the scene. With re-
spect to shadowing, semitransparent volumes give rise to soft shadows due
to absorption of light.

11.2.5 Integration with High Dynamic Range Rendering

If the game engine uses high dynamic range (HDR) lighting and rendering,
the embedded volumes also have to interact correctly with it. Basically,
this just means that all lighting computations in the volume have to be
performed with the same dynamic range that is used for all other lighting.
This also allows one to use high dynamic range volume rendering, where
the transfer function maps interpolated values from the volume to emis-
sion values with high dynamic range and high-precision alpha. Section 5.8
contains more information on high dynamic range volume rendering.

11.3 Guide to Other Chapters
This section provides pointers to the most important chapters in this book
with respect to their relevance to volume rendering in games. We start
out with the most basic ingredient, which is traversing the volume and
sampling it for rendering.

11.3.1 Slicing

The traditional way for GPU-based volume rendering is to resample the
volume using slicing planes. These planes act as proxy geometry that gen-
erates the fragments that allow the volume to be resampled in a fragment
program. The slicing planes are parallel to each other, spaced with a dis-
tance that is inversely proportional to the sampling rate, and composited
in either back-to-front or front-to-back order.

Chapter 3 describes this basic approach to volume rendering in detail.
Although slicing is very common, we recommend using GPU ray casting
for volume rendering in games instead. With slicing, it can be quite tedious
to set up all the geometry of the slicing planes, especially when multiple
volumes are rendered in a single frame and scene geometry might be inter-
sected. Planar resampling also does not easily allow for correct compositing
when perspective projection is used, which is the kind of projection used
in games.
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11.3.2 Ray Casting

We propose to use single-pass GPU ray casting as the main approach for
volume rendering in games. Single-pass ray casting is much easier to im-
plement and integrate with game engines than slicing approaches. All com-
putations can be performed in a fragment program with trivial geometry
set-up. No special vertex program computations are necessary. Traversal of
the volume is done entirely in the fragment program using data-dependent
loop instructions, and no special blending set-up is required.

Section 11.5 describes a really simple GPU ray caster that already sup-
ports most of what is needed for simple volume rendering in games. Chap-
ter 7 covers GPU ray casting in detail. For volume rendering in games,
only the sections on ray casting in regular grids are relevant. Ray casting
in irregular grids is more geared toward scientific visualization and is also
much more computationally involved.

11.3.3 Local and Global Illumination
In the context of games, many volumetric effects can be treated as purely
emitting and absorbing light, that is, volume rendering with the ba-
sic emission-absorption model and no external illumination or scattering.
However, volumes without external illumination appear to be separate from
their environment because they are completely independent of it. A big
advantage of volume rendering compared with rendering billboards or par-
ticle systems is that illumination can be computed consistently with the
environment. Note, however, that some special effects such as fire are dom-
inated by the light they emit, and the impact of external illumination is
negligible.

Chapters 5 and 6 cover both local and global volume illumination in
detail. Although still very expensive, approximations of multiple scattering
are able to produce extremely convincing results and will probably also
become a part of games in the future.

11.3.4 Pre-Integration
The concept of pre-integration is one of the major approaches to achieving
high quality with low sampling rates. It is thus ideal for volume rendering
in games where the sampling rate should be as low as possible as long as
convincing overall quality can be retained. Section 4.5 covers pre-integrated
volume rendering in detail. Pre-integration for ray casting is discussed in
Section 7.2.

11.3.5 Volume Modeling and Animation
Chapter 12 describes how volumes can be created for artistic purposes. Ap-
proaches include conversion from originally polygonal models with various
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post-processing stages and procedural modeling. A very powerful exam-
ple of procedural modeling is to use a hierarchy of volume resolutions for
modeling high-quality clouds. A low-resolution volume is perturbed with
multiple octaves of high-resolution noise to obtain a cloud of convincing
quality. In order to save texture space, high-resolution noise can also be
added on-the-fly during rendering. Motion and dynamics are important for
increasing immersion and a sense of reality. Chapter 13 discusses real-time
volume animation techniques including real-time deformation and sculpting
of volumetric models.

11.3.6 Performance Optimizations

Since games are very time-critical applications and volume rendering is very
demanding with respect to performance, optimization is naturally a crucial
issue. Chapter 8 contains a detailed discussion of performance optimization
in volume rendering. An issue that is especially important when volume
rendering is used in games is mipmapping. In most “traditional” volume-
rendering applications, volumes are always magnified; i.e., the pixel-to-
voxel ratio is greater than one. However, when volumes are used for special
effects, a pixel-to-voxel ratio of less than one is common, i.e., the volume is
minified. In this case, using mipmapped volume textures is very important
for performance. Also, when 3D textures are used, the memory overhead
of mipmapping is reduced to just 1/7 of the volume size, which is a very
good trade-off with respect to improving performance. Of course, when a
volume is minified, using mipmapping also improves visual quality, which
is the standard motivation for using mipmapping. Chapter 8 discusses the
performance implications of using mipmapped textures.

11.4 Integrating Volumes with Scene Geometry
The most important task when integrating volume rendering in a game
engine is the proper interaction with scene geometry and lighting. Integra-
tion with scene geometry is foremost a task of proper clipping and visibility
order. In this chapter, we focus on integrating volume rendering using ray
casting. We believe that it is the most flexible and easiest way to integrate
volume rendering with game engines on GPUs that support data-dependent
looping in fragment programs, i.e., Shader Model 3.0 or higher.

In the following sections, we cover all the different combinations of
scene/volume intersections. First, we start with the case where opaque
scene geometry intersects the volume. We continue by describing what
happens when the near clipping plane intersects the volume, i.e., when the
viewpoint is moved inside the volume.
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Figure 11.4. Geometry intersection using the depth image of the geometric part
of the scene (right). During ray casting, rays are stopped at the depth of the cor-
responding scene intersection (center), which can be done entirely in image space.
Blending the volume image on top of the scene geometry yields the final image
(left).

11.4.1 Opaque Scene Geometry Intersection with a
Ray-Cast Volume

When opaque scene geometry intersects a volume, the resulting effect is
that some rays may not be allowed to be started at all, and some rays
are not cast until they exit the volume, but only until they hit some scene
geometry. These decisions can be made based solely on the view depth of
scene geometry and the depth positions of samples on rays cast into the
volume.

Thus, the easiest way to combine scene geometry with volume ray cast-
ing is to build on a completed depth image of the scene. All opaque scene
geometry is rendered first, initializing the depth buffer. The depth buffer
then has to be bound as a texture that is used by the ray-casting fragment
program in order to terminate rays when they hit scene geometry. Rays
are terminated depending on depth comparisons of ray sample depths with
the scene’s depth at the corresponding location in the depth buffer. The
basic steps for proper intersection of a ray-cast volume with opaque scene
geometry are, in order:

• Render all opaque parts of the scene to initialize the depth buffer.
Note that in current game engines, the first rendering pass is usually
a depth-only pass for visibility determination without shading, and
shading is performed in subsequent passes. This is done in order
to exploit early z-test functionality (Section 8.6.2). The completed
depth buffer must subsequently be available as a depth texture.

• In order to start rays, rasterize the bounding box of the volume by
rendering its six faces with back face culling and the depth test en-
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abled. This ensures that start positions that are already behind vis-
ible scene geometry will not generate fragments and thus the corre-
sponding rays will never be started.

• Each fragment that has not been discarded by the depth test starts
to cast a ray into the volume. For each new sample along a ray, the
depth in the scene’s depth range is updated along with the current
position in the volume. A depth comparison with the depth buffer
value at the fragment’s pixel position determines whether the ray
has intersected scene geometry and thus needs to be terminated. Of
course, a ray is also terminated when it exits the volume.

• Optionally, when a ray intersects scene geometry, one last sample is
taken at the exact intersection position in volume coordinates. This
helps to hide the position of intersection when the sampling rate is
very low and thus removes the clipping artifacts known from bill-
board rendering, especially when pre-integration is used. Opacity
correction must be performed in order to compensate for the reduced
sampling distance and obtain the correct volume-rendering integral
(see Section 1.4.3).

float4 main(float2 window position: TEXCOORD0,

uniform sampler2D depth texture,

uniform float4x4 ModelViewProjInverse) : COLOR

{
// compute the homogeneous view-space position

// window position is in [0,1]^2 and depth in [0,1]

float4 hviewpos;

hviewpos.xy = window position;

hviewpos.z = tex2D(depth texture, window position);

hviewpos.w = 1.0;

// we need this to be in [-1,1]^3 clip space

hviewpos = hviewpos * 2.0 - 1.0;

// back-project to homogeneous volume space

float4 hvolpos = mul(ModelViewProjInverse, hviewpos);

// return normalized volume-space position

return (hvolpos / hvolpos.w);

}

Listing 11.1. Cg function that back-projects a depth image of the geometric part
of the scene into volume space. The depth range is assumed to be [0, 1].
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The simple addition of the scene’s depth buffer to the ray-casting fragment
program allows scene/volume intersection to be performed on a per-pixel
basis with the same precision that is used by the depth buffer itself and thus
for geometry/geometry intersections. The only problem is the transforma-
tion between depth buffer values and volume coordinates. Listing 11.1
illustrates Cg code that performs the necessary back-projection given a
depth texture as input.

When the ray-casting fragment program is started, the target color
buffer can either be an entirely separate buffer or the color buffer that
already contains the final shaded view of the opaque scene. In order to
obtain a correct visibility ordering, the entire contribution of the ray-casting
pass must be blended on top of the entire scene’s color buffer. The ray
caster can either use a separate buffer and store the overall alpha of each
ray in the alpha buffer, which allows correct blending with scene geometry
at any later time. Alternatively, the result of the ray-casting pass can be
blended directly into the color buffer of the scene, given that it has been
rendered in its entirety before.

11.4.2 Moving the Viewpoint into a Volume

A problem that is often ignored in games is what happens when the view-
point is moved inside an object. This issue is often neglected for simplicity
reasons, and also because it is hard to define the interior of polygonal ob-
jects if they are not texture-mapped with a solid texture, for example. Also,
due to collision detection, the viewpoint in a game is rarely inside an ob-
ject. If it is nevertheless the case, the player can usually see the geometry
being clipped by the near clip plane, and it becomes clear that the object
consists only of its surface and there is nothing inside.

Although ignoring this problem for surface-based objects might be a
good trade-off, handling this issue correctly for volumes is much more im-
portant. Moving the viewpoint into a volume in a game is a common case.
The obvious example is volume rendering of participating media, where the
whole point might be to move the viewpoint inside the volume. Another
example is special effects such as fireballs that frequently hit the player,
and the volume thus encompasses the viewpoint for a few animation frames.
For a convincing result, it is important that the inside of the volume never
disappears. And, maybe even more importantly, the inside of a volume
is well-defined and thus can be rendered correctly, whereas for polygonal
game models this is usually not the case.

What changes for volume ray casting, when the viewpoint enters the
volume, is that not all rays are started at the bounding box of the volume
anymore. Some of them have to be started at the near clipping plane
instead. This is illustrated in Figure 11.5. When the entire near clipping
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Figure 11.5. When the near clipping plane intersects the volume, some rays must
be started at the near clipping plane (left) in order to avoid wrong ray starting
positions (center). Near clipping and termination of rays at scene geometry in-
tersections must be combined correctly (right). The volume is shown subdivided
into small bricks for efficient empty-space skipping. (Images reprinted from [232],
c© Eurographics Association 2006.

plane is inside the volume, all rays are started at the volume coordinates
corresponding to the near clipping plane. An easy way for deciding where
rays need to be started is to use depth values once again, similar to clipping
with scene geometry as described in the previous section. In the ray-casting
fragment program, before a ray is started, the depth value of the near
plane must be compared with the depth value where a ray would enter
the volume’s bounding box. If the depth on a front face of the bounding
box is farther away, ray casting starts as usual. If it is closer and thus the
near plane already clips the volume for that ray, the near plane depth at
that position must be transformed into volume coordinates and ray casting
has to start there instead. Listing 11.1 shows how depth values can be
back-projected into volume coordinates. A simple very effective approach
for handling all different combinations has been described in detail in the
context of ray casting for virtual endoscopy [232].

11.4.3 Semitransparent Scene Geometry and Volumes

Determining the visibility order for semitransparent geometry is an inher-
ently hard problem. In contrast with opaque geometry, where in principle
an arbitrary rendering order can be used when depth buffering is employed,
semitransparent geometry must be blended in either back-to-front or front-
to-back order. Note that in practice some kind of ordering is usually also
used for opaque geometry. Performance increases when as much geometry
as possible is discarded during early depth testing. However, in this case no
exact ordering is necessary, and there is a huge difference between slightly
reduced performance and an incorrectly rendered image. In general, ob-
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taining an exact visibility order is very expensive, and even splitting of
geometry is often necessary.

Game engines use a variety of different approaches in order to determine
a visibility order, many of which only approximate an exact order, accepting
errors to a certain degree. The basis for integrating volume rendering
into such a scheme is to treat a volume as a solid semitransparent block
corresponding to its bounding box.

Visibility ordering using BSP trees. The most well-known approach for de-
termining an exact visibility order in game engines is to use BSP trees [2].
A BSP tree employs recursively repeated binary space partitions in order
to subdivide the entire 3D space into convex polytopes for which an exact
visibility order is easy to determine using the structure of the tree. The tree
itself represents a hierarchy of convex polytopes, and its leaves constitute
a subdivision of the entire space without overlap. When it is used for visi-
bility determination, BSP tree traversal fundamentally represents a sorting
algorithm for all scene geometry with linear time complexity. Fortunately,
for sorting semitransparent geometry, all opaque parts of the scene can be
neglected, and common scenes in games contain only very few nonopaque
parts.

If an exact visibility order is desired and a BSP tree is available for
all semitransparent parts of the scene, a volume’s bounding box can be
clipped into the tree as a “solid” object. This effectively splits it up into
smaller convex parts that are each assigned to one leaf of the BSP tree,
respectively. Volume rendering then has to be performed for these parts
individually, in the visibility order determined by BSP tree traversal.

Visibility ordering using depth peeling. Depth peeling is a depth buffer-
based approach that ensures a correct visibility order without requiring
sorting [67, 193]. For geometry, it is easy to implement, and because it
does not require any sorting, it also does not require any of the related
data structures, such as BSP trees, or associated sorting time. Depth peel-
ing generates a drawing order by successively generating layers of a given
depth complexity. Each rendering pass uses the depth image of the pre-
vious pass in order to discard everything that is nearer (or farther) than
the previous depth layer. The algorithm terminates when the number of
layers corresponds to the depth complexity of the scene. A more detailed
discussion of depth peeling in the context of clipping can be found in Sec-
tion 15.3.3. The major drawback of depth peeling, however, is that it is
very rasterization-intensive and can only deal with a small number of depth
or visibility layers in real time. In practice, depth peeling is usually not
a feasible option for rendering all semitransparent scene geometry. It is
also hard to extend efficiently to yield a mixed visibility order of volumes
and geometry. However, when a very limited amount of semitransparent
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Figure 11.6. Performing visibility sorting on the GPU allows one to achieve interac-
tive frame rates for very complex models [84]. This model has 820K triangles, 91K
of which are semitransparent in the right image. A full sorting can be done with
between 7 and 10 frames per second on a GeForce 6800. (Images are courtesy of
Naga Govindaraju et al. [84], c© 2005 ACM, Inc. Reprinted by permission.)

geometry intersects a volume and an exact ordering is desired, it might be
a feasible alternative.

GPU-based visibility ordering. Instead of sorting geometric primitives on
the CPU in order to bring them into visibility order, this sorting can also
be done on the GPU [84], as illustrated in Figure 11.6. An object-level vis-
ibility order among geometric primitives is computed by leveraging hard-
ware occlusion queries and temporal coherence. A basic assumption is that
there are no visibility cycles, i.e., no geometry needs to be split in order to
determine a visibility ordering. However, this algorithm could be extended
to yield a mixed visibility order of volumes and geometry.

Approximate visibility ordering. In practice, an exact visibility ordering for
integrating volumes with semitransparent scene geometry is only feasible
when a game engine supports exact visibility ordering for already existing
geometry. For many volumetric effects, it is probably sufficient to deter-
mine the order of rendering semitransparent geometry and volumes in an
approximate manner.

The most common approach for obtaining an approximate visibility
ordering is to simply sort the centroids of primitives or objects according
to distance. In the case of rendering relatively small volumes, the centroid
of the volume’s bounding box can be used. Moreover, the six faces of a
bounding box give rise to six separating planes that separate space into
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two half-spaces each. Any point outside the volume lies at least in one
of the half-spaces that are on the opposite side of the volume. When
semitransparent geometry is tested against all six faces for inclusion in
one of these half-spaces, the resulting information can be used to obtain a
visibility ordering. When the entire geometry is contained in the respective
half-space, this ordering will be exact. If it straddles the separating plane,
it will only be approximate but is often still a good approximation.

Semitransparent geometry that intersects a volume. Although resolving
this issue in a correct way is probably not very attractive for the majority
of volumetric effects, it becomes important when volumes have a large
extent in a scene, especially with regard to rendering participating media.
It is indeed possible to correctly resolve the problem of semitransparent
geometry that intersects or is actually inside a volume, although this is
a potentially expensive process when an exact order is desired. First, all
geometry outside the volume has to be clipped and treated in the same
way as all non–volume-intersecting semitransparent geometry. Then, we
are only dealing with geometry that is entirely contained inside the volume.

One possibility is to create a BSP tree of all semitransparent geometry
that intersects the volume and to render the volume in the order determined
by BSP leaves as they are encountered during tree traversal. This approach
is only feasible if the relationship between the volume and intersecting
primitives is static. In that case, the BSP tree inside the volume can be
pre-computed.

If the relationship between the geometry and the volume is dynamic,
and the amount of semitransparent geometry inside the volume is very lim-
ited, depth peeling [67, 193] can be an attractive alternative. The approach
described above in Section 11.4.1 for intersecting opaque geometry with a
volume rendered with ray casting can be modified in such a way that ev-
ery depth layer obtained via depth peeling is treated as being opaque and
ray casting stops at the respective intersection positions. The number of
ray-casting passes is determined by the number of depth layers, plus one
additional pass for the foremost layer of the volume. All passes after the
first pass start rays at the locations of the previous depth layer and termi-
nate at the intersection with the current depth layer or because they exit
the volume.

11.4.4 Visibility Ordering for Multiple Volumes

When multiple volumes are visible at the same time, a visibility ordering
has to be determined. Given that no volumes are interpenetrating, this
amounts to the problem of determining a visibility order of the volumes’
bounding boxes.
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Interpenetrating volumes (volumes inside volumes). The case when vol-
umes interpenetrate is relevant when there are small volumes for volumetric
effects and very large space-filling volumes, e.g., in the case of participating
media. There are two basic approaches for coping with this problem.

The simplest approach is to consider both (or all) potentially intersect-
ing volumes in the same ray-casting fragment program over the extent of
both volumes. All that is needed then is a transformation that maps vol-
ume coordinates from one volume to the other volume. Note that care must
be taken that resampling one volume outside of its bounding box does not
introduce artifacts. Although this allows both volumes to be resampled
at the same time and handle simultaneous emission of both in the same
region of space correctly, it introduces a lot of overhead when the amount
of overlap is small. All regions that are not actually overlapping still have
to sample either both volumes in any case, or perform expensive checking
on a per-sample basis whether there is an overlap at that sample position
or not.

Another approach is to determine the intersection of both volumes be-
fore ray casting and use a fragment program that considers both volumes
only in this intersection region. All regions that contain only a single vol-
ume can then be rendered with a regular ray-casting fragment program
that considers only a single volume.

11.4.5 Occlusion Culling

Since the advent of hardware-accelerated depth buffering, occlusion culling
systems in games as well as in most other applications are usually con-
servative. That is, geometry that is not occluded in its entirety is never
reported as being invisible. However, geometry that is indeed completely
occluded might still be reported as being visible or partially visible. This
case, however, will only reduce performance and not produce artifacts when
depth buffering is used for visibility determination at the pixel level. Occlu-
sion culling thus is not for exact visibility determination but a performance
improvement. It discards large chunks of geometry that are known to be
invisible in any case before they are submitted to later pipeline stages of
the rendering pipeline, e.g., polygon rasterization.

As such, integrating volumes with an existing occlusion culling system
of a game engine is straightforward. The simple approach of using the vol-
ume’s bounding box for all occlusion computation purposes is sufficient in
many cases. Likewise, if the volume is “room-filling,” such as fog, occlusion
culling can be handled by using the enclosing structure. If a volume is very
large, and thus more fine-grained performance optimization is desired, it
can be subdivided and occlusion culling can be performed for individual
parts, e.g., smaller bounding boxes, of this subdivision. Chapter 17 covers
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different approaches for subdividing large volumes in order to handle them
in smaller chunks.

11.5 A Simple Volume Ray Caster for Games
In this section, we describe a simple ray caster for volume rendering in
games. We build on the single-pass ray casting described in Chapter 7
(Listing 7.2) and extend it to work with geometry intersection. The two
major modifications are as follows.

• Stop rays when they intersect opaque scene geometry before they
leave the volume’s bounding box (see Section 11.4.1). This is done
in the fragment program (Listing 11.2) by back-projecting the scene
geometry’s depth image into volume space and stopping rays at these
locations.

• Make sure all rays are started even when the near clipping plane
intersects the bounding box of the volume (see Section 11.4.2). This
modification is not done by changing the fragment program but the
geometry set-up instead.

The first step is to render and shade all opaque scene geometry and obtain
the corresponding depth image. After that, volumes can be blended on
top. In order to render a volume, we must first determine whether the near
clipping plane intersects the volume’s bounding box. If this is not the case,
the volume can be rendered by simply rasterizing its front faces, e.g., by
rendering all six faces and using an OpenGL culling mode of GL BACK. If the
near clipping plane is intersected, we need the geometry of the intersection
of the bounding box and the near plane. This geometry is a polygon that
caps the bounding box where it is cut open by the near clipping plane. The
simplest way to do this is to generate a quad for the near clipping plane
and clip it against all six planes of the volume bounding box on the CPU,
which yields a polygon for the near plane cap. For rendering the volume,
both the front faces of the volume bounding box and the near plane cap
must be rasterized. Note that the near plane cap has to be rendered with
a small depth offset in front of the clipping plane in order to avoid it being
clipped by the near clipping plane.

It is important that during rasterization of the front faces (and the near
plane cap) the OpenGL depth test is enabled and compares depth values of
the volume’s bounding geometry with the depth buffer of the scene. The
early z-test makes sure that rays that are entirely behind opaque scene
geometry will never be started.
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float4 main(float4 TexCoord0 : TEXCOORD0,

float4 windowPosition : WPOS,

uniform float2 windowSizeInv,

uniform sampler3D SamplerDataVolume,

uniform sampler1D SamplerTransferFunction,

uniform float3 camera,

uniform float stepsize,

uniform float3 volExtentMin,

uniform float3 volExtentMax ) : COLOR {
// Initialize accumulated color and opacity

float4 dst = float4(0,0,0,0);

// Determine volume entry position

float3 startPos = TexCoord0.xyz;

// Compute ray direction

float3 direction = TexCoord0.xyz - camera;

direction = normalize(direction);

// Compute position of geometry in volume coordinates

float2 windowPos01 = windowPosition.xy * windowSizeInv;

float3 geometryIntersect = BackProjectDepth(windowPos01);

// Compute ray length until geometry intersection

float stopLength = distance(startpos, geometryIntersect);

// Loop for ray traversal

float curLength = 0.0;

for (int i = 0; i < 255; i++) {
// Data access to scalar value in 3D volume texture

float3 position = startPos + direction * curLength;

float4 value = tex3D(SamplerDataVolume, position);

float4 src = tex1D(SamplerTransferFunction, value.a);

dst = (1.0 - dst.a) * src + dst;

// Advance ray position along ray direction

curLength += stepsize;

// Ray termination: Test if at geometry intersection

if (curLength >= stopLength)

break;

// Ray termination: Test if outside volume

float3 temp1 = sign(position - volExtentMin);

float3 temp2 = sign(volExtentMax - position);

float inside = dot(temp1, temp2);

if (inside < 3.0)

break;

}
return dst;

}

Listing 11.2. Cg function for single-pass ray casting with geometry intersection.
BackProjectDepth() is essentially the function in Listing 11.1. Note that, to improve
performance, the two loop-termination criteria could be combined.
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During rasterization, the fragment program shown in Listing 11.2 per-
forms ray casting that is almost identical to Listing 7.2 in Chapter 7. In
addition to that, it back-projects the scene’s depth image into volume coor-
dinates and determines the distance between the point where a ray enters
the volume and where it intersects scene geometry and must be terminated.
For the corresponding comparison of ray lengths, it is not necessary to de-
termine whether the distance to the scene geometry is positive or negative,
because the OpenGL depth test makes sure that rays are only started when
they are in front of scene geometry.

The function BackProjectDepth() is essentially the code shown in List-
ing 11.1. The only conversion that has to be performed is converting win-
dow positions (obtained via the WPOS binding) from the [width, height]
coordinate system of the window to [0, 1]. In order to be able to do
this, the fragment program needs to know the size of the window in pix-
els, the reciprocal values of which are supplied in the uniform parameter
windowSizeInv.

11.6 Volumetric Effects
One of the main application areas of volume rendering in games are volu-
metric effects, such as fire, fireballs, and explosions. As an example, Sec-
tion 11.6.1 describes a procedural fireball effect. Section 11.6.2 describes
the complementary technique of using particle systems. Procedural models
are covered in detail in Section 12.3.

11.6.1 Procedural Effects Animation

In order to capture the characteristics of many volumetric objects such as
clouds, fire, smoke, trees, hair, and fur, Ebert [58] uses a coarse technique
for modeling the macrostructure and uses procedural noise-based simula-
tions for the microstructure. Perlin noise [207, 98] is a noise function that
is ideal to model such effects because it is band limited, changes smoothly,
and is defined everywhere.

Figure 11.7 shows a fireball that is rendered with a small modification
of the pre-integrated volume-rendering approach from Section 4.5. A single
RGB 3D texture is employed that contains the volume scalars from a radial
distance function in the red channel, a low-frequency noise texture in the
green channel, and a high-frequency noise texture in the blue channel. Us-
ing a single texture fetch, we can obtain the scalar value and two noise val-
ues with different scales. The three components can be mixed by perform-
ing a dot product of the RGB vector from the texture fetch with a constant
passed into the fragment program. This constant determines the contri-
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bution of the macrostructure and the two noise functions to the resulting
scalar value. For example, a weighting constant of (1.0, 0.0, 0.0) will result
in the radial distance value only, whereas a constant of (0.33, 0.33, 0.33) will
weight all channels equally. Pre-integrated volume rendering requires two
such weighted scalar values along a ray for a look-up into a pre-integrated
high-frequency transfer function (see Listing 11.3).

It is very easy to animate the fireball by varying the weights passed into
the fragment program smoothly. An outwards movement of the flames is
simply produced by color cycling in the transfer function. The combination
of both effects will create the impression that the fireball actually burns.

Because the procedural effect is produced with a single texture fetch
and a single dot product operation (2 fetches and 2 dot products for pre-

Figure 11.7. Pre-integrated volume rendering of a fireball. The fireball effect is
created by mixing different channels of a 3D texture using a dot-product during
rendering. (1) Radial distance channel with high frequency fire transfer function. (2)
Perlin noise channel with fire-transfer function. (3) Weighted combination of the
distance volume and two Perlin noise channels. (4) Like (3) but with higher weights
for the Perlin noise channels. (Image from [63], c© Eurographics Association 2002.)
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// Pre-integration fragment program in Cg

struct v2f {
float3 TexCoord0 : TEXCOORD0;

float3 TexCoord1 : TEXCOORD1;

};
float4 main(

v2f IN,

uniform sampler3D Volume,

uniform sampler2D PreIntegrationTable,

uniform float3 weights ) : COLOR

{
float2 lutPos;

// sample front scalar

lutPos.x = dot(tex3D(Volume, IN.TexCoord0).rgb, weights);

// sample back scalar

lutPos.y = dot(tex3D(Volume, IN.TexCoord1).rgb, weights);

// look up and return pre-integrated value

return tex2D(PreIntegrationTable, lutPos);

}

Listing 11.3. Fireball fragment program in Cg for a slicing-based volume renderer.
Two scalars, resulting from weighting two RGB samples, are used for the look-up
into the pre-integration table. Note that the texture coordinates for the look-up of
subsequent samples along a ray are computed with the vertex program discussed
in Section 4.5.

integrated slicing), procedural effects based on this algorithm perform very
well. The disadvantage is that we cannot have arbitrarily high frequencies
in the resulting effect because the coarse macrostructure and the noise
are stored with the same resolution in the individual color channels of the
RGB texture; i.e., the noise frequency is limited by the resolution of the
macrostructure.

On newer graphics hardware, it is no problem to compute the radial dis-
tance function on-the-fly in a fragment program. Because graphics hard-
ware does not have built-in noise functions yet, the computation of the
noise functions on-the-fly is usually too expensive. Consequently, only the
noise functions are stored in a texture. Higher frequencies can then tile a
small noise texture over the output domain. It is simple to achieve this on
graphics hardware by using a GL REPEAT texture environment for the noise
texture and applying large texture coordinates. The noise texture is tiled n
times over the output domain by applying texture coordinates in the range
[0, n]. To obtain noise functions at different scales, it might be necessary to
employ multiple texture fetches into a single noise texture with differently
scaled texture coordinates.
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11.6.2 Particle Systems

Particle systems are ideal for modeling realistic visual effects, such as
smoke, fire, water splashes, and all objects whose geometry is hard to cap-
ture and dynamically changing. In this section, we give a short overview
of existing techniques. Particle systems describe complex visual effects as
a set of particles. The appearance and the motion of each individual parti-
cle is computed using procedural animation or physically-based simulation,
usually based on Newton’s laws of motion.

The simulation of particles can be independent of each other, or par-
ticles can be coupled statically or dynamically. We focus on uncoupled
particles, which means that there is no interaction between individual par-
ticles in the system. Such particle simulations are most frequently used
in computer games. Static coupling is important for cloth simulation as
in [270], where forces are introduced between pairs of particles such as
stretching or bending springs. The term static means that the set of forces
associated with an individual particle does not change over time. Dynamic
particle coupling on the other hand is used in applications like swarm sim-
ulation, where forces are created dynamically between different individuals
to avoid collision or keep them moving in the same direction. The boids
simulation created by Reynolds [222] is a popular example of a dynamically
coupled particle simulation. Uncoupled particle systems for visual effects
were originally introduced by Reeves [220] for the Genesis effect in the sec-
ond Star Trek movie. The basic data structure and the laws he used to
describe particle motion are still present in most particle systems today.

In real-time applications, the performance of simulating and rendering
large particle systems is usually bounded either by the fill-rate or by the
bus bandwidth, if the particle simulation is done on the CPU. The fill-rate
limit is taking effect if the depth complexity of the particle system is high

Figure 11.8. Examples of dynamic visual effects implemented by particle systems
with collision detection running entirely on the GPU.
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and there is a large overdraw due to relatively large particles in screen
space. For a large number of small particles, the available bus bandwidth
becomes the bottleneck. In a typical real-time application that performs the
particle simulation on the CPU, the bandwidth limitation usually prohibits
particle systems larger than 10,000 particles per frame. The bandwidth
limit, however, can be overcome if the particle simulation is done on the
GPU, instead of the CPU. There are two different approaches.

In stateless particle systems, the position and appearance of an individ-
ual particle is calculated as a function of its initial state only. The initial
state comprises a set of static attributes such as the position from which
the particle was emanated, its time of birth, the initial velocity and ac-
celeration. These attributes are stored in a vertex buffer, and the vertex
program calculates the current position as a closed-form function of the
initial state and the current time. The path of a particle in such a stateless
simulation is always deterministic in the sense that a particle cannot react
to object collisions or other forces imposed by a dynamically changing en-
vironment. An example implementation of a stateless particle system can
be found in Chapter 6 of the Cg Tutorial book [71].

State-preserving particle systems can utilize numerical, iterative inte-
gration schemes to compute the motion of each individual particle and
allow them to react to collision and to external forces. State-preserving
simulations running entirely on the GPU introduce the problem that the
vertex buffer that stores the state for each individual particle must be up-
dated at runtime. A state-of-the-art solution to this problem is a two-pass
approach. The particle data is stored in a large 2D texture, where each
texel represents an individual particle. In the first pass, the particle simu-
lation is computed by rendering a textured quad with the same resolution
as the data texture. A fragment program updates the particle data for the
current time step and renders the result back into a 2D texture. In the
second pass, the resulting 2D texture is re-interpreted as a vertex buffer
and used to render the particle system as point sprites into the final image.
An example implementation of such a state-preserving particle system is
part of the NVIDIA SDK [34] and supports collision detection with height
fields.

More elaborate implementations of state-preserving particle systems
also allow the depth-sorting of particles for correct back-to-front composit-
ing to be performed entirely on the GPU. The implementation by Kipfer
et al. [126] supports both interparticle collision and depth sorting. The im-
plementation proposed by Kolb et al. [130] enables efficient detection and
handling of collisions with arbitrary objects. For efficiency, they propose to
distribute the depth-sorting procedure over multiple frames, which results
in convincing visual effects, although at no point in time is a fully sorted
list of particles available.
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11.7 Simulation
One step further in rendering volumetric effects in games is performing the
actual underlying simulation in real time as well. This section gives a brief
overview of simulating volumetric effects on GPUs. Traditionally, effects
simulation has been performed on the CPU. For real-time rendering, the
results are then transferred to the GPU. In general, the field of simulat-
ing volumetric effects such as 3D flow, e.g., for fire, water, or smoke, is
huge. Most of the simulation methods in the computer graphics literature
are heavily optimized for performance but have nevertheless been devel-
oped for offline rendering. However, recent advances in general purpose
computations on GPUs (GPGPU) have introduced a subset of this field to
real-time rendering. For an in-depth treatment of the simulation aspect of
volumetric effects, we refer to the literature [96, 206, 85].

11.7.1 Computing Simulations on GPUs

The basis for computing numerical simulations on GPUs are the solvers for
the underlying systems of equations, e.g., for computational fluid dynamics
(CFD). Physical phenomena such as fluid flow [249] are described by partial
differential equations. These PDEs are then discretized and transform the
problem into the solution of large sparsely populated systems of linear
equations. In recent years, powerful GPU solvers for large linear systems
have been proposed [142, 141].

11.7.2 Simulating Flow, Clouds, and Other Gaseous
Phenomena

A very powerful basic method for a variety of gaseous and flow-like phenom-
ena is the simulation of fluid flow using the incompressible Navier-Stokes

Figure 11.9. Cloud dynamics computation on GPUs. (Images courtesy of Mark
Harris [95].)
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equations. Stable solvers for these equations have been proposed [249].
One example application is the simultaneous simulation and rendering of
clouds [95, 94], which is illustrated in Figure 11.9. Other gaseous phenom-
ena such as smoke can also be computed in real time, e.g., using the lattice
Boltzmann model [287].

11.7.3 A Practical System for Volumetric Effects Simulation
in Games

Krüger and Westermann have presented a practical system for both simu-
lating and rendering convincing volumetric effects in real time [143]. Their
system integrates two different approaches. The first performs the simu-
lation on a regular 2D grid and extends this grid on-the-fly to 3D during
regular volume rendering. This extension can be done very effectively by
rotating the 2D grid about the “main axis” of the effect and perturbing the
result using 3D noise. Examples of explosions generated in real time using
this approach are shown in Figure 11.10.

The second approach uses particle systems. The simulation of flow, e.g.,
for smoke propagation, is computed for all particles in a fragment program
that reads the previous simulation state from a texture and writes the
updated state to another texture. The resulting texture data are then used
as a vertex array for particle rendering [145]. An example is illustrated in
Figure 11.11 (left).

Figure 11.10. Complex volumetric explosions can be simulated and rendered in
real time by performing simulation on a 2D grid and transforming this grid into
3D space during rendering. (Images courtesy of Jens Krüger and Rüdiger Wester-
mann [143], c© Eurographics Association 2005.)
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Figure 11.11. Depending on the nature of a volumetric effect, it is either rendered
using particle systems, such as the smoke shown in the left image, or full volume
rendering, such as the log fire in the right image. (Images courtesy of Jens Krüger
and Rüdiger Westermann [143], c© Eurographics Association 2005.)

11.8 Integrating Volumes with Scene Shadowing
and Lighting

In order to truly integrate volumes into a surrounding scene, it is important
that the lighting environment for the volume is determined by the scene
that surrounds it. That is, the volume has to be lit with the same light
sources as the scene and integrate well with how shadows are computed in
the geometric part of the scene. This is crucial for volumes that represent
objects or purely absorbing media such as fog. In contrast, the appearance
of special effects such as fire is dominated by their own emission of light,
and thus the occlusion from external light sources is a negligible factor.
This leads to the second important problem of scene integration: shadows
cast by volumes onto geometry.

As general global illumination is still not possible in real time, current
game engines employ many simplifications, assumptions, and approxima-
tions. The main choice with respect to scene lighting is whether to use
consistent and fully dynamic direct illumination or combine dynamic direct
illumination with static indirect illumination that has been pre-computed.
The standard approach for pre-computing static global illumination in
games is to use light maps [2]. However, when the scene lighting changes
and these changes are only applied using direct illumination, the inconsis-
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tency between dynamic direct lighting and static indirect lighting becomes
very visible.

One traditional approach for coping with this problem that has been
common in film rendering for many years is to use only direct illumina-
tion and place additional light sources that compensate for the problem of
too little illumination in a scene due to the lack of indirect illumination.
However, computing shadows for a large number of direct light sources
is very expensive. Another approach is to improve the realism of global
ambient lighting by using a position-dependent variant called ambient oc-
clusion [212]. In this case, global ambient lighting is modulated locally at
each point by how much of the hemisphere above it is occluded.

In general, there is a lot of current real-time rendering research that
focuses on bridging the gap between direct illumination and fully global
illumination. One recent example uses pre-computed local radiance trans-
fer that allows one to adapt indirect scene illumination to a new lighting
situation [136].

Integration with lighting. In our discussion, we are focusing on integrating
volumes with fully dynamic direct lighting. First of all, this means illu-
minating the volume with the same light sources that are used for scene
illumination. Different kinds of light sources and how they can be used for
lighting volumes are discussed in Chapters 5 and 6. Lighting in this case
means computing the amount of illumination that potentially arrives at a
certain point in space, e.g., inside the volume, if it is not occluded from the
light source. Naturally, the second step is then to determine this occlusion,
which is the computation of shadows. Integrating volume rendering with
shadows is the focus of the remainder of this section.

Integration with shadows. The major factor in computing direct illumi-
nation, given that the light emitted by the light source has already been
determined, is the computation of shadows, which is the occlusion of the
light source as seen from a given point in the scene.

Section 11.8.1 starts out by discussing the relation between objects that
cast shadows and those that are receivers. The two major approaches for
computing shadows in real time are based on shadow volumes [37, 104], and
shadow maps [301]. Sections 11.8.2 and 11.8.3 cover how hard shadows can
be computed using either one of these two methods, respectively. In princi-
ple, hard shadows result from a single point or directional light source and
are computed from a binary light source visible/not visible decision. Hard
shadows from multiple light sources can be computed by superimposing
separate lighting and shadowing for individual light sources.

In Section 11.8.4, we consider a larger view of the concept of shadow
maps including soft shadows due to volumes that are absorbing light. Sec-
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tion 11.8.5 extends the previous discussion of hard shadows from geometry
to soft shadows from geometry, which result from area or volumetric light
sources.

11.8.1 Shadow Casters and Shadow Receivers

In shadow computations, we can distinguish between two major types of
objects with respect to their interaction. Objects that cast shadows, i.e.,
objects that occlude some parts of the scene as “seen” by a light source,
are called shadow casters. Objects that can potentially be occluded from
a light source, i.e., some or all parts of them do not receive direct lighting
from that light source, are called shadow receivers.

Shadow algorithms very often make assumptions with respect to the
properties and relations of these two types of objects in a scene. This is
especially true when volumetric objects and geometric objects are mixed. A
general method that handles all different cases seamlessly are deep shadow
maps, which are described below in Section 11.8.4 and can be used for
building up an intuition of all the different cases. The different cases of
casting and receiving shadows in our context are as follows.

1. Shadows cast by geometry onto geometry.

2. Shadows cast by geometry onto a volume.

3. Shadows cast by a volume onto geometry.

4. Shadows cast by a volume onto a volume.

5. Shadows within a volume.

The first case is the standard case for shadow computations that can
either be handled by using shadow volumes or shadow maps. In the follow-
ing sections, we focus on the relation to volume rendering. More detailed
discussions that focus on geometric scenes not including volumes can be
found in standard textbooks on the topic [2].

The second case can be computed by using the same set-up as in the
first case with regard to shadow casters and using it in an appropriate way
to modify the incoming illumination when a volume is rendered. As we will
see below, shadow volumes cannot easily be used for this purpose in real-
time rendering, whereas shadow maps are easy to integrate. Sections 11.8.2
and 11.8.3 focus on this case.

The third case is considerably more expensive than the two previous
cases. It can be handled by using full volume rendering from the point
of view of the light source in order to generate a special shadow map that
stores accumulated absorption instead of depth. There is no universal term
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for such a map. We will refer to it as an attenuation map, because this
term is more common than calling it an absorption map, for example.
An attenuation map can be stored in an alpha-only texture map that is
accessed just as with shadow mapping, but instead of a depth value for a
binary decision, it yields an alpha value that modulates the light source
intensity depending on how much absorption occurs between it and the
receiving point.

If the volume not only absorbs but also emits light, this emission could
be included here as well. The whole process then turns into a full volume
rendering from the point of view of the light source, resulting in a map
containing both color and alpha channels. Note that Chapter 5 suggests
representing a volumetric light source with an environment map, which is
a very similar idea. The only difference is the addition of an absorption
term if the volume also casts shadows.

Shadows that are cast by a volume onto receiving geometry or a volume
are related to soft shadows that are due to area light sources in many
respects. The latter kind of soft shadows are discussed in Section 11.8.5.

The fourth case is a mixture between the third case, for the shadow
casting part, and the second case, for the shadow receiving part, and can
also be implemented that way. Fortunately, the overall contribution of this
case is often much less important than the three previous cases. Therefore,
in real-time rendering this case is likely to be neglected. However, this
naturally depends a lot on the structure of the scene. An example where
this case can indeed be a very important part would be a dense field of
clouds.

The last case is definitely the most expensive to compute in general.
Unfortunately, shadows within a volume due to absorption by the volume
itself are often a very important part of a realistic overall appearance.
Apart from the unified discussion in Section 11.8.4, we do not handle this
case in this chapter. This general case of shadows in volumes is discussed
in detail in Chapter 6.

11.8.2 Volume Rendering and Shadow Volumes

The basic shadow-volume approach allows one to compute high-quality
shadows with exact hard edges [37]. In contrast with shadow mapping
(Section 11.8.3), it does not introduce sampling artifacts inherent to the
shadows themselves because the resolution of shadow computation depends
directly on the resolution of the output image. The key is to consider the
volume spanned by a point or directional light source and shadow-casting
geometry. This volume is represented by its bounding polygons, which are
composed of extruded geometry edges. This extrusion happens in the plane
that is spanned by an edge and the light-source position.
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The standard approach for using the resulting shadow volume geometry
in real-time rendering is to employ the hardware stencil buffer [104]. This
real-time variant of the shadow volumes algorithm is usually called stencil
shadow volumes, or simply stencil shadows. All opaque scene geometry is
rasterized into the depth buffer first, as seen from the viewpoint. Then,
the bounding geometry of shadow volumes is rasterized into the stencil
buffer in such a way that front-facing polygons increase the stencil value
and back-facing polygons decrease it. The depth test is enabled during
this rasterization, which effectively intersects scene geometry with shadow
volume geometry on a per-pixel basis. After all shadow volume geometry
has been rasterized, the stencil buffer identifies which pixels of the scene
geometry are in shadow and which are not, depending on the corresponding
stencil value.

Implementing robust stencil shadow volumes is not straightforward due
to several special cases, e.g., when the viewpoint itself is inside a shadow
volume [2]. The standard approach is now often called z-pass stencil shad-
ows, because it renders shadow volumes where the depth test passes. How-
ever, a more robust approach is to use z-fail stencil shadows instead, which
is the inverse approach [66]. There are also several combinations and al-
ternatives, e.g., [107, 150].

Unfortunately, using stencil shadow volumes for computing the effect
of scene shadows on true volume rendering is very complicated and not
possible with a direct approach. The major problem is that stencil shadows
essentially store the state of inside/outside shadow for each pixel only for
one 3D position per pixel. This position corresponds to the visible opaque
scene geometry for that pixel, which is determined using depth buffering
and is only a single location in three-space. In order to integrate this with
volume rendering, however, the decision whether a point in three-space is
in shadow or not has to be made for many points along a ray shot through
a single pixel. One possibility to do this with shadow volumes would be
to track all intersections of viewing rays with shadow volume bounding
polygons and store all intersections for a single ray as a linked list associated
with each pixel. Then, during shadow determination at any point in the
volume, this linked list can be queried for which segment contains the point
in question and what the count of shadow volume entries and exits is at that
point. This would essentially be a stencil buffer with an arbitrary number
of entries per pixel instead of just one. Naturally, such an approach is not
feasible for real-time rendering. It is in fact very similar to the idea of deep
shadow maps, which are discussed in Section 11.8.4 below.

Another possibility would be to clip a volume’s bounding box against
the planes constituting a shadow volume and rendering the resulting sub-
volumes separately. In this case, each subvolume can be rendered with
a constant lighting value with respect to a shadow-casting light source.
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However, a practical implementation of this approach would be extremely
complicated if not impossible, most of all due to overlapping shadow vol-
umes.

Fortunately, instead of shadow volumes, it is much easier to integrate
the alternative approach of shadow mapping with volume rendering. This
is described in the next section.

11.8.3 Volume Rendering and Shadow Maps

Shadow mapping uses the idea of determining visibility via depth buffering,
but with respect to the light source instead of the viewpoint. This can be
used for computing shadows because the concepts of being in shadow or
not and the visibility of the light source from a point in the scene are
equivalent.

In order to generate a shadow map, the opaque scene geometry is ras-
terized using depth buffering as seen from the light source. The resulting
depth map then is the shadow map. The major operation apart from the
creation of the shadow map is mapping coordinates from view space into
the space of the light source that has been used for generating the shadow
map. When the distance of a point on scene geometry to the light source
is known, a simple comparison with the depth, i.e., also a distance, stored
in the shadow map at the corresponding location suffices. It determines
whether the point in question is in shadow or not.

Fortunately, in contrast to shadow volumes, shadow mapping is easy to
integrate with volume rendering. The major difference is that a shadow
map allows one to query visibility with respect to the light source for any
point in three-space at any time with a single shadow-map look-up and
without requiring additional storage. So for every point in the volume
where illumination is to be computed, e.g., using one of the methods de-
scribed in Chapter 5, an additional shadow-map look-up is performed. The
light source is enabled or disabled at that point depending on the result
of the depth comparison of the shadow-map value with the distance to the
external light source at that point.

11.8.4 Deep Shadow Maps

Shadow mapping with deep shadow maps [167] currently is not a real-time
rendering method. However, they provide a very powerful unified descrip-
tion of shadows from and inside of volumes, semitransparent geometry, and
opaque geometry. All the different combinations are handled seamlessly
without assigning special cases of shadow casters and shadow receivers.
We describe deep shadow maps in this section in order to give a better
understanding of volumetric shadowing that is due to absorption, as well
as its interaction with the scene’s geometry.
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Figure 11.12. Deep shadow maps unify absorption events along rays: (a) shows the
reduction of transmittance at discrete locations in space where semitransparent
geometry is intersected; (b) shows local extinction of light due to intersection of
a volume, which is integrated to yield transmittance in (c); (d) a deep shadow map
stores the combined visibility (transmittance) function along viewing rays. (Illus-
tration courtesy of Tom Lokovic and Eric Veach [167]. Used by permission. c© 2000,
ACM, Inc.)

Deep shadow maps extend the idea of shadow mapping where instead
of a single depth per pixel the entire visibility function along the ray cor-
responding to that pixel is stored. The visibility function can be stored in
terms of attenuation of light or light transmittance, its inverse. The latter
is used in the original work on deep shadow maps [167], where the contribu-
tion for each pixel is also pre-filtered in order to obtain high-quality results.
Figure 11.12 illustrates different visibility functions using transmittance.
Naturally, when such visibility functions are available, the absorption of
light at a certain position in front of the deep shadow map can be obtained
by querying it at that position. In order to make storing visibility func-
tions practical, they are stored in a compressed format that both reduces
storage and makes querying them faster. In general, a query operation of
a visibility function in a deep shadow map requires a search until the entry
corresponding to the position in question has been found.

Deep shadow maps naturally integrate all possibilities of light being
occluded or partially absorbed along rays. Opaque geometry basically sets
transmittance to zero at the corresponding position (or to a value that is
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Figure 11.13. A major application of deep shadow maps is the computation of
shadows in highly complex semitransparent geometry such as a collection of hair
fibers. (Images courtesy of Tom Lokovic and Eric Veach [167]. Used by permission.
c© 2000, ACM, Inc.)

Figure 11.14. Deep shadow maps allow one to correctly combine geometry and
volume rendering without taking care of special cases. (Images courtesy of Tom
Lokovic and Eric Veach [167]. Used by permission. c© 2000, ACM, Inc.)
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not completely zero if pixel filtering is employed for antialiasing). Semi-
transparent geometry basically reduces the transmittance by a constant
amount at the corresponding location, resulting in a step function in the
visibility. General volumes influence the visibility function in accordance
with their absorption of light.

11.8.5 Volume Rendering and Soft Shadows

A topic that is related to shadows cast by volumes is rendering soft shadows.
However, when shadows are cast by opaque geometry, soft shadows result
when area light sources are used instead of point light sources. Naturally,
as soon as a light source is not a single point, a varying amount of some
geometry can be occluded depending on its relative position to the light
and occluding geometry. This results in umbra and penumbra regions.
Umbra regions are completely occluded from the entire light source and
thus in shadow. Penumbra regions are only partially occluded from the
light source and thus receive less light but are not completely in shadow.

Recently, the topic of computing approximate or exact soft shadows
with modified shadow-volume approaches has made significant advances
[6, 7, 22]. The capability to cast soft shadows from video textures as light
sources [6] could be used to render shadows cast by a volume onto geometry.
Instead of a video texture, an attenuation map that also records volume
emission would be used.

11.9 Further Reading
There exists a wealth of introductory and advanced material on game pro-
gramming. The books by Watt and Policarpo [283, 284] provide a very
good overview, as well as more details on using programmable graphics
hardware in game graphics [285]. Another very good introductory text for
game-engine design is the book by Eberly [56]. For game graphics, Real-
Time Rendering by Akenine-Möller and Haines [2] is a very good resource.
The Game Programming Gems series [59] also offers many good articles
on game-related topics, including special-effects rendering in games. The
GPU Gems books [72, 210] are a very good resource for shader program-
ming and GPU-tailored graphics algorithms. Another collection of articles
that focuses exclusively on shader programming is contained in the ShaderX
books [60].

Rendering isosurfaces or level sets of volumes is a topic that is very
relevant to rendering special effects such as physically based fire [196] and
water [65]. In general, level set methods are a powerful approach to deform-
ing or editing surfaces [192] and morphing shapes [267]. Although these
methods are not yet intended for real-time use, they are already common
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in the special-effects industry. The book by Osher and Fedkiw [205] is a
very good introduction to the area of level set methods. Level set com-
putations can be performed on GPUs [158, 96, 206], and a fast volume
renderer for isosurfaces enables viewing the results in real time, e.g., using
ray casting [93].

Natural phenomena such as fog can also be simulated and rendered on
unstructured grids [250]. As described in Chapter 7, ray casting can be
used to efficiently render such unstructured volumes.
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Volume Modeling

IN SCIENTIFIC SCENARIOS, VOLUMETRIC DATA is frequently obtained by 3D
measurement, such as computerized tomography (CT) or magnetic res-

onance imaging (MRI). The volumetric objects used for visual arts and
animation usually do not exist in the real world. They cannot be simply
obtained by scanning an existing object. This chapter deals with model-
ing techniques that support the artist in creating volumetric models from
scratch. Voxelization techniques allow volumetric representations to be
created from polygonal surface descriptions by spatial discretization. Pro-
cedural modeling techniques are used to describe internal structures. Sim-
ilar to photographed texture images for polygonal models, real 3D image
data acquired by tomographic measurement can be used to supplement
volumetric models.

As an example, Figure 12.1 illustrates the creation of a volumetric model
for a three-legged creature. The outer shell of the creature as well as the
inner organs, such as bones and muscles, are created using traditional sur-
face modeling techniques. For internal structures, both procedural volumes
and measured data has been used. 3D image processing operations, such
as blurring and edge enhancement, are used on the voxelized polygonal
models. All individual textures are finally combined using 3D composit-
ing techniques. Finally, transfer functions are applied to define the optical
properties inside the volume, and the model is rendered using a specified
shading model.

Another possibility of creating or modifying volumetric models is to
deform or sculpt them directly in 3D. Approaches to volume deformation
will be addressed in Chapter 13. There, we will also see how the described
tripod creature can be animated using procedural techniques.

Although the process of creating volumetric models is usually performed
offline, the artist wants to see the effect of his modeling operation on the

313



�

�

�

�

�

�

�

�

314 Volume Modeling

Figure 12.1. An example of volume modeling: volume data can be created by vox-
elization of polygonal surfaces, by measurement, or by a procedural model. Differ-
ent source volumes are composited together using arithmetic operations and 3D
image processing algorithms.

final model immediately on the screen. This is important to seamlessly
integrate volumetric models into a production pipeline for visual arts. The
voxelization, filtering, and compositing steps described above can of course
be easily implemented in software. The resulting volume must be recom-
puted and uploaded to the graphics board whenever the artist applies some
changes. Such a procedure will hardly result in direct visual feedback dur-
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ing interaction. For this reason, it is important to perform as much of the
described operations as possible directly on the graphics board, efficiently
avoiding unnecessary bus transfers.

12.1 Rendering into a 3D Texture
One of the basic operations that frequently recur during volume modeling
is the creation of a 3D texture in real time. Such a texture can store
a voxelized volume object, a sampled version of a procedural texture, or
the result of compositing multiple volumetric objects into a 3D texture.
In order to speed up the volume modeling and compositing pipeline, 3D
textures can be used to cache intermediate results whenever it is necessary.

As mentioned in Section 2.4.2, frame-buffer objects allow a graphics
application to directly render into slices of a 3D texture. Depending on the
underlying graphics processor, directly rendering to a 3D texture might be

#ifdef GL EXT framebuffer object

GLuint framebufferObject;

// create a frame-buffer object

glGenFramebuffersEXT(1, &framebufferObject);

// create a 3D texture object

GLuint textureName;

glGenTextures(1, &textureName);

glBindTexture(GL TEXTURE 3D, textureName);

glTexImage3D(GL TEXTURE 3D, 0, GL RGBA8,

size x, size y, size z, GL RGBA, GL UNSIGNED BYTE, NULL);

glBindFramebufferEXT( // bind the frame-buffer object

GL FRAMEBUFFER EXT, framebufferObject);

for(int z = 0; z < size z; ++z) {
// attach a z-slice to color target

glFramebufferTexture3DEXT(

GL FRAMEBUFFER EXT, // bind target

GL COLOR ATTACHMENT0 EXT, // attachment point

GL TEXTURE 3D, // texture target

textureName, // texture object

0, // render target id

z); // 3D texture slice

renderIntoSlice(z); // now render into the z-slice

} // for(..

// unbind the frame-buffer object

glBindFramebufferEXT(GL FRAMEBUFFER EXT, 0);

#endif // defined GL EXT framebuffer object

Listing 12.1. OpenGL code for rendering into a 3D texture using frame-buffer
objects.
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#ifdef GL EXT framebuffer object

// Create depth buffer

GLuint depthBuffer;

glGenRenderbuffersEXT(1, &depthBuffer);

glBindRenderbufferEXT(GL RENDERBUFFER EXT, depthBuffer);

glRenderbufferStorageEXT(GL RENDERBUFFER EXT,

GL DEPTH COMPONENT16, width, height);

// attach the depth buffer to the currently bound FBO

glFramebufferRenderbufferEXT(

GL FRAMEBUFFER EXT, GL DEPTH ATTACHMENT EXT,

GL RENDERBUFFER EXT, depthBuffer);

#endif // defined GL EXT framebuffer object

Listing 12.2. OpenGL code for creating and attaching a depth buffer to an existing
frame-buffer object.

fast or slow. Performance will depend on the storage scheme that is used
to lay out the voxel data in memory. If the 3D texture data is not stored as
planes of voxels, the graphics driver will possibly have to copy the texture
data after the rendering. With frame-buffer objects, however, such a copy
operation is completely hidden from the user.

An OpenGL code sample for direct rendering into slices of 3D textures is
given in Listing 12.1 using the frame-buffer object extension. If necessary,
multiple render targets can be used, to simultaneously render into more
than one slice at a time. For more details on frame-buffer objects, please
refer to the original specification document available at the OpenGL exten-
sion registry [243]. On systems that do not support frame-buffer objects,
the contents of the frame buffer must be copied into the 3D texture for
each slice using the OpenGL command glCopyTexSubImage. This approach
will most likely result in reduced performance compared with frame-buffer
objects. One important advantage of frame-buffer objects is the flexibility
to only create those buffers that are actually needed for rendering. This
means that the set-up described in Listing 12.1 does not initially provide
a depth buffer to handle occlusion. If a depth buffer is required, it must
be created separately and attached to the render target as displayed in
Listing 12.2

12.2 Voxelization

Voxelization refers to the conversion of a polygonal surface into a volume
data set and represents the conversion of a parametric into an implicit sur-
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512 voxelspolygonal mesh 64 voxels 256 voxels3 33

Figure 12.2. Results of the voxelization of a polygonal mesh into volume data of
643 , 2563, and 5123 resolution.

face description. Apart from volume graphics, such a conversion is often
required in multiscale surface analysis or constructive solid geometry. Fig-
ure 12.2 displays the result of the voxelization of a polygonal mesh into
volume data sets of different resolution.

In this section, we will examine a simple voxelization approach, which
is efficient for polygonal meshes of arbitrary shape and will run on al-
most any graphics hardware. Voxelization is closely related to clipping.
With slight modifications, the surface-based clipping techniques described
in Chapter 15 can as well be used for voxelization. In some cases, clipping
might even be more efficient than the described voxelization algorithm,
depending on the underlying hardware and the depth complexity of the
clipping object.

On-the-fly voxelization requires the calculation of the intersection of a
polygonal model with each slice plane of the volume. Such a plane inter-
section can be easily implemented in hardware using a multipass technique
that renders the intersection polygons directly into a 2D or 3D texture.
Only a few simple requirements for the polygonal surface must be met.

1. The surface must be a closed polygonal mesh without boundaries. Of
course, this property is always necessary for the definition of an inner
and an outer region of the object for voxelization.

2. The surface must consist of planar polygons. It is easy to meet this
requirement by tessellating arbitrary polygons into triangles. Such a
tessellation is performed by the graphics hardware anyway, but the
OpenGL specification does not guarantee the internal tessellation to
be consistent over several frames.

3. The vertex ordering and orientation of the normal vectors must be
consistent. This is the most important requirement. It means that
the normal vectors should not flip direction for adjacent faces, which
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is ensured by using either clockwise or counterclockwise orientation
of the vertices for each face. Consistent vertex ordering is crucial to
identify front and back facing polygons at run-time.

The following algorithm works for multiple closed polygonal surfaces
of arbitrary shape at the same time. It requires a depth buffer, however,
which must be cleared once for every slice to be computed. Two colors (or
scalar values) must be specified, one for the interior and one for the exterior
of the object. In the following, we refer to these colors as foreground and
background colors. We assume that the color rendering target is cleared
with the background color and that the depth buffer is cleared with its
default value of 1.0. The projection matrix must be set to orthogonal
projection, and the viewing volume must contain the entire polygonal mesh.
The bounding box of the polygonal mesh can be used as viewing volume.

The multipass rendering technique is outlined in Figure 12.3. The view-
ing direction for the orthogonal projection is indicated by the arrows. The
procedure of calculating the intersection between a polygonal object and a
plane (Figure 12.3 (a)) is divided into four steps:

1. A clipping plane is set up with the same position and orientation as
the current slice plane (Figure 12.3 (b)). This clipping plane removes
the portion of geometry that faces the camera, so that the interior of
the polygonal object becomes visible.

2. Front-face culling is enabled (Figure 12.3 (c)). Only the back faces of
the polygonal object are rendered using the foreground color and the
depth buffer is updated simultaneously. The cross section drawn into
the color buffer is indicated by the red circle. The result, however, is
not yet correct because some back faces might be occluded by front
faces with respect to the camera position.

3. In a second rendering pass, the erroneous portions from Step 2 are
removed by drawing the front faces again in background color (Fig-
ure 12.3 (d)). The depth test is required here in order to ensure that
only those parts of the back faces are overdrawn that are actually
occluded by front faces.

(a) (b) (c) (e)(d)

Figure 12.3. The individual steps of the GPU voxelization algorithm.
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4. The color buffer now contains the correct cross section of the polyg-
onal clipping object (Figure 12.3 (e)). The next slice of the volume
can now be created by shifting the clipping plane to the next raster
position and starting again with Step 2. This loop is repeated until
the whole volume is created.

An example implementation in OpenGL is displayed in Listing 12.3.
The performance depends both on the size of the volume and on the size
of the polygonal mesh. For each slice, the whole polygonal mesh must be
traversed twice. The original idea for this algorithm was introduced by
Westermann and Ertl [296] in the context of volume clipping.

void renderIntoSlice(z) {

GLclampf pForeColor[3] = {1.0,1.0,1.0};
GLclampf pBackColor[3] = {0.0,0.0,0.0};

// clear the color and depth buffer

glClearColor(

pBackColor[0], pBackColor[1], pBackColor[2],1.0);

glClear(GL COLOR BUFFER BIT |GL DEPTH BUFFER BIT);

glEnable(GL DEPTH TEST); // activate the depth test

// STEP 1: Setup a clipping plane

glEnable(GL CLIP PLANE0);

glClipPlane(GL CLIP PLANE0, /* ... */);

// STEP 2: First rendering pass

glColor3fv(pForeColor); // draw in foreground color

glEnable(GL CULL FACE); // enable front face culling

glCullFace(GL FRONT);

drawPolyMesh(); // draw the polygonal object

// STEP 3: Second rendering pass

glColor3fv(pBackColor); // draw in background color

glCullFace(GL BACK); // enable back face culling

drawPolyMesh(); // draw the polygonal object

glDisable(GL CULL FACE);

}

Listing 12.3. OpenGL code sample for on-the-fly voxelization using multipass ren-
dering. The procedure can be used in Listing 12.1 to directly render into a 3D texture.
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Although the algorithm is outlined for a spherical object in Figure 12.3,
it is not restricted to convex shapes. Indeed, for the special case of convex
shapes, the algorithm will perform well even without the depth buffer, but
the clipping approach for convex surfaces described in Chapter 15 will be
much more efficient in this case. As we will see later, the benefit of this al-
gorithm over the surface-based clipping approaches is that it is independent
of the depth complexity of the polygonal mesh.

12.3 Procedural Modeling
In contrast with the voxelization, procedural modeling techniques do not
define the volume explicitly as a set of discrete samples. Instead, the vol-
ume is specified by algorithms or code segments, which define rules to
evaluate the scalar field at any given point in space. Procedural modeling
approaches comprise powerful techniques for simultaneously creating shape
and appearance with both macro- and microstructures that are tedious or
even impossible to model by hand. They are useful for creating apparently
infinite irregular patterns, such as the structure of wood, marble, stone,
and many other natural materials. They also allow the creation of complex
shapes such as smoke and fire.

The main advantages of procedural models are their flexibility, their
low memory requirements, and their resolution-independence. As draw-
backs, procedural models are usually difficult to create and to debug, and
the results of complex procedures are often hardly predictable. A major
problem with procedural textures are aliasing effects, which are caused by
inadequate discretization of the result. Possible methods to alleviate such
aliasing effects are to integrate anti-aliasing techniques into the procedure
or use stochastic multisampling techniques as outlined in Section 9.1.

When creating a 3D texture with procedural models, you can follow
many different strategies. You can easily create hand-crafted procedures
from simple building blocks, such as ramps, step functions, or conditionals.
Alternatively, you can use spectral synthesis with sine waves, other peri-
odic signals, or band-limited noise functions. There are also very effective
random placement strategies that allow simple items to be inserted at irreg-
ular patterns into your 3D texture. All of these techniques can of course be
combined to create complex procedural textures. A detailed discussion of
the wide variety of procedural modeling techniques is far beyond the scope
of this book. As an introduction and reference for procedural approaches
to texturing and modeling, we point the reader to the excellent book by
Ebert et al. [58].

Procedural 3D textures can be evaluated at run time using elaborately
designed fragment programs instead of texture fetches. Depending on the
computational complexity, the time it takes to evaluate a procedural model,
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however, might slow down the overall rendering speed. For real-time ap-
plications, it is sometimes useful to pre-cache complex procedural textures
or intermediate results at a certain resolution. This is easily achieved by
rendering the procedural model directly into a 3D texture image.

As an example, a simple procedural 3D texture is displayed in List-
ing 12.4. The procedure uses spectral synthesis to create the smoke-like
structures displayed in Figure 12.4. Note that there is no texture fetch
instruction in the fragment shader, because the entire texture is defined as
a closed-form function. In spectral synthesis, the value is calculated as a
weighted sum of periodic functions, such as sinusoids

v(x) =
N∑

i=0

Ai sin(fi x + ϕi) , (12.1)

with different frequencies fi, phases ϕi and amplitudes Ai. The 3D version
of this function is obtained as the product of different sine waves in x-,
y-, and z-directions as outlined in Listing 12.4. The smoke-like structure
is modeled by a fractal power spectrum, which means that the amplitude
Ai is proportional to 1/fi. For each loop iteration in the code sample, the
amplitude is halved and the frequency is doubled. The phase shifts ϕi are
defined as uniform parameters for each direction separately.

On modern GPUs, the evaluation of a sinusoid is as efficient as a sin-
gle multiplication. If the computation gets too complex, however, we can
simply render the procedural texture into slices of a 3D texture as ex-
plained in Section 12.1. In order to capture the complex shape of many
volumetric objects such as clouds, smoke, or fur, high-frequency details
are essential. We have already seen an example of a procedural fireball
effect in Section 11.6.1. This was very similar to Ebert’s approach to cloud
modeling [58]. A coarse geometry is used to describe the macrostructure
and procedural noise is added for the microstructure. With atmospheric
lighting added, such an approach can efficiently be used to model clouds as

Figure 12.4. Procedural 3D textures obtained by spectral synthesis. The images
have been created by the fragment program in Listing 12.4 with different settings
for the uniform parameters.
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half4 main(half3 uvw : TEXCOORD0,

uniform half3 phases[5],

uniform half startStep,

uniform half endStep) : COLOR

{
float value = 0.0;

float frequency = 3.0;

float amplitude = 0.5;

for (int i = 0; i < 5; ++i) {
half3 phase = phases[i];

value += amplitude *

sin(frequency*uvw.x + phase.x) *

sin(frequency*uvw.y + phase.y) *

sin(frequency*uvw.z + phase.z);

amplitude /= 2.0;

frequency *= 2.0;

}

value = abs(value);

float alpha = smoothstep(startStep,endStep,value);

return half4(value.rrr, alpha*alpha);

}

Listing 12.4. Cg fragment program for a procedural 3D texture using spectral
synthesis. The texture is created by adding up multiple sine waves with different
amplitude, frequency, and phase. Resulting images are displayed in Figure 12.4

shown in Figure 12.5. The idea is to randomly perturb the texture coor-
dinates with a turbulence function. This turbulence function is essentially
the same as the fractal sum from Equation 12.1, except that a 3D noise
texture is used instead of the sinusoids. Perlin noise [207, 98] is ideal in
this case because it is band-limited and reproducible. Similar approaches
can be used to model fur and hair as shown in Figure 12.6.

The volume-perturbation approach employs a small 3D perturbation
texture, not larger than 323 voxels. Each texel is initialized with three
random 8-bit numbers, stored as RGB components, and then blurred slightly
to hide the artifacts caused by trilinear interpolation. The wrap mode
for the texture coordinates of the noise texture is set to repeat. This
allows us to create noise fields of different frequency simply by scaling the
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Figure 12.5. Procedural clouds. The image on the top shows the underlying data,
643 . The center image shows the perturbed volume. The bottom image shows the
perturbed volume lit from behind with low-frequency noise added to the indirect
attenuation to achieve subtle iridescence effects.
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Figure 12.6. Procedural fur generated by texture-coordinate perturbation. The
left figure shows the original data set of the veiled chameleon. In the right figure,
fur was added by perturbing texture coordinates using a procedural turbulence
function. The amplitude of the perturbation is modulated as a function of the
original scalar value. (The data set of the veiled chameleon is courtesy of the
UTCT data archive (http://utct.tacc.utexas.edu/).)

half4 main(half3 uvw : TEXCOORD0,

uniform half amplitude

uniform sampler3D noiseTex,

uniform sampler3D dataTex) : COLOR

{
// calculate the turbulence field

half3 perturb = 0.0;

perturb += 1.0 * tex3D(noiseTex, 2.0*uvw) - 0.5;

perturb += 0.5 * tex3D(noiseTex, 4.0*uvw) - 0.25;

perturb += 0.25 * tex3D(noiseTex, 8.0*uvw) - 0.125;

perturb += 0.125 * tex3D(noiseTex,16.0*uvw) - 0.0625;

uvw += amplitude * perturb;

return tex3D(dataTexture,uvw);

}

Listing 12.5. Cg fragment program for texture coordinate perturbation using a
turbulence function. The perturbation field is created by spectral synthesis with
predefined noise textures.
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Figure 12.7. Volumetric model of the Stanford bunny with procedural fur and
translucent shading. The hollow model is rendered as a highly scattering material
with low absorption (high albedo). See Chapter 6 for the shading techniques.

texture coordinates. A fragment shader for texture coordinate perturbation
is displayed in Listing 12.5. The turbulence function is calculated by adding
multiple copies of the noise texture at different scales:

turbulence(x) =
N∑

i=0

Ai · noise(fix) . (12.2)

The result is used to perturb the texture coordinates for the 3D texture
that contains the macrostructures. The amplitude Ai of the noise field
should again be inversely proportional to its frequency fi. To animate the
perturbation, variable offsets can be added to each noise texture coordinate
and updated with each frame. Procedural techniques can be applied to
most volumetric natural phenomena. As we have seen, high-frequency
details can be added to a coarse macrostructure volume by the use of small
noise textures, and there is no need to deal with large volumetric data. The
modeling techniques described in this chapter can of course be combined
with translucency and global illumination effects, as described in Chapter 6.
An example of a translucent volumetric model with procedurally defined
fur is displayed in Figure 12.7.

12.4 Compositing and Image Processing
Sophisticated volumetric models can be created by combining voxelized
polygonal surfaces with procedural models and acquired 3D image data.
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The source volumes are modified using image processing operations, such as
linear and nonlinear filters. There exist a vast number of image processing
operations that can be used to emphasize certain features of the volume.
Compositing operations are used to combine multiple source volumes. For
an overview of image-processing operations, we refer the reader to The
Image Processing Handbook [229] or any other introductory text on image
processing.

Low-pass filtering with 3D box filters or Gaussian filter kernels should be
applied to slightly blur the boundaries of voxelized surfaces. This will effec-
tively remove wood-grain artifacts in the final image. Gradient estimators,
such as the ones described in Section 5.3.1 or other high-pass filters, can
be used to emphasize skin-like structures. If the voxelized surface should
appear more like a membrane than like a solid object, the gradient mag-
nitude can be computed for a slightly blurred voxelized surface and added
to the final volume. Nonlinear range filters can be applied, such as mor-
phological operations (erosion, dilation, etc.) to enhance selected features
inside the volume data. Median filters and anisotropic diffusion filters are
helpful in removing noise from measured 3D data without blurring the orig-
inal boundaries too much. Both linear and non-linear filters can be easily
implemented as fragment programs that sample a source texture multiple
times, do the convolution, and render the result back into a 3D texture.
As an alternative, many GPUs support linear filter convolution directly in
hardware. In OpenGL, applying a linear filter simply requires a copy op-
eration in GPU memory. For more information on hardware convolution,
see the OpenGL programming guide [240].

12.5 Further Reading
Besides the described GPU-based voxelization method, there exist many
other approaches to voxelization. Fundamental techniques of voxelization
are described in a paper by Cohen-Or and Kaufman [30]. Šrámek and Kauf-
man [246] propose a method for voxelizing analytically defined objects by
the use of linear filters. Fang and Liao [68] demonstrate a GPU-based vox-
elization algorithm for constructive solid geometry applications. The ideas
described in this paper can easily be adapted to modern graphics hardware.
A voxelization technique that incorporates antialiasing techniques has been
proposed by Wang and Kaufman [277].

Texture-synthesis techniques are used to generate infinite, nonrepeating
textures from a set of small example images. The goal and the challenge
here is to create an output image that is perceptually similar to the input
texture. Perceptual similarity is often modeled by Markov random fields as
demonstrated in a variety of publications [42, 62, 286, 61]. The perceptual



�

�

�

�

�

�

�

�

12.5 Further Reading 327

quality of the input texture is preserved by forcing that pixels from similar
neighborhoods in the input image are chosen as neighbors in the synthesized
texture.

The first approaches to texture synthesis tried to derive a parametric
model of the input images, which is used to synthesize new textures [214].
Other techniques perform texture synthesis by transferring pixels from the
input image to the output image [42, 62, 286]. More recent approaches
copy whole patches from the input image and calculate the seam between
neighboring patches [61, 148] afterwards. Similar approaches utilize Wang
tiles for nonperiodic tiling of repetitive patterns [248, 29]. Although these
techniques are used to synthesize 2D textures, most of them are well appli-
cable to 3D textures and can be used to create interesting structures from
scanned 3D data.

In the context of biomedical imaging, the term fusion refers to the
combination of complementary information obtained from multiple data
sets into a final image. Similar to compositing in digital arts, multiple
data sets are merged together in an intelligent way that generates a new
data set that contains the joint information. Fusion techniques for mul-
timodal images in medicine, machine vision, and remote sensing appli-
cations [1, 28, 175] are still topics of active research. Li et al. [163] have
suggested a fusion algorithm that performs a sequence of forward and back-
ward wavelet transformations. Matsopoulos et al. [179] perform hierarchi-
cal fusion based on feature extraction from morphological pyramids. Other
approaches utilize pixel classification approaches [15] such as the Bayesian
probabilistic method [109] or entropy-based fusion [189]. Mukhopadhyay
and Chanda [190] introduced an image fusion method based on multiscale
morphology. Most of these approaches are based on information theory, and
their application as compositing operators for visual arts is questionable.
The computational complexity of many of these techniques will probably
prohibit a fast evaluation at interactive frame rates.
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13
Volume Deformation and

Animation

UP UNTIL NOW, WE HAVE CONSIDERED our volumetric object to be
static. In medicine, engineering, and many other scientific disciplines,

volumetric objects undergo dynamic nonlinear deformations. A prominent
example arises in computer-assisted surgery, where tomography data from
therapy planning must be deformed to match nonrigid patient motion dur-
ing the intervention.

Volumetric deformation is also important as a supplement to traditional
surface models in visual arts. As with almost all models in computer graph-
ics, motion and dynamics are important means of conveying the artist’s in-
tention. In this chapter, we are going to investigate possibilities of changing
the shape of volumetric objects dynamically and interactively. Before we
start looking at volumetric deformation techniques, however, we will first
reconsider how deformation is performed with traditional surface descrip-
tions.

13.1 Modeling Paradigms
One of the most common modeling paradigms is the separation of shape
from appearance. In traditional modeling, the shape of an object is de-
scribed by means of an explicit geometric surface representation. Its ap-
pearance is defined by material properties and texture maps, which to-
gether form a complex shading model. Sophisticated modeling techniques,
such as bump mapping or displacement mapping, may blur and shift the
stripline between shape and appearance in one direction or the other, but
the separation is always evident in computer graphics.

In character animation, for example, models usually have a skeleton
and a skin, and their motion is calculated using forward and inverse kine-

329
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Figure 13.1. Far left: a texture-mapped quadrangle is deformed by displacing one
vertex. Middle left: bilinear interpolation of texture coordinates within the quad-
rangle would result in an evenly mapped texture. Middle right and far right: splitting
the quadrangle into two triangles with barycentric interpolation results in different
distortions depending on the actual tessellation (white dotted line).

matics. The shape of a model’s skin is deformed based on the motion of the
joints and the corresponding skin weights, but the appearance of the skin
is usually not modified. Of course, there are sophisticated virtual charac-
ters who have bump maps that are controlled by the skeleton in order to
create wrinkles, but let us neglect such specific cases for now. This means
that most of the time we are displacing vertices (or control points) while
maintaining the original texture coordinate binding. As an example, if we
displace one vertex of a triangle by modifying its position without changing
the texture coordinate, the assigned texture map will stretch to fit onto the
modified area of the triangle.

It is important to notice that the texture coordinate for a fragment
is always interpolated in barycentric coordinates within triangles (includ-
ing perspective correction). The texture color for a fragment, however, is
obtained with bilinear interpolation from a 2D texture map (or trilinear
interpolation in case of 3D textures). As shown in Figure 13.1, a rectangu-
lar texture image does not map evenly onto a deformed quadrangle. The
reason for this is the fact that the GPU always tessellates quadrangles into
triangles before rasterization. For polygonal surfaces, this is an imperfec-
tion that we can either simply neglect or alleviate by inserting additional
vertices or by adjusting the texture coordinates for different animation
poses.

If we want to adapt existing surface deformation tools to volumetric
objects, the first thing we notice is that a strict separation of shape from
appearance does not exist here. The drawn proxy geometry is usually not
related to the shape of the object contained in the volume data. Both
shape and appearance are defined by the 3D texture map in combination
with an appropriate transfer function. The shape of the volumetric object
can then be thought of as a collection of implicit surfaces or isosurfaces.

As a result, there are two ways of deforming volumetric objects in gen-
eral: modifying either the proxy geometry in model coordinates (the shape
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in traditional modeling) or distorting the mapping of the 3D texture in
texture space (the appearance). Visually, both methods will result in a
deformation of the shape of the volumetric object. We will examine them
in the following sections.

13.2 Deformation in Model Space
As we have seen in the previous chapters, texture-based approaches decom-
pose the volume data set into a proxy geometry by slicing the bounding
box into a stack of planar polygons. Unfortunately, applying a deformation
by simply displacing the vertices of the volume bounding box before the
slice decomposition does not work properly. The first problem we notice is
the slice decomposition itself. If we allow the vertices of a hexahedron to
be moved freely in 3D space, its quadrangular faces will soon become non-
planar. Intersection calculation with nonplanar quadrangles is extremely
difficult to perform and will result in curved line segments instead of proper
polygon edges. Even if we ensure that the faces of the hexahedra remain
planar, the deformation will inevitably lead to inconsistent visual results af-
ter the slice decomposition. This is due to the same interpolation problems
as outlined in Figure 13.1.

In order to achieve a consistent mapping of a 3D texture image to
a deformed hexahedron, the hexahedron must be tessellated into several
tetrahedra before computing the proxy geometry. Subdivision into tetra-
hedra also ensures consistent results for slice intersection if the faces of the
hexahedron become nonplanar due to the deformation.

The easiest way of subdividing a hexahedron is to split it into five
tetrahedra as outlined in Figure 13.2. The first tetrahedron is created by

(d)

(a) (b)

(e)

(c)

Figure 13.2. A hexahedron (a) is split into five tetrahedra. The first two tetrahedra
are created by cutting away the foremost (b) and the rearmost vertex (c) of the
top face. The remaining trunk (d) is divided into three tetrahedra (e) by splitting
the bottom face along its diagonal.
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removing the foremost vertex of the top face and the three edges connected
to it (Figure 13.2 (b)). The second tetrahedron is calculated the same way
for the rearmost vertex (Figure 13.2 (c)) on the top face. The remaining
simplex (Figure 13.2 (d)) can then be divided similarly into three tetrahedra
by cutting away the leftmost and the rightmost vertex of the bottom face
(Figure 13.2 (e)).

The deformation of a single tetrahedron can be described as an affine
transformation,

Φ(x) = Ax , (13.1)

in homogeneous coordinates. The 4 × 4 deformation matrix A is fully
determined by specifying four translation vectors at the tetrahedron’s ver-
tices. The deformation of the entire volumetric object is then composed
from piecewise linear transformation. The deformed tetrahedra are finally
decomposed into view-aligned slices and rendered back-to-front via alpha
blending.

13.2.1 Depth Sorting

Back-to-front compositing of tetrahedral data usually requires depth-
sorting to obtain the correct visibility ordering of the cells. Cell sorting of
tetrahedra data in general is not a trivial task, especially not for nonconvex
data or meshes that contain visibility cycles [135] for certain viewpoints.
Possible solutions can be found in [27, 120, 180, 304]. Most of the complex
sorting algorithms can be avoided if the tetrahedral cells are generated
by splitting hexahedra as outlined above. In this case only the hexahe-
dra must be depth sorted using the distance from the eye point. For each
hexahedron, the respective tetrahedra are finally sorted separately. This
however only works properly if the common faces of adjacent hexahedra
are kept planar and if the cells do not intersect each other (a condition
that is required by most sorting algorithms).

13.3 Deformation in Texture Space
The other alternative for volumetric deformation is keeping the vertices of
the geometry static and modifying only the texture coordinates. Because
the shape of the object is defined as an implicit surface in the 3D texture,
distorting the texture space results in a deformation of the object.

To achieve higher flexibility for the deformation, we first subdivide the
original cuboid into a fixed set of subcubes by inserting additional vertices
(Figure 13.3 (left)). A deformation is specified in this refined model by
displacing only the texture coordinates for each vertex. The displacement
of the texture coordinate u for a point x in the interior of a patch is
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Figure 13.3. Model space (left): the volume is subdivided into a fixed set of sub-
cubes. The geometry remains undeformed. Texture space (middle): the deforma-
tion is modeled by displacing texture coordinates. Right: such a deformation model
allows the extraction of object aligned slices at low computational cost.

determined by trilinear interpolation of the translation vectors tijk given
at the vertices. The result is a trilinear mapping

Φ(u) = u +
∑

i,j,k∈{0,1}
aijk(x)tijk , (13.2)

with the interpolation weights aijk(x) determined by the position x in
(undeformed) model space.

If we now set up the proxy geometry, we want to preserve the benefit
of our model being based on a static geometry, because the intersection
calculation for all the small subcubes contributes a considerable computa-
tional load. We use object-aligned slices (see Figure 13.3 (right)), which
keeps us from having to recompute all the cross sections for each frame.
Object-aligned slices can also be easily computed in a vertex shader.

Again, the straightforward approach of slicing each subcube and assign-
ing texture coordinates at the resulting polygon vertices will not lead to a
correct trilinear mapping as specified in Equation 13.2. There are consis-
tency problems similar to the ones described in Section 13.1. In Figure 13.4,

Figure 13.4. The trilinear deformation in texture space (far left) is poorly approxi-
mated if the graphics API internally tessellates the textured quad into two triangles
with barycentric interpolation (middle left and middle right). Inserting an additional
vertex (far right) usually approximates the trilinear interpolation sufficiently close.
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the texture coordinate of the upper-right vertex of the quad is displaced.
The correct trilinear mapping (Figure 13.4 (far left)) is poorly approxi-
mated by the internal triangulation of the graphics API (Figure 13.4 (mid-
dle left) and (middle right)). As a solution to this problem, inserting one
additional vertex in the middle of the polygon usually results in a suffi-
ciently close approximation to the original trilinear deformation with re-
spect to screen resolution. If higher accuracy is required, additional vertices
can be inserted. Such a manual tessellation also provides a consistent trian-
gulation of the nonplanar texture map, which is the result of an arbitrary
deformation of 3D texture space.

13.3.1 Practical Aspects

In an intuitive modeling application, the artist most likely does not want to
specify texture coordinate deformation manually. Instead, the user should
be provided with a mechanism that allows him to pick and drag a vertex to
an arbitrary position. Such a manipulation, however, requires the inverse
transformation Φ−1 of our trilinear mapping. The caveat here is that the
inverse of a trilinear mapping in general is not again a trilinear mapping,
but a function of higher complexity.

For the purpose of modeling, however, the exact inverse transformation
is not necessarily required. In the usual case, an intuitive modeling mech-
anism similar to placing control points of a NURBS patch should suffice.
An approximate inverse Φ−1 that allows intuitive dragging of vertices can
be calculated by negating the original translation vectors at the vertices:

Φ̃−1(u) = u +
∑

i,j,k∈{0,1}
aijk(x) · (−tijk) . (13.3)

This simple approximation is easy to implement and turns out to be accu-
rate enough for intuitive modeling.

13.3.2 Nonuniform Subdivision

Using a deformation model like this as a basis, it is easy to increase flex-
ibility adaptively by further subdividing single patches as required. This
results in a hierarchical octree structure as illustrated in Figure 13.5 (left).
In order to maintain a consistent texture map at the boundary between
patches with different subdivision levels, additional constraints are re-
quired. Such constraints must be set up for all vertices that are located
on edges or faces shared by patches of different levels. Without these con-
straints, undesired gaps and discontinuities would emerge in texture space.
In 3D, we must further differentiate between face and edge constraints.
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vF

v0

v1

vE

v0

v3

v1

v2

Figure 13.5. Left: nonuniform subdivision is used to increase flexibility for the
deformation. Edge constraints (middle) and face constraints (right) are necessary
to prevent gaps in texture space.

Edge Constraints. At common edges between patches with different sub-
division levels, a constraint is necessary to ensure that the two half-
edges of the higher level stay collinear. The inner vertex1 in Fig-
ure 13.5 (middle), which was inserted by the higher subdivision level,
must stay at its fixed position relative to the two neighboring vertices.
Note that this vertex is not even allowed to move in direction along
the edge, as this would also result in discontinuities in texture space:

vE =
(v0 + v1)

2
. (13.4)

Face Constraints. At faces shared by different subdivision levels, another
type of constraint is required to ensure coplanarity. The middle vertex
in Figure 13.5 (right) must stay at a fixed position relative to the four
vertices that form the original face:

vF =
1
4

3∑
i=0

vi . (13.5)

To circumvent recursive constraints, we additionally follow a general rule,
known from surface modeling, that says that two neighboring patches must
not differ by more than one subdivision level. This means that any patch
can only be further subdivided if all neighboring patches have at least the
same subdivision level.

13.3.3 Deformation via Fragment Shaders

The texture-space deformation model can be efficiently implemented using
dependent textures or offset textures. The basic idea of an offset texture is to

1Note that the constraints are set up in texture space only. When we refer to vertices,
we actually mean texture coordinates (= vertices in texture space).
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// Cg fragment shader for

// texture-space volume deformation

half4 main (float3 uvw : TEXCOORD0,

uniform sampler3D offsetTexture,

uniform sampler3D volumeTexture) : COLOR0

{
// obtain the deformation vector from the first texture

float3 offset = tex3D(offsetTexture, uvw);

uvw = uvw + offset;

// sample the volume at the displaced coordinates

half4 result = tex3D(volumeTexture, uvw);

return result;

}

Listing 13.1. Cg fragment program for volumetric deformation using 3D offset
textures.

// Cg fragment shader for texture-space volume

// deformation with blending of two keyframes

half4 main (float3 uvw : TEXCOORD0,

uniform sampler3D offsetTexture1,

uniform sampler3D offsetTexture2,

uniform sampler3D volumeTexture,

uniform float time) : COLOR

{
// obtain the deformation vectors for two keyframes

float3 offset1 = tex3D(offsetTexture1, uvw);

float3 offset2 = tex3D(offsetTexture2, uvw);

// interpolate between the two keyframes

uvw += lerp(offset1, offset2, time);

// sample the the texture at the displaced coordinates

half4 result = tex3D(volumeTexture, uvw);

return result;

}

Listing 13.2. Cg fragment program for volumetric deformation using linear
keyframe interpolation between 3D offset textures.
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use the RGB triplet obtained from one texture as a texture-coordinate offset
for a second texture. On a graphics board with support for 3D dependent
textures, the computation of the texture-space deformation model can be
performed completely within the graphics hardware. The corresponding
fragment program is shown in Listing 13.1.

The idea here is to store the deformation vectors in the RGB channels of
a 3D offset texture and to use the dependent texture look-up to obtain the
deformed volumetric information from a second 3D texture map, which
stores the undeformed volume. Note that there is no need for the first
texture to have size equal to the original volume, so it should be possible
to keep it small enough to allow an interactive update of the deformation
field. This technique also allows the rendering of view-aligned slices in-
stead of object-aligned slices, as a uniform trilinear mapping of voxels to
transformation vectors is guaranteed by the first 3D texture.

Such a fragment shader can also be easily modified to handle linear
keyframe interpolation. The fragment shader in Listing 13.2 takes two
offset textures as input and interpolates the offset vectors using the lerp
command.

13.4 Deformation and Illumination
Local illumination techniques as described in Chapter 5 cannot directly
be used with the described deformation models. Due to the deformation,
pre-calculated gradient vectors become invalid. In this section, we want to
examine possibilities to adapt pre-calculated vectors to the applied defor-
mation.

For the deformation in model space described in Section 13.2 such an
adaptation is easy because we know the exact affine deformation matrix for
each tetrahedron. We also know that, if an object is transformed with a lin-
ear matrix M, its normal vectors must be transformed with the transposed
inverse matrix (M−1)T . All we have to do is multiply the pre-calculated
normal vectors with the transposed inverse of matrix A from Equation 13.1,
which is constant for each tetrahedron. The local illumination term can
then be computed as usual.

The texture-space deformation model, however, is based on a trilin-
ear mapping (Equation 13.2), whose inverse is a rather complex function.
Calculating the exact deformation of the normal vectors becomes expen-
sive. One working alternative is to use on-the-fly gradient estimation as
described in Section 5.6.

Another alternative is to approximate the inverse of the trilinear func-
tion using a linear transformation. The idea is to find an affine mapping,
which approximates the original trilinear mapping Φ(x) and then use the
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transposed inverse matrix to transform the pre-computed normal vectors.
The affine transformation is a 4 × 4 matrix in homogeneous coordinates,
denoted

Φ(x) = Hx , with H =
(

H b
0 0 0 1

)
∈ IR4×4 . (13.6)

The optimal approximation Φ is determined by minimizing the quadratic
difference between the transformation of the eight static corner vertices
Φ(xi) and their real transformed positions yi = Φ(xi), according to

∂

∂H

8∑
i=1

‖Φ(xi)− yi‖2 = 0 , (13.7)

which leads to
8∑

i=1

(xixT
i HT − xiyT

i ) = 0 . (13.8)

Solving this equation for HT , results in

HT = M−1
8∑

i=1

xiyT
i , with M =

8∑
i=1

xixT
i ∈ IR4×4 . (13.9)

It is easy to verify that the inverse of matrix M always exists. One impor-
tant fact is that matrix M is constant for each patch because the unde-
formed corner vertices xi are static in this model. Matrix M can thus be
pre-computed for efficiency. Taking also into consideration that the corner
vertices are located on an axis-aligned grid, the computation can be further
simplified, such that calculating each entry hij of the matrix H will require
only eight multiplications.

The performance benefit of this approximation should become clear, if
we consider the dot product that is required to calculate the Lambertian
illumination term

Idiffuse = kd Md Id(n · l) . (13.10)

In this context, n is the surface normal, which coincides with the voxel
gradient in our model. Idiffuse denotes the color of the light source, weighted
by a material-dependent diffuse reflection coefficient. As we have seen
in Chapter 5, the per-pixel dot product computation can be efficiently
performed in hardware using fragment shaders.

For the undeformed volume, the gradient vectors are pre-calculated and
stored within a 3D normal map. In order to achieve realistic illumination
results for deformable volumetric data, we have to adapt the gradient vec-
tors to the actual deformation. According to our linear approximation, the
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new diffuse term after the transformation is determined by

Ĩdiffuse = kd Md Id(((H−1)T n) · l) . (13.11)

Note that, because the gradients n are obtained from a texture, this calcu-
lation requires a per-pixel matrix multiplication, which can be computed
using fragment shaders. If we further assume directional light, the light
vector l is constant for the whole scene and there is an easy way to handle
illumination, which avoids these per-pixel matrix multiplication. Consider
that the dot product in Equation 13.11 can also be written as

((A−1)T n) · l) = (n · (H−1l)) . (13.12)

In relation to our method, this means that all the pre-computed normal
vectors can be left untouched. The only thing we have to do is to transform
the light vector for each patch to obtain an equivalent visual result.

Regardless of whether the normal deformation is exact or approxima-
tive, using a light vector constant within each patch, but different for neigh-
boring patches, will inevitably result in visible discontinuities as depicted in
Figure 13.6 (center). To tackle this problem, there should be smooth tran-
sitions for the diffuse illumination term of neighboring patches. This can
be achieved by assigning light vectors to the vertices instead of the patches.
To each vertex a light vector is assigned, which is averaged from the light
vectors of all the patches, which share this vertex. Analogously to the
translation vectors, the light vectors given at the vertices are interpolated
within each patch. To achieve this during rasterization, the light vectors
must be assigned as color values to the vertices of each rendered poly-
gon, thus allowing the interpolation to be performed by hardware Gouraud
shading. As displayed in Figure 13.7, this method will lead to approximate
illumination without any discontinuities.

Figure 13.6. Diffuse illumination of an undeformed sphere (left). Extremely de-
formed sphere with discontinuities at the patch boundaries (center). Correct illu-
mination by smoothing the deformed light vectors (right) at the vertices.
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Figure 13.7. Animated tail fin of a carp demonstrates realistic illumination effects
during real-time deformation.

13.5 Animation Techniques

The deformation approaches we have seen so far were grid-based ap-
proaches. As in a polygonal model, the overall deformation of the object
was achieved by specifying deformation vectors at designated vertices or
control points. Grid-based deformation is not a very popular technique.
In practice, motion is controlled using higher-level animation techniques
that can as well be adapted to volumetric deformation. The most popu-
lar deformation techniques for surface models are blend shapes and skeletal
animation.

The different approaches to volumetric deformation we have seen so far
can be adapted to higher-level animation techniques. The model-space ap-
proach is used for large-scale deformation; its effective use, however, raises
the problem of efficient depth-sorting of tetrahedral cells. Skeletal anima-
tion, blend shapes, and any other animation technique based on vertex
transformation can be used with the model-space deformation approach
without modification.

In principle, the same is true for the texture-space approach. The pos-
sible range of motion, however, is limited by the static proxy geometry. It
is thus better suited for interpolative animation such as blend shapes.

13.5.1 Blend Shapes

In computer animation, blend shapes are used to model a wide range of
small but complex movements, such as muscle movements or facial expres-
sions. A typical set of blend shapes consists of several concurring extreme
shapes that are blended together to form subtle but complex movements.
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// A vertex program for implementing blend shapes

// with piecewise linear patches

void main( float4 Vertex : POSITION,

half3 TexCoord0 : TEXCOORD0, // blend shape 0

half3 TexCoord1 : TEXCOORD1, // blend shape 1

half3 TexCoord2 : TEXCOORD2, // blend shape 2

half3 TexCoord3 : TEXCOORD3, // blend shape 3

uniform float4 weights, // blend shape weights

uniform float4x4 matModelViewProj,

out float4 VertexOut : POSITION,

out half3 TexCoordOut : TEXCOORD0) {
// transform vertex into screen space

VertexOut = mul(matModelViewProj, Vertex);

//hand over color and texture coordinate

TexCoordOut = weights.x * TexCoord0;

TexCoordOut += weights.y * TexCoord1;

TexCoordOut += weights.z * TexCoord2;

TexCoordOut += weights.w * TexCoord3;

return;

}

Listing 13.3. Cg vertex program for texture-space deformation using pre-defined
blend shapes and piecewise linear patches.

The final pose p is defined as a weighted sum of all pre-deformed instances
pi:

p =
N∑

i=0

wi pi , with
N∑

i=0

wi = 1 . (13.13)

N is the number of pre-defined blend shapes, and the weights wi are used
to control the animation. The vector of weights

w = (w0, w1, . . . , wN )T (13.14)

thus defines the possible range of motion. Although blend shapes in general
do not impose an upper limit on range of motion, in practice they are used
to model small and subtle deformations such as facial expressions.

The texture-space approach to volumetric deformation is ideal for move-
ments that are relatively small with respect to the size of the volume object
itself. As described in Section 13.3, the deformation in texture space is
modeled by shifting texture coordinates. As we have seen, this displace-
ment can be modeled intuitively by negating the displacement vectors to
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half4 main (float3 texcoords : TEXCOORD0,

// blend shapes (offset textures)

uniform sampler3D offsetTexture0, // blend shape 0

uniform sampler3D offsetTexture1, // blend shape 1

uniform sampler3D offsetTexture2, // blend shape 2

uniform sampler3D offsetTexture3, // blend shape 3

// volume texture

uniform sampler3D volumeTexture,

// blend-shape weights

uniform float3 weights) : COLOR

{
float3 offset = 0..xxx;

if (weights.x != 0.0) {
float3 offset0 = tex3D(offsetTexture0, uvw);

offset += weights.x * offset0;

}
if (weights.y != 0.0) {

float3 offset1 = tex3D(offsetTexture1, uvw);

offset += weights.y * offset1;

}
if (weights.z != 0.0) {

float3 offset2 = tex3D(offsetTexture2, uvw);

offset += weights.z * offset2;

}
if (weights.w != 0.0) {

float3 offset3 = tex3D(offsetTexture3, uvw);

offset += weights.w * offset3;

}
texcoords += offset;

// sample the the texture at the displaced coordinates

half4 result = tex3D(volumeTexture, texcoords);

return result;

}

Listing 13.4. Cg fragment program for texture-space deformation using pre-
defined blend shapes and offset textures.

approximate the inverse transformation. Blend shapes can thus be easily
integrated into the texture-space deformation model based on piecewise
linear patches (Section 13.3).

With piecewise linear patches, blend shapes are designed by specifying
more than one set of texture coordinates for each vertex. During vertex
processing the final texture coordinate is interpolated as a weighted sum
of all defined sets according to Equation 13.13. A simple implementation
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of this idea with four different blend shapes is given in Listing 13.3. The
four weights wi are specified as vector components of the uniform parameter
weights in the vertex program. The implementation can easily be extended
to more than four blend shapes, only limited by the number of available
texture coordinate sets.

The deformation technique based on offset textures (Section 13.3.3) can
as well be used to implement blend shapes. A straightforward implementa-
tion defines each blend shape as a separate 3D offset texture. The weighted
sum from Equation 13.13 is then calculated for each fragment in the frag-
ment program. A sample implementation is given in Listing 13.4. Note
that piecewise linear patches in this case are more efficient because the
weighting is done for each vertex instead of each fragment. As an alter-
native to the straightforward implementation described above, it might be
advantageous to calculate the weighted sum in a separate rendering pass
in advance. As mentioned in Section 2.4.2, frame-buffer objects can be
used to render into slices of 3D textures. The final offset texture for one
animation frame is created in a pre-processing step by rendering slices of
all offset textures into the 3D texture, multiplied by their respective weight
and summed up by additive blending.

13.5.2 Skeletal Animation

Skeletal animation techniques define a character’s possible range of motion
by means of a hierarchical chain of articulated joints and bones. High-level
control of the skeleton’s pose is implemented by forward and inverse kine-
matics solvers. Forward kinematics (FK) refers to the direct specification
of angles between joints. Inverse kinematics (IK) allow the endpoint of a
joint chain, such as the position to the hand, to be specified. The position
of the remaining joints in an IK chain are then automatically calculated by
an IK solver. A typical skeleton consists of a combination of both forward
and inverse kinematics. As examples, arms and legs are frequently con-
trolled by inverse kinematics, whereas the animation of the spine is often
performed with forward kinematics. In a typical model, skeletal animation
is often combined with blend shapes to implement realistic motion. As an
example, the movement of an elbow is controlled by an IK chain, while the
rising of the biceps is modeled by a blend shape.

The process of binding a given model to an articulated skeleton is called
skinning. For rigid skinning, each vertex of the model is attached to exactly
one bone of the skeleton. If this bone undergoes a certain transformation,
the same motion is simultaneously applied to all vertices attached to that
bone.

For smooth skinning, the transformation of one vertex is controlled by
several bones at the same time. Each vertex is associated with several
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bones. The transformation of a vertex is then calculated as a weighted
sum of the transformation of all associated bones. As the weights that
control the influence of specific bones are specified for each vertex, the
resulting deformation will be smooth and flexible.

The model-space deformation approach for volumetric objects is well
suited for large-scale motions usually modeled by skeleton animation. Af-
ter subdivision of the hexahedra into tetrahedra for deformation, the free
vertices can be attached to existing skeletons using smooth or rigid binding.

The texture-space approach based on piecewise linear patches can as
well be easily adapted to skeletal animation. However, care must be taken
that the deformed model stays within the boundary of the static geometry
of subcubes, otherwise parts of the volume might be cut off.

13.5.3 Procedural Animation

The animation techniques described above create a significant amount of
data, such as geometry with multiple weights and large sets of offset tex-
tures. The considerable memory requirements imposed by such models
can be reduced by substituting predefined deformation fields by procedu-
ral descriptions that are evaluated at runtime. Simple deformations such
as random jittering and shock waves can easily be described procedurally,
similar to the techniques presented in The Cg Tutorial [71].

With a little bit of effort, however, it is also possible to describe more
complex and goal-directed movement by procedural deformation fields. As
an example, the volumetric tripod creature displayed in Figure 12.1 can
easily be animated in texture-space using a procedural fragment shader.
For the animation clip displayed in Figure 13.8, the creature is walking by
moving each of its three legs in sequence.

The texture-space deformation used to animate the creature is defined
procedurally by the fragment program shown in Listing 13.5. The posi-
tions of the three legs in local model coordinates are controlled by the
deformation vectors leg1, leg2, and leg3, specified as uniform parameters.

The procedural shader parameterizes points in texture-space in cylindri-
cal coordinates. The point P defines the current position in the cylindrical
coordinate system. Each leg corresponds to a specific sector of the cylinder
with an angle of sectionangle = 2π

3 . The variable whichLeg is computed as
an index that specifies by which leg the movement of that point is affected.
The variable weight contains the amount of deformation. To create smooth
transitions between the different cylindrical sectors, this animation weight
is modulated by a sine function. The weight also smoothly decreases in the
upper region of the body. Finally the texture-space deformation vector is
determined by shifting the texture coordinate according to the correspond-
ing leg movement.
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#define PI (3.1415)

half modulo(half a, half b) {
a -= floor(a/b)*b;

if (a < 0) a+=b;

return a;

}

half4 main( half3 uvw : TEXCOORD,

uniform sampler3D volumeTexture,

uniform half3 legMove[3]) : COLOR

{
// move the center of the coordinate system

half3 P = uvw - half3(0.32,0.5,0.5);

// determine the cylindrical sector for the leg

const half sectionangle = 2.0*PI/3.0;

half angle = PI + atan2(P.z,P.x);

// to which leg does this voxel belong?

half whichLeg = floor(angle/sectionangle);

// determine the weight for the motion

half A = modulo(angle, sectionangle)*PI/2.0;

half weight = sin(A);

// movement will decrease in the upper region

half moveY = 1.2-uvw.y;

moveY *= moveY;

moveY *= moveY;

weight *= moveY;

// move the respective leg by displacing the tex coords

uvw -= weight * legMove[whichLeg];

// sample the texture.

return tex3D(volumeTexture,uvw);

}

Listing 13.5. Cg fragment program for texture-space animation using a procedural
deformation field.
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Figure 13.8. Resulting animation frames from a procedural animation of a volu-
metric tripod creature.

This simple deformation field demonstrates that motion of considerable
complexity can be achieved by procedural animation. The example of the
tripod creature is meant as an inspiration for designing your own procedural
animation techniques for specific, goal-directed motion.

13.6 Further Reading
Animation and deformation techniques have a long history in computer
graphics. Conventional free-form modeling techniques [8] have led to pow-
erful commercial packages, but they are mainly restricted to polygonal
surface descriptions that do not take into account the interior deformation
of the object. Apart from a variety of deformable surface models, such as
the ones proposed by Sederberg [236], Coquillart [32], MacCracken [177],
and Chua [26], the literature on volumetric deformation is rather scarce.
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For readers interested in game development, the second volume of 3D
Games [284] is a good introduction to animation concepts.

In 1995, Kurzion and Yagel [146] proposed a deformation model for both
surfaces and volumes based on bending the viewing rays. They propose the
use of ray deflectors, which attract or repel the viewing rays during ray cast-
ing. The main drawback of this original approach is its restriction to ray
casting. The same authors also extended their approach to 3D texture–
based volume rendering [147]. The deformation of the interior is here com-
puted by tessellating the slice polygons into smaller triangles. A similar
idea is followed by Westermann and Rezk-Salama [297], which allows for
the modeling of deformation in an intuitive way by deforming arbitrary
surfaces within the volume data set. Fang et al. [69] compute volumetric
deformation by subdividing the volume into an octree and by slicing and
texture mapping each subcube. Due to the required real-time tessellation
of the slice images, these approaches only achieve moderate frame rates.
The described approach to handle volumetric deformation by tessellating
the proxy geometry into tetrahedra is followed in the OpenGL Volumizer
API, available as a commercial product from Silicon Graphics [10, 115].

Popular models for volumetric deformation are based on the finite ele-
ments method (FEM) and mass-spring models [24]. Gibson et al. [78] have
proposed an algorithm for fast propagation of deformation through the vol-
ume. Skeleton animation for volumetric objects was proposed by Gagvani
et al. [76]. They also create skeleton trees for volume data automatically by
a centerline extraction algorithm. Closely related to volumetric animation
are the volume-morphing techniques proposed by Hughes [108] and He et
al. [102].
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14
Non-Photorealistic and
Illustrative Techniques

A LARGE PART OF RENDERING HAS TRADITIONALLY been concerned with
photorealistic rendering, where the goal is to mimic the appearance

of reality as closely as possible. Many of these methods are based on phys-
ical models of light transport, especially global illumination methods such
as ray tracing [79], radiosity [5], or photon mapping [114]. These phys-
ically based methods for generating realistic images have become more
and more sophisticated over the years [55]. However, even empirical local-
illumination models such as the Blinn-Phong model [12] try to emulate the
appearance of real light reflection with very simple means, even though
they are not completely based on actual physics.

Complementary to photorealistic rendering, the area of non-
photorealistic rendering (or NPR) has emerged more recently. The area
of NPR is usually defined exclusively and as such subsumes all rendering
techniques where the goal is not photorealism. A common objective of
NPR is to mimic various styles of human paintings and artistic illustra-
tions such as pen-and-ink drawings, hatching, stippling, or painting with
water colors. Although rendering works of art or supporting their creation
is a worthwhile goal in itself, illustrative-rendering styles are especially
important where a specific meaning has to be conveyed to viewers by devi-
ating from an object’s actual appearance in reality, such as in technical or
medical illustrations. In these kinds of depictions, important parts of an
object are often emphasized as the focus, whereas the remainder is deem-
phasized and only depicted as context. Very good introductions to the area
of non-photorealistic rendering can be found in the books by Gooch and
Gooch [82] and Strothotte and Schlechtweg [256].

In scientific visualization, the main goal is to communicate with the
viewer and convey information and a certain meaning. Consequently, in
this area, NPR styles with the look of technical or medical illustration

349



�

�

�

�

�

�

�

�

350 Non-Photorealistic and Illustrative Techniques

Figure 14.1. Examples of illustrative visualization. Left: labeling subobjects in Vol-
umeShop [18]. Center: rendering a CT isosurface with deferred shading, high-
lighting ridge and valley lines computed from implicit curvature and contours [93].
Right: visualizing a convection flow volume [261]. (Left image courtesy of Stefan
Bruckner, c© 2005 IEEE. Right image courtesy of Nikolai Svakhine, Yun Jang, David
Ebert, and Kelly Gaither, c© 2005 IEEE.)

have had the most important influence on rendering techniques. For this
reason, non-photorealistic rendering in the area of visualization and volume
rendering is often called illustrative visualization [273]. Given these goals,
human perception plays a crucial role in the design of these techniques.
Examples of illustrative visualizations are depicted in Figure 14.1.

Because their origins lie in the area of general computer graphics, most
NPR methods deal with surface rendering in contrast with volume render-
ing. The most direct way to apply these techniques to volume rendering is
to adapt them for rendering isosurfaces. In addition to isosurface illustra-
tion methods, full volume illustration methods have also been developed.
An especially powerful approach is to combine both volume and surface
illustration methods in a single rendering.

14.1 Overview of Methods
This section gives an overview of the basic approaches to non-photorealistic,
or illustrative, volume-rendering techniques. First, we discuss some basic
properties such as whether methods are based on the notion of surfaces or
full volumes, or whether they work in image space or object space. Then we
give an overview of existing techniques. Detailed descriptions of selected
methods with a focus on real-time rendering are provided in later sections.
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14.1.1 Basic Properties

Surface-based versus volume-based methods. Most NPR methods in vol-
ume rendering are adaptations of surface-rendering methods. The obvious
example is the rendering of isosurfaces. Even when isosurfaces are not rep-
resented by a polygonal mesh but given implicitly on a volumetric grid, the
result is the image of a surface and can thus of course be shaded like a sur-
face. The basis for this is the use of the normalized gradient of the volume
as the normal vector for shading. The same is also true for standard di-
rect volume rendering. Although in this case many samples along viewing
rays are composited and no isosurface is considered explicitly, the standard
method for local volume illumination uses the normalized gradient vector
and a standard local surface illumination model for shading. Chapter 5
describes the adaptation of surface shading to volume shading. Therefore,
modifications of local surface illumination models for non-photorealistic
rendering can be used in volume rendering by substituting the shading
model in the volume-rendering integral. An example is explained in Sec-
tion 14.2.1.

However, there are also NPR volume-rendering approaches that do not
make use of the notion of a surface at all. An example of such a style
is volume stippling [170], which is illustrated in Figure 14.5. Still, even
many “volumetric” shading models build on ideas for shading surface-like
structures, even though they do not explicitly require specification of a
surface (e.g., through an isovalue) and can be applied at all points in a
volume simultaneously. These methods are not a direct adaptation of a
surface shading model but still very often use the gradient and its magni-
tude. An example for rendering volumetric contours that does not require
the specification of a surface but uses gradient information is described in
Section 14.3.3.

Object-space versus image-space methods. A major distinction of all
methods that detect surface properties, such as contours, is whether they
operate in object space or in image space, i.e., whether they are computed
on the actual surface in 3D space or in its 2D projection. Consider the de-
tection of contours (or silhouettes) for which there are standard approaches
in both object and image space, respectively. A simple example for object-
space contour detection is the case of triangle meshes, where each edge is
checked whether it connects a front-facing and a back-facing triangle with
respect to the viewpoint. In this case, it is a silhouette edge. Image-space
contour detection uses edge-detection filters (such as Sobel or Canny edge
detectors) in order to detect discontinuities in the depth and the normal
images, for instance. An example is the system by Yuan and Chen [306] for
isosurface illustration in volumes, which uses image-space filtering. A dis-
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cussion for both approaches on triangle meshes can be found in Real-Time
Rendering [2]. In this chapter, we concentrate on object-space approaches.

View-independent versus view-dependent methods. Another important
difference between illustrative methods is whether they depend on the rel-
ative location of the view point or not. Contours are an example for a
rendering style that depends on the relative viewing direction. However,
surface curvature, for example, is an intrinsic property of the surface itself,
and as such is independent of the viewing direction. This property is in-
herited by all styles that are purely based on curvature information, such
as rendering ridge and valley lines, which are described in Section 14.1.3.

In this respect, it is also an issue whether an illustrative method requires
an explicit mesh, e.g., for an isosurface, or not. For example, it is easy
to store view-independent information at mesh vertices in order to avoid
re-computation. For methods such as ray casting that do not generate
explicit geometry, however, most information has to be re-computed for
every frame. In this book, we are most of all interested in methods that do
not require an explicit mesh. This avoids the cost of computing this mesh
which usually prevents interactive changes of the isovalue. Therefore, in
this chapter all information that is required for rendering in an illustrative
style must be computable in real time.

14.1.2 Modified Shading Models

A basic approach to achieving an illustrative style for surface or isosur-
face rendering is to modify a standard local shading model such as the
Blinn-Phong model. As described in Chapter 5, this model depends on the
direction to the light source, the view direction, and the surface normal,
which in the case of volume rendering is the normalized gradient of the vol-
ume. In order to mimic physical behavior, it incorporates Lambert’s cosine
law in such a way that a surface is not lit from behind. This, however, also
means that surfaces are rapidly disappearing into blackness as the normal
vector turns away from the light direction. In these regions, it is impossible
to discern the shape of the surface.

One of the most well-known NPR modifications to this basic model is
called tone shading [83], which is described in Section 14.2.1. Tone shading
shades the areas that would mostly be black in the Blinn-Phong model
with a clearly discernible color and thus yields a better depiction of surface
shape. Cartoon shading [151], described in Section 14.2.2, builds on the
fact that cartoonists usually draw large areas of a surface with a constant
color. In order to emulate this shading style, the dot product between the
light direction and the normal vector is mapped to either one of two colors
via thresholding or a 1D look-up table.
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In general, many NPR modifications to the Blinn-Phong model can be
mapped to programmable look-up tables for the basic dot product terms.
The illustrative volume-rendering system of Bruckner and Gröller [18] is an
example of this approach. The look-up tables can be specified by the user
in order to obtain different surface shading models with the exact same
shader code. This is described in more detail in Section 14.2.3.

14.1.3 Characteristic Lines

An important goal of illustrative rendering techniques is to illustrate surface
shape with visual cues that would not be visible in a photorealistic image.
A powerful approach to shape depiction is to draw characteristic lines (or
feature lines), either by themselves or overlayed on a shaded image of the
surface. The most common characteristic lines for surface shape are as
follows.

• Contours, often also called silhouettes, are very important shape cues
and are a basic part of almost all surface illustrations. However, con-
tours by themselves do not provide enough information about shape
and so are usually combined with other types of characteristic lines.

• Suggestive contours [43] add important additional “contour-like” lines
to real contours, which enhance shape perception significantly. An

Figure 14.2. Left: combining ridges (white), valleys (black), and contours (gray), ren-
dered with deferred shading and implicit surface curvature [93]. Right: even if only
suggestive contours are rendered, they provide powerful shape cues. (Right image
courtesy of Doug DeCarlo et al. [43], c© 2003 ACM, Inc. Reprinted by permission.)
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important part of their computation uses surface curvature informa-
tion. See below for a discussion of curvature. Figure 14.2 (right)
shows an example of suggestive contours.

• Ridge and valley lines (creases) highlight surface locations that are
locally shaped like a cylinder, which can be defined using surface
curvature information. Ridges are convex cylindrical areas, whereas
valleys are concave. Combining contours with ridge and valley lines
produces powerful shape cues [111], as illustrated in Figure 14.2 (left).

• Curvature isolines. Curvature information is an important basis for
shape depiction. There are different scalar curvature measures that
can be computed over surfaces such as Gaussian curvature or mean
curvature. Drawing isolines of these measures, i.e., highlighting all
points with the same value of, e.g., Gaussian curvature, also gives
insight into the surface’s shape. Examples are shown in Figure 14.18.

Most work on extracting characteristic lines from surfaces is based on trian-
gle meshes. For isosurfaces, this means extracting a triangle mesh from the
volume as a pre-process, e.g., using marching cubes [168]. In order to focus
on approaches that are real-time throughout, we will restrict ourselves to
methods that avoid an explicit mesh representation for isosurfaces.

A very important distinction of approaches based on characteristic lines
is whether they are based on explicit lines or not. The first option is
to determine vertices on these lines and connect them with actual line
primitives. The second approach is to perform a “point on line” test on a
per-sample basis, e.g., on equispaced samples along viewing rays that are
cast into the volume. Even when lines corresponding to surface features are
extracted explicitly, it is possible to avoid an intermediate representation
of the surface by directly generating line vertices [20].

14.1.4 Methods Based on Curvature Information

Determining surface curvature is an important part of differential geome-
try and a powerful tool for depicting surface shape. The determination of
characteristic lines is often based on curvature information, such as speci-
fying ridge and valley lines according to maximum and minimum principal
curvature magnitude, as illustrated in Figure 14.2 (left). In the case of
implicitly defined isosurfaces, curvature means implicit surface curvature.
Section 14.4 describes the concept and computation of implicit isosurface
curvature in detail. Section 14.6 describes different isosurface illustration
modes building on curvature information. Figure 14.3 shows curvature
information on isosurfaces of signed distance-field volumes.
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Figure 14.3. Examples of illustrative isosurface rendering depicting implicit curva-
ture information. These are not surface meshes but signed distance fields stored
on a regular volumetric grid. The left image illustrates color-encoded maximum
principal curvature. The right image visualizes maximum principal curvature direc-
tion using image-space flow advection.

14.1.5 Hatching

Hatching is an illustration technique that can convey a variety of informa-
tion about a surface in a single image, such as simultaneously illustrating
shape, lighting, and material properties. This is illustrated in the images in
Figure 14.4. Hatching strokes generally exhibit coherence in their density
and direction. Very often, hatching strokes are aligned with the curvature
field of the surface, e.g., drawing lines in the direction of maximum prin-
cipal curvature. Cross-hatching, i.e., sets of roughly orthogonal hatching
strokes, are often aligned with both the maximum and minimum curvature
directions, respectively.

Most methods for hatching require polygonal meshes and make use of
parameterizations of these meshes. That is, texture coordinates are pre-
computed and stored with the mesh vertices. Rendering can be performed
in real time, for example by using tonal art maps that store hatching pat-
terns of varying density in the mipmap levels of several texture maps [215].
These techniques achieve results of very high quality, as illustrated in Fig-
ure 14.4 (left). Using mipmapped textures allows the hatching-stroke den-
sity to be automatically adapted to the viewing distance. For volume ren-
dering, hatching on isosurfaces without a parameterization allows one to
avoid the construction of a triangle mesh for a given isovalue. One pos-
sibility to do this is to automatically place seed points and trace stream
lines through the curvature field [194]. Hatching strokes for an isosurface
can also be blended on top of a traditional volume rendering, illustrated in
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Figure 14.4. Hatching for surface visualization. Left: hatching on a triangle mesh
using tonal art maps requires a parameterization of a polygonal surface. Right:
hatching on isosurfaces is also possible without an explicit parameterization [194].
(Left image courtesy of Emil Praun et al. [215], c© 2001 ACM, Inc. Reprinted by per-
mission. Right image courtesy of Zoltán Nagy, Jens Schneider, and Rüdiger West-
ermann.)

Figure 14.4 (right). A challenging problem of hatching techniques is achiev-
ing temporal coherence in animations in order to avoid excessive flickering
when strokes or groups of strokes are changing too quickly or incoherently.

14.1.6 Stippling

Stippling is a common artistic technique that depicts objects with a large
collection of small points of varying density and possibly different colors.
Although drawing stipples is most common for surface rendering, the ba-
sic concept can be extended for full volume rendering without being con-
strained to individual isosurfaces. Examples of such a technique [170] are
illustrated in Figure 14.5. Volumetric stippling determines the stipple den-
sity for each voxel separately according to a variety of properties, such as
the density of the volume at that location, lighting, distance to the viewer,
material boundary enhancement, and silhouette enhancement [170].

14.1.7 Combination with Segmented Data

Using non-photorealistic rendering modes for visualizing segmented data
with per-object rendering modes is an approach to emphasizing specific
object structures in volume data. Rendering of contours, for example,
is a good way to provide context for focus regions rendered with more
traditional volume-visualization techniques. Tone shading, for example, is
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Figure 14.5. Stippling can be applied to surface and volume rendering. The density
of stipples at a given voxel location is determined by characteristics such as lighting
intensity, contour and boundary enhancement, and distance to the viewer [170].
Images courtesy of Lu, Morris, Ebert, Rheingans, and Hansen, c© 2002 IEEE.

naturally suited as a shading mode for rendering isosurfaces or structures
with high opacity, whereas objects rendered with lower opacity could be
rendered with standard direct volume rendering.

Chapter 16 describes how segmented volume data can be rendered on
GPUs and shows examples of combining traditional and non-photorealistic
techniques in a single volume rendering in order to enhance perception of
individual objects of interest and separate context from focus regions.

14.1.8 Smart Visibility and Importance-Driven Visualization

Going a step further from non-photorealistic or illustrative techniques that
traditionally ask how an object or volume should be depicted, the question

Figure 14.6. Visibility-preserving importance compositing [274]. The visibility of a
focus object is kept constant for all viewpoints. It is independent of the thickness
of the occluding parts of the context that surrounds it. (Images courtesy of Ivan
Viola, c© 2005 IEEE.)
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Figure 14.7. Importance-driven visualization requires importance compositing in
order to determine view-dependent visibility of objects according to their impor-
tance [272]. (Images courtesy of Ivan Viola, c© 2005 IEEE.)

of what part of a volume is important and should thus be visualized arises.
A fundamental aspect of this problem is the visibility of objects or subvol-
umes. An example is illustrated in Figure 14.6. A volume is subdivided
into focus and context objects, and the relative visibility of these objects
is determined. In order to ensure that a focus object is always visible, this
is usually done in a view-dependent manner.

Viola et al. [272, 274] have introduced the concept of importance-driven
volume rendering, where the importance of objects determines their visi-
bility and rendering style. Figure 14.7 illustrates the corresponding com-
positing of importance along viewing rays.

14.1.9 Additional Techniques for Illustrative Visualization

This section briefly summarizes additional techniques that are useful in
illustrative volume rendering.

Clipping planes. Although clipping planes are a standard ingredient of most
volume renderers, their usefulness cannot be overemphasized. In many ap-
proaches they are the standard way for looking into the volume, after a
transfer function has been chosen. Although the transfer function also has
the responsibility of making unimportant areas transparent, and interest-
ing areas more opaque, standard transfer functions are global and do not
incorporate position information. Thus, it is often necessary to clip away
parts of the volume that have not been made transparent by the transfer
function in order to see the desired areas of interest. Clipping is also a
standard method when doing illustrations, and as such they are even more
important when illustrative volume-rendering techniques are used. In this
context, illustrations with parts of the object clipped away are known as
cutaway views.

Chapter 15 contains a detailed discussion of different volume-clipping
techniques, in addition to basic clipping planes.
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Figure 14.8. The VolumeShop illustrative-visualization system of Bruckner and
Gröller [18] combines a variety of volumetric-illustration styles and additional tech-
niques such as labeling. (Images courtesy of Stefan Bruckner, c© 2005 IEEE.)

Transformations. If different parts of a volume can be moved, rotated,
or scaled, it is much easier to look into the volume and avoid unwanted
occlusion between objects of interest. An example is fanning, shown in
Figure 14.8 [18], where a subvolume is rendered outside the main volume
in a zoomed view. Browsing volumetric data via transformations and defor-
mations [183] is also a powerful metaphor for volume inspection. Another
approach is to warp the view with a magic lens for exploring the volume
in a focus+context manner [278].

Annotations. Figure 14.8 also shows annotations in the form of labels for
segmented subvolumes. In order to perform proper automatic labeling,
segmentation information is usually used [18].

14.1.10 Integrated Systems

All the techniques outlined above become especially powerful when they are
combined in an interactive system. The VolumeShop system of Bruckner
and Gröller [18] combines a variety of illustrative volume-rendering styles
with additional capabilities such as ghosting, importance-driven rendering,
and labeling. The Illustration Motifs system by Svakhine et al. [260] effec-
tively combines standard volume rendering and illustrative rendering styles.
The system of Lu and Ebert [169] interactively synthesizes illustrative vol-
ume renderings from example images. Tietjen et al. [265] have presented
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an illustrative visualization system for surgery education and planning that
effectively combines both volume and surface rendering. Krüger et al. [144]
propose a similar system for neck dissection planning. Section 15.6 also con-
tains a discussion of volume illustration systems, especially in the context
of volume clipping.

14.2 Basic NPR Shading Models
This section describes extensions and variants of the standard Blinn-Phong
model for non-photorealistic volume rendering. Although this model con-
sists of an ambient, a diffuse, and a specular term, the term that is most
commonly modified for NPR styles is just the diffuse term. Most of the
time, the specular part is either left as is or removed entirely. However, it
can also be useful to modify the specular term in order to gain more insight
into the volume [19].

14.2.1 Tone Shading

As described in Chapter 5, the diffuse component of Blinn-Phong shading
determines the intensity of diffusely reflected light with the dot product
between the surface normal and the light vector: (n · l). The range of this
dot product is [−1, 1], which encompasses the full range of angles between
the two vectors. However, in order to prevent the effect that surfaces are lit
from behind, the reflected light intensity has to be restricted to one “side”
of the normal, i.e., I = max(n · l, 0). This restricts the range to [0, 1] and
has the implication that, if only one static light source is used, it is often
hard to discern the actual shape of an object. The reason for this is that
there is no light in areas whose normal vector points away from the light
source.

Tone shading [83] (sometimes also called Gooch shading or cool-warm
shading) interpolates between two user-specified colors over the full [−1, 1]
range of the dot product between normal and light direction. Traditionally,
one of these colors is set to a warm tone, e.g., red, orange, or yellow. The
other color is set to a cool tone, e.g., purple, blue, or green. Cool colors are
perceived by human observers as receding into the background, whereas
warm colors are seen as advancing into the foreground. Tone shading uses
this observation in order to improve the depth perception of shaded images
by interpolating between the warm tone and the cool tone and adding in
the contribution of the object’s intrinsic color.

Although originally developed for surface shading, tone shading can
easily be adapted to direct volume rendering by mixing the color from the
transfer function with the color obtained via tone shading. One of the
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possibilities to do this is the following:

I =
(

1 + (n · l)
2

)
ka +

(
1− 1 + (n · l)

2

)
kb , (14.1)

where l denotes the light vector, and n = ∇f/|∇f | is the normalized
gradient of the scalar field f (the volume) that is used as the normal vector.

The two colors to interpolate, ka and kb, are derived from two constant
colors kcool and kwarm and the color from the transfer function kt, using
two user-specified factors α and β that determine the additive contribution
of kt:

ka = kcool + αkt , (14.2)
kb = kwarm + βkt . (14.3)

The opacity of the shaded fragment is determined directly from the transfer
function look-up, i.e., the alpha portion of kt.

These tone shading equations can be evaluated on a per-fragment basis
in a fragment program for high-quality results.

14.2.2 Cartoon Shading

Cartoon shading [151] tries to emulate the style of cartoonists, who usually
paint large areas of an object with a constant color, e.g., one color for the
part of the object that is pointing toward the light source and another color
for the part that is pointing away. The diffuse part of the model consists
of these two colors and the thresholding value for the dot product (n · l)
between the surface normal and the light direction that determines when
to use which of the two colors. This can either be evaluated procedurally
in the shader, or max(n · l, 0) can be used as the texture coordinate for
indexing a 1D texture map. It is also possible to use just a single color and
map the dot product term to two discrete scalar light intensities, which
are then multiplied by the single constant color. Figure 14.9 (c) illustrates
cartoon shading with more than two colors, but still clearly discernible
large areas of constant color that provide a cartoon-style look using a 2D
look-up texture.

14.2.3 Lighting Look-Up Tables and Lighting
Transfer Functions

Although the shading equations differ, many lighting models are similar
enough that they can be computed with a single equation that is parame-
terized by look-up tables. Using a unified equation has the big advantage
that one simple fragment program can be used for a variety of lighting
models that are simply specified via different look-up tables, i.e., textures.
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Figure 14.9. Lighting look-up tables allow a single shading equation to be used
for a variety of shading models. A shading model is specified by a 2D look-up
texture that is indexed with the two dot products used for computing the diffuse
and specular reflection in the Blinn-Phong model: (n · l) and (n · h). (a) Standard
shading; (b) contour enhancement; (c) cartoon shading; (d) metal shading. (Images
courtesy of Stefan Bruckner [18], c© 2005 IEEE.)

A well-known example from surface shading is anisotropic lighting mod-
els, where anisotropy is controlled by 2D look-up textures [105] that are
indexed with dot product terms including the light direction vector, the
view vector, and the tangent vector that determines the main direction of
anisotropy.
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In order to use standard shading and non-photorealistic shading with a
single shading equation in volume rendering, the same or a similar param-
eterization can be used. Similar to Blinn-Phong shading, the (v · r) term
can be substituted by (n · h), using the halfway vector h (see Section 5).
Figure 14.9 illustrates four examples of volume shading [18], where a single
2D RGBA look-up texture parameterizes the shading model. The standard
shading terms of ambient, diffuse, and specular illumination are stored in
the RGB channels of this texture, respectively. The alpha channel can be
used for additional parameterization, e.g., context-preserving shading [19],
which is outlined below. Note that it is possible to include simple contour
rendering in this model, as the view vector v is implicitly contained in the
halfway vector h. Setting the ambient, diffuse, and specular components
to zero where (n · l) ≈ 2(n · h) highlights contours [18].

A different goal is achieved by the related method of lighting transfer
functions [172]. A lighting transfer function is used to decouple classifica-
tion via assignment of opacity from lighting computations. This concept
allows improved user control over the rendering of material boundaries.
Similar to the 2D look-up tables described above, a lighting transfer func-
tion stores the ambient, diffuse, and specular components that parameterize
the lighting model. In this case, however, the 2D table is indexed with two
density values that are taken along the gradient direction in addition to
the regular sample value [172]. Lighting transfer functions are also a more
robust alternative to using the surface scalar that has been described in
Chapter 6 for avoiding shading problems in homogeneous areas.

In the context of illustrative rendering, similar look-up tables can also
be used to determine the transfer function when two volumes overlap, e.g.,
an object and its ghost [18]. The 2D look-up table is then indexed with
the density values from the two volumes, respectively.

14.2.4 Context-Preserving Shading

Illustrative context-preserving volume rendering [19] provides an alterna-
tive to conventional clipping planes by selectively modulating opacity de-
pending on several factors, including distance to the eye point. Other fac-
tors are a function of shading intensity, gradient magnitude, and previously
accumulated opacity, whose influence on the resulting opacity is controlled
by two user-defined parameters. These parameters regulate how opacity
is reduced selectively in “less important” data regions. Figure 14.10 illus-
trates an example where opacity is successively decreased from left to right
by modifying a parameter of the shading model. In contrast with clipping
planes, context is preserved by smoothly deemphasizing different parts of
the volume instead of entirely cutting them away.
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Figure 14.10. Context-preserving volume rendering [19] selectively reduces opacity
with two simple user-controlled parameters and provides an interesting alterna-
tive to conventional clipping planes. (Images courtesy of Stefan Bruckner, c© Eu-
rographics Association 2005.)

14.3 Contour Rendering

Contours are one of the most important ingredients of non-photorealistic
and illustrative rendering. Although most contour-rendering algorithms
work on polygonal meshes, there are several established and efficient meth-
ods for computing them in volume rendering. This section summarizes
contour detection in object space when there is no mesh representation
available.

14.3.1 Basic Object-Space Contour Detection

The simplest way to detect a contour in volume rendering is to use a thresh-
old for the dot product of the view direction and the normal vector used
for shading, e.g., (v ·n) < ε. The “ideal” contour would be where these two
vectors are exactly orthogonal, i.e., where the dot product is zero. Using
a larger threshold ε determines the thickness of the contour. Of course, in
volume rendering the normalized gradient of the field is used instead of a
surface normal vector. The following two sections illustrate how this basic
method can be used for rendering contours of isosurfaces and full volumes,
respectively.

14.3.2 Isosurface Contours

The simple thresholding approach just described can be used directly for
rendering contours of isosurfaces. For each sample where the isosurface
is rendered (e.g., because the sample value is greater than or equal to the
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Figure 14.11. Isosurfaces (of a single distance-field volume) with contours com-
puted in object space. The top-row images show that contour thickness varies in
screen space although the threshold for (v · n) is constant. The bottom-row im-
ages show that this is due to a larger area on the surface being classified as part
of the contour, which results from differing surface curvature.

isovalue), thresholding determines whether a contour color should be drawn
instead of the isosurface’s color.

However, a basic problem shared by all approaches using a constant
threshold ε for contour detection is that the actual contour thickness in
screen space varies according to surface curvature. This becomes espe-
cially visible when rendering isosurfaces. This problem is illustrated in
Figures 14.11 and 14.12 for isosurfaces of a distance field. In Figure 14.11,
the threshold is a constant. When the isovalue and thus the resulting iso-
surface changes, the screen-space thickness of the contours changes as well.
When the same scene is viewed from the side, it becomes clear that the area
on the surface that is classified as belonging to the contour varies signifi-
cantly with surface curvature (the view direction used for contour detection
is kept constant with respect to the volume). In contrast to this, in Fig-
ure 14.12 curvature has been used to modify the threshold ε accordingly,
which results in contours of constant screen-space thickness. Figure 14.24
illustrates the same problem with a more complex volume. More details
of using curvature for object-space detection of contours that results in
constant screen-space thickness are given in Section 14.6.2.
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Figure 14.12. Isosurfaces with contours computed in object space. In contrast
with Figure 14.11, contour thickness has now been modulated according to surface
curvature, which allows one to achieve constant screen-space thickness (top-row
images). The area on the surface that is classified as being part of the contour is
correspondingly smaller (bottom-row images).

14.3.3 Volumetric Contours

Even without an explicit notion of surfaces, or isosurfaces, a simple model
based on the gradient magnitude and the angle between the view direction
and the gradient direction can visualize the contours of material boundaries
in volumes effectively [38, 57]. Two examples with different parameter
settings are depicted in the left two images of Figure 14.13.

This model can be used in real-time volume rendering for obtaining a
contour intensity Icontour by evaluating the following equation in a fragment
program:

Icontour = g
(‖∇f‖) · (1− ‖(v · n)‖)n

, (14.4)

where v is the viewing vector, ∇f denotes the gradient at the current
position, n = ∇f/‖∇f‖ is the normalized gradient, and g(·) is a windowing
function for the gradient magnitude. The exponent n is a constant, e.g.,
n = 8. There are two main parts in this equation. The first (g

(‖∇f‖)) is
view-independent and determines if there is a material boundary and how
pronounced it is. The second part is view-dependent and restricts nonzero
intensities to contours as given by the relation between the view vector and
the gradient direction.
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Figure 14.13. Volumetric contours using Equation 14.4. The left two images use
an exponent of n = 8 and different gradient magnitude windows g(·). The right
image uses an exponent of n = 2, which is already too low. In this case, not only
the contours are visible. An exponent between n = 4 and n = 16 is usually a good
choice.

Although it is view-independent, the most important parameter of this
model is the windowing function g(·) for the gradient magnitude, which is
illustrated in Figure 14.14. Instead of selecting a single isovalue and thus
rendering the contours of a single isosurface, using a function of gradient
magnitude allows one to depict the contours of many material boundaries
simultaneously. The ramp of the windowing function determines a gradi-
ent magnitude threshold for detection of material boundaries and a smooth
transition between “no material boundary” and “definite material bound-
ary.” As illustrated in the left two images of Figure 14.13, the windowing
function makes it easy to control the appearance of contours. The window
can be specified directly via its center and width. Alternatively, it can also
be specified through a standard transfer function interface, where the alpha
component specifies g(·), and the RGB components are simply neglected.

The exponent n in Equation 14.4 determines what is classified as a
contour depending on the angle between the view vector and the gradient
direction. Values between n = 4 and n = 16 usually achieve good results.
The influence of the actual value for n on the overall appearance of the
resulting contours is much less significant than that of the window g(·). An
exception is the case when the exponent is too low (e.g., n = 2), where parts
of the volume that clearly do not correspond to contours will be rendered.
This is illustrated in the right image of Figure 14.13.

The fragment intensity Icontour obtained via Equation 14.4 can be mul-
tiplied by a constant contour color in order to render colored contours. If
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Figure 14.14. The gradient magnitude windowing function g(·) for volumetric con-
tours using Equation 14.4. This function restricts the detection of contours to the
interfaces, i.e., boundary surfaces, between different materials depending on local
gradient magnitude.

alpha blending is used as the compositing mode, the fragment alpha can
simply be set to the intensity Icontour. However, a very useful composit-
ing mode for contours obtained via this technique is maximum intensity
projection (MIP), instead of using alpha blending, in order to make all
contours visible equally, independent of their depth order. The images in
Figure 14.13 also use MIP compositing. (Note that, since this figure shows
black contours on a white background, it actually uses “minimum intensity
projection.”)

14.4 Surface and Isosurface Curvature
Before the subsequent sections discuss in detail how curvature information
can be used for driving illustrative rendering styles, this section covers the
necessary basics.

14.4.1 Surface Curvature

Figure 14.15 (left) illustrates a point on a surface with its corresponding
surface normal and the surface normal of neighboring points on the surface.
Intuitively, the concept of curvature at a given point on a surface describes
the variation of the normal vector as we move from this point into some
direction by a very small distance. The basic definition of curvature is given
for curves instead of surfaces. However, the concept can easily be extended
to surfaces by looking at curves on these surfaces. Observe the point in the
right image of Figure 14.15, the blue normal vector at that point, and the
corresponding tangent plane illustrated by the two black coordinate frame
vectors. We can think of all the directions from this point in the tangent
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Figure 14.15. Curvature is the variation of the surface normal when moving on
a surface. The tangent plane is determined by the surface normal, and maximum
andminimum principal curvature directions are defined in this tangent plane (right).
(Images courtesy of Gordon Kindlmann.)

plane (two of them being the two directions indicated in black) and the
planes that are spanned by these directions and the normal vector. Each
of these planes intersects the surface, and these intersections are curves
on the surface that contain the point we are looking at. Two of these
intersecting curves are illustrated in blue in the left image of Figure 14.15.
The curvature at that point in a given direction is the curvature of the
corresponding intersection curve at that point. This definition of curvature
in a given direction on a surface is often also called normal curvature.

Thus, there is a whole angular range of directions and the corresponding
normal curvatures at any given point on a surface. However, in the general
case these curvatures have a well-defined minimum and maximum, and the
corresponding directions are orthogonal to each other. These two curva-
tures are called the principal curvatures, and the corresponding curves are
illustrated in blue in the left image of Figure 14.15. More specifically, the
directions are called principal curvature directions (which we will denote
below as e1 and e2 for maximum and minimum direction, respectively) and
the scalar curvatures themselves are called principal curvature magnitudes
(which we will denote below as κ1 and κ2 for maximum and minimum cur-
vature, respectively). Note that κ1 ≥ κ2 is always true, as we associate the
former with maximum curvature.

Points on surfaces can be classified with respect to their principal cur-
vatures (κ1, κ2) as follows (see Figure 14.16).

• Elliptical points are points of convex curvature, where both κ1 and
κ2 are positive. (But they are not equal and neither of them is zero.)

• Hyperbolic points are points where the surface is saddle-shaped, i.e.,
where κ1 is positive and κ2 is negative. (But neither of them is zero.)
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1

Figure 14.16. Depicting shape in the principal curvature domain (κ1, κ2). κ1 is the
maximum principal curvature, κ2 the minimum principal curvature. Thus, κ1 ≥ κ2 .
(Images courtesy of Gordon Kindlmann, c© 2003 IEEE.)

• Parabolic points are points between the cases of elliptical and hyper-
bolic, i.e., where one of the two is zero. (Usually the case where both
are zero is included, but these points are also umbilical points as de-
scribed below.) At these points, the surface is locally shaped like a
cylinder. Ridge and valley lines on a surface connect parabolic points
where the nonzero curvature is above or below a certain threshold,
respectively (see Figure 14.17).

• Umbilical points (or umbilics) are those points where both curva-
tures are equal. In these points, the curvature directions are not
well-defined. These points are either locally sphere-shaped or locally
planar. A sphere and a plane both consist entirely of umbilical points
with constant curvature.

Figure 14.16 illustrates all possible shapes with respect to principal curva-
tures. Because κ1 ≥ κ2, the valid curvature domain is a triangle, which

Figure 14.17. Visualizing specific shapes such as ridge and valley lines by simply
painting them in the 2D curvature domain. (Images courtesy of Gordon Kindlmann,
c© 2003 IEEE.)



�

�

�

�

�

�

�

�

14.4 Surface and Isosurface Curvature 371

is color-coded in the left image. The corresponding surface shapes are
illustrated in the right image.

The curvature in any direction on the surface can be calculated from
the principal curvatures and directions.

14.4.2 Implicit Curvature

In volume rendering, we are interested in the curvature of implicitly given
isosurfaces. Thus, the curvature at a point in a volume is defined as the
curvature of that point on the isosurface passing through it. With this
definition, the notion of curvature can be defined at any point in the volume
as long as the gradient at that point is well-defined. If the gradient vanishes,
i.e., its magnitude is zero, such as in a homogeneous block with a constant
density, no curvature can be computed. At such a point the notion of
a surface does not exist. Chapter 6 contains a discussion of the problems
that occur when the gradient magnitude is very small and thus the gradient
direction is unreliable.

14.4.3 Scalar Curvature Measures

Scalar curvature measures are a good way to visualize surface shape. Fig-
ure 14.18 depicts the same surface with four different curvature measures.
In addition to maximum and minimum principal curvature, several mea-
sures building on them are defined. Two examples are the following.

Gaussian curvature. The Gaussian curvature is defined as the product of
the two principal curvatures: κ1κ2. The parabolic curves on a surface are
those curves where the Gaussian curvature is zero. As such, they also have
the property that they separate areas with elliptical curvature from areas
with hyperbolic curvature. The rightmost image of Figure 14.18 illustrates
Gaussian curvature.

Mean curvature. The mean curvature is defined as (κ1 + κ2)/2. The
middle-right image of Figure 14.18 illustrates mean curvature.

14.4.4 Computing Implicit Curvature via Convolution

In contrast with computing curvature on mesh representations [263, 228],
implicit curvature in a volume can be computed directly via convolution
on the underlying regular grid structure [124]. Assuming that the data
value f(x) increases as position x moves further inside objects of interest
(e.g., a standard CT scan), the surface normal is n = −g/|g| where g =
∇f . Curvature information is contained in ∇nT , which is represented
as a 3 × 3 matrix. However, trying to evaluate the gradient of a pre-
computed normalized vector field would prevent direct convolution-based



�

�

�

�

�

�

�

�

372 Non-Photorealistic and Illustrative Techniques

Figure 14.18. Color-coding different curvature measures. From left to right:
maximum principal curvature κ1 , minimum principal curvature κ2 , mean curvature
(κ1 + κ2)/2, Gaussian curvature κ1κ2. Positive curvature is depicted in green and
negative curvature in magenta. Curvature isolines are drawn in black, except zero
curvature, which is highlighted in blue. (Images courtesy of Gordon Kindlmann,
c©2003 IEEE.)

measurement of curvature from the original data. The expression ∇nT can
be transformed using vector calculus:

∇nT = −∇
(

gT

|g|
)

= −
(∇gT

|g| −
g ∇T |g|
|g|2

)
= − 1

|g|
(
H− g ∇T (gT g)1/2

|g|
)

= − 1
|g|

(
H− g (2gT H)

2 |g|2
)

= − 1
|g|

(
I− ggT

|g|2
)

H = − 1
|g| (I− nnT )H

= − 1
|g|PH . (14.5)

I is the identity, P = I − nnT projects vectors onto the plane tangent to
the isosurface, and the Hessian is

H =

⎡⎣ ∂2f/∂x2 ∂2f/∂x∂y ∂2f/∂x∂z
∂2f/∂x∂y ∂2f/∂y2 ∂2f/∂y∂z
∂2f/∂x∂z ∂2f/∂y∂z ∂2f/∂z2

⎤⎦ .

Considering the factors of Equation 14.5 from right to left helps under-
stand the structure of ∇nT . The Hessian H represents how the gradient
g changes as a function of infinitesimal changes of position in R

3. The
changes in g have a component along g (the gradient can change length),
and a component within the tangent plane (the gradient can change direc-
tion). For the purposes of describing curvature, only the latter component
matters, and it can be isolated with left-multiplication by P. Finally, the
−1/|g| scaling factor converts infinitesimal changes of the (unnormalized)
gradient g into infinitesimal changes of the unit-length normal n.
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Though P and H are symmetric, ∇nT is not. For u and v in the
tangent plane, however,

vT PHu = vT Hu = uT Hv = uT PHv ,

so the restriction of ∇nT = −PH/|g| to the tangent plane is symmetric,
and there exists an orthonormal basis {p1,p2} for the tangent plane in
which ∇nT is represented as a 2 × 2 diagonal matrix. This basis can be
extended to an orthonormal basis for all of R

3, {p1,p2,n}, and in this
basis, the derivative of the surface normal is represented by

∇nT =

⎡⎣ κ1 0 σ1

0 κ2 σ2

0 0 0

⎤⎦ .

The bottom row is all zero because no change in position can make the
normal n change in length. Motion within the tangent plane, along p1 and
p2, leads to changes of n along the same directions, as scaled by κ1 and κ2

respectively. Motion along the normal, away from or into the surface, tilts
the normal according to σ1 and σ2. There are no off-diagonal terms by the
choice of {p1,p2}. The principal curvature directions are p1 and p2, while
κ1 and κ2 are the principal curvatures.

Multiplying ∇nT by P helps isolate κ1 and κ2 in the {p1,p2,n} basis:

−PHP
|g| = ∇nT P = ∇nT

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦ =

⎡⎣ κ1 0 0
0 κ2 0
0 0 0

⎤⎦ .

Because −PHP/|g| is measured in the usual (X,Y,Z) basis of the
volume rather than the {p1,p2,n} basis used above, κ1 and κ2 are not
simply available as the diagonal entries of −PHP/|g|. Instead, two
matrix invariants, the trace and Frobenius norm (defined by |M|F =√

tr(MMT ) ), are used to compute the curvatures. The principal cur-
vature directions are the eigenvectors of −PHP/|g| corresponding to the
κ1, κ2 eigenvalues.

The most important part of the curvature computation is measuring
all the necessary partial derivatives (in g and H) by convolution. The
tricubic B-spline and its derivatives provide a very good basis for curvature
estimation [124]. Chapter 9 describes how the necessary convolution filters
can be implemented on GPUs for real-time rendering.

To summarize, the steps to measure the curvature of implicit surfaces
in volume data are as follows.

1. Measure the first partial derivatives in the gradient g, and compute
n = −g/|g| and P = I− nnT .



�

�

�

�

�

�

�

�

374 Non-Photorealistic and Illustrative Techniques

2. Measure the second partial derivatives in the Hessian H, and compute
−PHP/|g|.

3. Compute the trace T and Frobenius norm F of −PHP/|g|. Using
the quadratic formula,

T = κ1 + κ2

F =
√

κ2
1 + κ2

2

⇒ κ1 = (T +
√

2F 2 − T 2)/2
κ2 = (T −√2F 2 − T 2)/2 .

14.5 Deferred Shading of Isosurfaces
The big advantage of deferred shading [45, 155, 231] is that it decouples
the determination of visibility from actually performing shading on sam-
ples or pixels that are known to be visible. For rendering isosurfaces in
volume rendering, this means that traversing the volume in order to find
the isosurface is decoupled from performing shading on the resulting points
on the isosurface. Intersection positions of viewing rays with the isosurface
are computed in a first step, and a completely separate—deferred—step
subsequently computes shading at only these positions. This also allows us
to combine different fragment programs for these two steps. Intersection
positions can be determined either with slicing or via ray casting. Shad-
ing can then naturally be performed using a variety of different shading
models.

14.5.1 Deferred Shading Pipeline

We briefly summarize a shading pipeline for deferred shading of isosur-
faces with tricubic filtering and real-time computation of implicit isosur-
face curvature [93]. The first step is to generate a floating point image of
ray/isosurface intersection positions, such as the one depicted in the right
of Figure 14.19. Figure 14.19 illustrates this first step beginning with the
original scalar volume data. In addition to the volume, a min-max grid of
small blocks (e.g., 83 voxels) is used to cull away blocks that cannot con-
tain a part of the isosurface. Then, a depth image of the bounding faces
of these blocks is generated and used as start depths for a ray caster. Ray
casting stops when the isosurface is intersected, and the intersection posi-
tion in volume coordinates is written to the floating point output image.
The precision of intersection positions is refined via an iterative root search
procedure (e.g., bisection).

All following stages are performed in image space and are thus com-
pletely decoupled from the resolution of the volume. In order to provide
the basis for complex shading effects, various differential surface proper-
ties are computed using tricubic B-spline convolution filters. These surface
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Figure 14.19. Deferred isosurface shading: from the volume to the intersection
position image.

properties are likewise written to floating point images. Figure 14.20 il-
lustrates the images that are computed at this stage. First, the first-order
partial derivatives determine the gradient of the field on the isosurface. Us-
ing the gradient and the corresponding tangent plane, the maximum and
minimum principal curvature magnitudes are computed. From the curva-
ture magnitudes, the corresponding curvature directions can be computed
as well.

    partial
derivatives

curvature
directions

  curvature
magnitudes

Figure 14.20. Deferred isosurface shading: computing differential surface proper-
ties.

Finally, the differential surface properties that have been computed can
be visualized and used for a variety of shading effects. Figure 14.21 illus-
trates examples from a simple basic shading model such as tone shading
to visualizing surface curvature, drawing ridge and valley lines with 2D
curvature transfer functions, and visualizing the direction field of principal
curvature directions using flow advection. The following section describes
the different possibilities in more detail.
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tone shading     curvature
color mapping

ridges+valleys     curvature
direction flow

Figure 14.21. Deferred isosurface shading: performing shading in image space.

14.6 Curvature-Based Isosurface Illustration
Computing implicit surface curvature is a powerful tool for isosurface in-
vestigation and non-photorealistic rendering of isosurfaces. This section
assumes that an isosurface is shaded using deferred shading in image space,
as described above.

When differential isosurface properties have been computed in preceding
deferred shading passes, this information can be used for performing a
variety of mappings to shaded images in a final shading pass.

14.6.1 Curvature-Based Transfer Functions

Principal curvature magnitudes can be visualized on an isosurface by map-
ping them to colors via 1D or 2D transfer function look-up textures.

One-dimensional curvature transfer functions. Color mappings of first or
second principal curvature magnitude via 1D transfer function look-up ta-
bles can be computed during shading. The same approach can be used to
depict additional curvature measures directly derived from the principal
magnitudes, such as mean curvature (κ1 + κ2)/2 or Gaussian curvature
κ1κ2. Figure 14.22 depicts a 1D curvature transfer function for a signed
curvature measure. In Figure 14.23 (left), this transfer function has been
used for visualization of maximum principal curvature. Note the fine detail,
which is due to tricubic filtering at sub-voxel precision instead of interpo-
lating curvature from grid points.

0

Figure 14.22. A 1D curvature transfer function.
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Figure 14.23. Happy buddhas. The left image uses the 1D curvature transfer func-
tion depicted in Figure 14.22 to visualize maximum principal curvature. The right
image uses the 2D curvature transfer function depicted in Figure 14.17 to highlight
ridge and valley lines in white and black, respectively. Note that no actual lines
are drawn. These images were generated using ray casting on a 256 × 256 × 512
distance-field volume [93]. No geometry was used.

Two-dimensional curvature transfer functions. Transfer functions in the
2D domain of both principal curvature magnitudes (κ1, κ2) are espe-
cially powerful, as color specification in this domain allows one to high-
light different structures on the surface [106], including ridge and valley
lines [111, 124]. Figure 14.23 (right) shows the application of the 2D cur-
vature transfer function that is depicted in Figure 14.17. By simply paint-
ing in the 2D curvature domain of (κ1, κ2), ridge and valley lines can be
highlighted without drawing actual lines.

14.6.2 Curvature-Controlled Contours

As described in Section 14.3.2, a major problem of detecting contours in
object space with a constant threshold on the dot product of viewing and
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Figure 14.24. Contour thickness in screen space changes with local curvature
(left). When this curvature is computed and used to change the threshold for
contour detection accordingly, constant screen-space thickness can be achieved
(right). (Images courtesy of Gordon Kindlmann, c© 2003 IEEE.)

normal vector (v · n) is that the screen-space thickness of the resulting
contours depends on the local curvature of the isosurface. Figure 14.24
illustrates this for a simple cone and a more complex volume. Constant
screen-space thickness of contours can be achieved by computing the cur-
vature in the view direction, κv, and using a 2D function of κv and (v · n)
instead of a constant threshold [124]. Figure 14.25 shows the 2D transfer
function that can be used to achieve a constant contour thickness T . This
function can be implemented as a simple 2D texture, just as the 2D curva-
ture transfer function shown in Figure 14.17. This also allows us to achieve
smooth contours by simply smoothing the boundary between “contours”
and “no contours” in the transfer function image.

1� �v n�

�v0

0

1/T

Figure 14.25. Controlling contour thickness according to surface curvature. κv

is the curvature in view direction. T is the desired constant contour thickness in
pixels. The blue area is classified as being on the contour.
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Figure 14.26. Image-space flow advection on curved surfaces. The vector field
(left) is projected to image space and advects noise patterns (center) in the pro-
jected directions, which results in the illusion of flow advection on the surface in
3D (right). (Images courtesy of Bob Laramee [153], c© 2003 IEEE.)

14.6.3 Visualizing Curvature Directions

Direct mappings of principal curvature directions to RGB colors are hard to
interpret. However, principal curvature directions on an isosurface can be
visualized using image-based flow visualization that visualizes an arbitrary
3D vector field on a curved surface [269]. In particular, flow can be advected
on the surface entirely in image space [153, 154]. The basic principle is
illustrated in Figure 14.26. First, a 3D vector field on a curved surface is
projected to image space. Then, a noise pattern with spatial and temporal
coherence is advected in image space in the directions of the projected
vector field. Always blending several successive frames and periodically
injecting fresh noise achieves results of very good quality [269].

Figure 14.27. Visualizing principal curvature directions in real time using image-
space flow advection. These images illustrate maximum principal curvature direc-
tions. (Right image reprinted from [93], c© Eurographics Association 2005.)
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These methods can be used in real time, complementing the capability
of the deferred shading pipeline outlined in Section 14.5.1 to generate high-
quality curvature information on-the-fly. The computation of principal
curvature directions yields a potentially unsteady “flow field.” In this case,
it is natural to perform per-pixel advection guided by the floating point
image containing principal direction vectors instead of warping mesh vertex
or texture coordinates as it has been done in the original approaches [269,
153, 154]. Figure 14.27 shows two examples of using flow advection in order
to visualize principal curvature directions. Note that this entire rendering
process is real-time [93], from ray casting for determining the isosurface to
computation of differential surface properties and curvature directions, to
visualizing and shading these directions using image-based flow advection.
However, a problem with advecting flow along curvature directions is that
their orientation is not uniquely defined, and thus seams in the flow cannot
be entirely avoided [269].

14.7 Further Reading
The area of non-photorealistic and illustrative techniques is vast, and this
chapter could only touch the surface of this topic. The tutorial by Viola
and others [273] provides an introduction to illustrative visualization. The
book by Preim and Bartz [216] covers the use of illustrative techniques in
medical visualization. The course by Ma and others [176] describes non-
photorealistic approaches in the context of both art and visualization.

The paper by Ebert and Rheingans [57] describes a volume-illustration
pipeline that combines several methods such as silhouette and boundary
enhancement, tone shading, feature enhancement, and depth and orien-
tation cues. Many NPR techniques that have been developed for surface
illustration have been adapted to volume rendering, e.g., pen-and-ink ren-
dering [266]. An important goal of illustrative approaches is to highlight
hidden structures, e.g., using multiple layered isosurfaces [73], multiple
transfer functions [171], or segmentation information [92]. Time-varying
volumes can also be visualized succinctly by using techniques inspired by
illustration [116], including multivariate volume data [253]. The visualiza-
tion of motion can even be used to provide effective shape cues for static
objects [174]. Illustration techniques are also an effective means for visu-
alizing flow [261].

Distance fields are a powerful volumetric representation of surface- or
point-based objects [205]. They can be generated with GPUs [242, 258]
or software approaches, e.g., using radial hermite operators [197]. This
chapter has shown how objects represented by distance-field volumes can
be illustrated using implicit curvature information.
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15
Volume Clipping

VOLUME VISUALIZATION TARGETS THE PROBLEM of extracting and dis-
playing the important and relevant parts of a volumetric data set.

This goal can be separated into two subgoals: first, emphasizing important
regions, for example, by using bright colors and high opacities; second,
deemphasizing or hiding unimportant regions. Volume clipping specifically
addresses the second subgoal by completely cutting away unimportant ar-
eas. It can be regarded as the 3D analogue of image cropping or extraction,
known from image processing and editing.

Figure 15.1 shows a traditional and common example of volume clip-
ping: a clipping plane is applied to cut away a part of the volume rendering

Figure 15.1. Volume clipping with a single clipping plane. The left image shows the
original volume rendering of an MR (magnetic resonance) scan of a human head.
In the right image, a clipping plane is applied to the same data set.

381
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382 Volume Clipping

of a medical MR (magnetic resonance) scan. This image demonstrates that
clipping is especially appropriate when the volume is rendered (almost)
opaque. The underlying metaphor is known from cutaway illustrations
and therefore very intuitive. Volume clipping cuts away selected parts of
the volume based on the position of voxels in the data set. By removing
these occluding parts, the user can explore otherwise hidden regions of the
volume. This geometric approach can be considered as complementary to
a classification via traditional transfer functions that only consider scalar
data values and their derivatives (see Chapters 4 and 10).

Clipping planes are a standard tool in most volume-rendering systems;
their importance and usefulness in practical volume exploration cannot be
overemphasized. Clipping planes are easy to understand, very efficient,
simple to implement, and widely available. This chapter briefly describes
how to implement clipping planes and goes well beyond this type of clipping
method. Based on a generic and flexible concept of clipping, two main
issues are discussed. First, how can we define a clipping geometry that
might be more complex than just a plane? Second, how can a clipped
volume be rendered efficiently?

The efficiency issue is the reason several clipping methods are presented
in this chapter. For example, there exist highly specialized rendering tech-
niques that are extremely fast but support only a restricted class of clipping
objects. On the other hand, more flexible clipping methods are typically
associated with higher rendering costs. Therefore, the choice of method
depends on the application area and user requirements. Throughout this
chapter, we assume that texture slicing (see Chapter 3) is used as the basic
technique for GPU-based volume rendering, unless otherwise noted.

15.1 Conceptual Description of Volume Clipping
Volume clipping can be considered as a way to modify the visibility of
regions of a 3D data set. Figure 15.2 illustrates the conceptual design
of volume clipping. The basic idea is that the actual scalar data volume
is enriched by an additional selection volume [18]. The selection volume
controls the visibility by modifying the original transfer function associated
with the data volume.

We assume that the selection volume permits only a binary decision:
either the data is visible at the respective position, or it is not. Therefore,
the selection volume has to be given as a volume that yields the Boolean
values true or false. A visible region is rendered according to the origi-
nal transfer function. An invisible region is either not rendered at all or
rendered completely transparent. The conceptual design is independent of
how the data and selection volumes are represented internally—it works
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data volume selection volume

combined
volume rendering

image

Figure 15.2. Conceptual design of volume clipping. The selection volume is used
to modify the visibility of the data volume.

for a procedural representation and a discretized representation (e.g., on a
uniform grid) alike.

There are two main questions. First, how can the selection volume be
constructed? Second, how are the data and selection volumes rendered?
With respect to the first question, the following sources are typically used
to build a selection volume.

• The boundary of a selection volume can be represented by an ex-
plicitly defined clipping geometry. A clipping plane, as used in Fig-
ure 15.1, is a simple example of such a clipping geometry. The clip-
ping plane defines a half space that is converted into the selection
volume determining the visible part of the data volume. In general,
the selection volume (a volumetric object) is described by a boundary
representation (BRep), given by the clipping geometry.

• Segmentation provides a classification of a data volume in the form
of object IDs associated with voxels. By selecting a subset of all
object IDs (very often only a single ID is chosen), a volumetric region
can be selected for clipping. Chapter 16 gives details on volume
segmentation.

• Additional attributes of a 3D data set can be used. In general, multi-
field visualization addresses the problem of displaying several data
sets or several attributes of a single data set in one image. The selec-
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tion volume can be defined if attributes can be mapped to Boolean
values. The main challenge is to develop a useful mapping. Fig-
ure 15.5 shows an example from 3D flow visualization in which the
velocity magnitude of the flow is used to select a visible region.

These three ways of defining a selection volume demonstrate that interme-
diate transformation steps are common. In general, the selection volume is
derived from an input source by applying one operation or even a collec-
tion of several operations. Using mathematical terminology, the selection
volume is a map from 3D space to Boolean values:

φS : IR3 −→ {true, false} .

The volumetric attributes are another map from 3D space to the respective
attribute space SA (which could be a collection of attributes such as scalar
or vector values):

φA : IR3 −→ SA .

By applying a transformation T from attribute space to Boolean values,

T : SA −→ {true, false} ,

we can indirectly define the selection volume as

φS = T ◦ φA : IR3 −→ {true, false} . (15.1)

Because the selection volume contains Boolean values true and false, a
simple transformation can always be applied: negating the Boolean value
results in an inversion of the visibility. We use the term volume probing
when the volume is clipped away outside the original selection volume.
Conversely, a volume cutting approach inverts the role of the visibility
property—only the volume outside the selection volume remains visible.

The second major question concerns an efficient rendering of the data
and selection volumes. The rendering method depends on the way the
selection volume is represented. There exists a large variety of rendering
techniques and they will be discussed in the remainder of this chapter.

15.2 Clipping via Voxelized Selection Volumes
The concept of a selection volume can be directly mapped to volume ren-
dering by means of a voxel-based representation of the selection volume.
In addition to the scalar data set, this approach stores the visibility in-
formation in a second volume texture whose voxels provide the clipping
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information. During rendering, the selection volume and the data volume
are combined on-the-fly to compute the visibility. Therefore, this approach
can be considered as a special case of multifield volume rendering, with the
selection volume and the data volume being the two input fields.

15.2.1 Binary Selection Volume

The selection volume is represented by a texture similar to that for the data
volume. For example, a stack of 2D textures is used for 2D texture–based
volume rendering (see Section 3.2) and a 3D texture for 3D texture–based
volume rendering (see Section 3.3). The selection volume is stored in a
binary texture: an entry is set to true if the corresponding voxel is visible
or it is set to false if the voxel should be cropped. For an implementation
on graphics hardware, false is typically identified with zero and true is
identified with one. In order to save texture memory, the smallest possible
texture format should be used to represent these values of zero and one. A
single-channel texture format is sufficient for the selection volume; an 8-bit
single-channel texture format (LUMINANCE8) is typically used.

As mentioned in Section 15.1, a selection volume may originate from
different sources. A voxelized version of the selection volume is quite easily
generated if the selection source is already described in a volumetric form.
Then, just a resampling to the target resolution of the selection volume
is required, possibly combined with an evaluation of the mapping equa-
tion (Equation 15.1). This resampling may be performed on the CPU as a
preprocessing step or, if possible, on the GPU. Often, however, clipping is
based on a surface representation of the selection volume. Here, a voxeliza-
tion of the boundary representation (BRep) is needed to fill the interior
of the object. Section 12.2 provides detailed information on voxelization
methods.

The other important part of the implementation concerns the actual
volume rendering of a clipped data set. Fortunately, volumetric clipping
can be directly mapped to graphics hardware and needs only very little
hardware functionality. The key requirement is support for multitextures
for the data volume and the selection volume. The set-up of texture slic-
ing or GPU ray casting is identical to that of standard volume rendering.
During rendering, both textures are accessed from the fragment-processing
stage. The result of standard volume rendering (e.g., after access to the
data volume and a look-up in the transfer function table) is modified by
multiplying it with the value from the selection volume. This multipli-
cation can be specified either in a fragment shader or by setting up a
multitexture environment (which implements a multiplication by means of
a MODULATE texture function for COMBINE ALPHA and COMBINE RGB). After all
voxels that need to be clipped have been multiplied by zero, the fragments
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// Cg fragment shader code for volume clipping

// via a voxelized selection volume

// Texture coords as input from the vertex stage

struct VS OUTPUT {
float3 TexData : TEXCOORD0;

float3 TexSelection : TEXCOORD1;

};

// Actual fragment shader

float4 main(VS OUTPUT IN,

uniform sampler3D SamplerDataVolume,

uniform sampler3D SamplerSelectionVolume,

uniform sampler1D SamplerTransferFunction)

: COLOR

{
// Accesses scalar value from the data volume

float dataValue = tex3D(SamplerDataVolume, IN.TexData);

// Standard post-interpolative transfer function

float4 classifiedValue = tex1D(SamplerTransferFunction,

dataValue);

// Accesses selection volume

float selectionValue = tex3D(SamplerSelectionVolume,

IN.TexSelection)-0.5;

// Removes fragment if selectionValue < 0

clip(selectionValue);

return classifiedValue;

}

Listing 15.1. Cg fragment shader for volume clipping via a voxelized selection vol-
ume.

can be removed by the alpha test. These fragments may even be sent to
the compositing stage (i.e., to alpha blending) because they are completely
transparent and will not affect the final image [292].

Alternatively, a conditional fragment removal can be included in a
fragment program (texkill in assembler-level language or clip in high-
level Cg language). Listing 15.1 shows an example of a Cg fragment
shader designed for 3D texture slicing. The data volume is held in the
3D texture SamplerDataVolume, the selection volume is stored in the 3D
texture SamplerSelectionVolume. A post-interpolative transfer function is
implemented by a dependent look-up in the 1D transfer function table
SamplerTransferFunction. After a bias with −0.5, the selectionValue con-
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tains a value 0.5 (i.e., true) or −0.5 (i.e., false). The subsequent fragment
kill operation (clip) removes the fragment when the biased selection value
is negative. While trilinear interpolation is used as a reconstruction filter
for the data volume (filter format LINEAR), the access to the selection vol-
ume is based on nearest-neighbor sampling (filter format NEAREST). Nearest-
neighbor sampling is crucial for maintaining texture values that are either
zero or one. If trilinear interpolation were applied, values between zero
and one could be obtained, which would have no direct interpretation as
Boolean values.

It is beneficial to address the data and selection volumes by two differ-
ent sets of texture coordinates. When a 3D texture is used for the selection
volume, any affine transformation of the clipping geometry can be achieved
by a transformation of texture coordinates. Such a transformation can be
implemented by computing the TexSelection coordinates from the original
TexData coordinates by a matrix–vector multiplication in a vertex program,
where the matrix describes the affine transformation between the selection
volume and the data volume. Alternatively, the transformed texture coor-
dinates can be computed by the CPU and attached to the vertex data. Only
if the shape of the clipping geometry is completely changed, the selection
texture has to be re-voxelized.

Volume clipping is similarly included in GPU-based ray casting and 2D
slicing. Ray casting is typically based on 3D textures and, thus, the same
texture addressing scheme can be used as before. Samples along a ray
that have to be clipped are removed from the volume-rendering integral
by setting their color contribution and opacity to zero. For 2D texture
slicing, two sets of 2D texture stacks have to be managed. Although the
resolution of the selection volume and the resolution of the data volume
are independent, their slicing directions should be aligned to facilitate a
simultaneous 2D texture access on a slice-by-slice basis. If both volumes
have different orientations, an on-the-fly resampling on small stripes has to
be employed, as described by Rezk-Salama et al. [224] in another context.

The aforementioned method for clipping with selection volumes requires
multiple texture accesses to attach the selection texture to the data texture.
However, volume clipping is feasible even with older graphics hardware that
does not support multitexturing: multiple passes are executed to render the
selection volume and the data volume on each slice; the stencil buffer and
stencil test are then used to cut away clipped fragments [10].

15.2.2 Clipping Based on a Distance Field

The above techniques use a direct representation of the binary selection
volume and require nearest-neighbor sampling of the respective texture. If
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a trilinear interpolation (for a 3D texture) is applied, intermediate values
between zero and one can be obtained from the selection texture and an
interpretation as Boolean values would break down. If clipping is imple-
mented by a multiplication of selection and data values, a clearly defined
surface of the clipping geometry would be replaced by a gradual transition
between visible and clipped parts of the volume.

Unfortunately, a missing interpolation within the selection texture may
introduce aliasing artifacts in the form of jaggy boundary surfaces. This
problem can be addressed by replacing the pre-computed binary selection
volume by an on-the-fly computation based on a signed distance field. The
distance texture stores the signed Euclidean distance to the closest point
on the clipping object. The surface of the clipping object corresponds to
the isosurface for the isovalue zero. Trilinear interpolation is applied to
reconstruct a continuous distance field. The rendering process is almost
identical to that of the previous section. The only difference is that a
comparison with the isovalue zero has to be included to determine the
visibility of a fragment.

The previously described implementation (see Listing 15.1) is already
prepared to handle clipping via a distance field. The only modification con-
cerns texture sampling, which is changed from nearest-neighbor sampling
of the binary selection volume to trilinear interpolation in the distance vol-
ume. The bias by −0.5 in the fragment program results in an isovalue of
0.5 for the clipping surface. In this way, an unsigned single-channel tex-
ture format such as LUMINANCE8 is appropriate for the distance field if the
texture is constructed with a bias of +0.5. If an 8-bit texture format is em-
ployed, quantization problems could reduce the quality of the distance field
representation. This quality issue is addressed by choosing an appropriate
overall scaling factor that relates the coordinate spacing in world space to
the spacing in the distance texture. This scaling in combination with a
final clamping to the range [0, 1] essentially leads to a restricted distance
field that is only valid in a boundary region around the clipping surface.
The thickness of the boundary zone is controlled by the scaling factor and
should be chosen only a few texels wide in order to avoid quantization in-
accuracies. Various methods exist for constructing signed distance fields.
Osher and Fedkiw [205], for example, give a comprehensive introduction
to level set techniques and fast marching methods that can be used to
generate distance fields.

An alternative implementation is also feasible using the alpha test. The
respective fragment shader for a binary selection volume (see Section 15.2.1)
is extended by an additional conditional assignment operation that yields
a value of zero when the distance is below the isovalue and a value of one
for a distance above the isovalue. The other parts of the fragment program
and the alpha test remain unaltered.
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(a) (b)

Figure 15.3. Comparison of different reconstruction filters for a voxelized clipping
geometry: nearest-neighbor sampling in (a) and trilinear interpolation in (b).

One advantage of using two different textures for the data and selection
(or distance) volumes is that the respective sampling resolutions can be
chosen independently. Texture memory is a limited resource and, there-
fore, the selection or distance volumes are often represented at a lower
resolution than the data volume. The effect of a low resolution for the
selection and distance volumes is illustrated in Figure 15.3 for a curved
clipping geometry. Nearest-neighbor sampling is used for the selection vol-
ume in Figure 15.3 (a), trilinear interpolation is used for the distance field
in Figure 15.3 (b). Both the selection and distance volumes are sampled
at only one-eighth of the resolution of the data volume. Aliasing artifacts
occur for nearest-neighbor sampling: for example, the transition between
clipped and nonclipped parts of the face look very jaggy. In contrast, trilin-
ear interpolation avoids these problems and results in a smooth boundary
between clipped and nonclipped areas.

15.2.3 Examples and Summary

A major advantage of the voxelized clipping approach is the support for
arbitrary clipping objects with an unrestricted choice of topology and ge-
ometry. Figure 15.4 demonstrates that complicated clipping objects can be
represented—complex with respect to geometry and topology. Here, the
underlying data set is a medical CT scan.

Another advantage is that the conceptual clipping process (Section 15.1)
is directly implemented and that both surface-oriented and volumetric clip-
ping are supported. A typical example of a volumetric description is a 3D
interest function, which is mapped to a selection volume to highlight im-
portant features of a data set. Figure 15.5 shows an example from 3D
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Figure 15.4. Clipping for a CT data set with a complex voxelized selection volume.

(a) (b)

Figure 15.5. Volume clipping for 3D texture–based flow visualization. The left im-
age shows the original volume rendering of the vector field, the right image illus-
trates volume clipping based on velocity magnitude. (Data set courtesy of R. Craw-
fis, Ohio State University.)
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texture–based flow visualization [295]. The data set contains the wind
velocities in a tornado. Figure 15.5 (a) depicts the original volume ren-
dering of the vector field—important internal parts are invisible due to
occlusion. In contrast, Figure 15.5 (b) removes regions with low velocity
magnitude and, thus, reveals the structure of the tornado. In this example,
the selection volume is constructed from the data set by computing velocity
magnitudes, i.e., the selection volume is indirectly defined through Equa-
tion 15.1 by using a comparison with a threshold of velocity magnitude for
the mapping from the original vector field to binary values.

A related advantage is the extensibility of voxelized clipping toward
generic tagged volumes that allow for a space-variant modification of the
visual representation. For example, different transfer functions can be ap-
plied to different regions of a segmented data set, where the tagged informa-
tion controls which transfer function is used [99, 264]. This approach can
be extended to two-level volume rendering, which even permits us to choose
between different volume-rendering techniques according to the tagged in-
formation. For example, maximum intensity projection (MIP) in one region
may be combined with direct volume rendering in other regions [101, 92].

Important disadvantages are a potentially large memory footprint for
the voxelized selection volume and additional texture-access operations to
read the selection volume during volume rendering. A related issue is the
accuracy of the voxelized representation. The typical resolution is much
less than 10243 voxels, i.e., the accuracy after projection onto the image
plane is much less than the typical screen resolution. Finally and most
importantly, dynamic clipping objects need a re-voxelization with a subse-
quent download of the modified selection volume to a texture on the GPU,
which can be very time-consuming.

15.3 Surface-Based Clipping
Surface-based volume clipping uses a boundary representation (BRep) of
the clipping object. The goal is to avoid an explicit voxelization of the BRep
(otherwise, the techniques from the previous section could be immediately
applied). In fact, the visibility of volume elements is directly obtained from
the surface description by an on-the-fly computation. Triangle meshes are
the most prominent example of a BRep in computer graphics. We also
assume a triangle-based BRep for the clipping geometry, but any other
surface representation that can be rasterized on the image plane may be
used as well.

The concept of surface-based volume clipping relies on the depth struc-
ture of the clipping geometry, as illustrated in Figure 15.6. The clipping
process is reduced from a geometric operation in 3D space to a 1D oper-
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object
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Figure 15.6. Depth structure of a clipping object.

ation along a single light ray that originates from the eye point. Due to
the correspondence between light rays and pixels on the image plane, the
clipping operations can be mapped to operations working in image space.
During volume rendering, a fragment program accesses the depth structure
to decide whether the fragment should be rendered or clipped.

Surface-based clipping consists of two essential steps: first, the con-
struction of the depth structure and, second, depth-based clipping during
volume rendering [292, 293]. The depth structure can be represented by a
collection of depth images that hold the depth values for all intersections
between eye rays and the clipping geometry. These depth images can be
stored in image-aligned 2D textures that exhibit a one-to-one correspon-
dence between texels and pixels. A high-resolution format (e.g., 32-bit or,
at least, 16-bit) should be used for a depth texture to guarantee a high-
quality depth representation. Different methods to fill the depth images
are discussed in the remainder of this section. The second step—depth-
oriented volume clipping—requires a comparison with the values in the
depth images and a conditional fragment removal. Unless otherwise noted,
we assume that texture slicing is employed for this step.

15.3.1 Clipping Against a Single Depth Layer

A simple approach uses only standard graphics functionality to model a sin-
gle depth layer, as provided by the fixed-function OpenGL pipeline. Here,
the depth buffer can be used to represent the depth image and the depth
test provides a means for a conditional removal of fragments.

The depth structure is constructed by rendering the clipping geometry
to the depth buffer. For the subsequent volume-rendering step, writing to
the depth buffer is disabled and depth testing is enabled. The depth test
implements the comparison with the depth image when the slices through
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Figure 15.7. Volume and surface rendering with a clipping plane for the exploration
of the spatial relations in a CT head data set. The image was created for sinus
surgery planning. (Image courtesy of D. Apelt, MeVis Bremen, CT data provided by
Prof. Kahn, University of Leipzig.)

the volume data set are drawn. Depending on the logical operator for
the depth test (GREATER or LESS), the volume either in front or behind the
clipping geometry is removed.

The major problem with the depth-buffer method is the restriction to a
single depth image. A related problem is that BReps cannot be completely
supported because a BRrep requires a surface that surrounds the object
completely, i.e., a surface that has at least one front-facing part and one
back-facing part. Advantages of this approach are its simplicity and its
support by virtually any graphics hardware. For some applications, a single
clipping surface might be sufficient, and here the depth buffer approach can
be useful. Another advantage is that some GPUs can accelerate this type
of volume clipping by means of the early z-test as the depth test is the
basis for fragment removal. The early z-test is particularly helpful when a
large portion of the volume is cut away.

A clipping plane is a special case of a single clipping surface. Here, the
depth buffer might be used for clipping. In most applications, however, an
OpenGL clip plane is applied, which avoids the first rendering phase that
would fill the depth buffer. The OpenGL command glClipPlane specifies a
clip plane through a four-component plane equation. Similar to the early
z-test, the clipping-plane approach can lead to a significant acceleration of
volume rendering when a large part of the data set is removed. Figure 15.7



�

�

�

�

�

�

�

�

394 Volume Clipping

zfront zback

convex clipping
object

ray

image
plane

eye

removed removedvisible

Figure 15.8. Illustration of depth-based volume probing for a convex clipping ge-
ometry.

shows an example with an OpenGL clip plane used in a medical application.
This kind of visualization can be employed during sinus surgery planning
and it shows the spatial relations in a CT head data set.

15.3.2 Convex Volume Clipping

The next step toward a support for arbitrary clipping geometries involves
the implementation of a convex clipping object. For a convex geometry,
the number of intersections between an eye ray and the object is not larger
than two. Therefore, the depth structure can be represented by a collection
of two depth images. Figure 15.8 illustrates the scenario for convex volume
clipping.

The two depth images can be stored in two 2D textures with a high-
resolution texture format (typically 16-bit floating-point or 32-bit floating-
point numbers). They are filled by directly writing the depth values into
the respective textures via render-to-texture functionality (e.g., by means
of a frame-buffer object). In the first render pass, front-facing parts of the
clipping object are rendered into the first depth image. The front faces are
selectively drawn by using back-face culling (with glCullFace(GL BACK)).
Similarly, the second render pass uses the back-facing geometry to fill the
second depth image (culling with glCullFace(GL FRONT)). In the third ren-
der pass—the actual volume rendering via texture slicing—a fragment pro-
gram accesses both depth textures and compares the depth of a fragment
with the depth structure. This comparison leads to a conditional fragment
removal when the fragment lies outside the visible region. Listing 15.2
shows a Cg fragment shader for convex volume clipping. In this example,
volume probing is applied, i.e., the volume inside the clipping object re-
mains visible. Volume cutting is easily obtained by negating the distance
variable dist.
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// Texture coords and homogeneous position as input from the

// vertex stage

struct VS OUTPUT {
float3 TexData : TEXCOORD0;

float4 Position : TEXCOORD1;

};

// Actual fragment shader

float4 main(VS OUTPUT IN,

uniform sampler3D SamplerDataVolume,

uniform sampler2D SamplerDepthFront,

uniform sampler2D SamplerDepthBack,

uniform sampler1D SamplerTransferFunction)

: COLOR {
// Accesses scalar value from the data volume

float dataValue = tex3D(SamplerDataVolume, IN.TexData);

// Standard post-interpolative transfer function

float4 classifiedValue = tex1D(SamplerTransferFunction,

dataValue);

// Homogeneous division to compute (x,y) tex coords (in

// image space) and depth value z. A corresponding

// matrix multiplication is used in a vertex program

// to determine the correct IN.Position

float4 position = IN.Position / IN.Position.w;

// Accesses first depth layer from 2D texture

float depthFront = tex2D(SamplerDepthFront,

position.xy);

// Accesses second depth layer from 2D texture

float depthBack = tex2D(SamplerDepthBack, position.xy);

// Z distance to front and back clipping surfaces

float2 dist = float2(position.z - depthFront,

depthBack - position.z);

// Conditional removal of fragment if any of the (two)

// components of distance "dist" is less than zero

clip(dist);

return classifiedValue;

}

Listing 15.2. Cg fragment shader for surface-based volume clipping with a convex
clipping object.
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Variations of this basic clipping method are possible by slightly modi-
fying the way in which the depth structure is represented. One alternative
uses the z-buffer to store one of the depth layers (e.g., for the front-facing
clipping geometry). The other depth layer (e.g., for the back-facing geom-
etry) is still held in a high-resolution 2D texture. Conditional fragment
removal relies on a combination of a fragment program that tests against
the back-facing geometry and the depth test that takes into account the
front-facing geometry. Therefore, this implementation is a mix between
a purely texture-based approach and the depth-buffer method from Sec-
tion 15.3.1. On some GPUs, this hybrid method may exhibit an improved
performance because the early z-test accelerates the test against one of the
depth layers.

Another variation replaces the high-resolution single-channel tex-
ture format by a specialized depth-texture format usually employed in
shadow mapping [301], as provided by the OpenGL texture function-
ality ARB depth texture or SGIX depth texture within the ARB shadow or
SGIX shadow extensions, respectively. Shadow mapping facilitates an imple-
mentation that does not need programmable fragment shaders and floating-
point textures and thus can be useful for older GPUs.

Another alternative utilizes view-frustum clipping and depth shifting to
replace shadow mapping. Once again, the depth values zfront for the front-
facing geometry are rendered into a 2D high-resolution texture. During the
following rendering passes, a fragment program shifts the depth values of
all fragments by −zfront. The depth buffer is cleared and the back faces are
rendered into the depth buffer (with depth shift enabled) to construct the
second depth image. In this way, the depth buffer is set to zback − zfront,
where zback is the unmodified depth of the back face. During the following
pass, slices through the volume data set are rendered, without modifying
the depth buffer, but with depth shift and depth testing being enabled.
Therefore, fragments that are behind the back face of the clipping geometry
are removed by the depth test, whereas fragments that are in front of the
clipping geometry are removed by clipping against the near plane of the
view frustum.

Listing 15.3 shows the Cg fragment program for the final volume-
rendering pass, including the shift of depth values by −zfront. The texture
that holds the depth structure (here texture sampler SamplerDepthFront)
should be a high-resolution texture, e.g., with 32-bit floating-point resolu-
tion. The depth shift approach can also be implemented on older GPUs
that only support a HILO texture format but no floating-point textures
or flexible fragment programs. A corresponding configuration of texture
shaders for NVIDIA GeForce 3 GPUs is described in detail by Weiskopf et
al. [292]. This paper also explains how the depth shift approach for volume
probing can be extended to volume cutting.
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// Texture coords and homogeneous position as input from the

// vertex stage

struct VS OUTPUT {
float3 TexData : TEXCOORD0;

float4 Position : TEXCOORD1;

};

struct PS OUTPUT {
float4 Color : COLOR;

float Depth : DEPTH;

};

// Actual fragment shader

PS OUTPUT main(VS OUTPUT IN,

uniform sampler3D SamplerDataVolume,

uniform sampler2D SamplerDepthFront,

uniform sampler1D SamplerTransferFunction)

{
PS OUTPUT OUT;

// Accesses scalar value from the data volume

float dataValue = tex3D(SamplerDataVolume, IN.TexData);

// Standard post-interpolative transfer function

float4 classifiedValue = tex1D(SamplerTransferFunction,

dataValue);

// Homogeneous division to compute (x,y) tex coords (in

// image space) and depth value z. A corresponding

// matrix multiplication is used in a vertex program

// to determine the correct IN.Position

float4 position = IN.Position / IN.Position.w;

// Accesses front depth layer from 2D texture

float depthFront = tex2D(SamplerDepthFront,

position.xy);

// Shifts current z value by negative "depthFront"

OUT.Depth = position.z - depthFront;

OUT.Color = classifiedValue;

return OUT;

}

Listing 15.3. Cg fragment shader for surface-based volume clipping by means of
depth shift.
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15.3.3 Concave Clipping Geometry

For the general case of a concave clipping object, the depth structure has to
be extended to represent a larger number of depth images that correspond
to a larger number of possible intersections between the clipping geometry
and an eye ray. Concave objects are facilitated by extending convex volume
clipping to multiple render passes. The basic idea is to organize the depth
structure in pairs of neighboring depth images. Each pair represents one
visible segment of the viewing ray—the volume remains visible within the
interval defined by such a pair of depth values. Then, concave volume
clipping is reduced to a collection of convex clipping regions each of which
is handled in a separate rendering pass according to convex clipping.

Let us consider the first stage—the construction of the depth
structure—in more detail. The depth-peeling algorithm [67] can be adopted
to “peel off” the geometry in a depth-layer by depth-layer fashion. Assum-
ing a back-to-front scheme, the first depth image (corresponding to the
most distant part of the clipping object) is extracted by rendering the clip-
ping geometry with the depth test set to GREATER. Subsequent and increas-
ingly closer depth images are extracted by rendering only those objects
that are closer than previously generated depth images. To this end, a
fragment program is used to remove fragments that are located at or be-
hind the depth value of the current depth image. The depth values of the
rendered fragments are stored in a high-resolution texture via render-to-
texture functionality. Each render pass results in one depth image. The
process is continued for the next closer depth layers and stops when no
fragments pass the fragment program any more, i.e., when the foremost
depth image is reached. The occlusion query functionality can be used to
check the number of rendered fragments, in particular, it can be used to
test whether fragments are rendered at all.

The second stage employs multipass rendering of the actual volume. For
each pair of depth images, the respective region of the volume is rendered.
Each depth pair corresponds to local volume probing against two bound-
aries, as discussed previously for convex volume clipping. The complete
volume is reconstructed in a layer-by-layer fashion by processing the depth
structure pair-by-pair with multiple render passes. In the case of volume
cutting, single, unpaired depth images are produced at the front and back
parts of the depth structure. This case can be handled by clipping only
against a single boundary, as discussed in Section 15.3.1.

Although the two stages (construction of the depth layers and volume
rendering) are conceptually separated, they can be intermingled within a
combined rendering algorithm. When depth peeling has constructed one
pair of neighboring depth images, two-layer volume clipping is immedi-
ately applied to construct a partial image for this depth pair. Afterwards,
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subsequent depth image pairs are processed. The advantage of this im-
plementation is that only two depth textures need to be held in GPU
memory—instead of the full depth structure. The only additional memory
requirement is a buffer for intermediate volume-rendering results.

15.3.4 Summary

Surface-based volume clipping employs an image-space method with a one-
to-one mapping between pixels on the image plane and texels in the 2D
depth images. Therefore, this approach is intrinsically view-dependent and
needs a re-generation of the depth structure when the viewpoint is changed.
The alternative method of voxelized selection volumes (Section 15.2), in
contrast, works in object space and thus avoids a continuing construction
of the selection volumes.

A major advantage of surface-based clipping is its per-pixel accurate
clipping that leads to high-quality images. Another advantage is the built-
in support for dynamic clipping objects because the depth structure is re-
built from the clipping geometry for each frame. The main disadvantage is
complex and time-consuming multipass rendering for nonconvex clipping
objects. The rendering costs increase with increasing depth complexity
of the geometry and may lead to an inadequate performance for complex
clipping objects.

15.4 Volume Clipping and Illumination
Volume illumination extends volume rendering by adding lighting terms.
Local illumination is based on gradients of the scalar field and supports
the user in recognizing the spatial structure and orientation of volumetric
features. Chapter 5 discusses local volume illumination in detail. Un-
fortunately, the combination of volume illumination and volume clipping
introduces the additional issue of how illumination should be computed in
the vicinity of the clipping object. Two different, possibly interfering goals
need to be achieved. First, illumination should represent the orientation
of the clipping surface itself. Second, the scalar data volume should affect
the illumination and appearance of the clipping surface (e.g., its color and
transparency).

Figure 15.9 illustrates the effect of different illumination methods. Fig-
ure 15.9 (a) shows illuminated volume rendering, but without specific light-
ing on the clipping surface. The shape of the spherical cutting geometry
is difficult to recognize due to the lack of shading cues. Figure 15.9 (b)
demonstrates how the perception of the clipping object is improved by
including illumination. The remaining parts of this section discuss how
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(a) (b)

Figure 15.9. Combining volume clipping and volume illumination. Surface-based
volume cutting with a spherical clip object is applied to a technical engine data set.
No specific lighting is applied at the cutting surface in (a). (b) reveals lighting on
the cutting surface by combining surface-based and volumetric illumination. For
example, the highlight in the lower left part of the engine appears only in (b).

volume illumination and surface shading can be combined. Starting with a
modified optical model for volume clipping, extended versions of clipping
algorithms with voxelized selection volumes (see Section 15.2) and depth
layers (see Section 15.3) are described.

15.4.1 An Optical Model for Clipping in Illuminated Volumes

The following requirements should be met by a consistent combination
of volume illumination and clipping. First, the clipping surface should
be illuminated in a way that promotes the perception of its shape and
orientation. Second, the optical properties (i.e., the material properties
with respect to lighting) should be consistent between the clipping surface
and the neighboring data volume. Third, the optical model should not
modify volume illumination in parts that are distant from the clipping
surface. Fourth, the results should be conceptually independent of the
sampling rate along viewing rays (e.g., the slice distance), up to a change in
numerical accuracy from approximating the volume-rendering integral with
different sampling distances. These requirements and respective optical
models are discussed in detail by Weiskopf et al. [293].

In a first approach, unmodified clipping techniques from Sections 15.2
and 15.3 are directly applied to the shaded volume. In the parts that
remain visible after clipping, volume lighting is based on the gradient of
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Figure 15.10. Combining volume illumination with surface-based shading on the
boundary of the clipping geometry. (a) shows an infinitesimally thin “skin” around
the clipping object; (b) illustrates the extension of the surrounding layer to finite
thickness.

the data volume and the optical transfer function. To add perceptual shape
cues for the clipping object, the shaded clipping surface is rendered on top
of the data volume. Here, illumination is determined by the normal vectors
of the surface and by the same transfer function that is used for volume
rendering. Figure 15.10 (a) illustrates this approach, which essentially adds
the surface of the clipping object as a “skin” around the data volume.

This method meets the first three requirements. First, the perception of
the orientation and shape of the clipping object is supported by illuminating
the “skin” based on the normal vector on the clipping surface. Second, the
optical material properties for the “skin” and the neighboring data volume
are consistent because the same transfer function is applied. Third, volume
shading is not affected in internal regions of the volume.

Unfortunately, this approach does not meet the fourth requirement.
The volume-rendering integral (see Section 1.3, Equation 1.7),

I(D) = I0 e
−

D�

s0

κ(t) dt

+

D∫
s0

q(s) e
−

D�

s

κ(t) dt
ds , (15.2)

is typically approximated by

I(D) =
n∑

i=0

ci

n∏
j=i+1

Tj , with c0 = I(s0) , (15.3)

according to Equation 1.11.
In a Riemann sum approximation with sampling rate ∆x (i.e., slicing

distance), the transparency of the ith segment is

Ti ≈ e−κ(si)∆x (15.4)
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according to Equation 1.12, and the color contribution for the ith seg-
ment is

ci ≈ q(si)∆x , (15.5)

according to Equation 1.13.
For changing sampling rate, the color source term and the absorption

term have to be adapted. The discretized source term converges to zero
for ∆x → 0: there is no color contribution from an infinitely thin 2D
surface. Similarly, the transparency converges to one for ∆x → 0 unless
κ is infinite. (Zero transparency is a special case of volume rendering
that leads to surface-like regions. This case is correctly handled by both
the “skin” and the following approach.) Therefore, the contribution of
the “skin” vanishes for very high sampling rates. The basic issue is an
inappropriate combination of a continuous volumetric description with an
infinitely thin 2D surface. In the continuous volume-rendering integral from
Equation 15.2, the terms q and κ have no contribution if their support is
of zero length.

This issue is overcome by extending the original approach to a “skin”
that is broadened to finite thickness: the data volume is surrounded by
a thick layer. Illumination is based on the normal vectors of the clipping
surface and the surface orientation influences the illumination of the vol-
ume for some distance—virtually “impregnating” the volume with lighting
information from the clipping surface. Figure 15.10 illustrates the “skin”
approach and the modified “impregnation” approach. The “impregnation”
affects only the part of the volume that is visible after clipping and it does
not change the visibility of voxels.

The optical model for volume rendering is modified by extending the
source term to

q(x, ω) = qemission(x) + w(x)Ssrf(x, ω) + (1− w(x)) Svol(x, ω) , (15.6)

with the weight function w(x) (with values from [0, 1]), the surface-based il-
lumination term Ssrf(x, ω), and the volumetric illumination term Svol(x, ω).
The “impregnation” layer has finite thickness, often even a uniform thick-
ness that is specified by the user. The layer thickness corresponds to the
support of the weight function. The smoothness of the weight function di-
rectly affects the smoothness of the transition between the “impregnation”
layer and the remaining parts of the volume.

The only remaining question is: how is the surface-related illumination
term Ssrf(x, ω) evaluated at locations inside the layer? In particular, what
is the normal vector? A normal vector field is defined inside the layer by
means of parallel vector transport: for a point inside the layer, the closest
point on the clipping surface is determined; the normal vector is computed
at the corresponding surface location and transported to the point within



�

�

�

�

�

�

�

�

15.4 Volume Clipping and Illumination 403

the layer. The optical material properties are based on the data volume
and the transfer function at this point.

The “impregnation” approach meets the fourth requirement by intro-
ducing a finite boundary layer that leads to a finite contribution to the
volume-rendering integral (Equation 15.2). Therefore, the discrete approx-
imation (Equation 15.3) converges to this contribution for increasing sam-
pling rates. The other requirements are met because of identical arguments
as for the “skin” approach.

15.4.2 Volumetric Clipping and Selection Volumes

The “impregnation” approach can be used in combination with voxelized
selection volumes (Section 15.2). The clipping geometry is assumed to
be represented by an isosurface in a signed-distance volume, as described
in Section 15.2.2. Distances are defined by the Euclidean norm in 3D
space. Furthermore, the clipping surface should be non–self-intersecting
and smooth.

With these assumptions, the “impregnation” model can be directly
mapped to a rendering algorithm. The weight function w(x) is expressed
in terms of the distance volume vdistance(x) and another weight function
w̃(d) according to

w(x) = w̃ (vdistance(x)) . (15.7)

The function w̃(d) describes relative weights for surface-based and volume-
based illumination in terms of the scalar distance to the clipping surface.

Surface-oriented illumination relies on the gradients of the distance vol-
ume. The gradient represents the normal vector on the clipping surface
because, in general, the gradient of a scalar field is identical with the cor-
responding isosurface. However, even in a neighborhood of the clipping
surface, the gradient is identical with the normal vector obtained by paral-
lel transport from the isosurface. Figure 15.11 illustrates that, in a signed
distance volume, the gradient represents the direction to or from the clos-

clipping surface

respective gradient

point inside layer

point on isosurface
with respective gradient

Figure 15.11. Gradients in distance field.
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est point on the isosurface. The size of the neighborhood depends on the
curvature of the clipping surface—the valid region typically decreases with
increasing curvature.

The original clipping algorithm for signed distance fields (Section 15.2.2)
and volume slicing needs only minor changes to incorporate illumination.
First, the 3D textures for the data volume and the distance field are ex-
tended to include gradients. Typically, an RGBA texture format is used to
store the scalar value in the alpha channel and the gradients in RGB. Sec-
ond, a fragment program is used to evaluate local illumination for the data
volume and the distance field during actual volume rendering. The optical
properties for both illumination terms are derived from the same trans-
fer function working on the data volume. Third, the fragment program
also computes the weight according to Equation 15.7. The distance d is
accessed from the distance field. The weight function w̃(d) can either be
evaluated by numerical operations (if w̃(d) is simple) or by a dependent
texture look-up in a pre-computed table. Fourth, Equation 15.6 is used
to compute the weighted combination of surface-based and volume-based
illumination. The other elements of the clipping algorithm are not changed
by the “impregnation” approach.

15.4.3 Surface-Based Clipping and Volume Illumination

The extended optical model for volume clipping can also be combined with
surface-based clipping. The main issue is that the 2D depth images that
represent the depth structure of the clipping object do not provide any
information on the distance to the closest point on the clipping surface.
An approximation of the optical clipping model can be used to overcome
this issue. This approximation does not need any distance information.

The problem with the original “skin” approach is that an infinitely thin
layer will have no effect for a high sampling rate. A modified method is used
to avoid this issue: the clipping boundary is not modeled as a thick layer
but as a 2D hypersurface. Surface-based illumination, however, provides
modified contributions to the transparency term

Tsrf = e−κ(ssrf)∆srf

and the color values from the source term

csrf = q(ssrf)∆srf ,

where ssrf describes the location of the clipping surface and ∆srf is the thick-
ness of the original “impregnation” layer. Therefore, the clipping boundary
is treated as a 2D surface geometrically, whereas the contribution to the
rendering integral comes from a thick virtual layer. Standard illumination
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Figure 15.12. Depth-based clipping in an illuminated CT data set.

(a) (b)

Figure 15.13. Clipping in an illuminated orbital data set. (a) is without clipping; (b)
is with depth-based clipping.
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is used inside the volume, with transparency values and source terms that
depend on the slicing distance ∆x. For typical applications, the “impreg-
nation” layer is rather thin and, thus, the errors introduced by the surface-
based approximations can be neglected. Weiskopf et al. [293] discuss in
more detail what types of errors may occur.

The original implementation of surface-based clipping has to be slightly
modified to incorporate illumination. Slice-based volume rendering is ex-
tended to hybrid volume and surface rendering: the volume and the sur-
face parts are interleaved according to the depth structure of the clipping
geometry, and so is the order of surface and volume rendering. The fol-
lowing discussion assumes back-to-front compositing, but the order could
be easily reversed if needed. Surface-based clipping already partitions the
depth structure into pairs of depth layers that enclose a visible part of the
volume. For a convex object, only one pair is sufficient, while a concave
object is represented by several pairs. A single depth pair is rendered in
three passes. First, the back face of the clipping object is rendered. Here,
material properties are obtained from the data volume and the transfer
function; the normal vector is computed from the surface model. For a
concave geometry, it is useful to compute the surface illumination already
during the construction of the depth structure via depth peeling (see Sec-
tion 15.3.3) and to access this information later during clipping. Second,
the illuminated and clipped region of the data volume is rendered. Third,
the front face of the clipping object is drawn. All three rendering steps
are blended to accumulate colors (and opacities if needed). The complete
volume is drawn by successively rendering all pairs of depth layers.

Figures 15.12 and 15.13 demonstrate the consistent combination of clip-
ping and volume shading. Depth-based clipping is applied to a medical CT
(computerized tomography) data set in Figure 15.12. The transfer function
is chosen in a way to achieve opaque material boundaries. The visualization
of an orbital data set in Figure 15.13 reveals both transparent and opaque
structures. Figure 15.13 (a) shows the original data set; Figure 15.13 (b)
demonstrates depth-based clipping.

15.5 Clipping and Pre-Integration
The aforementioned clipping approaches are based on a point-sampling
of the volume integral, typically implemented by texture slicing. In this
case, the visibility computation can be reduced to checking whether a point
on the viewing ray (i.e., a fragment on a slice) is visible. Pre-integrated
volume rendering (see Section 4.5) extends slice-by-slice rendering to slab-
based rendering. Slabs are defined by two neighboring slices and, thus,
have finite thickness.
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slab

sf sb

df dbsf'

L'

L

Figure 15.14. Using slabs instead of slices for pre-integrated volume clipping. The
scalar data values at the entry and the exit points of the slab are sf and sb , respec-
tively. The corresponding values from the signed distance field are df and db . The
thickness of the slab is given by L; L′ is the length of the visible part of the slab.
The blue region remains visible after clipping.

Clipping may affect a slab by intersecting the slab somewhere in be-
tween, as shown in Figure 15.14. Therefore, a simple binary visibility
decision is not adequate, and two modifications have to be included [227]:

• The scalar data values for pre-integration should reflect the values at
the endpoints of the visible part of the slab.

• The length of a ray segment should be adapted to the length of the
clipped slab.

The following discussion assumes that clipping is based on a voxelized se-
lection volume in the form of a signed distance field (see Section 15.2.2).
By shifting the distance values by +0.5, the clipping surface is located at
isovalue 0.5. Let df and db denote the values of the distance volume at the
entry and exit points of the original slab. If both values are either below or
above 0.5, the slab is either completely invisible or visible. In both cases,
the complete slab can be handled through a single binary decision on its
visibility, i.e., as if point-sampling along rays were applied.

An interesting situation occurs when the clipping surface cuts through
the slab. Considering the case df < 0.5 and db > 0.5 (as in Figure 15.14),
only the blue part of the slab is visible. Here, the front scalar data value
sf has to be modified to the data value s′f at entry point into the clipped
region. Pre-integration is now based on a look-up in the pre-integration
table according to the parameters (s′f , sb) instead of (sf , sb). In general,
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the modified scalar value s′f is obtained by

r =
[
[0.5− df ]
db − df

]
, s′f = (1− r)sf + r sb ,

where squared brackets denote clamping to the interval [0, 1]. Similarly,
the scalar value sb is replaced by s′b:

g = 1−
[
[0.5− db]
df − db

]
, s′b = (1− g)sf + r sb .

If both distance values are less than 0.5, the slab is completely invisible
and the scalar values can be neglected.

The second extension concerns a modification of the length L of the
clipped ray segment. The numerical integration of the volume integral
depends on the parameters sf , sb, and L. The volume-rendering integral
(see Equation 15.2, Section 1.3, and Section 4.5) can be used to compute
the contribution of a ray segment:

sL(x) = sb +
x

L
(sf − sb) ,

c(sf , sb, L) =

L∫
0

q(sL(t)) e
−

L�

t

κ(sL(t̃)) dt̃
dt ,

T (sf , sb, L) = e
−

L�

0
κ(sL(t)) dt

,

α = 1− T .

Ideally, a 3D pre-integration table that depends on sf , sb, and L should
be used. However, a modification of the ray segment length can also be
taken into account by the following approximation that leads to a 2D pre-
integration table for varying parameters sf and sb and for a fixed, original
length L. Denoting the visible fraction of the slab by b = L′/L, the trans-
parency T ′ of the clipped ray segment is the pre-integrated transparency
T (associated with the original segment length L) raised to the bth power
because

L′∫
0

κ(sL′(t′)) dt′ = b

L∫
0

κ(sL(t)) dt ,

T ′ = e
−b

L�

0
κ(sL(t)) dt

=

⎛⎝e
−

L�

0
κ(sL(t)) dt

⎞⎠b

= T b .
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A first-order approximation is sufficient if the thickness of the slabs is rea-
sonably small. In addition, the emissive contribution of a clipped segment
can be computed by c′ = bc if self-attenuation is neglected. Section 1.4.3
derives analogous transformations for opacity correction.

The factors for the adjustment of the scalar values, the emission, and
the opacity can be computed on the fly in the fragment program. However,
it is more efficient to pre-compute these factors for all combinations of the
distance values df and db and to store them in a 2D texture. During actual
volume rendering, a dependent texture look-up is performed to obtain the
modified values.

15.6 Clipping and Volume Illustration
An illustration is an image with a communicative intent. According to the
Collins English Dictionary [31], “to illustrate” means to “to explain or dec-
orate (a book, text, etc.).” In the context of volume graphics, illustrative
techniques are designed to convey complex data or structures in an intu-
itive and understandable way. Different kinds of abstraction are employed
to achieve this goal. In general, abstraction is used to emphasize important
elements, to depict these elements in a way that is easy to perceive, and
to reduce visual complexity by deemphasizing or removing unimportant
elements.

From a technical point of view, abstraction can be separated into two
components: first, what should be rendered, and, second, how should it be
rendered? Volume illustrations are typically influenced by artistic drawing
styles, leading to non-photorealistic rendering (NPR) methods. The way
that volume illustrations are drawn is described in detail in Chapter 14.

The first component, however, is directly related to volume clipping and
the contents of this chapter. In fact, clipping is an important approach to
defining selective visibility and can be immediately used for illustrations.
For some applications, illustrative rendering needs to be more flexible than
the clipping methods discussed so far. One extension is to add a view-
dependent description of clipping and visibility, adopting the concept of
view-dependent transparency for surface graphics [48].

Context-preserving volume rendering [19] is an example of an approach
to view-dependent transparency. Regions that receive little volume illumi-
nation, for example contours, are emphasized, i.e., the volume illumination
term is used to modulate opacity. In addition, the distance to the eye
point is taken into account to mimic the properties of a clipping plane.
Furthermore, gradient magnitude of the data volume and the amount of
accumulated opacity (along the viewing ray) affect this transparency model.
The overall effect is that the inner parts of a volume become visible, while
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Figure 15.15. View-dependent transparency in volume illustrations. The left image
demonstrates context-preserving volume rendering. The right image shows an
example of importance-driven volume rendering that allows us to view the inner
parts of the gecko. Left image courtesy of S. Bruckner, S. Grimm, A. Kanitsar, and
M. E. Gröller [19], c© Eurographics Association, 2005. Right image courtesy of I. Viola,
A. Kanitsar, and M. E. Gröller [272], c© 2004 IEEE.

the outer context is still preserved (see Figure 15.15 (left)). An advantage
of context-preserving volume rendering is that it just requires a slightly
extended definition of a transfer function and, thus, can easily be included
in existing volume-rendering software. Context-preserving volume render-
ing is related to silhouette enhancement (see Chapter 14), showing that a
completely clear distinction between NPR styles and models for selective
visibility does not exist.

Importance-driven volume rendering [272, 274] is another example of
view-dependent and selective visibility. It generalizes view-dependent cut-
away illustrations [49] to volumetric data. Similar to a selection volume,
a 3D importance function is applied to assign visibility priorities. The
most important regions are always visible—independently of the viewing
parameters—because the importance values are taken into account along
a viewing ray to control the sparseness of the display: where an object
would occlude more important structures, it is displayed more sparsely
than in areas where no occlusion occurs. Figure 15.15 (right) demonstrates
importance-driven volume rendering. In this example image, inner parts
of the gecko are assigned high importance values. Therefore, these interior
regions are visible, while the outer skin of the gecko is almost transparent
in this part of the image.

Context-preserving volume rendering and importance-driven volume
rendering also use another extension of the original clipping concept. Both
techniques allow for a fuzzy, gradually and smoothly varying visibility
parameter—in contrast with the binary visibility definition for volume clip-
ping. Therefore, more flexibility is provided in modeling the transition from
emphasized regions to unimportant areas.
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Figure 15.16. Volume splitting applied to a CT head data set. Here, splitting is
based on two semantic layers, namely bones and soft tissues. (Image courtesy
of S. Islam, S. Dipankar, D. Silver, and M. Chen, based on their implementation of
volume splitting [112].)

The third major extension, as compared with pure clipping, is the sup-
port for interactive volume sculpting and deformation (see Chapter 13 for
details). Adopting the idea of explosion illustrations, exterior parts of a
volume can be moved to another region to allow the user to view both the
interior area and the shifted parts. Figure 15.12 shows a simple example of
an explosion view. Figure 15.16 illustrates another example of illustrative
rendering by means of volume deformations.

In general, two questions have to be addressed. First, what region is
to be deformed? Second, how is it deformed? Chapter 13 discusses defor-
mation techniques in detail. Specifically for volume illustrations, spatial
transfer functions [25] can be extended to volume splitting. The idea is to
apply a series of transformations to a volumetric object. Transformations
may cover a large class of operations, such as rotation, scaling, deforma-
tion, or changes of color and opacity. Figure 15.16 shows an example of
volume splitting. This image is based on a visualization technique by Islam
et al. [112]. Here, two semantically different regions of the volume, namely
bones and soft tissues, undergo different deformations. Therefore, segmen-
tation often plays an important role in classifying regions for deformations.
It should be noted that the approach by Islam et al. is implemented by CPU
volume rendering and does not allow for real-time rendering at this mo-
ment. Another, related approach uses deformations to browse volumetric
data [183].
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Figure 15.17. Interactive design of volume illustrations in VolumeShop. (Image
courtesy of S. Bruckner and M. E. Gröller [18], c© 2005 IEEE.)

Finally, interactivity is the key element in designing compelling illus-
trations. The aforementioned methods are especially powerful when they
are combined in an interactive system that allows the user to choose from
a variety of rendering styles and deformation parameters. VolumeShop by
Bruckner and Gröller [18] is one example of such an integrated system.
Figure 15.17 shows a snapshot of an example session with VolumeShop.
Typical interactions include the selection of parts of the volume, the mod-
ification of rendering styles, and the specification of annotations. Another,
related illustration approach is based on illustration motifs by Svakhine
et al. [260]. Their system provides a high-level interface that allows the
user to specify the type of illustration and visualization goals. Figure 15.18
shows a snapshot of their implementation. Illustration motifs particularly
target scientific and biomedical visualizations.

Figure 15.18. A volume-illustration system based on illustration motifs. This image
shows a snapshot of the IVIS system by Svakhine et al. [260]. A demo version
of their system can be downloaded from http://ivis.purpl.net. (Image courtesy of
Nikolai A. Svakhine.)
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15.7 Further Reading
Large portions of this chapter are related to the work of Weiskopf et al. [293]
on surface-oriented clipping, clipping via voxelized selection volumes, and
clipping of illuminated volumes. This paper contains technical background
and additional descriptions of implementations on older graphics hardware.
An alternative way of dealing with volume cutting for convex geometries
is presented in another, related paper [292]. Here, details of an imple-
mentation on NVIDIA GeForce 3/4 GPUs are given. The combination of
pre-integration and clipping is discussed by Röttger et al. [227].

The methods for surface-based clipping in this chapter need a texture
representation of the depth structure. On graphics hardware with a fixed-
function pipeline and no support for high-resolution textures, an alternative
technique can be used: Westermann and Ertl [296] apply the stencil test to
determine the visibility of fragments. The geometry of the clipping object
is rendered for each slice to set the stencil buffer at positions that are
inside of the clipping geometry. To this end, a clip plane that is co-planar
with the current slice is used to remove the clipping geometry in front
of the slice. Finally, the slice with the actual data is rendered, with the
stencil test being enabled. This approach provides the same quality as the
surface-based techniques of this chapter but has to re-render the complete
clipping geometry for each volume slice. Therefore, this technique is less
suitable for complex clipping objects. Rezk-Salama et al. [223] describe
how stencil-based clipping can be used for 3D flow visualization.

Medical imaging is an important field of application for volume clip-
ping. The book by Preim and Bartz [216] focuses on medical volume
rendering and contains an in-depth discussion of clipping for medical ap-
plications, including further references. Tiede et al. [264] describe a CPU
ray-casting system to visualize attributed data with high quality. Their
system mainly targets medical visualization. Similarly, the approach by
Pflesser et al. [209] discusses a clipping method for arbitrary cut surfaces
in the context of medical imaging. Konrad-Verse et al. [131] describe meth-
ods for the specification and modification of virtual resections in medical
volume data, employing a deformable cutting plane. Another medical ap-
plication is presented by Hastreiter et al. [99], who use tagged volumes to
apply different transfer functions to different regions of a 3D medical scan.

Seismic 3D data from the oil and gas industry is another prominent field
of application. A major challenge is the size of these data sets, which typ-
ically comprise several gigabytes of data. Therefore, seismic data is often
visualized by using only a few slice planes that can be interactively con-
trolled by the user to explore the whole data set [75]. Volz [276] describes a
method for very large data sets that relies on level-of-detail volumes, data
caches, BSP trees (all processed by the CPU), and a hybrid CPU/GPU
approach for trilinear interpolation on slices.





�

�

�

�

�

�

�

�

16
Segmented Volume Data

AN IMPORTANT GOAL IN VOLUME RENDERING, especially when we are
dealing with medical data, is to be able to visually separate and se-

lectively enable or disable specific objects of interest contained in a single
volumetric data set. As we have seen in Chapter 15, cutaway views and
general volumetric clipping very effectively allow parts of the volume to be
removed during rendering that would otherwise occlude interesting areas.
Rendering segmented volume data can be seen as an extension of volume
clipping with a voxelized selection volume as described in Chapter 15.

Segmentation is the process of identifying or tagging individual voxels as
belonging to one of several objects contained in a volume. Figure 16.1 shows
example images of a medical data set, a CT scan of a human hand, where

Figure 16.1. Segmented CT volume of a human hand with different rendering
modes and transfer functions for different objects. Left: all objects rendered with
shaded DVR (direct volume rendering); the skin partially obscures the bone. Cen-
ter: skin rendered with non-photorealistic contour rendering andMIP compositing,
bones rendered with DVR, vessels with tone shading. Right: skin rendered with MIP,
bones with tone shading, and vessels with shaded isosurfacing; the skin merely
provides context. (Images reprinted from [92], c© 2003 IEEE.)

415
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416 Segmented Volume Data

four objects have been identified via segmentation: the bone structure,
the blood vessels, the skin, and the air surrounding the hand. The first
three objects are rendered using different optical properties, and the voxels
corresponding to air have been disabled entirely, i.e., they are clipped.
Segmentation is a huge topic, and performing the actual segmentation is
beyond the scope of this book. This chapter covers how to use already
existing segmentation information during rendering. An introduction to
the topic of segmentation can be found in other texts, e.g., in the area
of medical visualization [216] or medical imaging [268]. In the context
of rendering, segmentation is a very powerful approach to facilitate the
perception of individual objects, especially when these objects are rendered
with different optical properties such as their own transfer functions. The
set of voxels that belong to a given object of interest is usually represented
in the form of a segmentation mask.

There are two major ways of representing segmentation information in
masks. First, each object can be represented by a single binary segmen-
tation mask, which determines for each voxel whether it belongs to the
given object or not. Second, an object ID volume can specify segmentation
information for all objects in a single volume, where each voxel contains
the ID of the object it belongs to. The second approach is well-suited to
volume rendering on GPUs because it uses only one additional volume,
and object IDs can easily be stored in an 8-bit texture. This object ID
texture can then be used to selectively render only some of the objects
contained in a single data set or render different objects with different ren-
dering modes and transfer functions. Volumes with object ID tags are often
also called tagged volumes [99]. As mentioned above, rendering segmented
volume data is related to volume clipping in many respects. The voxelized
selection volumes described in Chapter 15 could be used directly as binary
object ID or tag volumes or segmentation masks. However, the goal of
rendering segmented data is to display multiple objects at the same time
and still be able to clearly distinguish these objects visually. Of course,
some objects are often disabled during rendering, i.e., clipped away, such
as the air in Figure 16.1.

Other approaches for achieving visual distinction of objects are, for
example, rendering multiple semitransparent isosurfaces or direct volume
rendering with an appropriate transfer function. In the latter approach,
multidimensional transfer functions [123, 128] have proved to be espe-
cially powerful in facilitating the perception of different objects. These
approaches are described in Chapters 4 and 10. However, it is often the
case that a single rendering method or transfer function does not suffice to
distinguish multiple objects of interest according to a user’s specific needs,
especially when spatial information needs to be taken into account.

Non-photorealistic volume rendering and illustrative visualization,
which are described in Chapter 14, have also proved to be very effective
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approaches for achieving better perception of individual objects. An es-
pecially powerful technique is to combine different non-photorealistic and
traditional volume-rendering methods in a single volume rendering. An
example of this is shown in the center image of Figure 16.1. Only the con-
tours of the skin are rendered in order to avoid occluding the bones or the
blood vessels. When segmentation information is available, different ob-
jects can be rendered with individual per-object rendering modes such as
standard direct volume rendering or non-photorealistic contour rendering.
This allows specific modes to be used for structures they are well suited
for, as well as separating focus from context objects. Even further, differ-
ent objects can be rendered with their own individual compositing mode,
combining the contributions of all objects with a single global compositing
mode. This two-level approach to object compositing can further facilitate
object perception and is known as two-level volume rendering [100, 101],
which is described in Section 16.6.

16.1 Overview
Integrating segmentation information and multiple rendering modes with
different sets of parameters into a fast high-quality volume renderer is in
general not a trivial problem. GPUs are much faster if all or most fragments
can be treated identically. Also, for GPU volume rendering, it is crucial
to use only a single object ID volume instead of multiple segmentation
masks in order to use a minimal amount of texture memory. GPUs cannot
easily interpolate between voxels belonging to different objects, however,
and using the object ID volume without filtering gives rise to visual arti-
facts. Thus, one of the major obstacles in such a scenario is filtering object
boundaries in order to attain high quality in conjunction with consistent
fragment assignment and without introducing nonexistent object IDs due
to interpolation.

In this chapter, we show how segmented volumetric data sets can be
rendered efficiently and with high quality on GPUs. The segmentation
information for object distinction can be used at multiple levels of sophis-
tication, and we describe how these different possibilities can be integrated
into a single coherent hardware volume-rendering framework using slicing.
We focus on algorithms that do not require data-dependent branching and
looping in fragment programs. Instead of branching and looping, we are
potentially using multiple rendering passes. When a single fragment pro-
gram includes a variety of different shading models, performance is often
reduced significantly. On current GPUs, this is a common problem even if
all shading instructions that are not needed are skipped using conditional
execution. However, keep in mind that building on the latest fragment
program features simplifies the implementation and allows sophisticated
effects with single-pass rendering, e.g., using ray casting.
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Figure 16.2. Segmented head and neck data set with eight different enabled ob-
jects. Brain: tone shading; skin: contour enhancement with clipping plane; eyes and
spine: shaded DVR; skull, teeth, and vertebrae: unshaded DVR; trachea: MIP. (Image
reprinted from [92], c© 2003 IEEE.)

We illustrate how different objects can be rendered with the same ren-
dering technique (e.g., DVR) but with different transfer functions. Separate
per-object transfer functions can be applied in a single rendering pass even
when object boundaries are filtered during rendering. Different objects
can also be rendered using different fragment programs. This allows easy
integration of methods as diverse as non-photorealistic and direct volume
rendering, for instance. Although each distinct fragment program requires
a separate rendering pass, multiple objects using the same fragment pro-
gram with different rendering parameters can effectively be combined into a
single pass. With certain restrictions it is also possible to evaluate different
shading models with a single equation. An example is the use of lighting
look-up tables [18], which are described in Section 14.2.3. This technique
employs a fragment program with a single shading equation that is param-
eterized by a look-up table. When multiple passes cannot be avoided, the
cost of individual passes can be reduced drastically by executing expensive
fragment programs only for those fragments that are active in a given pass
(Section 16.4.1).
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Finally, different objects can also be rendered with different composit-
ing modes, e.g., alpha blending and maximum intensity projection (MIP),
for their contribution to a given pixel. These per-object compositing modes
are object-local and can be specified independently for each object. The
individual contributions of different objects to a single pixel can be com-
bined via a separate global compositing mode. This two-level approach
to object compositing [100, 101] has proved to be very useful in order to
improve perception of individual objects. Examples are combining non-
photorealistic contour enhancement using MIP (Figure 16.1 (center); Fig-
ure 16.3 (skull)) [38] with tone shading (Figure 16.1 (right)) [57, 83], which
improves depth perception in contrast with standard shading.

To summarize, the major points of this chapter are the following.

• How to minimize both the number of rendering passes and the per-
formance cost of individual passes when rendering segmented volume
data with high quality on GPUs without data-dependent branching

Figure 16.3. Segmented head and neck data set with six different enabled objects.
The skin and teeth are rendered as MIP with different windowing functions, vessels
and eyes are rendered as shaded DVR, the skull uses contour rendering, and the
vertebrae use a gradient magnitude-weighted transfer function with shaded DVR.
A clipping plane has been applied to the skin object. (Image reprinted from [92], c©
2003 IEEE.)
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and looping. Both filtering of object boundaries and the use of dif-
ferent rendering parameters such as transfer functions do not prevent
using a single rendering pass for multiple objects. Even so, each pass
can avoid execution of the corresponding potentially expensive frag-
ment program for irrelevant fragments by exploiting the early z-test.

• How to efficiently map a single object ID volume to and from a do-
main where filtering produces correct results in the fragment program
even when three or more objects are present in the volume.

• How to achieve correct compositing of objects with different per-
object compositing modes and an additional global compositing mode
(i.e., two-level volume rendering). Even when branching in the frag-
ment program should be avoided, this can be done with an efficient
object-order algorithm based on simple depth and stencil buffer op-
erations. The result is conceptually identical to being able to switch
compositing modes for any given group of samples along the ray for
any given pixel.

16.2 Segmented Data Representation
For rendering purposes, we assume that in addition to the usual data such
as a density and an optional gradient volume, an object ID volume is also
available. If segmented objects are represented as separate masks, they
have to be combined into a single volume that contains a single object ID for

Figure 16.4. CT scan of a human hand. When individual objects are using their
own rendering mode and parameters (left column), combining them into a single
volume rendering without losing too much performance is crucial (right).
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each voxel in a pre-process. Object IDs are often enumerated consecutively
starting with one, i.e., individual bits are not assigned to specific objects.
Usually, ID zero is reserved to mean “not assigned to any object.”

The easiest way for a GPU implementation is to store this object ID
volume as a monochrome texture with 8 bits per voxel, e.g., a texture
with internal format GL INTENSITY8. In the case of view-aligned slicing
or ray casting, a single 3D texture can be used, whereas for object-aligned
slicing additional 2D object ID slice textures are required. With respect
to resolution, the object ID volume usually has the same resolution as the
original volume data because segmentation masks commonly also have the
same resolution. However, object ID volumes of differing resolutions can
also be used.

See Figure 16.4 for an example of three segmented objects rendered
with per-object rendering modes and transfer functions.

16.3 Rendering Segmented Data
The most important operation when rendering a segmented data set is to
determine object membership for each rendered fragment, i.e., determining
the object ID of the fragment, which is not necessarily the object ID of a
voxel (due to filtering). Object membership then determines which transfer
function, rendering mode, and compositing mode should be used for any
given fragment.

In the simplest case, object membership can simply be determined from
the object ID texture when nearest-neighbor interpolation is used. How-
ever, similar to volume clipping with nearest-neighbor selection volumes
(Chapter 15), the resulting voxel-resolution artifacts are often clearly visi-
ble. In order to avoid this, object membership has to be determined after
filtering object boundaries, e.g., using trilinear interpolation. As we will
see in Section 16.5, however, linear filtering of object ID textures must be
performed in the fragment program instead of simply using the hardware-
native linear texture filter.

Even when data-dependent branching and looping are not used, the vol-
ume can be rendered in a number of rendering passes that is independent
of the number of contained objects. The number of passes then depends
on the required number of different hardware configurations that cannot
be changed during a single pass, i.e., the fragment program and the com-
positing mode. Objects that share a given configuration can be rendered
in a single pass. This also extends to the application of multiple per-object
transfer functions (Section 16.5.3), and thus the actual number of render-
ing passes is usually much lower than the number of objects or transfer
functions. In general, it depends on several major factors:
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Enabled Objects. If all the objects rendered in a given pass have been
disabled by the user, the entire rendering pass can be skipped. If
only some of the objects are disabled, the number of passes stays
the same, independent of the order of object IDs. Objects can be
disabled by changing a single entry of a 1D look-up texture. Addi-
tionally, per-object clipping planes can be enabled. In this case, all
objects rendered in the same pass usually have to be clipped identi-
cally, however.

Rendering Modes. The rendering mode, implemented as an actual GPU
fragment program, determines what and how volume data is resam-
pled and shaded. Because it cannot be changed during a single ren-
dering pass, another pass must be used if a different fragment program
is required. However, many objects often use the same basic render-
ing mode and thus fragment program, e.g., direct volume rendering
(DVR) and isosurfacing are usually used for a large number of ob-
jects. Moreover, different shading models can sometimes be used with
a single fragment program by using look-up tables such as lighting
transfer functions [18].

Transfer Functions. Much more often than the basic rendering mode, a
change of the transfer function is required. For instance, all objects
rendered with DVR usually have their own individual transfer func-
tions. In order to avoid an excessive number of rendering passes due
to simple transfer-function changes, we describe how to apply multi-
ple transfer functions to different objects in a single rendering pass
while still retaining adequate filtering quality (Section 16.5.3).

Compositing Modes. Although usually considered a part of the render-
ing mode, compositing is a totally separate operation on GPUs (see
Chapter 2). Where the basic rendering mode is determined by the
fragment program, the compositing mode is specified as blend func-
tion and equation in OpenGL, for instance. It determines how al-
ready shaded fragments are combined with pixels stored in the frame
buffer. Changing the compositing mode happens even more infre-
quently than changing the basic rendering mode, e.g., alpha blending
is used in conjunction with both DVR and tone shading.

Different compositing modes per object also imply that the (conceptual)
ray corresponding to a single pixel must be able to combine the contribu-
tion of these different modes (Figure 16.11). Combining compositing modes
is very easy with ray casting. In an object-order approach such as slicing,
however, special care has to be taken. The contributions of individual ob-
jects to a given pixel should not interfere with each other and are combined
with a single global compositing mode (Section 16.6).
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In order to ensure correct compositing when slicing is used, a good
approach is to use two render buffers and track the current compositing
mode for each pixel. Whenever the compositing mode changes for a given
pixel, the already composited part is transferred from the local compositing
buffer into the global compositing buffer. Section 16.6 shows that this can
actually be done very efficiently without explicitly considering individual
pixels. It is possible to achieve the same compositing behavior as a ray-
oriented image-order approach, which is crucial for achieving high quality.

16.4 The Basic Rendering Loop
This section describes the basic procedure for rendering segmented data
using slicing. Listing 16.1 gives a high-level overview.

Although the user is dealing with individual objects, we automatically
collect all objects that can be processed in the same rendering pass into
an object set at the beginning of each frame. For each object set, we gen-
erate an object set membership texture, which is a 1D look-up table that
determines the objects belonging to the set. In order to further distin-
guish different transfer functions in a single object set, we also generate 1D
transfer-function assignment textures. Both of these types of textures are
illustrated in Figure 16.5 and described in Sections 16.4.2 and 16.5.

After this set-up, the entire slice stack is rendered. Each slice must be
rendered for every object set that intersects the slice. When 2D texture–
based slicing is used, this can be determined in a pre-process. In the case

DetermineObjectSets();

CreateObjectSetMembershipTextures();

CreateTFAssignmentTextures();

FOR each slice DO

TransferLocalBufferIntoGlobalBuffer();

ClearTransferredPixelsInLocalBuffer();

RenderObjectIdDepthImageForEarlyZTest();

FOR each object set with an object in slice DO

SetupObjectSetFragmentRejection();

SetupObjectSetTFAssignment();

ActivateObjectSetFragmentProgram();

ActivateObjectSetCompositingMode();

RenderSliceIntoLocalBuffer();

Listing 16.1. The basic rendering loop. Object set membership can change every
time an object’s rendering or compositing mode is changed or an object is enabled
or disabled.
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Figure 16.5. Object set membership textures (left; three 1D intensity textures for
three sets containing three, two, and one object, respectively) contain a binary
membership status for each object in a set that can be used for filtering object IDs
and culling fragments. Transfer-function assignment textures (right; one 1D RGBA

texture for distinction of four transfer functions) are used to filter four object
boundaries simultaneously and determine the corresponding transfer function via
a simple dot product. (Images reprinted from [92], c© 2003 IEEE.)

of 3D volume textures, all slices are always assumed to be intersected by all
objects, because they are allowed to cut through the volume at arbitrary
angles. An exception is when the volume is rendered using bricking, which
is described in Chapter 17. Bricked volumes allow a variety of optimiza-
tions when rendering segmented data. For each brick, the objects that are
actually contained in it can be considered, and using different fragment
programs for rendering different bricks is usually possible. If there is more
than one object set for the current slice, we optionally render all object set
IDs of the slice into the depth buffer before rendering any actual slice data.
This per-slice depth pass is the basis for exploiting the early z-test during
all subsequent passes for each object set intersecting a slice (Section 16.4.1).

Before a slice can be rendered for an object set, the fragment program
and compositing mode corresponding to this set must be activated. Using
the two types of textures mentioned above, the fragment program filters
boundaries, rejects fragments not corresponding to the current pass, and
applies the correct transfer function.

In order to attain two compositing levels, slices are rendered into a local
compositing buffer. Before rendering the current slice, those pixels where
the local compositing mode differs from the previous slice are transferred
from the local into the global buffer using the global compositing mode.
This is done using depth comparisons and the stencil buffer (Section 16.6).
After this transfer, the transferred pixels are cleared in the local buffer to
ensure correct local compositing for subsequent pixels. In the case when
only one compositing mode is used, only a single compositing buffer is used,
and the local to global buffer transfer and clear are not executed.
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Figure 16.6. In order to render the bone structure shown on the left, many voxels
need to be culled. The early z-test allows the evaluation of shading equations to
be avoided for culled voxels. If it is not employed, performance will correspond to
shading all voxels as shown on the right.

16.4.1 Early Fragment Culling

GPUs often avoid execution of a fragment program for fragments where
the depth test fails as long as the fragment program does not modify the
depth value of the fragment and certain other conditions are met. More
details are given in Section 8.6.2. In the context of rendering segmented
data, this early z-test is crucial to improving performance when multiple
rendering passes have to be performed for each slice.

If the current slice’s object set IDs have been written into the depth
buffer before rendering and shading the slice, fragments not belonging to
the current object set can be rejected even before the corresponding frag-
ment program is started. In order to do this, a depth test of GL EQUAL
must be used. The vertex program generates a constant depth value for
each fragment that exactly matches the current object set ID. Figure 16.6
illustrates the performance difference of using the early z-test as opposed
to also shading voxels that will be culled.

Excluding individual fragments from processing by an expensive frag-
ment program via the early z-test is also crucial in the context of GPU-
based ray casting in order to be able to terminate rays individually when
multiple rendering passes have to be used [139].

16.4.2 Fragment Program Operations

Most of the work in GPU volume renderers is done in the fragment program,
i.e., at the granularity of individual fragments and, ultimately, pixels. In
contrast with earlier approaches using look-up tables, e.g., palettized tex-
tures, nowadays most shading operations are performed procedurally in the
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fragment program. In this section, we focus on the operations that are re-
quired specifically for rendering segmented data. The two basic operations
in the fragment program that involve the object ID volume are fragment
rejection and per-fragment application of transfer functions.

Fragment rejection. Fragments corresponding to object IDs that cannot be
rendered in the current rendering pass, e.g., because they need a different
fragment program or compositing mode, have to be rejected. They, in turn,
will be rendered in another pass, which uses an appropriately adjusted
rejection comparison. Of course, if the corresponding object is disabled
(clipped), they will not be rendered at all.

For fragment rejection, we do not compare object IDs individually but
use 1D look-up textures that contain a binary membership status for each
object (Figure 16.5 (left)). Enabled objects that can be rendered in the
same pass belong to the same object set, and the corresponding object
set membership texture contains ones at exactly those texture coordinates
corresponding to the IDs of these objects, and zeros everywhere else. The
regeneration of these textures at the beginning of each frame, which is

float4 main (float3 vol coord: TEXCOORD0,

uniform sampler3D volume texture,

uniform sampler3D objectID texture,

uniform sampler2D transfer functions,

uniform sampler1D membership texture) : COLOR

{
// fetch object ID from texture

float objectID = tex3D(objectID texture, vol coord);

// determine whether fragment must be discarded in this pass

float membership = tex1D(membership texture, objectID);

if ( membership < 1.0 )

discard;

// compute coordinates for transfer function lookup

float2 tfcoords;

tfcoords.x = tex3D(volume texture, vol coord);

tfcoords.y = objectID;

// return color and opacity from transfer function

float4 result = tex2D(transfer functions, tfcoords);

return result;

}

Listing 16.2. Cg function implementing fragment rejection with an object mem-
bership texture. The object ID volume uses nearest-neighbor interpolation. The
transfer function is applied using both the volume density and the object ID.
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negligible in terms of performance, also makes turning individual objects
on and off trivial. Exactly one object set membership texture is active for
a given rendering pass and makes the task of fragment rejection very easy
if the object ID volume uses nearest-neighbor interpolation. Listing 16.2
shows an example fragment program that discards fragments using a 1D
object set membership texture.

Handling object ID filtering. When object IDs are filtered, it is crucial to
map individual IDs to zero or one in a defined way before actually filtering
them. Details are given in Section 16.5, but basically object set membership
textures can be used to do a binary classification of input IDs to the filter,
and interpolate after this mapping. The result can then be mapped back
to zero or one for fragment rejection.

Per-fragment transfer-function application. Because we want to apply dif-
ferent transfer functions to multiple objects in a single rendering pass, the
transfer function must be applied to individual fragments based on both
their density value and the object ID of the fragment. Instead of using
multiple transfer-function textures, all transfer functions are stored in a
single texture of one dimension higher. That is, if the transfer functions
are 1D, they are stored in a single 2D texture, which is illustrated in Fig-
ure 16.7. (If they are 2D, they are stored in a 3D texture with just a few
layers in depth and everything else is analogous.) In the fragment pro-
gram, this single global 2D transfer-function texture is then sampled using
(density, objectID) as 2D texture coordinates instead of only density as
a 1D coordinate. Listing 16.2 illustrates this for the simplest case when
the object ID texture uses nearest-neighbor interpolation.

Sampling the combined transfer-function texture. When this combined
transfer-function texture is sampled, care must be taken that the transfer
functions of different objects are not mixed due to linear texture filter-
ing. It is usually desired that the transfer function itself is filtered using

Figure 16.7. Instead of multiple 1D transfer functions for different objects, a single
global 2D transfer-function texture is used. After determining the object ID for
the current fragment via filtering, the fragment program appropriately samples
this texture with 2D texture coordinates (density, objectID). (Image reprinted
from [92], c© 2003 IEEE.)
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linear interpolation. However, along the object ID axis, nearest-neighbor
interpolation would be ideal in order to avoid erroneous interpolation be-
tween two different transfer functions. Quite understandably, it is not
possible on GPUs to use different filtering modes for individual axes of a
texture. There are two easy solutions to this problem. The first is to leave
the fragment program unchanged and simply store each transfer function
twice, in adjacent locations. (This is assumed in Listing 16.2.) Because
linear interpolation between the same values results in the same value, this
naturally solves the problem. Note that object IDs must then either be
adapted in the fragment program or assigned accordingly right from the
start, e.g., using objectID ∈ {1, 3, 5, ...} instead of objectID ∈ {1, 2, 3, ...}.
The transfer function for objectID = i would then be stored at locations
i− 1 and i, with i ∈ {1, 3, 5, ...}. The second method is to make sure that
along the object ID axis each sample is taken at the exact center of a texel.
In both OpenGL and Direct3D, the center of a texel is at coordinate 0.5,
given that a single texel is in [0, 1]. In order to achieve the desired filtering
behavior, the fragment program can simply add this offset to the second
texture coordinate (tfcoords.y in Listing 16.2). Note that texture coor-
dinates are usually given in [0, 1] for the entire texture and thus the actual
offset would be 0.5/ texture size. Therefore, this requires an additional
uniform fragment program parameter texture size.

Handling object ID filtering. An extended version of the pixel-resolution
filter that is employed for fragment rejection can be used in order to de-
termine which of multiple transfer functions in the same rendering pass a
fragment should actually use. Basically, the fragment program uses multi-
ple RGBA transfer-function assignment textures (Figure 16.5, right) for both
determining the transfer function and rejecting fragments, instead of a sin-
gle object set membership texture with only a single color channel. Each
one of these textures allows filtering the object ID volume with respect to
four object boundaries simultaneously. If there are more objects in a single
rendering pass, more transfer-function assignment textures can easily be
used. A single look-up yields binary membership classification of a frag-
ment with respect to four objects. The resulting RGBA membership vectors
can then be interpolated directly. The main operation for mapping back
the result to an object ID is a simple dot product with a constant vector of
object IDs. If the result is the nonexistent object ID of zero, the fragment
needs to be rejected. The details are described in Section 16.5.3.

16.5 Boundary Filtering
An important part of rendering segmented volumes with high quality is
that the object boundaries must be determined during rendering at the
pixel resolution of the output image instead of the voxel resolution of the
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Figure 16.8. Object boundaries with voxel resolution (left) versus object bound-
aries determined per-fragment with linear filtering (right). (Images reprinted
from [92], c© 2003 IEEE.)

object ID volume. In order to do this, object IDs must be filtered instead
of using them with nearest-neighbor interpolation. Simply retrieving the
object ID for a given fragment from the segmentation volume is trivial,
but causes artifacts. Figure 16.8 (left) shows that using nearest-neighbor
interpolation for the object ID texture leads to object boundaries that
are easily discernible as individual voxels. Instead, the object ID can be
determined via filtering for each fragment individually, thus achieving pixel-
resolution boundaries.

Unfortunately, filtering of object boundaries cannot be done directly
using the hardware-native linear interpolation, because direct interpola-
tion of numerical object IDs leads to incorrectly interpolated intermediate
values when more than two different objects are present. When filtering
object IDs, a threshold value st (see Figure 16.9) must be chosen that de-
termines which object a given fragment belongs to, which is essentially an
isosurfacing problem.

However, this cannot be done if three or more objects are contained in
the volume, which is illustrated in the top row of Figure 16.9. In that case,
it is not possible to choose a single st for the entire volume. The crucial
observation to make in order to solve this problem is that the segmentation
volume must be filtered as a successive series of binary volumes in order
to achieve proper filtering [264], which is shown in the second row of Fig-
ure 16.9. Mapping all object IDs of the current object set to 1.0 and all
other IDs to 0.0 allows use of a global threshold value st of 0.5. Of course,
we do not want to store these binary volumes explicitly but to perform
this mapping on-the-fly in the fragment program by indexing the object set
membership texture that is active in the current rendering pass. Filtering
in the other passes simply uses an alternate binary mapping, i.e., other
object set membership textures.

One problem with respect to a hardware implementation of this ap-
proach is that texture filtering happens before the sampled values can be
altered in the fragment program. Therefore, filtering of object IDs is per-
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Figure 16.9. Each fragment must be assigned an exactly defined object ID after
filtering. Here, IDs 3, 4, and 5 are interpolated, yielding the values shown in blue. Top
row: choosing a single threshold value st that works everywhere is not possible for
three or more objects. Second row: object IDs must be converted to 0.0 or 1.0 in
the fragment program before interpolation, which allows use of a global st of 0.5.
After thresholding, fragments can be culled accordingly (third row) or mapped back
to an object ID in order to apply the corresponding transfer function (fourth row).
(Image reprinted from [92], c© 2003 IEEE.)

formed directly in the fragment program. Note that this approach could
in part also be implemented using texture palettes and hardware-native
linear interpolation, with the restriction that not more than four transfer
functions can be applied in a single rendering pass. However, performing
all filtering in the fragment program ensures a coherent framework with
a potentially unlimited number of transfer functions in a single rendering
pass. Furthermore, paletted textures are not supported anymore on most
current GPU architectures.

After filtering yields values in the range [0.0, 1.0], we once again come
to a binary decision whether a given fragment belongs to the current ob-
ject set by comparing with a threshold value of 0.5 and rejecting fragments
with an interpolated value below this threshold (Figure 16.9 (third row)).
Actual rejection of fragments can be done using Cg’s discard instruction
(Listings 16.3 and 16.5). It can also be done by mapping the fragment
to RGBA values constituting the identity with respect to the current com-
positing mode (e.g., an alpha of zero for alpha blending), in order to not
alter the frame buffer pixel corresponding to this fragment. Note that, on
NVIDIA architectures, the discard instruction usually disables the early
z-test and thus needs to be avoided.

16.5.1 Linear Boundary Filtering

For object-aligned volume slices, bilinear interpolation is done by setting
the hardware filtering mode for the object ID texture to nearest-neighbor
and sampling it four times with offsets of whole texel increments in order
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float4 main (float2 vol coord: TEXCOORD0,

uniform float transfer function ID,

uniform float4 filter offset,

uniform float2 vol size,

uniform sampler2D volume texture,

uniform sampler2D objectID texture,

uniform sampler2D transfer functions,

uniform sampler1D membership texture) : COLOR

{
// determine coordinates of four nearest neighbors

float2 vol coord00 = vol coord - filter offset.xy;

float2 vol coord01 = vol coord - filter offset.zw;

float2 vol coord10 = vol coord + filter offset.zw;

float2 vol coord11 = vol coord + filter offset.xy;

// fetch object IDs of the four nearest neighbors

float4 objectIDs;

objectIDs.x = tex2D(objectID texture, vol coord00);

objectIDs.y = tex2D(objectID texture, vol coord01);

objectIDs.z = tex2D(objectID texture, vol coord10);

objectIDs.w = tex2D(objectID texture, vol coord11);

// map all object IDs to binary IDs {0,1}
float4 binIDs;

binIDs.x = tex1D(membership texture, objectIDs.x);

binIDs.y = tex1D(membership texture, objectIDs.y);

binIDs.z = tex1D(membership texture, objectIDs.z);

binIDs.w = tex1D(membership texture, objectIDs.w);

// perform bilinear interpolation on binary IDs

float4 weights = GetBilinearWeights(vol coord, vol size);

float binID = dot(binIDs, weights);

if ( binID < 0.5 )

discard;

// compute coordinates for transfer function lookup

float2 tfcoords;

tfcoords.x = tex2D(volume texture, vol coord);

tfcoords.y = transfer function ID;

// return color and opacity from transfer function

float4 result = tex2D(transfer functions, tfcoords);

return result;

}

Listing 16.3. Cg function implementing bilinear filtering of segmented object
boundaries using an object set membership texture. Boundary filtering is used
to reject the current fragment if it is outside the current boundary. Only one
transfer function is applied, which is specified via the uniform program parame-
ter transfer function ID.
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float4 GetBilinearWeights(float2 vol coord, float2 vol size) {
float4 weights;

// compute fractional weights for s and t axes

weights.y = frac(vol coord.x * vol size.x - 0.5);

weights.w = frac(vol coord.y * vol size.y - 0.5);

// compute complementary weights

weights.xz = float2(1.0, 1.0) - weights.yw;

// return all four weights in one vector

return ( weights.xyxy * weights.zzww );

}

Listing 16.4. Cg function that returns four weights for bilinear interpolation. The
offset of −0.5 is needed in order to adjust for the texel center at (0.5, 0.5).

to get access to the four ID values needed for interpolation. Before actual
interpolation takes place, the four object IDs are individually mapped to
0.0 or 1.0, respectively, using the current object set membership texture.

Listing 16.3 shows a fragment program for bilinear filtering of an ob-
ject ID volume stored in 2D texture slices. First, the coordinates of all
four neighbors that are needed for interpolation must be computed. Note
that this can be performed in a vertex program instead, but for simplic-
ity we have included it in the fragment program. Next, the object IDs
at these coordinates must be fetched. Then, the IDs must be mapped
to a binary {0, 1} domain using the object set membership texture of the
current rendering pass (membership texture). Interpolation is then per-
formed in this binary domain. The resulting fractional value in [0, 1] is
conceptually mapped back again to 0.0 or 1.0 by thresholding with 0.5.
However, because we use this classification only for discarding or not dis-
carding the fragment, we can combine thresholding with this decision with-
out doing the actual mapping. Because this fragment program supports
only a single transfer function, its ID is supplied as a uniform program
parameter transfer function ID. Note, however, that supporting more
transfer functions requires only minimal changes, which can be seen in
Listing 16.5 (see Section 16.5.3). When intermediate slices are interpo-
lated on-the-fly [224], or view-aligned slices are used, eight instead of four
input IDs have to be used in order to perform trilinear interpolation.

16.5.2 Combination with Pre-Integration

The combination of pre-integration [64] and clipping is described in Sec-
tion 15.5. Because filtering of object IDs effectively reduces the problem
to a binary clipping problem on-the-fly, the same approach as for clipping
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can be used when rendering segmented data after object IDs have been
mapped to 0.0 or 1.0, respectively. In this case, the interpolated binary
values must be used for adjusting the pre-integration look-up.

16.5.3 Multiple Per-Object Transfer Functions in a Single
Rendering Pass

In addition to simply determining whether a given fragment belongs to
a currently active object (object set) or not, which has been described
in Section 16.5.1 above, this filtering approach can be extended to the
application of multiple transfer functions in a single rendering pass without
sacrificing filtering quality. Figure 16.10 shows the difference in quality for
two objects with different transfer functions (one entirely red, the other
entirely yellow for illustration purposes).

The easiest way to apply multiple transfer functions in a single rendering
pass is to use the original volume texture with linear interpolation and an
additional separate object ID texture with nearest-neighbor interpolation.
However, it is also possible to apply linear interpolation to the object ID
volume in a fragment program in almost the same way as it has been
described for just a single transfer function in Section 16.5.1. Although
actual volume and ID textures could be combined into a single texture, the
use of a separate texture to store the IDs is mandatory in order to prevent
filtering of the actual volume data to also revert back to nearest-neighbor
interpolation. A single texture cannot use different filtering modes for
different channels, and nearest-neighbor interpolation is mandatory for the
ID texture. The hardware-native linear interpolation cannot be turned on

Figure 16.10. Selecting the transfer function on a per-fragment basis. In the left
image, point-sampling of the object ID volume has been used, whereas in the right
image procedural linear interpolation in the fragment program achieves results of
much better quality. (Images reprinted from [92], c© 2003 IEEE.)
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in order to filter object IDs, and thus the resolution of the ID volume is
easily discernible if the transfer functions are sufficiently different.

In order to avoid the artifacts related to nearest-neighbor interpola-
tion of the ID texture, we perform several almost identical filtering steps
in the fragment program, where each of these steps simultaneously filters
the object boundaries of four different objects. After the fragment’s ob-
ject ID has been determined via filtering, it can be used to access the
global transfer-function table as described in Section 16.4.2 and illustrated
in Figure 16.7. For multiple simultaneous transfer functions, we do not
use object set membership textures but the similar extended concept of
transfer-function assignment textures, which is illustrated in the right im-
age of Figure 16.5.

Each of these textures can be used for filtering the object ID volume
with respect to four different object IDs at the same time by using the four
channels of an RGBA texture in order to perform four simultaneous binary
classification operations. In order to create these textures, each object
set membership texture is converted into

⌈
#objects/4

⌉
transfer-function

assignment textures, where #objects denotes the number of objects with
different transfer functions in a given object set. All values of 1.0 corre-
sponding to the first transfer function are stored into the red channel of
this texture, those corresponding to the second transfer function into the
green channel, and so on (see Figure 16.5 (right)).

The filtering algorithm is illustrated in the fragment program in List-
ing 16.5. Similar to Listing 16.3, we must index the transfer-function as-
signment texture at four different locations that are determined by the
object IDs of the four input values to interpolate. This classifies the four
input object IDs with respect to four objects with just four 1D texture
sampling operations. A single linear interpolation step yields the linear
interpolation of these four object classifications, which can then be com-
pared against a threshold of (0.5, 0.5, 0.5, 0.5), also requiring only a single
operation for four objects. Interpolation and thresholding yields a vector
with at most one component of 1.0, the other components set to 0.0. In
order for this to be true, it is mandatory that interpolated and thresholded
repeated binary classifications never overlap, which is not guaranteed for
all types of filter kernels. In the case of bilinear or trilinear interpolation,
however, overlaps can never occur [264].

The final step that has to be performed is mapping the binary
classification to the desired object ID. This is done with a single dot
product with a vector that contains the four object IDs correspond-
ing to the four channels of the transfer-function assignment texture
(transfer function ID vector). See Figure 16.5 (right). By calculat-
ing this dot product, we multiply exactly the object ID that should be
assigned to the final fragment by 1.0. The other object IDs are multiplied
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float4 main (float2 vol coord: TEXCOORD0,

uniform float4 transfer function ID vector,

uniform float4 filter offset,

uniform float2 vol size,

uniform sampler2D volume texture,

uniform sampler2D objectID texture,

uniform sampler2D transfer functions,

uniform sampler1D tf assignment texture) : COLOR

{
// determine coordinates of four nearest neighbors

float2 vol coord00 = vol coord - filter offset.xy;

float2 vol coord01 = vol coord - filter offset.zw;

float2 vol coord10 = vol coord + filter offset.zw;

float2 vol coord11 = vol coord + filter offset.xy;

// fetch object IDs of the four nearest neighbors

float4 objectIDs;

objectIDs.x = tex2D(objectID texture, vol coord00);

objectIDs.y = tex2D(objectID texture, vol coord01);

objectIDs.z = tex2D(objectID texture, vol coord10);

objectIDs.w = tex2D(objectID texture, vol coord11);

// map all object IDs to binary ID vectors {0,1}^4
float4 tfa00 = tex1D(tf assignment texture, objectIDs.x);

float4 tfa01 = tex1D(tf assignment texture, objectIDs.y);

float4 tfa10 = tex1D(tf assignment texture, objectIDs.z);

float4 tfa11 = tex1D(tf assignment texture, objectIDs.w);

// perform bilinear interpolation on mapped vectors

float4 weights = GetBilinearWeights(vol coord, vol size);

float4 tfavec = weights.x * tfa00 + weights.y * tfa01;

tfavec += weights.z * tfa10 + weights.w * tfa11;

// map back to binary domain via thresholding

tfavec = ( tfavec > 0.5 ) ? float4(1.0) : float4(0.0);

// determine post-filtering transfer function ID

float tfID = dot(tfavec, transfer function ID vector);

if ( tfID == 0.0 )

discard;

// compute coordinates for transfer function lookup

float2 tfcoords;

tfcoords.x = tex2D(volume texture, vol coord);

tfcoords.y = tfID;

// return color and opacity from transfer function

float4 result = tex2D(transfer functions, tfcoords);

return result;

}

Listing 16.5. Cg function implementing bilinearly filtered application of four trans-
fer functions in a single rendering pass using a transfer-function assignment tex-
ture. Note that this is very similar to Listing 16.3.
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by 0.0 and thus do not change the result. If the result of the dot product is
0.0, the fragment does not belong to any of the objects under consideration
and can be culled. Note that this is a major reason why object ID zero is
reserved and not assigned to any object.

For the application of more than four transfer functions in a single
rendering pass, the steps outlined above can be executed multiple times
in the fragment program. The results of the individual dot products are
simply summed up, once again yielding the ID of the object that the current
fragment belongs to or zero if it needs to be culled.

16.6 Two-Level Volume Rendering
The final possibility presented in this chapter with respect to the visual sep-
aration of different objects is the use of individual object-local compositing
modes, as well as a single global compositing mode, i.e., two-level volume
rendering [100, 101, 92]. The most common local compositing modes are
alpha blending (e.g., for standard direct volume rendering, or semitranspar-
ent tone shading), maximum intensity projection (e.g., for MIP or contour
rendering), and alpha testing for isosurface rendering. Global compositing
can, for example, be done with alpha blending, MIP, or a simple summation
of all contributions.

Although the basic concept of two-level volume rendering is best ex-
plained using an image-order approach, i.e., individual rays (Figure 16.11),

Figure 16.11. A single ray corresponding to a given image pixel is allowed to pierce
objects that use their own object-local compositing mode. The contributions of
different objects along a ray are combined with a single global compositing mode.
Rendering a segmented data set with these two conceptual levels of composit-
ing (local and global) is known as two-level volume rendering [100, 101, 92]. (Image
reprinted from [92], c© 2003 IEEE.)
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in the context of texture-based volume rendering with slicing it has to be
implemented with an object-order approach. As described in Section 16.3,
there are two separate rendering buffers, a local and a global compositing
buffer, respectively. Actual volume slices are only rendered into the local
buffer, using the appropriate local compositing mode. When a new frag-
ment has a different local compositing mode than the pixel that is currently
stored in the local buffer, that pixel has to be transferred into the global
buffer using the global compositing mode. Afterward, these transferred
pixels have to be cleared in the local buffer before the corresponding new
fragment is rendered. Naturally, it is important that both the detection of
a change in compositing mode and the transfer and clear of pixels is done
for all pixels simultaneously.

In order to do this, we use the depth buffer to track the current local
compositing mode of each pixel and the stencil buffer to selectively enable
pixels where the mode changes from one slice to the next. The depth buffer
is shared between the local and global compositing buffer, either by using
OpenGL frame-buffer objects (Section 2.4.2), or using auxiliary buffers of a
single OpenGL context. Before actually rendering a slice (see Listing 16.1),
IDs that correspond to the local compositing mode are rendered into the
depth buffer. During these passes, the stencil buffer is set to one where the
ID already stored in the depth buffer (from previous passes) differs from
the ID that is currently being rendered. This creates both an updated ID
image in the depth buffer and a stencil buffer that identifies exactly those
pixels where a change in compositing mode has been detected.

We then render the image of the local buffer into the global buffer. Due
to the stencil test, pixels will only be rendered where the compositing mode
has actually changed. Listing 16.6 gives pseudocode for what is happening
in the global buffer. Clearing the pixels in the local buffer that have just

void TransferLocalBufferIntoGlobalBuffer() {
ActivateGlobalBuffer();

DepthTest( NOT EQUAL );

StencilTest( RENDER ALWAYS, SET ONE );

RenderSliceCompositingIds( DEPTH BUFFER );

DepthTest( DISABLE );

StencilTest( RENDER WHERE ONE, SET ZERO );

RenderLocalBufferImage( COLOR BUFFER );

}

Listing 16.6. Detecting for all pixels simultaneously where the compositing mode
changes from one slice to the next and transferring those pixels from the local into
the global compositing buffer.
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Figure 16.12. Detecting changes in compositing mode for each individual sample
along a ray can be done exactly using two rendering buffers (left) or approximately
using only a single buffer (right).

been transferred to the global buffer works almost identically. The only
difference is that in this case we do not render the image of another buffer
but simply a quad with all pixels set to zero. Due to the stencil test, pixels
will only be cleared where the compositing mode has actually changed.

Note that all these additional rendering passes are much faster than the
passes actually rendering and shading volume slices. They are independent
of the number of objects and use extremely simple fragment programs. Fig-
ure 16.12 shows a comparison between a correct separation of compositing
modes along all rays with two compositing buffers and the stencil buffer
algorithm just described (left image), and simply compositing with a single
buffer (right image). When only a single buffer is used, the compositing
mode is simply switched according to each new fragment without avoiding
interference with the previous contents of the frame buffer.

The visual difference depends highly on the combination of compositing
modes and spatial locations of objects. The example in Figure 16.12 uses
MIP and DVR compositing in order to highlight the potential differences.
It illustrates a major advantage of two-level volume rendering, which is that
it makes it very easy to highlight specific objects by simply using different
compositing modes without tedious transfer-function tweaking. Where the
vessels are clearly visible in the left image in Figure 16.12, they are only
clearly discernible in the right image where they overlap the bones behind
them.

16.7 Further Reading
Tiede et al. [264] emphasize the importance of determining the boundaries
of segmented objects with subvoxel precision. They employ software ray
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casting and determine the object membership of a sample by classifying
the grid points in its neighborhood. Combining this approach with inter-
polation of surface intersection and attributes yields results of very high
quality. Naturally, when object boundaries are filtered from binary masks,
the quality of the filter that is used is important. Kadosh et al. [117] employ
a tricubic filter in order to obtain smooth surfaces from binary volumes.

Although most early approaches have focused on software rendering,
tagged volumes have been a topic for texture-based volume renderers for
a long time [99]. A recent paper by Vega-Higuera et al. [271] shows that
segmented data can also be rendered efficiently and with high quality using
splatting and 2D transfer functions. Their system is optimized for rendering
neurovascular structures.





�

�

�

�

�

�

�

�

17
Large Volume Data

BECAUSE IMPROVED DATA-ACQUISITION METHODS and more accurate
simulations have continued to produce ever more detailed results,

the size of volumetric data generated in many application areas has risen
tremendously in recent years. This trend is likely to continue in the fore-
seeable future.

In medical visualization long-leg studies with approximately 2000 slices
are now routinely acquired for leg artery bypass surgeries (see Figure 17.1).
At a resolution of 512× 512 pixels for each slice and with 12-bit precision for

Figure 17.1. Long-leg study of a bypass operation (512 × 512 × 1747 @ 12-bit).
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Figure 17.2. Single frame from a 4D sequence of a beating heart (512 × 512 × 240
@ 12-bit, 20 time steps).

each voxel, such CT (computerized tomography) studies result in roughly a
gigabyte of data. Four-dimensional sequences from cardiology, which allow
visualization of a beating heart (see Figure 17.2), quickly approach or even
surpass the virtual address limit of current 32-bit PC computers. Full-body
scans provide even larger data sets, but due to the high radiation dose and
the resulting radiation risks, such data sets are currently not acquired in
the clinical routine. Nevertheless, with the constantly reduced radiation
dose of newer scanner technology, the resolution and quality of CT scans
will further increase in the future.

In contrast with medical imaging, the radiation dose is not an obstacle
in archaeology. As part of a project being conducted by Egypt’s Supreme
Council of Antiquities, 1700 slices reconstructed by a portable Siemens So-
matom Emotion 6 CT system revealed that Pharaoh Tutankhamen died
from an infected leg wound some 3,000 years ago. Before, a bone splinter
embedded in the pharaoh’s skull in combination with the hasty mummi-
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Figure 17.3. Single frame from a 4D simulation of convection flow in Earth’s mantle.
(Image from [63], c© Eurographics Association 2002.)

fication and burial had led to speculations that the pharaoh had been
murdered. Just recently, researchers from the Rosicrucian Museum and
Stanford University created a 3D model of a child mummy consisting of
60,000 slices. A Siemens Axiom scanner produced 2D slices as thin as 200
microns, resulting in a 92-gigabyte database of image data.

With voxel sizes of a few micro- or a few hundred nanometers, micro
CT and nanotomography scans from material sciences, biology, or molec-
ular imaging can also deliver several gigabytes of data. In cryoelectron
microscopy, even image data of structures as small as a molecule or a cell
can be visualized. To protect the structure being scanned from the effects
of electron beams, it is frozen to liquid-nitrogen temperatures during the
scan. The image data resulting from such scans has a voxel resolution of
just a few ångstroms (1 Å = 10−1 nm = 10−4 µm = 10−7 mm = 10−10 m).

On the other side of the scale, application areas like geosciences produce
data sets exceeding a terabyte of data. Here, a single voxel can have a size
of several hundred meters or a few kilometers, however covering a large
area such as a continent or the entire earth crust. Geophysical phenomena,
such as 3D mantle convection (see Figure 17.3), are typically computed on
grids with a resolution of 10243 voxels with several output variables and
1000 time steps.
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Considering the limited amount of GPU memory, rendering large data
sets at interactive rates on a single GPU is a challenging task. Therefore,
either more efficient compressed or packed representations of the data are
required or memory other than the on-board GPU memory has to be uti-
lized. In either case, the rate in which data can be provided to the render-
ing engine plays a key role in volumetric rendering. Indirect and nonlinear
memory access as well as on-the-fly decoding of data further reduce the
theoretical bandwidth of available memory systems.

17.1 Memory Performance Considerations
On standard PCs, the following types of memory are involved in the process
of volume rendering (see Figure 17.4). Volume data is first loaded into main
memory from a storage device such as a hard disk. Theoretically, current

up to 35 GB/s

Level 1 cache:

Texture cache

Level 2 cache:

GPU memory

RAM

Level 3 cache:

AGP/PCIe
memory

up to 6.4 GB/s

up to 8 GB/s

CPU

Main Memory

GPU

Registers

Level 1 cache

Level 2 cache

6.4 GB/s or more

Registers

Graphics Card

Main Memory

RAM

Figure 17.4. Similar to cache hierarchies in modern CPUs (left), we can interpret the
different types of memory involved in GPU-based rendering as a cache hierarchy
(right). The memory bandwidth increases the closer the memory is to the CPU/GPU
while latency decreases at the same time. c© 2005 IEEE.
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32-bit CPUs address up to 4 gigabytes of memory, while 64-bit CPUs have
the ability to address a much larger amount of memory. However, usually
the maximum size of memory available on 64-bit systems is still limited
due to the limitations of current memory modules. A segment of system
memory is reserved for the graphics controller, the so-called AGP/PCIe1

memory or nonlocal video memory. Before texture data is transferred to
the local video memory of the GPU, the data has to be copied to AGP
memory.

17.1.1 Memory Bandwidth

The current peak transfer bandwidth of dual channel DDR400 memory is
approximately 6.4 GB/s. From AGP memory, volume data is transferred
to video memory using AGP or PCI Express (PCIe). If the CPU does
not need to change the data being uploaded (for example for conversion
into a native GPU data format), the data can be uploaded asynchronously
without involvement of the CPU using DMA (direct memory access).

AGP8x provides a maximum of 2.1 GB/s bandwidth for uploading to
the local video memory, while a PCI Express slot with 16 lanes delivers
twice the bandwidth of AGP8x. However, sustained throughput in many
applications is usually less than 1 GB, far away from the theoretical limit.
Note that 3D texture data is often rearranged by the CPU before it is
transferred into GPU memory to allow for more uniform memory access
patterns along all viewing directions (see Section 8.1), reducing the effective
transfer rate even further. Moreover, it should also be noted that the read-
back performance from GPU memory to main memory using AGP is much
smaller than the transfer rate in the other direction. PCI Express interface
currently provides for up to 4 GB/s transfer rate in both directions.

Local GPU memory provides very high memory bandwidth compared
with main memory—more than 30 GB on a typical 256-bit wide memory
interface. Data is transferred with this bandwidth to an internal texture
cache on the GPU chip. Unfortunately, GPU manufacturers do not provide
any details about the amount and bandwidth of the GPU internal texture
caches, however one can assume that the memory bandwidth of the texture
cache is several times higher than that of the GPU memory. More impor-
tantly, texture cache latency is probably much smaller compared with GPU
memory latency.

Similar to the situation with cache hierarchies found in modern CPUs,
we should interpret all previously described types of memory as different
levels of texture cache in a cache hierarchy. The local texture cache on
the GPU chip can be considered as level 1 cache, local video memory as
level 2 cache, and AGP memory as level 3 cache. It is desirable to keep

1AGP: accelerated graphics port.
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texture data as close to the chip as possible, i.e., in level 1 or level 2 of
the cache hierarchy. OpenGL extensions like VBO (vertex buffer objects,
see ARB vertex buffer object extension) and PBO (pixel buffer objects, see
ARB pixel buffer object extension) address this problem by allowing flexi-
ble mechanisms to keep vertex or pixel data as close to the GPU as possible.
The closer data is kept to the GPU, the harder it is to access the data with
the CPU. Thus, if data needs to be updated frequently by the CPU, it
is better to keep the data in level 3 cache (AGP memory). On the other
hand, if the data is mostly static, it is better to keep the data in the level
2 cache (local video memory). GPU internal texture caches are managed
automatically by the GPU, i.e., an API for controlling which data is kept in
the level 1 cache does not exist. However, there are mechanisms to ensure
that texture caches are utilized efficiently (see Section 8.1).

17.1.2 Memory Latency

The same way the bandwidth is increasing with memory closer to the actual
processor, the memory latency is decreasing. Memory latency is the time
between a memory read request and the data delivery. It is often even more
critical to high-performance volume rendering than memory bandwidth,
because high-performance ALUs (arithmetic logic units) waste most of their
processing power nowadays by waiting for data-value delivery from the
memory subsystem. The performance penalty of indirect memory access
using dependent texture fetches is mostly due to memory latency issues.
Dependent texture fetches use the result of a previous texture fetch as the
texture coordinate for a subsequent texture fetch. GPUs do their best to
hide memory latency by utilizing strategies such as pre-fetching of data
values and pairing ALU with texture fetch operations. However, random
memory access patterns that result from dependent texture fetch operations
make it hard for the GPU to apply those optimizations.

In this chapter, we present different techniques that try to utilize the
available amount of memory to render large volumetric data sets. Those
techniques differ in how efficiently they utilize the individual levels of the
texture cache hierarchy.

17.2 Bricking

The most straightforward method to deal with a large volume is the divide-
and-conquer approach, which is called bricking in the context of volume
rendering (also see Section 3.3.1). The volume is subdivided into several
blocks in such a way that a single sub-block (brick) fits into video memory
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Figure 17.5. Subdivision of a large volume into several smaller bricks.

(see Figure 17.5). Bricks are stored in main memory and rendered in a
front-to-back or back-to-front manner, dependent on the blending sequence.

We load bricks into the local memory of the GPU board one at a time.
To achieve the best performance when uploading a brick into GPU memory,
each brick should be stored as a continuous block of data in main memory.
In theory, we could create a 3D texture for each brick and let the texture
memory management of the driver handle the loading of the currently
rendered brick into GPU memory. However, the memory occupied by 3D
textures is restricted by some GPU drivers. NVIDIA OpenGL drivers for
example only allow as many 3D textures to be created as fit into GPU and
AGP/PCIe memory. Thus, it is instead advantageous to create a single 3D
texture and reuse this single texture for rendering of all subvolumes. In
OpenGL, data is copied from main memory into this 3D texture using a
glTexSubImage3D command.

Note that some graphics cards (for example from NVIDIA) use a rear-
ranged format for 3D texture data in GPU memory to increase the locality
of neighboring data values (see Section 8.1). This increases the cache-hit
ratio in the GPU-internal textures cache and allows for view-independent
rendering performance. However, this has the consequence that the driver
will rearrange the data in main memory before uploading the brick to GPU
memory. Hence, the data cannot be uploaded asynchronously using DMA
transfers and the resulting upload performance for 3D texture data is of-
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discard

duplicate

correct interpolationinconsistent interpolation

splitting

rendering

splitting

rendering

Figure 17.6. Bricking illustrated for the 1D case. Simply splitting the texture leads
to inconsistent interpolation at the transition (left). Duplicating a voxel at the
boundary between bricks (a plane of voxels in 3D) leads to correct interpolation
results (right).

ten far from the theoretical limit. A solution employing non-power-of-two
textures to circumvent this problem is discussed in Section 8.2.

Each brick is rendered using standard volume rendering techniques, i.e.,
by slicing (see Sections 3.2 and 3.3) or ray casting (see Chapter 7). Note
that bricking also permits the rendering of large volumes on multiple GPU
boards. Each GPU renders a different brick. An additional compositing
step is required to assemble the partial RGBA images generated by the indi-
vidual GPUs into the final image [178, 254, 255].

Section 3.3.1 showed that bricks must overlap by at least one voxel size
to avoid discontinuities on brick boundaries when using trilinear filtering.
The same is true for bricking large volumes. Figure 17.6 (left) demonstrates
the result of rendering two bricks with linear filtering and no overlap. By
repeating one voxel of brick 1 at the brick boundary in brick 2 as shown
in Figure 17.6 (right), we can ensure a smooth transition between bricks.
For best upload performance (see Chapter 8), the bricks should already be
stored in main memory with at least one voxel overlap.

Note that, in the case of high-quality filtering as presented in Chap-
ter 9.2 or on-the-fly gradient computation as presented in Sections 5.3.1
and 9.4, the overlap has to be increased. For example, when fetching
neighboring voxel values for a central differences during on-the-fly gradient
computation, the bricks actually have to overlap by two voxels to ensure
continuous interpolation of neighboring gradients as well.

Bricking does not reduce the amount of memory required to represent
the original volume data. Each brick has to be transferred to the local
memory on the GPU board before it can be rendered. Thus, the perfor-
mance of bricking is mainly limited by the AGP or PCI Express transfer
rate. In order to circumvent this problem, a common technique is to use a
subsampled version of the volume data that is entirely stored in the GPU
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memory during interaction. The full-resolution volume is only rendered for
the final image quality using bricking.

Another optimization to prevent transfer of texture data over AGP or
PCIe is to cache frequently used bricks in GPU memory. The following
techniques try to prevent transfer over AGP/PCIe by better utilizing the
available high-bandwidth texture memory on the GPU.

17.3 Multiresolution Volume Rendering
In comparison with a static subdivision as previously presented, a subdivi-
sion of the volume that adapts to the local properties of the scalar field or
some user-defined criteria has many advantages. One option is to render
the volume in a region-of-interest at a high resolution and away from that
region with progressively lower resolution. The algorithm presented in [152]
is based on an octree hierarchy (see Figure 17.7) where the leaves of the tree
represent the original data and the internal nodes define lower-resolution
versions. An octree representation of volumetric data can be obtained
by either a top-down subdivision or a bottom-up merging strategy. The
top-down subdivision strategy divides the volume data into eight blocks of
equal size. Each block is further subdivided recursively into smaller blocks
until the block size reaches a minimum size or the voxel dimension. The
bottom-up strategy merges eight neighboring voxels (or atom-blocks) into
a larger block. Each block is again merged with its neighboring blocks into
a larger block until the complete volume remains as a block. Each block is
a down-sampled version of the volume data represented by its child nodes.

Given such an octree representation of the volume data, one can traverse
the tree in a top-down manner, starting from the coarsest version of the

Figure 17.7. Octree decomposition of a volume.
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data at the root node. At each node, one can decide whether the child nodes
of the specific node need to be traversed further based on some criteria.
Possible criteria are the distance of the node to the viewer position, detail
contained within the subtree, or the desired rendering resolution based on a
global or local parameter such as a focus point. It is also possible to adapt
the sampling rate in the levels of the hierarchy to the detail level. Due
to the abrupt change in resolution and sampling rate at the boundaries
of different levels of multiresolution representations, some authors have
introduced special algorithms to ensure a smooth transition from one block
to another [288].

This multirepresentation allows memory to be saved for empty or uni-
form portions of the volume data by omitting subtrees of the hierarchy.
Furthermore, rendering performance may increase due to lower sampling
rates for certain blocks or omitting of empty blocks.

17.4 Built-In Texture Compression
The multiresolution techniques introduced in Section 17.3 already intro-
duce compression of volume data if the octree is not refined to the max-
imum level in all branches. In this section, we will examine compression
techniques for volumetric data sets that try to utilize the available high-
performance memory as efficiently as possible.

In fact, GPUs already have built-in texture compression schemes. In
OpenGL, texture compression is available using the S3 texture compression
standard, which is accessible using the EXT texture compression s3tc exten-
sion. In this compression method, 4 × 4 RGBA texels are grouped together.
For each 4 × 4 pixel group, two colors are stored; two additional colors

Color 00
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00 10 11
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00 0001
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Figure 17.8. S3 texture compression stores two colors for each 4 × 4 texel block;
two additional colors are derived by linear interpolation. The total of four colors
are accessed with two bits per texel.
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are obtained by linear interpolation of the stored colors. For each pixel of
the 4 × 4 block, two bits are used as look-up values to access these four
colors (see Figure 17.8). The NV texture compression vtc OpenGL extension
provides a similar kind of compression to the 3D texture domain.

Several graphics chips support S3 texture compression in hardware, e.g.,
the NVIDIA GeForce and ATI Radeon series. S3 texture compression pro-
vides a fixed compression ratio of 4:1 or 8:1. However, for compression of
volumetric data it has some severe disadvantages. First, block artifacts
can easily be observed for nonsmooth data due to the block compression
scheme. Second, this compression technique is only available for RGB(A)

data. As we are mainly interested in scalar volume data, S3 texture com-
pression cannot be used. For compression of RGB textures that store pre-
computed gradients, S3 texture compression provides unsatisfactory qual-
ity because illumination is very sensitive to block-compression artifacts in
pre-computed gradients.

17.5 Wavelet Compression
Wavelet transforms [81, 252] provide an invaluable tool in computer graph-
ics. This is due to the fact that, in computer graphics, we often encounter
signals that are mostly smooth but contain important regions with high-
frequency content. The same applies to volumetric data sets, which (in
most cases) contain some areas with rich detail while at the same time
they have other regions that are very homogeneous. A typical data set from
CT, for example, has very fine detail for bone structures while surround-
ing air and tissue is given as very smooth and uniform areas. Figure 17.9
shows gradient-magnitude modulation of a CT data set; i.e., areas where
the data values change rapidly are enhanced while homogeneous regions
are suppressed. Note that most of the data is smooth while high-frequency
detail is most apparent at certain material boundaries.

The wavelet transform is the projection of a signal onto a series of basis
functions called wavelets. Wavelets form a hierarchy of signals that allow
the analysis and reconstruction of an input signal at different resolutions
and frequency ranges, providing a basis for multiresolution volume render-
ing. As wavelet-transformed signals often contain many coefficients that
are nearly zero, wavelets form a natural technique for building a compressed
representation of a signal by omitting coefficients that are smaller than a
specified threshold.

In fact, many wavelet compression schemes have been proposed for
3D volume data [110, 122, 191, 195, 225, 298] as well as for 4D volume
data [50, 89]. Methods for 3D volume data often use a block-based wavelet
compression scheme to allow for fast random access to data values without
requiring decompression of the whole data set.
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Figure 17.9. Gradient-magnitude modulation volume rendering of a large CT data
set.

GPU-accelerated visualization of wavelet-compressed 4D volume data
sequences using motion compensation techniques have been proposed [89].
However, each time step of the sequence must be fully decompressed on
the CPU before it can be rendered. Thus, no bandwidth is saved when
transferring a single time step of the sequence over AGP/PCIe, therefore
limiting the rendering performance to the AGP or PCIe bandwidth.

For large 3D volumes, it is possible to avoid the problem of transferring
a decompressed full-resolution volume from main memory to the GPU by
introducing a multiresolution hierarchy that provides fast access to each
node of the hierarchy [90]. Consequently, it is possible to store very large
data sets in main memory and to reconstruct the levels of detail that are
necessary for an interactive exploration on the fly.

A pre-processing step is required to transform the volume data into the
hierarchical wavelet representation. For that purpose, the data is divided
into cubic blocks of (2k)3 voxels, where k = 16 is a good choice. The
wavelet filters are applied to each of the blocks, resulting in a low-pass–
filtered block of size k3 voxels and (2k)3 − k3 wavelet coefficients repre-
senting high frequencies that are lost in the low-pass filtered signal. This
scheme is applied hierarchically by grouping eight neighboring low-pass-
filtered blocks together with new blocks with (2k)3 voxels. This process is
repeated until only a single block remains (see Figure 17.10).
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The data is now given as a multiresolution tree, with a very coarse
representation of the data in the root-node (see Figure 17.11). Each de-
scent in the octree increases the resolution by a factor of two. To decide
at which resolution a block should be decompressed by the CPU during
rendering, a projective classification and a view-dependent priority sched-
ule is applied. Projective classification projects the voxel spacing of a node
of the hierarchy to screen space. If the voxel spacing is above the screen
resolution, then the node must be refined, else it is passed to the renderer.
The view-dependent classification scheme prioritizes nodes that are closer
to the camera position. The error introduced by rendering a node can also
be used to determine if a node needs to be refined. To reduce the amount
of data transferred over AGP/PCIe, an optional caching strategy caches
blocks that are frequently used in GPU memory.

Wavelet coefficients of low importance are discarded using a threshold
approach. For typical data sets, a 4:1 compression can already be achieved
with lossless compression using a threshold of zero. In the paper several
encoding schemes for the wavelet coefficients are discussed, which achieve
compression rates of up to 40:1 for the visible female and up to 30:1 for
the visible male data sets. Interactive exploration is possible with 3 to 10
frames per second depending on quality settings.

The multiresolution representation of the volumetric data in conjunc-
tion with the wavelet transform enables rendering of data sets far beyond
the virtual address limit of today’s PCs. However, in all presented tech-
niques compressed data is stored in main memory and decompressed by the
CPU before it can be rendered on the GPU. An ideal solution would store
the compressed data in local memory of the GPU and decompress it using
the GPU before rendering. However, no work has yet been published to
do this, and it is unclear so far if a decompression of wavelet-transformed
data can be efficiently implemented using a GPU in the near future.

In contrast with the CPU-based decoding of the volume data, the tech-
niques presented in the following sections can easily be realized on GPUs by
utilizing dependent texture fetch operations. That is, the result of a previ-
ous texture-fetch operation is used as a texture coordinate for a subsequent
texture fetch. This provides the basis for indexed or indirect memory access
required for certain packing or compression techniques.

17.6 Packing Techniques
Packing techniques try to make efficient use of GPU memory by packing
equal or similar blocks of an input volume into a smaller volume as com-
pactly as possible. The original volume can then be represented by an
index volume referencing those packed blocks (see Figure 17.12).
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Figure 17.10. Construction of the wavelet coefficient tree for k = 2.

Reconstructed Data

Wavelet Coefficient Hierarchy

Figure 17.11. The compressed wavelet coefficient tree for k = 2. The lower part of
the image shows the reconstruction of data from the wavelet coefficient tree.
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Figure 17.12. (a) Index data: scale factors and coordinates of packed data blocks
are stored for each cell of a 4 x 4 grid representing the whole texture map. (b)
Packed data: the data blocks packed into a uniform grid of 256 x 128 texels. (Images
courtesy of M. Kraus and T. Ertl [133], c© Eurographics Association 2002.)

One idea is to pack nonempty blocks of the input data into a smaller
packed volume representation [133]. This packed representation is then
referenced using an index volume that stores the position of the origin of
the indexed block in the compact representation and a scaling factor. The
scaling factor accommodates nonuniform block sizes (see Figure 17.13).
During rendering, the decompression is performed in a fragment program.
A relative coordinate to the origin of the index cell is computed first. Then
the coordinate and the scaling factor of the packed data block are looked up
from the texture. From the relative coordinate, the position of the packed
block, and the scaling factor, a position in the packed data is computed,
which is used to look up the decoded voxel value. In order to support linear
interpolation provided by the graphics hardware, texels on the boundaries
of data blocks are replicated. As the texture coordinate to look up the
data value in the packed texture is computed based on the result of an-
other texture look-up, the complete decoding algorithm is implemented
in the fragment stage. The disadvantage is that dependent texture look-
up introduces a big performance penalty, as it results in nonpredictable
memory-access patterns.

In contrast with decoding the packed representation in the fragment
stage, it can alternatively be decoded in the vertex stage [162]. The idea is
to allow arbitrarily sized subtextures that are generated by a box-growing
algorithm to determine boxes with similar densities and gradient magni-
tudes. The main purpose is to accelerate volume rendering by skipping
blocks that are empty after the transfer functions are applied. The ap-
proach also allows the packing of pre-computed gradients data into a com-
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Figure 17.13. Volume rendering of a 512× 512× 360 CT scan with adaptive texture
mapping. Left: nonempty cells of the 323 index data grid. Middle: data blocks
packed into a 2563 texture. Right: resulting volume rendering. (Images courtesy of
M. Kraus and T. Ertl [133], c© Eurographics Association 2002.)

pact representation (see Figure 17.14). Boxes with similar density and
nonzero gradient magnitude are packed into a single texture as subtex-
tures. During rendering of a box, a subtexture can be selected from the
packed representation by applying appropriate texture coordinates in the
vertex stage.

The main advantage to the previously described technique is that the
decoding of the packed volume representation is done in the vertex stage
instead of the fragment stage. As the dependent texture operations re-
quired for decoding in the fragment stage are quite “expensive” due to
inefficient memory access patterns, vertex stage decoding has a significant
performance advantage over fragment-stage decoding.

All packing techniques discussed in this section support blocks of differ-
ent sizes. Using uniformly sized blocks brings us to the concept of vector
quantization.

Figure 17.14. Gradient subtextures defined by the boxes enclose all the voxels of
similar densities and nonzero gradient magnitude (left two images). The gradient
subtextures are packed into a single texture (middle). Resulting rendering of the
foot with mixed boxes and textures (right two images). (Images courtesy of Wei Li
and Arie Kaufman [162], c© 2003 Canadian Information Processing Society.)
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17.7 Vector Quantization

Due to the availability of indirect memory access provided on GPUs by
means of dependent texture-fetch operations, vector quantization [198] is
an obvious choice for a compression scheme to make more efficient use of
available GPU memory resources. In general, a vector-quantization algo-
rithm takes an n-dimensional input vector and maps it to a single index
that references a closely matching vector inside a codebook containing vec-
tors of equal length as the input vector. As the codebook should have a
significantly smaller size than the set of input vectors, a codebook should
be capable of reproducing an original input vector as closely as possible.
Hence, a codebook must be generated from the set of input vectors.

For GPU-based vector quantization [234], the encoding of the data is
performed using the CPU. Vector quantization is applied on two differ-
ent frequency bands of the input volume data. For that purpose, the
data is partitioned into blocks with 43 voxels dimension. Each block is
down-sampled to a 23 block and a difference vector with 64 components is
obtained by computing the difference between the original and the down-
sampled block. This process is repeated for the 23 blocks resulting in a
single mean value for the block and a second 8-component difference vec-
tor. Vector quantization is applied to two difference vectors, and the two
resulting indices are stored together with the mean value into an RGB 3D
texture (see Figure 17.15). The indices and the mean value are fetched
during rendering and used to reconstruct the input value. For decoding
using the GPU, two dependent texture-fetch operations look up the 8- and
64-component difference vectors from two codebooks stored as 2D textures.

For a codebook with 256 entries, it is possible to achieve a compression
factor of 64 : 3 neglecting the size of the codebooks; i.e., a 10243 volume
is compressed to 3 × 2563 bytes = 48 MB. Thus, it fits easily into the
GPU memory, and no AGP/PCIe transfer is required to swap in data dur-
ing rendering. It should be noted that, despite the fact that the decoding
stage for vector-quantized data is very simple, frame rates considerably
drop compared with uncompressed data due to texture cache misses pro-
duced by dependent texture-fetch operations. To improve performance, a
deferred decompression based on early z-tests available on modern GPUs is
employed. That is, every slice polygon is rendered twice, first with a sim-
ple (and thus fast) shader and then with the full (and thus slow) decoding
shader. To prevent decoding of empty regions of the data, the first pass
evaluates the median value stored in the 3D texture. If the median value
is zero, the execution of the complex shader for this fragment is prevented
by masking the fragment with a z-value (see Section 8.6.2).

For the generation of the codebooks, a modified LBG algorithm [166]
based on an initial codebook generated by principal component anal-
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Figure 17.15. Hierarchical decompression and quantization of volumetric data sets.
Blocks are first split into multiple frequency bands, which are quantized separately.
This generates three index values per block, which are used to reference the com-
puted codebook.

ysis (PCA) is performed by the CPU. For details, we refer the reader
to [234].

Due to the close coupling of the decoding and the rendering of data in
the implementation, linear filtering capabilities of GPUs cannot be used.
This problem can be solved by separating decoding and rendering, i.e., the
data is first decoded into a temporary texture before the decoded data is
rendered. This also solves the problem of high decoding costs when using
high zoom factors. In this case, the number of fragments rendered is large
compared with the number of voxels in the data set.

This GPU-accelerated vector quantization approach is also applicable to
4D volume data. A shock wave simulation sequence with 89 time steps can
be compressed from 1.4 GB to 70 MB. Thus, it can be stored entirely in the
local GPU memory. Rendering from the compressed data is then possible
directly from GPU memory. The additional decoding overhead is usually
far compensated by the avoided AGP/PCIe data transfer bottlenecks.

17.8 Discussion
GPUs provide sufficient computational power to render large volume data
sets with high quality at interactive frame rates. As many traditional
techniques, like pre-computed gradients, are not feasible for large volumes,
certain properties of the scalar field must be computed on-the-fly. This,
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however, introduces additional computational costs that require optimiza-
tion techniques to prevent unnecessary memory access and calculations.

Rendering techniques for large volume data try to reduce the transfer
of texture data over AGP/PCIe and try to make more efficient use of the
available high-speed GPU memory. If possible, data should always be kept
in GPU memory. However, this cannot always be achieved, even by using
packed or compressed representations of the data. In this case, optimized
caching strategies and asynchronous data transfers are essential to maintain
a constant flow of data.

17.9 Further Reading
For further work on the visualization of large 4D volume data using a single
PC equipped with a modest amount of memory, a texture-capable graph-
ics card, and an inexpensive disk array, we refer the reader to [173]. The
algorithm employs a palette-based decoding technique and an adaptive bit
allocation scheme to utilize the capabilities of a GPU. The use of fragment
shaders to visualize time-varying data has also been investigated by other
authors [11]. Although we mainly focused on rendering large volume data
using a single PC equipped with a single GPU, there is also work on render-
ing large volume data on multiple GPUs and GPU clusters [178, 254, 255].

Procedural techniques often circumvent the need for an explicit rep-
resentation of volumetric phenomena using high-resolution volumes (see
Section 12.3). This is especially useful for application areas in the en-
tertainment industry like computer games or movies, where often a high
level of detail is required when rendering volumetric effects such as clouds,
smoke, or explosions. However, to achieve these effects, no explicit repre-
sentation of the high-level detail is required.
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“Illustrative Context-Preserving Volume Rendering.” In Proceedings
of EuroVis 2005, pp. 69–76. Aire-la-Ville, Switzerland: Eurographics
Association, 2005.

[20] Michael Burns, Janek Klawe, Szymon Rusinkiewicz, Adam Finkel-
stein, and Doug DeCarlo. “Line Drawings from Volume Data.” Proc.
SIGGRAPH ’05, Transactions on Graphics 24:3 (2005), 512–518.



�

�

�

�

�

�

�

�

Bibliography 463

[21] Kenneth M. Case and Paul F. Zweifel. Linear Transport Theory. Read-
ing, MA: Addison-Wesley, 1967.
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Krüger, Aaron Lefohn, Tim Purcell, and Cliff Woolley. “A Survey
of General-Purpose Computation on Graphics Hardware.” ACM SIG-
GRAPH 2005 Course Notes, 2005.

[97] Mark J. Harris. “Real-Time Cloud Simulation and Rendering.” PhD
Thesis TR03-040, University of North Carolina, 2003.

[98] John C. Hart. “Perlin Noise Pixel Shaders.” In Proceedings of the ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 87–
94. New York: ACM Press, 2001.
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